xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp (revision 1323ec571215a77ddd21294f0871979d5ad6b992)
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
139 
140 // FIXME: Remove this once the bug has been fixed!
141 extern cl::opt<bool> ANDIGlueBug;
142 
143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
144                                      const PPCSubtarget &STI)
145     : TargetLowering(TM), Subtarget(STI) {
146   // Initialize map that relates the PPC addressing modes to the computed flags
147   // of a load/store instruction. The map is used to determine the optimal
148   // addressing mode when selecting load and stores.
149   initializeAddrModeMap();
150   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
151   // arguments are at least 4/8 bytes aligned.
152   bool isPPC64 = Subtarget.isPPC64();
153   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
154 
155   // Set up the register classes.
156   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
157   if (!useSoftFloat()) {
158     if (hasSPE()) {
159       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
160       // EFPU2 APU only supports f32
161       if (!Subtarget.hasEFPU2())
162         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
163     } else {
164       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
165       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
166     }
167   }
168 
169   // Match BITREVERSE to customized fast code sequence in the td file.
170   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
171   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
172 
173   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
174   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
175 
176   // Custom lower inline assembly to check for special registers.
177   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
178   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
179 
180   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
181   for (MVT VT : MVT::integer_valuetypes()) {
182     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
183     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
184   }
185 
186   if (Subtarget.isISA3_0()) {
187     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
188     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
189     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
190     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
191   } else {
192     // No extending loads from f16 or HW conversions back and forth.
193     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
195     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
197     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
198     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
199     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
200     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
201   }
202 
203   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
204 
205   // PowerPC has pre-inc load and store's.
206   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
211   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
212   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
213   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
214   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
215   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
216   if (!Subtarget.hasSPE()) {
217     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
218     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
219     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
220     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
221   }
222 
223   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
224   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
225   for (MVT VT : ScalarIntVTs) {
226     setOperationAction(ISD::ADDC, VT, Legal);
227     setOperationAction(ISD::ADDE, VT, Legal);
228     setOperationAction(ISD::SUBC, VT, Legal);
229     setOperationAction(ISD::SUBE, VT, Legal);
230   }
231 
232   if (Subtarget.useCRBits()) {
233     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
234 
235     if (isPPC64 || Subtarget.hasFPCVT()) {
236       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
240       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
241                         isPPC64 ? MVT::i64 : MVT::i32);
242 
243       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
244       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
245                          isPPC64 ? MVT::i64 : MVT::i32);
246       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
247       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
248                         isPPC64 ? MVT::i64 : MVT::i32);
249 
250       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
254       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
255                         isPPC64 ? MVT::i64 : MVT::i32);
256 
257       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
258       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
259                         isPPC64 ? MVT::i64 : MVT::i32);
260       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
261       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
262                         isPPC64 ? MVT::i64 : MVT::i32);
263     } else {
264       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
265       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
266       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
267       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
268     }
269 
270     // PowerPC does not support direct load/store of condition registers.
271     setOperationAction(ISD::LOAD, MVT::i1, Custom);
272     setOperationAction(ISD::STORE, MVT::i1, Custom);
273 
274     // FIXME: Remove this once the ANDI glue bug is fixed:
275     if (ANDIGlueBug)
276       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
277 
278     for (MVT VT : MVT::integer_valuetypes()) {
279       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
281       setTruncStoreAction(VT, MVT::i1, Expand);
282     }
283 
284     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
285   }
286 
287   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
288   // PPC (the libcall is not available).
289   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
290   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
291   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
292   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
293 
294   // We do not currently implement these libm ops for PowerPC.
295   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
296   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
297   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
298   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
299   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
300   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
301 
302   // PowerPC has no SREM/UREM instructions unless we are on P9
303   // On P9 we may use a hardware instruction to compute the remainder.
304   // When the result of both the remainder and the division is required it is
305   // more efficient to compute the remainder from the result of the division
306   // rather than use the remainder instruction. The instructions are legalized
307   // directly because the DivRemPairsPass performs the transformation at the IR
308   // level.
309   if (Subtarget.isISA3_0()) {
310     setOperationAction(ISD::SREM, MVT::i32, Legal);
311     setOperationAction(ISD::UREM, MVT::i32, Legal);
312     setOperationAction(ISD::SREM, MVT::i64, Legal);
313     setOperationAction(ISD::UREM, MVT::i64, Legal);
314   } else {
315     setOperationAction(ISD::SREM, MVT::i32, Expand);
316     setOperationAction(ISD::UREM, MVT::i32, Expand);
317     setOperationAction(ISD::SREM, MVT::i64, Expand);
318     setOperationAction(ISD::UREM, MVT::i64, Expand);
319   }
320 
321   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
322   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
323   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
324   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
325   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
326   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
327   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
328   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
329   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
330 
331   // Handle constrained floating-point operations of scalar.
332   // TODO: Handle SPE specific operation.
333   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
334   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
335   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
336   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
337   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
338 
339   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
340   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
341   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
342   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
343 
344   if (!Subtarget.hasSPE()) {
345     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasVSX()) {
350     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFSQRT()) {
355     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasFPRND()) {
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
364 
365     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
366     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
367     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
368     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
369   }
370 
371   // We don't support sin/cos/sqrt/fmod/pow
372   setOperationAction(ISD::FSIN , MVT::f64, Expand);
373   setOperationAction(ISD::FCOS , MVT::f64, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
375   setOperationAction(ISD::FREM , MVT::f64, Expand);
376   setOperationAction(ISD::FPOW , MVT::f64, Expand);
377   setOperationAction(ISD::FSIN , MVT::f32, Expand);
378   setOperationAction(ISD::FCOS , MVT::f32, Expand);
379   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
380   setOperationAction(ISD::FREM , MVT::f32, Expand);
381   setOperationAction(ISD::FPOW , MVT::f32, Expand);
382   if (Subtarget.hasSPE()) {
383     setOperationAction(ISD::FMA  , MVT::f64, Expand);
384     setOperationAction(ISD::FMA  , MVT::f32, Expand);
385   } else {
386     setOperationAction(ISD::FMA  , MVT::f64, Legal);
387     setOperationAction(ISD::FMA  , MVT::f32, Legal);
388   }
389 
390   if (Subtarget.hasSPE())
391     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
392 
393   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
394 
395   // If we're enabling GP optimizations, use hardware square root
396   if (!Subtarget.hasFSQRT() &&
397       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
398         Subtarget.hasFRE()))
399     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
400 
401   if (!Subtarget.hasFSQRT() &&
402       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
403         Subtarget.hasFRES()))
404     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
405 
406   if (Subtarget.hasFCPSGN()) {
407     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
408     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
409   } else {
410     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
412   }
413 
414   if (Subtarget.hasFPRND()) {
415     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
416     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
417     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
418     setOperationAction(ISD::FROUND, MVT::f64, Legal);
419 
420     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
421     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
422     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
423     setOperationAction(ISD::FROUND, MVT::f32, Legal);
424   }
425 
426   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
427   // to speed up scalar BSWAP64.
428   // CTPOP or CTTZ were introduced in P8/P9 respectively
429   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
430   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
431     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
432   else
433     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
434   if (Subtarget.isISA3_0()) {
435     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
436     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
437   } else {
438     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
439     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
440   }
441 
442   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
443     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
444     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
445   } else {
446     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
447     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
448   }
449 
450   // PowerPC does not have ROTR
451   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
452   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
453 
454   if (!Subtarget.useCRBits()) {
455     // PowerPC does not have Select
456     setOperationAction(ISD::SELECT, MVT::i32, Expand);
457     setOperationAction(ISD::SELECT, MVT::i64, Expand);
458     setOperationAction(ISD::SELECT, MVT::f32, Expand);
459     setOperationAction(ISD::SELECT, MVT::f64, Expand);
460   }
461 
462   // PowerPC wants to turn select_cc of FP into fsel when possible.
463   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
464   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
465 
466   // PowerPC wants to optimize integer setcc a bit
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::SETCC, MVT::i32, Custom);
469 
470   if (Subtarget.hasFPU()) {
471     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
472     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
473     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
474 
475     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
476     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
477     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
478   }
479 
480   // PowerPC does not have BRCOND which requires SetCC
481   if (!Subtarget.useCRBits())
482     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
483 
484   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
485 
486   if (Subtarget.hasSPE()) {
487     // SPE has built-in conversions
488     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
489     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
490     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
491     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
492     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
493     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
494 
495     // SPE supports signaling compare of f32/f64.
496     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
497     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
498   } else {
499     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
500     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
501     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
502 
503     // PowerPC does not have [U|S]INT_TO_FP
504     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
505     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
506     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
507     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
508   }
509 
510   if (Subtarget.hasDirectMove() && isPPC64) {
511     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
512     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
513     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
514     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
515     if (TM.Options.UnsafeFPMath) {
516       setOperationAction(ISD::LRINT, MVT::f64, Legal);
517       setOperationAction(ISD::LRINT, MVT::f32, Legal);
518       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
519       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
520       setOperationAction(ISD::LROUND, MVT::f64, Legal);
521       setOperationAction(ISD::LROUND, MVT::f32, Legal);
522       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
523       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
524     }
525   } else {
526     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
527     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
528     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
529     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
530   }
531 
532   // We cannot sextinreg(i1).  Expand to shifts.
533   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
534 
535   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
536   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
537   // support continuation, user-level threading, and etc.. As a result, no
538   // other SjLj exception interfaces are implemented and please don't build
539   // your own exception handling based on them.
540   // LLVM/Clang supports zero-cost DWARF exception handling.
541   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
542   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
543 
544   // We want to legalize GlobalAddress and ConstantPool nodes into the
545   // appropriate instructions to materialize the address.
546   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
547   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
548   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
549   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
550   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
551   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
552   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
553   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
554   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
555   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
556 
557   // TRAP is legal.
558   setOperationAction(ISD::TRAP, MVT::Other, Legal);
559 
560   // TRAMPOLINE is custom lowered.
561   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
562   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
563 
564   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
565   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
566 
567   if (Subtarget.is64BitELFABI()) {
568     // VAARG always uses double-word chunks, so promote anything smaller.
569     setOperationAction(ISD::VAARG, MVT::i1, Promote);
570     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
571     setOperationAction(ISD::VAARG, MVT::i8, Promote);
572     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
573     setOperationAction(ISD::VAARG, MVT::i16, Promote);
574     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
575     setOperationAction(ISD::VAARG, MVT::i32, Promote);
576     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
577     setOperationAction(ISD::VAARG, MVT::Other, Expand);
578   } else if (Subtarget.is32BitELFABI()) {
579     // VAARG is custom lowered with the 32-bit SVR4 ABI.
580     setOperationAction(ISD::VAARG, MVT::Other, Custom);
581     setOperationAction(ISD::VAARG, MVT::i64, Custom);
582   } else
583     setOperationAction(ISD::VAARG, MVT::Other, Expand);
584 
585   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
586   if (Subtarget.is32BitELFABI())
587     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
588   else
589     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
590 
591   // Use the default implementation.
592   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
593   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
594   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
595   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
596   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
597   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
598   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
599   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
600   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
601 
602   // We want to custom lower some of our intrinsics.
603   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
604 
605   // To handle counter-based loop conditions.
606   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
607 
608   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
609   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
610   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
611   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
612 
613   // Comparisons that require checking two conditions.
614   if (Subtarget.hasSPE()) {
615     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
616     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
617     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
618     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
619   }
620   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
621   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
622   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
623   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
624   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
625   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
626   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
627   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
628   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
629   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
630   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
631   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
632 
633   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
634   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
635 
636   if (Subtarget.has64BitSupport()) {
637     // They also have instructions for converting between i64 and fp.
638     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
639     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
640     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
641     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
642     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
643     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
644     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
645     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
646     // This is just the low 32 bits of a (signed) fp->i64 conversion.
647     // We cannot do this with Promote because i64 is not a legal type.
648     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
649     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
650 
651     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
652       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
653       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
654     }
655   } else {
656     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
657     if (Subtarget.hasSPE()) {
658       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
659       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
660     } else {
661       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
662       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
663     }
664   }
665 
666   // With the instructions enabled under FPCVT, we can do everything.
667   if (Subtarget.hasFPCVT()) {
668     if (Subtarget.has64BitSupport()) {
669       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
670       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
671       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
672       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
673       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
674       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
675       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
676       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
677     }
678 
679     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
680     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
681     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
682     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
683     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
684     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
685     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
686     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
687   }
688 
689   if (Subtarget.use64BitRegs()) {
690     // 64-bit PowerPC implementations can support i64 types directly
691     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
692     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
693     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
694     // 64-bit PowerPC wants to expand i128 shifts itself.
695     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
696     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
697     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
698   } else {
699     // 32-bit PowerPC wants to expand i64 shifts itself.
700     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
701     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
702     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
703   }
704 
705   // PowerPC has better expansions for funnel shifts than the generic
706   // TargetLowering::expandFunnelShift.
707   if (Subtarget.has64BitSupport()) {
708     setOperationAction(ISD::FSHL, MVT::i64, Custom);
709     setOperationAction(ISD::FSHR, MVT::i64, Custom);
710   }
711   setOperationAction(ISD::FSHL, MVT::i32, Custom);
712   setOperationAction(ISD::FSHR, MVT::i32, Custom);
713 
714   if (Subtarget.hasVSX()) {
715     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
716     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
717     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
718     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
719   }
720 
721   if (Subtarget.hasAltivec()) {
722     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
723       setOperationAction(ISD::SADDSAT, VT, Legal);
724       setOperationAction(ISD::SSUBSAT, VT, Legal);
725       setOperationAction(ISD::UADDSAT, VT, Legal);
726       setOperationAction(ISD::USUBSAT, VT, Legal);
727     }
728     // First set operation action for all vector types to expand. Then we
729     // will selectively turn on ones that can be effectively codegen'd.
730     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
731       // add/sub are legal for all supported vector VT's.
732       setOperationAction(ISD::ADD, VT, Legal);
733       setOperationAction(ISD::SUB, VT, Legal);
734 
735       // For v2i64, these are only valid with P8Vector. This is corrected after
736       // the loop.
737       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
738         setOperationAction(ISD::SMAX, VT, Legal);
739         setOperationAction(ISD::SMIN, VT, Legal);
740         setOperationAction(ISD::UMAX, VT, Legal);
741         setOperationAction(ISD::UMIN, VT, Legal);
742       }
743       else {
744         setOperationAction(ISD::SMAX, VT, Expand);
745         setOperationAction(ISD::SMIN, VT, Expand);
746         setOperationAction(ISD::UMAX, VT, Expand);
747         setOperationAction(ISD::UMIN, VT, Expand);
748       }
749 
750       if (Subtarget.hasVSX()) {
751         setOperationAction(ISD::FMAXNUM, VT, Legal);
752         setOperationAction(ISD::FMINNUM, VT, Legal);
753       }
754 
755       // Vector instructions introduced in P8
756       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
757         setOperationAction(ISD::CTPOP, VT, Legal);
758         setOperationAction(ISD::CTLZ, VT, Legal);
759       }
760       else {
761         setOperationAction(ISD::CTPOP, VT, Expand);
762         setOperationAction(ISD::CTLZ, VT, Expand);
763       }
764 
765       // Vector instructions introduced in P9
766       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
767         setOperationAction(ISD::CTTZ, VT, Legal);
768       else
769         setOperationAction(ISD::CTTZ, VT, Expand);
770 
771       // We promote all shuffles to v16i8.
772       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
773       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
774 
775       // We promote all non-typed operations to v4i32.
776       setOperationAction(ISD::AND   , VT, Promote);
777       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
778       setOperationAction(ISD::OR    , VT, Promote);
779       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
780       setOperationAction(ISD::XOR   , VT, Promote);
781       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
782       setOperationAction(ISD::LOAD  , VT, Promote);
783       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
784       setOperationAction(ISD::SELECT, VT, Promote);
785       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
786       setOperationAction(ISD::VSELECT, VT, Legal);
787       setOperationAction(ISD::SELECT_CC, VT, Promote);
788       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
789       setOperationAction(ISD::STORE, VT, Promote);
790       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
791 
792       // No other operations are legal.
793       setOperationAction(ISD::MUL , VT, Expand);
794       setOperationAction(ISD::SDIV, VT, Expand);
795       setOperationAction(ISD::SREM, VT, Expand);
796       setOperationAction(ISD::UDIV, VT, Expand);
797       setOperationAction(ISD::UREM, VT, Expand);
798       setOperationAction(ISD::FDIV, VT, Expand);
799       setOperationAction(ISD::FREM, VT, Expand);
800       setOperationAction(ISD::FNEG, VT, Expand);
801       setOperationAction(ISD::FSQRT, VT, Expand);
802       setOperationAction(ISD::FLOG, VT, Expand);
803       setOperationAction(ISD::FLOG10, VT, Expand);
804       setOperationAction(ISD::FLOG2, VT, Expand);
805       setOperationAction(ISD::FEXP, VT, Expand);
806       setOperationAction(ISD::FEXP2, VT, Expand);
807       setOperationAction(ISD::FSIN, VT, Expand);
808       setOperationAction(ISD::FCOS, VT, Expand);
809       setOperationAction(ISD::FABS, VT, Expand);
810       setOperationAction(ISD::FFLOOR, VT, Expand);
811       setOperationAction(ISD::FCEIL,  VT, Expand);
812       setOperationAction(ISD::FTRUNC, VT, Expand);
813       setOperationAction(ISD::FRINT,  VT, Expand);
814       setOperationAction(ISD::FNEARBYINT, VT, Expand);
815       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
816       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
817       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
818       setOperationAction(ISD::MULHU, VT, Expand);
819       setOperationAction(ISD::MULHS, VT, Expand);
820       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
821       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
822       setOperationAction(ISD::UDIVREM, VT, Expand);
823       setOperationAction(ISD::SDIVREM, VT, Expand);
824       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
825       setOperationAction(ISD::FPOW, VT, Expand);
826       setOperationAction(ISD::BSWAP, VT, Expand);
827       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
828       setOperationAction(ISD::ROTL, VT, Expand);
829       setOperationAction(ISD::ROTR, VT, Expand);
830 
831       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
832         setTruncStoreAction(VT, InnerVT, Expand);
833         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
834         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
835         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
836       }
837     }
838     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
839     if (!Subtarget.hasP8Vector()) {
840       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
841       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
842       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
843       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
844     }
845 
846     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
847     // with merges, splats, etc.
848     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
849 
850     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
851     // are cheap, so handle them before they get expanded to scalar.
852     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
853     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
854     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
855     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
856     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
857 
858     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
859     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
860     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
861     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
862     setOperationAction(ISD::SELECT, MVT::v4i32,
863                        Subtarget.useCRBits() ? Legal : Expand);
864     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
865     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
866     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
867     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
868     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
869     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
870     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
871     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
872     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
873     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
874     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
875     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
876     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
877 
878     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
879     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
880     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
881     if (Subtarget.hasAltivec())
882       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
883         setOperationAction(ISD::ROTL, VT, Legal);
884     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
885     if (Subtarget.hasP8Altivec())
886       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
887 
888     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
889     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
890     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
891     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
892 
893     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
894     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
895 
896     if (Subtarget.hasVSX()) {
897       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
898       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
899       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
900     }
901 
902     if (Subtarget.hasP8Altivec())
903       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
904     else
905       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
906 
907     if (Subtarget.isISA3_1()) {
908       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
909       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
910       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
911       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
912       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
913       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
914       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
915       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
916       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
917       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
918       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
919       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
920       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
921       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
922       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
923       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
924       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
925       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
926     }
927 
928     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
929     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
930 
931     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
932     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
933 
934     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
935     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
936     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
937     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
938 
939     // Altivec does not contain unordered floating-point compare instructions
940     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
941     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
942     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
943     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
944 
945     if (Subtarget.hasVSX()) {
946       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
947       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
948       if (Subtarget.hasP8Vector()) {
949         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
950         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
951       }
952       if (Subtarget.hasDirectMove() && isPPC64) {
953         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
954         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
955         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
956         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
957         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
958         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
959         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
960         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
961       }
962       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
963 
964       // The nearbyint variants are not allowed to raise the inexact exception
965       // so we can only code-gen them with unsafe math.
966       if (TM.Options.UnsafeFPMath) {
967         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
968         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
969       }
970 
971       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
972       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
973       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
974       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
975       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
976       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
977       setOperationAction(ISD::FROUND, MVT::f64, Legal);
978       setOperationAction(ISD::FRINT, MVT::f64, Legal);
979 
980       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
981       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
982       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
983       setOperationAction(ISD::FROUND, MVT::f32, Legal);
984       setOperationAction(ISD::FRINT, MVT::f32, Legal);
985 
986       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
987       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
988 
989       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
990       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
991 
992       // Share the Altivec comparison restrictions.
993       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
994       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
995       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
996       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
997 
998       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
999       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1000 
1001       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
1002 
1003       if (Subtarget.hasP8Vector())
1004         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1005 
1006       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1007 
1008       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1009       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1010       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1011 
1012       if (Subtarget.hasP8Altivec()) {
1013         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1014         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1015         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1016 
1017         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1018         // SRL, but not for SRA because of the instructions available:
1019         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1020         // doing
1021         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1022         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1023         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1024 
1025         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1026       }
1027       else {
1028         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1029         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1030         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1031 
1032         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1033 
1034         // VSX v2i64 only supports non-arithmetic operations.
1035         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1036         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1037       }
1038 
1039       if (Subtarget.isISA3_1())
1040         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1041       else
1042         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1043 
1044       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1045       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1046       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1047       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1048 
1049       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1050 
1051       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1052       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1053       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1054       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1055       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1056       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1057       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1058       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1059 
1060       // Custom handling for partial vectors of integers converted to
1061       // floating point. We already have optimal handling for v2i32 through
1062       // the DAG combine, so those aren't necessary.
1063       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1064       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1065       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1066       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1067       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1068       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1069       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1070       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1071       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1072       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1073       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1074       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1075       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1076       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1077       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1078       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1079 
1080       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1081       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1082       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1083       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1084       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1085       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1086 
1087       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1088       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1089 
1090       // Handle constrained floating-point operations of vector.
1091       // The predictor is `hasVSX` because altivec instruction has
1092       // no exception but VSX vector instruction has.
1093       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1094       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1095       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1096       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1097       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1098       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1099       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1100       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1101       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1102       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1103       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1104       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1105       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1106 
1107       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1108       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1109       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1110       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1111       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1112       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1113       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1114       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1115       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1116       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1117       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1118       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1119       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1120 
1121       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1122       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1123 
1124       for (MVT FPT : MVT::fp_valuetypes())
1125         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1126 
1127       // Expand the SELECT to SELECT_CC
1128       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1129 
1130       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1131       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1132 
1133       // No implementation for these ops for PowerPC.
1134       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1135       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1136       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1137       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1138       setOperationAction(ISD::FREM, MVT::f128, Expand);
1139     }
1140 
1141     if (Subtarget.hasP8Altivec()) {
1142       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1143       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1144     }
1145 
1146     if (Subtarget.hasP9Vector()) {
1147       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1148       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1149 
1150       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1151       // SRL, but not for SRA because of the instructions available:
1152       // VS{RL} and VS{RL}O.
1153       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1154       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1155       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1156 
1157       setOperationAction(ISD::FADD, MVT::f128, Legal);
1158       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1159       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1160       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1161       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1162 
1163       setOperationAction(ISD::FMA, MVT::f128, Legal);
1164       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1165       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1166       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1167       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1168       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1169       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1170 
1171       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1172       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1173       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1174       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1175       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1176       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1177 
1178       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1179       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1180       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1181 
1182       // Handle constrained floating-point operations of fp128
1183       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1184       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1185       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1186       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1187       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1188       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1189       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1190       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1191       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1192       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1193       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1194       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1195       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1196       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1197       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1198       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1199       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1200       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1201       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1202       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1203     } else if (Subtarget.hasVSX()) {
1204       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1205       setOperationAction(ISD::STORE, MVT::f128, Promote);
1206 
1207       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1208       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1209 
1210       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1211       // fp_to_uint and int_to_fp.
1212       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1213       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1214 
1215       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1216       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1217       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1218       setOperationAction(ISD::FABS, MVT::f128, Expand);
1219       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1220       setOperationAction(ISD::FMA, MVT::f128, Expand);
1221       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1222 
1223       // Expand the fp_extend if the target type is fp128.
1224       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1225       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1226 
1227       // Expand the fp_round if the source type is fp128.
1228       for (MVT VT : {MVT::f32, MVT::f64}) {
1229         setOperationAction(ISD::FP_ROUND, VT, Custom);
1230         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1231       }
1232 
1233       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1234       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1235       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1236       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1237 
1238       // Lower following f128 select_cc pattern:
1239       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1240       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1241 
1242       // We need to handle f128 SELECT_CC with integer result type.
1243       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1244       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1245     }
1246 
1247     if (Subtarget.hasP9Altivec()) {
1248       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1249       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1250 
1251       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1252       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1253       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1254       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1255       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1256       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1257       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1258     }
1259 
1260     if (Subtarget.isISA3_1())
1261       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1262   }
1263 
1264   if (Subtarget.pairedVectorMemops()) {
1265     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1266     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1267     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1268   }
1269   if (Subtarget.hasMMA()) {
1270     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1271     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1272     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1273     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1274   }
1275 
1276   if (Subtarget.has64BitSupport())
1277     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1278 
1279   if (Subtarget.isISA3_1())
1280     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1281 
1282   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1283 
1284   if (!isPPC64) {
1285     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1286     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1287   }
1288 
1289   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics())
1290     setMaxAtomicSizeInBitsSupported(128);
1291 
1292   setBooleanContents(ZeroOrOneBooleanContent);
1293 
1294   if (Subtarget.hasAltivec()) {
1295     // Altivec instructions set fields to all zeros or all ones.
1296     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1297   }
1298 
1299   if (!isPPC64) {
1300     // These libcalls are not available in 32-bit.
1301     setLibcallName(RTLIB::SHL_I128, nullptr);
1302     setLibcallName(RTLIB::SRL_I128, nullptr);
1303     setLibcallName(RTLIB::SRA_I128, nullptr);
1304   }
1305 
1306   if (!isPPC64)
1307     setMaxAtomicSizeInBitsSupported(32);
1308 
1309   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1310 
1311   // We have target-specific dag combine patterns for the following nodes:
1312   setTargetDAGCombine(ISD::ADD);
1313   setTargetDAGCombine(ISD::SHL);
1314   setTargetDAGCombine(ISD::SRA);
1315   setTargetDAGCombine(ISD::SRL);
1316   setTargetDAGCombine(ISD::MUL);
1317   setTargetDAGCombine(ISD::FMA);
1318   setTargetDAGCombine(ISD::SINT_TO_FP);
1319   setTargetDAGCombine(ISD::BUILD_VECTOR);
1320   if (Subtarget.hasFPCVT())
1321     setTargetDAGCombine(ISD::UINT_TO_FP);
1322   setTargetDAGCombine(ISD::LOAD);
1323   setTargetDAGCombine(ISD::STORE);
1324   setTargetDAGCombine(ISD::BR_CC);
1325   if (Subtarget.useCRBits())
1326     setTargetDAGCombine(ISD::BRCOND);
1327   setTargetDAGCombine(ISD::BSWAP);
1328   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1329   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1330   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1331 
1332   setTargetDAGCombine(ISD::SIGN_EXTEND);
1333   setTargetDAGCombine(ISD::ZERO_EXTEND);
1334   setTargetDAGCombine(ISD::ANY_EXTEND);
1335 
1336   setTargetDAGCombine(ISD::TRUNCATE);
1337   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1338 
1339 
1340   if (Subtarget.useCRBits()) {
1341     setTargetDAGCombine(ISD::TRUNCATE);
1342     setTargetDAGCombine(ISD::SETCC);
1343     setTargetDAGCombine(ISD::SELECT_CC);
1344   }
1345 
1346   if (Subtarget.hasP9Altivec()) {
1347     setTargetDAGCombine(ISD::ABS);
1348     setTargetDAGCombine(ISD::VSELECT);
1349   }
1350 
1351   setLibcallName(RTLIB::LOG_F128, "logf128");
1352   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1353   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1354   setLibcallName(RTLIB::EXP_F128, "expf128");
1355   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1356   setLibcallName(RTLIB::SIN_F128, "sinf128");
1357   setLibcallName(RTLIB::COS_F128, "cosf128");
1358   setLibcallName(RTLIB::POW_F128, "powf128");
1359   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1360   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1361   setLibcallName(RTLIB::REM_F128, "fmodf128");
1362   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1363   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1364   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1365   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1366   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1367   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1368   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1369   setLibcallName(RTLIB::RINT_F128, "rintf128");
1370   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1371   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1372   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1373   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1374 
1375   // With 32 condition bits, we don't need to sink (and duplicate) compares
1376   // aggressively in CodeGenPrep.
1377   if (Subtarget.useCRBits()) {
1378     setHasMultipleConditionRegisters();
1379     setJumpIsExpensive();
1380   }
1381 
1382   setMinFunctionAlignment(Align(4));
1383 
1384   switch (Subtarget.getCPUDirective()) {
1385   default: break;
1386   case PPC::DIR_970:
1387   case PPC::DIR_A2:
1388   case PPC::DIR_E500:
1389   case PPC::DIR_E500mc:
1390   case PPC::DIR_E5500:
1391   case PPC::DIR_PWR4:
1392   case PPC::DIR_PWR5:
1393   case PPC::DIR_PWR5X:
1394   case PPC::DIR_PWR6:
1395   case PPC::DIR_PWR6X:
1396   case PPC::DIR_PWR7:
1397   case PPC::DIR_PWR8:
1398   case PPC::DIR_PWR9:
1399   case PPC::DIR_PWR10:
1400   case PPC::DIR_PWR_FUTURE:
1401     setPrefLoopAlignment(Align(16));
1402     setPrefFunctionAlignment(Align(16));
1403     break;
1404   }
1405 
1406   if (Subtarget.enableMachineScheduler())
1407     setSchedulingPreference(Sched::Source);
1408   else
1409     setSchedulingPreference(Sched::Hybrid);
1410 
1411   computeRegisterProperties(STI.getRegisterInfo());
1412 
1413   // The Freescale cores do better with aggressive inlining of memcpy and
1414   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1415   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1416       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1417     MaxStoresPerMemset = 32;
1418     MaxStoresPerMemsetOptSize = 16;
1419     MaxStoresPerMemcpy = 32;
1420     MaxStoresPerMemcpyOptSize = 8;
1421     MaxStoresPerMemmove = 32;
1422     MaxStoresPerMemmoveOptSize = 8;
1423   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1424     // The A2 also benefits from (very) aggressive inlining of memcpy and
1425     // friends. The overhead of a the function call, even when warm, can be
1426     // over one hundred cycles.
1427     MaxStoresPerMemset = 128;
1428     MaxStoresPerMemcpy = 128;
1429     MaxStoresPerMemmove = 128;
1430     MaxLoadsPerMemcmp = 128;
1431   } else {
1432     MaxLoadsPerMemcmp = 8;
1433     MaxLoadsPerMemcmpOptSize = 4;
1434   }
1435 
1436   IsStrictFPEnabled = true;
1437 
1438   // Let the subtarget (CPU) decide if a predictable select is more expensive
1439   // than the corresponding branch. This information is used in CGP to decide
1440   // when to convert selects into branches.
1441   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1442 }
1443 
1444 // *********************************** NOTE ************************************
1445 // For selecting load and store instructions, the addressing modes are defined
1446 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1447 // patterns to match the load the store instructions.
1448 //
1449 // The TD definitions for the addressing modes correspond to their respective
1450 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1451 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1452 // address mode flags of a particular node. Afterwards, the computed address
1453 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1454 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1455 // accordingly, based on the preferred addressing mode.
1456 //
1457 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1458 // MemOpFlags contains all the possible flags that can be used to compute the
1459 // optimal addressing mode for load and store instructions.
1460 // AddrMode contains all the possible load and store addressing modes available
1461 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1462 //
1463 // When adding new load and store instructions, it is possible that new address
1464 // flags may need to be added into MemOpFlags, and a new addressing mode will
1465 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1466 // of the minimal and main distinguishing address flags for the new load/store
1467 // instructions) will need to be added into initializeAddrModeMap() below.
1468 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1469 // need to be updated to account for selecting the optimal addressing mode.
1470 // *****************************************************************************
1471 /// Initialize the map that relates the different addressing modes of the load
1472 /// and store instructions to a set of flags. This ensures the load/store
1473 /// instruction is correctly matched during instruction selection.
1474 void PPCTargetLowering::initializeAddrModeMap() {
1475   AddrModesMap[PPC::AM_DForm] = {
1476       // LWZ, STW
1477       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1478       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1479       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1480       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1481       // LBZ, LHZ, STB, STH
1482       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1483       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1484       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1485       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1486       // LHA
1487       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1488       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1489       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1490       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1491       // LFS, LFD, STFS, STFD
1492       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1493       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1494       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1495       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1496   };
1497   AddrModesMap[PPC::AM_DSForm] = {
1498       // LWA
1499       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1500       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1501       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1502       // LD, STD
1503       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1504       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1505       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1506       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1507       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1508       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1509       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1510   };
1511   AddrModesMap[PPC::AM_DQForm] = {
1512       // LXV, STXV
1513       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1514       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1515       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1516       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1517       PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1518       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1519   };
1520 }
1521 
1522 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1523 /// the desired ByVal argument alignment.
1524 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1525   if (MaxAlign == MaxMaxAlign)
1526     return;
1527   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1528     if (MaxMaxAlign >= 32 &&
1529         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1530       MaxAlign = Align(32);
1531     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1532              MaxAlign < 16)
1533       MaxAlign = Align(16);
1534   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1535     Align EltAlign;
1536     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1537     if (EltAlign > MaxAlign)
1538       MaxAlign = EltAlign;
1539   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1540     for (auto *EltTy : STy->elements()) {
1541       Align EltAlign;
1542       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1543       if (EltAlign > MaxAlign)
1544         MaxAlign = EltAlign;
1545       if (MaxAlign == MaxMaxAlign)
1546         break;
1547     }
1548   }
1549 }
1550 
1551 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1552 /// function arguments in the caller parameter area.
1553 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1554                                                   const DataLayout &DL) const {
1555   // 16byte and wider vectors are passed on 16byte boundary.
1556   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1557   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1558   if (Subtarget.hasAltivec())
1559     getMaxByValAlign(Ty, Alignment, Align(16));
1560   return Alignment.value();
1561 }
1562 
1563 bool PPCTargetLowering::useSoftFloat() const {
1564   return Subtarget.useSoftFloat();
1565 }
1566 
1567 bool PPCTargetLowering::hasSPE() const {
1568   return Subtarget.hasSPE();
1569 }
1570 
1571 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1572   return VT.isScalarInteger();
1573 }
1574 
1575 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1576   switch ((PPCISD::NodeType)Opcode) {
1577   case PPCISD::FIRST_NUMBER:    break;
1578   case PPCISD::FSEL:            return "PPCISD::FSEL";
1579   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1580   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1581   case PPCISD::FCFID:           return "PPCISD::FCFID";
1582   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1583   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1584   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1585   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1586   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1587   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1588   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1589   case PPCISD::FP_TO_UINT_IN_VSR:
1590                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1591   case PPCISD::FP_TO_SINT_IN_VSR:
1592                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1593   case PPCISD::FRE:             return "PPCISD::FRE";
1594   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1595   case PPCISD::FTSQRT:
1596     return "PPCISD::FTSQRT";
1597   case PPCISD::FSQRT:
1598     return "PPCISD::FSQRT";
1599   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1600   case PPCISD::VPERM:           return "PPCISD::VPERM";
1601   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1602   case PPCISD::XXSPLTI_SP_TO_DP:
1603     return "PPCISD::XXSPLTI_SP_TO_DP";
1604   case PPCISD::XXSPLTI32DX:
1605     return "PPCISD::XXSPLTI32DX";
1606   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1607   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1608   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1609   case PPCISD::CMPB:            return "PPCISD::CMPB";
1610   case PPCISD::Hi:              return "PPCISD::Hi";
1611   case PPCISD::Lo:              return "PPCISD::Lo";
1612   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1613   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1614   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1615   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1616   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1617   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1618   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1619   case PPCISD::SRL:             return "PPCISD::SRL";
1620   case PPCISD::SRA:             return "PPCISD::SRA";
1621   case PPCISD::SHL:             return "PPCISD::SHL";
1622   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1623   case PPCISD::CALL:            return "PPCISD::CALL";
1624   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1625   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1626   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1627   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1628   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1629   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1630   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1631   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1632   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1633   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1634   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1635   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1636   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1637   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1638   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1639   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1640     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1641   case PPCISD::ANDI_rec_1_EQ_BIT:
1642     return "PPCISD::ANDI_rec_1_EQ_BIT";
1643   case PPCISD::ANDI_rec_1_GT_BIT:
1644     return "PPCISD::ANDI_rec_1_GT_BIT";
1645   case PPCISD::VCMP:            return "PPCISD::VCMP";
1646   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1647   case PPCISD::LBRX:            return "PPCISD::LBRX";
1648   case PPCISD::STBRX:           return "PPCISD::STBRX";
1649   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1650   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1651   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1652   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1653   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1654   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1655   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1656   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1657   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1658   case PPCISD::ST_VSR_SCAL_INT:
1659                                 return "PPCISD::ST_VSR_SCAL_INT";
1660   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1661   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1662   case PPCISD::BDZ:             return "PPCISD::BDZ";
1663   case PPCISD::MFFS:            return "PPCISD::MFFS";
1664   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1665   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1666   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1667   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1668   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1669   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1670   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1671   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1672   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1673   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1674   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1675   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1676   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1677   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1678   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1679   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1680   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1681   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1682   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1683   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1684   case PPCISD::PADDI_DTPREL:
1685     return "PPCISD::PADDI_DTPREL";
1686   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1687   case PPCISD::SC:              return "PPCISD::SC";
1688   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1689   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1690   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1691   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1692   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1693   case PPCISD::VABSD:           return "PPCISD::VABSD";
1694   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1695   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1696   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1697   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1698   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1699   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1700   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1701   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1702     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1703   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1704     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1705   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1706   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1707   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1708   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1709   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1710   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1711   case PPCISD::STRICT_FADDRTZ:
1712     return "PPCISD::STRICT_FADDRTZ";
1713   case PPCISD::STRICT_FCTIDZ:
1714     return "PPCISD::STRICT_FCTIDZ";
1715   case PPCISD::STRICT_FCTIWZ:
1716     return "PPCISD::STRICT_FCTIWZ";
1717   case PPCISD::STRICT_FCTIDUZ:
1718     return "PPCISD::STRICT_FCTIDUZ";
1719   case PPCISD::STRICT_FCTIWUZ:
1720     return "PPCISD::STRICT_FCTIWUZ";
1721   case PPCISD::STRICT_FCFID:
1722     return "PPCISD::STRICT_FCFID";
1723   case PPCISD::STRICT_FCFIDU:
1724     return "PPCISD::STRICT_FCFIDU";
1725   case PPCISD::STRICT_FCFIDS:
1726     return "PPCISD::STRICT_FCFIDS";
1727   case PPCISD::STRICT_FCFIDUS:
1728     return "PPCISD::STRICT_FCFIDUS";
1729   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1730   }
1731   return nullptr;
1732 }
1733 
1734 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1735                                           EVT VT) const {
1736   if (!VT.isVector())
1737     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1738 
1739   return VT.changeVectorElementTypeToInteger();
1740 }
1741 
1742 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1743   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1744   return true;
1745 }
1746 
1747 //===----------------------------------------------------------------------===//
1748 // Node matching predicates, for use by the tblgen matching code.
1749 //===----------------------------------------------------------------------===//
1750 
1751 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1752 static bool isFloatingPointZero(SDValue Op) {
1753   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1754     return CFP->getValueAPF().isZero();
1755   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1756     // Maybe this has already been legalized into the constant pool?
1757     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1758       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1759         return CFP->getValueAPF().isZero();
1760   }
1761   return false;
1762 }
1763 
1764 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1765 /// true if Op is undef or if it matches the specified value.
1766 static bool isConstantOrUndef(int Op, int Val) {
1767   return Op < 0 || Op == Val;
1768 }
1769 
1770 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1771 /// VPKUHUM instruction.
1772 /// The ShuffleKind distinguishes between big-endian operations with
1773 /// two different inputs (0), either-endian operations with two identical
1774 /// inputs (1), and little-endian operations with two different inputs (2).
1775 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1776 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1777                                SelectionDAG &DAG) {
1778   bool IsLE = DAG.getDataLayout().isLittleEndian();
1779   if (ShuffleKind == 0) {
1780     if (IsLE)
1781       return false;
1782     for (unsigned i = 0; i != 16; ++i)
1783       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1784         return false;
1785   } else if (ShuffleKind == 2) {
1786     if (!IsLE)
1787       return false;
1788     for (unsigned i = 0; i != 16; ++i)
1789       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1790         return false;
1791   } else if (ShuffleKind == 1) {
1792     unsigned j = IsLE ? 0 : 1;
1793     for (unsigned i = 0; i != 8; ++i)
1794       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1795           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1796         return false;
1797   }
1798   return true;
1799 }
1800 
1801 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1802 /// VPKUWUM instruction.
1803 /// The ShuffleKind distinguishes between big-endian operations with
1804 /// two different inputs (0), either-endian operations with two identical
1805 /// inputs (1), and little-endian operations with two different inputs (2).
1806 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1807 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1808                                SelectionDAG &DAG) {
1809   bool IsLE = DAG.getDataLayout().isLittleEndian();
1810   if (ShuffleKind == 0) {
1811     if (IsLE)
1812       return false;
1813     for (unsigned i = 0; i != 16; i += 2)
1814       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1815           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1816         return false;
1817   } else if (ShuffleKind == 2) {
1818     if (!IsLE)
1819       return false;
1820     for (unsigned i = 0; i != 16; i += 2)
1821       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1822           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1823         return false;
1824   } else if (ShuffleKind == 1) {
1825     unsigned j = IsLE ? 0 : 2;
1826     for (unsigned i = 0; i != 8; i += 2)
1827       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1828           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1829           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1830           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1831         return false;
1832   }
1833   return true;
1834 }
1835 
1836 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1837 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1838 /// current subtarget.
1839 ///
1840 /// The ShuffleKind distinguishes between big-endian operations with
1841 /// two different inputs (0), either-endian operations with two identical
1842 /// inputs (1), and little-endian operations with two different inputs (2).
1843 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1844 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1845                                SelectionDAG &DAG) {
1846   const PPCSubtarget& Subtarget =
1847       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1848   if (!Subtarget.hasP8Vector())
1849     return false;
1850 
1851   bool IsLE = DAG.getDataLayout().isLittleEndian();
1852   if (ShuffleKind == 0) {
1853     if (IsLE)
1854       return false;
1855     for (unsigned i = 0; i != 16; i += 4)
1856       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1857           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1858           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1859           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1860         return false;
1861   } else if (ShuffleKind == 2) {
1862     if (!IsLE)
1863       return false;
1864     for (unsigned i = 0; i != 16; i += 4)
1865       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1866           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1867           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1868           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1869         return false;
1870   } else if (ShuffleKind == 1) {
1871     unsigned j = IsLE ? 0 : 4;
1872     for (unsigned i = 0; i != 8; i += 4)
1873       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1874           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1875           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1876           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1877           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1878           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1879           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1880           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1881         return false;
1882   }
1883   return true;
1884 }
1885 
1886 /// isVMerge - Common function, used to match vmrg* shuffles.
1887 ///
1888 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1889                      unsigned LHSStart, unsigned RHSStart) {
1890   if (N->getValueType(0) != MVT::v16i8)
1891     return false;
1892   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1893          "Unsupported merge size!");
1894 
1895   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1896     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1897       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1898                              LHSStart+j+i*UnitSize) ||
1899           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1900                              RHSStart+j+i*UnitSize))
1901         return false;
1902     }
1903   return true;
1904 }
1905 
1906 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1907 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1908 /// The ShuffleKind distinguishes between big-endian merges with two
1909 /// different inputs (0), either-endian merges with two identical inputs (1),
1910 /// and little-endian merges with two different inputs (2).  For the latter,
1911 /// the input operands are swapped (see PPCInstrAltivec.td).
1912 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1913                              unsigned ShuffleKind, SelectionDAG &DAG) {
1914   if (DAG.getDataLayout().isLittleEndian()) {
1915     if (ShuffleKind == 1) // unary
1916       return isVMerge(N, UnitSize, 0, 0);
1917     else if (ShuffleKind == 2) // swapped
1918       return isVMerge(N, UnitSize, 0, 16);
1919     else
1920       return false;
1921   } else {
1922     if (ShuffleKind == 1) // unary
1923       return isVMerge(N, UnitSize, 8, 8);
1924     else if (ShuffleKind == 0) // normal
1925       return isVMerge(N, UnitSize, 8, 24);
1926     else
1927       return false;
1928   }
1929 }
1930 
1931 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1932 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1933 /// The ShuffleKind distinguishes between big-endian merges with two
1934 /// different inputs (0), either-endian merges with two identical inputs (1),
1935 /// and little-endian merges with two different inputs (2).  For the latter,
1936 /// the input operands are swapped (see PPCInstrAltivec.td).
1937 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1938                              unsigned ShuffleKind, SelectionDAG &DAG) {
1939   if (DAG.getDataLayout().isLittleEndian()) {
1940     if (ShuffleKind == 1) // unary
1941       return isVMerge(N, UnitSize, 8, 8);
1942     else if (ShuffleKind == 2) // swapped
1943       return isVMerge(N, UnitSize, 8, 24);
1944     else
1945       return false;
1946   } else {
1947     if (ShuffleKind == 1) // unary
1948       return isVMerge(N, UnitSize, 0, 0);
1949     else if (ShuffleKind == 0) // normal
1950       return isVMerge(N, UnitSize, 0, 16);
1951     else
1952       return false;
1953   }
1954 }
1955 
1956 /**
1957  * Common function used to match vmrgew and vmrgow shuffles
1958  *
1959  * The indexOffset determines whether to look for even or odd words in
1960  * the shuffle mask. This is based on the of the endianness of the target
1961  * machine.
1962  *   - Little Endian:
1963  *     - Use offset of 0 to check for odd elements
1964  *     - Use offset of 4 to check for even elements
1965  *   - Big Endian:
1966  *     - Use offset of 0 to check for even elements
1967  *     - Use offset of 4 to check for odd elements
1968  * A detailed description of the vector element ordering for little endian and
1969  * big endian can be found at
1970  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1971  * Targeting your applications - what little endian and big endian IBM XL C/C++
1972  * compiler differences mean to you
1973  *
1974  * The mask to the shuffle vector instruction specifies the indices of the
1975  * elements from the two input vectors to place in the result. The elements are
1976  * numbered in array-access order, starting with the first vector. These vectors
1977  * are always of type v16i8, thus each vector will contain 16 elements of size
1978  * 8. More info on the shuffle vector can be found in the
1979  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1980  * Language Reference.
1981  *
1982  * The RHSStartValue indicates whether the same input vectors are used (unary)
1983  * or two different input vectors are used, based on the following:
1984  *   - If the instruction uses the same vector for both inputs, the range of the
1985  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1986  *     be 0.
1987  *   - If the instruction has two different vectors then the range of the
1988  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1989  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1990  *     to 31 specify elements in the second vector).
1991  *
1992  * \param[in] N The shuffle vector SD Node to analyze
1993  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1994  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1995  * vector to the shuffle_vector instruction
1996  * \return true iff this shuffle vector represents an even or odd word merge
1997  */
1998 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1999                      unsigned RHSStartValue) {
2000   if (N->getValueType(0) != MVT::v16i8)
2001     return false;
2002 
2003   for (unsigned i = 0; i < 2; ++i)
2004     for (unsigned j = 0; j < 4; ++j)
2005       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2006                              i*RHSStartValue+j+IndexOffset) ||
2007           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2008                              i*RHSStartValue+j+IndexOffset+8))
2009         return false;
2010   return true;
2011 }
2012 
2013 /**
2014  * Determine if the specified shuffle mask is suitable for the vmrgew or
2015  * vmrgow instructions.
2016  *
2017  * \param[in] N The shuffle vector SD Node to analyze
2018  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2019  * \param[in] ShuffleKind Identify the type of merge:
2020  *   - 0 = big-endian merge with two different inputs;
2021  *   - 1 = either-endian merge with two identical inputs;
2022  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2023  *     little-endian merges).
2024  * \param[in] DAG The current SelectionDAG
2025  * \return true iff this shuffle mask
2026  */
2027 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2028                               unsigned ShuffleKind, SelectionDAG &DAG) {
2029   if (DAG.getDataLayout().isLittleEndian()) {
2030     unsigned indexOffset = CheckEven ? 4 : 0;
2031     if (ShuffleKind == 1) // Unary
2032       return isVMerge(N, indexOffset, 0);
2033     else if (ShuffleKind == 2) // swapped
2034       return isVMerge(N, indexOffset, 16);
2035     else
2036       return false;
2037   }
2038   else {
2039     unsigned indexOffset = CheckEven ? 0 : 4;
2040     if (ShuffleKind == 1) // Unary
2041       return isVMerge(N, indexOffset, 0);
2042     else if (ShuffleKind == 0) // Normal
2043       return isVMerge(N, indexOffset, 16);
2044     else
2045       return false;
2046   }
2047   return false;
2048 }
2049 
2050 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2051 /// amount, otherwise return -1.
2052 /// The ShuffleKind distinguishes between big-endian operations with two
2053 /// different inputs (0), either-endian operations with two identical inputs
2054 /// (1), and little-endian operations with two different inputs (2).  For the
2055 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2056 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2057                              SelectionDAG &DAG) {
2058   if (N->getValueType(0) != MVT::v16i8)
2059     return -1;
2060 
2061   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2062 
2063   // Find the first non-undef value in the shuffle mask.
2064   unsigned i;
2065   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2066     /*search*/;
2067 
2068   if (i == 16) return -1;  // all undef.
2069 
2070   // Otherwise, check to see if the rest of the elements are consecutively
2071   // numbered from this value.
2072   unsigned ShiftAmt = SVOp->getMaskElt(i);
2073   if (ShiftAmt < i) return -1;
2074 
2075   ShiftAmt -= i;
2076   bool isLE = DAG.getDataLayout().isLittleEndian();
2077 
2078   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2079     // Check the rest of the elements to see if they are consecutive.
2080     for (++i; i != 16; ++i)
2081       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2082         return -1;
2083   } else if (ShuffleKind == 1) {
2084     // Check the rest of the elements to see if they are consecutive.
2085     for (++i; i != 16; ++i)
2086       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2087         return -1;
2088   } else
2089     return -1;
2090 
2091   if (isLE)
2092     ShiftAmt = 16 - ShiftAmt;
2093 
2094   return ShiftAmt;
2095 }
2096 
2097 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2098 /// specifies a splat of a single element that is suitable for input to
2099 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2100 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2101   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2102          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2103 
2104   // The consecutive indices need to specify an element, not part of two
2105   // different elements.  So abandon ship early if this isn't the case.
2106   if (N->getMaskElt(0) % EltSize != 0)
2107     return false;
2108 
2109   // This is a splat operation if each element of the permute is the same, and
2110   // if the value doesn't reference the second vector.
2111   unsigned ElementBase = N->getMaskElt(0);
2112 
2113   // FIXME: Handle UNDEF elements too!
2114   if (ElementBase >= 16)
2115     return false;
2116 
2117   // Check that the indices are consecutive, in the case of a multi-byte element
2118   // splatted with a v16i8 mask.
2119   for (unsigned i = 1; i != EltSize; ++i)
2120     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2121       return false;
2122 
2123   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2124     if (N->getMaskElt(i) < 0) continue;
2125     for (unsigned j = 0; j != EltSize; ++j)
2126       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2127         return false;
2128   }
2129   return true;
2130 }
2131 
2132 /// Check that the mask is shuffling N byte elements. Within each N byte
2133 /// element of the mask, the indices could be either in increasing or
2134 /// decreasing order as long as they are consecutive.
2135 /// \param[in] N the shuffle vector SD Node to analyze
2136 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2137 /// Word/DoubleWord/QuadWord).
2138 /// \param[in] StepLen the delta indices number among the N byte element, if
2139 /// the mask is in increasing/decreasing order then it is 1/-1.
2140 /// \return true iff the mask is shuffling N byte elements.
2141 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2142                                    int StepLen) {
2143   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2144          "Unexpected element width.");
2145   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2146 
2147   unsigned NumOfElem = 16 / Width;
2148   unsigned MaskVal[16]; //  Width is never greater than 16
2149   for (unsigned i = 0; i < NumOfElem; ++i) {
2150     MaskVal[0] = N->getMaskElt(i * Width);
2151     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2152       return false;
2153     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2154       return false;
2155     }
2156 
2157     for (unsigned int j = 1; j < Width; ++j) {
2158       MaskVal[j] = N->getMaskElt(i * Width + j);
2159       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2160         return false;
2161       }
2162     }
2163   }
2164 
2165   return true;
2166 }
2167 
2168 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2169                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2170   if (!isNByteElemShuffleMask(N, 4, 1))
2171     return false;
2172 
2173   // Now we look at mask elements 0,4,8,12
2174   unsigned M0 = N->getMaskElt(0) / 4;
2175   unsigned M1 = N->getMaskElt(4) / 4;
2176   unsigned M2 = N->getMaskElt(8) / 4;
2177   unsigned M3 = N->getMaskElt(12) / 4;
2178   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2179   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2180 
2181   // Below, let H and L be arbitrary elements of the shuffle mask
2182   // where H is in the range [4,7] and L is in the range [0,3].
2183   // H, 1, 2, 3 or L, 5, 6, 7
2184   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2185       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2186     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2187     InsertAtByte = IsLE ? 12 : 0;
2188     Swap = M0 < 4;
2189     return true;
2190   }
2191   // 0, H, 2, 3 or 4, L, 6, 7
2192   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2193       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2194     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2195     InsertAtByte = IsLE ? 8 : 4;
2196     Swap = M1 < 4;
2197     return true;
2198   }
2199   // 0, 1, H, 3 or 4, 5, L, 7
2200   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2201       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2202     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2203     InsertAtByte = IsLE ? 4 : 8;
2204     Swap = M2 < 4;
2205     return true;
2206   }
2207   // 0, 1, 2, H or 4, 5, 6, L
2208   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2209       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2210     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2211     InsertAtByte = IsLE ? 0 : 12;
2212     Swap = M3 < 4;
2213     return true;
2214   }
2215 
2216   // If both vector operands for the shuffle are the same vector, the mask will
2217   // contain only elements from the first one and the second one will be undef.
2218   if (N->getOperand(1).isUndef()) {
2219     ShiftElts = 0;
2220     Swap = true;
2221     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2222     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2223       InsertAtByte = IsLE ? 12 : 0;
2224       return true;
2225     }
2226     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2227       InsertAtByte = IsLE ? 8 : 4;
2228       return true;
2229     }
2230     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2231       InsertAtByte = IsLE ? 4 : 8;
2232       return true;
2233     }
2234     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2235       InsertAtByte = IsLE ? 0 : 12;
2236       return true;
2237     }
2238   }
2239 
2240   return false;
2241 }
2242 
2243 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2244                                bool &Swap, bool IsLE) {
2245   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2246   // Ensure each byte index of the word is consecutive.
2247   if (!isNByteElemShuffleMask(N, 4, 1))
2248     return false;
2249 
2250   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2251   unsigned M0 = N->getMaskElt(0) / 4;
2252   unsigned M1 = N->getMaskElt(4) / 4;
2253   unsigned M2 = N->getMaskElt(8) / 4;
2254   unsigned M3 = N->getMaskElt(12) / 4;
2255 
2256   // If both vector operands for the shuffle are the same vector, the mask will
2257   // contain only elements from the first one and the second one will be undef.
2258   if (N->getOperand(1).isUndef()) {
2259     assert(M0 < 4 && "Indexing into an undef vector?");
2260     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2261       return false;
2262 
2263     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2264     Swap = false;
2265     return true;
2266   }
2267 
2268   // Ensure each word index of the ShuffleVector Mask is consecutive.
2269   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2270     return false;
2271 
2272   if (IsLE) {
2273     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2274       // Input vectors don't need to be swapped if the leading element
2275       // of the result is one of the 3 left elements of the second vector
2276       // (or if there is no shift to be done at all).
2277       Swap = false;
2278       ShiftElts = (8 - M0) % 8;
2279     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2280       // Input vectors need to be swapped if the leading element
2281       // of the result is one of the 3 left elements of the first vector
2282       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2283       Swap = true;
2284       ShiftElts = (4 - M0) % 4;
2285     }
2286 
2287     return true;
2288   } else {                                          // BE
2289     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2290       // Input vectors don't need to be swapped if the leading element
2291       // of the result is one of the 4 elements of the first vector.
2292       Swap = false;
2293       ShiftElts = M0;
2294     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2295       // Input vectors need to be swapped if the leading element
2296       // of the result is one of the 4 elements of the right vector.
2297       Swap = true;
2298       ShiftElts = M0 - 4;
2299     }
2300 
2301     return true;
2302   }
2303 }
2304 
2305 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2306   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2307 
2308   if (!isNByteElemShuffleMask(N, Width, -1))
2309     return false;
2310 
2311   for (int i = 0; i < 16; i += Width)
2312     if (N->getMaskElt(i) != i + Width - 1)
2313       return false;
2314 
2315   return true;
2316 }
2317 
2318 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2319   return isXXBRShuffleMaskHelper(N, 2);
2320 }
2321 
2322 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2323   return isXXBRShuffleMaskHelper(N, 4);
2324 }
2325 
2326 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2327   return isXXBRShuffleMaskHelper(N, 8);
2328 }
2329 
2330 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2331   return isXXBRShuffleMaskHelper(N, 16);
2332 }
2333 
2334 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2335 /// if the inputs to the instruction should be swapped and set \p DM to the
2336 /// value for the immediate.
2337 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2338 /// AND element 0 of the result comes from the first input (LE) or second input
2339 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2340 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2341 /// mask.
2342 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2343                                bool &Swap, bool IsLE) {
2344   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2345 
2346   // Ensure each byte index of the double word is consecutive.
2347   if (!isNByteElemShuffleMask(N, 8, 1))
2348     return false;
2349 
2350   unsigned M0 = N->getMaskElt(0) / 8;
2351   unsigned M1 = N->getMaskElt(8) / 8;
2352   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2353 
2354   // If both vector operands for the shuffle are the same vector, the mask will
2355   // contain only elements from the first one and the second one will be undef.
2356   if (N->getOperand(1).isUndef()) {
2357     if ((M0 | M1) < 2) {
2358       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2359       Swap = false;
2360       return true;
2361     } else
2362       return false;
2363   }
2364 
2365   if (IsLE) {
2366     if (M0 > 1 && M1 < 2) {
2367       Swap = false;
2368     } else if (M0 < 2 && M1 > 1) {
2369       M0 = (M0 + 2) % 4;
2370       M1 = (M1 + 2) % 4;
2371       Swap = true;
2372     } else
2373       return false;
2374 
2375     // Note: if control flow comes here that means Swap is already set above
2376     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2377     return true;
2378   } else { // BE
2379     if (M0 < 2 && M1 > 1) {
2380       Swap = false;
2381     } else if (M0 > 1 && M1 < 2) {
2382       M0 = (M0 + 2) % 4;
2383       M1 = (M1 + 2) % 4;
2384       Swap = true;
2385     } else
2386       return false;
2387 
2388     // Note: if control flow comes here that means Swap is already set above
2389     DM = (M0 << 1) + (M1 & 1);
2390     return true;
2391   }
2392 }
2393 
2394 
2395 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2396 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2397 /// elements are counted from the left of the vector register).
2398 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2399                                          SelectionDAG &DAG) {
2400   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2401   assert(isSplatShuffleMask(SVOp, EltSize));
2402   if (DAG.getDataLayout().isLittleEndian())
2403     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2404   else
2405     return SVOp->getMaskElt(0) / EltSize;
2406 }
2407 
2408 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2409 /// by using a vspltis[bhw] instruction of the specified element size, return
2410 /// the constant being splatted.  The ByteSize field indicates the number of
2411 /// bytes of each element [124] -> [bhw].
2412 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2413   SDValue OpVal(nullptr, 0);
2414 
2415   // If ByteSize of the splat is bigger than the element size of the
2416   // build_vector, then we have a case where we are checking for a splat where
2417   // multiple elements of the buildvector are folded together into a single
2418   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2419   unsigned EltSize = 16/N->getNumOperands();
2420   if (EltSize < ByteSize) {
2421     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2422     SDValue UniquedVals[4];
2423     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2424 
2425     // See if all of the elements in the buildvector agree across.
2426     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2427       if (N->getOperand(i).isUndef()) continue;
2428       // If the element isn't a constant, bail fully out.
2429       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2430 
2431       if (!UniquedVals[i&(Multiple-1)].getNode())
2432         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2433       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2434         return SDValue();  // no match.
2435     }
2436 
2437     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2438     // either constant or undef values that are identical for each chunk.  See
2439     // if these chunks can form into a larger vspltis*.
2440 
2441     // Check to see if all of the leading entries are either 0 or -1.  If
2442     // neither, then this won't fit into the immediate field.
2443     bool LeadingZero = true;
2444     bool LeadingOnes = true;
2445     for (unsigned i = 0; i != Multiple-1; ++i) {
2446       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2447 
2448       LeadingZero &= isNullConstant(UniquedVals[i]);
2449       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2450     }
2451     // Finally, check the least significant entry.
2452     if (LeadingZero) {
2453       if (!UniquedVals[Multiple-1].getNode())
2454         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2455       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2456       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2457         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2458     }
2459     if (LeadingOnes) {
2460       if (!UniquedVals[Multiple-1].getNode())
2461         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2462       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2463       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2464         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2465     }
2466 
2467     return SDValue();
2468   }
2469 
2470   // Check to see if this buildvec has a single non-undef value in its elements.
2471   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2472     if (N->getOperand(i).isUndef()) continue;
2473     if (!OpVal.getNode())
2474       OpVal = N->getOperand(i);
2475     else if (OpVal != N->getOperand(i))
2476       return SDValue();
2477   }
2478 
2479   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2480 
2481   unsigned ValSizeInBytes = EltSize;
2482   uint64_t Value = 0;
2483   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2484     Value = CN->getZExtValue();
2485   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2486     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2487     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2488   }
2489 
2490   // If the splat value is larger than the element value, then we can never do
2491   // this splat.  The only case that we could fit the replicated bits into our
2492   // immediate field for would be zero, and we prefer to use vxor for it.
2493   if (ValSizeInBytes < ByteSize) return SDValue();
2494 
2495   // If the element value is larger than the splat value, check if it consists
2496   // of a repeated bit pattern of size ByteSize.
2497   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2498     return SDValue();
2499 
2500   // Properly sign extend the value.
2501   int MaskVal = SignExtend32(Value, ByteSize * 8);
2502 
2503   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2504   if (MaskVal == 0) return SDValue();
2505 
2506   // Finally, if this value fits in a 5 bit sext field, return it
2507   if (SignExtend32<5>(MaskVal) == MaskVal)
2508     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2509   return SDValue();
2510 }
2511 
2512 //===----------------------------------------------------------------------===//
2513 //  Addressing Mode Selection
2514 //===----------------------------------------------------------------------===//
2515 
2516 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2517 /// or 64-bit immediate, and if the value can be accurately represented as a
2518 /// sign extension from a 16-bit value.  If so, this returns true and the
2519 /// immediate.
2520 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2521   if (!isa<ConstantSDNode>(N))
2522     return false;
2523 
2524   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2525   if (N->getValueType(0) == MVT::i32)
2526     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2527   else
2528     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2529 }
2530 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2531   return isIntS16Immediate(Op.getNode(), Imm);
2532 }
2533 
2534 /// Used when computing address flags for selecting loads and stores.
2535 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2536 /// An OR of two provably disjoint values is equivalent to an ADD.
2537 /// Most PPC load/store instructions compute the effective address as a sum,
2538 /// so doing this conversion is useful.
2539 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2540   if (N.getOpcode() != ISD::OR)
2541     return false;
2542   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2543   if (!LHSKnown.Zero.getBoolValue())
2544     return false;
2545   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2546   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2547 }
2548 
2549 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2550 /// be represented as an indexed [r+r] operation.
2551 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2552                                                SDValue &Index,
2553                                                SelectionDAG &DAG) const {
2554   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2555       UI != E; ++UI) {
2556     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2557       if (Memop->getMemoryVT() == MVT::f64) {
2558           Base = N.getOperand(0);
2559           Index = N.getOperand(1);
2560           return true;
2561       }
2562     }
2563   }
2564   return false;
2565 }
2566 
2567 /// isIntS34Immediate - This method tests if value of node given can be
2568 /// accurately represented as a sign extension from a 34-bit value.  If so,
2569 /// this returns true and the immediate.
2570 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2571   if (!isa<ConstantSDNode>(N))
2572     return false;
2573 
2574   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2575   return isInt<34>(Imm);
2576 }
2577 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2578   return isIntS34Immediate(Op.getNode(), Imm);
2579 }
2580 
2581 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2582 /// can be represented as an indexed [r+r] operation.  Returns false if it
2583 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2584 /// non-zero and N can be represented by a base register plus a signed 16-bit
2585 /// displacement, make a more precise judgement by checking (displacement % \p
2586 /// EncodingAlignment).
2587 bool PPCTargetLowering::SelectAddressRegReg(
2588     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2589     MaybeAlign EncodingAlignment) const {
2590   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2591   // a [pc+imm].
2592   if (SelectAddressPCRel(N, Base))
2593     return false;
2594 
2595   int16_t Imm = 0;
2596   if (N.getOpcode() == ISD::ADD) {
2597     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2598     // SPE load/store can only handle 8-bit offsets.
2599     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2600         return true;
2601     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2602         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2603       return false; // r+i
2604     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2605       return false;    // r+i
2606 
2607     Base = N.getOperand(0);
2608     Index = N.getOperand(1);
2609     return true;
2610   } else if (N.getOpcode() == ISD::OR) {
2611     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2612         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2613       return false; // r+i can fold it if we can.
2614 
2615     // If this is an or of disjoint bitfields, we can codegen this as an add
2616     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2617     // disjoint.
2618     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2619 
2620     if (LHSKnown.Zero.getBoolValue()) {
2621       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2622       // If all of the bits are known zero on the LHS or RHS, the add won't
2623       // carry.
2624       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2625         Base = N.getOperand(0);
2626         Index = N.getOperand(1);
2627         return true;
2628       }
2629     }
2630   }
2631 
2632   return false;
2633 }
2634 
2635 // If we happen to be doing an i64 load or store into a stack slot that has
2636 // less than a 4-byte alignment, then the frame-index elimination may need to
2637 // use an indexed load or store instruction (because the offset may not be a
2638 // multiple of 4). The extra register needed to hold the offset comes from the
2639 // register scavenger, and it is possible that the scavenger will need to use
2640 // an emergency spill slot. As a result, we need to make sure that a spill slot
2641 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2642 // stack slot.
2643 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2644   // FIXME: This does not handle the LWA case.
2645   if (VT != MVT::i64)
2646     return;
2647 
2648   // NOTE: We'll exclude negative FIs here, which come from argument
2649   // lowering, because there are no known test cases triggering this problem
2650   // using packed structures (or similar). We can remove this exclusion if
2651   // we find such a test case. The reason why this is so test-case driven is
2652   // because this entire 'fixup' is only to prevent crashes (from the
2653   // register scavenger) on not-really-valid inputs. For example, if we have:
2654   //   %a = alloca i1
2655   //   %b = bitcast i1* %a to i64*
2656   //   store i64* a, i64 b
2657   // then the store should really be marked as 'align 1', but is not. If it
2658   // were marked as 'align 1' then the indexed form would have been
2659   // instruction-selected initially, and the problem this 'fixup' is preventing
2660   // won't happen regardless.
2661   if (FrameIdx < 0)
2662     return;
2663 
2664   MachineFunction &MF = DAG.getMachineFunction();
2665   MachineFrameInfo &MFI = MF.getFrameInfo();
2666 
2667   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2668     return;
2669 
2670   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2671   FuncInfo->setHasNonRISpills();
2672 }
2673 
2674 /// Returns true if the address N can be represented by a base register plus
2675 /// a signed 16-bit displacement [r+imm], and if it is not better
2676 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2677 /// displacements that are multiples of that value.
2678 bool PPCTargetLowering::SelectAddressRegImm(
2679     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2680     MaybeAlign EncodingAlignment) const {
2681   // FIXME dl should come from parent load or store, not from address
2682   SDLoc dl(N);
2683 
2684   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2685   // a [pc+imm].
2686   if (SelectAddressPCRel(N, Base))
2687     return false;
2688 
2689   // If this can be more profitably realized as r+r, fail.
2690   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2691     return false;
2692 
2693   if (N.getOpcode() == ISD::ADD) {
2694     int16_t imm = 0;
2695     if (isIntS16Immediate(N.getOperand(1), imm) &&
2696         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2697       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2698       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2699         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2700         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2701       } else {
2702         Base = N.getOperand(0);
2703       }
2704       return true; // [r+i]
2705     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2706       // Match LOAD (ADD (X, Lo(G))).
2707       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2708              && "Cannot handle constant offsets yet!");
2709       Disp = N.getOperand(1).getOperand(0);  // The global address.
2710       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2711              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2712              Disp.getOpcode() == ISD::TargetConstantPool ||
2713              Disp.getOpcode() == ISD::TargetJumpTable);
2714       Base = N.getOperand(0);
2715       return true;  // [&g+r]
2716     }
2717   } else if (N.getOpcode() == ISD::OR) {
2718     int16_t imm = 0;
2719     if (isIntS16Immediate(N.getOperand(1), imm) &&
2720         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2721       // If this is an or of disjoint bitfields, we can codegen this as an add
2722       // (for better address arithmetic) if the LHS and RHS of the OR are
2723       // provably disjoint.
2724       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2725 
2726       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2727         // If all of the bits are known zero on the LHS or RHS, the add won't
2728         // carry.
2729         if (FrameIndexSDNode *FI =
2730               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2731           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2732           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2733         } else {
2734           Base = N.getOperand(0);
2735         }
2736         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2737         return true;
2738       }
2739     }
2740   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2741     // Loading from a constant address.
2742 
2743     // If this address fits entirely in a 16-bit sext immediate field, codegen
2744     // this as "d, 0"
2745     int16_t Imm;
2746     if (isIntS16Immediate(CN, Imm) &&
2747         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2748       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2749       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2750                              CN->getValueType(0));
2751       return true;
2752     }
2753 
2754     // Handle 32-bit sext immediates with LIS + addr mode.
2755     if ((CN->getValueType(0) == MVT::i32 ||
2756          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2757         (!EncodingAlignment ||
2758          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2759       int Addr = (int)CN->getZExtValue();
2760 
2761       // Otherwise, break this down into an LIS + disp.
2762       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2763 
2764       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2765                                    MVT::i32);
2766       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2767       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2768       return true;
2769     }
2770   }
2771 
2772   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2773   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2774     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2775     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2776   } else
2777     Base = N;
2778   return true;      // [r+0]
2779 }
2780 
2781 /// Similar to the 16-bit case but for instructions that take a 34-bit
2782 /// displacement field (prefixed loads/stores).
2783 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2784                                               SDValue &Base,
2785                                               SelectionDAG &DAG) const {
2786   // Only on 64-bit targets.
2787   if (N.getValueType() != MVT::i64)
2788     return false;
2789 
2790   SDLoc dl(N);
2791   int64_t Imm = 0;
2792 
2793   if (N.getOpcode() == ISD::ADD) {
2794     if (!isIntS34Immediate(N.getOperand(1), Imm))
2795       return false;
2796     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2797     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2798       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2799     else
2800       Base = N.getOperand(0);
2801     return true;
2802   }
2803 
2804   if (N.getOpcode() == ISD::OR) {
2805     if (!isIntS34Immediate(N.getOperand(1), Imm))
2806       return false;
2807     // If this is an or of disjoint bitfields, we can codegen this as an add
2808     // (for better address arithmetic) if the LHS and RHS of the OR are
2809     // provably disjoint.
2810     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2811     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2812       return false;
2813     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2814       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2815     else
2816       Base = N.getOperand(0);
2817     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2818     return true;
2819   }
2820 
2821   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2822     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2823     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2824     return true;
2825   }
2826 
2827   return false;
2828 }
2829 
2830 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2831 /// represented as an indexed [r+r] operation.
2832 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2833                                                 SDValue &Index,
2834                                                 SelectionDAG &DAG) const {
2835   // Check to see if we can easily represent this as an [r+r] address.  This
2836   // will fail if it thinks that the address is more profitably represented as
2837   // reg+imm, e.g. where imm = 0.
2838   if (SelectAddressRegReg(N, Base, Index, DAG))
2839     return true;
2840 
2841   // If the address is the result of an add, we will utilize the fact that the
2842   // address calculation includes an implicit add.  However, we can reduce
2843   // register pressure if we do not materialize a constant just for use as the
2844   // index register.  We only get rid of the add if it is not an add of a
2845   // value and a 16-bit signed constant and both have a single use.
2846   int16_t imm = 0;
2847   if (N.getOpcode() == ISD::ADD &&
2848       (!isIntS16Immediate(N.getOperand(1), imm) ||
2849        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2850     Base = N.getOperand(0);
2851     Index = N.getOperand(1);
2852     return true;
2853   }
2854 
2855   // Otherwise, do it the hard way, using R0 as the base register.
2856   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2857                          N.getValueType());
2858   Index = N;
2859   return true;
2860 }
2861 
2862 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2863   Ty *PCRelCand = dyn_cast<Ty>(N);
2864   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2865 }
2866 
2867 /// Returns true if this address is a PC Relative address.
2868 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2869 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2870 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2871   // This is a materialize PC Relative node. Always select this as PC Relative.
2872   Base = N;
2873   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2874     return true;
2875   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2876       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2877       isValidPCRelNode<JumpTableSDNode>(N) ||
2878       isValidPCRelNode<BlockAddressSDNode>(N))
2879     return true;
2880   return false;
2881 }
2882 
2883 /// Returns true if we should use a direct load into vector instruction
2884 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2885 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2886 
2887   // If there are any other uses other than scalar to vector, then we should
2888   // keep it as a scalar load -> direct move pattern to prevent multiple
2889   // loads.
2890   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2891   if (!LD)
2892     return false;
2893 
2894   EVT MemVT = LD->getMemoryVT();
2895   if (!MemVT.isSimple())
2896     return false;
2897   switch(MemVT.getSimpleVT().SimpleTy) {
2898   case MVT::i64:
2899     break;
2900   case MVT::i32:
2901     if (!ST.hasP8Vector())
2902       return false;
2903     break;
2904   case MVT::i16:
2905   case MVT::i8:
2906     if (!ST.hasP9Vector())
2907       return false;
2908     break;
2909   default:
2910     return false;
2911   }
2912 
2913   SDValue LoadedVal(N, 0);
2914   if (!LoadedVal.hasOneUse())
2915     return false;
2916 
2917   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2918        UI != UE; ++UI)
2919     if (UI.getUse().get().getResNo() == 0 &&
2920         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2921         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2922       return false;
2923 
2924   return true;
2925 }
2926 
2927 /// getPreIndexedAddressParts - returns true by value, base pointer and
2928 /// offset pointer and addressing mode by reference if the node's address
2929 /// can be legally represented as pre-indexed load / store address.
2930 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2931                                                   SDValue &Offset,
2932                                                   ISD::MemIndexedMode &AM,
2933                                                   SelectionDAG &DAG) const {
2934   if (DisablePPCPreinc) return false;
2935 
2936   bool isLoad = true;
2937   SDValue Ptr;
2938   EVT VT;
2939   unsigned Alignment;
2940   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2941     Ptr = LD->getBasePtr();
2942     VT = LD->getMemoryVT();
2943     Alignment = LD->getAlignment();
2944   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2945     Ptr = ST->getBasePtr();
2946     VT  = ST->getMemoryVT();
2947     Alignment = ST->getAlignment();
2948     isLoad = false;
2949   } else
2950     return false;
2951 
2952   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2953   // instructions because we can fold these into a more efficient instruction
2954   // instead, (such as LXSD).
2955   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2956     return false;
2957   }
2958 
2959   // PowerPC doesn't have preinc load/store instructions for vectors
2960   if (VT.isVector())
2961     return false;
2962 
2963   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2964     // Common code will reject creating a pre-inc form if the base pointer
2965     // is a frame index, or if N is a store and the base pointer is either
2966     // the same as or a predecessor of the value being stored.  Check for
2967     // those situations here, and try with swapped Base/Offset instead.
2968     bool Swap = false;
2969 
2970     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2971       Swap = true;
2972     else if (!isLoad) {
2973       SDValue Val = cast<StoreSDNode>(N)->getValue();
2974       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2975         Swap = true;
2976     }
2977 
2978     if (Swap)
2979       std::swap(Base, Offset);
2980 
2981     AM = ISD::PRE_INC;
2982     return true;
2983   }
2984 
2985   // LDU/STU can only handle immediates that are a multiple of 4.
2986   if (VT != MVT::i64) {
2987     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2988       return false;
2989   } else {
2990     // LDU/STU need an address with at least 4-byte alignment.
2991     if (Alignment < 4)
2992       return false;
2993 
2994     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2995       return false;
2996   }
2997 
2998   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2999     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3000     // sext i32 to i64 when addr mode is r+i.
3001     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3002         LD->getExtensionType() == ISD::SEXTLOAD &&
3003         isa<ConstantSDNode>(Offset))
3004       return false;
3005   }
3006 
3007   AM = ISD::PRE_INC;
3008   return true;
3009 }
3010 
3011 //===----------------------------------------------------------------------===//
3012 //  LowerOperation implementation
3013 //===----------------------------------------------------------------------===//
3014 
3015 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3016 /// and LoOpFlags to the target MO flags.
3017 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3018                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3019                                const GlobalValue *GV = nullptr) {
3020   HiOpFlags = PPCII::MO_HA;
3021   LoOpFlags = PPCII::MO_LO;
3022 
3023   // Don't use the pic base if not in PIC relocation model.
3024   if (IsPIC) {
3025     HiOpFlags |= PPCII::MO_PIC_FLAG;
3026     LoOpFlags |= PPCII::MO_PIC_FLAG;
3027   }
3028 }
3029 
3030 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3031                              SelectionDAG &DAG) {
3032   SDLoc DL(HiPart);
3033   EVT PtrVT = HiPart.getValueType();
3034   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3035 
3036   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3037   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3038 
3039   // With PIC, the first instruction is actually "GR+hi(&G)".
3040   if (isPIC)
3041     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3042                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3043 
3044   // Generate non-pic code that has direct accesses to the constant pool.
3045   // The address of the global is just (hi(&g)+lo(&g)).
3046   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3047 }
3048 
3049 static void setUsesTOCBasePtr(MachineFunction &MF) {
3050   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3051   FuncInfo->setUsesTOCBasePtr();
3052 }
3053 
3054 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3055   setUsesTOCBasePtr(DAG.getMachineFunction());
3056 }
3057 
3058 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3059                                        SDValue GA) const {
3060   const bool Is64Bit = Subtarget.isPPC64();
3061   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3062   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3063                         : Subtarget.isAIXABI()
3064                               ? DAG.getRegister(PPC::R2, VT)
3065                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3066   SDValue Ops[] = { GA, Reg };
3067   return DAG.getMemIntrinsicNode(
3068       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3069       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3070       MachineMemOperand::MOLoad);
3071 }
3072 
3073 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3074                                              SelectionDAG &DAG) const {
3075   EVT PtrVT = Op.getValueType();
3076   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3077   const Constant *C = CP->getConstVal();
3078 
3079   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3080   // The actual address of the GlobalValue is stored in the TOC.
3081   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3082     if (Subtarget.isUsingPCRelativeCalls()) {
3083       SDLoc DL(CP);
3084       EVT Ty = getPointerTy(DAG.getDataLayout());
3085       SDValue ConstPool = DAG.getTargetConstantPool(
3086           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3087       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3088     }
3089     setUsesTOCBasePtr(DAG);
3090     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3091     return getTOCEntry(DAG, SDLoc(CP), GA);
3092   }
3093 
3094   unsigned MOHiFlag, MOLoFlag;
3095   bool IsPIC = isPositionIndependent();
3096   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3097 
3098   if (IsPIC && Subtarget.isSVR4ABI()) {
3099     SDValue GA =
3100         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3101     return getTOCEntry(DAG, SDLoc(CP), GA);
3102   }
3103 
3104   SDValue CPIHi =
3105       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3106   SDValue CPILo =
3107       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3108   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3109 }
3110 
3111 // For 64-bit PowerPC, prefer the more compact relative encodings.
3112 // This trades 32 bits per jump table entry for one or two instructions
3113 // on the jump site.
3114 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3115   if (isJumpTableRelative())
3116     return MachineJumpTableInfo::EK_LabelDifference32;
3117 
3118   return TargetLowering::getJumpTableEncoding();
3119 }
3120 
3121 bool PPCTargetLowering::isJumpTableRelative() const {
3122   if (UseAbsoluteJumpTables)
3123     return false;
3124   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3125     return true;
3126   return TargetLowering::isJumpTableRelative();
3127 }
3128 
3129 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3130                                                     SelectionDAG &DAG) const {
3131   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3132     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3133 
3134   switch (getTargetMachine().getCodeModel()) {
3135   case CodeModel::Small:
3136   case CodeModel::Medium:
3137     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3138   default:
3139     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3140                        getPointerTy(DAG.getDataLayout()));
3141   }
3142 }
3143 
3144 const MCExpr *
3145 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3146                                                 unsigned JTI,
3147                                                 MCContext &Ctx) const {
3148   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3149     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3150 
3151   switch (getTargetMachine().getCodeModel()) {
3152   case CodeModel::Small:
3153   case CodeModel::Medium:
3154     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3155   default:
3156     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3157   }
3158 }
3159 
3160 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3161   EVT PtrVT = Op.getValueType();
3162   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3163 
3164   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3165   if (Subtarget.isUsingPCRelativeCalls()) {
3166     SDLoc DL(JT);
3167     EVT Ty = getPointerTy(DAG.getDataLayout());
3168     SDValue GA =
3169         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3170     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3171     return MatAddr;
3172   }
3173 
3174   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3175   // The actual address of the GlobalValue is stored in the TOC.
3176   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3177     setUsesTOCBasePtr(DAG);
3178     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3179     return getTOCEntry(DAG, SDLoc(JT), GA);
3180   }
3181 
3182   unsigned MOHiFlag, MOLoFlag;
3183   bool IsPIC = isPositionIndependent();
3184   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3185 
3186   if (IsPIC && Subtarget.isSVR4ABI()) {
3187     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3188                                         PPCII::MO_PIC_FLAG);
3189     return getTOCEntry(DAG, SDLoc(GA), GA);
3190   }
3191 
3192   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3193   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3194   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3195 }
3196 
3197 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3198                                              SelectionDAG &DAG) const {
3199   EVT PtrVT = Op.getValueType();
3200   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3201   const BlockAddress *BA = BASDN->getBlockAddress();
3202 
3203   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3204   if (Subtarget.isUsingPCRelativeCalls()) {
3205     SDLoc DL(BASDN);
3206     EVT Ty = getPointerTy(DAG.getDataLayout());
3207     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3208                                            PPCII::MO_PCREL_FLAG);
3209     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3210     return MatAddr;
3211   }
3212 
3213   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3214   // The actual BlockAddress is stored in the TOC.
3215   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3216     setUsesTOCBasePtr(DAG);
3217     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3218     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3219   }
3220 
3221   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3222   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3223     return getTOCEntry(
3224         DAG, SDLoc(BASDN),
3225         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3226 
3227   unsigned MOHiFlag, MOLoFlag;
3228   bool IsPIC = isPositionIndependent();
3229   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3230   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3231   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3232   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3233 }
3234 
3235 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3236                                               SelectionDAG &DAG) const {
3237   if (Subtarget.isAIXABI())
3238     return LowerGlobalTLSAddressAIX(Op, DAG);
3239 
3240   return LowerGlobalTLSAddressLinux(Op, DAG);
3241 }
3242 
3243 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3244                                                     SelectionDAG &DAG) const {
3245   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3246 
3247   if (DAG.getTarget().useEmulatedTLS())
3248     report_fatal_error("Emulated TLS is not yet supported on AIX");
3249 
3250   SDLoc dl(GA);
3251   const GlobalValue *GV = GA->getGlobal();
3252   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3253 
3254   // The general-dynamic model is the only access model supported for now, so
3255   // all the GlobalTLSAddress nodes are lowered with this model.
3256   // We need to generate two TOC entries, one for the variable offset, one for
3257   // the region handle. The global address for the TOC entry of the region
3258   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3259   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3260   SDValue VariableOffsetTGA =
3261       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3262   SDValue RegionHandleTGA =
3263       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3264   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3265   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3266   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3267                      RegionHandle);
3268 }
3269 
3270 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3271                                                       SelectionDAG &DAG) const {
3272   // FIXME: TLS addresses currently use medium model code sequences,
3273   // which is the most useful form.  Eventually support for small and
3274   // large models could be added if users need it, at the cost of
3275   // additional complexity.
3276   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3277   if (DAG.getTarget().useEmulatedTLS())
3278     return LowerToTLSEmulatedModel(GA, DAG);
3279 
3280   SDLoc dl(GA);
3281   const GlobalValue *GV = GA->getGlobal();
3282   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3283   bool is64bit = Subtarget.isPPC64();
3284   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3285   PICLevel::Level picLevel = M->getPICLevel();
3286 
3287   const TargetMachine &TM = getTargetMachine();
3288   TLSModel::Model Model = TM.getTLSModel(GV);
3289 
3290   if (Model == TLSModel::LocalExec) {
3291     if (Subtarget.isUsingPCRelativeCalls()) {
3292       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3293       SDValue TGA = DAG.getTargetGlobalAddress(
3294           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3295       SDValue MatAddr =
3296           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3297       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3298     }
3299 
3300     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3301                                                PPCII::MO_TPREL_HA);
3302     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3303                                                PPCII::MO_TPREL_LO);
3304     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3305                              : DAG.getRegister(PPC::R2, MVT::i32);
3306 
3307     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3308     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3309   }
3310 
3311   if (Model == TLSModel::InitialExec) {
3312     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3313     SDValue TGA = DAG.getTargetGlobalAddress(
3314         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3315     SDValue TGATLS = DAG.getTargetGlobalAddress(
3316         GV, dl, PtrVT, 0,
3317         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3318     SDValue TPOffset;
3319     if (IsPCRel) {
3320       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3321       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3322                              MachinePointerInfo());
3323     } else {
3324       SDValue GOTPtr;
3325       if (is64bit) {
3326         setUsesTOCBasePtr(DAG);
3327         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3328         GOTPtr =
3329             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3330       } else {
3331         if (!TM.isPositionIndependent())
3332           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3333         else if (picLevel == PICLevel::SmallPIC)
3334           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3335         else
3336           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3337       }
3338       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3339     }
3340     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3341   }
3342 
3343   if (Model == TLSModel::GeneralDynamic) {
3344     if (Subtarget.isUsingPCRelativeCalls()) {
3345       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3346                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3347       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3348     }
3349 
3350     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3351     SDValue GOTPtr;
3352     if (is64bit) {
3353       setUsesTOCBasePtr(DAG);
3354       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3355       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3356                                    GOTReg, TGA);
3357     } else {
3358       if (picLevel == PICLevel::SmallPIC)
3359         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3360       else
3361         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3362     }
3363     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3364                        GOTPtr, TGA, TGA);
3365   }
3366 
3367   if (Model == TLSModel::LocalDynamic) {
3368     if (Subtarget.isUsingPCRelativeCalls()) {
3369       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3370                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3371       SDValue MatPCRel =
3372           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3373       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3374     }
3375 
3376     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3377     SDValue GOTPtr;
3378     if (is64bit) {
3379       setUsesTOCBasePtr(DAG);
3380       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3381       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3382                            GOTReg, TGA);
3383     } else {
3384       if (picLevel == PICLevel::SmallPIC)
3385         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3386       else
3387         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3388     }
3389     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3390                                   PtrVT, GOTPtr, TGA, TGA);
3391     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3392                                       PtrVT, TLSAddr, TGA);
3393     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3394   }
3395 
3396   llvm_unreachable("Unknown TLS model!");
3397 }
3398 
3399 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3400                                               SelectionDAG &DAG) const {
3401   EVT PtrVT = Op.getValueType();
3402   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3403   SDLoc DL(GSDN);
3404   const GlobalValue *GV = GSDN->getGlobal();
3405 
3406   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3407   // The actual address of the GlobalValue is stored in the TOC.
3408   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3409     if (Subtarget.isUsingPCRelativeCalls()) {
3410       EVT Ty = getPointerTy(DAG.getDataLayout());
3411       if (isAccessedAsGotIndirect(Op)) {
3412         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3413                                                 PPCII::MO_PCREL_FLAG |
3414                                                     PPCII::MO_GOT_FLAG);
3415         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3416         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3417                                    MachinePointerInfo());
3418         return Load;
3419       } else {
3420         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3421                                                 PPCII::MO_PCREL_FLAG);
3422         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3423       }
3424     }
3425     setUsesTOCBasePtr(DAG);
3426     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3427     return getTOCEntry(DAG, DL, GA);
3428   }
3429 
3430   unsigned MOHiFlag, MOLoFlag;
3431   bool IsPIC = isPositionIndependent();
3432   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3433 
3434   if (IsPIC && Subtarget.isSVR4ABI()) {
3435     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3436                                             GSDN->getOffset(),
3437                                             PPCII::MO_PIC_FLAG);
3438     return getTOCEntry(DAG, DL, GA);
3439   }
3440 
3441   SDValue GAHi =
3442     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3443   SDValue GALo =
3444     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3445 
3446   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3447 }
3448 
3449 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3450   bool IsStrict = Op->isStrictFPOpcode();
3451   ISD::CondCode CC =
3452       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3453   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3454   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3455   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3456   EVT LHSVT = LHS.getValueType();
3457   SDLoc dl(Op);
3458 
3459   // Soften the setcc with libcall if it is fp128.
3460   if (LHSVT == MVT::f128) {
3461     assert(!Subtarget.hasP9Vector() &&
3462            "SETCC for f128 is already legal under Power9!");
3463     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3464                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3465     if (RHS.getNode())
3466       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3467                         DAG.getCondCode(CC));
3468     if (IsStrict)
3469       return DAG.getMergeValues({LHS, Chain}, dl);
3470     return LHS;
3471   }
3472 
3473   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3474 
3475   if (Op.getValueType() == MVT::v2i64) {
3476     // When the operands themselves are v2i64 values, we need to do something
3477     // special because VSX has no underlying comparison operations for these.
3478     if (LHS.getValueType() == MVT::v2i64) {
3479       // Equality can be handled by casting to the legal type for Altivec
3480       // comparisons, everything else needs to be expanded.
3481       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3482         return DAG.getNode(
3483             ISD::BITCAST, dl, MVT::v2i64,
3484             DAG.getSetCC(dl, MVT::v4i32,
3485                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3486                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC));
3487       }
3488 
3489       return SDValue();
3490     }
3491 
3492     // We handle most of these in the usual way.
3493     return Op;
3494   }
3495 
3496   // If we're comparing for equality to zero, expose the fact that this is
3497   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3498   // fold the new nodes.
3499   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3500     return V;
3501 
3502   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3503     // Leave comparisons against 0 and -1 alone for now, since they're usually
3504     // optimized.  FIXME: revisit this when we can custom lower all setcc
3505     // optimizations.
3506     if (C->isAllOnesValue() || C->isNullValue())
3507       return SDValue();
3508   }
3509 
3510   // If we have an integer seteq/setne, turn it into a compare against zero
3511   // by xor'ing the rhs with the lhs, which is faster than setting a
3512   // condition register, reading it back out, and masking the correct bit.  The
3513   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3514   // the result to other bit-twiddling opportunities.
3515   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3516     EVT VT = Op.getValueType();
3517     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3518     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3519   }
3520   return SDValue();
3521 }
3522 
3523 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3524   SDNode *Node = Op.getNode();
3525   EVT VT = Node->getValueType(0);
3526   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3527   SDValue InChain = Node->getOperand(0);
3528   SDValue VAListPtr = Node->getOperand(1);
3529   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3530   SDLoc dl(Node);
3531 
3532   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3533 
3534   // gpr_index
3535   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3536                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3537   InChain = GprIndex.getValue(1);
3538 
3539   if (VT == MVT::i64) {
3540     // Check if GprIndex is even
3541     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3542                                  DAG.getConstant(1, dl, MVT::i32));
3543     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3544                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3545     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3546                                           DAG.getConstant(1, dl, MVT::i32));
3547     // Align GprIndex to be even if it isn't
3548     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3549                            GprIndex);
3550   }
3551 
3552   // fpr index is 1 byte after gpr
3553   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3554                                DAG.getConstant(1, dl, MVT::i32));
3555 
3556   // fpr
3557   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3558                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3559   InChain = FprIndex.getValue(1);
3560 
3561   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3562                                        DAG.getConstant(8, dl, MVT::i32));
3563 
3564   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3565                                         DAG.getConstant(4, dl, MVT::i32));
3566 
3567   // areas
3568   SDValue OverflowArea =
3569       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3570   InChain = OverflowArea.getValue(1);
3571 
3572   SDValue RegSaveArea =
3573       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3574   InChain = RegSaveArea.getValue(1);
3575 
3576   // select overflow_area if index > 8
3577   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3578                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3579 
3580   // adjustment constant gpr_index * 4/8
3581   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3582                                     VT.isInteger() ? GprIndex : FprIndex,
3583                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3584                                                     MVT::i32));
3585 
3586   // OurReg = RegSaveArea + RegConstant
3587   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3588                                RegConstant);
3589 
3590   // Floating types are 32 bytes into RegSaveArea
3591   if (VT.isFloatingPoint())
3592     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3593                          DAG.getConstant(32, dl, MVT::i32));
3594 
3595   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3596   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3597                                    VT.isInteger() ? GprIndex : FprIndex,
3598                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3599                                                    MVT::i32));
3600 
3601   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3602                               VT.isInteger() ? VAListPtr : FprPtr,
3603                               MachinePointerInfo(SV), MVT::i8);
3604 
3605   // determine if we should load from reg_save_area or overflow_area
3606   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3607 
3608   // increase overflow_area by 4/8 if gpr/fpr > 8
3609   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3610                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3611                                           dl, MVT::i32));
3612 
3613   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3614                              OverflowAreaPlusN);
3615 
3616   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3617                               MachinePointerInfo(), MVT::i32);
3618 
3619   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3620 }
3621 
3622 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3623   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3624 
3625   // We have to copy the entire va_list struct:
3626   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3627   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3628                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3629                        false, true, false, MachinePointerInfo(),
3630                        MachinePointerInfo());
3631 }
3632 
3633 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3634                                                   SelectionDAG &DAG) const {
3635   if (Subtarget.isAIXABI())
3636     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3637 
3638   return Op.getOperand(0);
3639 }
3640 
3641 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3642   MachineFunction &MF = DAG.getMachineFunction();
3643   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3644 
3645   assert((Op.getOpcode() == ISD::INLINEASM ||
3646           Op.getOpcode() == ISD::INLINEASM_BR) &&
3647          "Expecting Inline ASM node.");
3648 
3649   // If an LR store is already known to be required then there is not point in
3650   // checking this ASM as well.
3651   if (MFI.isLRStoreRequired())
3652     return Op;
3653 
3654   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3655   // type MVT::Glue. We want to ignore this last operand if that is the case.
3656   unsigned NumOps = Op.getNumOperands();
3657   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3658     --NumOps;
3659 
3660   // Check all operands that may contain the LR.
3661   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3662     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3663     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3664     ++i; // Skip the ID value.
3665 
3666     switch (InlineAsm::getKind(Flags)) {
3667     default:
3668       llvm_unreachable("Bad flags!");
3669     case InlineAsm::Kind_RegUse:
3670     case InlineAsm::Kind_Imm:
3671     case InlineAsm::Kind_Mem:
3672       i += NumVals;
3673       break;
3674     case InlineAsm::Kind_Clobber:
3675     case InlineAsm::Kind_RegDef:
3676     case InlineAsm::Kind_RegDefEarlyClobber: {
3677       for (; NumVals; --NumVals, ++i) {
3678         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3679         if (Reg != PPC::LR && Reg != PPC::LR8)
3680           continue;
3681         MFI.setLRStoreRequired();
3682         return Op;
3683       }
3684       break;
3685     }
3686     }
3687   }
3688 
3689   return Op;
3690 }
3691 
3692 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3693                                                 SelectionDAG &DAG) const {
3694   if (Subtarget.isAIXABI())
3695     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3696 
3697   SDValue Chain = Op.getOperand(0);
3698   SDValue Trmp = Op.getOperand(1); // trampoline
3699   SDValue FPtr = Op.getOperand(2); // nested function
3700   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3701   SDLoc dl(Op);
3702 
3703   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3704   bool isPPC64 = (PtrVT == MVT::i64);
3705   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3706 
3707   TargetLowering::ArgListTy Args;
3708   TargetLowering::ArgListEntry Entry;
3709 
3710   Entry.Ty = IntPtrTy;
3711   Entry.Node = Trmp; Args.push_back(Entry);
3712 
3713   // TrampSize == (isPPC64 ? 48 : 40);
3714   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3715                                isPPC64 ? MVT::i64 : MVT::i32);
3716   Args.push_back(Entry);
3717 
3718   Entry.Node = FPtr; Args.push_back(Entry);
3719   Entry.Node = Nest; Args.push_back(Entry);
3720 
3721   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3722   TargetLowering::CallLoweringInfo CLI(DAG);
3723   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3724       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3725       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3726 
3727   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3728   return CallResult.second;
3729 }
3730 
3731 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3732   MachineFunction &MF = DAG.getMachineFunction();
3733   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3734   EVT PtrVT = getPointerTy(MF.getDataLayout());
3735 
3736   SDLoc dl(Op);
3737 
3738   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3739     // vastart just stores the address of the VarArgsFrameIndex slot into the
3740     // memory location argument.
3741     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3742     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3743     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3744                         MachinePointerInfo(SV));
3745   }
3746 
3747   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3748   // We suppose the given va_list is already allocated.
3749   //
3750   // typedef struct {
3751   //  char gpr;     /* index into the array of 8 GPRs
3752   //                 * stored in the register save area
3753   //                 * gpr=0 corresponds to r3,
3754   //                 * gpr=1 to r4, etc.
3755   //                 */
3756   //  char fpr;     /* index into the array of 8 FPRs
3757   //                 * stored in the register save area
3758   //                 * fpr=0 corresponds to f1,
3759   //                 * fpr=1 to f2, etc.
3760   //                 */
3761   //  char *overflow_arg_area;
3762   //                /* location on stack that holds
3763   //                 * the next overflow argument
3764   //                 */
3765   //  char *reg_save_area;
3766   //               /* where r3:r10 and f1:f8 (if saved)
3767   //                * are stored
3768   //                */
3769   // } va_list[1];
3770 
3771   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3772   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3773   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3774                                             PtrVT);
3775   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3776                                  PtrVT);
3777 
3778   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3779   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3780 
3781   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3782   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3783 
3784   uint64_t FPROffset = 1;
3785   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3786 
3787   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3788 
3789   // Store first byte : number of int regs
3790   SDValue firstStore =
3791       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3792                         MachinePointerInfo(SV), MVT::i8);
3793   uint64_t nextOffset = FPROffset;
3794   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3795                                   ConstFPROffset);
3796 
3797   // Store second byte : number of float regs
3798   SDValue secondStore =
3799       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3800                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3801   nextOffset += StackOffset;
3802   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3803 
3804   // Store second word : arguments given on stack
3805   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3806                                     MachinePointerInfo(SV, nextOffset));
3807   nextOffset += FrameOffset;
3808   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3809 
3810   // Store third word : arguments given in registers
3811   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3812                       MachinePointerInfo(SV, nextOffset));
3813 }
3814 
3815 /// FPR - The set of FP registers that should be allocated for arguments
3816 /// on Darwin and AIX.
3817 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3818                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3819                                 PPC::F11, PPC::F12, PPC::F13};
3820 
3821 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3822 /// the stack.
3823 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3824                                        unsigned PtrByteSize) {
3825   unsigned ArgSize = ArgVT.getStoreSize();
3826   if (Flags.isByVal())
3827     ArgSize = Flags.getByValSize();
3828 
3829   // Round up to multiples of the pointer size, except for array members,
3830   // which are always packed.
3831   if (!Flags.isInConsecutiveRegs())
3832     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3833 
3834   return ArgSize;
3835 }
3836 
3837 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3838 /// on the stack.
3839 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3840                                          ISD::ArgFlagsTy Flags,
3841                                          unsigned PtrByteSize) {
3842   Align Alignment(PtrByteSize);
3843 
3844   // Altivec parameters are padded to a 16 byte boundary.
3845   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3846       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3847       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3848       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3849     Alignment = Align(16);
3850 
3851   // ByVal parameters are aligned as requested.
3852   if (Flags.isByVal()) {
3853     auto BVAlign = Flags.getNonZeroByValAlign();
3854     if (BVAlign > PtrByteSize) {
3855       if (BVAlign.value() % PtrByteSize != 0)
3856         llvm_unreachable(
3857             "ByVal alignment is not a multiple of the pointer size");
3858 
3859       Alignment = BVAlign;
3860     }
3861   }
3862 
3863   // Array members are always packed to their original alignment.
3864   if (Flags.isInConsecutiveRegs()) {
3865     // If the array member was split into multiple registers, the first
3866     // needs to be aligned to the size of the full type.  (Except for
3867     // ppcf128, which is only aligned as its f64 components.)
3868     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3869       Alignment = Align(OrigVT.getStoreSize());
3870     else
3871       Alignment = Align(ArgVT.getStoreSize());
3872   }
3873 
3874   return Alignment;
3875 }
3876 
3877 /// CalculateStackSlotUsed - Return whether this argument will use its
3878 /// stack slot (instead of being passed in registers).  ArgOffset,
3879 /// AvailableFPRs, and AvailableVRs must hold the current argument
3880 /// position, and will be updated to account for this argument.
3881 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3882                                    unsigned PtrByteSize, unsigned LinkageSize,
3883                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3884                                    unsigned &AvailableFPRs,
3885                                    unsigned &AvailableVRs) {
3886   bool UseMemory = false;
3887 
3888   // Respect alignment of argument on the stack.
3889   Align Alignment =
3890       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3891   ArgOffset = alignTo(ArgOffset, Alignment);
3892   // If there's no space left in the argument save area, we must
3893   // use memory (this check also catches zero-sized arguments).
3894   if (ArgOffset >= LinkageSize + ParamAreaSize)
3895     UseMemory = true;
3896 
3897   // Allocate argument on the stack.
3898   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3899   if (Flags.isInConsecutiveRegsLast())
3900     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3901   // If we overran the argument save area, we must use memory
3902   // (this check catches arguments passed partially in memory)
3903   if (ArgOffset > LinkageSize + ParamAreaSize)
3904     UseMemory = true;
3905 
3906   // However, if the argument is actually passed in an FPR or a VR,
3907   // we don't use memory after all.
3908   if (!Flags.isByVal()) {
3909     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3910       if (AvailableFPRs > 0) {
3911         --AvailableFPRs;
3912         return false;
3913       }
3914     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3915         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3916         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3917         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3918       if (AvailableVRs > 0) {
3919         --AvailableVRs;
3920         return false;
3921       }
3922   }
3923 
3924   return UseMemory;
3925 }
3926 
3927 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3928 /// ensure minimum alignment required for target.
3929 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3930                                      unsigned NumBytes) {
3931   return alignTo(NumBytes, Lowering->getStackAlign());
3932 }
3933 
3934 SDValue PPCTargetLowering::LowerFormalArguments(
3935     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3936     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3937     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3938   if (Subtarget.isAIXABI())
3939     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3940                                     InVals);
3941   if (Subtarget.is64BitELFABI())
3942     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3943                                        InVals);
3944   assert(Subtarget.is32BitELFABI());
3945   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3946                                      InVals);
3947 }
3948 
3949 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3950     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3951     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3952     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3953 
3954   // 32-bit SVR4 ABI Stack Frame Layout:
3955   //              +-----------------------------------+
3956   //        +-->  |            Back chain             |
3957   //        |     +-----------------------------------+
3958   //        |     | Floating-point register save area |
3959   //        |     +-----------------------------------+
3960   //        |     |    General register save area     |
3961   //        |     +-----------------------------------+
3962   //        |     |          CR save word             |
3963   //        |     +-----------------------------------+
3964   //        |     |         VRSAVE save word          |
3965   //        |     +-----------------------------------+
3966   //        |     |         Alignment padding         |
3967   //        |     +-----------------------------------+
3968   //        |     |     Vector register save area     |
3969   //        |     +-----------------------------------+
3970   //        |     |       Local variable space        |
3971   //        |     +-----------------------------------+
3972   //        |     |        Parameter list area        |
3973   //        |     +-----------------------------------+
3974   //        |     |           LR save word            |
3975   //        |     +-----------------------------------+
3976   // SP-->  +---  |            Back chain             |
3977   //              +-----------------------------------+
3978   //
3979   // Specifications:
3980   //   System V Application Binary Interface PowerPC Processor Supplement
3981   //   AltiVec Technology Programming Interface Manual
3982 
3983   MachineFunction &MF = DAG.getMachineFunction();
3984   MachineFrameInfo &MFI = MF.getFrameInfo();
3985   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3986 
3987   EVT PtrVT = getPointerTy(MF.getDataLayout());
3988   // Potential tail calls could cause overwriting of argument stack slots.
3989   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3990                        (CallConv == CallingConv::Fast));
3991   const Align PtrAlign(4);
3992 
3993   // Assign locations to all of the incoming arguments.
3994   SmallVector<CCValAssign, 16> ArgLocs;
3995   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3996                  *DAG.getContext());
3997 
3998   // Reserve space for the linkage area on the stack.
3999   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4000   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4001   if (useSoftFloat())
4002     CCInfo.PreAnalyzeFormalArguments(Ins);
4003 
4004   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4005   CCInfo.clearWasPPCF128();
4006 
4007   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4008     CCValAssign &VA = ArgLocs[i];
4009 
4010     // Arguments stored in registers.
4011     if (VA.isRegLoc()) {
4012       const TargetRegisterClass *RC;
4013       EVT ValVT = VA.getValVT();
4014 
4015       switch (ValVT.getSimpleVT().SimpleTy) {
4016         default:
4017           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4018         case MVT::i1:
4019         case MVT::i32:
4020           RC = &PPC::GPRCRegClass;
4021           break;
4022         case MVT::f32:
4023           if (Subtarget.hasP8Vector())
4024             RC = &PPC::VSSRCRegClass;
4025           else if (Subtarget.hasSPE())
4026             RC = &PPC::GPRCRegClass;
4027           else
4028             RC = &PPC::F4RCRegClass;
4029           break;
4030         case MVT::f64:
4031           if (Subtarget.hasVSX())
4032             RC = &PPC::VSFRCRegClass;
4033           else if (Subtarget.hasSPE())
4034             // SPE passes doubles in GPR pairs.
4035             RC = &PPC::GPRCRegClass;
4036           else
4037             RC = &PPC::F8RCRegClass;
4038           break;
4039         case MVT::v16i8:
4040         case MVT::v8i16:
4041         case MVT::v4i32:
4042           RC = &PPC::VRRCRegClass;
4043           break;
4044         case MVT::v4f32:
4045           RC = &PPC::VRRCRegClass;
4046           break;
4047         case MVT::v2f64:
4048         case MVT::v2i64:
4049           RC = &PPC::VRRCRegClass;
4050           break;
4051       }
4052 
4053       SDValue ArgValue;
4054       // Transform the arguments stored in physical registers into
4055       // virtual ones.
4056       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4057         assert(i + 1 < e && "No second half of double precision argument");
4058         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4059         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4060         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4061         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4062         if (!Subtarget.isLittleEndian())
4063           std::swap (ArgValueLo, ArgValueHi);
4064         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4065                                ArgValueHi);
4066       } else {
4067         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4068         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4069                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4070         if (ValVT == MVT::i1)
4071           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4072       }
4073 
4074       InVals.push_back(ArgValue);
4075     } else {
4076       // Argument stored in memory.
4077       assert(VA.isMemLoc());
4078 
4079       // Get the extended size of the argument type in stack
4080       unsigned ArgSize = VA.getLocVT().getStoreSize();
4081       // Get the actual size of the argument type
4082       unsigned ObjSize = VA.getValVT().getStoreSize();
4083       unsigned ArgOffset = VA.getLocMemOffset();
4084       // Stack objects in PPC32 are right justified.
4085       ArgOffset += ArgSize - ObjSize;
4086       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4087 
4088       // Create load nodes to retrieve arguments from the stack.
4089       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4090       InVals.push_back(
4091           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4092     }
4093   }
4094 
4095   // Assign locations to all of the incoming aggregate by value arguments.
4096   // Aggregates passed by value are stored in the local variable space of the
4097   // caller's stack frame, right above the parameter list area.
4098   SmallVector<CCValAssign, 16> ByValArgLocs;
4099   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4100                       ByValArgLocs, *DAG.getContext());
4101 
4102   // Reserve stack space for the allocations in CCInfo.
4103   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4104 
4105   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4106 
4107   // Area that is at least reserved in the caller of this function.
4108   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4109   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4110 
4111   // Set the size that is at least reserved in caller of this function.  Tail
4112   // call optimized function's reserved stack space needs to be aligned so that
4113   // taking the difference between two stack areas will result in an aligned
4114   // stack.
4115   MinReservedArea =
4116       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4117   FuncInfo->setMinReservedArea(MinReservedArea);
4118 
4119   SmallVector<SDValue, 8> MemOps;
4120 
4121   // If the function takes variable number of arguments, make a frame index for
4122   // the start of the first vararg value... for expansion of llvm.va_start.
4123   if (isVarArg) {
4124     static const MCPhysReg GPArgRegs[] = {
4125       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4126       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4127     };
4128     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4129 
4130     static const MCPhysReg FPArgRegs[] = {
4131       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4132       PPC::F8
4133     };
4134     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4135 
4136     if (useSoftFloat() || hasSPE())
4137        NumFPArgRegs = 0;
4138 
4139     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4140     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4141 
4142     // Make room for NumGPArgRegs and NumFPArgRegs.
4143     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4144                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4145 
4146     FuncInfo->setVarArgsStackOffset(
4147       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4148                             CCInfo.getNextStackOffset(), true));
4149 
4150     FuncInfo->setVarArgsFrameIndex(
4151         MFI.CreateStackObject(Depth, Align(8), false));
4152     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4153 
4154     // The fixed integer arguments of a variadic function are stored to the
4155     // VarArgsFrameIndex on the stack so that they may be loaded by
4156     // dereferencing the result of va_next.
4157     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4158       // Get an existing live-in vreg, or add a new one.
4159       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4160       if (!VReg)
4161         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4162 
4163       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4164       SDValue Store =
4165           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4166       MemOps.push_back(Store);
4167       // Increment the address by four for the next argument to store
4168       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4169       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4170     }
4171 
4172     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4173     // is set.
4174     // The double arguments are stored to the VarArgsFrameIndex
4175     // on the stack.
4176     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4177       // Get an existing live-in vreg, or add a new one.
4178       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4179       if (!VReg)
4180         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4181 
4182       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4183       SDValue Store =
4184           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4185       MemOps.push_back(Store);
4186       // Increment the address by eight for the next argument to store
4187       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4188                                          PtrVT);
4189       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4190     }
4191   }
4192 
4193   if (!MemOps.empty())
4194     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4195 
4196   return Chain;
4197 }
4198 
4199 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4200 // value to MVT::i64 and then truncate to the correct register size.
4201 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4202                                              EVT ObjectVT, SelectionDAG &DAG,
4203                                              SDValue ArgVal,
4204                                              const SDLoc &dl) const {
4205   if (Flags.isSExt())
4206     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4207                          DAG.getValueType(ObjectVT));
4208   else if (Flags.isZExt())
4209     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4210                          DAG.getValueType(ObjectVT));
4211 
4212   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4213 }
4214 
4215 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4216     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4217     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4218     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4219   // TODO: add description of PPC stack frame format, or at least some docs.
4220   //
4221   bool isELFv2ABI = Subtarget.isELFv2ABI();
4222   bool isLittleEndian = Subtarget.isLittleEndian();
4223   MachineFunction &MF = DAG.getMachineFunction();
4224   MachineFrameInfo &MFI = MF.getFrameInfo();
4225   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4226 
4227   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4228          "fastcc not supported on varargs functions");
4229 
4230   EVT PtrVT = getPointerTy(MF.getDataLayout());
4231   // Potential tail calls could cause overwriting of argument stack slots.
4232   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4233                        (CallConv == CallingConv::Fast));
4234   unsigned PtrByteSize = 8;
4235   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4236 
4237   static const MCPhysReg GPR[] = {
4238     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4239     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4240   };
4241   static const MCPhysReg VR[] = {
4242     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4243     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4244   };
4245 
4246   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4247   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4248   const unsigned Num_VR_Regs  = array_lengthof(VR);
4249 
4250   // Do a first pass over the arguments to determine whether the ABI
4251   // guarantees that our caller has allocated the parameter save area
4252   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4253   // in the ELFv2 ABI, it is true if this is a vararg function or if
4254   // any parameter is located in a stack slot.
4255 
4256   bool HasParameterArea = !isELFv2ABI || isVarArg;
4257   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4258   unsigned NumBytes = LinkageSize;
4259   unsigned AvailableFPRs = Num_FPR_Regs;
4260   unsigned AvailableVRs = Num_VR_Regs;
4261   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4262     if (Ins[i].Flags.isNest())
4263       continue;
4264 
4265     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4266                                PtrByteSize, LinkageSize, ParamAreaSize,
4267                                NumBytes, AvailableFPRs, AvailableVRs))
4268       HasParameterArea = true;
4269   }
4270 
4271   // Add DAG nodes to load the arguments or copy them out of registers.  On
4272   // entry to a function on PPC, the arguments start after the linkage area,
4273   // although the first ones are often in registers.
4274 
4275   unsigned ArgOffset = LinkageSize;
4276   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4277   SmallVector<SDValue, 8> MemOps;
4278   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4279   unsigned CurArgIdx = 0;
4280   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4281     SDValue ArgVal;
4282     bool needsLoad = false;
4283     EVT ObjectVT = Ins[ArgNo].VT;
4284     EVT OrigVT = Ins[ArgNo].ArgVT;
4285     unsigned ObjSize = ObjectVT.getStoreSize();
4286     unsigned ArgSize = ObjSize;
4287     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4288     if (Ins[ArgNo].isOrigArg()) {
4289       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4290       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4291     }
4292     // We re-align the argument offset for each argument, except when using the
4293     // fast calling convention, when we need to make sure we do that only when
4294     // we'll actually use a stack slot.
4295     unsigned CurArgOffset;
4296     Align Alignment;
4297     auto ComputeArgOffset = [&]() {
4298       /* Respect alignment of argument on the stack.  */
4299       Alignment =
4300           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4301       ArgOffset = alignTo(ArgOffset, Alignment);
4302       CurArgOffset = ArgOffset;
4303     };
4304 
4305     if (CallConv != CallingConv::Fast) {
4306       ComputeArgOffset();
4307 
4308       /* Compute GPR index associated with argument offset.  */
4309       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4310       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4311     }
4312 
4313     // FIXME the codegen can be much improved in some cases.
4314     // We do not have to keep everything in memory.
4315     if (Flags.isByVal()) {
4316       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4317 
4318       if (CallConv == CallingConv::Fast)
4319         ComputeArgOffset();
4320 
4321       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4322       ObjSize = Flags.getByValSize();
4323       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4324       // Empty aggregate parameters do not take up registers.  Examples:
4325       //   struct { } a;
4326       //   union  { } b;
4327       //   int c[0];
4328       // etc.  However, we have to provide a place-holder in InVals, so
4329       // pretend we have an 8-byte item at the current address for that
4330       // purpose.
4331       if (!ObjSize) {
4332         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4333         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4334         InVals.push_back(FIN);
4335         continue;
4336       }
4337 
4338       // Create a stack object covering all stack doublewords occupied
4339       // by the argument.  If the argument is (fully or partially) on
4340       // the stack, or if the argument is fully in registers but the
4341       // caller has allocated the parameter save anyway, we can refer
4342       // directly to the caller's stack frame.  Otherwise, create a
4343       // local copy in our own frame.
4344       int FI;
4345       if (HasParameterArea ||
4346           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4347         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4348       else
4349         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4350       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4351 
4352       // Handle aggregates smaller than 8 bytes.
4353       if (ObjSize < PtrByteSize) {
4354         // The value of the object is its address, which differs from the
4355         // address of the enclosing doubleword on big-endian systems.
4356         SDValue Arg = FIN;
4357         if (!isLittleEndian) {
4358           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4359           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4360         }
4361         InVals.push_back(Arg);
4362 
4363         if (GPR_idx != Num_GPR_Regs) {
4364           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4365           FuncInfo->addLiveInAttr(VReg, Flags);
4366           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4367           SDValue Store;
4368 
4369           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4370             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4371                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4372             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4373                                       MachinePointerInfo(&*FuncArg), ObjType);
4374           } else {
4375             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4376             // store the whole register as-is to the parameter save area
4377             // slot.
4378             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4379                                  MachinePointerInfo(&*FuncArg));
4380           }
4381 
4382           MemOps.push_back(Store);
4383         }
4384         // Whether we copied from a register or not, advance the offset
4385         // into the parameter save area by a full doubleword.
4386         ArgOffset += PtrByteSize;
4387         continue;
4388       }
4389 
4390       // The value of the object is its address, which is the address of
4391       // its first stack doubleword.
4392       InVals.push_back(FIN);
4393 
4394       // Store whatever pieces of the object are in registers to memory.
4395       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4396         if (GPR_idx == Num_GPR_Regs)
4397           break;
4398 
4399         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4400         FuncInfo->addLiveInAttr(VReg, Flags);
4401         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4402         SDValue Addr = FIN;
4403         if (j) {
4404           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4405           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4406         }
4407         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4408                                      MachinePointerInfo(&*FuncArg, j));
4409         MemOps.push_back(Store);
4410         ++GPR_idx;
4411       }
4412       ArgOffset += ArgSize;
4413       continue;
4414     }
4415 
4416     switch (ObjectVT.getSimpleVT().SimpleTy) {
4417     default: llvm_unreachable("Unhandled argument type!");
4418     case MVT::i1:
4419     case MVT::i32:
4420     case MVT::i64:
4421       if (Flags.isNest()) {
4422         // The 'nest' parameter, if any, is passed in R11.
4423         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4424         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4425 
4426         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4427           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4428 
4429         break;
4430       }
4431 
4432       // These can be scalar arguments or elements of an integer array type
4433       // passed directly.  Clang may use those instead of "byval" aggregate
4434       // types to avoid forcing arguments to memory unnecessarily.
4435       if (GPR_idx != Num_GPR_Regs) {
4436         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4437         FuncInfo->addLiveInAttr(VReg, Flags);
4438         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4439 
4440         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4441           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4442           // value to MVT::i64 and then truncate to the correct register size.
4443           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4444       } else {
4445         if (CallConv == CallingConv::Fast)
4446           ComputeArgOffset();
4447 
4448         needsLoad = true;
4449         ArgSize = PtrByteSize;
4450       }
4451       if (CallConv != CallingConv::Fast || needsLoad)
4452         ArgOffset += 8;
4453       break;
4454 
4455     case MVT::f32:
4456     case MVT::f64:
4457       // These can be scalar arguments or elements of a float array type
4458       // passed directly.  The latter are used to implement ELFv2 homogenous
4459       // float aggregates.
4460       if (FPR_idx != Num_FPR_Regs) {
4461         unsigned VReg;
4462 
4463         if (ObjectVT == MVT::f32)
4464           VReg = MF.addLiveIn(FPR[FPR_idx],
4465                               Subtarget.hasP8Vector()
4466                                   ? &PPC::VSSRCRegClass
4467                                   : &PPC::F4RCRegClass);
4468         else
4469           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4470                                                 ? &PPC::VSFRCRegClass
4471                                                 : &PPC::F8RCRegClass);
4472 
4473         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4474         ++FPR_idx;
4475       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4476         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4477         // once we support fp <-> gpr moves.
4478 
4479         // This can only ever happen in the presence of f32 array types,
4480         // since otherwise we never run out of FPRs before running out
4481         // of GPRs.
4482         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4483         FuncInfo->addLiveInAttr(VReg, Flags);
4484         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4485 
4486         if (ObjectVT == MVT::f32) {
4487           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4488             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4489                                  DAG.getConstant(32, dl, MVT::i32));
4490           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4491         }
4492 
4493         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4494       } else {
4495         if (CallConv == CallingConv::Fast)
4496           ComputeArgOffset();
4497 
4498         needsLoad = true;
4499       }
4500 
4501       // When passing an array of floats, the array occupies consecutive
4502       // space in the argument area; only round up to the next doubleword
4503       // at the end of the array.  Otherwise, each float takes 8 bytes.
4504       if (CallConv != CallingConv::Fast || needsLoad) {
4505         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4506         ArgOffset += ArgSize;
4507         if (Flags.isInConsecutiveRegsLast())
4508           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4509       }
4510       break;
4511     case MVT::v4f32:
4512     case MVT::v4i32:
4513     case MVT::v8i16:
4514     case MVT::v16i8:
4515     case MVT::v2f64:
4516     case MVT::v2i64:
4517     case MVT::v1i128:
4518     case MVT::f128:
4519       // These can be scalar arguments or elements of a vector array type
4520       // passed directly.  The latter are used to implement ELFv2 homogenous
4521       // vector aggregates.
4522       if (VR_idx != Num_VR_Regs) {
4523         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4524         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4525         ++VR_idx;
4526       } else {
4527         if (CallConv == CallingConv::Fast)
4528           ComputeArgOffset();
4529         needsLoad = true;
4530       }
4531       if (CallConv != CallingConv::Fast || needsLoad)
4532         ArgOffset += 16;
4533       break;
4534     }
4535 
4536     // We need to load the argument to a virtual register if we determined
4537     // above that we ran out of physical registers of the appropriate type.
4538     if (needsLoad) {
4539       if (ObjSize < ArgSize && !isLittleEndian)
4540         CurArgOffset += ArgSize - ObjSize;
4541       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4542       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4543       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4544     }
4545 
4546     InVals.push_back(ArgVal);
4547   }
4548 
4549   // Area that is at least reserved in the caller of this function.
4550   unsigned MinReservedArea;
4551   if (HasParameterArea)
4552     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4553   else
4554     MinReservedArea = LinkageSize;
4555 
4556   // Set the size that is at least reserved in caller of this function.  Tail
4557   // call optimized functions' reserved stack space needs to be aligned so that
4558   // taking the difference between two stack areas will result in an aligned
4559   // stack.
4560   MinReservedArea =
4561       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4562   FuncInfo->setMinReservedArea(MinReservedArea);
4563 
4564   // If the function takes variable number of arguments, make a frame index for
4565   // the start of the first vararg value... for expansion of llvm.va_start.
4566   // On ELFv2ABI spec, it writes:
4567   // C programs that are intended to be *portable* across different compilers
4568   // and architectures must use the header file <stdarg.h> to deal with variable
4569   // argument lists.
4570   if (isVarArg && MFI.hasVAStart()) {
4571     int Depth = ArgOffset;
4572 
4573     FuncInfo->setVarArgsFrameIndex(
4574       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4575     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4576 
4577     // If this function is vararg, store any remaining integer argument regs
4578     // to their spots on the stack so that they may be loaded by dereferencing
4579     // the result of va_next.
4580     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4581          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4582       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4583       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4584       SDValue Store =
4585           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4586       MemOps.push_back(Store);
4587       // Increment the address by four for the next argument to store
4588       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4589       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4590     }
4591   }
4592 
4593   if (!MemOps.empty())
4594     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4595 
4596   return Chain;
4597 }
4598 
4599 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4600 /// adjusted to accommodate the arguments for the tailcall.
4601 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4602                                    unsigned ParamSize) {
4603 
4604   if (!isTailCall) return 0;
4605 
4606   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4607   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4608   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4609   // Remember only if the new adjustment is bigger.
4610   if (SPDiff < FI->getTailCallSPDelta())
4611     FI->setTailCallSPDelta(SPDiff);
4612 
4613   return SPDiff;
4614 }
4615 
4616 static bool isFunctionGlobalAddress(SDValue Callee);
4617 
4618 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4619                               const TargetMachine &TM) {
4620   // It does not make sense to call callsShareTOCBase() with a caller that
4621   // is PC Relative since PC Relative callers do not have a TOC.
4622 #ifndef NDEBUG
4623   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4624   assert(!STICaller->isUsingPCRelativeCalls() &&
4625          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4626 #endif
4627 
4628   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4629   // don't have enough information to determine if the caller and callee share
4630   // the same  TOC base, so we have to pessimistically assume they don't for
4631   // correctness.
4632   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4633   if (!G)
4634     return false;
4635 
4636   const GlobalValue *GV = G->getGlobal();
4637 
4638   // If the callee is preemptable, then the static linker will use a plt-stub
4639   // which saves the toc to the stack, and needs a nop after the call
4640   // instruction to convert to a toc-restore.
4641   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4642     return false;
4643 
4644   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4645   // We may need a TOC restore in the situation where the caller requires a
4646   // valid TOC but the callee is PC Relative and does not.
4647   const Function *F = dyn_cast<Function>(GV);
4648   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4649 
4650   // If we have an Alias we can try to get the function from there.
4651   if (Alias) {
4652     const GlobalObject *GlobalObj = Alias->getBaseObject();
4653     F = dyn_cast<Function>(GlobalObj);
4654   }
4655 
4656   // If we still have no valid function pointer we do not have enough
4657   // information to determine if the callee uses PC Relative calls so we must
4658   // assume that it does.
4659   if (!F)
4660     return false;
4661 
4662   // If the callee uses PC Relative we cannot guarantee that the callee won't
4663   // clobber the TOC of the caller and so we must assume that the two
4664   // functions do not share a TOC base.
4665   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4666   if (STICallee->isUsingPCRelativeCalls())
4667     return false;
4668 
4669   // If the GV is not a strong definition then we need to assume it can be
4670   // replaced by another function at link time. The function that replaces
4671   // it may not share the same TOC as the caller since the callee may be
4672   // replaced by a PC Relative version of the same function.
4673   if (!GV->isStrongDefinitionForLinker())
4674     return false;
4675 
4676   // The medium and large code models are expected to provide a sufficiently
4677   // large TOC to provide all data addressing needs of a module with a
4678   // single TOC.
4679   if (CodeModel::Medium == TM.getCodeModel() ||
4680       CodeModel::Large == TM.getCodeModel())
4681     return true;
4682 
4683   // Any explicitly-specified sections and section prefixes must also match.
4684   // Also, if we're using -ffunction-sections, then each function is always in
4685   // a different section (the same is true for COMDAT functions).
4686   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4687       GV->getSection() != Caller->getSection())
4688     return false;
4689   if (const auto *F = dyn_cast<Function>(GV)) {
4690     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4691       return false;
4692   }
4693 
4694   return true;
4695 }
4696 
4697 static bool
4698 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4699                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4700   assert(Subtarget.is64BitELFABI());
4701 
4702   const unsigned PtrByteSize = 8;
4703   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4704 
4705   static const MCPhysReg GPR[] = {
4706     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4707     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4708   };
4709   static const MCPhysReg VR[] = {
4710     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4711     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4712   };
4713 
4714   const unsigned NumGPRs = array_lengthof(GPR);
4715   const unsigned NumFPRs = 13;
4716   const unsigned NumVRs = array_lengthof(VR);
4717   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4718 
4719   unsigned NumBytes = LinkageSize;
4720   unsigned AvailableFPRs = NumFPRs;
4721   unsigned AvailableVRs = NumVRs;
4722 
4723   for (const ISD::OutputArg& Param : Outs) {
4724     if (Param.Flags.isNest()) continue;
4725 
4726     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4727                                LinkageSize, ParamAreaSize, NumBytes,
4728                                AvailableFPRs, AvailableVRs))
4729       return true;
4730   }
4731   return false;
4732 }
4733 
4734 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4735   if (CB.arg_size() != CallerFn->arg_size())
4736     return false;
4737 
4738   auto CalleeArgIter = CB.arg_begin();
4739   auto CalleeArgEnd = CB.arg_end();
4740   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4741 
4742   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4743     const Value* CalleeArg = *CalleeArgIter;
4744     const Value* CallerArg = &(*CallerArgIter);
4745     if (CalleeArg == CallerArg)
4746       continue;
4747 
4748     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4749     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4750     //      }
4751     // 1st argument of callee is undef and has the same type as caller.
4752     if (CalleeArg->getType() == CallerArg->getType() &&
4753         isa<UndefValue>(CalleeArg))
4754       continue;
4755 
4756     return false;
4757   }
4758 
4759   return true;
4760 }
4761 
4762 // Returns true if TCO is possible between the callers and callees
4763 // calling conventions.
4764 static bool
4765 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4766                                     CallingConv::ID CalleeCC) {
4767   // Tail calls are possible with fastcc and ccc.
4768   auto isTailCallableCC  = [] (CallingConv::ID CC){
4769       return  CC == CallingConv::C || CC == CallingConv::Fast;
4770   };
4771   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4772     return false;
4773 
4774   // We can safely tail call both fastcc and ccc callees from a c calling
4775   // convention caller. If the caller is fastcc, we may have less stack space
4776   // than a non-fastcc caller with the same signature so disable tail-calls in
4777   // that case.
4778   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4779 }
4780 
4781 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4782     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4783     const SmallVectorImpl<ISD::OutputArg> &Outs,
4784     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4785   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4786 
4787   if (DisableSCO && !TailCallOpt) return false;
4788 
4789   // Variadic argument functions are not supported.
4790   if (isVarArg) return false;
4791 
4792   auto &Caller = DAG.getMachineFunction().getFunction();
4793   // Check that the calling conventions are compatible for tco.
4794   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4795     return false;
4796 
4797   // Caller contains any byval parameter is not supported.
4798   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4799     return false;
4800 
4801   // Callee contains any byval parameter is not supported, too.
4802   // Note: This is a quick work around, because in some cases, e.g.
4803   // caller's stack size > callee's stack size, we are still able to apply
4804   // sibling call optimization. For example, gcc is able to do SCO for caller1
4805   // in the following example, but not for caller2.
4806   //   struct test {
4807   //     long int a;
4808   //     char ary[56];
4809   //   } gTest;
4810   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4811   //     b->a = v.a;
4812   //     return 0;
4813   //   }
4814   //   void caller1(struct test a, struct test c, struct test *b) {
4815   //     callee(gTest, b); }
4816   //   void caller2(struct test *b) { callee(gTest, b); }
4817   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4818     return false;
4819 
4820   // If callee and caller use different calling conventions, we cannot pass
4821   // parameters on stack since offsets for the parameter area may be different.
4822   if (Caller.getCallingConv() != CalleeCC &&
4823       needStackSlotPassParameters(Subtarget, Outs))
4824     return false;
4825 
4826   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4827   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4828   // callee potentially have different TOC bases then we cannot tail call since
4829   // we need to restore the TOC pointer after the call.
4830   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4831   // We cannot guarantee this for indirect calls or calls to external functions.
4832   // When PC-Relative addressing is used, the concept of the TOC is no longer
4833   // applicable so this check is not required.
4834   // Check first for indirect calls.
4835   if (!Subtarget.isUsingPCRelativeCalls() &&
4836       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4837     return false;
4838 
4839   // Check if we share the TOC base.
4840   if (!Subtarget.isUsingPCRelativeCalls() &&
4841       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4842     return false;
4843 
4844   // TCO allows altering callee ABI, so we don't have to check further.
4845   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4846     return true;
4847 
4848   if (DisableSCO) return false;
4849 
4850   // If callee use the same argument list that caller is using, then we can
4851   // apply SCO on this case. If it is not, then we need to check if callee needs
4852   // stack for passing arguments.
4853   // PC Relative tail calls may not have a CallBase.
4854   // If there is no CallBase we cannot verify if we have the same argument
4855   // list so assume that we don't have the same argument list.
4856   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4857       needStackSlotPassParameters(Subtarget, Outs))
4858     return false;
4859   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4860     return false;
4861 
4862   return true;
4863 }
4864 
4865 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4866 /// for tail call optimization. Targets which want to do tail call
4867 /// optimization should implement this function.
4868 bool
4869 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4870                                                      CallingConv::ID CalleeCC,
4871                                                      bool isVarArg,
4872                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4873                                                      SelectionDAG& DAG) const {
4874   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4875     return false;
4876 
4877   // Variable argument functions are not supported.
4878   if (isVarArg)
4879     return false;
4880 
4881   MachineFunction &MF = DAG.getMachineFunction();
4882   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4883   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4884     // Functions containing by val parameters are not supported.
4885     for (unsigned i = 0; i != Ins.size(); i++) {
4886        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4887        if (Flags.isByVal()) return false;
4888     }
4889 
4890     // Non-PIC/GOT tail calls are supported.
4891     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4892       return true;
4893 
4894     // At the moment we can only do local tail calls (in same module, hidden
4895     // or protected) if we are generating PIC.
4896     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4897       return G->getGlobal()->hasHiddenVisibility()
4898           || G->getGlobal()->hasProtectedVisibility();
4899   }
4900 
4901   return false;
4902 }
4903 
4904 /// isCallCompatibleAddress - Return the immediate to use if the specified
4905 /// 32-bit value is representable in the immediate field of a BxA instruction.
4906 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4907   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4908   if (!C) return nullptr;
4909 
4910   int Addr = C->getZExtValue();
4911   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4912       SignExtend32<26>(Addr) != Addr)
4913     return nullptr;  // Top 6 bits have to be sext of immediate.
4914 
4915   return DAG
4916       .getConstant(
4917           (int)C->getZExtValue() >> 2, SDLoc(Op),
4918           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4919       .getNode();
4920 }
4921 
4922 namespace {
4923 
4924 struct TailCallArgumentInfo {
4925   SDValue Arg;
4926   SDValue FrameIdxOp;
4927   int FrameIdx = 0;
4928 
4929   TailCallArgumentInfo() = default;
4930 };
4931 
4932 } // end anonymous namespace
4933 
4934 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4935 static void StoreTailCallArgumentsToStackSlot(
4936     SelectionDAG &DAG, SDValue Chain,
4937     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4938     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4939   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4940     SDValue Arg = TailCallArgs[i].Arg;
4941     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4942     int FI = TailCallArgs[i].FrameIdx;
4943     // Store relative to framepointer.
4944     MemOpChains.push_back(DAG.getStore(
4945         Chain, dl, Arg, FIN,
4946         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4947   }
4948 }
4949 
4950 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4951 /// the appropriate stack slot for the tail call optimized function call.
4952 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4953                                              SDValue OldRetAddr, SDValue OldFP,
4954                                              int SPDiff, const SDLoc &dl) {
4955   if (SPDiff) {
4956     // Calculate the new stack slot for the return address.
4957     MachineFunction &MF = DAG.getMachineFunction();
4958     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4959     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4960     bool isPPC64 = Subtarget.isPPC64();
4961     int SlotSize = isPPC64 ? 8 : 4;
4962     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4963     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4964                                                          NewRetAddrLoc, true);
4965     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4966     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4967     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4968                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4969   }
4970   return Chain;
4971 }
4972 
4973 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4974 /// the position of the argument.
4975 static void
4976 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4977                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4978                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4979   int Offset = ArgOffset + SPDiff;
4980   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4981   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4982   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4983   SDValue FIN = DAG.getFrameIndex(FI, VT);
4984   TailCallArgumentInfo Info;
4985   Info.Arg = Arg;
4986   Info.FrameIdxOp = FIN;
4987   Info.FrameIdx = FI;
4988   TailCallArguments.push_back(Info);
4989 }
4990 
4991 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4992 /// stack slot. Returns the chain as result and the loaded frame pointers in
4993 /// LROpOut/FPOpout. Used when tail calling.
4994 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4995     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4996     SDValue &FPOpOut, const SDLoc &dl) const {
4997   if (SPDiff) {
4998     // Load the LR and FP stack slot for later adjusting.
4999     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5000     LROpOut = getReturnAddrFrameIndex(DAG);
5001     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5002     Chain = SDValue(LROpOut.getNode(), 1);
5003   }
5004   return Chain;
5005 }
5006 
5007 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5008 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5009 /// specified by the specific parameter attribute. The copy will be passed as
5010 /// a byval function parameter.
5011 /// Sometimes what we are copying is the end of a larger object, the part that
5012 /// does not fit in registers.
5013 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5014                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5015                                          SelectionDAG &DAG, const SDLoc &dl) {
5016   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5017   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5018                        Flags.getNonZeroByValAlign(), false, false, false,
5019                        MachinePointerInfo(), MachinePointerInfo());
5020 }
5021 
5022 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5023 /// tail calls.
5024 static void LowerMemOpCallTo(
5025     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5026     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5027     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5028     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5029   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5030   if (!isTailCall) {
5031     if (isVector) {
5032       SDValue StackPtr;
5033       if (isPPC64)
5034         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5035       else
5036         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5037       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5038                            DAG.getConstant(ArgOffset, dl, PtrVT));
5039     }
5040     MemOpChains.push_back(
5041         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5042     // Calculate and remember argument location.
5043   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5044                                   TailCallArguments);
5045 }
5046 
5047 static void
5048 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5049                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5050                 SDValue FPOp,
5051                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5052   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5053   // might overwrite each other in case of tail call optimization.
5054   SmallVector<SDValue, 8> MemOpChains2;
5055   // Do not flag preceding copytoreg stuff together with the following stuff.
5056   InFlag = SDValue();
5057   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5058                                     MemOpChains2, dl);
5059   if (!MemOpChains2.empty())
5060     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5061 
5062   // Store the return address to the appropriate stack slot.
5063   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5064 
5065   // Emit callseq_end just before tailcall node.
5066   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5067                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5068   InFlag = Chain.getValue(1);
5069 }
5070 
5071 // Is this global address that of a function that can be called by name? (as
5072 // opposed to something that must hold a descriptor for an indirect call).
5073 static bool isFunctionGlobalAddress(SDValue Callee) {
5074   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5075     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5076         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5077       return false;
5078 
5079     return G->getGlobal()->getValueType()->isFunctionTy();
5080   }
5081 
5082   return false;
5083 }
5084 
5085 SDValue PPCTargetLowering::LowerCallResult(
5086     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5087     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5088     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5089   SmallVector<CCValAssign, 16> RVLocs;
5090   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5091                     *DAG.getContext());
5092 
5093   CCRetInfo.AnalyzeCallResult(
5094       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5095                ? RetCC_PPC_Cold
5096                : RetCC_PPC);
5097 
5098   // Copy all of the result registers out of their specified physreg.
5099   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5100     CCValAssign &VA = RVLocs[i];
5101     assert(VA.isRegLoc() && "Can only return in registers!");
5102 
5103     SDValue Val;
5104 
5105     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5106       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5107                                       InFlag);
5108       Chain = Lo.getValue(1);
5109       InFlag = Lo.getValue(2);
5110       VA = RVLocs[++i]; // skip ahead to next loc
5111       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5112                                       InFlag);
5113       Chain = Hi.getValue(1);
5114       InFlag = Hi.getValue(2);
5115       if (!Subtarget.isLittleEndian())
5116         std::swap (Lo, Hi);
5117       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5118     } else {
5119       Val = DAG.getCopyFromReg(Chain, dl,
5120                                VA.getLocReg(), VA.getLocVT(), InFlag);
5121       Chain = Val.getValue(1);
5122       InFlag = Val.getValue(2);
5123     }
5124 
5125     switch (VA.getLocInfo()) {
5126     default: llvm_unreachable("Unknown loc info!");
5127     case CCValAssign::Full: break;
5128     case CCValAssign::AExt:
5129       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5130       break;
5131     case CCValAssign::ZExt:
5132       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5133                         DAG.getValueType(VA.getValVT()));
5134       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5135       break;
5136     case CCValAssign::SExt:
5137       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5138                         DAG.getValueType(VA.getValVT()));
5139       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5140       break;
5141     }
5142 
5143     InVals.push_back(Val);
5144   }
5145 
5146   return Chain;
5147 }
5148 
5149 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5150                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5151   // PatchPoint calls are not indirect.
5152   if (isPatchPoint)
5153     return false;
5154 
5155   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5156     return false;
5157 
5158   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5159   // becuase the immediate function pointer points to a descriptor instead of
5160   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5161   // pointer immediate points to the global entry point, while the BLA would
5162   // need to jump to the local entry point (see rL211174).
5163   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5164       isBLACompatibleAddress(Callee, DAG))
5165     return false;
5166 
5167   return true;
5168 }
5169 
5170 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5171 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5172   return Subtarget.isAIXABI() ||
5173          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5174 }
5175 
5176 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5177                               const Function &Caller,
5178                               const SDValue &Callee,
5179                               const PPCSubtarget &Subtarget,
5180                               const TargetMachine &TM) {
5181   if (CFlags.IsTailCall)
5182     return PPCISD::TC_RETURN;
5183 
5184   // This is a call through a function pointer.
5185   if (CFlags.IsIndirect) {
5186     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5187     // indirect calls. The save of the caller's TOC pointer to the stack will be
5188     // inserted into the DAG as part of call lowering. The restore of the TOC
5189     // pointer is modeled by using a pseudo instruction for the call opcode that
5190     // represents the 2 instruction sequence of an indirect branch and link,
5191     // immediately followed by a load of the TOC pointer from the the stack save
5192     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5193     // as it is not saved or used.
5194     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5195                                                : PPCISD::BCTRL;
5196   }
5197 
5198   if (Subtarget.isUsingPCRelativeCalls()) {
5199     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5200     return PPCISD::CALL_NOTOC;
5201   }
5202 
5203   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5204   // immediately following the call instruction if the caller and callee may
5205   // have different TOC bases. At link time if the linker determines the calls
5206   // may not share a TOC base, the call is redirected to a trampoline inserted
5207   // by the linker. The trampoline will (among other things) save the callers
5208   // TOC pointer at an ABI designated offset in the linkage area and the linker
5209   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5210   // into gpr2.
5211   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5212     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5213                                                   : PPCISD::CALL_NOP;
5214 
5215   return PPCISD::CALL;
5216 }
5217 
5218 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5219                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5220   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5221     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5222       return SDValue(Dest, 0);
5223 
5224   // Returns true if the callee is local, and false otherwise.
5225   auto isLocalCallee = [&]() {
5226     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5227     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5228     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5229 
5230     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5231            !dyn_cast_or_null<GlobalIFunc>(GV);
5232   };
5233 
5234   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5235   // a static relocation model causes some versions of GNU LD (2.17.50, at
5236   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5237   // built with secure-PLT.
5238   bool UsePlt =
5239       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5240       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5241 
5242   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5243     const TargetMachine &TM = Subtarget.getTargetMachine();
5244     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5245     MCSymbolXCOFF *S =
5246         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5247 
5248     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5249     return DAG.getMCSymbol(S, PtrVT);
5250   };
5251 
5252   if (isFunctionGlobalAddress(Callee)) {
5253     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5254 
5255     if (Subtarget.isAIXABI()) {
5256       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5257       return getAIXFuncEntryPointSymbolSDNode(GV);
5258     }
5259     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5260                                       UsePlt ? PPCII::MO_PLT : 0);
5261   }
5262 
5263   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5264     const char *SymName = S->getSymbol();
5265     if (Subtarget.isAIXABI()) {
5266       // If there exists a user-declared function whose name is the same as the
5267       // ExternalSymbol's, then we pick up the user-declared version.
5268       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5269       if (const Function *F =
5270               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5271         return getAIXFuncEntryPointSymbolSDNode(F);
5272 
5273       // On AIX, direct function calls reference the symbol for the function's
5274       // entry point, which is named by prepending a "." before the function's
5275       // C-linkage name. A Qualname is returned here because an external
5276       // function entry point is a csect with XTY_ER property.
5277       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5278         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5279         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5280             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5281             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5282         return Sec->getQualNameSymbol();
5283       };
5284 
5285       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5286     }
5287     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5288                                        UsePlt ? PPCII::MO_PLT : 0);
5289   }
5290 
5291   // No transformation needed.
5292   assert(Callee.getNode() && "What no callee?");
5293   return Callee;
5294 }
5295 
5296 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5297   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5298          "Expected a CALLSEQ_STARTSDNode.");
5299 
5300   // The last operand is the chain, except when the node has glue. If the node
5301   // has glue, then the last operand is the glue, and the chain is the second
5302   // last operand.
5303   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5304   if (LastValue.getValueType() != MVT::Glue)
5305     return LastValue;
5306 
5307   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5308 }
5309 
5310 // Creates the node that moves a functions address into the count register
5311 // to prepare for an indirect call instruction.
5312 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5313                                 SDValue &Glue, SDValue &Chain,
5314                                 const SDLoc &dl) {
5315   SDValue MTCTROps[] = {Chain, Callee, Glue};
5316   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5317   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5318                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5319   // The glue is the second value produced.
5320   Glue = Chain.getValue(1);
5321 }
5322 
5323 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5324                                           SDValue &Glue, SDValue &Chain,
5325                                           SDValue CallSeqStart,
5326                                           const CallBase *CB, const SDLoc &dl,
5327                                           bool hasNest,
5328                                           const PPCSubtarget &Subtarget) {
5329   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5330   // entry point, but to the function descriptor (the function entry point
5331   // address is part of the function descriptor though).
5332   // The function descriptor is a three doubleword structure with the
5333   // following fields: function entry point, TOC base address and
5334   // environment pointer.
5335   // Thus for a call through a function pointer, the following actions need
5336   // to be performed:
5337   //   1. Save the TOC of the caller in the TOC save area of its stack
5338   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5339   //   2. Load the address of the function entry point from the function
5340   //      descriptor.
5341   //   3. Load the TOC of the callee from the function descriptor into r2.
5342   //   4. Load the environment pointer from the function descriptor into
5343   //      r11.
5344   //   5. Branch to the function entry point address.
5345   //   6. On return of the callee, the TOC of the caller needs to be
5346   //      restored (this is done in FinishCall()).
5347   //
5348   // The loads are scheduled at the beginning of the call sequence, and the
5349   // register copies are flagged together to ensure that no other
5350   // operations can be scheduled in between. E.g. without flagging the
5351   // copies together, a TOC access in the caller could be scheduled between
5352   // the assignment of the callee TOC and the branch to the callee, which leads
5353   // to incorrect code.
5354 
5355   // Start by loading the function address from the descriptor.
5356   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5357   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5358                       ? (MachineMemOperand::MODereferenceable |
5359                          MachineMemOperand::MOInvariant)
5360                       : MachineMemOperand::MONone;
5361 
5362   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5363 
5364   // Registers used in building the DAG.
5365   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5366   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5367 
5368   // Offsets of descriptor members.
5369   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5370   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5371 
5372   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5373   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5374 
5375   // One load for the functions entry point address.
5376   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5377                                     Alignment, MMOFlags);
5378 
5379   // One for loading the TOC anchor for the module that contains the called
5380   // function.
5381   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5382   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5383   SDValue TOCPtr =
5384       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5385                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5386 
5387   // One for loading the environment pointer.
5388   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5389   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5390   SDValue LoadEnvPtr =
5391       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5392                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5393 
5394 
5395   // Then copy the newly loaded TOC anchor to the TOC pointer.
5396   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5397   Chain = TOCVal.getValue(0);
5398   Glue = TOCVal.getValue(1);
5399 
5400   // If the function call has an explicit 'nest' parameter, it takes the
5401   // place of the environment pointer.
5402   assert((!hasNest || !Subtarget.isAIXABI()) &&
5403          "Nest parameter is not supported on AIX.");
5404   if (!hasNest) {
5405     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5406     Chain = EnvVal.getValue(0);
5407     Glue = EnvVal.getValue(1);
5408   }
5409 
5410   // The rest of the indirect call sequence is the same as the non-descriptor
5411   // DAG.
5412   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5413 }
5414 
5415 static void
5416 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5417                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5418                   SelectionDAG &DAG,
5419                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5420                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5421                   const PPCSubtarget &Subtarget) {
5422   const bool IsPPC64 = Subtarget.isPPC64();
5423   // MVT for a general purpose register.
5424   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5425 
5426   // First operand is always the chain.
5427   Ops.push_back(Chain);
5428 
5429   // If it's a direct call pass the callee as the second operand.
5430   if (!CFlags.IsIndirect)
5431     Ops.push_back(Callee);
5432   else {
5433     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5434 
5435     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5436     // on the stack (this would have been done in `LowerCall_64SVR4` or
5437     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5438     // represents both the indirect branch and a load that restores the TOC
5439     // pointer from the linkage area. The operand for the TOC restore is an add
5440     // of the TOC save offset to the stack pointer. This must be the second
5441     // operand: after the chain input but before any other variadic arguments.
5442     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5443     // saved or used.
5444     if (isTOCSaveRestoreRequired(Subtarget)) {
5445       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5446 
5447       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5448       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5449       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5450       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5451       Ops.push_back(AddTOC);
5452     }
5453 
5454     // Add the register used for the environment pointer.
5455     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5456       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5457                                     RegVT));
5458 
5459 
5460     // Add CTR register as callee so a bctr can be emitted later.
5461     if (CFlags.IsTailCall)
5462       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5463   }
5464 
5465   // If this is a tail call add stack pointer delta.
5466   if (CFlags.IsTailCall)
5467     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5468 
5469   // Add argument registers to the end of the list so that they are known live
5470   // into the call.
5471   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5472     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5473                                   RegsToPass[i].second.getValueType()));
5474 
5475   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5476   // no way to mark dependencies as implicit here.
5477   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5478   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5479        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5480     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5481 
5482   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5483   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5484     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5485 
5486   // Add a register mask operand representing the call-preserved registers.
5487   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5488   const uint32_t *Mask =
5489       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5490   assert(Mask && "Missing call preserved mask for calling convention");
5491   Ops.push_back(DAG.getRegisterMask(Mask));
5492 
5493   // If the glue is valid, it is the last operand.
5494   if (Glue.getNode())
5495     Ops.push_back(Glue);
5496 }
5497 
5498 SDValue PPCTargetLowering::FinishCall(
5499     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5500     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5501     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5502     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5503     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5504 
5505   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5506       Subtarget.isAIXABI())
5507     setUsesTOCBasePtr(DAG);
5508 
5509   unsigned CallOpc =
5510       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5511                     Subtarget, DAG.getTarget());
5512 
5513   if (!CFlags.IsIndirect)
5514     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5515   else if (Subtarget.usesFunctionDescriptors())
5516     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5517                                   dl, CFlags.HasNest, Subtarget);
5518   else
5519     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5520 
5521   // Build the operand list for the call instruction.
5522   SmallVector<SDValue, 8> Ops;
5523   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5524                     SPDiff, Subtarget);
5525 
5526   // Emit tail call.
5527   if (CFlags.IsTailCall) {
5528     // Indirect tail call when using PC Relative calls do not have the same
5529     // constraints.
5530     assert(((Callee.getOpcode() == ISD::Register &&
5531              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5532             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5533             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5534             isa<ConstantSDNode>(Callee) ||
5535             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5536            "Expecting a global address, external symbol, absolute value, "
5537            "register or an indirect tail call when PC Relative calls are "
5538            "used.");
5539     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5540     assert(CallOpc == PPCISD::TC_RETURN &&
5541            "Unexpected call opcode for a tail call.");
5542     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5543     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5544   }
5545 
5546   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5547   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5548   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5549   Glue = Chain.getValue(1);
5550 
5551   // When performing tail call optimization the callee pops its arguments off
5552   // the stack. Account for this here so these bytes can be pushed back on in
5553   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5554   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5555                          getTargetMachine().Options.GuaranteedTailCallOpt)
5556                             ? NumBytes
5557                             : 0;
5558 
5559   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5560                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5561                              Glue, dl);
5562   Glue = Chain.getValue(1);
5563 
5564   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5565                          DAG, InVals);
5566 }
5567 
5568 SDValue
5569 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5570                              SmallVectorImpl<SDValue> &InVals) const {
5571   SelectionDAG &DAG                     = CLI.DAG;
5572   SDLoc &dl                             = CLI.DL;
5573   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5574   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5575   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5576   SDValue Chain                         = CLI.Chain;
5577   SDValue Callee                        = CLI.Callee;
5578   bool &isTailCall                      = CLI.IsTailCall;
5579   CallingConv::ID CallConv              = CLI.CallConv;
5580   bool isVarArg                         = CLI.IsVarArg;
5581   bool isPatchPoint                     = CLI.IsPatchPoint;
5582   const CallBase *CB                    = CLI.CB;
5583 
5584   if (isTailCall) {
5585     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5586       isTailCall = false;
5587     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5588       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5589           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5590     else
5591       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5592                                                      Ins, DAG);
5593     if (isTailCall) {
5594       ++NumTailCalls;
5595       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5596         ++NumSiblingCalls;
5597 
5598       // PC Relative calls no longer guarantee that the callee is a Global
5599       // Address Node. The callee could be an indirect tail call in which
5600       // case the SDValue for the callee could be a load (to load the address
5601       // of a function pointer) or it may be a register copy (to move the
5602       // address of the callee from a function parameter into a virtual
5603       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5604       assert((Subtarget.isUsingPCRelativeCalls() ||
5605               isa<GlobalAddressSDNode>(Callee)) &&
5606              "Callee should be an llvm::Function object.");
5607 
5608       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5609                         << "\nTCO callee: ");
5610       LLVM_DEBUG(Callee.dump());
5611     }
5612   }
5613 
5614   if (!isTailCall && CB && CB->isMustTailCall())
5615     report_fatal_error("failed to perform tail call elimination on a call "
5616                        "site marked musttail");
5617 
5618   // When long calls (i.e. indirect calls) are always used, calls are always
5619   // made via function pointer. If we have a function name, first translate it
5620   // into a pointer.
5621   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5622       !isTailCall)
5623     Callee = LowerGlobalAddress(Callee, DAG);
5624 
5625   CallFlags CFlags(
5626       CallConv, isTailCall, isVarArg, isPatchPoint,
5627       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5628       // hasNest
5629       Subtarget.is64BitELFABI() &&
5630           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5631       CLI.NoMerge);
5632 
5633   if (Subtarget.isAIXABI())
5634     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5635                          InVals, CB);
5636 
5637   assert(Subtarget.isSVR4ABI());
5638   if (Subtarget.isPPC64())
5639     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5640                             InVals, CB);
5641   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5642                           InVals, CB);
5643 }
5644 
5645 SDValue PPCTargetLowering::LowerCall_32SVR4(
5646     SDValue Chain, SDValue Callee, CallFlags CFlags,
5647     const SmallVectorImpl<ISD::OutputArg> &Outs,
5648     const SmallVectorImpl<SDValue> &OutVals,
5649     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5650     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5651     const CallBase *CB) const {
5652   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5653   // of the 32-bit SVR4 ABI stack frame layout.
5654 
5655   const CallingConv::ID CallConv = CFlags.CallConv;
5656   const bool IsVarArg = CFlags.IsVarArg;
5657   const bool IsTailCall = CFlags.IsTailCall;
5658 
5659   assert((CallConv == CallingConv::C ||
5660           CallConv == CallingConv::Cold ||
5661           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5662 
5663   const Align PtrAlign(4);
5664 
5665   MachineFunction &MF = DAG.getMachineFunction();
5666 
5667   // Mark this function as potentially containing a function that contains a
5668   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5669   // and restoring the callers stack pointer in this functions epilog. This is
5670   // done because by tail calling the called function might overwrite the value
5671   // in this function's (MF) stack pointer stack slot 0(SP).
5672   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5673       CallConv == CallingConv::Fast)
5674     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5675 
5676   // Count how many bytes are to be pushed on the stack, including the linkage
5677   // area, parameter list area and the part of the local variable space which
5678   // contains copies of aggregates which are passed by value.
5679 
5680   // Assign locations to all of the outgoing arguments.
5681   SmallVector<CCValAssign, 16> ArgLocs;
5682   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5683 
5684   // Reserve space for the linkage area on the stack.
5685   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5686                        PtrAlign);
5687   if (useSoftFloat())
5688     CCInfo.PreAnalyzeCallOperands(Outs);
5689 
5690   if (IsVarArg) {
5691     // Handle fixed and variable vector arguments differently.
5692     // Fixed vector arguments go into registers as long as registers are
5693     // available. Variable vector arguments always go into memory.
5694     unsigned NumArgs = Outs.size();
5695 
5696     for (unsigned i = 0; i != NumArgs; ++i) {
5697       MVT ArgVT = Outs[i].VT;
5698       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5699       bool Result;
5700 
5701       if (Outs[i].IsFixed) {
5702         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5703                                CCInfo);
5704       } else {
5705         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5706                                       ArgFlags, CCInfo);
5707       }
5708 
5709       if (Result) {
5710 #ifndef NDEBUG
5711         errs() << "Call operand #" << i << " has unhandled type "
5712              << EVT(ArgVT).getEVTString() << "\n";
5713 #endif
5714         llvm_unreachable(nullptr);
5715       }
5716     }
5717   } else {
5718     // All arguments are treated the same.
5719     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5720   }
5721   CCInfo.clearWasPPCF128();
5722 
5723   // Assign locations to all of the outgoing aggregate by value arguments.
5724   SmallVector<CCValAssign, 16> ByValArgLocs;
5725   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5726 
5727   // Reserve stack space for the allocations in CCInfo.
5728   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5729 
5730   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5731 
5732   // Size of the linkage area, parameter list area and the part of the local
5733   // space variable where copies of aggregates which are passed by value are
5734   // stored.
5735   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5736 
5737   // Calculate by how many bytes the stack has to be adjusted in case of tail
5738   // call optimization.
5739   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5740 
5741   // Adjust the stack pointer for the new arguments...
5742   // These operations are automatically eliminated by the prolog/epilog pass
5743   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5744   SDValue CallSeqStart = Chain;
5745 
5746   // Load the return address and frame pointer so it can be moved somewhere else
5747   // later.
5748   SDValue LROp, FPOp;
5749   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5750 
5751   // Set up a copy of the stack pointer for use loading and storing any
5752   // arguments that may not fit in the registers available for argument
5753   // passing.
5754   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5755 
5756   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5757   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5758   SmallVector<SDValue, 8> MemOpChains;
5759 
5760   bool seenFloatArg = false;
5761   // Walk the register/memloc assignments, inserting copies/loads.
5762   // i - Tracks the index into the list of registers allocated for the call
5763   // RealArgIdx - Tracks the index into the list of actual function arguments
5764   // j - Tracks the index into the list of byval arguments
5765   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5766        i != e;
5767        ++i, ++RealArgIdx) {
5768     CCValAssign &VA = ArgLocs[i];
5769     SDValue Arg = OutVals[RealArgIdx];
5770     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5771 
5772     if (Flags.isByVal()) {
5773       // Argument is an aggregate which is passed by value, thus we need to
5774       // create a copy of it in the local variable space of the current stack
5775       // frame (which is the stack frame of the caller) and pass the address of
5776       // this copy to the callee.
5777       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5778       CCValAssign &ByValVA = ByValArgLocs[j++];
5779       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5780 
5781       // Memory reserved in the local variable space of the callers stack frame.
5782       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5783 
5784       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5785       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5786                            StackPtr, PtrOff);
5787 
5788       // Create a copy of the argument in the local area of the current
5789       // stack frame.
5790       SDValue MemcpyCall =
5791         CreateCopyOfByValArgument(Arg, PtrOff,
5792                                   CallSeqStart.getNode()->getOperand(0),
5793                                   Flags, DAG, dl);
5794 
5795       // This must go outside the CALLSEQ_START..END.
5796       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5797                                                      SDLoc(MemcpyCall));
5798       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5799                              NewCallSeqStart.getNode());
5800       Chain = CallSeqStart = NewCallSeqStart;
5801 
5802       // Pass the address of the aggregate copy on the stack either in a
5803       // physical register or in the parameter list area of the current stack
5804       // frame to the callee.
5805       Arg = PtrOff;
5806     }
5807 
5808     // When useCRBits() is true, there can be i1 arguments.
5809     // It is because getRegisterType(MVT::i1) => MVT::i1,
5810     // and for other integer types getRegisterType() => MVT::i32.
5811     // Extend i1 and ensure callee will get i32.
5812     if (Arg.getValueType() == MVT::i1)
5813       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5814                         dl, MVT::i32, Arg);
5815 
5816     if (VA.isRegLoc()) {
5817       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5818       // Put argument in a physical register.
5819       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5820         bool IsLE = Subtarget.isLittleEndian();
5821         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5822                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5823         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5824         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5825                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5826         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5827                              SVal.getValue(0)));
5828       } else
5829         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5830     } else {
5831       // Put argument in the parameter list area of the current stack frame.
5832       assert(VA.isMemLoc());
5833       unsigned LocMemOffset = VA.getLocMemOffset();
5834 
5835       if (!IsTailCall) {
5836         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5837         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5838                              StackPtr, PtrOff);
5839 
5840         MemOpChains.push_back(
5841             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5842       } else {
5843         // Calculate and remember argument location.
5844         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5845                                  TailCallArguments);
5846       }
5847     }
5848   }
5849 
5850   if (!MemOpChains.empty())
5851     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5852 
5853   // Build a sequence of copy-to-reg nodes chained together with token chain
5854   // and flag operands which copy the outgoing args into the appropriate regs.
5855   SDValue InFlag;
5856   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5857     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5858                              RegsToPass[i].second, InFlag);
5859     InFlag = Chain.getValue(1);
5860   }
5861 
5862   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5863   // registers.
5864   if (IsVarArg) {
5865     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5866     SDValue Ops[] = { Chain, InFlag };
5867 
5868     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5869                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5870 
5871     InFlag = Chain.getValue(1);
5872   }
5873 
5874   if (IsTailCall)
5875     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5876                     TailCallArguments);
5877 
5878   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5879                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5880 }
5881 
5882 // Copy an argument into memory, being careful to do this outside the
5883 // call sequence for the call to which the argument belongs.
5884 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5885     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5886     SelectionDAG &DAG, const SDLoc &dl) const {
5887   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5888                         CallSeqStart.getNode()->getOperand(0),
5889                         Flags, DAG, dl);
5890   // The MEMCPY must go outside the CALLSEQ_START..END.
5891   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5892   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5893                                                  SDLoc(MemcpyCall));
5894   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5895                          NewCallSeqStart.getNode());
5896   return NewCallSeqStart;
5897 }
5898 
5899 SDValue PPCTargetLowering::LowerCall_64SVR4(
5900     SDValue Chain, SDValue Callee, CallFlags CFlags,
5901     const SmallVectorImpl<ISD::OutputArg> &Outs,
5902     const SmallVectorImpl<SDValue> &OutVals,
5903     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5904     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5905     const CallBase *CB) const {
5906   bool isELFv2ABI = Subtarget.isELFv2ABI();
5907   bool isLittleEndian = Subtarget.isLittleEndian();
5908   unsigned NumOps = Outs.size();
5909   bool IsSibCall = false;
5910   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5911 
5912   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5913   unsigned PtrByteSize = 8;
5914 
5915   MachineFunction &MF = DAG.getMachineFunction();
5916 
5917   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5918     IsSibCall = true;
5919 
5920   // Mark this function as potentially containing a function that contains a
5921   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5922   // and restoring the callers stack pointer in this functions epilog. This is
5923   // done because by tail calling the called function might overwrite the value
5924   // in this function's (MF) stack pointer stack slot 0(SP).
5925   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5926     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5927 
5928   assert(!(IsFastCall && CFlags.IsVarArg) &&
5929          "fastcc not supported on varargs functions");
5930 
5931   // Count how many bytes are to be pushed on the stack, including the linkage
5932   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5933   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5934   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5935   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5936   unsigned NumBytes = LinkageSize;
5937   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5938 
5939   static const MCPhysReg GPR[] = {
5940     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5941     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5942   };
5943   static const MCPhysReg VR[] = {
5944     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5945     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5946   };
5947 
5948   const unsigned NumGPRs = array_lengthof(GPR);
5949   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5950   const unsigned NumVRs  = array_lengthof(VR);
5951 
5952   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5953   // can be passed to the callee in registers.
5954   // For the fast calling convention, there is another check below.
5955   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5956   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5957   if (!HasParameterArea) {
5958     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5959     unsigned AvailableFPRs = NumFPRs;
5960     unsigned AvailableVRs = NumVRs;
5961     unsigned NumBytesTmp = NumBytes;
5962     for (unsigned i = 0; i != NumOps; ++i) {
5963       if (Outs[i].Flags.isNest()) continue;
5964       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5965                                  PtrByteSize, LinkageSize, ParamAreaSize,
5966                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5967         HasParameterArea = true;
5968     }
5969   }
5970 
5971   // When using the fast calling convention, we don't provide backing for
5972   // arguments that will be in registers.
5973   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5974 
5975   // Avoid allocating parameter area for fastcc functions if all the arguments
5976   // can be passed in the registers.
5977   if (IsFastCall)
5978     HasParameterArea = false;
5979 
5980   // Add up all the space actually used.
5981   for (unsigned i = 0; i != NumOps; ++i) {
5982     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5983     EVT ArgVT = Outs[i].VT;
5984     EVT OrigVT = Outs[i].ArgVT;
5985 
5986     if (Flags.isNest())
5987       continue;
5988 
5989     if (IsFastCall) {
5990       if (Flags.isByVal()) {
5991         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5992         if (NumGPRsUsed > NumGPRs)
5993           HasParameterArea = true;
5994       } else {
5995         switch (ArgVT.getSimpleVT().SimpleTy) {
5996         default: llvm_unreachable("Unexpected ValueType for argument!");
5997         case MVT::i1:
5998         case MVT::i32:
5999         case MVT::i64:
6000           if (++NumGPRsUsed <= NumGPRs)
6001             continue;
6002           break;
6003         case MVT::v4i32:
6004         case MVT::v8i16:
6005         case MVT::v16i8:
6006         case MVT::v2f64:
6007         case MVT::v2i64:
6008         case MVT::v1i128:
6009         case MVT::f128:
6010           if (++NumVRsUsed <= NumVRs)
6011             continue;
6012           break;
6013         case MVT::v4f32:
6014           if (++NumVRsUsed <= NumVRs)
6015             continue;
6016           break;
6017         case MVT::f32:
6018         case MVT::f64:
6019           if (++NumFPRsUsed <= NumFPRs)
6020             continue;
6021           break;
6022         }
6023         HasParameterArea = true;
6024       }
6025     }
6026 
6027     /* Respect alignment of argument on the stack.  */
6028     auto Alignement =
6029         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6030     NumBytes = alignTo(NumBytes, Alignement);
6031 
6032     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6033     if (Flags.isInConsecutiveRegsLast())
6034       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6035   }
6036 
6037   unsigned NumBytesActuallyUsed = NumBytes;
6038 
6039   // In the old ELFv1 ABI,
6040   // the prolog code of the callee may store up to 8 GPR argument registers to
6041   // the stack, allowing va_start to index over them in memory if its varargs.
6042   // Because we cannot tell if this is needed on the caller side, we have to
6043   // conservatively assume that it is needed.  As such, make sure we have at
6044   // least enough stack space for the caller to store the 8 GPRs.
6045   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6046   // really requires memory operands, e.g. a vararg function.
6047   if (HasParameterArea)
6048     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6049   else
6050     NumBytes = LinkageSize;
6051 
6052   // Tail call needs the stack to be aligned.
6053   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6054     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6055 
6056   int SPDiff = 0;
6057 
6058   // Calculate by how many bytes the stack has to be adjusted in case of tail
6059   // call optimization.
6060   if (!IsSibCall)
6061     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6062 
6063   // To protect arguments on the stack from being clobbered in a tail call,
6064   // force all the loads to happen before doing any other lowering.
6065   if (CFlags.IsTailCall)
6066     Chain = DAG.getStackArgumentTokenFactor(Chain);
6067 
6068   // Adjust the stack pointer for the new arguments...
6069   // These operations are automatically eliminated by the prolog/epilog pass
6070   if (!IsSibCall)
6071     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6072   SDValue CallSeqStart = Chain;
6073 
6074   // Load the return address and frame pointer so it can be move somewhere else
6075   // later.
6076   SDValue LROp, FPOp;
6077   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6078 
6079   // Set up a copy of the stack pointer for use loading and storing any
6080   // arguments that may not fit in the registers available for argument
6081   // passing.
6082   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6083 
6084   // Figure out which arguments are going to go in registers, and which in
6085   // memory.  Also, if this is a vararg function, floating point operations
6086   // must be stored to our stack, and loaded into integer regs as well, if
6087   // any integer regs are available for argument passing.
6088   unsigned ArgOffset = LinkageSize;
6089 
6090   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6091   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6092 
6093   SmallVector<SDValue, 8> MemOpChains;
6094   for (unsigned i = 0; i != NumOps; ++i) {
6095     SDValue Arg = OutVals[i];
6096     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6097     EVT ArgVT = Outs[i].VT;
6098     EVT OrigVT = Outs[i].ArgVT;
6099 
6100     // PtrOff will be used to store the current argument to the stack if a
6101     // register cannot be found for it.
6102     SDValue PtrOff;
6103 
6104     // We re-align the argument offset for each argument, except when using the
6105     // fast calling convention, when we need to make sure we do that only when
6106     // we'll actually use a stack slot.
6107     auto ComputePtrOff = [&]() {
6108       /* Respect alignment of argument on the stack.  */
6109       auto Alignment =
6110           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6111       ArgOffset = alignTo(ArgOffset, Alignment);
6112 
6113       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6114 
6115       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6116     };
6117 
6118     if (!IsFastCall) {
6119       ComputePtrOff();
6120 
6121       /* Compute GPR index associated with argument offset.  */
6122       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6123       GPR_idx = std::min(GPR_idx, NumGPRs);
6124     }
6125 
6126     // Promote integers to 64-bit values.
6127     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6128       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6129       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6130       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6131     }
6132 
6133     // FIXME memcpy is used way more than necessary.  Correctness first.
6134     // Note: "by value" is code for passing a structure by value, not
6135     // basic types.
6136     if (Flags.isByVal()) {
6137       // Note: Size includes alignment padding, so
6138       //   struct x { short a; char b; }
6139       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6140       // These are the proper values we need for right-justifying the
6141       // aggregate in a parameter register.
6142       unsigned Size = Flags.getByValSize();
6143 
6144       // An empty aggregate parameter takes up no storage and no
6145       // registers.
6146       if (Size == 0)
6147         continue;
6148 
6149       if (IsFastCall)
6150         ComputePtrOff();
6151 
6152       // All aggregates smaller than 8 bytes must be passed right-justified.
6153       if (Size==1 || Size==2 || Size==4) {
6154         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6155         if (GPR_idx != NumGPRs) {
6156           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6157                                         MachinePointerInfo(), VT);
6158           MemOpChains.push_back(Load.getValue(1));
6159           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6160 
6161           ArgOffset += PtrByteSize;
6162           continue;
6163         }
6164       }
6165 
6166       if (GPR_idx == NumGPRs && Size < 8) {
6167         SDValue AddPtr = PtrOff;
6168         if (!isLittleEndian) {
6169           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6170                                           PtrOff.getValueType());
6171           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6172         }
6173         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6174                                                           CallSeqStart,
6175                                                           Flags, DAG, dl);
6176         ArgOffset += PtrByteSize;
6177         continue;
6178       }
6179       // Copy entire object into memory.  There are cases where gcc-generated
6180       // code assumes it is there, even if it could be put entirely into
6181       // registers.  (This is not what the doc says.)
6182 
6183       // FIXME: The above statement is likely due to a misunderstanding of the
6184       // documents.  All arguments must be copied into the parameter area BY
6185       // THE CALLEE in the event that the callee takes the address of any
6186       // formal argument.  That has not yet been implemented.  However, it is
6187       // reasonable to use the stack area as a staging area for the register
6188       // load.
6189 
6190       // Skip this for small aggregates, as we will use the same slot for a
6191       // right-justified copy, below.
6192       if (Size >= 8)
6193         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6194                                                           CallSeqStart,
6195                                                           Flags, DAG, dl);
6196 
6197       // When a register is available, pass a small aggregate right-justified.
6198       if (Size < 8 && GPR_idx != NumGPRs) {
6199         // The easiest way to get this right-justified in a register
6200         // is to copy the structure into the rightmost portion of a
6201         // local variable slot, then load the whole slot into the
6202         // register.
6203         // FIXME: The memcpy seems to produce pretty awful code for
6204         // small aggregates, particularly for packed ones.
6205         // FIXME: It would be preferable to use the slot in the
6206         // parameter save area instead of a new local variable.
6207         SDValue AddPtr = PtrOff;
6208         if (!isLittleEndian) {
6209           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6210           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6211         }
6212         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6213                                                           CallSeqStart,
6214                                                           Flags, DAG, dl);
6215 
6216         // Load the slot into the register.
6217         SDValue Load =
6218             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6219         MemOpChains.push_back(Load.getValue(1));
6220         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6221 
6222         // Done with this argument.
6223         ArgOffset += PtrByteSize;
6224         continue;
6225       }
6226 
6227       // For aggregates larger than PtrByteSize, copy the pieces of the
6228       // object that fit into registers from the parameter save area.
6229       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6230         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6231         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6232         if (GPR_idx != NumGPRs) {
6233           SDValue Load =
6234               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6235           MemOpChains.push_back(Load.getValue(1));
6236           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6237           ArgOffset += PtrByteSize;
6238         } else {
6239           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6240           break;
6241         }
6242       }
6243       continue;
6244     }
6245 
6246     switch (Arg.getSimpleValueType().SimpleTy) {
6247     default: llvm_unreachable("Unexpected ValueType for argument!");
6248     case MVT::i1:
6249     case MVT::i32:
6250     case MVT::i64:
6251       if (Flags.isNest()) {
6252         // The 'nest' parameter, if any, is passed in R11.
6253         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6254         break;
6255       }
6256 
6257       // These can be scalar arguments or elements of an integer array type
6258       // passed directly.  Clang may use those instead of "byval" aggregate
6259       // types to avoid forcing arguments to memory unnecessarily.
6260       if (GPR_idx != NumGPRs) {
6261         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6262       } else {
6263         if (IsFastCall)
6264           ComputePtrOff();
6265 
6266         assert(HasParameterArea &&
6267                "Parameter area must exist to pass an argument in memory.");
6268         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6269                          true, CFlags.IsTailCall, false, MemOpChains,
6270                          TailCallArguments, dl);
6271         if (IsFastCall)
6272           ArgOffset += PtrByteSize;
6273       }
6274       if (!IsFastCall)
6275         ArgOffset += PtrByteSize;
6276       break;
6277     case MVT::f32:
6278     case MVT::f64: {
6279       // These can be scalar arguments or elements of a float array type
6280       // passed directly.  The latter are used to implement ELFv2 homogenous
6281       // float aggregates.
6282 
6283       // Named arguments go into FPRs first, and once they overflow, the
6284       // remaining arguments go into GPRs and then the parameter save area.
6285       // Unnamed arguments for vararg functions always go to GPRs and
6286       // then the parameter save area.  For now, put all arguments to vararg
6287       // routines always in both locations (FPR *and* GPR or stack slot).
6288       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6289       bool NeededLoad = false;
6290 
6291       // First load the argument into the next available FPR.
6292       if (FPR_idx != NumFPRs)
6293         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6294 
6295       // Next, load the argument into GPR or stack slot if needed.
6296       if (!NeedGPROrStack)
6297         ;
6298       else if (GPR_idx != NumGPRs && !IsFastCall) {
6299         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6300         // once we support fp <-> gpr moves.
6301 
6302         // In the non-vararg case, this can only ever happen in the
6303         // presence of f32 array types, since otherwise we never run
6304         // out of FPRs before running out of GPRs.
6305         SDValue ArgVal;
6306 
6307         // Double values are always passed in a single GPR.
6308         if (Arg.getValueType() != MVT::f32) {
6309           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6310 
6311         // Non-array float values are extended and passed in a GPR.
6312         } else if (!Flags.isInConsecutiveRegs()) {
6313           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6314           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6315 
6316         // If we have an array of floats, we collect every odd element
6317         // together with its predecessor into one GPR.
6318         } else if (ArgOffset % PtrByteSize != 0) {
6319           SDValue Lo, Hi;
6320           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6321           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6322           if (!isLittleEndian)
6323             std::swap(Lo, Hi);
6324           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6325 
6326         // The final element, if even, goes into the first half of a GPR.
6327         } else if (Flags.isInConsecutiveRegsLast()) {
6328           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6329           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6330           if (!isLittleEndian)
6331             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6332                                  DAG.getConstant(32, dl, MVT::i32));
6333 
6334         // Non-final even elements are skipped; they will be handled
6335         // together the with subsequent argument on the next go-around.
6336         } else
6337           ArgVal = SDValue();
6338 
6339         if (ArgVal.getNode())
6340           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6341       } else {
6342         if (IsFastCall)
6343           ComputePtrOff();
6344 
6345         // Single-precision floating-point values are mapped to the
6346         // second (rightmost) word of the stack doubleword.
6347         if (Arg.getValueType() == MVT::f32 &&
6348             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6349           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6350           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6351         }
6352 
6353         assert(HasParameterArea &&
6354                "Parameter area must exist to pass an argument in memory.");
6355         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6356                          true, CFlags.IsTailCall, false, MemOpChains,
6357                          TailCallArguments, dl);
6358 
6359         NeededLoad = true;
6360       }
6361       // When passing an array of floats, the array occupies consecutive
6362       // space in the argument area; only round up to the next doubleword
6363       // at the end of the array.  Otherwise, each float takes 8 bytes.
6364       if (!IsFastCall || NeededLoad) {
6365         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6366                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6367         if (Flags.isInConsecutiveRegsLast())
6368           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6369       }
6370       break;
6371     }
6372     case MVT::v4f32:
6373     case MVT::v4i32:
6374     case MVT::v8i16:
6375     case MVT::v16i8:
6376     case MVT::v2f64:
6377     case MVT::v2i64:
6378     case MVT::v1i128:
6379     case MVT::f128:
6380       // These can be scalar arguments or elements of a vector array type
6381       // passed directly.  The latter are used to implement ELFv2 homogenous
6382       // vector aggregates.
6383 
6384       // For a varargs call, named arguments go into VRs or on the stack as
6385       // usual; unnamed arguments always go to the stack or the corresponding
6386       // GPRs when within range.  For now, we always put the value in both
6387       // locations (or even all three).
6388       if (CFlags.IsVarArg) {
6389         assert(HasParameterArea &&
6390                "Parameter area must exist if we have a varargs call.");
6391         // We could elide this store in the case where the object fits
6392         // entirely in R registers.  Maybe later.
6393         SDValue Store =
6394             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6395         MemOpChains.push_back(Store);
6396         if (VR_idx != NumVRs) {
6397           SDValue Load =
6398               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6399           MemOpChains.push_back(Load.getValue(1));
6400           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6401         }
6402         ArgOffset += 16;
6403         for (unsigned i=0; i<16; i+=PtrByteSize) {
6404           if (GPR_idx == NumGPRs)
6405             break;
6406           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6407                                    DAG.getConstant(i, dl, PtrVT));
6408           SDValue Load =
6409               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6410           MemOpChains.push_back(Load.getValue(1));
6411           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6412         }
6413         break;
6414       }
6415 
6416       // Non-varargs Altivec params go into VRs or on the stack.
6417       if (VR_idx != NumVRs) {
6418         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6419       } else {
6420         if (IsFastCall)
6421           ComputePtrOff();
6422 
6423         assert(HasParameterArea &&
6424                "Parameter area must exist to pass an argument in memory.");
6425         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6426                          true, CFlags.IsTailCall, true, MemOpChains,
6427                          TailCallArguments, dl);
6428         if (IsFastCall)
6429           ArgOffset += 16;
6430       }
6431 
6432       if (!IsFastCall)
6433         ArgOffset += 16;
6434       break;
6435     }
6436   }
6437 
6438   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6439          "mismatch in size of parameter area");
6440   (void)NumBytesActuallyUsed;
6441 
6442   if (!MemOpChains.empty())
6443     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6444 
6445   // Check if this is an indirect call (MTCTR/BCTRL).
6446   // See prepareDescriptorIndirectCall and buildCallOperands for more
6447   // information about calls through function pointers in the 64-bit SVR4 ABI.
6448   if (CFlags.IsIndirect) {
6449     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6450     // caller in the TOC save area.
6451     if (isTOCSaveRestoreRequired(Subtarget)) {
6452       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6453       // Load r2 into a virtual register and store it to the TOC save area.
6454       setUsesTOCBasePtr(DAG);
6455       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6456       // TOC save area offset.
6457       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6458       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6459       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6460       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6461                            MachinePointerInfo::getStack(
6462                                DAG.getMachineFunction(), TOCSaveOffset));
6463     }
6464     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6465     // This does not mean the MTCTR instruction must use R12; it's easier
6466     // to model this as an extra parameter, so do that.
6467     if (isELFv2ABI && !CFlags.IsPatchPoint)
6468       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6469   }
6470 
6471   // Build a sequence of copy-to-reg nodes chained together with token chain
6472   // and flag operands which copy the outgoing args into the appropriate regs.
6473   SDValue InFlag;
6474   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6475     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6476                              RegsToPass[i].second, InFlag);
6477     InFlag = Chain.getValue(1);
6478   }
6479 
6480   if (CFlags.IsTailCall && !IsSibCall)
6481     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6482                     TailCallArguments);
6483 
6484   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6485                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6486 }
6487 
6488 // Returns true when the shadow of a general purpose argument register
6489 // in the parameter save area is aligned to at least 'RequiredAlign'.
6490 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6491   assert(RequiredAlign.value() <= 16 &&
6492          "Required alignment greater than stack alignment.");
6493   switch (Reg) {
6494   default:
6495     report_fatal_error("called on invalid register.");
6496   case PPC::R5:
6497   case PPC::R9:
6498   case PPC::X3:
6499   case PPC::X5:
6500   case PPC::X7:
6501   case PPC::X9:
6502     // These registers are 16 byte aligned which is the most strict aligment
6503     // we can support.
6504     return true;
6505   case PPC::R3:
6506   case PPC::R7:
6507   case PPC::X4:
6508   case PPC::X6:
6509   case PPC::X8:
6510   case PPC::X10:
6511     // The shadow of these registers in the PSA is 8 byte aligned.
6512     return RequiredAlign <= 8;
6513   case PPC::R4:
6514   case PPC::R6:
6515   case PPC::R8:
6516   case PPC::R10:
6517     return RequiredAlign <= 4;
6518   }
6519 }
6520 
6521 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6522                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6523                    CCState &S) {
6524   AIXCCState &State = static_cast<AIXCCState &>(S);
6525   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6526       State.getMachineFunction().getSubtarget());
6527   const bool IsPPC64 = Subtarget.isPPC64();
6528   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6529   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6530 
6531   if (ValVT == MVT::f128)
6532     report_fatal_error("f128 is unimplemented on AIX.");
6533 
6534   if (ArgFlags.isNest())
6535     report_fatal_error("Nest arguments are unimplemented.");
6536 
6537   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6538                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6539                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6540   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6541                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6542                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6543 
6544   static const MCPhysReg VR[] = {// Vector registers.
6545                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6546                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6547                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6548 
6549   if (ArgFlags.isByVal()) {
6550     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6551       report_fatal_error("Pass-by-value arguments with alignment greater than "
6552                          "register width are not supported.");
6553 
6554     const unsigned ByValSize = ArgFlags.getByValSize();
6555 
6556     // An empty aggregate parameter takes up no storage and no registers,
6557     // but needs a MemLoc for a stack slot for the formal arguments side.
6558     if (ByValSize == 0) {
6559       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6560                                        State.getNextStackOffset(), RegVT,
6561                                        LocInfo));
6562       return false;
6563     }
6564 
6565     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6566     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6567     for (const unsigned E = Offset + StackSize; Offset < E;
6568          Offset += PtrAlign.value()) {
6569       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6570         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6571       else {
6572         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6573                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6574                                          LocInfo));
6575         break;
6576       }
6577     }
6578     return false;
6579   }
6580 
6581   // Arguments always reserve parameter save area.
6582   switch (ValVT.SimpleTy) {
6583   default:
6584     report_fatal_error("Unhandled value type for argument.");
6585   case MVT::i64:
6586     // i64 arguments should have been split to i32 for PPC32.
6587     assert(IsPPC64 && "PPC32 should have split i64 values.");
6588     LLVM_FALLTHROUGH;
6589   case MVT::i1:
6590   case MVT::i32: {
6591     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6592     // AIX integer arguments are always passed in register width.
6593     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6594       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6595                                   : CCValAssign::LocInfo::ZExt;
6596     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6597       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6598     else
6599       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6600 
6601     return false;
6602   }
6603   case MVT::f32:
6604   case MVT::f64: {
6605     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6606     const unsigned StoreSize = LocVT.getStoreSize();
6607     // Floats are always 4-byte aligned in the PSA on AIX.
6608     // This includes f64 in 64-bit mode for ABI compatibility.
6609     const unsigned Offset =
6610         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6611     unsigned FReg = State.AllocateReg(FPR);
6612     if (FReg)
6613       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6614 
6615     // Reserve and initialize GPRs or initialize the PSA as required.
6616     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6617       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6618         assert(FReg && "An FPR should be available when a GPR is reserved.");
6619         if (State.isVarArg()) {
6620           // Successfully reserved GPRs are only initialized for vararg calls.
6621           // Custom handling is required for:
6622           //   f64 in PPC32 needs to be split into 2 GPRs.
6623           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6624           State.addLoc(
6625               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6626         }
6627       } else {
6628         // If there are insufficient GPRs, the PSA needs to be initialized.
6629         // Initialization occurs even if an FPR was initialized for
6630         // compatibility with the AIX XL compiler. The full memory for the
6631         // argument will be initialized even if a prior word is saved in GPR.
6632         // A custom memLoc is used when the argument also passes in FPR so
6633         // that the callee handling can skip over it easily.
6634         State.addLoc(
6635             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6636                                              LocInfo)
6637                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6638         break;
6639       }
6640     }
6641 
6642     return false;
6643   }
6644   case MVT::v4f32:
6645   case MVT::v4i32:
6646   case MVT::v8i16:
6647   case MVT::v16i8:
6648   case MVT::v2i64:
6649   case MVT::v2f64:
6650   case MVT::v1i128: {
6651     const unsigned VecSize = 16;
6652     const Align VecAlign(VecSize);
6653 
6654     if (!State.isVarArg()) {
6655       // If there are vector registers remaining we don't consume any stack
6656       // space.
6657       if (unsigned VReg = State.AllocateReg(VR)) {
6658         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6659         return false;
6660       }
6661       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6662       // might be allocated in the portion of the PSA that is shadowed by the
6663       // GPRs.
6664       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6665       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6666       return false;
6667     }
6668 
6669     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6670     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6671 
6672     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6673     // Burn any underaligned registers and their shadowed stack space until
6674     // we reach the required alignment.
6675     while (NextRegIndex != GPRs.size() &&
6676            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6677       // Shadow allocate register and its stack shadow.
6678       unsigned Reg = State.AllocateReg(GPRs);
6679       State.AllocateStack(PtrSize, PtrAlign);
6680       assert(Reg && "Allocating register unexpectedly failed.");
6681       (void)Reg;
6682       NextRegIndex = State.getFirstUnallocated(GPRs);
6683     }
6684 
6685     // Vectors that are passed as fixed arguments are handled differently.
6686     // They are passed in VRs if any are available (unlike arguments passed
6687     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6688     // functions)
6689     if (State.isFixed(ValNo)) {
6690       if (unsigned VReg = State.AllocateReg(VR)) {
6691         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6692         // Shadow allocate GPRs and stack space even though we pass in a VR.
6693         for (unsigned I = 0; I != VecSize; I += PtrSize)
6694           State.AllocateReg(GPRs);
6695         State.AllocateStack(VecSize, VecAlign);
6696         return false;
6697       }
6698       // No vector registers remain so pass on the stack.
6699       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6700       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6701       return false;
6702     }
6703 
6704     // If all GPRS are consumed then we pass the argument fully on the stack.
6705     if (NextRegIndex == GPRs.size()) {
6706       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6707       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6708       return false;
6709     }
6710 
6711     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6712     // half of the argument, and then need to pass the remaining half on the
6713     // stack.
6714     if (GPRs[NextRegIndex] == PPC::R9) {
6715       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6716       State.addLoc(
6717           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6718 
6719       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6720       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6721       assert(FirstReg && SecondReg &&
6722              "Allocating R9 or R10 unexpectedly failed.");
6723       State.addLoc(
6724           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6725       State.addLoc(
6726           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6727       return false;
6728     }
6729 
6730     // We have enough GPRs to fully pass the vector argument, and we have
6731     // already consumed any underaligned registers. Start with the custom
6732     // MemLoc and then the custom RegLocs.
6733     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6734     State.addLoc(
6735         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6736     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6737       const unsigned Reg = State.AllocateReg(GPRs);
6738       assert(Reg && "Failed to allocated register for vararg vector argument");
6739       State.addLoc(
6740           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6741     }
6742     return false;
6743   }
6744   }
6745   return true;
6746 }
6747 
6748 // So far, this function is only used by LowerFormalArguments_AIX()
6749 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6750                                                     bool IsPPC64,
6751                                                     bool HasP8Vector,
6752                                                     bool HasVSX) {
6753   assert((IsPPC64 || SVT != MVT::i64) &&
6754          "i64 should have been split for 32-bit codegen.");
6755 
6756   switch (SVT) {
6757   default:
6758     report_fatal_error("Unexpected value type for formal argument");
6759   case MVT::i1:
6760   case MVT::i32:
6761   case MVT::i64:
6762     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6763   case MVT::f32:
6764     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6765   case MVT::f64:
6766     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6767   case MVT::v4f32:
6768   case MVT::v4i32:
6769   case MVT::v8i16:
6770   case MVT::v16i8:
6771   case MVT::v2i64:
6772   case MVT::v2f64:
6773   case MVT::v1i128:
6774     return &PPC::VRRCRegClass;
6775   }
6776 }
6777 
6778 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6779                                         SelectionDAG &DAG, SDValue ArgValue,
6780                                         MVT LocVT, const SDLoc &dl) {
6781   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6782   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6783 
6784   if (Flags.isSExt())
6785     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6786                            DAG.getValueType(ValVT));
6787   else if (Flags.isZExt())
6788     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6789                            DAG.getValueType(ValVT));
6790 
6791   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6792 }
6793 
6794 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6795   const unsigned LASize = FL->getLinkageSize();
6796 
6797   if (PPC::GPRCRegClass.contains(Reg)) {
6798     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6799            "Reg must be a valid argument register!");
6800     return LASize + 4 * (Reg - PPC::R3);
6801   }
6802 
6803   if (PPC::G8RCRegClass.contains(Reg)) {
6804     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6805            "Reg must be a valid argument register!");
6806     return LASize + 8 * (Reg - PPC::X3);
6807   }
6808 
6809   llvm_unreachable("Only general purpose registers expected.");
6810 }
6811 
6812 //   AIX ABI Stack Frame Layout:
6813 //
6814 //   Low Memory +--------------------------------------------+
6815 //   SP   +---> | Back chain                                 | ---+
6816 //        |     +--------------------------------------------+    |
6817 //        |     | Saved Condition Register                   |    |
6818 //        |     +--------------------------------------------+    |
6819 //        |     | Saved Linkage Register                     |    |
6820 //        |     +--------------------------------------------+    | Linkage Area
6821 //        |     | Reserved for compilers                     |    |
6822 //        |     +--------------------------------------------+    |
6823 //        |     | Reserved for binders                       |    |
6824 //        |     +--------------------------------------------+    |
6825 //        |     | Saved TOC pointer                          | ---+
6826 //        |     +--------------------------------------------+
6827 //        |     | Parameter save area                        |
6828 //        |     +--------------------------------------------+
6829 //        |     | Alloca space                               |
6830 //        |     +--------------------------------------------+
6831 //        |     | Local variable space                       |
6832 //        |     +--------------------------------------------+
6833 //        |     | Float/int conversion temporary             |
6834 //        |     +--------------------------------------------+
6835 //        |     | Save area for AltiVec registers            |
6836 //        |     +--------------------------------------------+
6837 //        |     | AltiVec alignment padding                  |
6838 //        |     +--------------------------------------------+
6839 //        |     | Save area for VRSAVE register              |
6840 //        |     +--------------------------------------------+
6841 //        |     | Save area for General Purpose registers    |
6842 //        |     +--------------------------------------------+
6843 //        |     | Save area for Floating Point registers     |
6844 //        |     +--------------------------------------------+
6845 //        +---- | Back chain                                 |
6846 // High Memory  +--------------------------------------------+
6847 //
6848 //  Specifications:
6849 //  AIX 7.2 Assembler Language Reference
6850 //  Subroutine linkage convention
6851 
6852 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6853     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6854     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6855     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6856 
6857   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6858           CallConv == CallingConv::Fast) &&
6859          "Unexpected calling convention!");
6860 
6861   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6862     report_fatal_error("Tail call support is unimplemented on AIX.");
6863 
6864   if (useSoftFloat())
6865     report_fatal_error("Soft float support is unimplemented on AIX.");
6866 
6867   const PPCSubtarget &Subtarget =
6868       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6869 
6870   const bool IsPPC64 = Subtarget.isPPC64();
6871   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6872 
6873   // Assign locations to all of the incoming arguments.
6874   SmallVector<CCValAssign, 16> ArgLocs;
6875   MachineFunction &MF = DAG.getMachineFunction();
6876   MachineFrameInfo &MFI = MF.getFrameInfo();
6877   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6878   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6879 
6880   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6881   // Reserve space for the linkage area on the stack.
6882   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6883   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6884   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6885 
6886   SmallVector<SDValue, 8> MemOps;
6887 
6888   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6889     CCValAssign &VA = ArgLocs[I++];
6890     MVT LocVT = VA.getLocVT();
6891     MVT ValVT = VA.getValVT();
6892     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6893     // For compatibility with the AIX XL compiler, the float args in the
6894     // parameter save area are initialized even if the argument is available
6895     // in register.  The caller is required to initialize both the register
6896     // and memory, however, the callee can choose to expect it in either.
6897     // The memloc is dismissed here because the argument is retrieved from
6898     // the register.
6899     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6900       continue;
6901 
6902     auto HandleMemLoc = [&]() {
6903       const unsigned LocSize = LocVT.getStoreSize();
6904       const unsigned ValSize = ValVT.getStoreSize();
6905       assert((ValSize <= LocSize) &&
6906              "Object size is larger than size of MemLoc");
6907       int CurArgOffset = VA.getLocMemOffset();
6908       // Objects are right-justified because AIX is big-endian.
6909       if (LocSize > ValSize)
6910         CurArgOffset += LocSize - ValSize;
6911       // Potential tail calls could cause overwriting of argument stack slots.
6912       const bool IsImmutable =
6913           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6914             (CallConv == CallingConv::Fast));
6915       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6916       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6917       SDValue ArgValue =
6918           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6919       InVals.push_back(ArgValue);
6920     };
6921 
6922     // Vector arguments to VaArg functions are passed both on the stack, and
6923     // in any available GPRs. Load the value from the stack and add the GPRs
6924     // as live ins.
6925     if (VA.isMemLoc() && VA.needsCustom()) {
6926       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6927       assert(isVarArg && "Only use custom memloc for vararg.");
6928       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6929       // matching custom RegLocs.
6930       const unsigned OriginalValNo = VA.getValNo();
6931       (void)OriginalValNo;
6932 
6933       auto HandleCustomVecRegLoc = [&]() {
6934         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6935                "Missing custom RegLoc.");
6936         VA = ArgLocs[I++];
6937         assert(VA.getValVT().isVector() &&
6938                "Unexpected Val type for custom RegLoc.");
6939         assert(VA.getValNo() == OriginalValNo &&
6940                "ValNo mismatch between custom MemLoc and RegLoc.");
6941         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6942         MF.addLiveIn(VA.getLocReg(),
6943                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
6944                                        Subtarget.hasVSX()));
6945       };
6946 
6947       HandleMemLoc();
6948       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6949       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6950       // R10.
6951       HandleCustomVecRegLoc();
6952       HandleCustomVecRegLoc();
6953 
6954       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6955       // we passed the vector in R5, R6, R7 and R8.
6956       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6957         assert(!IsPPC64 &&
6958                "Only 2 custom RegLocs expected for 64-bit codegen.");
6959         HandleCustomVecRegLoc();
6960         HandleCustomVecRegLoc();
6961       }
6962 
6963       continue;
6964     }
6965 
6966     if (VA.isRegLoc()) {
6967       if (VA.getValVT().isScalarInteger())
6968         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6969       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
6970         switch (VA.getValVT().SimpleTy) {
6971         default:
6972           report_fatal_error("Unhandled value type for argument.");
6973         case MVT::f32:
6974           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
6975           break;
6976         case MVT::f64:
6977           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
6978           break;
6979         }
6980       } else if (VA.getValVT().isVector()) {
6981         switch (VA.getValVT().SimpleTy) {
6982         default:
6983           report_fatal_error("Unhandled value type for argument.");
6984         case MVT::v16i8:
6985           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
6986           break;
6987         case MVT::v8i16:
6988           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
6989           break;
6990         case MVT::v4i32:
6991         case MVT::v2i64:
6992         case MVT::v1i128:
6993           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
6994           break;
6995         case MVT::v4f32:
6996         case MVT::v2f64:
6997           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
6998           break;
6999         }
7000       }
7001     }
7002 
7003     if (Flags.isByVal() && VA.isMemLoc()) {
7004       const unsigned Size =
7005           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7006                   PtrByteSize);
7007       const int FI = MF.getFrameInfo().CreateFixedObject(
7008           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7009           /* IsAliased */ true);
7010       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7011       InVals.push_back(FIN);
7012 
7013       continue;
7014     }
7015 
7016     if (Flags.isByVal()) {
7017       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7018 
7019       const MCPhysReg ArgReg = VA.getLocReg();
7020       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7021 
7022       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7023         report_fatal_error("Over aligned byvals not supported yet.");
7024 
7025       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7026       const int FI = MF.getFrameInfo().CreateFixedObject(
7027           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7028           /* IsAliased */ true);
7029       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7030       InVals.push_back(FIN);
7031 
7032       // Add live ins for all the RegLocs for the same ByVal.
7033       const TargetRegisterClass *RegClass =
7034           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7035 
7036       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7037                                                unsigned Offset) {
7038         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7039         // Since the callers side has left justified the aggregate in the
7040         // register, we can simply store the entire register into the stack
7041         // slot.
7042         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7043         // The store to the fixedstack object is needed becuase accessing a
7044         // field of the ByVal will use a gep and load. Ideally we will optimize
7045         // to extracting the value from the register directly, and elide the
7046         // stores when the arguments address is not taken, but that will need to
7047         // be future work.
7048         SDValue Store = DAG.getStore(
7049             CopyFrom.getValue(1), dl, CopyFrom,
7050             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7051             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7052 
7053         MemOps.push_back(Store);
7054       };
7055 
7056       unsigned Offset = 0;
7057       HandleRegLoc(VA.getLocReg(), Offset);
7058       Offset += PtrByteSize;
7059       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7060            Offset += PtrByteSize) {
7061         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7062                "RegLocs should be for ByVal argument.");
7063 
7064         const CCValAssign RL = ArgLocs[I++];
7065         HandleRegLoc(RL.getLocReg(), Offset);
7066         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7067       }
7068 
7069       if (Offset != StackSize) {
7070         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7071                "Expected MemLoc for remaining bytes.");
7072         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7073         // Consume the MemLoc.The InVal has already been emitted, so nothing
7074         // more needs to be done.
7075         ++I;
7076       }
7077 
7078       continue;
7079     }
7080 
7081     if (VA.isRegLoc() && !VA.needsCustom()) {
7082       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7083       Register VReg =
7084           MF.addLiveIn(VA.getLocReg(),
7085                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7086                                          Subtarget.hasVSX()));
7087       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7088       if (ValVT.isScalarInteger() &&
7089           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7090         ArgValue =
7091             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7092       }
7093       InVals.push_back(ArgValue);
7094       continue;
7095     }
7096     if (VA.isMemLoc()) {
7097       HandleMemLoc();
7098       continue;
7099     }
7100   }
7101 
7102   // On AIX a minimum of 8 words is saved to the parameter save area.
7103   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7104   // Area that is at least reserved in the caller of this function.
7105   unsigned CallerReservedArea =
7106       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7107 
7108   // Set the size that is at least reserved in caller of this function. Tail
7109   // call optimized function's reserved stack space needs to be aligned so
7110   // that taking the difference between two stack areas will result in an
7111   // aligned stack.
7112   CallerReservedArea =
7113       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7114   FuncInfo->setMinReservedArea(CallerReservedArea);
7115 
7116   if (isVarArg) {
7117     FuncInfo->setVarArgsFrameIndex(
7118         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7119     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7120 
7121     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7122                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7123 
7124     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7125                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7126     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7127 
7128     // The fixed integer arguments of a variadic function are stored to the
7129     // VarArgsFrameIndex on the stack so that they may be loaded by
7130     // dereferencing the result of va_next.
7131     for (unsigned GPRIndex =
7132              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7133          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7134 
7135       const unsigned VReg =
7136           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7137                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7138 
7139       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7140       SDValue Store =
7141           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7142       MemOps.push_back(Store);
7143       // Increment the address for the next argument to store.
7144       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7145       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7146     }
7147   }
7148 
7149   if (!MemOps.empty())
7150     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7151 
7152   return Chain;
7153 }
7154 
7155 SDValue PPCTargetLowering::LowerCall_AIX(
7156     SDValue Chain, SDValue Callee, CallFlags CFlags,
7157     const SmallVectorImpl<ISD::OutputArg> &Outs,
7158     const SmallVectorImpl<SDValue> &OutVals,
7159     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7160     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7161     const CallBase *CB) const {
7162   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7163   // AIX ABI stack frame layout.
7164 
7165   assert((CFlags.CallConv == CallingConv::C ||
7166           CFlags.CallConv == CallingConv::Cold ||
7167           CFlags.CallConv == CallingConv::Fast) &&
7168          "Unexpected calling convention!");
7169 
7170   if (CFlags.IsPatchPoint)
7171     report_fatal_error("This call type is unimplemented on AIX.");
7172 
7173   const PPCSubtarget& Subtarget =
7174       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7175 
7176   MachineFunction &MF = DAG.getMachineFunction();
7177   SmallVector<CCValAssign, 16> ArgLocs;
7178   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7179                     *DAG.getContext());
7180 
7181   // Reserve space for the linkage save area (LSA) on the stack.
7182   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7183   //   [SP][CR][LR][2 x reserved][TOC].
7184   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7185   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7186   const bool IsPPC64 = Subtarget.isPPC64();
7187   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7188   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7189   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7190   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7191 
7192   // The prolog code of the callee may store up to 8 GPR argument registers to
7193   // the stack, allowing va_start to index over them in memory if the callee
7194   // is variadic.
7195   // Because we cannot tell if this is needed on the caller side, we have to
7196   // conservatively assume that it is needed.  As such, make sure we have at
7197   // least enough stack space for the caller to store the 8 GPRs.
7198   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7199   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7200                                      CCInfo.getNextStackOffset());
7201 
7202   // Adjust the stack pointer for the new arguments...
7203   // These operations are automatically eliminated by the prolog/epilog pass.
7204   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7205   SDValue CallSeqStart = Chain;
7206 
7207   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7208   SmallVector<SDValue, 8> MemOpChains;
7209 
7210   // Set up a copy of the stack pointer for loading and storing any
7211   // arguments that may not fit in the registers available for argument
7212   // passing.
7213   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7214                                    : DAG.getRegister(PPC::R1, MVT::i32);
7215 
7216   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7217     const unsigned ValNo = ArgLocs[I].getValNo();
7218     SDValue Arg = OutVals[ValNo];
7219     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7220 
7221     if (Flags.isByVal()) {
7222       const unsigned ByValSize = Flags.getByValSize();
7223 
7224       // Nothing to do for zero-sized ByVals on the caller side.
7225       if (!ByValSize) {
7226         ++I;
7227         continue;
7228       }
7229 
7230       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7231         return DAG.getExtLoad(
7232             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7233             (LoadOffset != 0)
7234                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7235                 : Arg,
7236             MachinePointerInfo(), VT);
7237       };
7238 
7239       unsigned LoadOffset = 0;
7240 
7241       // Initialize registers, which are fully occupied by the by-val argument.
7242       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7243         SDValue Load = GetLoad(PtrVT, LoadOffset);
7244         MemOpChains.push_back(Load.getValue(1));
7245         LoadOffset += PtrByteSize;
7246         const CCValAssign &ByValVA = ArgLocs[I++];
7247         assert(ByValVA.getValNo() == ValNo &&
7248                "Unexpected location for pass-by-value argument.");
7249         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7250       }
7251 
7252       if (LoadOffset == ByValSize)
7253         continue;
7254 
7255       // There must be one more loc to handle the remainder.
7256       assert(ArgLocs[I].getValNo() == ValNo &&
7257              "Expected additional location for by-value argument.");
7258 
7259       if (ArgLocs[I].isMemLoc()) {
7260         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7261         const CCValAssign &ByValVA = ArgLocs[I++];
7262         ISD::ArgFlagsTy MemcpyFlags = Flags;
7263         // Only memcpy the bytes that don't pass in register.
7264         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7265         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7266             (LoadOffset != 0)
7267                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7268                 : Arg,
7269             DAG.getObjectPtrOffset(dl, StackPtr,
7270                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7271             CallSeqStart, MemcpyFlags, DAG, dl);
7272         continue;
7273       }
7274 
7275       // Initialize the final register residue.
7276       // Any residue that occupies the final by-val arg register must be
7277       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7278       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7279       // 2 and 1 byte loads.
7280       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7281       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7282              "Unexpected register residue for by-value argument.");
7283       SDValue ResidueVal;
7284       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7285         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7286         const MVT VT =
7287             N == 1 ? MVT::i8
7288                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7289         SDValue Load = GetLoad(VT, LoadOffset);
7290         MemOpChains.push_back(Load.getValue(1));
7291         LoadOffset += N;
7292         Bytes += N;
7293 
7294         // By-val arguments are passed left-justfied in register.
7295         // Every load here needs to be shifted, otherwise a full register load
7296         // should have been used.
7297         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7298                "Unexpected load emitted during handling of pass-by-value "
7299                "argument.");
7300         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7301         EVT ShiftAmountTy =
7302             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7303         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7304         SDValue ShiftedLoad =
7305             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7306         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7307                                               ShiftedLoad)
7308                                 : ShiftedLoad;
7309       }
7310 
7311       const CCValAssign &ByValVA = ArgLocs[I++];
7312       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7313       continue;
7314     }
7315 
7316     CCValAssign &VA = ArgLocs[I++];
7317     const MVT LocVT = VA.getLocVT();
7318     const MVT ValVT = VA.getValVT();
7319 
7320     switch (VA.getLocInfo()) {
7321     default:
7322       report_fatal_error("Unexpected argument extension type.");
7323     case CCValAssign::Full:
7324       break;
7325     case CCValAssign::ZExt:
7326       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7327       break;
7328     case CCValAssign::SExt:
7329       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7330       break;
7331     }
7332 
7333     if (VA.isRegLoc() && !VA.needsCustom()) {
7334       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7335       continue;
7336     }
7337 
7338     // Vector arguments passed to VarArg functions need custom handling when
7339     // they are passed (at least partially) in GPRs.
7340     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7341       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7342       // Store value to its stack slot.
7343       SDValue PtrOff =
7344           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7345       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7346       SDValue Store =
7347           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7348       MemOpChains.push_back(Store);
7349       const unsigned OriginalValNo = VA.getValNo();
7350       // Then load the GPRs from the stack
7351       unsigned LoadOffset = 0;
7352       auto HandleCustomVecRegLoc = [&]() {
7353         assert(I != E && "Unexpected end of CCvalAssigns.");
7354         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7355                "Expected custom RegLoc.");
7356         CCValAssign RegVA = ArgLocs[I++];
7357         assert(RegVA.getValNo() == OriginalValNo &&
7358                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7359         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7360                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7361         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7362         MemOpChains.push_back(Load.getValue(1));
7363         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7364         LoadOffset += PtrByteSize;
7365       };
7366 
7367       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7368       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7369       // R10.
7370       HandleCustomVecRegLoc();
7371       HandleCustomVecRegLoc();
7372 
7373       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7374           ArgLocs[I].getValNo() == OriginalValNo) {
7375         assert(!IsPPC64 &&
7376                "Only 2 custom RegLocs expected for 64-bit codegen.");
7377         HandleCustomVecRegLoc();
7378         HandleCustomVecRegLoc();
7379       }
7380 
7381       continue;
7382     }
7383 
7384     if (VA.isMemLoc()) {
7385       SDValue PtrOff =
7386           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7387       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7388       MemOpChains.push_back(
7389           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7390 
7391       continue;
7392     }
7393 
7394     if (!ValVT.isFloatingPoint())
7395       report_fatal_error(
7396           "Unexpected register handling for calling convention.");
7397 
7398     // Custom handling is used for GPR initializations for vararg float
7399     // arguments.
7400     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7401            LocVT.isInteger() &&
7402            "Custom register handling only expected for VarArg.");
7403 
7404     SDValue ArgAsInt =
7405         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7406 
7407     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7408       // f32 in 32-bit GPR
7409       // f64 in 64-bit GPR
7410       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7411     else if (Arg.getValueType().getFixedSizeInBits() <
7412              LocVT.getFixedSizeInBits())
7413       // f32 in 64-bit GPR.
7414       RegsToPass.push_back(std::make_pair(
7415           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7416     else {
7417       // f64 in two 32-bit GPRs
7418       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7419       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7420              "Unexpected custom register for argument!");
7421       CCValAssign &GPR1 = VA;
7422       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7423                                      DAG.getConstant(32, dl, MVT::i8));
7424       RegsToPass.push_back(std::make_pair(
7425           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7426 
7427       if (I != E) {
7428         // If only 1 GPR was available, there will only be one custom GPR and
7429         // the argument will also pass in memory.
7430         CCValAssign &PeekArg = ArgLocs[I];
7431         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7432           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7433           CCValAssign &GPR2 = ArgLocs[I++];
7434           RegsToPass.push_back(std::make_pair(
7435               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7436         }
7437       }
7438     }
7439   }
7440 
7441   if (!MemOpChains.empty())
7442     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7443 
7444   // For indirect calls, we need to save the TOC base to the stack for
7445   // restoration after the call.
7446   if (CFlags.IsIndirect) {
7447     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7448     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7449     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7450     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7451     const unsigned TOCSaveOffset =
7452         Subtarget.getFrameLowering()->getTOCSaveOffset();
7453 
7454     setUsesTOCBasePtr(DAG);
7455     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7456     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7457     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7458     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7459     Chain = DAG.getStore(
7460         Val.getValue(1), dl, Val, AddPtr,
7461         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7462   }
7463 
7464   // Build a sequence of copy-to-reg nodes chained together with token chain
7465   // and flag operands which copy the outgoing args into the appropriate regs.
7466   SDValue InFlag;
7467   for (auto Reg : RegsToPass) {
7468     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7469     InFlag = Chain.getValue(1);
7470   }
7471 
7472   const int SPDiff = 0;
7473   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7474                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7475 }
7476 
7477 bool
7478 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7479                                   MachineFunction &MF, bool isVarArg,
7480                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7481                                   LLVMContext &Context) const {
7482   SmallVector<CCValAssign, 16> RVLocs;
7483   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7484   return CCInfo.CheckReturn(
7485       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7486                 ? RetCC_PPC_Cold
7487                 : RetCC_PPC);
7488 }
7489 
7490 SDValue
7491 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7492                                bool isVarArg,
7493                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7494                                const SmallVectorImpl<SDValue> &OutVals,
7495                                const SDLoc &dl, SelectionDAG &DAG) const {
7496   SmallVector<CCValAssign, 16> RVLocs;
7497   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7498                  *DAG.getContext());
7499   CCInfo.AnalyzeReturn(Outs,
7500                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7501                            ? RetCC_PPC_Cold
7502                            : RetCC_PPC);
7503 
7504   SDValue Flag;
7505   SmallVector<SDValue, 4> RetOps(1, Chain);
7506 
7507   // Copy the result values into the output registers.
7508   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7509     CCValAssign &VA = RVLocs[i];
7510     assert(VA.isRegLoc() && "Can only return in registers!");
7511 
7512     SDValue Arg = OutVals[RealResIdx];
7513 
7514     switch (VA.getLocInfo()) {
7515     default: llvm_unreachable("Unknown loc info!");
7516     case CCValAssign::Full: break;
7517     case CCValAssign::AExt:
7518       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7519       break;
7520     case CCValAssign::ZExt:
7521       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7522       break;
7523     case CCValAssign::SExt:
7524       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7525       break;
7526     }
7527     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7528       bool isLittleEndian = Subtarget.isLittleEndian();
7529       // Legalize ret f64 -> ret 2 x i32.
7530       SDValue SVal =
7531           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7532                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7533       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7534       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7535       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7536                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7537       Flag = Chain.getValue(1);
7538       VA = RVLocs[++i]; // skip ahead to next loc
7539       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7540     } else
7541       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7542     Flag = Chain.getValue(1);
7543     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7544   }
7545 
7546   RetOps[0] = Chain;  // Update chain.
7547 
7548   // Add the flag if we have it.
7549   if (Flag.getNode())
7550     RetOps.push_back(Flag);
7551 
7552   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7553 }
7554 
7555 SDValue
7556 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7557                                                 SelectionDAG &DAG) const {
7558   SDLoc dl(Op);
7559 
7560   // Get the correct type for integers.
7561   EVT IntVT = Op.getValueType();
7562 
7563   // Get the inputs.
7564   SDValue Chain = Op.getOperand(0);
7565   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7566   // Build a DYNAREAOFFSET node.
7567   SDValue Ops[2] = {Chain, FPSIdx};
7568   SDVTList VTs = DAG.getVTList(IntVT);
7569   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7570 }
7571 
7572 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7573                                              SelectionDAG &DAG) const {
7574   // When we pop the dynamic allocation we need to restore the SP link.
7575   SDLoc dl(Op);
7576 
7577   // Get the correct type for pointers.
7578   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7579 
7580   // Construct the stack pointer operand.
7581   bool isPPC64 = Subtarget.isPPC64();
7582   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7583   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7584 
7585   // Get the operands for the STACKRESTORE.
7586   SDValue Chain = Op.getOperand(0);
7587   SDValue SaveSP = Op.getOperand(1);
7588 
7589   // Load the old link SP.
7590   SDValue LoadLinkSP =
7591       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7592 
7593   // Restore the stack pointer.
7594   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7595 
7596   // Store the old link SP.
7597   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7598 }
7599 
7600 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7601   MachineFunction &MF = DAG.getMachineFunction();
7602   bool isPPC64 = Subtarget.isPPC64();
7603   EVT PtrVT = getPointerTy(MF.getDataLayout());
7604 
7605   // Get current frame pointer save index.  The users of this index will be
7606   // primarily DYNALLOC instructions.
7607   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7608   int RASI = FI->getReturnAddrSaveIndex();
7609 
7610   // If the frame pointer save index hasn't been defined yet.
7611   if (!RASI) {
7612     // Find out what the fix offset of the frame pointer save area.
7613     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7614     // Allocate the frame index for frame pointer save area.
7615     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7616     // Save the result.
7617     FI->setReturnAddrSaveIndex(RASI);
7618   }
7619   return DAG.getFrameIndex(RASI, PtrVT);
7620 }
7621 
7622 SDValue
7623 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7624   MachineFunction &MF = DAG.getMachineFunction();
7625   bool isPPC64 = Subtarget.isPPC64();
7626   EVT PtrVT = getPointerTy(MF.getDataLayout());
7627 
7628   // Get current frame pointer save index.  The users of this index will be
7629   // primarily DYNALLOC instructions.
7630   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7631   int FPSI = FI->getFramePointerSaveIndex();
7632 
7633   // If the frame pointer save index hasn't been defined yet.
7634   if (!FPSI) {
7635     // Find out what the fix offset of the frame pointer save area.
7636     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7637     // Allocate the frame index for frame pointer save area.
7638     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7639     // Save the result.
7640     FI->setFramePointerSaveIndex(FPSI);
7641   }
7642   return DAG.getFrameIndex(FPSI, PtrVT);
7643 }
7644 
7645 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7646                                                    SelectionDAG &DAG) const {
7647   MachineFunction &MF = DAG.getMachineFunction();
7648   // Get the inputs.
7649   SDValue Chain = Op.getOperand(0);
7650   SDValue Size  = Op.getOperand(1);
7651   SDLoc dl(Op);
7652 
7653   // Get the correct type for pointers.
7654   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7655   // Negate the size.
7656   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7657                                 DAG.getConstant(0, dl, PtrVT), Size);
7658   // Construct a node for the frame pointer save index.
7659   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7660   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7661   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7662   if (hasInlineStackProbe(MF))
7663     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7664   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7665 }
7666 
7667 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7668                                                      SelectionDAG &DAG) const {
7669   MachineFunction &MF = DAG.getMachineFunction();
7670 
7671   bool isPPC64 = Subtarget.isPPC64();
7672   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7673 
7674   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7675   return DAG.getFrameIndex(FI, PtrVT);
7676 }
7677 
7678 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7679                                                SelectionDAG &DAG) const {
7680   SDLoc DL(Op);
7681   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7682                      DAG.getVTList(MVT::i32, MVT::Other),
7683                      Op.getOperand(0), Op.getOperand(1));
7684 }
7685 
7686 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7687                                                 SelectionDAG &DAG) const {
7688   SDLoc DL(Op);
7689   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7690                      Op.getOperand(0), Op.getOperand(1));
7691 }
7692 
7693 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7694   if (Op.getValueType().isVector())
7695     return LowerVectorLoad(Op, DAG);
7696 
7697   assert(Op.getValueType() == MVT::i1 &&
7698          "Custom lowering only for i1 loads");
7699 
7700   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7701 
7702   SDLoc dl(Op);
7703   LoadSDNode *LD = cast<LoadSDNode>(Op);
7704 
7705   SDValue Chain = LD->getChain();
7706   SDValue BasePtr = LD->getBasePtr();
7707   MachineMemOperand *MMO = LD->getMemOperand();
7708 
7709   SDValue NewLD =
7710       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7711                      BasePtr, MVT::i8, MMO);
7712   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7713 
7714   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7715   return DAG.getMergeValues(Ops, dl);
7716 }
7717 
7718 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7719   if (Op.getOperand(1).getValueType().isVector())
7720     return LowerVectorStore(Op, DAG);
7721 
7722   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7723          "Custom lowering only for i1 stores");
7724 
7725   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7726 
7727   SDLoc dl(Op);
7728   StoreSDNode *ST = cast<StoreSDNode>(Op);
7729 
7730   SDValue Chain = ST->getChain();
7731   SDValue BasePtr = ST->getBasePtr();
7732   SDValue Value = ST->getValue();
7733   MachineMemOperand *MMO = ST->getMemOperand();
7734 
7735   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7736                       Value);
7737   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7738 }
7739 
7740 // FIXME: Remove this once the ANDI glue bug is fixed:
7741 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7742   assert(Op.getValueType() == MVT::i1 &&
7743          "Custom lowering only for i1 results");
7744 
7745   SDLoc DL(Op);
7746   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7747 }
7748 
7749 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7750                                                SelectionDAG &DAG) const {
7751 
7752   // Implements a vector truncate that fits in a vector register as a shuffle.
7753   // We want to legalize vector truncates down to where the source fits in
7754   // a vector register (and target is therefore smaller than vector register
7755   // size).  At that point legalization will try to custom lower the sub-legal
7756   // result and get here - where we can contain the truncate as a single target
7757   // operation.
7758 
7759   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7760   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7761   //
7762   // We will implement it for big-endian ordering as this (where x denotes
7763   // undefined):
7764   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7765   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7766   //
7767   // The same operation in little-endian ordering will be:
7768   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7769   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7770 
7771   EVT TrgVT = Op.getValueType();
7772   assert(TrgVT.isVector() && "Vector type expected.");
7773   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7774   EVT EltVT = TrgVT.getVectorElementType();
7775   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7776       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7777       !isPowerOf2_32(EltVT.getSizeInBits()))
7778     return SDValue();
7779 
7780   SDValue N1 = Op.getOperand(0);
7781   EVT SrcVT = N1.getValueType();
7782   unsigned SrcSize = SrcVT.getSizeInBits();
7783   if (SrcSize > 256 ||
7784       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7785       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7786     return SDValue();
7787   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7788     return SDValue();
7789 
7790   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7791   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7792 
7793   SDLoc DL(Op);
7794   SDValue Op1, Op2;
7795   if (SrcSize == 256) {
7796     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7797     EVT SplitVT =
7798         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7799     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7800     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7801                       DAG.getConstant(0, DL, VecIdxTy));
7802     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7803                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7804   }
7805   else {
7806     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7807     Op2 = DAG.getUNDEF(WideVT);
7808   }
7809 
7810   // First list the elements we want to keep.
7811   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7812   SmallVector<int, 16> ShuffV;
7813   if (Subtarget.isLittleEndian())
7814     for (unsigned i = 0; i < TrgNumElts; ++i)
7815       ShuffV.push_back(i * SizeMult);
7816   else
7817     for (unsigned i = 1; i <= TrgNumElts; ++i)
7818       ShuffV.push_back(i * SizeMult - 1);
7819 
7820   // Populate the remaining elements with undefs.
7821   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7822     // ShuffV.push_back(i + WideNumElts);
7823     ShuffV.push_back(WideNumElts + 1);
7824 
7825   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7826   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7827   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7828 }
7829 
7830 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7831 /// possible.
7832 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7833   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7834   EVT ResVT = Op.getValueType();
7835   EVT CmpVT = Op.getOperand(0).getValueType();
7836   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7837   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7838   SDLoc dl(Op);
7839 
7840   // Without power9-vector, we don't have native instruction for f128 comparison.
7841   // Following transformation to libcall is needed for setcc:
7842   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7843   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7844     SDValue Z = DAG.getSetCC(
7845         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7846         LHS, RHS, CC);
7847     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7848     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7849   }
7850 
7851   // Not FP, or using SPE? Not a fsel.
7852   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7853       Subtarget.hasSPE())
7854     return Op;
7855 
7856   SDNodeFlags Flags = Op.getNode()->getFlags();
7857 
7858   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7859   // presence of infinities.
7860   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7861     switch (CC) {
7862     default:
7863       break;
7864     case ISD::SETOGT:
7865     case ISD::SETGT:
7866       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7867     case ISD::SETOLT:
7868     case ISD::SETLT:
7869       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7870     }
7871   }
7872 
7873   // We might be able to do better than this under some circumstances, but in
7874   // general, fsel-based lowering of select is a finite-math-only optimization.
7875   // For more information, see section F.3 of the 2.06 ISA specification.
7876   // With ISA 3.0
7877   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7878       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7879     return Op;
7880 
7881   // If the RHS of the comparison is a 0.0, we don't need to do the
7882   // subtraction at all.
7883   SDValue Sel1;
7884   if (isFloatingPointZero(RHS))
7885     switch (CC) {
7886     default: break;       // SETUO etc aren't handled by fsel.
7887     case ISD::SETNE:
7888       std::swap(TV, FV);
7889       LLVM_FALLTHROUGH;
7890     case ISD::SETEQ:
7891       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7892         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7893       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7894       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7895         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7896       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7897                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7898     case ISD::SETULT:
7899     case ISD::SETLT:
7900       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7901       LLVM_FALLTHROUGH;
7902     case ISD::SETOGE:
7903     case ISD::SETGE:
7904       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7905         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7906       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7907     case ISD::SETUGT:
7908     case ISD::SETGT:
7909       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7910       LLVM_FALLTHROUGH;
7911     case ISD::SETOLE:
7912     case ISD::SETLE:
7913       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7914         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7915       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7916                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7917     }
7918 
7919   SDValue Cmp;
7920   switch (CC) {
7921   default: break;       // SETUO etc aren't handled by fsel.
7922   case ISD::SETNE:
7923     std::swap(TV, FV);
7924     LLVM_FALLTHROUGH;
7925   case ISD::SETEQ:
7926     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7927     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7928       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7929     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7930     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7931       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7932     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7933                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7934   case ISD::SETULT:
7935   case ISD::SETLT:
7936     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7937     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7938       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7939     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7940   case ISD::SETOGE:
7941   case ISD::SETGE:
7942     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7943     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7944       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7945     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7946   case ISD::SETUGT:
7947   case ISD::SETGT:
7948     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7949     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7950       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7951     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7952   case ISD::SETOLE:
7953   case ISD::SETLE:
7954     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7955     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7956       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7957     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7958   }
7959   return Op;
7960 }
7961 
7962 static unsigned getPPCStrictOpcode(unsigned Opc) {
7963   switch (Opc) {
7964   default:
7965     llvm_unreachable("No strict version of this opcode!");
7966   case PPCISD::FCTIDZ:
7967     return PPCISD::STRICT_FCTIDZ;
7968   case PPCISD::FCTIWZ:
7969     return PPCISD::STRICT_FCTIWZ;
7970   case PPCISD::FCTIDUZ:
7971     return PPCISD::STRICT_FCTIDUZ;
7972   case PPCISD::FCTIWUZ:
7973     return PPCISD::STRICT_FCTIWUZ;
7974   case PPCISD::FCFID:
7975     return PPCISD::STRICT_FCFID;
7976   case PPCISD::FCFIDU:
7977     return PPCISD::STRICT_FCFIDU;
7978   case PPCISD::FCFIDS:
7979     return PPCISD::STRICT_FCFIDS;
7980   case PPCISD::FCFIDUS:
7981     return PPCISD::STRICT_FCFIDUS;
7982   }
7983 }
7984 
7985 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
7986                               const PPCSubtarget &Subtarget) {
7987   SDLoc dl(Op);
7988   bool IsStrict = Op->isStrictFPOpcode();
7989   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7990                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7991 
7992   // TODO: Any other flags to propagate?
7993   SDNodeFlags Flags;
7994   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7995 
7996   // For strict nodes, source is the second operand.
7997   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7998   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
7999   assert(Src.getValueType().isFloatingPoint());
8000   if (Src.getValueType() == MVT::f32) {
8001     if (IsStrict) {
8002       Src =
8003           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8004                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8005       Chain = Src.getValue(1);
8006     } else
8007       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8008   }
8009   SDValue Conv;
8010   unsigned Opc = ISD::DELETED_NODE;
8011   switch (Op.getSimpleValueType().SimpleTy) {
8012   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8013   case MVT::i32:
8014     Opc = IsSigned ? PPCISD::FCTIWZ
8015                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8016     break;
8017   case MVT::i64:
8018     assert((IsSigned || Subtarget.hasFPCVT()) &&
8019            "i64 FP_TO_UINT is supported only with FPCVT");
8020     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8021   }
8022   if (IsStrict) {
8023     Opc = getPPCStrictOpcode(Opc);
8024     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8025                        {Chain, Src}, Flags);
8026   } else {
8027     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8028   }
8029   return Conv;
8030 }
8031 
8032 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8033                                                SelectionDAG &DAG,
8034                                                const SDLoc &dl) const {
8035   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8036   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8037                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8038   bool IsStrict = Op->isStrictFPOpcode();
8039 
8040   // Convert the FP value to an int value through memory.
8041   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8042                   (IsSigned || Subtarget.hasFPCVT());
8043   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8044   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8045   MachinePointerInfo MPI =
8046       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8047 
8048   // Emit a store to the stack slot.
8049   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8050   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8051   if (i32Stack) {
8052     MachineFunction &MF = DAG.getMachineFunction();
8053     Alignment = Align(4);
8054     MachineMemOperand *MMO =
8055         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8056     SDValue Ops[] = { Chain, Tmp, FIPtr };
8057     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8058               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8059   } else
8060     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8061 
8062   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8063   // add in a bias on big endian.
8064   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8065     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8066                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8067     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8068   }
8069 
8070   RLI.Chain = Chain;
8071   RLI.Ptr = FIPtr;
8072   RLI.MPI = MPI;
8073   RLI.Alignment = Alignment;
8074 }
8075 
8076 /// Custom lowers floating point to integer conversions to use
8077 /// the direct move instructions available in ISA 2.07 to avoid the
8078 /// need for load/store combinations.
8079 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8080                                                     SelectionDAG &DAG,
8081                                                     const SDLoc &dl) const {
8082   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8083   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8084   if (Op->isStrictFPOpcode())
8085     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8086   else
8087     return Mov;
8088 }
8089 
8090 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8091                                           const SDLoc &dl) const {
8092   bool IsStrict = Op->isStrictFPOpcode();
8093   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8094                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8095   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8096   EVT SrcVT = Src.getValueType();
8097   EVT DstVT = Op.getValueType();
8098 
8099   // FP to INT conversions are legal for f128.
8100   if (SrcVT == MVT::f128)
8101     return Subtarget.hasP9Vector() ? Op : SDValue();
8102 
8103   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8104   // PPC (the libcall is not available).
8105   if (SrcVT == MVT::ppcf128) {
8106     if (DstVT == MVT::i32) {
8107       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8108       // set other fast-math flags to FP operations in both strict and
8109       // non-strict cases. (FP_TO_SINT, FSUB)
8110       SDNodeFlags Flags;
8111       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8112 
8113       if (IsSigned) {
8114         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8115                                  DAG.getIntPtrConstant(0, dl));
8116         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8117                                  DAG.getIntPtrConstant(1, dl));
8118 
8119         // Add the two halves of the long double in round-to-zero mode, and use
8120         // a smaller FP_TO_SINT.
8121         if (IsStrict) {
8122           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8123                                     DAG.getVTList(MVT::f64, MVT::Other),
8124                                     {Op.getOperand(0), Lo, Hi}, Flags);
8125           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8126                              DAG.getVTList(MVT::i32, MVT::Other),
8127                              {Res.getValue(1), Res}, Flags);
8128         } else {
8129           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8130           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8131         }
8132       } else {
8133         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8134         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8135         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8136         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8137         if (IsStrict) {
8138           // Sel = Src < 0x80000000
8139           // FltOfs = select Sel, 0.0, 0x80000000
8140           // IntOfs = select Sel, 0, 0x80000000
8141           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8142           SDValue Chain = Op.getOperand(0);
8143           EVT SetCCVT =
8144               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8145           EVT DstSetCCVT =
8146               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8147           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8148                                      Chain, true);
8149           Chain = Sel.getValue(1);
8150 
8151           SDValue FltOfs = DAG.getSelect(
8152               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8153           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8154 
8155           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8156                                     DAG.getVTList(SrcVT, MVT::Other),
8157                                     {Chain, Src, FltOfs}, Flags);
8158           Chain = Val.getValue(1);
8159           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8160                                      DAG.getVTList(DstVT, MVT::Other),
8161                                      {Chain, Val}, Flags);
8162           Chain = SInt.getValue(1);
8163           SDValue IntOfs = DAG.getSelect(
8164               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8165           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8166           return DAG.getMergeValues({Result, Chain}, dl);
8167         } else {
8168           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8169           // FIXME: generated code sucks.
8170           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8171           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8172           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8173           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8174           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8175         }
8176       }
8177     }
8178 
8179     return SDValue();
8180   }
8181 
8182   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8183     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8184 
8185   ReuseLoadInfo RLI;
8186   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8187 
8188   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8189                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8190 }
8191 
8192 // We're trying to insert a regular store, S, and then a load, L. If the
8193 // incoming value, O, is a load, we might just be able to have our load use the
8194 // address used by O. However, we don't know if anything else will store to
8195 // that address before we can load from it. To prevent this situation, we need
8196 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8197 // the same chain operand as O, we create a token factor from the chain results
8198 // of O and L, and we replace all uses of O's chain result with that token
8199 // factor (see spliceIntoChain below for this last part).
8200 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8201                                             ReuseLoadInfo &RLI,
8202                                             SelectionDAG &DAG,
8203                                             ISD::LoadExtType ET) const {
8204   // Conservatively skip reusing for constrained FP nodes.
8205   if (Op->isStrictFPOpcode())
8206     return false;
8207 
8208   SDLoc dl(Op);
8209   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8210                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8211   if (ET == ISD::NON_EXTLOAD &&
8212       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8213       isOperationLegalOrCustom(Op.getOpcode(),
8214                                Op.getOperand(0).getValueType())) {
8215 
8216     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8217     return true;
8218   }
8219 
8220   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8221   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8222       LD->isNonTemporal())
8223     return false;
8224   if (LD->getMemoryVT() != MemVT)
8225     return false;
8226 
8227   // If the result of the load is an illegal type, then we can't build a
8228   // valid chain for reuse since the legalised loads and token factor node that
8229   // ties the legalised loads together uses a different output chain then the
8230   // illegal load.
8231   if (!isTypeLegal(LD->getValueType(0)))
8232     return false;
8233 
8234   RLI.Ptr = LD->getBasePtr();
8235   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8236     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8237            "Non-pre-inc AM on PPC?");
8238     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8239                           LD->getOffset());
8240   }
8241 
8242   RLI.Chain = LD->getChain();
8243   RLI.MPI = LD->getPointerInfo();
8244   RLI.IsDereferenceable = LD->isDereferenceable();
8245   RLI.IsInvariant = LD->isInvariant();
8246   RLI.Alignment = LD->getAlign();
8247   RLI.AAInfo = LD->getAAInfo();
8248   RLI.Ranges = LD->getRanges();
8249 
8250   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8251   return true;
8252 }
8253 
8254 // Given the head of the old chain, ResChain, insert a token factor containing
8255 // it and NewResChain, and make users of ResChain now be users of that token
8256 // factor.
8257 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8258 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8259                                         SDValue NewResChain,
8260                                         SelectionDAG &DAG) const {
8261   if (!ResChain)
8262     return;
8263 
8264   SDLoc dl(NewResChain);
8265 
8266   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8267                            NewResChain, DAG.getUNDEF(MVT::Other));
8268   assert(TF.getNode() != NewResChain.getNode() &&
8269          "A new TF really is required here");
8270 
8271   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8272   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8273 }
8274 
8275 /// Analyze profitability of direct move
8276 /// prefer float load to int load plus direct move
8277 /// when there is no integer use of int load
8278 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8279   SDNode *Origin = Op.getOperand(0).getNode();
8280   if (Origin->getOpcode() != ISD::LOAD)
8281     return true;
8282 
8283   // If there is no LXSIBZX/LXSIHZX, like Power8,
8284   // prefer direct move if the memory size is 1 or 2 bytes.
8285   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8286   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8287     return true;
8288 
8289   for (SDNode::use_iterator UI = Origin->use_begin(),
8290                             UE = Origin->use_end();
8291        UI != UE; ++UI) {
8292 
8293     // Only look at the users of the loaded value.
8294     if (UI.getUse().get().getResNo() != 0)
8295       continue;
8296 
8297     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8298         UI->getOpcode() != ISD::UINT_TO_FP &&
8299         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8300         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8301       return true;
8302   }
8303 
8304   return false;
8305 }
8306 
8307 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8308                               const PPCSubtarget &Subtarget,
8309                               SDValue Chain = SDValue()) {
8310   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8311                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8312   SDLoc dl(Op);
8313 
8314   // TODO: Any other flags to propagate?
8315   SDNodeFlags Flags;
8316   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8317 
8318   // If we have FCFIDS, then use it when converting to single-precision.
8319   // Otherwise, convert to double-precision and then round.
8320   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8321   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8322                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8323   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8324   if (Op->isStrictFPOpcode()) {
8325     if (!Chain)
8326       Chain = Op.getOperand(0);
8327     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8328                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8329   } else
8330     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8331 }
8332 
8333 /// Custom lowers integer to floating point conversions to use
8334 /// the direct move instructions available in ISA 2.07 to avoid the
8335 /// need for load/store combinations.
8336 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8337                                                     SelectionDAG &DAG,
8338                                                     const SDLoc &dl) const {
8339   assert((Op.getValueType() == MVT::f32 ||
8340           Op.getValueType() == MVT::f64) &&
8341          "Invalid floating point type as target of conversion");
8342   assert(Subtarget.hasFPCVT() &&
8343          "Int to FP conversions with direct moves require FPCVT");
8344   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8345   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8346   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8347                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8348   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8349   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8350   return convertIntToFP(Op, Mov, DAG, Subtarget);
8351 }
8352 
8353 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8354 
8355   EVT VecVT = Vec.getValueType();
8356   assert(VecVT.isVector() && "Expected a vector type.");
8357   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8358 
8359   EVT EltVT = VecVT.getVectorElementType();
8360   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8361   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8362 
8363   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8364   SmallVector<SDValue, 16> Ops(NumConcat);
8365   Ops[0] = Vec;
8366   SDValue UndefVec = DAG.getUNDEF(VecVT);
8367   for (unsigned i = 1; i < NumConcat; ++i)
8368     Ops[i] = UndefVec;
8369 
8370   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8371 }
8372 
8373 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8374                                                 const SDLoc &dl) const {
8375   bool IsStrict = Op->isStrictFPOpcode();
8376   unsigned Opc = Op.getOpcode();
8377   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8378   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8379           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8380          "Unexpected conversion type");
8381   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8382          "Supports conversions to v2f64/v4f32 only.");
8383 
8384   // TODO: Any other flags to propagate?
8385   SDNodeFlags Flags;
8386   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8387 
8388   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8389   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8390 
8391   SDValue Wide = widenVec(DAG, Src, dl);
8392   EVT WideVT = Wide.getValueType();
8393   unsigned WideNumElts = WideVT.getVectorNumElements();
8394   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8395 
8396   SmallVector<int, 16> ShuffV;
8397   for (unsigned i = 0; i < WideNumElts; ++i)
8398     ShuffV.push_back(i + WideNumElts);
8399 
8400   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8401   int SaveElts = FourEltRes ? 4 : 2;
8402   if (Subtarget.isLittleEndian())
8403     for (int i = 0; i < SaveElts; i++)
8404       ShuffV[i * Stride] = i;
8405   else
8406     for (int i = 1; i <= SaveElts; i++)
8407       ShuffV[i * Stride - 1] = i - 1;
8408 
8409   SDValue ShuffleSrc2 =
8410       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8411   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8412 
8413   SDValue Extend;
8414   if (SignedConv) {
8415     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8416     EVT ExtVT = Src.getValueType();
8417     if (Subtarget.hasP9Altivec())
8418       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8419                                IntermediateVT.getVectorNumElements());
8420 
8421     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8422                          DAG.getValueType(ExtVT));
8423   } else
8424     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8425 
8426   if (IsStrict)
8427     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8428                        {Op.getOperand(0), Extend}, Flags);
8429 
8430   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8431 }
8432 
8433 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8434                                           SelectionDAG &DAG) const {
8435   SDLoc dl(Op);
8436   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8437                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8438   bool IsStrict = Op->isStrictFPOpcode();
8439   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8440   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8441 
8442   // TODO: Any other flags to propagate?
8443   SDNodeFlags Flags;
8444   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8445 
8446   EVT InVT = Src.getValueType();
8447   EVT OutVT = Op.getValueType();
8448   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8449       isOperationCustom(Op.getOpcode(), InVT))
8450     return LowerINT_TO_FPVector(Op, DAG, dl);
8451 
8452   // Conversions to f128 are legal.
8453   if (Op.getValueType() == MVT::f128)
8454     return Subtarget.hasP9Vector() ? Op : SDValue();
8455 
8456   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8457   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8458     return SDValue();
8459 
8460   if (Src.getValueType() == MVT::i1) {
8461     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8462                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8463                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8464     if (IsStrict)
8465       return DAG.getMergeValues({Sel, Chain}, dl);
8466     else
8467       return Sel;
8468   }
8469 
8470   // If we have direct moves, we can do all the conversion, skip the store/load
8471   // however, without FPCVT we can't do most conversions.
8472   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8473       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8474     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8475 
8476   assert((IsSigned || Subtarget.hasFPCVT()) &&
8477          "UINT_TO_FP is supported only with FPCVT");
8478 
8479   if (Src.getValueType() == MVT::i64) {
8480     SDValue SINT = Src;
8481     // When converting to single-precision, we actually need to convert
8482     // to double-precision first and then round to single-precision.
8483     // To avoid double-rounding effects during that operation, we have
8484     // to prepare the input operand.  Bits that might be truncated when
8485     // converting to double-precision are replaced by a bit that won't
8486     // be lost at this stage, but is below the single-precision rounding
8487     // position.
8488     //
8489     // However, if -enable-unsafe-fp-math is in effect, accept double
8490     // rounding to avoid the extra overhead.
8491     if (Op.getValueType() == MVT::f32 &&
8492         !Subtarget.hasFPCVT() &&
8493         !DAG.getTarget().Options.UnsafeFPMath) {
8494 
8495       // Twiddle input to make sure the low 11 bits are zero.  (If this
8496       // is the case, we are guaranteed the value will fit into the 53 bit
8497       // mantissa of an IEEE double-precision value without rounding.)
8498       // If any of those low 11 bits were not zero originally, make sure
8499       // bit 12 (value 2048) is set instead, so that the final rounding
8500       // to single-precision gets the correct result.
8501       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8502                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8503       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8504                           Round, DAG.getConstant(2047, dl, MVT::i64));
8505       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8506       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8507                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8508 
8509       // However, we cannot use that value unconditionally: if the magnitude
8510       // of the input value is small, the bit-twiddling we did above might
8511       // end up visibly changing the output.  Fortunately, in that case, we
8512       // don't need to twiddle bits since the original input will convert
8513       // exactly to double-precision floating-point already.  Therefore,
8514       // construct a conditional to use the original value if the top 11
8515       // bits are all sign-bit copies, and use the rounded value computed
8516       // above otherwise.
8517       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8518                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8519       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8520                          Cond, DAG.getConstant(1, dl, MVT::i64));
8521       Cond = DAG.getSetCC(
8522           dl,
8523           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8524           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8525 
8526       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8527     }
8528 
8529     ReuseLoadInfo RLI;
8530     SDValue Bits;
8531 
8532     MachineFunction &MF = DAG.getMachineFunction();
8533     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8534       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8535                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8536       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8537     } else if (Subtarget.hasLFIWAX() &&
8538                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8539       MachineMemOperand *MMO =
8540         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8541                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8542       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8543       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8544                                      DAG.getVTList(MVT::f64, MVT::Other),
8545                                      Ops, MVT::i32, MMO);
8546       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8547     } else if (Subtarget.hasFPCVT() &&
8548                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8549       MachineMemOperand *MMO =
8550         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8551                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8552       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8553       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8554                                      DAG.getVTList(MVT::f64, MVT::Other),
8555                                      Ops, MVT::i32, MMO);
8556       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8557     } else if (((Subtarget.hasLFIWAX() &&
8558                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8559                 (Subtarget.hasFPCVT() &&
8560                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8561                SINT.getOperand(0).getValueType() == MVT::i32) {
8562       MachineFrameInfo &MFI = MF.getFrameInfo();
8563       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8564 
8565       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8566       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8567 
8568       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8569                                    MachinePointerInfo::getFixedStack(
8570                                        DAG.getMachineFunction(), FrameIdx));
8571       Chain = Store;
8572 
8573       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8574              "Expected an i32 store");
8575 
8576       RLI.Ptr = FIdx;
8577       RLI.Chain = Chain;
8578       RLI.MPI =
8579           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8580       RLI.Alignment = Align(4);
8581 
8582       MachineMemOperand *MMO =
8583         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8584                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8585       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8586       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8587                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8588                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8589                                      Ops, MVT::i32, MMO);
8590       Chain = Bits.getValue(1);
8591     } else
8592       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8593 
8594     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8595     if (IsStrict)
8596       Chain = FP.getValue(1);
8597 
8598     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8599       if (IsStrict)
8600         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8601                          DAG.getVTList(MVT::f32, MVT::Other),
8602                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8603       else
8604         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8605                          DAG.getIntPtrConstant(0, dl));
8606     }
8607     return FP;
8608   }
8609 
8610   assert(Src.getValueType() == MVT::i32 &&
8611          "Unhandled INT_TO_FP type in custom expander!");
8612   // Since we only generate this in 64-bit mode, we can take advantage of
8613   // 64-bit registers.  In particular, sign extend the input value into the
8614   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8615   // then lfd it and fcfid it.
8616   MachineFunction &MF = DAG.getMachineFunction();
8617   MachineFrameInfo &MFI = MF.getFrameInfo();
8618   EVT PtrVT = getPointerTy(MF.getDataLayout());
8619 
8620   SDValue Ld;
8621   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8622     ReuseLoadInfo RLI;
8623     bool ReusingLoad;
8624     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8625       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8626       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8627 
8628       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8629                                    MachinePointerInfo::getFixedStack(
8630                                        DAG.getMachineFunction(), FrameIdx));
8631       Chain = Store;
8632 
8633       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8634              "Expected an i32 store");
8635 
8636       RLI.Ptr = FIdx;
8637       RLI.Chain = Chain;
8638       RLI.MPI =
8639           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8640       RLI.Alignment = Align(4);
8641     }
8642 
8643     MachineMemOperand *MMO =
8644       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8645                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8646     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8647     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8648                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8649                                  MVT::i32, MMO);
8650     Chain = Ld.getValue(1);
8651     if (ReusingLoad)
8652       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8653   } else {
8654     assert(Subtarget.isPPC64() &&
8655            "i32->FP without LFIWAX supported only on PPC64");
8656 
8657     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8658     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8659 
8660     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8661 
8662     // STD the extended value into the stack slot.
8663     SDValue Store = DAG.getStore(
8664         Chain, dl, Ext64, FIdx,
8665         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8666     Chain = Store;
8667 
8668     // Load the value as a double.
8669     Ld = DAG.getLoad(
8670         MVT::f64, dl, Chain, FIdx,
8671         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8672     Chain = Ld.getValue(1);
8673   }
8674 
8675   // FCFID it and return it.
8676   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8677   if (IsStrict)
8678     Chain = FP.getValue(1);
8679   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8680     if (IsStrict)
8681       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8682                        DAG.getVTList(MVT::f32, MVT::Other),
8683                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8684     else
8685       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8686                        DAG.getIntPtrConstant(0, dl));
8687   }
8688   return FP;
8689 }
8690 
8691 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8692                                             SelectionDAG &DAG) const {
8693   SDLoc dl(Op);
8694   /*
8695    The rounding mode is in bits 30:31 of FPSR, and has the following
8696    settings:
8697      00 Round to nearest
8698      01 Round to 0
8699      10 Round to +inf
8700      11 Round to -inf
8701 
8702   FLT_ROUNDS, on the other hand, expects the following:
8703     -1 Undefined
8704      0 Round to 0
8705      1 Round to nearest
8706      2 Round to +inf
8707      3 Round to -inf
8708 
8709   To perform the conversion, we do:
8710     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8711   */
8712 
8713   MachineFunction &MF = DAG.getMachineFunction();
8714   EVT VT = Op.getValueType();
8715   EVT PtrVT = getPointerTy(MF.getDataLayout());
8716 
8717   // Save FP Control Word to register
8718   SDValue Chain = Op.getOperand(0);
8719   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8720   Chain = MFFS.getValue(1);
8721 
8722   SDValue CWD;
8723   if (isTypeLegal(MVT::i64)) {
8724     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8725                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8726   } else {
8727     // Save FP register to stack slot
8728     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8729     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8730     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8731 
8732     // Load FP Control Word from low 32 bits of stack slot.
8733     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8734            "Stack slot adjustment is valid only on big endian subtargets!");
8735     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8736     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8737     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8738     Chain = CWD.getValue(1);
8739   }
8740 
8741   // Transform as necessary
8742   SDValue CWD1 =
8743     DAG.getNode(ISD::AND, dl, MVT::i32,
8744                 CWD, DAG.getConstant(3, dl, MVT::i32));
8745   SDValue CWD2 =
8746     DAG.getNode(ISD::SRL, dl, MVT::i32,
8747                 DAG.getNode(ISD::AND, dl, MVT::i32,
8748                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8749                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8750                             DAG.getConstant(3, dl, MVT::i32)),
8751                 DAG.getConstant(1, dl, MVT::i32));
8752 
8753   SDValue RetVal =
8754     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8755 
8756   RetVal =
8757       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8758                   dl, VT, RetVal);
8759 
8760   return DAG.getMergeValues({RetVal, Chain}, dl);
8761 }
8762 
8763 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8764   EVT VT = Op.getValueType();
8765   unsigned BitWidth = VT.getSizeInBits();
8766   SDLoc dl(Op);
8767   assert(Op.getNumOperands() == 3 &&
8768          VT == Op.getOperand(1).getValueType() &&
8769          "Unexpected SHL!");
8770 
8771   // Expand into a bunch of logical ops.  Note that these ops
8772   // depend on the PPC behavior for oversized shift amounts.
8773   SDValue Lo = Op.getOperand(0);
8774   SDValue Hi = Op.getOperand(1);
8775   SDValue Amt = Op.getOperand(2);
8776   EVT AmtVT = Amt.getValueType();
8777 
8778   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8779                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8780   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8781   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8782   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8783   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8784                              DAG.getConstant(-BitWidth, dl, AmtVT));
8785   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8786   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8787   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8788   SDValue OutOps[] = { OutLo, OutHi };
8789   return DAG.getMergeValues(OutOps, dl);
8790 }
8791 
8792 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8793   EVT VT = Op.getValueType();
8794   SDLoc dl(Op);
8795   unsigned BitWidth = VT.getSizeInBits();
8796   assert(Op.getNumOperands() == 3 &&
8797          VT == Op.getOperand(1).getValueType() &&
8798          "Unexpected SRL!");
8799 
8800   // Expand into a bunch of logical ops.  Note that these ops
8801   // depend on the PPC behavior for oversized shift amounts.
8802   SDValue Lo = Op.getOperand(0);
8803   SDValue Hi = Op.getOperand(1);
8804   SDValue Amt = Op.getOperand(2);
8805   EVT AmtVT = Amt.getValueType();
8806 
8807   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8808                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8809   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8810   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8811   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8812   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8813                              DAG.getConstant(-BitWidth, dl, AmtVT));
8814   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8815   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8816   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8817   SDValue OutOps[] = { OutLo, OutHi };
8818   return DAG.getMergeValues(OutOps, dl);
8819 }
8820 
8821 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8822   SDLoc dl(Op);
8823   EVT VT = Op.getValueType();
8824   unsigned BitWidth = VT.getSizeInBits();
8825   assert(Op.getNumOperands() == 3 &&
8826          VT == Op.getOperand(1).getValueType() &&
8827          "Unexpected SRA!");
8828 
8829   // Expand into a bunch of logical ops, followed by a select_cc.
8830   SDValue Lo = Op.getOperand(0);
8831   SDValue Hi = Op.getOperand(1);
8832   SDValue Amt = Op.getOperand(2);
8833   EVT AmtVT = Amt.getValueType();
8834 
8835   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8836                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8837   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8838   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8839   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8840   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8841                              DAG.getConstant(-BitWidth, dl, AmtVT));
8842   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8843   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8844   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8845                                   Tmp4, Tmp6, ISD::SETLE);
8846   SDValue OutOps[] = { OutLo, OutHi };
8847   return DAG.getMergeValues(OutOps, dl);
8848 }
8849 
8850 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8851                                             SelectionDAG &DAG) const {
8852   SDLoc dl(Op);
8853   EVT VT = Op.getValueType();
8854   unsigned BitWidth = VT.getSizeInBits();
8855 
8856   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8857   SDValue X = Op.getOperand(0);
8858   SDValue Y = Op.getOperand(1);
8859   SDValue Z = Op.getOperand(2);
8860   EVT AmtVT = Z.getValueType();
8861 
8862   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8863   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8864   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8865   // on PowerPC shift by BW being well defined.
8866   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8867                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8868   SDValue SubZ =
8869       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8870   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8871   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8872   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8873 }
8874 
8875 //===----------------------------------------------------------------------===//
8876 // Vector related lowering.
8877 //
8878 
8879 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8880 /// element size of SplatSize. Cast the result to VT.
8881 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8882                                       SelectionDAG &DAG, const SDLoc &dl) {
8883   static const MVT VTys[] = { // canonical VT to use for each size.
8884     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8885   };
8886 
8887   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8888 
8889   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8890   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8891     SplatSize = 1;
8892     Val = 0xFF;
8893   }
8894 
8895   EVT CanonicalVT = VTys[SplatSize-1];
8896 
8897   // Build a canonical splat for this value.
8898   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8899 }
8900 
8901 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8902 /// specified intrinsic ID.
8903 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8904                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8905   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8906   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8907                      DAG.getConstant(IID, dl, MVT::i32), Op);
8908 }
8909 
8910 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8911 /// specified intrinsic ID.
8912 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8913                                 SelectionDAG &DAG, const SDLoc &dl,
8914                                 EVT DestVT = MVT::Other) {
8915   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8916   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8917                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8918 }
8919 
8920 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8921 /// specified intrinsic ID.
8922 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8923                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8924                                 EVT DestVT = MVT::Other) {
8925   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8926   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8927                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8928 }
8929 
8930 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8931 /// amount.  The result has the specified value type.
8932 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8933                            SelectionDAG &DAG, const SDLoc &dl) {
8934   // Force LHS/RHS to be the right type.
8935   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8936   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8937 
8938   int Ops[16];
8939   for (unsigned i = 0; i != 16; ++i)
8940     Ops[i] = i + Amt;
8941   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8942   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8943 }
8944 
8945 /// Do we have an efficient pattern in a .td file for this node?
8946 ///
8947 /// \param V - pointer to the BuildVectorSDNode being matched
8948 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8949 ///
8950 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8951 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8952 /// the opposite is true (expansion is beneficial) are:
8953 /// - The node builds a vector out of integers that are not 32 or 64-bits
8954 /// - The node builds a vector out of constants
8955 /// - The node is a "load-and-splat"
8956 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8957 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8958                                             bool HasDirectMove,
8959                                             bool HasP8Vector) {
8960   EVT VecVT = V->getValueType(0);
8961   bool RightType = VecVT == MVT::v2f64 ||
8962     (HasP8Vector && VecVT == MVT::v4f32) ||
8963     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8964   if (!RightType)
8965     return false;
8966 
8967   bool IsSplat = true;
8968   bool IsLoad = false;
8969   SDValue Op0 = V->getOperand(0);
8970 
8971   // This function is called in a block that confirms the node is not a constant
8972   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8973   // different constants.
8974   if (V->isConstant())
8975     return false;
8976   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8977     if (V->getOperand(i).isUndef())
8978       return false;
8979     // We want to expand nodes that represent load-and-splat even if the
8980     // loaded value is a floating point truncation or conversion to int.
8981     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8982         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8983          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8984         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8985          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8986         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8987          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8988       IsLoad = true;
8989     // If the operands are different or the input is not a load and has more
8990     // uses than just this BV node, then it isn't a splat.
8991     if (V->getOperand(i) != Op0 ||
8992         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8993       IsSplat = false;
8994   }
8995   return !(IsSplat && IsLoad);
8996 }
8997 
8998 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8999 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9000 
9001   SDLoc dl(Op);
9002   SDValue Op0 = Op->getOperand(0);
9003 
9004   if ((Op.getValueType() != MVT::f128) ||
9005       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9006       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9007       (Op0.getOperand(1).getValueType() != MVT::i64))
9008     return SDValue();
9009 
9010   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9011                      Op0.getOperand(1));
9012 }
9013 
9014 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9015   const SDValue *InputLoad = &Op;
9016   if (InputLoad->getOpcode() == ISD::BITCAST)
9017     InputLoad = &InputLoad->getOperand(0);
9018   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9019       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9020     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9021     InputLoad = &InputLoad->getOperand(0);
9022   }
9023   if (InputLoad->getOpcode() != ISD::LOAD)
9024     return nullptr;
9025   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9026   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9027 }
9028 
9029 // Convert the argument APFloat to a single precision APFloat if there is no
9030 // loss in information during the conversion to single precision APFloat and the
9031 // resulting number is not a denormal number. Return true if successful.
9032 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9033   APFloat APFloatToConvert = ArgAPFloat;
9034   bool LosesInfo = true;
9035   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9036                            &LosesInfo);
9037   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9038   if (Success)
9039     ArgAPFloat = APFloatToConvert;
9040   return Success;
9041 }
9042 
9043 // Bitcast the argument APInt to a double and convert it to a single precision
9044 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9045 // argument if there is no loss in information during the conversion from
9046 // double to single precision APFloat and the resulting number is not a denormal
9047 // number. Return true if successful.
9048 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9049   double DpValue = ArgAPInt.bitsToDouble();
9050   APFloat APFloatDp(DpValue);
9051   bool Success = convertToNonDenormSingle(APFloatDp);
9052   if (Success)
9053     ArgAPInt = APFloatDp.bitcastToAPInt();
9054   return Success;
9055 }
9056 
9057 // Nondestructive check for convertTonNonDenormSingle.
9058 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9059   // Only convert if it loses info, since XXSPLTIDP should
9060   // handle the other case.
9061   APFloat APFloatToConvert = ArgAPFloat;
9062   bool LosesInfo = true;
9063   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9064                            &LosesInfo);
9065 
9066   return (!LosesInfo && !APFloatToConvert.isDenormal());
9067 }
9068 
9069 // If this is a case we can't handle, return null and let the default
9070 // expansion code take care of it.  If we CAN select this case, and if it
9071 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9072 // this case more efficiently than a constant pool load, lower it to the
9073 // sequence of ops that should be used.
9074 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9075                                              SelectionDAG &DAG) const {
9076   SDLoc dl(Op);
9077   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9078   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9079 
9080   // Check if this is a splat of a constant value.
9081   APInt APSplatBits, APSplatUndef;
9082   unsigned SplatBitSize;
9083   bool HasAnyUndefs;
9084   bool BVNIsConstantSplat =
9085       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9086                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9087 
9088   // If it is a splat of a double, check if we can shrink it to a 32 bit
9089   // non-denormal float which when converted back to double gives us the same
9090   // double. This is to exploit the XXSPLTIDP instruction.
9091   // If we lose precision, we use XXSPLTI32DX.
9092   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9093       Subtarget.hasPrefixInstrs()) {
9094     // Check the type first to short-circuit so we don't modify APSplatBits if
9095     // this block isn't executed.
9096     if ((Op->getValueType(0) == MVT::v2f64) &&
9097         convertToNonDenormSingle(APSplatBits)) {
9098       SDValue SplatNode = DAG.getNode(
9099           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9100           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9101       return DAG.getBitcast(Op.getValueType(), SplatNode);
9102     } else {
9103       // We may lose precision, so we have to use XXSPLTI32DX.
9104 
9105       uint32_t Hi =
9106           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9107       uint32_t Lo =
9108           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9109       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9110 
9111       if (!Hi || !Lo)
9112         // If either load is 0, then we should generate XXLXOR to set to 0.
9113         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9114 
9115       if (Hi)
9116         SplatNode = DAG.getNode(
9117             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9118             DAG.getTargetConstant(0, dl, MVT::i32),
9119             DAG.getTargetConstant(Hi, dl, MVT::i32));
9120 
9121       if (Lo)
9122         SplatNode =
9123             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9124                         DAG.getTargetConstant(1, dl, MVT::i32),
9125                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9126 
9127       return DAG.getBitcast(Op.getValueType(), SplatNode);
9128     }
9129   }
9130 
9131   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9132 
9133     bool IsPermutedLoad = false;
9134     const SDValue *InputLoad =
9135         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9136     // Handle load-and-splat patterns as we have instructions that will do this
9137     // in one go.
9138     if (InputLoad && DAG.isSplatValue(Op, true)) {
9139       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9140 
9141       // We have handling for 4 and 8 byte elements.
9142       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9143 
9144       // Checking for a single use of this load, we have to check for vector
9145       // width (128 bits) / ElementSize uses (since each operand of the
9146       // BUILD_VECTOR is a separate use of the value.
9147       unsigned NumUsesOfInputLD = 128 / ElementSize;
9148       for (SDValue BVInOp : Op->ops())
9149         if (BVInOp.isUndef())
9150           NumUsesOfInputLD--;
9151       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9152       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9153           ((Subtarget.hasVSX() && ElementSize == 64) ||
9154            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9155         SDValue Ops[] = {
9156           LD->getChain(),    // Chain
9157           LD->getBasePtr(),  // Ptr
9158           DAG.getValueType(Op.getValueType()) // VT
9159         };
9160         SDValue LdSplt = DAG.getMemIntrinsicNode(
9161             PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
9162             Ops, LD->getMemoryVT(), LD->getMemOperand());
9163         // Replace all uses of the output chain of the original load with the
9164         // output chain of the new load.
9165         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9166                                       LdSplt.getValue(1));
9167         return LdSplt;
9168       }
9169     }
9170 
9171     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9172     // 32-bits can be lowered to VSX instructions under certain conditions.
9173     // Without VSX, there is no pattern more efficient than expanding the node.
9174     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9175         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9176                                         Subtarget.hasP8Vector()))
9177       return Op;
9178     return SDValue();
9179   }
9180 
9181   uint64_t SplatBits = APSplatBits.getZExtValue();
9182   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9183   unsigned SplatSize = SplatBitSize / 8;
9184 
9185   // First, handle single instruction cases.
9186 
9187   // All zeros?
9188   if (SplatBits == 0) {
9189     // Canonicalize all zero vectors to be v4i32.
9190     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9191       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9192       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9193     }
9194     return Op;
9195   }
9196 
9197   // We have XXSPLTIW for constant splats four bytes wide.
9198   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9199   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9200   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9201   // turned into a 4-byte splat of 0xABABABAB.
9202   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9203     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9204                                   Op.getValueType(), DAG, dl);
9205 
9206   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9207     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9208                                   dl);
9209 
9210   // We have XXSPLTIB for constant splats one byte wide.
9211   if (Subtarget.hasP9Vector() && SplatSize == 1)
9212     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9213                                   dl);
9214 
9215   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9216   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9217                     (32-SplatBitSize));
9218   if (SextVal >= -16 && SextVal <= 15)
9219     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9220                                   dl);
9221 
9222   // Two instruction sequences.
9223 
9224   // If this value is in the range [-32,30] and is even, use:
9225   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9226   // If this value is in the range [17,31] and is odd, use:
9227   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9228   // If this value is in the range [-31,-17] and is odd, use:
9229   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9230   // Note the last two are three-instruction sequences.
9231   if (SextVal >= -32 && SextVal <= 31) {
9232     // To avoid having these optimizations undone by constant folding,
9233     // we convert to a pseudo that will be expanded later into one of
9234     // the above forms.
9235     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9236     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9237               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9238     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9239     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9240     if (VT == Op.getValueType())
9241       return RetVal;
9242     else
9243       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9244   }
9245 
9246   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9247   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9248   // for fneg/fabs.
9249   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9250     // Make -1 and vspltisw -1:
9251     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9252 
9253     // Make the VSLW intrinsic, computing 0x8000_0000.
9254     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9255                                    OnesV, DAG, dl);
9256 
9257     // xor by OnesV to invert it.
9258     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9259     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9260   }
9261 
9262   // Check to see if this is a wide variety of vsplti*, binop self cases.
9263   static const signed char SplatCsts[] = {
9264     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9265     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9266   };
9267 
9268   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9269     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9270     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9271     int i = SplatCsts[idx];
9272 
9273     // Figure out what shift amount will be used by altivec if shifted by i in
9274     // this splat size.
9275     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9276 
9277     // vsplti + shl self.
9278     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9279       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9280       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9281         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9282         Intrinsic::ppc_altivec_vslw
9283       };
9284       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9285       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9286     }
9287 
9288     // vsplti + srl self.
9289     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9290       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9291       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9292         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9293         Intrinsic::ppc_altivec_vsrw
9294       };
9295       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9296       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9297     }
9298 
9299     // vsplti + rol self.
9300     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9301                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9302       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9303       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9304         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9305         Intrinsic::ppc_altivec_vrlw
9306       };
9307       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9308       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9309     }
9310 
9311     // t = vsplti c, result = vsldoi t, t, 1
9312     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9313       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9314       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9315       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9316     }
9317     // t = vsplti c, result = vsldoi t, t, 2
9318     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9319       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9320       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9321       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9322     }
9323     // t = vsplti c, result = vsldoi t, t, 3
9324     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9325       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9326       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9327       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9328     }
9329   }
9330 
9331   return SDValue();
9332 }
9333 
9334 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9335 /// the specified operations to build the shuffle.
9336 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9337                                       SDValue RHS, SelectionDAG &DAG,
9338                                       const SDLoc &dl) {
9339   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9340   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9341   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9342 
9343   enum {
9344     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9345     OP_VMRGHW,
9346     OP_VMRGLW,
9347     OP_VSPLTISW0,
9348     OP_VSPLTISW1,
9349     OP_VSPLTISW2,
9350     OP_VSPLTISW3,
9351     OP_VSLDOI4,
9352     OP_VSLDOI8,
9353     OP_VSLDOI12
9354   };
9355 
9356   if (OpNum == OP_COPY) {
9357     if (LHSID == (1*9+2)*9+3) return LHS;
9358     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9359     return RHS;
9360   }
9361 
9362   SDValue OpLHS, OpRHS;
9363   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9364   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9365 
9366   int ShufIdxs[16];
9367   switch (OpNum) {
9368   default: llvm_unreachable("Unknown i32 permute!");
9369   case OP_VMRGHW:
9370     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9371     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9372     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9373     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9374     break;
9375   case OP_VMRGLW:
9376     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9377     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9378     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9379     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9380     break;
9381   case OP_VSPLTISW0:
9382     for (unsigned i = 0; i != 16; ++i)
9383       ShufIdxs[i] = (i&3)+0;
9384     break;
9385   case OP_VSPLTISW1:
9386     for (unsigned i = 0; i != 16; ++i)
9387       ShufIdxs[i] = (i&3)+4;
9388     break;
9389   case OP_VSPLTISW2:
9390     for (unsigned i = 0; i != 16; ++i)
9391       ShufIdxs[i] = (i&3)+8;
9392     break;
9393   case OP_VSPLTISW3:
9394     for (unsigned i = 0; i != 16; ++i)
9395       ShufIdxs[i] = (i&3)+12;
9396     break;
9397   case OP_VSLDOI4:
9398     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9399   case OP_VSLDOI8:
9400     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9401   case OP_VSLDOI12:
9402     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9403   }
9404   EVT VT = OpLHS.getValueType();
9405   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9406   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9407   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9408   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9409 }
9410 
9411 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9412 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9413 /// SDValue.
9414 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9415                                            SelectionDAG &DAG) const {
9416   const unsigned BytesInVector = 16;
9417   bool IsLE = Subtarget.isLittleEndian();
9418   SDLoc dl(N);
9419   SDValue V1 = N->getOperand(0);
9420   SDValue V2 = N->getOperand(1);
9421   unsigned ShiftElts = 0, InsertAtByte = 0;
9422   bool Swap = false;
9423 
9424   // Shifts required to get the byte we want at element 7.
9425   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9426                                    0, 15, 14, 13, 12, 11, 10, 9};
9427   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9428                                 1, 2,  3,  4,  5,  6,  7,  8};
9429 
9430   ArrayRef<int> Mask = N->getMask();
9431   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9432 
9433   // For each mask element, find out if we're just inserting something
9434   // from V2 into V1 or vice versa.
9435   // Possible permutations inserting an element from V2 into V1:
9436   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9437   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9438   //   ...
9439   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9440   // Inserting from V1 into V2 will be similar, except mask range will be
9441   // [16,31].
9442 
9443   bool FoundCandidate = false;
9444   // If both vector operands for the shuffle are the same vector, the mask
9445   // will contain only elements from the first one and the second one will be
9446   // undef.
9447   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9448   // Go through the mask of half-words to find an element that's being moved
9449   // from one vector to the other.
9450   for (unsigned i = 0; i < BytesInVector; ++i) {
9451     unsigned CurrentElement = Mask[i];
9452     // If 2nd operand is undefined, we should only look for element 7 in the
9453     // Mask.
9454     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9455       continue;
9456 
9457     bool OtherElementsInOrder = true;
9458     // Examine the other elements in the Mask to see if they're in original
9459     // order.
9460     for (unsigned j = 0; j < BytesInVector; ++j) {
9461       if (j == i)
9462         continue;
9463       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9464       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9465       // in which we always assume we're always picking from the 1st operand.
9466       int MaskOffset =
9467           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9468       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9469         OtherElementsInOrder = false;
9470         break;
9471       }
9472     }
9473     // If other elements are in original order, we record the number of shifts
9474     // we need to get the element we want into element 7. Also record which byte
9475     // in the vector we should insert into.
9476     if (OtherElementsInOrder) {
9477       // If 2nd operand is undefined, we assume no shifts and no swapping.
9478       if (V2.isUndef()) {
9479         ShiftElts = 0;
9480         Swap = false;
9481       } else {
9482         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9483         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9484                          : BigEndianShifts[CurrentElement & 0xF];
9485         Swap = CurrentElement < BytesInVector;
9486       }
9487       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9488       FoundCandidate = true;
9489       break;
9490     }
9491   }
9492 
9493   if (!FoundCandidate)
9494     return SDValue();
9495 
9496   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9497   // optionally with VECSHL if shift is required.
9498   if (Swap)
9499     std::swap(V1, V2);
9500   if (V2.isUndef())
9501     V2 = V1;
9502   if (ShiftElts) {
9503     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9504                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9505     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9506                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9507   }
9508   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9509                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9510 }
9511 
9512 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9513 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9514 /// SDValue.
9515 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9516                                            SelectionDAG &DAG) const {
9517   const unsigned NumHalfWords = 8;
9518   const unsigned BytesInVector = NumHalfWords * 2;
9519   // Check that the shuffle is on half-words.
9520   if (!isNByteElemShuffleMask(N, 2, 1))
9521     return SDValue();
9522 
9523   bool IsLE = Subtarget.isLittleEndian();
9524   SDLoc dl(N);
9525   SDValue V1 = N->getOperand(0);
9526   SDValue V2 = N->getOperand(1);
9527   unsigned ShiftElts = 0, InsertAtByte = 0;
9528   bool Swap = false;
9529 
9530   // Shifts required to get the half-word we want at element 3.
9531   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9532   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9533 
9534   uint32_t Mask = 0;
9535   uint32_t OriginalOrderLow = 0x1234567;
9536   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9537   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9538   // 32-bit space, only need 4-bit nibbles per element.
9539   for (unsigned i = 0; i < NumHalfWords; ++i) {
9540     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9541     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9542   }
9543 
9544   // For each mask element, find out if we're just inserting something
9545   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9546   // from V2 into V1:
9547   //   X, 1, 2, 3, 4, 5, 6, 7
9548   //   0, X, 2, 3, 4, 5, 6, 7
9549   //   0, 1, X, 3, 4, 5, 6, 7
9550   //   0, 1, 2, X, 4, 5, 6, 7
9551   //   0, 1, 2, 3, X, 5, 6, 7
9552   //   0, 1, 2, 3, 4, X, 6, 7
9553   //   0, 1, 2, 3, 4, 5, X, 7
9554   //   0, 1, 2, 3, 4, 5, 6, X
9555   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9556 
9557   bool FoundCandidate = false;
9558   // Go through the mask of half-words to find an element that's being moved
9559   // from one vector to the other.
9560   for (unsigned i = 0; i < NumHalfWords; ++i) {
9561     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9562     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9563     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9564     uint32_t TargetOrder = 0x0;
9565 
9566     // If both vector operands for the shuffle are the same vector, the mask
9567     // will contain only elements from the first one and the second one will be
9568     // undef.
9569     if (V2.isUndef()) {
9570       ShiftElts = 0;
9571       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9572       TargetOrder = OriginalOrderLow;
9573       Swap = false;
9574       // Skip if not the correct element or mask of other elements don't equal
9575       // to our expected order.
9576       if (MaskOneElt == VINSERTHSrcElem &&
9577           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9578         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9579         FoundCandidate = true;
9580         break;
9581       }
9582     } else { // If both operands are defined.
9583       // Target order is [8,15] if the current mask is between [0,7].
9584       TargetOrder =
9585           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9586       // Skip if mask of other elements don't equal our expected order.
9587       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9588         // We only need the last 3 bits for the number of shifts.
9589         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9590                          : BigEndianShifts[MaskOneElt & 0x7];
9591         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9592         Swap = MaskOneElt < NumHalfWords;
9593         FoundCandidate = true;
9594         break;
9595       }
9596     }
9597   }
9598 
9599   if (!FoundCandidate)
9600     return SDValue();
9601 
9602   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9603   // optionally with VECSHL if shift is required.
9604   if (Swap)
9605     std::swap(V1, V2);
9606   if (V2.isUndef())
9607     V2 = V1;
9608   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9609   if (ShiftElts) {
9610     // Double ShiftElts because we're left shifting on v16i8 type.
9611     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9612                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9613     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9614     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9615                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9616     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9617   }
9618   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9619   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9620                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9621   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9622 }
9623 
9624 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9625 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9626 /// return the default SDValue.
9627 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9628                                               SelectionDAG &DAG) const {
9629   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9630   // to v16i8. Peek through the bitcasts to get the actual operands.
9631   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9632   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9633 
9634   auto ShuffleMask = SVN->getMask();
9635   SDValue VecShuffle(SVN, 0);
9636   SDLoc DL(SVN);
9637 
9638   // Check that we have a four byte shuffle.
9639   if (!isNByteElemShuffleMask(SVN, 4, 1))
9640     return SDValue();
9641 
9642   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9643   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9644     std::swap(LHS, RHS);
9645     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9646     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9647   }
9648 
9649   // Ensure that the RHS is a vector of constants.
9650   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9651   if (!BVN)
9652     return SDValue();
9653 
9654   // Check if RHS is a splat of 4-bytes (or smaller).
9655   APInt APSplatValue, APSplatUndef;
9656   unsigned SplatBitSize;
9657   bool HasAnyUndefs;
9658   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9659                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9660       SplatBitSize > 32)
9661     return SDValue();
9662 
9663   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9664   // The instruction splats a constant C into two words of the source vector
9665   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9666   // Thus we check that the shuffle mask is the equivalent  of
9667   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9668   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9669   // within each word are consecutive, so we only need to check the first byte.
9670   SDValue Index;
9671   bool IsLE = Subtarget.isLittleEndian();
9672   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9673       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9674        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9675     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9676   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9677            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9678             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9679     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9680   else
9681     return SDValue();
9682 
9683   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9684   // for XXSPLTI32DX.
9685   unsigned SplatVal = APSplatValue.getZExtValue();
9686   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9687     SplatVal |= (SplatVal << SplatBitSize);
9688 
9689   SDValue SplatNode = DAG.getNode(
9690       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9691       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9692   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9693 }
9694 
9695 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9696 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9697 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9698 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9699 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9700   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9701   assert(Op.getValueType() == MVT::v1i128 &&
9702          "Only set v1i128 as custom, other type shouldn't reach here!");
9703   SDLoc dl(Op);
9704   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9705   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9706   unsigned SHLAmt = N1.getConstantOperandVal(0);
9707   if (SHLAmt % 8 == 0) {
9708     SmallVector<int, 16> Mask(16, 0);
9709     std::iota(Mask.begin(), Mask.end(), 0);
9710     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9711     if (SDValue Shuffle =
9712             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9713                                  DAG.getUNDEF(MVT::v16i8), Mask))
9714       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9715   }
9716   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9717   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9718                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9719   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9720                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9721   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9722   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9723 }
9724 
9725 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9726 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9727 /// return the code it can be lowered into.  Worst case, it can always be
9728 /// lowered into a vperm.
9729 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9730                                                SelectionDAG &DAG) const {
9731   SDLoc dl(Op);
9732   SDValue V1 = Op.getOperand(0);
9733   SDValue V2 = Op.getOperand(1);
9734   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9735 
9736   // Any nodes that were combined in the target-independent combiner prior
9737   // to vector legalization will not be sent to the target combine. Try to
9738   // combine it here.
9739   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9740     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9741       return NewShuffle;
9742     Op = NewShuffle;
9743     SVOp = cast<ShuffleVectorSDNode>(Op);
9744     V1 = Op.getOperand(0);
9745     V2 = Op.getOperand(1);
9746   }
9747   EVT VT = Op.getValueType();
9748   bool isLittleEndian = Subtarget.isLittleEndian();
9749 
9750   unsigned ShiftElts, InsertAtByte;
9751   bool Swap = false;
9752 
9753   // If this is a load-and-splat, we can do that with a single instruction
9754   // in some cases. However if the load has multiple uses, we don't want to
9755   // combine it because that will just produce multiple loads.
9756   bool IsPermutedLoad = false;
9757   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9758   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9759       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9760       InputLoad->hasOneUse()) {
9761     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9762     int SplatIdx =
9763       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9764 
9765     // The splat index for permuted loads will be in the left half of the vector
9766     // which is strictly wider than the loaded value by 8 bytes. So we need to
9767     // adjust the splat index to point to the correct address in memory.
9768     if (IsPermutedLoad) {
9769       assert((isLittleEndian || IsFourByte) &&
9770              "Unexpected size for permuted load on big endian target");
9771       SplatIdx += IsFourByte ? 2 : 1;
9772       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9773              "Splat of a value outside of the loaded memory");
9774     }
9775 
9776     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9777     // For 4-byte load-and-splat, we need Power9.
9778     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9779       uint64_t Offset = 0;
9780       if (IsFourByte)
9781         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9782       else
9783         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9784 
9785       // If the width of the load is the same as the width of the splat,
9786       // loading with an offset would load the wrong memory.
9787       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9788         Offset = 0;
9789 
9790       SDValue BasePtr = LD->getBasePtr();
9791       if (Offset != 0)
9792         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9793                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9794       SDValue Ops[] = {
9795         LD->getChain(),    // Chain
9796         BasePtr,           // BasePtr
9797         DAG.getValueType(Op.getValueType()) // VT
9798       };
9799       SDVTList VTL =
9800         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9801       SDValue LdSplt =
9802         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9803                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9804       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9805       if (LdSplt.getValueType() != SVOp->getValueType(0))
9806         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9807       return LdSplt;
9808     }
9809   }
9810   if (Subtarget.hasP9Vector() &&
9811       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9812                            isLittleEndian)) {
9813     if (Swap)
9814       std::swap(V1, V2);
9815     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9816     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9817     if (ShiftElts) {
9818       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9819                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9820       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9821                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9822       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9823     }
9824     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9825                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9826     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9827   }
9828 
9829   if (Subtarget.hasPrefixInstrs()) {
9830     SDValue SplatInsertNode;
9831     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9832       return SplatInsertNode;
9833   }
9834 
9835   if (Subtarget.hasP9Altivec()) {
9836     SDValue NewISDNode;
9837     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9838       return NewISDNode;
9839 
9840     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9841       return NewISDNode;
9842   }
9843 
9844   if (Subtarget.hasVSX() &&
9845       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9846     if (Swap)
9847       std::swap(V1, V2);
9848     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9849     SDValue Conv2 =
9850         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9851 
9852     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9853                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9854     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9855   }
9856 
9857   if (Subtarget.hasVSX() &&
9858     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9859     if (Swap)
9860       std::swap(V1, V2);
9861     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9862     SDValue Conv2 =
9863         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9864 
9865     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9866                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9867     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9868   }
9869 
9870   if (Subtarget.hasP9Vector()) {
9871      if (PPC::isXXBRHShuffleMask(SVOp)) {
9872       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9873       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9874       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9875     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9876       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9877       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9878       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9879     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9880       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9881       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9882       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9883     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9884       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9885       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9886       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9887     }
9888   }
9889 
9890   if (Subtarget.hasVSX()) {
9891     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9892       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9893 
9894       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9895       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9896                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9897       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9898     }
9899 
9900     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9901     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9902       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9903       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9904       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9905     }
9906   }
9907 
9908   // Cases that are handled by instructions that take permute immediates
9909   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9910   // selected by the instruction selector.
9911   if (V2.isUndef()) {
9912     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9913         PPC::isSplatShuffleMask(SVOp, 2) ||
9914         PPC::isSplatShuffleMask(SVOp, 4) ||
9915         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9916         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9917         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9918         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9919         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9920         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9921         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9922         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9923         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9924         (Subtarget.hasP8Altivec() && (
9925          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9926          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9927          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9928       return Op;
9929     }
9930   }
9931 
9932   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9933   // and produce a fixed permutation.  If any of these match, do not lower to
9934   // VPERM.
9935   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9936   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9937       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9938       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9939       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9940       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9941       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9942       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9943       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9944       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9945       (Subtarget.hasP8Altivec() && (
9946        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9947        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9948        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9949     return Op;
9950 
9951   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9952   // perfect shuffle table to emit an optimal matching sequence.
9953   ArrayRef<int> PermMask = SVOp->getMask();
9954 
9955   unsigned PFIndexes[4];
9956   bool isFourElementShuffle = true;
9957   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9958     unsigned EltNo = 8;   // Start out undef.
9959     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9960       if (PermMask[i*4+j] < 0)
9961         continue;   // Undef, ignore it.
9962 
9963       unsigned ByteSource = PermMask[i*4+j];
9964       if ((ByteSource & 3) != j) {
9965         isFourElementShuffle = false;
9966         break;
9967       }
9968 
9969       if (EltNo == 8) {
9970         EltNo = ByteSource/4;
9971       } else if (EltNo != ByteSource/4) {
9972         isFourElementShuffle = false;
9973         break;
9974       }
9975     }
9976     PFIndexes[i] = EltNo;
9977   }
9978 
9979   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9980   // perfect shuffle vector to determine if it is cost effective to do this as
9981   // discrete instructions, or whether we should use a vperm.
9982   // For now, we skip this for little endian until such time as we have a
9983   // little-endian perfect shuffle table.
9984   if (isFourElementShuffle && !isLittleEndian) {
9985     // Compute the index in the perfect shuffle table.
9986     unsigned PFTableIndex =
9987       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9988 
9989     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9990     unsigned Cost  = (PFEntry >> 30);
9991 
9992     // Determining when to avoid vperm is tricky.  Many things affect the cost
9993     // of vperm, particularly how many times the perm mask needs to be computed.
9994     // For example, if the perm mask can be hoisted out of a loop or is already
9995     // used (perhaps because there are multiple permutes with the same shuffle
9996     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9997     // the loop requires an extra register.
9998     //
9999     // As a compromise, we only emit discrete instructions if the shuffle can be
10000     // generated in 3 or fewer operations.  When we have loop information
10001     // available, if this block is within a loop, we should avoid using vperm
10002     // for 3-operation perms and use a constant pool load instead.
10003     if (Cost < 3)
10004       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10005   }
10006 
10007   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10008   // vector that will get spilled to the constant pool.
10009   if (V2.isUndef()) V2 = V1;
10010 
10011   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10012   // that it is in input element units, not in bytes.  Convert now.
10013 
10014   // For little endian, the order of the input vectors is reversed, and
10015   // the permutation mask is complemented with respect to 31.  This is
10016   // necessary to produce proper semantics with the big-endian-biased vperm
10017   // instruction.
10018   EVT EltVT = V1.getValueType().getVectorElementType();
10019   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10020 
10021   SmallVector<SDValue, 16> ResultMask;
10022   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10023     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10024 
10025     for (unsigned j = 0; j != BytesPerElement; ++j)
10026       if (isLittleEndian)
10027         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10028                                              dl, MVT::i32));
10029       else
10030         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10031                                              MVT::i32));
10032   }
10033 
10034   ShufflesHandledWithVPERM++;
10035   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10036   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10037   LLVM_DEBUG(SVOp->dump());
10038   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10039   LLVM_DEBUG(VPermMask.dump());
10040 
10041   if (isLittleEndian)
10042     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10043                        V2, V1, VPermMask);
10044   else
10045     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10046                        V1, V2, VPermMask);
10047 }
10048 
10049 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10050 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10051 /// information about the intrinsic.
10052 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10053                                  bool &isDot, const PPCSubtarget &Subtarget) {
10054   unsigned IntrinsicID =
10055       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10056   CompareOpc = -1;
10057   isDot = false;
10058   switch (IntrinsicID) {
10059   default:
10060     return false;
10061   // Comparison predicates.
10062   case Intrinsic::ppc_altivec_vcmpbfp_p:
10063     CompareOpc = 966;
10064     isDot = true;
10065     break;
10066   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10067     CompareOpc = 198;
10068     isDot = true;
10069     break;
10070   case Intrinsic::ppc_altivec_vcmpequb_p:
10071     CompareOpc = 6;
10072     isDot = true;
10073     break;
10074   case Intrinsic::ppc_altivec_vcmpequh_p:
10075     CompareOpc = 70;
10076     isDot = true;
10077     break;
10078   case Intrinsic::ppc_altivec_vcmpequw_p:
10079     CompareOpc = 134;
10080     isDot = true;
10081     break;
10082   case Intrinsic::ppc_altivec_vcmpequd_p:
10083     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10084       CompareOpc = 199;
10085       isDot = true;
10086     } else
10087       return false;
10088     break;
10089   case Intrinsic::ppc_altivec_vcmpneb_p:
10090   case Intrinsic::ppc_altivec_vcmpneh_p:
10091   case Intrinsic::ppc_altivec_vcmpnew_p:
10092   case Intrinsic::ppc_altivec_vcmpnezb_p:
10093   case Intrinsic::ppc_altivec_vcmpnezh_p:
10094   case Intrinsic::ppc_altivec_vcmpnezw_p:
10095     if (Subtarget.hasP9Altivec()) {
10096       switch (IntrinsicID) {
10097       default:
10098         llvm_unreachable("Unknown comparison intrinsic.");
10099       case Intrinsic::ppc_altivec_vcmpneb_p:
10100         CompareOpc = 7;
10101         break;
10102       case Intrinsic::ppc_altivec_vcmpneh_p:
10103         CompareOpc = 71;
10104         break;
10105       case Intrinsic::ppc_altivec_vcmpnew_p:
10106         CompareOpc = 135;
10107         break;
10108       case Intrinsic::ppc_altivec_vcmpnezb_p:
10109         CompareOpc = 263;
10110         break;
10111       case Intrinsic::ppc_altivec_vcmpnezh_p:
10112         CompareOpc = 327;
10113         break;
10114       case Intrinsic::ppc_altivec_vcmpnezw_p:
10115         CompareOpc = 391;
10116         break;
10117       }
10118       isDot = true;
10119     } else
10120       return false;
10121     break;
10122   case Intrinsic::ppc_altivec_vcmpgefp_p:
10123     CompareOpc = 454;
10124     isDot = true;
10125     break;
10126   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10127     CompareOpc = 710;
10128     isDot = true;
10129     break;
10130   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10131     CompareOpc = 774;
10132     isDot = true;
10133     break;
10134   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10135     CompareOpc = 838;
10136     isDot = true;
10137     break;
10138   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10139     CompareOpc = 902;
10140     isDot = true;
10141     break;
10142   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10143     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10144       CompareOpc = 967;
10145       isDot = true;
10146     } else
10147       return false;
10148     break;
10149   case Intrinsic::ppc_altivec_vcmpgtub_p:
10150     CompareOpc = 518;
10151     isDot = true;
10152     break;
10153   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10154     CompareOpc = 582;
10155     isDot = true;
10156     break;
10157   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10158     CompareOpc = 646;
10159     isDot = true;
10160     break;
10161   case Intrinsic::ppc_altivec_vcmpgtud_p:
10162     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10163       CompareOpc = 711;
10164       isDot = true;
10165     } else
10166       return false;
10167     break;
10168 
10169   case Intrinsic::ppc_altivec_vcmpequq:
10170   case Intrinsic::ppc_altivec_vcmpgtsq:
10171   case Intrinsic::ppc_altivec_vcmpgtuq:
10172     if (!Subtarget.isISA3_1())
10173       return false;
10174     switch (IntrinsicID) {
10175     default:
10176       llvm_unreachable("Unknown comparison intrinsic.");
10177     case Intrinsic::ppc_altivec_vcmpequq:
10178       CompareOpc = 455;
10179       break;
10180     case Intrinsic::ppc_altivec_vcmpgtsq:
10181       CompareOpc = 903;
10182       break;
10183     case Intrinsic::ppc_altivec_vcmpgtuq:
10184       CompareOpc = 647;
10185       break;
10186     }
10187     break;
10188 
10189   // VSX predicate comparisons use the same infrastructure
10190   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10191   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10192   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10193   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10194   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10195   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10196     if (Subtarget.hasVSX()) {
10197       switch (IntrinsicID) {
10198       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10199         CompareOpc = 99;
10200         break;
10201       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10202         CompareOpc = 115;
10203         break;
10204       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10205         CompareOpc = 107;
10206         break;
10207       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10208         CompareOpc = 67;
10209         break;
10210       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10211         CompareOpc = 83;
10212         break;
10213       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10214         CompareOpc = 75;
10215         break;
10216       }
10217       isDot = true;
10218     } else
10219       return false;
10220     break;
10221 
10222   // Normal Comparisons.
10223   case Intrinsic::ppc_altivec_vcmpbfp:
10224     CompareOpc = 966;
10225     break;
10226   case Intrinsic::ppc_altivec_vcmpeqfp:
10227     CompareOpc = 198;
10228     break;
10229   case Intrinsic::ppc_altivec_vcmpequb:
10230     CompareOpc = 6;
10231     break;
10232   case Intrinsic::ppc_altivec_vcmpequh:
10233     CompareOpc = 70;
10234     break;
10235   case Intrinsic::ppc_altivec_vcmpequw:
10236     CompareOpc = 134;
10237     break;
10238   case Intrinsic::ppc_altivec_vcmpequd:
10239     if (Subtarget.hasP8Altivec())
10240       CompareOpc = 199;
10241     else
10242       return false;
10243     break;
10244   case Intrinsic::ppc_altivec_vcmpneb:
10245   case Intrinsic::ppc_altivec_vcmpneh:
10246   case Intrinsic::ppc_altivec_vcmpnew:
10247   case Intrinsic::ppc_altivec_vcmpnezb:
10248   case Intrinsic::ppc_altivec_vcmpnezh:
10249   case Intrinsic::ppc_altivec_vcmpnezw:
10250     if (Subtarget.hasP9Altivec())
10251       switch (IntrinsicID) {
10252       default:
10253         llvm_unreachable("Unknown comparison intrinsic.");
10254       case Intrinsic::ppc_altivec_vcmpneb:
10255         CompareOpc = 7;
10256         break;
10257       case Intrinsic::ppc_altivec_vcmpneh:
10258         CompareOpc = 71;
10259         break;
10260       case Intrinsic::ppc_altivec_vcmpnew:
10261         CompareOpc = 135;
10262         break;
10263       case Intrinsic::ppc_altivec_vcmpnezb:
10264         CompareOpc = 263;
10265         break;
10266       case Intrinsic::ppc_altivec_vcmpnezh:
10267         CompareOpc = 327;
10268         break;
10269       case Intrinsic::ppc_altivec_vcmpnezw:
10270         CompareOpc = 391;
10271         break;
10272       }
10273     else
10274       return false;
10275     break;
10276   case Intrinsic::ppc_altivec_vcmpgefp:
10277     CompareOpc = 454;
10278     break;
10279   case Intrinsic::ppc_altivec_vcmpgtfp:
10280     CompareOpc = 710;
10281     break;
10282   case Intrinsic::ppc_altivec_vcmpgtsb:
10283     CompareOpc = 774;
10284     break;
10285   case Intrinsic::ppc_altivec_vcmpgtsh:
10286     CompareOpc = 838;
10287     break;
10288   case Intrinsic::ppc_altivec_vcmpgtsw:
10289     CompareOpc = 902;
10290     break;
10291   case Intrinsic::ppc_altivec_vcmpgtsd:
10292     if (Subtarget.hasP8Altivec())
10293       CompareOpc = 967;
10294     else
10295       return false;
10296     break;
10297   case Intrinsic::ppc_altivec_vcmpgtub:
10298     CompareOpc = 518;
10299     break;
10300   case Intrinsic::ppc_altivec_vcmpgtuh:
10301     CompareOpc = 582;
10302     break;
10303   case Intrinsic::ppc_altivec_vcmpgtuw:
10304     CompareOpc = 646;
10305     break;
10306   case Intrinsic::ppc_altivec_vcmpgtud:
10307     if (Subtarget.hasP8Altivec())
10308       CompareOpc = 711;
10309     else
10310       return false;
10311     break;
10312   case Intrinsic::ppc_altivec_vcmpequq_p:
10313   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10314   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10315     if (!Subtarget.isISA3_1())
10316       return false;
10317     switch (IntrinsicID) {
10318     default:
10319       llvm_unreachable("Unknown comparison intrinsic.");
10320     case Intrinsic::ppc_altivec_vcmpequq_p:
10321       CompareOpc = 455;
10322       break;
10323     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10324       CompareOpc = 903;
10325       break;
10326     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10327       CompareOpc = 647;
10328       break;
10329     }
10330     isDot = true;
10331     break;
10332   }
10333   return true;
10334 }
10335 
10336 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10337 /// lower, do it, otherwise return null.
10338 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10339                                                    SelectionDAG &DAG) const {
10340   unsigned IntrinsicID =
10341     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10342 
10343   SDLoc dl(Op);
10344 
10345   switch (IntrinsicID) {
10346   case Intrinsic::thread_pointer:
10347     // Reads the thread pointer register, used for __builtin_thread_pointer.
10348     if (Subtarget.isPPC64())
10349       return DAG.getRegister(PPC::X13, MVT::i64);
10350     return DAG.getRegister(PPC::R2, MVT::i32);
10351 
10352   case Intrinsic::ppc_mma_disassemble_acc:
10353   case Intrinsic::ppc_vsx_disassemble_pair: {
10354     int NumVecs = 2;
10355     SDValue WideVec = Op.getOperand(1);
10356     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10357       NumVecs = 4;
10358       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10359     }
10360     SmallVector<SDValue, 4> RetOps;
10361     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10362       SDValue Extract = DAG.getNode(
10363           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10364           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10365                                                      : VecNo,
10366                           dl, getPointerTy(DAG.getDataLayout())));
10367       RetOps.push_back(Extract);
10368     }
10369     return DAG.getMergeValues(RetOps, dl);
10370   }
10371   }
10372 
10373   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10374   // opcode number of the comparison.
10375   int CompareOpc;
10376   bool isDot;
10377   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10378     return SDValue();    // Don't custom lower most intrinsics.
10379 
10380   // If this is a non-dot comparison, make the VCMP node and we are done.
10381   if (!isDot) {
10382     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10383                               Op.getOperand(1), Op.getOperand(2),
10384                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10385     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10386   }
10387 
10388   // Create the PPCISD altivec 'dot' comparison node.
10389   SDValue Ops[] = {
10390     Op.getOperand(2),  // LHS
10391     Op.getOperand(3),  // RHS
10392     DAG.getConstant(CompareOpc, dl, MVT::i32)
10393   };
10394   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10395   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10396 
10397   // Now that we have the comparison, emit a copy from the CR to a GPR.
10398   // This is flagged to the above dot comparison.
10399   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10400                                 DAG.getRegister(PPC::CR6, MVT::i32),
10401                                 CompNode.getValue(1));
10402 
10403   // Unpack the result based on how the target uses it.
10404   unsigned BitNo;   // Bit # of CR6.
10405   bool InvertBit;   // Invert result?
10406   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10407   default:  // Can't happen, don't crash on invalid number though.
10408   case 0:   // Return the value of the EQ bit of CR6.
10409     BitNo = 0; InvertBit = false;
10410     break;
10411   case 1:   // Return the inverted value of the EQ bit of CR6.
10412     BitNo = 0; InvertBit = true;
10413     break;
10414   case 2:   // Return the value of the LT bit of CR6.
10415     BitNo = 2; InvertBit = false;
10416     break;
10417   case 3:   // Return the inverted value of the LT bit of CR6.
10418     BitNo = 2; InvertBit = true;
10419     break;
10420   }
10421 
10422   // Shift the bit into the low position.
10423   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10424                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10425   // Isolate the bit.
10426   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10427                       DAG.getConstant(1, dl, MVT::i32));
10428 
10429   // If we are supposed to, toggle the bit.
10430   if (InvertBit)
10431     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10432                         DAG.getConstant(1, dl, MVT::i32));
10433   return Flags;
10434 }
10435 
10436 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10437                                                SelectionDAG &DAG) const {
10438   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10439   // the beginning of the argument list.
10440   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10441   SDLoc DL(Op);
10442   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10443   case Intrinsic::ppc_cfence: {
10444     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10445     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10446     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10447                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10448                                                   Op.getOperand(ArgStart + 1)),
10449                                       Op.getOperand(0)),
10450                    0);
10451   }
10452   default:
10453     break;
10454   }
10455   return SDValue();
10456 }
10457 
10458 // Lower scalar BSWAP64 to xxbrd.
10459 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10460   SDLoc dl(Op);
10461   if (!Subtarget.isPPC64())
10462     return Op;
10463   // MTVSRDD
10464   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10465                    Op.getOperand(0));
10466   // XXBRD
10467   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10468   // MFVSRD
10469   int VectorIndex = 0;
10470   if (Subtarget.isLittleEndian())
10471     VectorIndex = 1;
10472   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10473                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10474   return Op;
10475 }
10476 
10477 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10478 // compared to a value that is atomically loaded (atomic loads zero-extend).
10479 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10480                                                 SelectionDAG &DAG) const {
10481   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10482          "Expecting an atomic compare-and-swap here.");
10483   SDLoc dl(Op);
10484   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10485   EVT MemVT = AtomicNode->getMemoryVT();
10486   if (MemVT.getSizeInBits() >= 32)
10487     return Op;
10488 
10489   SDValue CmpOp = Op.getOperand(2);
10490   // If this is already correctly zero-extended, leave it alone.
10491   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10492   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10493     return Op;
10494 
10495   // Clear the high bits of the compare operand.
10496   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10497   SDValue NewCmpOp =
10498     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10499                 DAG.getConstant(MaskVal, dl, MVT::i32));
10500 
10501   // Replace the existing compare operand with the properly zero-extended one.
10502   SmallVector<SDValue, 4> Ops;
10503   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10504     Ops.push_back(AtomicNode->getOperand(i));
10505   Ops[2] = NewCmpOp;
10506   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10507   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10508   auto NodeTy =
10509     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10510   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10511 }
10512 
10513 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10514                                                  SelectionDAG &DAG) const {
10515   SDLoc dl(Op);
10516   // Create a stack slot that is 16-byte aligned.
10517   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10518   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10519   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10520   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10521 
10522   // Store the input value into Value#0 of the stack slot.
10523   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10524                                MachinePointerInfo());
10525   // Load it out.
10526   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10527 }
10528 
10529 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10530                                                   SelectionDAG &DAG) const {
10531   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10532          "Should only be called for ISD::INSERT_VECTOR_ELT");
10533 
10534   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10535 
10536   EVT VT = Op.getValueType();
10537   SDLoc dl(Op);
10538   SDValue V1 = Op.getOperand(0);
10539   SDValue V2 = Op.getOperand(1);
10540   SDValue V3 = Op.getOperand(2);
10541 
10542   if (VT == MVT::v2f64 && C)
10543     return Op;
10544 
10545   if (Subtarget.isISA3_1()) {
10546     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10547       return SDValue();
10548     // On P10, we have legal lowering for constant and variable indices for
10549     // integer vectors.
10550     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10551         VT == MVT::v2i64)
10552       return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10553     // For f32 and f64 vectors, we have legal lowering for variable indices.
10554     // For f32 we also have legal lowering when the element is loaded from
10555     // memory.
10556     if (VT == MVT::v4f32 || VT == MVT::v2f64) {
10557       if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2)))
10558         return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10559       return Op;
10560     }
10561   }
10562 
10563   // Before P10, we have legal lowering for constant indices but not for
10564   // variable ones.
10565   if (!C)
10566     return SDValue();
10567 
10568   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10569   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10570     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10571     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10572     unsigned InsertAtElement = C->getZExtValue();
10573     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10574     if (Subtarget.isLittleEndian()) {
10575       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10576     }
10577     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10578                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10579   }
10580   return Op;
10581 }
10582 
10583 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10584                                            SelectionDAG &DAG) const {
10585   SDLoc dl(Op);
10586   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10587   SDValue LoadChain = LN->getChain();
10588   SDValue BasePtr = LN->getBasePtr();
10589   EVT VT = Op.getValueType();
10590 
10591   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10592     return Op;
10593 
10594   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10595   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10596   // 2 or 4 vsx registers.
10597   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10598          "Type unsupported without MMA");
10599   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10600          "Type unsupported without paired vector support");
10601   Align Alignment = LN->getAlign();
10602   SmallVector<SDValue, 4> Loads;
10603   SmallVector<SDValue, 4> LoadChains;
10604   unsigned NumVecs = VT.getSizeInBits() / 128;
10605   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10606     SDValue Load =
10607         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10608                     LN->getPointerInfo().getWithOffset(Idx * 16),
10609                     commonAlignment(Alignment, Idx * 16),
10610                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10611     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10612                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10613     Loads.push_back(Load);
10614     LoadChains.push_back(Load.getValue(1));
10615   }
10616   if (Subtarget.isLittleEndian()) {
10617     std::reverse(Loads.begin(), Loads.end());
10618     std::reverse(LoadChains.begin(), LoadChains.end());
10619   }
10620   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10621   SDValue Value =
10622       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10623                   dl, VT, Loads);
10624   SDValue RetOps[] = {Value, TF};
10625   return DAG.getMergeValues(RetOps, dl);
10626 }
10627 
10628 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10629                                             SelectionDAG &DAG) const {
10630   SDLoc dl(Op);
10631   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10632   SDValue StoreChain = SN->getChain();
10633   SDValue BasePtr = SN->getBasePtr();
10634   SDValue Value = SN->getValue();
10635   EVT StoreVT = Value.getValueType();
10636 
10637   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10638     return Op;
10639 
10640   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10641   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10642   // underlying registers individually.
10643   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10644          "Type unsupported without MMA");
10645   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10646          "Type unsupported without paired vector support");
10647   Align Alignment = SN->getAlign();
10648   SmallVector<SDValue, 4> Stores;
10649   unsigned NumVecs = 2;
10650   if (StoreVT == MVT::v512i1) {
10651     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10652     NumVecs = 4;
10653   }
10654   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10655     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10656     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10657                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10658     SDValue Store =
10659         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10660                      SN->getPointerInfo().getWithOffset(Idx * 16),
10661                      commonAlignment(Alignment, Idx * 16),
10662                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10663     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10664                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10665     Stores.push_back(Store);
10666   }
10667   SDValue TF = DAG.getTokenFactor(dl, Stores);
10668   return TF;
10669 }
10670 
10671 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10672   SDLoc dl(Op);
10673   if (Op.getValueType() == MVT::v4i32) {
10674     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10675 
10676     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10677     // +16 as shift amt.
10678     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10679     SDValue RHSSwap =   // = vrlw RHS, 16
10680       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10681 
10682     // Shrinkify inputs to v8i16.
10683     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10684     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10685     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10686 
10687     // Low parts multiplied together, generating 32-bit results (we ignore the
10688     // top parts).
10689     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10690                                         LHS, RHS, DAG, dl, MVT::v4i32);
10691 
10692     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10693                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10694     // Shift the high parts up 16 bits.
10695     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10696                               Neg16, DAG, dl);
10697     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10698   } else if (Op.getValueType() == MVT::v16i8) {
10699     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10700     bool isLittleEndian = Subtarget.isLittleEndian();
10701 
10702     // Multiply the even 8-bit parts, producing 16-bit sums.
10703     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10704                                            LHS, RHS, DAG, dl, MVT::v8i16);
10705     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10706 
10707     // Multiply the odd 8-bit parts, producing 16-bit sums.
10708     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10709                                           LHS, RHS, DAG, dl, MVT::v8i16);
10710     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10711 
10712     // Merge the results together.  Because vmuleub and vmuloub are
10713     // instructions with a big-endian bias, we must reverse the
10714     // element numbering and reverse the meaning of "odd" and "even"
10715     // when generating little endian code.
10716     int Ops[16];
10717     for (unsigned i = 0; i != 8; ++i) {
10718       if (isLittleEndian) {
10719         Ops[i*2  ] = 2*i;
10720         Ops[i*2+1] = 2*i+16;
10721       } else {
10722         Ops[i*2  ] = 2*i+1;
10723         Ops[i*2+1] = 2*i+1+16;
10724       }
10725     }
10726     if (isLittleEndian)
10727       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10728     else
10729       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10730   } else {
10731     llvm_unreachable("Unknown mul to lower!");
10732   }
10733 }
10734 
10735 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10736   bool IsStrict = Op->isStrictFPOpcode();
10737   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10738       !Subtarget.hasP9Vector())
10739     return SDValue();
10740 
10741   return Op;
10742 }
10743 
10744 // Custom lowering for fpext vf32 to v2f64
10745 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10746 
10747   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10748          "Should only be called for ISD::FP_EXTEND");
10749 
10750   // FIXME: handle extends from half precision float vectors on P9.
10751   // We only want to custom lower an extend from v2f32 to v2f64.
10752   if (Op.getValueType() != MVT::v2f64 ||
10753       Op.getOperand(0).getValueType() != MVT::v2f32)
10754     return SDValue();
10755 
10756   SDLoc dl(Op);
10757   SDValue Op0 = Op.getOperand(0);
10758 
10759   switch (Op0.getOpcode()) {
10760   default:
10761     return SDValue();
10762   case ISD::EXTRACT_SUBVECTOR: {
10763     assert(Op0.getNumOperands() == 2 &&
10764            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10765            "Node should have 2 operands with second one being a constant!");
10766 
10767     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10768       return SDValue();
10769 
10770     // Custom lower is only done for high or low doubleword.
10771     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10772     if (Idx % 2 != 0)
10773       return SDValue();
10774 
10775     // Since input is v4f32, at this point Idx is either 0 or 2.
10776     // Shift to get the doubleword position we want.
10777     int DWord = Idx >> 1;
10778 
10779     // High and low word positions are different on little endian.
10780     if (Subtarget.isLittleEndian())
10781       DWord ^= 0x1;
10782 
10783     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10784                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10785   }
10786   case ISD::FADD:
10787   case ISD::FMUL:
10788   case ISD::FSUB: {
10789     SDValue NewLoad[2];
10790     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10791       // Ensure both input are loads.
10792       SDValue LdOp = Op0.getOperand(i);
10793       if (LdOp.getOpcode() != ISD::LOAD)
10794         return SDValue();
10795       // Generate new load node.
10796       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10797       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10798       NewLoad[i] = DAG.getMemIntrinsicNode(
10799           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10800           LD->getMemoryVT(), LD->getMemOperand());
10801     }
10802     SDValue NewOp =
10803         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10804                     NewLoad[1], Op0.getNode()->getFlags());
10805     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10806                        DAG.getConstant(0, dl, MVT::i32));
10807   }
10808   case ISD::LOAD: {
10809     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10810     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10811     SDValue NewLd = DAG.getMemIntrinsicNode(
10812         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10813         LD->getMemoryVT(), LD->getMemOperand());
10814     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10815                        DAG.getConstant(0, dl, MVT::i32));
10816   }
10817   }
10818   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10819 }
10820 
10821 /// LowerOperation - Provide custom lowering hooks for some operations.
10822 ///
10823 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10824   switch (Op.getOpcode()) {
10825   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10826   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10827   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10828   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10829   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10830   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10831   case ISD::STRICT_FSETCC:
10832   case ISD::STRICT_FSETCCS:
10833   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10834   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10835   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10836 
10837   case ISD::INLINEASM:
10838   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
10839   // Variable argument lowering.
10840   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10841   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10842   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10843 
10844   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10845   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10846   case ISD::GET_DYNAMIC_AREA_OFFSET:
10847     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10848 
10849   // Exception handling lowering.
10850   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10851   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10852   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10853 
10854   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10855   case ISD::STORE:              return LowerSTORE(Op, DAG);
10856   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10857   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10858   case ISD::STRICT_FP_TO_UINT:
10859   case ISD::STRICT_FP_TO_SINT:
10860   case ISD::FP_TO_UINT:
10861   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10862   case ISD::STRICT_UINT_TO_FP:
10863   case ISD::STRICT_SINT_TO_FP:
10864   case ISD::UINT_TO_FP:
10865   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10866   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10867 
10868   // Lower 64-bit shifts.
10869   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10870   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10871   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10872 
10873   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10874   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10875 
10876   // Vector-related lowering.
10877   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10878   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10879   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10880   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10881   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10882   case ISD::MUL:                return LowerMUL(Op, DAG);
10883   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10884   case ISD::STRICT_FP_ROUND:
10885   case ISD::FP_ROUND:
10886     return LowerFP_ROUND(Op, DAG);
10887   case ISD::ROTL:               return LowerROTL(Op, DAG);
10888 
10889   // For counter-based loop handling.
10890   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10891 
10892   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10893 
10894   // Frame & Return address.
10895   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10896   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10897 
10898   case ISD::INTRINSIC_VOID:
10899     return LowerINTRINSIC_VOID(Op, DAG);
10900   case ISD::BSWAP:
10901     return LowerBSWAP(Op, DAG);
10902   case ISD::ATOMIC_CMP_SWAP:
10903     return LowerATOMIC_CMP_SWAP(Op, DAG);
10904   }
10905 }
10906 
10907 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10908                                            SmallVectorImpl<SDValue>&Results,
10909                                            SelectionDAG &DAG) const {
10910   SDLoc dl(N);
10911   switch (N->getOpcode()) {
10912   default:
10913     llvm_unreachable("Do not know how to custom type legalize this operation!");
10914   case ISD::READCYCLECOUNTER: {
10915     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10916     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10917 
10918     Results.push_back(
10919         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10920     Results.push_back(RTB.getValue(2));
10921     break;
10922   }
10923   case ISD::INTRINSIC_W_CHAIN: {
10924     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10925         Intrinsic::loop_decrement)
10926       break;
10927 
10928     assert(N->getValueType(0) == MVT::i1 &&
10929            "Unexpected result type for CTR decrement intrinsic");
10930     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10931                                  N->getValueType(0));
10932     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10933     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10934                                  N->getOperand(1));
10935 
10936     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10937     Results.push_back(NewInt.getValue(1));
10938     break;
10939   }
10940   case ISD::VAARG: {
10941     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10942       return;
10943 
10944     EVT VT = N->getValueType(0);
10945 
10946     if (VT == MVT::i64) {
10947       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10948 
10949       Results.push_back(NewNode);
10950       Results.push_back(NewNode.getValue(1));
10951     }
10952     return;
10953   }
10954   case ISD::STRICT_FP_TO_SINT:
10955   case ISD::STRICT_FP_TO_UINT:
10956   case ISD::FP_TO_SINT:
10957   case ISD::FP_TO_UINT:
10958     // LowerFP_TO_INT() can only handle f32 and f64.
10959     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10960         MVT::ppcf128)
10961       return;
10962     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10963     return;
10964   case ISD::TRUNCATE: {
10965     if (!N->getValueType(0).isVector())
10966       return;
10967     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10968     if (Lowered)
10969       Results.push_back(Lowered);
10970     return;
10971   }
10972   case ISD::FSHL:
10973   case ISD::FSHR:
10974     // Don't handle funnel shifts here.
10975     return;
10976   case ISD::BITCAST:
10977     // Don't handle bitcast here.
10978     return;
10979   case ISD::FP_EXTEND:
10980     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10981     if (Lowered)
10982       Results.push_back(Lowered);
10983     return;
10984   }
10985 }
10986 
10987 //===----------------------------------------------------------------------===//
10988 //  Other Lowering Code
10989 //===----------------------------------------------------------------------===//
10990 
10991 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
10992   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10993   Function *Func = Intrinsic::getDeclaration(M, Id);
10994   return Builder.CreateCall(Func, {});
10995 }
10996 
10997 // The mappings for emitLeading/TrailingFence is taken from
10998 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10999 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11000                                                  Instruction *Inst,
11001                                                  AtomicOrdering Ord) const {
11002   if (Ord == AtomicOrdering::SequentiallyConsistent)
11003     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11004   if (isReleaseOrStronger(Ord))
11005     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11006   return nullptr;
11007 }
11008 
11009 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11010                                                   Instruction *Inst,
11011                                                   AtomicOrdering Ord) const {
11012   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11013     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11014     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11015     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11016     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11017       return Builder.CreateCall(
11018           Intrinsic::getDeclaration(
11019               Builder.GetInsertBlock()->getParent()->getParent(),
11020               Intrinsic::ppc_cfence, {Inst->getType()}),
11021           {Inst});
11022     // FIXME: Can use isync for rmw operation.
11023     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11024   }
11025   return nullptr;
11026 }
11027 
11028 MachineBasicBlock *
11029 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11030                                     unsigned AtomicSize,
11031                                     unsigned BinOpcode,
11032                                     unsigned CmpOpcode,
11033                                     unsigned CmpPred) const {
11034   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11035   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11036 
11037   auto LoadMnemonic = PPC::LDARX;
11038   auto StoreMnemonic = PPC::STDCX;
11039   switch (AtomicSize) {
11040   default:
11041     llvm_unreachable("Unexpected size of atomic entity");
11042   case 1:
11043     LoadMnemonic = PPC::LBARX;
11044     StoreMnemonic = PPC::STBCX;
11045     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11046     break;
11047   case 2:
11048     LoadMnemonic = PPC::LHARX;
11049     StoreMnemonic = PPC::STHCX;
11050     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11051     break;
11052   case 4:
11053     LoadMnemonic = PPC::LWARX;
11054     StoreMnemonic = PPC::STWCX;
11055     break;
11056   case 8:
11057     LoadMnemonic = PPC::LDARX;
11058     StoreMnemonic = PPC::STDCX;
11059     break;
11060   }
11061 
11062   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11063   MachineFunction *F = BB->getParent();
11064   MachineFunction::iterator It = ++BB->getIterator();
11065 
11066   Register dest = MI.getOperand(0).getReg();
11067   Register ptrA = MI.getOperand(1).getReg();
11068   Register ptrB = MI.getOperand(2).getReg();
11069   Register incr = MI.getOperand(3).getReg();
11070   DebugLoc dl = MI.getDebugLoc();
11071 
11072   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11073   MachineBasicBlock *loop2MBB =
11074     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11075   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11076   F->insert(It, loopMBB);
11077   if (CmpOpcode)
11078     F->insert(It, loop2MBB);
11079   F->insert(It, exitMBB);
11080   exitMBB->splice(exitMBB->begin(), BB,
11081                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11082   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11083 
11084   MachineRegisterInfo &RegInfo = F->getRegInfo();
11085   Register TmpReg = (!BinOpcode) ? incr :
11086     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11087                                            : &PPC::GPRCRegClass);
11088 
11089   //  thisMBB:
11090   //   ...
11091   //   fallthrough --> loopMBB
11092   BB->addSuccessor(loopMBB);
11093 
11094   //  loopMBB:
11095   //   l[wd]arx dest, ptr
11096   //   add r0, dest, incr
11097   //   st[wd]cx. r0, ptr
11098   //   bne- loopMBB
11099   //   fallthrough --> exitMBB
11100 
11101   // For max/min...
11102   //  loopMBB:
11103   //   l[wd]arx dest, ptr
11104   //   cmpl?[wd] incr, dest
11105   //   bgt exitMBB
11106   //  loop2MBB:
11107   //   st[wd]cx. dest, ptr
11108   //   bne- loopMBB
11109   //   fallthrough --> exitMBB
11110 
11111   BB = loopMBB;
11112   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11113     .addReg(ptrA).addReg(ptrB);
11114   if (BinOpcode)
11115     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11116   if (CmpOpcode) {
11117     // Signed comparisons of byte or halfword values must be sign-extended.
11118     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11119       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11120       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11121               ExtReg).addReg(dest);
11122       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11123         .addReg(incr).addReg(ExtReg);
11124     } else
11125       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11126         .addReg(incr).addReg(dest);
11127 
11128     BuildMI(BB, dl, TII->get(PPC::BCC))
11129       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11130     BB->addSuccessor(loop2MBB);
11131     BB->addSuccessor(exitMBB);
11132     BB = loop2MBB;
11133   }
11134   BuildMI(BB, dl, TII->get(StoreMnemonic))
11135     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11136   BuildMI(BB, dl, TII->get(PPC::BCC))
11137     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11138   BB->addSuccessor(loopMBB);
11139   BB->addSuccessor(exitMBB);
11140 
11141   //  exitMBB:
11142   //   ...
11143   BB = exitMBB;
11144   return BB;
11145 }
11146 
11147 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11148   switch(MI.getOpcode()) {
11149   default:
11150     return false;
11151   case PPC::COPY:
11152     return TII->isSignExtended(MI);
11153   case PPC::LHA:
11154   case PPC::LHA8:
11155   case PPC::LHAU:
11156   case PPC::LHAU8:
11157   case PPC::LHAUX:
11158   case PPC::LHAUX8:
11159   case PPC::LHAX:
11160   case PPC::LHAX8:
11161   case PPC::LWA:
11162   case PPC::LWAUX:
11163   case PPC::LWAX:
11164   case PPC::LWAX_32:
11165   case PPC::LWA_32:
11166   case PPC::PLHA:
11167   case PPC::PLHA8:
11168   case PPC::PLHA8pc:
11169   case PPC::PLHApc:
11170   case PPC::PLWA:
11171   case PPC::PLWA8:
11172   case PPC::PLWA8pc:
11173   case PPC::PLWApc:
11174   case PPC::EXTSB:
11175   case PPC::EXTSB8:
11176   case PPC::EXTSB8_32_64:
11177   case PPC::EXTSB8_rec:
11178   case PPC::EXTSB_rec:
11179   case PPC::EXTSH:
11180   case PPC::EXTSH8:
11181   case PPC::EXTSH8_32_64:
11182   case PPC::EXTSH8_rec:
11183   case PPC::EXTSH_rec:
11184   case PPC::EXTSW:
11185   case PPC::EXTSWSLI:
11186   case PPC::EXTSWSLI_32_64:
11187   case PPC::EXTSWSLI_32_64_rec:
11188   case PPC::EXTSWSLI_rec:
11189   case PPC::EXTSW_32:
11190   case PPC::EXTSW_32_64:
11191   case PPC::EXTSW_32_64_rec:
11192   case PPC::EXTSW_rec:
11193   case PPC::SRAW:
11194   case PPC::SRAWI:
11195   case PPC::SRAWI_rec:
11196   case PPC::SRAW_rec:
11197     return true;
11198   }
11199   return false;
11200 }
11201 
11202 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11203     MachineInstr &MI, MachineBasicBlock *BB,
11204     bool is8bit, // operation
11205     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11206   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11207   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11208 
11209   // If this is a signed comparison and the value being compared is not known
11210   // to be sign extended, sign extend it here.
11211   DebugLoc dl = MI.getDebugLoc();
11212   MachineFunction *F = BB->getParent();
11213   MachineRegisterInfo &RegInfo = F->getRegInfo();
11214   Register incr = MI.getOperand(3).getReg();
11215   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11216     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11217 
11218   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11219     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11220     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11221         .addReg(MI.getOperand(3).getReg());
11222     MI.getOperand(3).setReg(ValueReg);
11223   }
11224   // If we support part-word atomic mnemonics, just use them
11225   if (Subtarget.hasPartwordAtomics())
11226     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11227                             CmpPred);
11228 
11229   // In 64 bit mode we have to use 64 bits for addresses, even though the
11230   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11231   // registers without caring whether they're 32 or 64, but here we're
11232   // doing actual arithmetic on the addresses.
11233   bool is64bit = Subtarget.isPPC64();
11234   bool isLittleEndian = Subtarget.isLittleEndian();
11235   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11236 
11237   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11238   MachineFunction::iterator It = ++BB->getIterator();
11239 
11240   Register dest = MI.getOperand(0).getReg();
11241   Register ptrA = MI.getOperand(1).getReg();
11242   Register ptrB = MI.getOperand(2).getReg();
11243 
11244   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11245   MachineBasicBlock *loop2MBB =
11246       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11247   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11248   F->insert(It, loopMBB);
11249   if (CmpOpcode)
11250     F->insert(It, loop2MBB);
11251   F->insert(It, exitMBB);
11252   exitMBB->splice(exitMBB->begin(), BB,
11253                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11254   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11255 
11256   const TargetRegisterClass *RC =
11257       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11258   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11259 
11260   Register PtrReg = RegInfo.createVirtualRegister(RC);
11261   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11262   Register ShiftReg =
11263       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11264   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11265   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11266   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11267   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11268   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11269   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11270   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11271   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11272   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11273   Register Ptr1Reg;
11274   Register TmpReg =
11275       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11276 
11277   //  thisMBB:
11278   //   ...
11279   //   fallthrough --> loopMBB
11280   BB->addSuccessor(loopMBB);
11281 
11282   // The 4-byte load must be aligned, while a char or short may be
11283   // anywhere in the word.  Hence all this nasty bookkeeping code.
11284   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11285   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11286   //   xori shift, shift1, 24 [16]
11287   //   rlwinm ptr, ptr1, 0, 0, 29
11288   //   slw incr2, incr, shift
11289   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11290   //   slw mask, mask2, shift
11291   //  loopMBB:
11292   //   lwarx tmpDest, ptr
11293   //   add tmp, tmpDest, incr2
11294   //   andc tmp2, tmpDest, mask
11295   //   and tmp3, tmp, mask
11296   //   or tmp4, tmp3, tmp2
11297   //   stwcx. tmp4, ptr
11298   //   bne- loopMBB
11299   //   fallthrough --> exitMBB
11300   //   srw SrwDest, tmpDest, shift
11301   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11302   if (ptrA != ZeroReg) {
11303     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11304     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11305         .addReg(ptrA)
11306         .addReg(ptrB);
11307   } else {
11308     Ptr1Reg = ptrB;
11309   }
11310   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11311   // mode.
11312   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11313       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11314       .addImm(3)
11315       .addImm(27)
11316       .addImm(is8bit ? 28 : 27);
11317   if (!isLittleEndian)
11318     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11319         .addReg(Shift1Reg)
11320         .addImm(is8bit ? 24 : 16);
11321   if (is64bit)
11322     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11323         .addReg(Ptr1Reg)
11324         .addImm(0)
11325         .addImm(61);
11326   else
11327     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11328         .addReg(Ptr1Reg)
11329         .addImm(0)
11330         .addImm(0)
11331         .addImm(29);
11332   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11333   if (is8bit)
11334     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11335   else {
11336     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11337     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11338         .addReg(Mask3Reg)
11339         .addImm(65535);
11340   }
11341   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11342       .addReg(Mask2Reg)
11343       .addReg(ShiftReg);
11344 
11345   BB = loopMBB;
11346   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11347       .addReg(ZeroReg)
11348       .addReg(PtrReg);
11349   if (BinOpcode)
11350     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11351         .addReg(Incr2Reg)
11352         .addReg(TmpDestReg);
11353   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11354       .addReg(TmpDestReg)
11355       .addReg(MaskReg);
11356   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11357   if (CmpOpcode) {
11358     // For unsigned comparisons, we can directly compare the shifted values.
11359     // For signed comparisons we shift and sign extend.
11360     Register SReg = RegInfo.createVirtualRegister(GPRC);
11361     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11362         .addReg(TmpDestReg)
11363         .addReg(MaskReg);
11364     unsigned ValueReg = SReg;
11365     unsigned CmpReg = Incr2Reg;
11366     if (CmpOpcode == PPC::CMPW) {
11367       ValueReg = RegInfo.createVirtualRegister(GPRC);
11368       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11369           .addReg(SReg)
11370           .addReg(ShiftReg);
11371       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11372       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11373           .addReg(ValueReg);
11374       ValueReg = ValueSReg;
11375       CmpReg = incr;
11376     }
11377     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11378         .addReg(CmpReg)
11379         .addReg(ValueReg);
11380     BuildMI(BB, dl, TII->get(PPC::BCC))
11381         .addImm(CmpPred)
11382         .addReg(PPC::CR0)
11383         .addMBB(exitMBB);
11384     BB->addSuccessor(loop2MBB);
11385     BB->addSuccessor(exitMBB);
11386     BB = loop2MBB;
11387   }
11388   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11389   BuildMI(BB, dl, TII->get(PPC::STWCX))
11390       .addReg(Tmp4Reg)
11391       .addReg(ZeroReg)
11392       .addReg(PtrReg);
11393   BuildMI(BB, dl, TII->get(PPC::BCC))
11394       .addImm(PPC::PRED_NE)
11395       .addReg(PPC::CR0)
11396       .addMBB(loopMBB);
11397   BB->addSuccessor(loopMBB);
11398   BB->addSuccessor(exitMBB);
11399 
11400   //  exitMBB:
11401   //   ...
11402   BB = exitMBB;
11403   // Since the shift amount is not a constant, we need to clear
11404   // the upper bits with a separate RLWINM.
11405   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11406       .addReg(SrwDestReg)
11407       .addImm(0)
11408       .addImm(is8bit ? 24 : 16)
11409       .addImm(31);
11410   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11411       .addReg(TmpDestReg)
11412       .addReg(ShiftReg);
11413   return BB;
11414 }
11415 
11416 llvm::MachineBasicBlock *
11417 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11418                                     MachineBasicBlock *MBB) const {
11419   DebugLoc DL = MI.getDebugLoc();
11420   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11421   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11422 
11423   MachineFunction *MF = MBB->getParent();
11424   MachineRegisterInfo &MRI = MF->getRegInfo();
11425 
11426   const BasicBlock *BB = MBB->getBasicBlock();
11427   MachineFunction::iterator I = ++MBB->getIterator();
11428 
11429   Register DstReg = MI.getOperand(0).getReg();
11430   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11431   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11432   Register mainDstReg = MRI.createVirtualRegister(RC);
11433   Register restoreDstReg = MRI.createVirtualRegister(RC);
11434 
11435   MVT PVT = getPointerTy(MF->getDataLayout());
11436   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11437          "Invalid Pointer Size!");
11438   // For v = setjmp(buf), we generate
11439   //
11440   // thisMBB:
11441   //  SjLjSetup mainMBB
11442   //  bl mainMBB
11443   //  v_restore = 1
11444   //  b sinkMBB
11445   //
11446   // mainMBB:
11447   //  buf[LabelOffset] = LR
11448   //  v_main = 0
11449   //
11450   // sinkMBB:
11451   //  v = phi(main, restore)
11452   //
11453 
11454   MachineBasicBlock *thisMBB = MBB;
11455   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11456   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11457   MF->insert(I, mainMBB);
11458   MF->insert(I, sinkMBB);
11459 
11460   MachineInstrBuilder MIB;
11461 
11462   // Transfer the remainder of BB and its successor edges to sinkMBB.
11463   sinkMBB->splice(sinkMBB->begin(), MBB,
11464                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11465   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11466 
11467   // Note that the structure of the jmp_buf used here is not compatible
11468   // with that used by libc, and is not designed to be. Specifically, it
11469   // stores only those 'reserved' registers that LLVM does not otherwise
11470   // understand how to spill. Also, by convention, by the time this
11471   // intrinsic is called, Clang has already stored the frame address in the
11472   // first slot of the buffer and stack address in the third. Following the
11473   // X86 target code, we'll store the jump address in the second slot. We also
11474   // need to save the TOC pointer (R2) to handle jumps between shared
11475   // libraries, and that will be stored in the fourth slot. The thread
11476   // identifier (R13) is not affected.
11477 
11478   // thisMBB:
11479   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11480   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11481   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11482 
11483   // Prepare IP either in reg.
11484   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11485   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11486   Register BufReg = MI.getOperand(1).getReg();
11487 
11488   if (Subtarget.is64BitELFABI()) {
11489     setUsesTOCBasePtr(*MBB->getParent());
11490     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11491               .addReg(PPC::X2)
11492               .addImm(TOCOffset)
11493               .addReg(BufReg)
11494               .cloneMemRefs(MI);
11495   }
11496 
11497   // Naked functions never have a base pointer, and so we use r1. For all
11498   // other functions, this decision must be delayed until during PEI.
11499   unsigned BaseReg;
11500   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11501     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11502   else
11503     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11504 
11505   MIB = BuildMI(*thisMBB, MI, DL,
11506                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11507             .addReg(BaseReg)
11508             .addImm(BPOffset)
11509             .addReg(BufReg)
11510             .cloneMemRefs(MI);
11511 
11512   // Setup
11513   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11514   MIB.addRegMask(TRI->getNoPreservedMask());
11515 
11516   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11517 
11518   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11519           .addMBB(mainMBB);
11520   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11521 
11522   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11523   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11524 
11525   // mainMBB:
11526   //  mainDstReg = 0
11527   MIB =
11528       BuildMI(mainMBB, DL,
11529               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11530 
11531   // Store IP
11532   if (Subtarget.isPPC64()) {
11533     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11534             .addReg(LabelReg)
11535             .addImm(LabelOffset)
11536             .addReg(BufReg);
11537   } else {
11538     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11539             .addReg(LabelReg)
11540             .addImm(LabelOffset)
11541             .addReg(BufReg);
11542   }
11543   MIB.cloneMemRefs(MI);
11544 
11545   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11546   mainMBB->addSuccessor(sinkMBB);
11547 
11548   // sinkMBB:
11549   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11550           TII->get(PPC::PHI), DstReg)
11551     .addReg(mainDstReg).addMBB(mainMBB)
11552     .addReg(restoreDstReg).addMBB(thisMBB);
11553 
11554   MI.eraseFromParent();
11555   return sinkMBB;
11556 }
11557 
11558 MachineBasicBlock *
11559 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11560                                      MachineBasicBlock *MBB) const {
11561   DebugLoc DL = MI.getDebugLoc();
11562   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11563 
11564   MachineFunction *MF = MBB->getParent();
11565   MachineRegisterInfo &MRI = MF->getRegInfo();
11566 
11567   MVT PVT = getPointerTy(MF->getDataLayout());
11568   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11569          "Invalid Pointer Size!");
11570 
11571   const TargetRegisterClass *RC =
11572     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11573   Register Tmp = MRI.createVirtualRegister(RC);
11574   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11575   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11576   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11577   unsigned BP =
11578       (PVT == MVT::i64)
11579           ? PPC::X30
11580           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11581                                                               : PPC::R30);
11582 
11583   MachineInstrBuilder MIB;
11584 
11585   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11586   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11587   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11588   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11589 
11590   Register BufReg = MI.getOperand(0).getReg();
11591 
11592   // Reload FP (the jumped-to function may not have had a
11593   // frame pointer, and if so, then its r31 will be restored
11594   // as necessary).
11595   if (PVT == MVT::i64) {
11596     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11597             .addImm(0)
11598             .addReg(BufReg);
11599   } else {
11600     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11601             .addImm(0)
11602             .addReg(BufReg);
11603   }
11604   MIB.cloneMemRefs(MI);
11605 
11606   // Reload IP
11607   if (PVT == MVT::i64) {
11608     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11609             .addImm(LabelOffset)
11610             .addReg(BufReg);
11611   } else {
11612     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11613             .addImm(LabelOffset)
11614             .addReg(BufReg);
11615   }
11616   MIB.cloneMemRefs(MI);
11617 
11618   // Reload SP
11619   if (PVT == MVT::i64) {
11620     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11621             .addImm(SPOffset)
11622             .addReg(BufReg);
11623   } else {
11624     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11625             .addImm(SPOffset)
11626             .addReg(BufReg);
11627   }
11628   MIB.cloneMemRefs(MI);
11629 
11630   // Reload BP
11631   if (PVT == MVT::i64) {
11632     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11633             .addImm(BPOffset)
11634             .addReg(BufReg);
11635   } else {
11636     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11637             .addImm(BPOffset)
11638             .addReg(BufReg);
11639   }
11640   MIB.cloneMemRefs(MI);
11641 
11642   // Reload TOC
11643   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11644     setUsesTOCBasePtr(*MBB->getParent());
11645     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11646               .addImm(TOCOffset)
11647               .addReg(BufReg)
11648               .cloneMemRefs(MI);
11649   }
11650 
11651   // Jump
11652   BuildMI(*MBB, MI, DL,
11653           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11654   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11655 
11656   MI.eraseFromParent();
11657   return MBB;
11658 }
11659 
11660 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11661   // If the function specifically requests inline stack probes, emit them.
11662   if (MF.getFunction().hasFnAttribute("probe-stack"))
11663     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11664            "inline-asm";
11665   return false;
11666 }
11667 
11668 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11669   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11670   unsigned StackAlign = TFI->getStackAlignment();
11671   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11672          "Unexpected stack alignment");
11673   // The default stack probe size is 4096 if the function has no
11674   // stack-probe-size attribute.
11675   unsigned StackProbeSize = 4096;
11676   const Function &Fn = MF.getFunction();
11677   if (Fn.hasFnAttribute("stack-probe-size"))
11678     Fn.getFnAttribute("stack-probe-size")
11679         .getValueAsString()
11680         .getAsInteger(0, StackProbeSize);
11681   // Round down to the stack alignment.
11682   StackProbeSize &= ~(StackAlign - 1);
11683   return StackProbeSize ? StackProbeSize : StackAlign;
11684 }
11685 
11686 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11687 // into three phases. In the first phase, it uses pseudo instruction
11688 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11689 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11690 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11691 // MaxCallFrameSize so that it can calculate correct data area pointer.
11692 MachineBasicBlock *
11693 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11694                                     MachineBasicBlock *MBB) const {
11695   const bool isPPC64 = Subtarget.isPPC64();
11696   MachineFunction *MF = MBB->getParent();
11697   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11698   DebugLoc DL = MI.getDebugLoc();
11699   const unsigned ProbeSize = getStackProbeSize(*MF);
11700   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11701   MachineRegisterInfo &MRI = MF->getRegInfo();
11702   // The CFG of probing stack looks as
11703   //         +-----+
11704   //         | MBB |
11705   //         +--+--+
11706   //            |
11707   //       +----v----+
11708   //  +--->+ TestMBB +---+
11709   //  |    +----+----+   |
11710   //  |         |        |
11711   //  |   +-----v----+   |
11712   //  +---+ BlockMBB |   |
11713   //      +----------+   |
11714   //                     |
11715   //       +---------+   |
11716   //       | TailMBB +<--+
11717   //       +---------+
11718   // In MBB, calculate previous frame pointer and final stack pointer.
11719   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11720   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11721   // TailMBB is spliced via \p MI.
11722   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11723   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11724   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11725 
11726   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11727   MF->insert(MBBIter, TestMBB);
11728   MF->insert(MBBIter, BlockMBB);
11729   MF->insert(MBBIter, TailMBB);
11730 
11731   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11732   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11733 
11734   Register DstReg = MI.getOperand(0).getReg();
11735   Register NegSizeReg = MI.getOperand(1).getReg();
11736   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11737   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11738   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11739   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11740 
11741   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11742   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11743   // NegSize.
11744   unsigned ProbeOpc;
11745   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11746     ProbeOpc =
11747         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11748   else
11749     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11750     // and NegSizeReg will be allocated in the same phyreg to avoid
11751     // redundant copy when NegSizeReg has only one use which is current MI and
11752     // will be replaced by PREPARE_PROBED_ALLOCA then.
11753     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11754                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11755   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11756       .addDef(ActualNegSizeReg)
11757       .addReg(NegSizeReg)
11758       .add(MI.getOperand(2))
11759       .add(MI.getOperand(3));
11760 
11761   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11762   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11763           FinalStackPtr)
11764       .addReg(SPReg)
11765       .addReg(ActualNegSizeReg);
11766 
11767   // Materialize a scratch register for update.
11768   int64_t NegProbeSize = -(int64_t)ProbeSize;
11769   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11770   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11771   if (!isInt<16>(NegProbeSize)) {
11772     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11773     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11774         .addImm(NegProbeSize >> 16);
11775     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11776             ScratchReg)
11777         .addReg(TempReg)
11778         .addImm(NegProbeSize & 0xFFFF);
11779   } else
11780     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11781         .addImm(NegProbeSize);
11782 
11783   {
11784     // Probing leading residual part.
11785     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11786     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11787         .addReg(ActualNegSizeReg)
11788         .addReg(ScratchReg);
11789     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11790     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11791         .addReg(Div)
11792         .addReg(ScratchReg);
11793     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11794     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11795         .addReg(Mul)
11796         .addReg(ActualNegSizeReg);
11797     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11798         .addReg(FramePointer)
11799         .addReg(SPReg)
11800         .addReg(NegMod);
11801   }
11802 
11803   {
11804     // Remaining part should be multiple of ProbeSize.
11805     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11806     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11807         .addReg(SPReg)
11808         .addReg(FinalStackPtr);
11809     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11810         .addImm(PPC::PRED_EQ)
11811         .addReg(CmpResult)
11812         .addMBB(TailMBB);
11813     TestMBB->addSuccessor(BlockMBB);
11814     TestMBB->addSuccessor(TailMBB);
11815   }
11816 
11817   {
11818     // Touch the block.
11819     // |P...|P...|P...
11820     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11821         .addReg(FramePointer)
11822         .addReg(SPReg)
11823         .addReg(ScratchReg);
11824     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11825     BlockMBB->addSuccessor(TestMBB);
11826   }
11827 
11828   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11829   // DYNAREAOFFSET pseudo instruction to get the future result.
11830   Register MaxCallFrameSizeReg =
11831       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11832   BuildMI(TailMBB, DL,
11833           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11834           MaxCallFrameSizeReg)
11835       .add(MI.getOperand(2))
11836       .add(MI.getOperand(3));
11837   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11838       .addReg(SPReg)
11839       .addReg(MaxCallFrameSizeReg);
11840 
11841   // Splice instructions after MI to TailMBB.
11842   TailMBB->splice(TailMBB->end(), MBB,
11843                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11844   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11845   MBB->addSuccessor(TestMBB);
11846 
11847   // Delete the pseudo instruction.
11848   MI.eraseFromParent();
11849 
11850   ++NumDynamicAllocaProbed;
11851   return TailMBB;
11852 }
11853 
11854 MachineBasicBlock *
11855 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11856                                                MachineBasicBlock *BB) const {
11857   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11858       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11859     if (Subtarget.is64BitELFABI() &&
11860         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11861         !Subtarget.isUsingPCRelativeCalls()) {
11862       // Call lowering should have added an r2 operand to indicate a dependence
11863       // on the TOC base pointer value. It can't however, because there is no
11864       // way to mark the dependence as implicit there, and so the stackmap code
11865       // will confuse it with a regular operand. Instead, add the dependence
11866       // here.
11867       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11868     }
11869 
11870     return emitPatchPoint(MI, BB);
11871   }
11872 
11873   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11874       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11875     return emitEHSjLjSetJmp(MI, BB);
11876   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11877              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11878     return emitEHSjLjLongJmp(MI, BB);
11879   }
11880 
11881   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11882 
11883   // To "insert" these instructions we actually have to insert their
11884   // control-flow patterns.
11885   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11886   MachineFunction::iterator It = ++BB->getIterator();
11887 
11888   MachineFunction *F = BB->getParent();
11889 
11890   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11891       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11892       MI.getOpcode() == PPC::SELECT_I8) {
11893     SmallVector<MachineOperand, 2> Cond;
11894     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11895         MI.getOpcode() == PPC::SELECT_CC_I8)
11896       Cond.push_back(MI.getOperand(4));
11897     else
11898       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11899     Cond.push_back(MI.getOperand(1));
11900 
11901     DebugLoc dl = MI.getDebugLoc();
11902     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11903                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11904   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11905              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11906              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11907              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11908              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11909              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11910              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11911              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11912              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11913              MI.getOpcode() == PPC::SELECT_F4 ||
11914              MI.getOpcode() == PPC::SELECT_F8 ||
11915              MI.getOpcode() == PPC::SELECT_F16 ||
11916              MI.getOpcode() == PPC::SELECT_SPE ||
11917              MI.getOpcode() == PPC::SELECT_SPE4 ||
11918              MI.getOpcode() == PPC::SELECT_VRRC ||
11919              MI.getOpcode() == PPC::SELECT_VSFRC ||
11920              MI.getOpcode() == PPC::SELECT_VSSRC ||
11921              MI.getOpcode() == PPC::SELECT_VSRC) {
11922     // The incoming instruction knows the destination vreg to set, the
11923     // condition code register to branch on, the true/false values to
11924     // select between, and a branch opcode to use.
11925 
11926     //  thisMBB:
11927     //  ...
11928     //   TrueVal = ...
11929     //   cmpTY ccX, r1, r2
11930     //   bCC copy1MBB
11931     //   fallthrough --> copy0MBB
11932     MachineBasicBlock *thisMBB = BB;
11933     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11934     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11935     DebugLoc dl = MI.getDebugLoc();
11936     F->insert(It, copy0MBB);
11937     F->insert(It, sinkMBB);
11938 
11939     // Transfer the remainder of BB and its successor edges to sinkMBB.
11940     sinkMBB->splice(sinkMBB->begin(), BB,
11941                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11942     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11943 
11944     // Next, add the true and fallthrough blocks as its successors.
11945     BB->addSuccessor(copy0MBB);
11946     BB->addSuccessor(sinkMBB);
11947 
11948     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11949         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11950         MI.getOpcode() == PPC::SELECT_F16 ||
11951         MI.getOpcode() == PPC::SELECT_SPE4 ||
11952         MI.getOpcode() == PPC::SELECT_SPE ||
11953         MI.getOpcode() == PPC::SELECT_VRRC ||
11954         MI.getOpcode() == PPC::SELECT_VSFRC ||
11955         MI.getOpcode() == PPC::SELECT_VSSRC ||
11956         MI.getOpcode() == PPC::SELECT_VSRC) {
11957       BuildMI(BB, dl, TII->get(PPC::BC))
11958           .addReg(MI.getOperand(1).getReg())
11959           .addMBB(sinkMBB);
11960     } else {
11961       unsigned SelectPred = MI.getOperand(4).getImm();
11962       BuildMI(BB, dl, TII->get(PPC::BCC))
11963           .addImm(SelectPred)
11964           .addReg(MI.getOperand(1).getReg())
11965           .addMBB(sinkMBB);
11966     }
11967 
11968     //  copy0MBB:
11969     //   %FalseValue = ...
11970     //   # fallthrough to sinkMBB
11971     BB = copy0MBB;
11972 
11973     // Update machine-CFG edges
11974     BB->addSuccessor(sinkMBB);
11975 
11976     //  sinkMBB:
11977     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11978     //  ...
11979     BB = sinkMBB;
11980     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11981         .addReg(MI.getOperand(3).getReg())
11982         .addMBB(copy0MBB)
11983         .addReg(MI.getOperand(2).getReg())
11984         .addMBB(thisMBB);
11985   } else if (MI.getOpcode() == PPC::ReadTB) {
11986     // To read the 64-bit time-base register on a 32-bit target, we read the
11987     // two halves. Should the counter have wrapped while it was being read, we
11988     // need to try again.
11989     // ...
11990     // readLoop:
11991     // mfspr Rx,TBU # load from TBU
11992     // mfspr Ry,TB  # load from TB
11993     // mfspr Rz,TBU # load from TBU
11994     // cmpw crX,Rx,Rz # check if 'old'='new'
11995     // bne readLoop   # branch if they're not equal
11996     // ...
11997 
11998     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11999     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12000     DebugLoc dl = MI.getDebugLoc();
12001     F->insert(It, readMBB);
12002     F->insert(It, sinkMBB);
12003 
12004     // Transfer the remainder of BB and its successor edges to sinkMBB.
12005     sinkMBB->splice(sinkMBB->begin(), BB,
12006                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12007     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12008 
12009     BB->addSuccessor(readMBB);
12010     BB = readMBB;
12011 
12012     MachineRegisterInfo &RegInfo = F->getRegInfo();
12013     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12014     Register LoReg = MI.getOperand(0).getReg();
12015     Register HiReg = MI.getOperand(1).getReg();
12016 
12017     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12018     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12019     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12020 
12021     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12022 
12023     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12024         .addReg(HiReg)
12025         .addReg(ReadAgainReg);
12026     BuildMI(BB, dl, TII->get(PPC::BCC))
12027         .addImm(PPC::PRED_NE)
12028         .addReg(CmpReg)
12029         .addMBB(readMBB);
12030 
12031     BB->addSuccessor(readMBB);
12032     BB->addSuccessor(sinkMBB);
12033   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12034     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12035   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12036     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12037   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12038     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12039   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12040     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12041 
12042   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12043     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12044   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12045     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12046   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12047     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12048   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12049     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12050 
12051   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12052     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12053   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12054     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12055   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12056     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12057   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12058     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12059 
12060   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12061     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12062   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12063     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12064   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12065     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12066   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12067     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12068 
12069   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12070     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12071   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12072     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12073   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12074     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12075   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12076     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12077 
12078   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12079     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12080   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12081     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12082   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12083     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12084   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12085     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12086 
12087   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12088     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12089   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12090     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12091   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12092     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12093   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12094     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12095 
12096   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12097     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12098   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12099     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12100   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12101     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12102   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12103     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12104 
12105   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12106     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12107   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12108     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12109   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12110     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12111   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12112     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12113 
12114   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12115     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12116   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12117     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12118   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12119     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12120   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12121     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12122 
12123   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12124     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12125   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12126     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12127   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12128     BB = EmitAtomicBinary(MI, BB, 4, 0);
12129   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12130     BB = EmitAtomicBinary(MI, BB, 8, 0);
12131   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12132            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12133            (Subtarget.hasPartwordAtomics() &&
12134             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12135            (Subtarget.hasPartwordAtomics() &&
12136             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12137     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12138 
12139     auto LoadMnemonic = PPC::LDARX;
12140     auto StoreMnemonic = PPC::STDCX;
12141     switch (MI.getOpcode()) {
12142     default:
12143       llvm_unreachable("Compare and swap of unknown size");
12144     case PPC::ATOMIC_CMP_SWAP_I8:
12145       LoadMnemonic = PPC::LBARX;
12146       StoreMnemonic = PPC::STBCX;
12147       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12148       break;
12149     case PPC::ATOMIC_CMP_SWAP_I16:
12150       LoadMnemonic = PPC::LHARX;
12151       StoreMnemonic = PPC::STHCX;
12152       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12153       break;
12154     case PPC::ATOMIC_CMP_SWAP_I32:
12155       LoadMnemonic = PPC::LWARX;
12156       StoreMnemonic = PPC::STWCX;
12157       break;
12158     case PPC::ATOMIC_CMP_SWAP_I64:
12159       LoadMnemonic = PPC::LDARX;
12160       StoreMnemonic = PPC::STDCX;
12161       break;
12162     }
12163     Register dest = MI.getOperand(0).getReg();
12164     Register ptrA = MI.getOperand(1).getReg();
12165     Register ptrB = MI.getOperand(2).getReg();
12166     Register oldval = MI.getOperand(3).getReg();
12167     Register newval = MI.getOperand(4).getReg();
12168     DebugLoc dl = MI.getDebugLoc();
12169 
12170     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12171     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12172     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12173     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12174     F->insert(It, loop1MBB);
12175     F->insert(It, loop2MBB);
12176     F->insert(It, midMBB);
12177     F->insert(It, exitMBB);
12178     exitMBB->splice(exitMBB->begin(), BB,
12179                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12180     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12181 
12182     //  thisMBB:
12183     //   ...
12184     //   fallthrough --> loopMBB
12185     BB->addSuccessor(loop1MBB);
12186 
12187     // loop1MBB:
12188     //   l[bhwd]arx dest, ptr
12189     //   cmp[wd] dest, oldval
12190     //   bne- midMBB
12191     // loop2MBB:
12192     //   st[bhwd]cx. newval, ptr
12193     //   bne- loopMBB
12194     //   b exitBB
12195     // midMBB:
12196     //   st[bhwd]cx. dest, ptr
12197     // exitBB:
12198     BB = loop1MBB;
12199     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12200     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12201         .addReg(oldval)
12202         .addReg(dest);
12203     BuildMI(BB, dl, TII->get(PPC::BCC))
12204         .addImm(PPC::PRED_NE)
12205         .addReg(PPC::CR0)
12206         .addMBB(midMBB);
12207     BB->addSuccessor(loop2MBB);
12208     BB->addSuccessor(midMBB);
12209 
12210     BB = loop2MBB;
12211     BuildMI(BB, dl, TII->get(StoreMnemonic))
12212         .addReg(newval)
12213         .addReg(ptrA)
12214         .addReg(ptrB);
12215     BuildMI(BB, dl, TII->get(PPC::BCC))
12216         .addImm(PPC::PRED_NE)
12217         .addReg(PPC::CR0)
12218         .addMBB(loop1MBB);
12219     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12220     BB->addSuccessor(loop1MBB);
12221     BB->addSuccessor(exitMBB);
12222 
12223     BB = midMBB;
12224     BuildMI(BB, dl, TII->get(StoreMnemonic))
12225         .addReg(dest)
12226         .addReg(ptrA)
12227         .addReg(ptrB);
12228     BB->addSuccessor(exitMBB);
12229 
12230     //  exitMBB:
12231     //   ...
12232     BB = exitMBB;
12233   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12234              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12235     // We must use 64-bit registers for addresses when targeting 64-bit,
12236     // since we're actually doing arithmetic on them.  Other registers
12237     // can be 32-bit.
12238     bool is64bit = Subtarget.isPPC64();
12239     bool isLittleEndian = Subtarget.isLittleEndian();
12240     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12241 
12242     Register dest = MI.getOperand(0).getReg();
12243     Register ptrA = MI.getOperand(1).getReg();
12244     Register ptrB = MI.getOperand(2).getReg();
12245     Register oldval = MI.getOperand(3).getReg();
12246     Register newval = MI.getOperand(4).getReg();
12247     DebugLoc dl = MI.getDebugLoc();
12248 
12249     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12250     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12251     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12252     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12253     F->insert(It, loop1MBB);
12254     F->insert(It, loop2MBB);
12255     F->insert(It, midMBB);
12256     F->insert(It, exitMBB);
12257     exitMBB->splice(exitMBB->begin(), BB,
12258                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12259     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12260 
12261     MachineRegisterInfo &RegInfo = F->getRegInfo();
12262     const TargetRegisterClass *RC =
12263         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12264     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12265 
12266     Register PtrReg = RegInfo.createVirtualRegister(RC);
12267     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12268     Register ShiftReg =
12269         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12270     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12271     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12272     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12273     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12274     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12275     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12276     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12277     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12278     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12279     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12280     Register Ptr1Reg;
12281     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12282     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12283     //  thisMBB:
12284     //   ...
12285     //   fallthrough --> loopMBB
12286     BB->addSuccessor(loop1MBB);
12287 
12288     // The 4-byte load must be aligned, while a char or short may be
12289     // anywhere in the word.  Hence all this nasty bookkeeping code.
12290     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12291     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12292     //   xori shift, shift1, 24 [16]
12293     //   rlwinm ptr, ptr1, 0, 0, 29
12294     //   slw newval2, newval, shift
12295     //   slw oldval2, oldval,shift
12296     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12297     //   slw mask, mask2, shift
12298     //   and newval3, newval2, mask
12299     //   and oldval3, oldval2, mask
12300     // loop1MBB:
12301     //   lwarx tmpDest, ptr
12302     //   and tmp, tmpDest, mask
12303     //   cmpw tmp, oldval3
12304     //   bne- midMBB
12305     // loop2MBB:
12306     //   andc tmp2, tmpDest, mask
12307     //   or tmp4, tmp2, newval3
12308     //   stwcx. tmp4, ptr
12309     //   bne- loop1MBB
12310     //   b exitBB
12311     // midMBB:
12312     //   stwcx. tmpDest, ptr
12313     // exitBB:
12314     //   srw dest, tmpDest, shift
12315     if (ptrA != ZeroReg) {
12316       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12317       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12318           .addReg(ptrA)
12319           .addReg(ptrB);
12320     } else {
12321       Ptr1Reg = ptrB;
12322     }
12323 
12324     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12325     // mode.
12326     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12327         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12328         .addImm(3)
12329         .addImm(27)
12330         .addImm(is8bit ? 28 : 27);
12331     if (!isLittleEndian)
12332       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12333           .addReg(Shift1Reg)
12334           .addImm(is8bit ? 24 : 16);
12335     if (is64bit)
12336       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12337           .addReg(Ptr1Reg)
12338           .addImm(0)
12339           .addImm(61);
12340     else
12341       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12342           .addReg(Ptr1Reg)
12343           .addImm(0)
12344           .addImm(0)
12345           .addImm(29);
12346     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12347         .addReg(newval)
12348         .addReg(ShiftReg);
12349     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12350         .addReg(oldval)
12351         .addReg(ShiftReg);
12352     if (is8bit)
12353       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12354     else {
12355       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12356       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12357           .addReg(Mask3Reg)
12358           .addImm(65535);
12359     }
12360     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12361         .addReg(Mask2Reg)
12362         .addReg(ShiftReg);
12363     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12364         .addReg(NewVal2Reg)
12365         .addReg(MaskReg);
12366     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12367         .addReg(OldVal2Reg)
12368         .addReg(MaskReg);
12369 
12370     BB = loop1MBB;
12371     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12372         .addReg(ZeroReg)
12373         .addReg(PtrReg);
12374     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12375         .addReg(TmpDestReg)
12376         .addReg(MaskReg);
12377     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12378         .addReg(TmpReg)
12379         .addReg(OldVal3Reg);
12380     BuildMI(BB, dl, TII->get(PPC::BCC))
12381         .addImm(PPC::PRED_NE)
12382         .addReg(PPC::CR0)
12383         .addMBB(midMBB);
12384     BB->addSuccessor(loop2MBB);
12385     BB->addSuccessor(midMBB);
12386 
12387     BB = loop2MBB;
12388     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12389         .addReg(TmpDestReg)
12390         .addReg(MaskReg);
12391     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12392         .addReg(Tmp2Reg)
12393         .addReg(NewVal3Reg);
12394     BuildMI(BB, dl, TII->get(PPC::STWCX))
12395         .addReg(Tmp4Reg)
12396         .addReg(ZeroReg)
12397         .addReg(PtrReg);
12398     BuildMI(BB, dl, TII->get(PPC::BCC))
12399         .addImm(PPC::PRED_NE)
12400         .addReg(PPC::CR0)
12401         .addMBB(loop1MBB);
12402     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12403     BB->addSuccessor(loop1MBB);
12404     BB->addSuccessor(exitMBB);
12405 
12406     BB = midMBB;
12407     BuildMI(BB, dl, TII->get(PPC::STWCX))
12408         .addReg(TmpDestReg)
12409         .addReg(ZeroReg)
12410         .addReg(PtrReg);
12411     BB->addSuccessor(exitMBB);
12412 
12413     //  exitMBB:
12414     //   ...
12415     BB = exitMBB;
12416     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12417         .addReg(TmpReg)
12418         .addReg(ShiftReg);
12419   } else if (MI.getOpcode() == PPC::FADDrtz) {
12420     // This pseudo performs an FADD with rounding mode temporarily forced
12421     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12422     // is not modeled at the SelectionDAG level.
12423     Register Dest = MI.getOperand(0).getReg();
12424     Register Src1 = MI.getOperand(1).getReg();
12425     Register Src2 = MI.getOperand(2).getReg();
12426     DebugLoc dl = MI.getDebugLoc();
12427 
12428     MachineRegisterInfo &RegInfo = F->getRegInfo();
12429     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12430 
12431     // Save FPSCR value.
12432     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12433 
12434     // Set rounding mode to round-to-zero.
12435     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12436         .addImm(31)
12437         .addReg(PPC::RM, RegState::ImplicitDefine);
12438 
12439     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12440         .addImm(30)
12441         .addReg(PPC::RM, RegState::ImplicitDefine);
12442 
12443     // Perform addition.
12444     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12445                    .addReg(Src1)
12446                    .addReg(Src2);
12447     if (MI.getFlag(MachineInstr::NoFPExcept))
12448       MIB.setMIFlag(MachineInstr::NoFPExcept);
12449 
12450     // Restore FPSCR value.
12451     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12452   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12453              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12454              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12455              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12456     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12457                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12458                           ? PPC::ANDI8_rec
12459                           : PPC::ANDI_rec;
12460     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12461                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12462 
12463     MachineRegisterInfo &RegInfo = F->getRegInfo();
12464     Register Dest = RegInfo.createVirtualRegister(
12465         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12466 
12467     DebugLoc Dl = MI.getDebugLoc();
12468     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12469         .addReg(MI.getOperand(1).getReg())
12470         .addImm(1);
12471     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12472             MI.getOperand(0).getReg())
12473         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12474   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12475     DebugLoc Dl = MI.getDebugLoc();
12476     MachineRegisterInfo &RegInfo = F->getRegInfo();
12477     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12478     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12479     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12480             MI.getOperand(0).getReg())
12481         .addReg(CRReg);
12482   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12483     DebugLoc Dl = MI.getDebugLoc();
12484     unsigned Imm = MI.getOperand(1).getImm();
12485     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12486     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12487             MI.getOperand(0).getReg())
12488         .addReg(PPC::CR0EQ);
12489   } else if (MI.getOpcode() == PPC::SETRNDi) {
12490     DebugLoc dl = MI.getDebugLoc();
12491     Register OldFPSCRReg = MI.getOperand(0).getReg();
12492 
12493     // Save FPSCR value.
12494     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12495 
12496     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12497     // the following settings:
12498     //   00 Round to nearest
12499     //   01 Round to 0
12500     //   10 Round to +inf
12501     //   11 Round to -inf
12502 
12503     // When the operand is immediate, using the two least significant bits of
12504     // the immediate to set the bits 62:63 of FPSCR.
12505     unsigned Mode = MI.getOperand(1).getImm();
12506     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12507         .addImm(31)
12508         .addReg(PPC::RM, RegState::ImplicitDefine);
12509 
12510     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12511         .addImm(30)
12512         .addReg(PPC::RM, RegState::ImplicitDefine);
12513   } else if (MI.getOpcode() == PPC::SETRND) {
12514     DebugLoc dl = MI.getDebugLoc();
12515 
12516     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12517     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12518     // If the target doesn't have DirectMove, we should use stack to do the
12519     // conversion, because the target doesn't have the instructions like mtvsrd
12520     // or mfvsrd to do this conversion directly.
12521     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12522       if (Subtarget.hasDirectMove()) {
12523         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12524           .addReg(SrcReg);
12525       } else {
12526         // Use stack to do the register copy.
12527         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12528         MachineRegisterInfo &RegInfo = F->getRegInfo();
12529         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12530         if (RC == &PPC::F8RCRegClass) {
12531           // Copy register from F8RCRegClass to G8RCRegclass.
12532           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12533                  "Unsupported RegClass.");
12534 
12535           StoreOp = PPC::STFD;
12536           LoadOp = PPC::LD;
12537         } else {
12538           // Copy register from G8RCRegClass to F8RCRegclass.
12539           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12540                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12541                  "Unsupported RegClass.");
12542         }
12543 
12544         MachineFrameInfo &MFI = F->getFrameInfo();
12545         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12546 
12547         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12548             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12549             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12550             MFI.getObjectAlign(FrameIdx));
12551 
12552         // Store the SrcReg into the stack.
12553         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12554           .addReg(SrcReg)
12555           .addImm(0)
12556           .addFrameIndex(FrameIdx)
12557           .addMemOperand(MMOStore);
12558 
12559         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12560             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12561             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12562             MFI.getObjectAlign(FrameIdx));
12563 
12564         // Load from the stack where SrcReg is stored, and save to DestReg,
12565         // so we have done the RegClass conversion from RegClass::SrcReg to
12566         // RegClass::DestReg.
12567         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12568           .addImm(0)
12569           .addFrameIndex(FrameIdx)
12570           .addMemOperand(MMOLoad);
12571       }
12572     };
12573 
12574     Register OldFPSCRReg = MI.getOperand(0).getReg();
12575 
12576     // Save FPSCR value.
12577     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12578 
12579     // When the operand is gprc register, use two least significant bits of the
12580     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12581     //
12582     // copy OldFPSCRTmpReg, OldFPSCRReg
12583     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12584     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12585     // copy NewFPSCRReg, NewFPSCRTmpReg
12586     // mtfsf 255, NewFPSCRReg
12587     MachineOperand SrcOp = MI.getOperand(1);
12588     MachineRegisterInfo &RegInfo = F->getRegInfo();
12589     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12590 
12591     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12592 
12593     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12594     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12595 
12596     // The first operand of INSERT_SUBREG should be a register which has
12597     // subregisters, we only care about its RegClass, so we should use an
12598     // IMPLICIT_DEF register.
12599     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12600     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12601       .addReg(ImDefReg)
12602       .add(SrcOp)
12603       .addImm(1);
12604 
12605     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12606     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12607       .addReg(OldFPSCRTmpReg)
12608       .addReg(ExtSrcReg)
12609       .addImm(0)
12610       .addImm(62);
12611 
12612     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12613     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12614 
12615     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12616     // bits of FPSCR.
12617     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12618       .addImm(255)
12619       .addReg(NewFPSCRReg)
12620       .addImm(0)
12621       .addImm(0);
12622   } else if (MI.getOpcode() == PPC::SETFLM) {
12623     DebugLoc Dl = MI.getDebugLoc();
12624 
12625     // Result of setflm is previous FPSCR content, so we need to save it first.
12626     Register OldFPSCRReg = MI.getOperand(0).getReg();
12627     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12628 
12629     // Put bits in 32:63 to FPSCR.
12630     Register NewFPSCRReg = MI.getOperand(1).getReg();
12631     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12632         .addImm(255)
12633         .addReg(NewFPSCRReg)
12634         .addImm(0)
12635         .addImm(0);
12636   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12637              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12638     return emitProbedAlloca(MI, BB);
12639   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12640     DebugLoc DL = MI.getDebugLoc();
12641     Register Src = MI.getOperand(2).getReg();
12642     Register Lo = MI.getOperand(0).getReg();
12643     Register Hi = MI.getOperand(1).getReg();
12644     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12645         .addDef(Lo)
12646         .addUse(Src, 0, PPC::sub_gp8_x1);
12647     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12648         .addDef(Hi)
12649         .addUse(Src, 0, PPC::sub_gp8_x0);
12650   } else {
12651     llvm_unreachable("Unexpected instr type to insert");
12652   }
12653 
12654   MI.eraseFromParent(); // The pseudo instruction is gone now.
12655   return BB;
12656 }
12657 
12658 //===----------------------------------------------------------------------===//
12659 // Target Optimization Hooks
12660 //===----------------------------------------------------------------------===//
12661 
12662 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12663   // For the estimates, convergence is quadratic, so we essentially double the
12664   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12665   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12666   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12667   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12668   if (VT.getScalarType() == MVT::f64)
12669     RefinementSteps++;
12670   return RefinementSteps;
12671 }
12672 
12673 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12674                                             const DenormalMode &Mode) const {
12675   // We only have VSX Vector Test for software Square Root.
12676   EVT VT = Op.getValueType();
12677   if (!isTypeLegal(MVT::i1) ||
12678       (VT != MVT::f64 &&
12679        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12680     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12681 
12682   SDLoc DL(Op);
12683   // The output register of FTSQRT is CR field.
12684   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12685   // ftsqrt BF,FRB
12686   // Let e_b be the unbiased exponent of the double-precision
12687   // floating-point operand in register FRB.
12688   // fe_flag is set to 1 if either of the following conditions occurs.
12689   //   - The double-precision floating-point operand in register FRB is a zero,
12690   //     a NaN, or an infinity, or a negative value.
12691   //   - e_b is less than or equal to -970.
12692   // Otherwise fe_flag is set to 0.
12693   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12694   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12695   // exponent is less than -970)
12696   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12697   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12698                                     FTSQRT, SRIdxVal),
12699                  0);
12700 }
12701 
12702 SDValue
12703 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12704                                                SelectionDAG &DAG) const {
12705   // We only have VSX Vector Square Root.
12706   EVT VT = Op.getValueType();
12707   if (VT != MVT::f64 &&
12708       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12709     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12710 
12711   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12712 }
12713 
12714 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12715                                            int Enabled, int &RefinementSteps,
12716                                            bool &UseOneConstNR,
12717                                            bool Reciprocal) const {
12718   EVT VT = Operand.getValueType();
12719   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12720       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12721       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12722       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12723     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12724       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12725 
12726     // The Newton-Raphson computation with a single constant does not provide
12727     // enough accuracy on some CPUs.
12728     UseOneConstNR = !Subtarget.needsTwoConstNR();
12729     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12730   }
12731   return SDValue();
12732 }
12733 
12734 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12735                                             int Enabled,
12736                                             int &RefinementSteps) const {
12737   EVT VT = Operand.getValueType();
12738   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12739       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12740       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12741       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12742     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12743       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12744     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12745   }
12746   return SDValue();
12747 }
12748 
12749 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12750   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12751   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12752   // enabled for division), this functionality is redundant with the default
12753   // combiner logic (once the division -> reciprocal/multiply transformation
12754   // has taken place). As a result, this matters more for older cores than for
12755   // newer ones.
12756 
12757   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12758   // reciprocal if there are two or more FDIVs (for embedded cores with only
12759   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12760   switch (Subtarget.getCPUDirective()) {
12761   default:
12762     return 3;
12763   case PPC::DIR_440:
12764   case PPC::DIR_A2:
12765   case PPC::DIR_E500:
12766   case PPC::DIR_E500mc:
12767   case PPC::DIR_E5500:
12768     return 2;
12769   }
12770 }
12771 
12772 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12773 // collapsed, and so we need to look through chains of them.
12774 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12775                                      int64_t& Offset, SelectionDAG &DAG) {
12776   if (DAG.isBaseWithConstantOffset(Loc)) {
12777     Base = Loc.getOperand(0);
12778     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12779 
12780     // The base might itself be a base plus an offset, and if so, accumulate
12781     // that as well.
12782     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12783   }
12784 }
12785 
12786 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12787                             unsigned Bytes, int Dist,
12788                             SelectionDAG &DAG) {
12789   if (VT.getSizeInBits() / 8 != Bytes)
12790     return false;
12791 
12792   SDValue BaseLoc = Base->getBasePtr();
12793   if (Loc.getOpcode() == ISD::FrameIndex) {
12794     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12795       return false;
12796     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12797     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12798     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12799     int FS  = MFI.getObjectSize(FI);
12800     int BFS = MFI.getObjectSize(BFI);
12801     if (FS != BFS || FS != (int)Bytes) return false;
12802     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12803   }
12804 
12805   SDValue Base1 = Loc, Base2 = BaseLoc;
12806   int64_t Offset1 = 0, Offset2 = 0;
12807   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12808   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12809   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12810     return true;
12811 
12812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12813   const GlobalValue *GV1 = nullptr;
12814   const GlobalValue *GV2 = nullptr;
12815   Offset1 = 0;
12816   Offset2 = 0;
12817   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12818   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12819   if (isGA1 && isGA2 && GV1 == GV2)
12820     return Offset1 == (Offset2 + Dist*Bytes);
12821   return false;
12822 }
12823 
12824 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12825 // not enforce equality of the chain operands.
12826 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12827                             unsigned Bytes, int Dist,
12828                             SelectionDAG &DAG) {
12829   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12830     EVT VT = LS->getMemoryVT();
12831     SDValue Loc = LS->getBasePtr();
12832     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12833   }
12834 
12835   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12836     EVT VT;
12837     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12838     default: return false;
12839     case Intrinsic::ppc_altivec_lvx:
12840     case Intrinsic::ppc_altivec_lvxl:
12841     case Intrinsic::ppc_vsx_lxvw4x:
12842     case Intrinsic::ppc_vsx_lxvw4x_be:
12843       VT = MVT::v4i32;
12844       break;
12845     case Intrinsic::ppc_vsx_lxvd2x:
12846     case Intrinsic::ppc_vsx_lxvd2x_be:
12847       VT = MVT::v2f64;
12848       break;
12849     case Intrinsic::ppc_altivec_lvebx:
12850       VT = MVT::i8;
12851       break;
12852     case Intrinsic::ppc_altivec_lvehx:
12853       VT = MVT::i16;
12854       break;
12855     case Intrinsic::ppc_altivec_lvewx:
12856       VT = MVT::i32;
12857       break;
12858     }
12859 
12860     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12861   }
12862 
12863   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12864     EVT VT;
12865     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12866     default: return false;
12867     case Intrinsic::ppc_altivec_stvx:
12868     case Intrinsic::ppc_altivec_stvxl:
12869     case Intrinsic::ppc_vsx_stxvw4x:
12870       VT = MVT::v4i32;
12871       break;
12872     case Intrinsic::ppc_vsx_stxvd2x:
12873       VT = MVT::v2f64;
12874       break;
12875     case Intrinsic::ppc_vsx_stxvw4x_be:
12876       VT = MVT::v4i32;
12877       break;
12878     case Intrinsic::ppc_vsx_stxvd2x_be:
12879       VT = MVT::v2f64;
12880       break;
12881     case Intrinsic::ppc_altivec_stvebx:
12882       VT = MVT::i8;
12883       break;
12884     case Intrinsic::ppc_altivec_stvehx:
12885       VT = MVT::i16;
12886       break;
12887     case Intrinsic::ppc_altivec_stvewx:
12888       VT = MVT::i32;
12889       break;
12890     }
12891 
12892     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12893   }
12894 
12895   return false;
12896 }
12897 
12898 // Return true is there is a nearyby consecutive load to the one provided
12899 // (regardless of alignment). We search up and down the chain, looking though
12900 // token factors and other loads (but nothing else). As a result, a true result
12901 // indicates that it is safe to create a new consecutive load adjacent to the
12902 // load provided.
12903 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12904   SDValue Chain = LD->getChain();
12905   EVT VT = LD->getMemoryVT();
12906 
12907   SmallSet<SDNode *, 16> LoadRoots;
12908   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12909   SmallSet<SDNode *, 16> Visited;
12910 
12911   // First, search up the chain, branching to follow all token-factor operands.
12912   // If we find a consecutive load, then we're done, otherwise, record all
12913   // nodes just above the top-level loads and token factors.
12914   while (!Queue.empty()) {
12915     SDNode *ChainNext = Queue.pop_back_val();
12916     if (!Visited.insert(ChainNext).second)
12917       continue;
12918 
12919     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12920       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12921         return true;
12922 
12923       if (!Visited.count(ChainLD->getChain().getNode()))
12924         Queue.push_back(ChainLD->getChain().getNode());
12925     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12926       for (const SDUse &O : ChainNext->ops())
12927         if (!Visited.count(O.getNode()))
12928           Queue.push_back(O.getNode());
12929     } else
12930       LoadRoots.insert(ChainNext);
12931   }
12932 
12933   // Second, search down the chain, starting from the top-level nodes recorded
12934   // in the first phase. These top-level nodes are the nodes just above all
12935   // loads and token factors. Starting with their uses, recursively look though
12936   // all loads (just the chain uses) and token factors to find a consecutive
12937   // load.
12938   Visited.clear();
12939   Queue.clear();
12940 
12941   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12942        IE = LoadRoots.end(); I != IE; ++I) {
12943     Queue.push_back(*I);
12944 
12945     while (!Queue.empty()) {
12946       SDNode *LoadRoot = Queue.pop_back_val();
12947       if (!Visited.insert(LoadRoot).second)
12948         continue;
12949 
12950       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12951         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12952           return true;
12953 
12954       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12955            UE = LoadRoot->use_end(); UI != UE; ++UI)
12956         if (((isa<MemSDNode>(*UI) &&
12957             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12958             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12959           Queue.push_back(*UI);
12960     }
12961   }
12962 
12963   return false;
12964 }
12965 
12966 /// This function is called when we have proved that a SETCC node can be replaced
12967 /// by subtraction (and other supporting instructions) so that the result of
12968 /// comparison is kept in a GPR instead of CR. This function is purely for
12969 /// codegen purposes and has some flags to guide the codegen process.
12970 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12971                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12972   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12973 
12974   // Zero extend the operands to the largest legal integer. Originally, they
12975   // must be of a strictly smaller size.
12976   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12977                          DAG.getConstant(Size, DL, MVT::i32));
12978   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12979                          DAG.getConstant(Size, DL, MVT::i32));
12980 
12981   // Swap if needed. Depends on the condition code.
12982   if (Swap)
12983     std::swap(Op0, Op1);
12984 
12985   // Subtract extended integers.
12986   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12987 
12988   // Move the sign bit to the least significant position and zero out the rest.
12989   // Now the least significant bit carries the result of original comparison.
12990   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12991                              DAG.getConstant(Size - 1, DL, MVT::i32));
12992   auto Final = Shifted;
12993 
12994   // Complement the result if needed. Based on the condition code.
12995   if (Complement)
12996     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12997                         DAG.getConstant(1, DL, MVT::i64));
12998 
12999   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13000 }
13001 
13002 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13003                                                   DAGCombinerInfo &DCI) const {
13004   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13005 
13006   SelectionDAG &DAG = DCI.DAG;
13007   SDLoc DL(N);
13008 
13009   // Size of integers being compared has a critical role in the following
13010   // analysis, so we prefer to do this when all types are legal.
13011   if (!DCI.isAfterLegalizeDAG())
13012     return SDValue();
13013 
13014   // If all users of SETCC extend its value to a legal integer type
13015   // then we replace SETCC with a subtraction
13016   for (SDNode::use_iterator UI = N->use_begin(),
13017        UE = N->use_end(); UI != UE; ++UI) {
13018     if (UI->getOpcode() != ISD::ZERO_EXTEND)
13019       return SDValue();
13020   }
13021 
13022   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13023   auto OpSize = N->getOperand(0).getValueSizeInBits();
13024 
13025   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13026 
13027   if (OpSize < Size) {
13028     switch (CC) {
13029     default: break;
13030     case ISD::SETULT:
13031       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13032     case ISD::SETULE:
13033       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13034     case ISD::SETUGT:
13035       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13036     case ISD::SETUGE:
13037       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13038     }
13039   }
13040 
13041   return SDValue();
13042 }
13043 
13044 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13045                                                   DAGCombinerInfo &DCI) const {
13046   SelectionDAG &DAG = DCI.DAG;
13047   SDLoc dl(N);
13048 
13049   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13050   // If we're tracking CR bits, we need to be careful that we don't have:
13051   //   trunc(binary-ops(zext(x), zext(y)))
13052   // or
13053   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13054   // such that we're unnecessarily moving things into GPRs when it would be
13055   // better to keep them in CR bits.
13056 
13057   // Note that trunc here can be an actual i1 trunc, or can be the effective
13058   // truncation that comes from a setcc or select_cc.
13059   if (N->getOpcode() == ISD::TRUNCATE &&
13060       N->getValueType(0) != MVT::i1)
13061     return SDValue();
13062 
13063   if (N->getOperand(0).getValueType() != MVT::i32 &&
13064       N->getOperand(0).getValueType() != MVT::i64)
13065     return SDValue();
13066 
13067   if (N->getOpcode() == ISD::SETCC ||
13068       N->getOpcode() == ISD::SELECT_CC) {
13069     // If we're looking at a comparison, then we need to make sure that the
13070     // high bits (all except for the first) don't matter the result.
13071     ISD::CondCode CC =
13072       cast<CondCodeSDNode>(N->getOperand(
13073         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13074     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13075 
13076     if (ISD::isSignedIntSetCC(CC)) {
13077       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13078           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13079         return SDValue();
13080     } else if (ISD::isUnsignedIntSetCC(CC)) {
13081       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13082                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13083           !DAG.MaskedValueIsZero(N->getOperand(1),
13084                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13085         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13086                                              : SDValue());
13087     } else {
13088       // This is neither a signed nor an unsigned comparison, just make sure
13089       // that the high bits are equal.
13090       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13091       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13092 
13093       // We don't really care about what is known about the first bit (if
13094       // anything), so pretend that it is known zero for both to ensure they can
13095       // be compared as constants.
13096       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13097       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13098 
13099       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13100           Op1Known.getConstant() != Op2Known.getConstant())
13101         return SDValue();
13102     }
13103   }
13104 
13105   // We now know that the higher-order bits are irrelevant, we just need to
13106   // make sure that all of the intermediate operations are bit operations, and
13107   // all inputs are extensions.
13108   if (N->getOperand(0).getOpcode() != ISD::AND &&
13109       N->getOperand(0).getOpcode() != ISD::OR  &&
13110       N->getOperand(0).getOpcode() != ISD::XOR &&
13111       N->getOperand(0).getOpcode() != ISD::SELECT &&
13112       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13113       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13114       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13115       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13116       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13117     return SDValue();
13118 
13119   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13120       N->getOperand(1).getOpcode() != ISD::AND &&
13121       N->getOperand(1).getOpcode() != ISD::OR  &&
13122       N->getOperand(1).getOpcode() != ISD::XOR &&
13123       N->getOperand(1).getOpcode() != ISD::SELECT &&
13124       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13125       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13126       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13127       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13128       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13129     return SDValue();
13130 
13131   SmallVector<SDValue, 4> Inputs;
13132   SmallVector<SDValue, 8> BinOps, PromOps;
13133   SmallPtrSet<SDNode *, 16> Visited;
13134 
13135   for (unsigned i = 0; i < 2; ++i) {
13136     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13137           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13138           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13139           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13140         isa<ConstantSDNode>(N->getOperand(i)))
13141       Inputs.push_back(N->getOperand(i));
13142     else
13143       BinOps.push_back(N->getOperand(i));
13144 
13145     if (N->getOpcode() == ISD::TRUNCATE)
13146       break;
13147   }
13148 
13149   // Visit all inputs, collect all binary operations (and, or, xor and
13150   // select) that are all fed by extensions.
13151   while (!BinOps.empty()) {
13152     SDValue BinOp = BinOps.pop_back_val();
13153 
13154     if (!Visited.insert(BinOp.getNode()).second)
13155       continue;
13156 
13157     PromOps.push_back(BinOp);
13158 
13159     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13160       // The condition of the select is not promoted.
13161       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13162         continue;
13163       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13164         continue;
13165 
13166       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13167             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13168             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13169            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13170           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13171         Inputs.push_back(BinOp.getOperand(i));
13172       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13173                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13174                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13175                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13176                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13177                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13178                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13179                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13180                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13181         BinOps.push_back(BinOp.getOperand(i));
13182       } else {
13183         // We have an input that is not an extension or another binary
13184         // operation; we'll abort this transformation.
13185         return SDValue();
13186       }
13187     }
13188   }
13189 
13190   // Make sure that this is a self-contained cluster of operations (which
13191   // is not quite the same thing as saying that everything has only one
13192   // use).
13193   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13194     if (isa<ConstantSDNode>(Inputs[i]))
13195       continue;
13196 
13197     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13198                               UE = Inputs[i].getNode()->use_end();
13199          UI != UE; ++UI) {
13200       SDNode *User = *UI;
13201       if (User != N && !Visited.count(User))
13202         return SDValue();
13203 
13204       // Make sure that we're not going to promote the non-output-value
13205       // operand(s) or SELECT or SELECT_CC.
13206       // FIXME: Although we could sometimes handle this, and it does occur in
13207       // practice that one of the condition inputs to the select is also one of
13208       // the outputs, we currently can't deal with this.
13209       if (User->getOpcode() == ISD::SELECT) {
13210         if (User->getOperand(0) == Inputs[i])
13211           return SDValue();
13212       } else if (User->getOpcode() == ISD::SELECT_CC) {
13213         if (User->getOperand(0) == Inputs[i] ||
13214             User->getOperand(1) == Inputs[i])
13215           return SDValue();
13216       }
13217     }
13218   }
13219 
13220   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13221     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13222                               UE = PromOps[i].getNode()->use_end();
13223          UI != UE; ++UI) {
13224       SDNode *User = *UI;
13225       if (User != N && !Visited.count(User))
13226         return SDValue();
13227 
13228       // Make sure that we're not going to promote the non-output-value
13229       // operand(s) or SELECT or SELECT_CC.
13230       // FIXME: Although we could sometimes handle this, and it does occur in
13231       // practice that one of the condition inputs to the select is also one of
13232       // the outputs, we currently can't deal with this.
13233       if (User->getOpcode() == ISD::SELECT) {
13234         if (User->getOperand(0) == PromOps[i])
13235           return SDValue();
13236       } else if (User->getOpcode() == ISD::SELECT_CC) {
13237         if (User->getOperand(0) == PromOps[i] ||
13238             User->getOperand(1) == PromOps[i])
13239           return SDValue();
13240       }
13241     }
13242   }
13243 
13244   // Replace all inputs with the extension operand.
13245   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13246     // Constants may have users outside the cluster of to-be-promoted nodes,
13247     // and so we need to replace those as we do the promotions.
13248     if (isa<ConstantSDNode>(Inputs[i]))
13249       continue;
13250     else
13251       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13252   }
13253 
13254   std::list<HandleSDNode> PromOpHandles;
13255   for (auto &PromOp : PromOps)
13256     PromOpHandles.emplace_back(PromOp);
13257 
13258   // Replace all operations (these are all the same, but have a different
13259   // (i1) return type). DAG.getNode will validate that the types of
13260   // a binary operator match, so go through the list in reverse so that
13261   // we've likely promoted both operands first. Any intermediate truncations or
13262   // extensions disappear.
13263   while (!PromOpHandles.empty()) {
13264     SDValue PromOp = PromOpHandles.back().getValue();
13265     PromOpHandles.pop_back();
13266 
13267     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13268         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13269         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13270         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13271       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13272           PromOp.getOperand(0).getValueType() != MVT::i1) {
13273         // The operand is not yet ready (see comment below).
13274         PromOpHandles.emplace_front(PromOp);
13275         continue;
13276       }
13277 
13278       SDValue RepValue = PromOp.getOperand(0);
13279       if (isa<ConstantSDNode>(RepValue))
13280         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13281 
13282       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13283       continue;
13284     }
13285 
13286     unsigned C;
13287     switch (PromOp.getOpcode()) {
13288     default:             C = 0; break;
13289     case ISD::SELECT:    C = 1; break;
13290     case ISD::SELECT_CC: C = 2; break;
13291     }
13292 
13293     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13294          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13295         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13296          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13297       // The to-be-promoted operands of this node have not yet been
13298       // promoted (this should be rare because we're going through the
13299       // list backward, but if one of the operands has several users in
13300       // this cluster of to-be-promoted nodes, it is possible).
13301       PromOpHandles.emplace_front(PromOp);
13302       continue;
13303     }
13304 
13305     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13306                                 PromOp.getNode()->op_end());
13307 
13308     // If there are any constant inputs, make sure they're replaced now.
13309     for (unsigned i = 0; i < 2; ++i)
13310       if (isa<ConstantSDNode>(Ops[C+i]))
13311         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13312 
13313     DAG.ReplaceAllUsesOfValueWith(PromOp,
13314       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13315   }
13316 
13317   // Now we're left with the initial truncation itself.
13318   if (N->getOpcode() == ISD::TRUNCATE)
13319     return N->getOperand(0);
13320 
13321   // Otherwise, this is a comparison. The operands to be compared have just
13322   // changed type (to i1), but everything else is the same.
13323   return SDValue(N, 0);
13324 }
13325 
13326 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13327                                                   DAGCombinerInfo &DCI) const {
13328   SelectionDAG &DAG = DCI.DAG;
13329   SDLoc dl(N);
13330 
13331   // If we're tracking CR bits, we need to be careful that we don't have:
13332   //   zext(binary-ops(trunc(x), trunc(y)))
13333   // or
13334   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13335   // such that we're unnecessarily moving things into CR bits that can more
13336   // efficiently stay in GPRs. Note that if we're not certain that the high
13337   // bits are set as required by the final extension, we still may need to do
13338   // some masking to get the proper behavior.
13339 
13340   // This same functionality is important on PPC64 when dealing with
13341   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13342   // the return values of functions. Because it is so similar, it is handled
13343   // here as well.
13344 
13345   if (N->getValueType(0) != MVT::i32 &&
13346       N->getValueType(0) != MVT::i64)
13347     return SDValue();
13348 
13349   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13350         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13351     return SDValue();
13352 
13353   if (N->getOperand(0).getOpcode() != ISD::AND &&
13354       N->getOperand(0).getOpcode() != ISD::OR  &&
13355       N->getOperand(0).getOpcode() != ISD::XOR &&
13356       N->getOperand(0).getOpcode() != ISD::SELECT &&
13357       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13358     return SDValue();
13359 
13360   SmallVector<SDValue, 4> Inputs;
13361   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13362   SmallPtrSet<SDNode *, 16> Visited;
13363 
13364   // Visit all inputs, collect all binary operations (and, or, xor and
13365   // select) that are all fed by truncations.
13366   while (!BinOps.empty()) {
13367     SDValue BinOp = BinOps.pop_back_val();
13368 
13369     if (!Visited.insert(BinOp.getNode()).second)
13370       continue;
13371 
13372     PromOps.push_back(BinOp);
13373 
13374     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13375       // The condition of the select is not promoted.
13376       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13377         continue;
13378       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13379         continue;
13380 
13381       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13382           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13383         Inputs.push_back(BinOp.getOperand(i));
13384       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13385                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13386                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13387                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13388                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13389         BinOps.push_back(BinOp.getOperand(i));
13390       } else {
13391         // We have an input that is not a truncation or another binary
13392         // operation; we'll abort this transformation.
13393         return SDValue();
13394       }
13395     }
13396   }
13397 
13398   // The operands of a select that must be truncated when the select is
13399   // promoted because the operand is actually part of the to-be-promoted set.
13400   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13401 
13402   // Make sure that this is a self-contained cluster of operations (which
13403   // is not quite the same thing as saying that everything has only one
13404   // use).
13405   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13406     if (isa<ConstantSDNode>(Inputs[i]))
13407       continue;
13408 
13409     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13410                               UE = Inputs[i].getNode()->use_end();
13411          UI != UE; ++UI) {
13412       SDNode *User = *UI;
13413       if (User != N && !Visited.count(User))
13414         return SDValue();
13415 
13416       // If we're going to promote the non-output-value operand(s) or SELECT or
13417       // SELECT_CC, record them for truncation.
13418       if (User->getOpcode() == ISD::SELECT) {
13419         if (User->getOperand(0) == Inputs[i])
13420           SelectTruncOp[0].insert(std::make_pair(User,
13421                                     User->getOperand(0).getValueType()));
13422       } else if (User->getOpcode() == ISD::SELECT_CC) {
13423         if (User->getOperand(0) == Inputs[i])
13424           SelectTruncOp[0].insert(std::make_pair(User,
13425                                     User->getOperand(0).getValueType()));
13426         if (User->getOperand(1) == Inputs[i])
13427           SelectTruncOp[1].insert(std::make_pair(User,
13428                                     User->getOperand(1).getValueType()));
13429       }
13430     }
13431   }
13432 
13433   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13434     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13435                               UE = PromOps[i].getNode()->use_end();
13436          UI != UE; ++UI) {
13437       SDNode *User = *UI;
13438       if (User != N && !Visited.count(User))
13439         return SDValue();
13440 
13441       // If we're going to promote the non-output-value operand(s) or SELECT or
13442       // SELECT_CC, record them for truncation.
13443       if (User->getOpcode() == ISD::SELECT) {
13444         if (User->getOperand(0) == PromOps[i])
13445           SelectTruncOp[0].insert(std::make_pair(User,
13446                                     User->getOperand(0).getValueType()));
13447       } else if (User->getOpcode() == ISD::SELECT_CC) {
13448         if (User->getOperand(0) == PromOps[i])
13449           SelectTruncOp[0].insert(std::make_pair(User,
13450                                     User->getOperand(0).getValueType()));
13451         if (User->getOperand(1) == PromOps[i])
13452           SelectTruncOp[1].insert(std::make_pair(User,
13453                                     User->getOperand(1).getValueType()));
13454       }
13455     }
13456   }
13457 
13458   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13459   bool ReallyNeedsExt = false;
13460   if (N->getOpcode() != ISD::ANY_EXTEND) {
13461     // If all of the inputs are not already sign/zero extended, then
13462     // we'll still need to do that at the end.
13463     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13464       if (isa<ConstantSDNode>(Inputs[i]))
13465         continue;
13466 
13467       unsigned OpBits =
13468         Inputs[i].getOperand(0).getValueSizeInBits();
13469       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13470 
13471       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13472            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13473                                   APInt::getHighBitsSet(OpBits,
13474                                                         OpBits-PromBits))) ||
13475           (N->getOpcode() == ISD::SIGN_EXTEND &&
13476            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13477              (OpBits-(PromBits-1)))) {
13478         ReallyNeedsExt = true;
13479         break;
13480       }
13481     }
13482   }
13483 
13484   // Replace all inputs, either with the truncation operand, or a
13485   // truncation or extension to the final output type.
13486   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13487     // Constant inputs need to be replaced with the to-be-promoted nodes that
13488     // use them because they might have users outside of the cluster of
13489     // promoted nodes.
13490     if (isa<ConstantSDNode>(Inputs[i]))
13491       continue;
13492 
13493     SDValue InSrc = Inputs[i].getOperand(0);
13494     if (Inputs[i].getValueType() == N->getValueType(0))
13495       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13496     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13497       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13498         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13499     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13500       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13501         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13502     else
13503       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13504         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13505   }
13506 
13507   std::list<HandleSDNode> PromOpHandles;
13508   for (auto &PromOp : PromOps)
13509     PromOpHandles.emplace_back(PromOp);
13510 
13511   // Replace all operations (these are all the same, but have a different
13512   // (promoted) return type). DAG.getNode will validate that the types of
13513   // a binary operator match, so go through the list in reverse so that
13514   // we've likely promoted both operands first.
13515   while (!PromOpHandles.empty()) {
13516     SDValue PromOp = PromOpHandles.back().getValue();
13517     PromOpHandles.pop_back();
13518 
13519     unsigned C;
13520     switch (PromOp.getOpcode()) {
13521     default:             C = 0; break;
13522     case ISD::SELECT:    C = 1; break;
13523     case ISD::SELECT_CC: C = 2; break;
13524     }
13525 
13526     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13527          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13528         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13529          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13530       // The to-be-promoted operands of this node have not yet been
13531       // promoted (this should be rare because we're going through the
13532       // list backward, but if one of the operands has several users in
13533       // this cluster of to-be-promoted nodes, it is possible).
13534       PromOpHandles.emplace_front(PromOp);
13535       continue;
13536     }
13537 
13538     // For SELECT and SELECT_CC nodes, we do a similar check for any
13539     // to-be-promoted comparison inputs.
13540     if (PromOp.getOpcode() == ISD::SELECT ||
13541         PromOp.getOpcode() == ISD::SELECT_CC) {
13542       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13543            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13544           (SelectTruncOp[1].count(PromOp.getNode()) &&
13545            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13546         PromOpHandles.emplace_front(PromOp);
13547         continue;
13548       }
13549     }
13550 
13551     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13552                                 PromOp.getNode()->op_end());
13553 
13554     // If this node has constant inputs, then they'll need to be promoted here.
13555     for (unsigned i = 0; i < 2; ++i) {
13556       if (!isa<ConstantSDNode>(Ops[C+i]))
13557         continue;
13558       if (Ops[C+i].getValueType() == N->getValueType(0))
13559         continue;
13560 
13561       if (N->getOpcode() == ISD::SIGN_EXTEND)
13562         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13563       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13564         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13565       else
13566         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13567     }
13568 
13569     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13570     // truncate them again to the original value type.
13571     if (PromOp.getOpcode() == ISD::SELECT ||
13572         PromOp.getOpcode() == ISD::SELECT_CC) {
13573       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13574       if (SI0 != SelectTruncOp[0].end())
13575         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13576       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13577       if (SI1 != SelectTruncOp[1].end())
13578         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13579     }
13580 
13581     DAG.ReplaceAllUsesOfValueWith(PromOp,
13582       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13583   }
13584 
13585   // Now we're left with the initial extension itself.
13586   if (!ReallyNeedsExt)
13587     return N->getOperand(0);
13588 
13589   // To zero extend, just mask off everything except for the first bit (in the
13590   // i1 case).
13591   if (N->getOpcode() == ISD::ZERO_EXTEND)
13592     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13593                        DAG.getConstant(APInt::getLowBitsSet(
13594                                          N->getValueSizeInBits(0), PromBits),
13595                                        dl, N->getValueType(0)));
13596 
13597   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13598          "Invalid extension type");
13599   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13600   SDValue ShiftCst =
13601       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13602   return DAG.getNode(
13603       ISD::SRA, dl, N->getValueType(0),
13604       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13605       ShiftCst);
13606 }
13607 
13608 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13609                                         DAGCombinerInfo &DCI) const {
13610   assert(N->getOpcode() == ISD::SETCC &&
13611          "Should be called with a SETCC node");
13612 
13613   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13614   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13615     SDValue LHS = N->getOperand(0);
13616     SDValue RHS = N->getOperand(1);
13617 
13618     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13619     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13620         LHS.hasOneUse())
13621       std::swap(LHS, RHS);
13622 
13623     // x == 0-y --> x+y == 0
13624     // x != 0-y --> x+y != 0
13625     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13626         RHS.hasOneUse()) {
13627       SDLoc DL(N);
13628       SelectionDAG &DAG = DCI.DAG;
13629       EVT VT = N->getValueType(0);
13630       EVT OpVT = LHS.getValueType();
13631       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13632       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13633     }
13634   }
13635 
13636   return DAGCombineTruncBoolExt(N, DCI);
13637 }
13638 
13639 // Is this an extending load from an f32 to an f64?
13640 static bool isFPExtLoad(SDValue Op) {
13641   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13642     return LD->getExtensionType() == ISD::EXTLOAD &&
13643       Op.getValueType() == MVT::f64;
13644   return false;
13645 }
13646 
13647 /// Reduces the number of fp-to-int conversion when building a vector.
13648 ///
13649 /// If this vector is built out of floating to integer conversions,
13650 /// transform it to a vector built out of floating point values followed by a
13651 /// single floating to integer conversion of the vector.
13652 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13653 /// becomes (fptosi (build_vector ($A, $B, ...)))
13654 SDValue PPCTargetLowering::
13655 combineElementTruncationToVectorTruncation(SDNode *N,
13656                                            DAGCombinerInfo &DCI) const {
13657   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13658          "Should be called with a BUILD_VECTOR node");
13659 
13660   SelectionDAG &DAG = DCI.DAG;
13661   SDLoc dl(N);
13662 
13663   SDValue FirstInput = N->getOperand(0);
13664   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13665          "The input operand must be an fp-to-int conversion.");
13666 
13667   // This combine happens after legalization so the fp_to_[su]i nodes are
13668   // already converted to PPCSISD nodes.
13669   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13670   if (FirstConversion == PPCISD::FCTIDZ ||
13671       FirstConversion == PPCISD::FCTIDUZ ||
13672       FirstConversion == PPCISD::FCTIWZ ||
13673       FirstConversion == PPCISD::FCTIWUZ) {
13674     bool IsSplat = true;
13675     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13676       FirstConversion == PPCISD::FCTIWUZ;
13677     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13678     SmallVector<SDValue, 4> Ops;
13679     EVT TargetVT = N->getValueType(0);
13680     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13681       SDValue NextOp = N->getOperand(i);
13682       if (NextOp.getOpcode() != PPCISD::MFVSR)
13683         return SDValue();
13684       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13685       if (NextConversion != FirstConversion)
13686         return SDValue();
13687       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13688       // This is not valid if the input was originally double precision. It is
13689       // also not profitable to do unless this is an extending load in which
13690       // case doing this combine will allow us to combine consecutive loads.
13691       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13692         return SDValue();
13693       if (N->getOperand(i) != FirstInput)
13694         IsSplat = false;
13695     }
13696 
13697     // If this is a splat, we leave it as-is since there will be only a single
13698     // fp-to-int conversion followed by a splat of the integer. This is better
13699     // for 32-bit and smaller ints and neutral for 64-bit ints.
13700     if (IsSplat)
13701       return SDValue();
13702 
13703     // Now that we know we have the right type of node, get its operands
13704     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13705       SDValue In = N->getOperand(i).getOperand(0);
13706       if (Is32Bit) {
13707         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13708         // here, we know that all inputs are extending loads so this is safe).
13709         if (In.isUndef())
13710           Ops.push_back(DAG.getUNDEF(SrcVT));
13711         else {
13712           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13713                                       MVT::f32, In.getOperand(0),
13714                                       DAG.getIntPtrConstant(1, dl));
13715           Ops.push_back(Trunc);
13716         }
13717       } else
13718         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13719     }
13720 
13721     unsigned Opcode;
13722     if (FirstConversion == PPCISD::FCTIDZ ||
13723         FirstConversion == PPCISD::FCTIWZ)
13724       Opcode = ISD::FP_TO_SINT;
13725     else
13726       Opcode = ISD::FP_TO_UINT;
13727 
13728     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13729     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13730     return DAG.getNode(Opcode, dl, TargetVT, BV);
13731   }
13732   return SDValue();
13733 }
13734 
13735 /// Reduce the number of loads when building a vector.
13736 ///
13737 /// Building a vector out of multiple loads can be converted to a load
13738 /// of the vector type if the loads are consecutive. If the loads are
13739 /// consecutive but in descending order, a shuffle is added at the end
13740 /// to reorder the vector.
13741 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13742   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13743          "Should be called with a BUILD_VECTOR node");
13744 
13745   SDLoc dl(N);
13746 
13747   // Return early for non byte-sized type, as they can't be consecutive.
13748   if (!N->getValueType(0).getVectorElementType().isByteSized())
13749     return SDValue();
13750 
13751   bool InputsAreConsecutiveLoads = true;
13752   bool InputsAreReverseConsecutive = true;
13753   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13754   SDValue FirstInput = N->getOperand(0);
13755   bool IsRoundOfExtLoad = false;
13756 
13757   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13758       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13759     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13760     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13761   }
13762   // Not a build vector of (possibly fp_rounded) loads.
13763   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13764       N->getNumOperands() == 1)
13765     return SDValue();
13766 
13767   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13768     // If any inputs are fp_round(extload), they all must be.
13769     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13770       return SDValue();
13771 
13772     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13773       N->getOperand(i);
13774     if (NextInput.getOpcode() != ISD::LOAD)
13775       return SDValue();
13776 
13777     SDValue PreviousInput =
13778       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13779     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13780     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13781 
13782     // If any inputs are fp_round(extload), they all must be.
13783     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13784       return SDValue();
13785 
13786     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13787       InputsAreConsecutiveLoads = false;
13788     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13789       InputsAreReverseConsecutive = false;
13790 
13791     // Exit early if the loads are neither consecutive nor reverse consecutive.
13792     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13793       return SDValue();
13794   }
13795 
13796   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13797          "The loads cannot be both consecutive and reverse consecutive.");
13798 
13799   SDValue FirstLoadOp =
13800     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13801   SDValue LastLoadOp =
13802     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13803                        N->getOperand(N->getNumOperands()-1);
13804 
13805   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13806   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13807   if (InputsAreConsecutiveLoads) {
13808     assert(LD1 && "Input needs to be a LoadSDNode.");
13809     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13810                        LD1->getBasePtr(), LD1->getPointerInfo(),
13811                        LD1->getAlignment());
13812   }
13813   if (InputsAreReverseConsecutive) {
13814     assert(LDL && "Input needs to be a LoadSDNode.");
13815     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13816                                LDL->getBasePtr(), LDL->getPointerInfo(),
13817                                LDL->getAlignment());
13818     SmallVector<int, 16> Ops;
13819     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13820       Ops.push_back(i);
13821 
13822     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13823                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13824   }
13825   return SDValue();
13826 }
13827 
13828 // This function adds the required vector_shuffle needed to get
13829 // the elements of the vector extract in the correct position
13830 // as specified by the CorrectElems encoding.
13831 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13832                                       SDValue Input, uint64_t Elems,
13833                                       uint64_t CorrectElems) {
13834   SDLoc dl(N);
13835 
13836   unsigned NumElems = Input.getValueType().getVectorNumElements();
13837   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13838 
13839   // Knowing the element indices being extracted from the original
13840   // vector and the order in which they're being inserted, just put
13841   // them at element indices required for the instruction.
13842   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13843     if (DAG.getDataLayout().isLittleEndian())
13844       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13845     else
13846       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13847     CorrectElems = CorrectElems >> 8;
13848     Elems = Elems >> 8;
13849   }
13850 
13851   SDValue Shuffle =
13852       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13853                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13854 
13855   EVT VT = N->getValueType(0);
13856   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13857 
13858   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13859                                Input.getValueType().getVectorElementType(),
13860                                VT.getVectorNumElements());
13861   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13862                      DAG.getValueType(ExtVT));
13863 }
13864 
13865 // Look for build vector patterns where input operands come from sign
13866 // extended vector_extract elements of specific indices. If the correct indices
13867 // aren't used, add a vector shuffle to fix up the indices and create
13868 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13869 // during instruction selection.
13870 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13871   // This array encodes the indices that the vector sign extend instructions
13872   // extract from when extending from one type to another for both BE and LE.
13873   // The right nibble of each byte corresponds to the LE incides.
13874   // and the left nibble of each byte corresponds to the BE incides.
13875   // For example: 0x3074B8FC  byte->word
13876   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13877   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13878   // For example: 0x000070F8  byte->double word
13879   // For LE: the allowed indices are: 0x0,0x8
13880   // For BE: the allowed indices are: 0x7,0xF
13881   uint64_t TargetElems[] = {
13882       0x3074B8FC, // b->w
13883       0x000070F8, // b->d
13884       0x10325476, // h->w
13885       0x00003074, // h->d
13886       0x00001032, // w->d
13887   };
13888 
13889   uint64_t Elems = 0;
13890   int Index;
13891   SDValue Input;
13892 
13893   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13894     if (!Op)
13895       return false;
13896     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13897         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13898       return false;
13899 
13900     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13901     // of the right width.
13902     SDValue Extract = Op.getOperand(0);
13903     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13904       Extract = Extract.getOperand(0);
13905     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13906       return false;
13907 
13908     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13909     if (!ExtOp)
13910       return false;
13911 
13912     Index = ExtOp->getZExtValue();
13913     if (Input && Input != Extract.getOperand(0))
13914       return false;
13915 
13916     if (!Input)
13917       Input = Extract.getOperand(0);
13918 
13919     Elems = Elems << 8;
13920     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13921     Elems |= Index;
13922 
13923     return true;
13924   };
13925 
13926   // If the build vector operands aren't sign extended vector extracts,
13927   // of the same input vector, then return.
13928   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13929     if (!isSExtOfVecExtract(N->getOperand(i))) {
13930       return SDValue();
13931     }
13932   }
13933 
13934   // If the vector extract indicies are not correct, add the appropriate
13935   // vector_shuffle.
13936   int TgtElemArrayIdx;
13937   int InputSize = Input.getValueType().getScalarSizeInBits();
13938   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13939   if (InputSize + OutputSize == 40)
13940     TgtElemArrayIdx = 0;
13941   else if (InputSize + OutputSize == 72)
13942     TgtElemArrayIdx = 1;
13943   else if (InputSize + OutputSize == 48)
13944     TgtElemArrayIdx = 2;
13945   else if (InputSize + OutputSize == 80)
13946     TgtElemArrayIdx = 3;
13947   else if (InputSize + OutputSize == 96)
13948     TgtElemArrayIdx = 4;
13949   else
13950     return SDValue();
13951 
13952   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13953   CorrectElems = DAG.getDataLayout().isLittleEndian()
13954                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13955                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13956   if (Elems != CorrectElems) {
13957     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13958   }
13959 
13960   // Regular lowering will catch cases where a shuffle is not needed.
13961   return SDValue();
13962 }
13963 
13964 // Look for the pattern of a load from a narrow width to i128, feeding
13965 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13966 // (LXVRZX). This node represents a zero extending load that will be matched
13967 // to the Load VSX Vector Rightmost instructions.
13968 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13969   SDLoc DL(N);
13970 
13971   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13972   if (N->getValueType(0) != MVT::v1i128)
13973     return SDValue();
13974 
13975   SDValue Operand = N->getOperand(0);
13976   // Proceed with the transformation if the operand to the BUILD_VECTOR
13977   // is a load instruction.
13978   if (Operand.getOpcode() != ISD::LOAD)
13979     return SDValue();
13980 
13981   auto *LD = cast<LoadSDNode>(Operand);
13982   EVT MemoryType = LD->getMemoryVT();
13983 
13984   // This transformation is only valid if the we are loading either a byte,
13985   // halfword, word, or doubleword.
13986   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13987                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13988 
13989   // Ensure that the load from the narrow width is being zero extended to i128.
13990   if (!ValidLDType ||
13991       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13992        LD->getExtensionType() != ISD::EXTLOAD))
13993     return SDValue();
13994 
13995   SDValue LoadOps[] = {
13996       LD->getChain(), LD->getBasePtr(),
13997       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13998 
13999   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14000                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14001                                  LoadOps, MemoryType, LD->getMemOperand());
14002 }
14003 
14004 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14005                                                  DAGCombinerInfo &DCI) const {
14006   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14007          "Should be called with a BUILD_VECTOR node");
14008 
14009   SelectionDAG &DAG = DCI.DAG;
14010   SDLoc dl(N);
14011 
14012   if (!Subtarget.hasVSX())
14013     return SDValue();
14014 
14015   // The target independent DAG combiner will leave a build_vector of
14016   // float-to-int conversions intact. We can generate MUCH better code for
14017   // a float-to-int conversion of a vector of floats.
14018   SDValue FirstInput = N->getOperand(0);
14019   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14020     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14021     if (Reduced)
14022       return Reduced;
14023   }
14024 
14025   // If we're building a vector out of consecutive loads, just load that
14026   // vector type.
14027   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14028   if (Reduced)
14029     return Reduced;
14030 
14031   // If we're building a vector out of extended elements from another vector
14032   // we have P9 vector integer extend instructions. The code assumes legal
14033   // input types (i.e. it can't handle things like v4i16) so do not run before
14034   // legalization.
14035   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14036     Reduced = combineBVOfVecSExt(N, DAG);
14037     if (Reduced)
14038       return Reduced;
14039   }
14040 
14041   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14042   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14043   // is a load from <valid narrow width> to i128.
14044   if (Subtarget.isISA3_1()) {
14045     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14046     if (BVOfZLoad)
14047       return BVOfZLoad;
14048   }
14049 
14050   if (N->getValueType(0) != MVT::v2f64)
14051     return SDValue();
14052 
14053   // Looking for:
14054   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14055   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14056       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14057     return SDValue();
14058   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14059       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14060     return SDValue();
14061   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14062     return SDValue();
14063 
14064   SDValue Ext1 = FirstInput.getOperand(0);
14065   SDValue Ext2 = N->getOperand(1).getOperand(0);
14066   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14067      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14068     return SDValue();
14069 
14070   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14071   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14072   if (!Ext1Op || !Ext2Op)
14073     return SDValue();
14074   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14075       Ext1.getOperand(0) != Ext2.getOperand(0))
14076     return SDValue();
14077 
14078   int FirstElem = Ext1Op->getZExtValue();
14079   int SecondElem = Ext2Op->getZExtValue();
14080   int SubvecIdx;
14081   if (FirstElem == 0 && SecondElem == 1)
14082     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14083   else if (FirstElem == 2 && SecondElem == 3)
14084     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14085   else
14086     return SDValue();
14087 
14088   SDValue SrcVec = Ext1.getOperand(0);
14089   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14090     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14091   return DAG.getNode(NodeType, dl, MVT::v2f64,
14092                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14093 }
14094 
14095 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14096                                               DAGCombinerInfo &DCI) const {
14097   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14098           N->getOpcode() == ISD::UINT_TO_FP) &&
14099          "Need an int -> FP conversion node here");
14100 
14101   if (useSoftFloat() || !Subtarget.has64BitSupport())
14102     return SDValue();
14103 
14104   SelectionDAG &DAG = DCI.DAG;
14105   SDLoc dl(N);
14106   SDValue Op(N, 0);
14107 
14108   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14109   // from the hardware.
14110   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14111     return SDValue();
14112   if (!Op.getOperand(0).getValueType().isSimple())
14113     return SDValue();
14114   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14115       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14116     return SDValue();
14117 
14118   SDValue FirstOperand(Op.getOperand(0));
14119   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14120     (FirstOperand.getValueType() == MVT::i8 ||
14121      FirstOperand.getValueType() == MVT::i16);
14122   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14123     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14124     bool DstDouble = Op.getValueType() == MVT::f64;
14125     unsigned ConvOp = Signed ?
14126       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14127       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14128     SDValue WidthConst =
14129       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14130                             dl, false);
14131     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14132     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14133     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14134                                          DAG.getVTList(MVT::f64, MVT::Other),
14135                                          Ops, MVT::i8, LDN->getMemOperand());
14136 
14137     // For signed conversion, we need to sign-extend the value in the VSR
14138     if (Signed) {
14139       SDValue ExtOps[] = { Ld, WidthConst };
14140       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14141       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14142     } else
14143       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14144   }
14145 
14146 
14147   // For i32 intermediate values, unfortunately, the conversion functions
14148   // leave the upper 32 bits of the value are undefined. Within the set of
14149   // scalar instructions, we have no method for zero- or sign-extending the
14150   // value. Thus, we cannot handle i32 intermediate values here.
14151   if (Op.getOperand(0).getValueType() == MVT::i32)
14152     return SDValue();
14153 
14154   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14155          "UINT_TO_FP is supported only with FPCVT");
14156 
14157   // If we have FCFIDS, then use it when converting to single-precision.
14158   // Otherwise, convert to double-precision and then round.
14159   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14160                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14161                                                             : PPCISD::FCFIDS)
14162                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14163                                                             : PPCISD::FCFID);
14164   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14165                   ? MVT::f32
14166                   : MVT::f64;
14167 
14168   // If we're converting from a float, to an int, and back to a float again,
14169   // then we don't need the store/load pair at all.
14170   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14171        Subtarget.hasFPCVT()) ||
14172       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14173     SDValue Src = Op.getOperand(0).getOperand(0);
14174     if (Src.getValueType() == MVT::f32) {
14175       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14176       DCI.AddToWorklist(Src.getNode());
14177     } else if (Src.getValueType() != MVT::f64) {
14178       // Make sure that we don't pick up a ppc_fp128 source value.
14179       return SDValue();
14180     }
14181 
14182     unsigned FCTOp =
14183       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14184                                                         PPCISD::FCTIDUZ;
14185 
14186     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14187     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14188 
14189     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14190       FP = DAG.getNode(ISD::FP_ROUND, dl,
14191                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14192       DCI.AddToWorklist(FP.getNode());
14193     }
14194 
14195     return FP;
14196   }
14197 
14198   return SDValue();
14199 }
14200 
14201 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14202 // builtins) into loads with swaps.
14203 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14204                                               DAGCombinerInfo &DCI) const {
14205   SelectionDAG &DAG = DCI.DAG;
14206   SDLoc dl(N);
14207   SDValue Chain;
14208   SDValue Base;
14209   MachineMemOperand *MMO;
14210 
14211   switch (N->getOpcode()) {
14212   default:
14213     llvm_unreachable("Unexpected opcode for little endian VSX load");
14214   case ISD::LOAD: {
14215     LoadSDNode *LD = cast<LoadSDNode>(N);
14216     Chain = LD->getChain();
14217     Base = LD->getBasePtr();
14218     MMO = LD->getMemOperand();
14219     // If the MMO suggests this isn't a load of a full vector, leave
14220     // things alone.  For a built-in, we have to make the change for
14221     // correctness, so if there is a size problem that will be a bug.
14222     if (MMO->getSize() < 16)
14223       return SDValue();
14224     break;
14225   }
14226   case ISD::INTRINSIC_W_CHAIN: {
14227     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14228     Chain = Intrin->getChain();
14229     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14230     // us what we want. Get operand 2 instead.
14231     Base = Intrin->getOperand(2);
14232     MMO = Intrin->getMemOperand();
14233     break;
14234   }
14235   }
14236 
14237   MVT VecTy = N->getValueType(0).getSimpleVT();
14238 
14239   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14240   // aligned and the type is a vector with elements up to 4 bytes
14241   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14242       VecTy.getScalarSizeInBits() <= 32) {
14243     return SDValue();
14244   }
14245 
14246   SDValue LoadOps[] = { Chain, Base };
14247   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14248                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14249                                          LoadOps, MVT::v2f64, MMO);
14250 
14251   DCI.AddToWorklist(Load.getNode());
14252   Chain = Load.getValue(1);
14253   SDValue Swap = DAG.getNode(
14254       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14255   DCI.AddToWorklist(Swap.getNode());
14256 
14257   // Add a bitcast if the resulting load type doesn't match v2f64.
14258   if (VecTy != MVT::v2f64) {
14259     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14260     DCI.AddToWorklist(N.getNode());
14261     // Package {bitcast value, swap's chain} to match Load's shape.
14262     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14263                        N, Swap.getValue(1));
14264   }
14265 
14266   return Swap;
14267 }
14268 
14269 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14270 // builtins) into stores with swaps.
14271 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14272                                                DAGCombinerInfo &DCI) const {
14273   SelectionDAG &DAG = DCI.DAG;
14274   SDLoc dl(N);
14275   SDValue Chain;
14276   SDValue Base;
14277   unsigned SrcOpnd;
14278   MachineMemOperand *MMO;
14279 
14280   switch (N->getOpcode()) {
14281   default:
14282     llvm_unreachable("Unexpected opcode for little endian VSX store");
14283   case ISD::STORE: {
14284     StoreSDNode *ST = cast<StoreSDNode>(N);
14285     Chain = ST->getChain();
14286     Base = ST->getBasePtr();
14287     MMO = ST->getMemOperand();
14288     SrcOpnd = 1;
14289     // If the MMO suggests this isn't a store of a full vector, leave
14290     // things alone.  For a built-in, we have to make the change for
14291     // correctness, so if there is a size problem that will be a bug.
14292     if (MMO->getSize() < 16)
14293       return SDValue();
14294     break;
14295   }
14296   case ISD::INTRINSIC_VOID: {
14297     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14298     Chain = Intrin->getChain();
14299     // Intrin->getBasePtr() oddly does not get what we want.
14300     Base = Intrin->getOperand(3);
14301     MMO = Intrin->getMemOperand();
14302     SrcOpnd = 2;
14303     break;
14304   }
14305   }
14306 
14307   SDValue Src = N->getOperand(SrcOpnd);
14308   MVT VecTy = Src.getValueType().getSimpleVT();
14309 
14310   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14311   // aligned and the type is a vector with elements up to 4 bytes
14312   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14313       VecTy.getScalarSizeInBits() <= 32) {
14314     return SDValue();
14315   }
14316 
14317   // All stores are done as v2f64 and possible bit cast.
14318   if (VecTy != MVT::v2f64) {
14319     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14320     DCI.AddToWorklist(Src.getNode());
14321   }
14322 
14323   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14324                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14325   DCI.AddToWorklist(Swap.getNode());
14326   Chain = Swap.getValue(1);
14327   SDValue StoreOps[] = { Chain, Swap, Base };
14328   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14329                                           DAG.getVTList(MVT::Other),
14330                                           StoreOps, VecTy, MMO);
14331   DCI.AddToWorklist(Store.getNode());
14332   return Store;
14333 }
14334 
14335 // Handle DAG combine for STORE (FP_TO_INT F).
14336 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14337                                                DAGCombinerInfo &DCI) const {
14338 
14339   SelectionDAG &DAG = DCI.DAG;
14340   SDLoc dl(N);
14341   unsigned Opcode = N->getOperand(1).getOpcode();
14342 
14343   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14344          && "Not a FP_TO_INT Instruction!");
14345 
14346   SDValue Val = N->getOperand(1).getOperand(0);
14347   EVT Op1VT = N->getOperand(1).getValueType();
14348   EVT ResVT = Val.getValueType();
14349 
14350   if (!isTypeLegal(ResVT))
14351     return SDValue();
14352 
14353   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14354   bool ValidTypeForStoreFltAsInt =
14355         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14356          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14357 
14358   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14359     return SDValue();
14360 
14361   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14362       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14363     return SDValue();
14364 
14365   // Extend f32 values to f64
14366   if (ResVT.getScalarSizeInBits() == 32) {
14367     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14368     DCI.AddToWorklist(Val.getNode());
14369   }
14370 
14371   // Set signed or unsigned conversion opcode.
14372   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14373                           PPCISD::FP_TO_SINT_IN_VSR :
14374                           PPCISD::FP_TO_UINT_IN_VSR;
14375 
14376   Val = DAG.getNode(ConvOpcode,
14377                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14378   DCI.AddToWorklist(Val.getNode());
14379 
14380   // Set number of bytes being converted.
14381   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14382   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14383                     DAG.getIntPtrConstant(ByteSize, dl, false),
14384                     DAG.getValueType(Op1VT) };
14385 
14386   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14387           DAG.getVTList(MVT::Other), Ops,
14388           cast<StoreSDNode>(N)->getMemoryVT(),
14389           cast<StoreSDNode>(N)->getMemOperand());
14390 
14391   DCI.AddToWorklist(Val.getNode());
14392   return Val;
14393 }
14394 
14395 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14396   // Check that the source of the element keeps flipping
14397   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14398   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14399   for (int i = 1, e = Mask.size(); i < e; i++) {
14400     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14401       return false;
14402     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14403       return false;
14404     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14405   }
14406   return true;
14407 }
14408 
14409 static bool isSplatBV(SDValue Op) {
14410   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14411     return false;
14412   SDValue FirstOp;
14413 
14414   // Find first non-undef input.
14415   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14416     FirstOp = Op.getOperand(i);
14417     if (!FirstOp.isUndef())
14418       break;
14419   }
14420 
14421   // All inputs are undef or the same as the first non-undef input.
14422   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14423     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14424       return false;
14425   return true;
14426 }
14427 
14428 static SDValue isScalarToVec(SDValue Op) {
14429   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14430     return Op;
14431   if (Op.getOpcode() != ISD::BITCAST)
14432     return SDValue();
14433   Op = Op.getOperand(0);
14434   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14435     return Op;
14436   return SDValue();
14437 }
14438 
14439 // Fix up the shuffle mask to account for the fact that the result of
14440 // scalar_to_vector is not in lane zero. This just takes all values in
14441 // the ranges specified by the min/max indices and adds the number of
14442 // elements required to ensure each element comes from the respective
14443 // position in the valid lane.
14444 // On little endian, that's just the corresponding element in the other
14445 // half of the vector. On big endian, it is in the same half but right
14446 // justified rather than left justified in that half.
14447 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14448                                             int LHSMaxIdx, int RHSMinIdx,
14449                                             int RHSMaxIdx, int HalfVec,
14450                                             unsigned ValidLaneWidth,
14451                                             const PPCSubtarget &Subtarget) {
14452   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14453     int Idx = ShuffV[i];
14454     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14455       ShuffV[i] +=
14456           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14457   }
14458 }
14459 
14460 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14461 // the original is:
14462 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14463 // In such a case, just change the shuffle mask to extract the element
14464 // from the permuted index.
14465 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14466                                const PPCSubtarget &Subtarget) {
14467   SDLoc dl(OrigSToV);
14468   EVT VT = OrigSToV.getValueType();
14469   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14470          "Expecting a SCALAR_TO_VECTOR here");
14471   SDValue Input = OrigSToV.getOperand(0);
14472 
14473   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14474     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14475     SDValue OrigVector = Input.getOperand(0);
14476 
14477     // Can't handle non-const element indices or different vector types
14478     // for the input to the extract and the output of the scalar_to_vector.
14479     if (Idx && VT == OrigVector.getValueType()) {
14480       unsigned NumElts = VT.getVectorNumElements();
14481       assert(
14482           NumElts > 1 &&
14483           "Cannot produce a permuted scalar_to_vector for one element vector");
14484       SmallVector<int, 16> NewMask(NumElts, -1);
14485       unsigned ResultInElt = NumElts / 2;
14486       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14487       NewMask[ResultInElt] = Idx->getZExtValue();
14488       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14489     }
14490   }
14491   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14492                      OrigSToV.getOperand(0));
14493 }
14494 
14495 // On little endian subtargets, combine shuffles such as:
14496 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14497 // into:
14498 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14499 // because the latter can be matched to a single instruction merge.
14500 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14501 // to put the value into element zero. Adjust the shuffle mask so that the
14502 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14503 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14504 // nodes with elements smaller than doubleword because all the ways
14505 // of getting scalar data into a vector register put the value in the
14506 // rightmost element of the left half of the vector.
14507 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14508                                                 SelectionDAG &DAG) const {
14509   SDValue LHS = SVN->getOperand(0);
14510   SDValue RHS = SVN->getOperand(1);
14511   auto Mask = SVN->getMask();
14512   int NumElts = LHS.getValueType().getVectorNumElements();
14513   SDValue Res(SVN, 0);
14514   SDLoc dl(SVN);
14515   bool IsLittleEndian = Subtarget.isLittleEndian();
14516 
14517   // On big endian targets this is only useful for subtargets with direct moves.
14518   // On little endian targets it would be useful for all subtargets with VSX.
14519   // However adding special handling for LE subtargets without direct moves
14520   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14521   // which includes direct moves.
14522   if (!Subtarget.hasDirectMove())
14523     return Res;
14524 
14525   // If this is not a shuffle of a shuffle and the first element comes from
14526   // the second vector, canonicalize to the commuted form. This will make it
14527   // more likely to match one of the single instruction patterns.
14528   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14529       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14530     std::swap(LHS, RHS);
14531     Res = DAG.getCommutedVectorShuffle(*SVN);
14532     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14533   }
14534 
14535   // Adjust the shuffle mask if either input vector comes from a
14536   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14537   // form (to prevent the need for a swap).
14538   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14539   SDValue SToVLHS = isScalarToVec(LHS);
14540   SDValue SToVRHS = isScalarToVec(RHS);
14541   if (SToVLHS || SToVRHS) {
14542     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14543                             : SToVRHS.getValueType().getVectorNumElements();
14544     int NumEltsOut = ShuffV.size();
14545     // The width of the "valid lane" (i.e. the lane that contains the value that
14546     // is vectorized) needs to be expressed in terms of the number of elements
14547     // of the shuffle. It is thereby the ratio of the values before and after
14548     // any bitcast.
14549     unsigned ValidLaneWidth =
14550         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14551                       LHS.getValueType().getScalarSizeInBits()
14552                 : SToVRHS.getValueType().getScalarSizeInBits() /
14553                       RHS.getValueType().getScalarSizeInBits();
14554 
14555     // Initially assume that neither input is permuted. These will be adjusted
14556     // accordingly if either input is.
14557     int LHSMaxIdx = -1;
14558     int RHSMinIdx = -1;
14559     int RHSMaxIdx = -1;
14560     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14561 
14562     // Get the permuted scalar to vector nodes for the source(s) that come from
14563     // ISD::SCALAR_TO_VECTOR.
14564     // On big endian systems, this only makes sense for element sizes smaller
14565     // than 64 bits since for 64-bit elements, all instructions already put
14566     // the value into element zero. Since scalar size of LHS and RHS may differ
14567     // after isScalarToVec, this should be checked using their own sizes.
14568     if (SToVLHS) {
14569       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14570         return Res;
14571       // Set up the values for the shuffle vector fixup.
14572       LHSMaxIdx = NumEltsOut / NumEltsIn;
14573       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14574       if (SToVLHS.getValueType() != LHS.getValueType())
14575         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14576       LHS = SToVLHS;
14577     }
14578     if (SToVRHS) {
14579       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14580         return Res;
14581       RHSMinIdx = NumEltsOut;
14582       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14583       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14584       if (SToVRHS.getValueType() != RHS.getValueType())
14585         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14586       RHS = SToVRHS;
14587     }
14588 
14589     // Fix up the shuffle mask to reflect where the desired element actually is.
14590     // The minimum and maximum indices that correspond to element zero for both
14591     // the LHS and RHS are computed and will control which shuffle mask entries
14592     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14593     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14594     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14595                                     HalfVec, ValidLaneWidth, Subtarget);
14596     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14597 
14598     // We may have simplified away the shuffle. We won't be able to do anything
14599     // further with it here.
14600     if (!isa<ShuffleVectorSDNode>(Res))
14601       return Res;
14602     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14603   }
14604 
14605   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14606   // The common case after we commuted the shuffle is that the RHS is a splat
14607   // and we have elements coming in from the splat at indices that are not
14608   // conducive to using a merge.
14609   // Example:
14610   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14611   if (!isSplatBV(TheSplat))
14612     return Res;
14613 
14614   // We are looking for a mask such that all even elements are from
14615   // one vector and all odd elements from the other.
14616   if (!isAlternatingShuffMask(Mask, NumElts))
14617     return Res;
14618 
14619   // Adjust the mask so we are pulling in the same index from the splat
14620   // as the index from the interesting vector in consecutive elements.
14621   if (IsLittleEndian) {
14622     // Example (even elements from first vector):
14623     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14624     if (Mask[0] < NumElts)
14625       for (int i = 1, e = Mask.size(); i < e; i += 2)
14626         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14627     // Example (odd elements from first vector):
14628     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14629     else
14630       for (int i = 0, e = Mask.size(); i < e; i += 2)
14631         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14632   } else {
14633     // Example (even elements from first vector):
14634     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14635     if (Mask[0] < NumElts)
14636       for (int i = 0, e = Mask.size(); i < e; i += 2)
14637         ShuffV[i] = ShuffV[i + 1] - NumElts;
14638     // Example (odd elements from first vector):
14639     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14640     else
14641       for (int i = 1, e = Mask.size(); i < e; i += 2)
14642         ShuffV[i] = ShuffV[i - 1] - NumElts;
14643   }
14644 
14645   // If the RHS has undefs, we need to remove them since we may have created
14646   // a shuffle that adds those instead of the splat value.
14647   SDValue SplatVal =
14648       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14649   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14650 
14651   if (IsLittleEndian)
14652     RHS = TheSplat;
14653   else
14654     LHS = TheSplat;
14655   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14656 }
14657 
14658 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14659                                                 LSBaseSDNode *LSBase,
14660                                                 DAGCombinerInfo &DCI) const {
14661   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14662         "Not a reverse memop pattern!");
14663 
14664   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14665     auto Mask = SVN->getMask();
14666     int i = 0;
14667     auto I = Mask.rbegin();
14668     auto E = Mask.rend();
14669 
14670     for (; I != E; ++I) {
14671       if (*I != i)
14672         return false;
14673       i++;
14674     }
14675     return true;
14676   };
14677 
14678   SelectionDAG &DAG = DCI.DAG;
14679   EVT VT = SVN->getValueType(0);
14680 
14681   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14682     return SDValue();
14683 
14684   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14685   // See comment in PPCVSXSwapRemoval.cpp.
14686   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14687   if (!Subtarget.hasP9Vector())
14688     return SDValue();
14689 
14690   if(!IsElementReverse(SVN))
14691     return SDValue();
14692 
14693   if (LSBase->getOpcode() == ISD::LOAD) {
14694     // If the load return value 0 has more than one user except the
14695     // shufflevector instruction, it is not profitable to replace the
14696     // shufflevector with a reverse load.
14697     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14698          UI != UE; ++UI)
14699       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14700         return SDValue();
14701 
14702     SDLoc dl(LSBase);
14703     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14704     return DAG.getMemIntrinsicNode(
14705         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14706         LSBase->getMemoryVT(), LSBase->getMemOperand());
14707   }
14708 
14709   if (LSBase->getOpcode() == ISD::STORE) {
14710     // If there are other uses of the shuffle, the swap cannot be avoided.
14711     // Forcing the use of an X-Form (since swapped stores only have
14712     // X-Forms) without removing the swap is unprofitable.
14713     if (!SVN->hasOneUse())
14714       return SDValue();
14715 
14716     SDLoc dl(LSBase);
14717     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14718                           LSBase->getBasePtr()};
14719     return DAG.getMemIntrinsicNode(
14720         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14721         LSBase->getMemoryVT(), LSBase->getMemOperand());
14722   }
14723 
14724   llvm_unreachable("Expected a load or store node here");
14725 }
14726 
14727 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14728                                              DAGCombinerInfo &DCI) const {
14729   SelectionDAG &DAG = DCI.DAG;
14730   SDLoc dl(N);
14731   switch (N->getOpcode()) {
14732   default: break;
14733   case ISD::ADD:
14734     return combineADD(N, DCI);
14735   case ISD::SHL:
14736     return combineSHL(N, DCI);
14737   case ISD::SRA:
14738     return combineSRA(N, DCI);
14739   case ISD::SRL:
14740     return combineSRL(N, DCI);
14741   case ISD::MUL:
14742     return combineMUL(N, DCI);
14743   case ISD::FMA:
14744   case PPCISD::FNMSUB:
14745     return combineFMALike(N, DCI);
14746   case PPCISD::SHL:
14747     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14748         return N->getOperand(0);
14749     break;
14750   case PPCISD::SRL:
14751     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14752         return N->getOperand(0);
14753     break;
14754   case PPCISD::SRA:
14755     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14756       if (C->isNullValue() ||   //  0 >>s V -> 0.
14757           C->isAllOnesValue())    // -1 >>s V -> -1.
14758         return N->getOperand(0);
14759     }
14760     break;
14761   case ISD::SIGN_EXTEND:
14762   case ISD::ZERO_EXTEND:
14763   case ISD::ANY_EXTEND:
14764     return DAGCombineExtBoolTrunc(N, DCI);
14765   case ISD::TRUNCATE:
14766     return combineTRUNCATE(N, DCI);
14767   case ISD::SETCC:
14768     if (SDValue CSCC = combineSetCC(N, DCI))
14769       return CSCC;
14770     LLVM_FALLTHROUGH;
14771   case ISD::SELECT_CC:
14772     return DAGCombineTruncBoolExt(N, DCI);
14773   case ISD::SINT_TO_FP:
14774   case ISD::UINT_TO_FP:
14775     return combineFPToIntToFP(N, DCI);
14776   case ISD::VECTOR_SHUFFLE:
14777     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14778       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14779       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14780     }
14781     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14782   case ISD::STORE: {
14783 
14784     EVT Op1VT = N->getOperand(1).getValueType();
14785     unsigned Opcode = N->getOperand(1).getOpcode();
14786 
14787     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14788       SDValue Val= combineStoreFPToInt(N, DCI);
14789       if (Val)
14790         return Val;
14791     }
14792 
14793     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14794       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14795       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14796       if (Val)
14797         return Val;
14798     }
14799 
14800     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14801     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14802         N->getOperand(1).getNode()->hasOneUse() &&
14803         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14804          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14805 
14806       // STBRX can only handle simple types and it makes no sense to store less
14807       // two bytes in byte-reversed order.
14808       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14809       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14810         break;
14811 
14812       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14813       // Do an any-extend to 32-bits if this is a half-word input.
14814       if (BSwapOp.getValueType() == MVT::i16)
14815         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14816 
14817       // If the type of BSWAP operand is wider than stored memory width
14818       // it need to be shifted to the right side before STBRX.
14819       if (Op1VT.bitsGT(mVT)) {
14820         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14821         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14822                               DAG.getConstant(Shift, dl, MVT::i32));
14823         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14824         if (Op1VT == MVT::i64)
14825           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14826       }
14827 
14828       SDValue Ops[] = {
14829         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14830       };
14831       return
14832         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14833                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14834                                 cast<StoreSDNode>(N)->getMemOperand());
14835     }
14836 
14837     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14838     // So it can increase the chance of CSE constant construction.
14839     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14840         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14841       // Need to sign-extended to 64-bits to handle negative values.
14842       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14843       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14844                                     MemVT.getSizeInBits());
14845       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14846 
14847       // DAG.getTruncStore() can't be used here because it doesn't accept
14848       // the general (base + offset) addressing mode.
14849       // So we use UpdateNodeOperands and setTruncatingStore instead.
14850       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14851                              N->getOperand(3));
14852       cast<StoreSDNode>(N)->setTruncatingStore(true);
14853       return SDValue(N, 0);
14854     }
14855 
14856     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14857     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14858     if (Op1VT.isSimple()) {
14859       MVT StoreVT = Op1VT.getSimpleVT();
14860       if (Subtarget.needsSwapsForVSXMemOps() &&
14861           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14862            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14863         return expandVSXStoreForLE(N, DCI);
14864     }
14865     break;
14866   }
14867   case ISD::LOAD: {
14868     LoadSDNode *LD = cast<LoadSDNode>(N);
14869     EVT VT = LD->getValueType(0);
14870 
14871     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14872     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14873     if (VT.isSimple()) {
14874       MVT LoadVT = VT.getSimpleVT();
14875       if (Subtarget.needsSwapsForVSXMemOps() &&
14876           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14877            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14878         return expandVSXLoadForLE(N, DCI);
14879     }
14880 
14881     // We sometimes end up with a 64-bit integer load, from which we extract
14882     // two single-precision floating-point numbers. This happens with
14883     // std::complex<float>, and other similar structures, because of the way we
14884     // canonicalize structure copies. However, if we lack direct moves,
14885     // then the final bitcasts from the extracted integer values to the
14886     // floating-point numbers turn into store/load pairs. Even with direct moves,
14887     // just loading the two floating-point numbers is likely better.
14888     auto ReplaceTwoFloatLoad = [&]() {
14889       if (VT != MVT::i64)
14890         return false;
14891 
14892       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14893           LD->isVolatile())
14894         return false;
14895 
14896       //  We're looking for a sequence like this:
14897       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14898       //      t16: i64 = srl t13, Constant:i32<32>
14899       //    t17: i32 = truncate t16
14900       //  t18: f32 = bitcast t17
14901       //    t19: i32 = truncate t13
14902       //  t20: f32 = bitcast t19
14903 
14904       if (!LD->hasNUsesOfValue(2, 0))
14905         return false;
14906 
14907       auto UI = LD->use_begin();
14908       while (UI.getUse().getResNo() != 0) ++UI;
14909       SDNode *Trunc = *UI++;
14910       while (UI.getUse().getResNo() != 0) ++UI;
14911       SDNode *RightShift = *UI;
14912       if (Trunc->getOpcode() != ISD::TRUNCATE)
14913         std::swap(Trunc, RightShift);
14914 
14915       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14916           Trunc->getValueType(0) != MVT::i32 ||
14917           !Trunc->hasOneUse())
14918         return false;
14919       if (RightShift->getOpcode() != ISD::SRL ||
14920           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14921           RightShift->getConstantOperandVal(1) != 32 ||
14922           !RightShift->hasOneUse())
14923         return false;
14924 
14925       SDNode *Trunc2 = *RightShift->use_begin();
14926       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14927           Trunc2->getValueType(0) != MVT::i32 ||
14928           !Trunc2->hasOneUse())
14929         return false;
14930 
14931       SDNode *Bitcast = *Trunc->use_begin();
14932       SDNode *Bitcast2 = *Trunc2->use_begin();
14933 
14934       if (Bitcast->getOpcode() != ISD::BITCAST ||
14935           Bitcast->getValueType(0) != MVT::f32)
14936         return false;
14937       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14938           Bitcast2->getValueType(0) != MVT::f32)
14939         return false;
14940 
14941       if (Subtarget.isLittleEndian())
14942         std::swap(Bitcast, Bitcast2);
14943 
14944       // Bitcast has the second float (in memory-layout order) and Bitcast2
14945       // has the first one.
14946 
14947       SDValue BasePtr = LD->getBasePtr();
14948       if (LD->isIndexed()) {
14949         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14950                "Non-pre-inc AM on PPC?");
14951         BasePtr =
14952           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14953                       LD->getOffset());
14954       }
14955 
14956       auto MMOFlags =
14957           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14958       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14959                                       LD->getPointerInfo(), LD->getAlignment(),
14960                                       MMOFlags, LD->getAAInfo());
14961       SDValue AddPtr =
14962         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14963                     BasePtr, DAG.getIntPtrConstant(4, dl));
14964       SDValue FloatLoad2 = DAG.getLoad(
14965           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14966           LD->getPointerInfo().getWithOffset(4),
14967           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14968 
14969       if (LD->isIndexed()) {
14970         // Note that DAGCombine should re-form any pre-increment load(s) from
14971         // what is produced here if that makes sense.
14972         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14973       }
14974 
14975       DCI.CombineTo(Bitcast2, FloatLoad);
14976       DCI.CombineTo(Bitcast, FloatLoad2);
14977 
14978       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14979                                     SDValue(FloatLoad2.getNode(), 1));
14980       return true;
14981     };
14982 
14983     if (ReplaceTwoFloatLoad())
14984       return SDValue(N, 0);
14985 
14986     EVT MemVT = LD->getMemoryVT();
14987     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14988     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14989     if (LD->isUnindexed() && VT.isVector() &&
14990         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14991           // P8 and later hardware should just use LOAD.
14992           !Subtarget.hasP8Vector() &&
14993           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14994            VT == MVT::v4f32))) &&
14995         LD->getAlign() < ABIAlignment) {
14996       // This is a type-legal unaligned Altivec load.
14997       SDValue Chain = LD->getChain();
14998       SDValue Ptr = LD->getBasePtr();
14999       bool isLittleEndian = Subtarget.isLittleEndian();
15000 
15001       // This implements the loading of unaligned vectors as described in
15002       // the venerable Apple Velocity Engine overview. Specifically:
15003       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15004       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15005       //
15006       // The general idea is to expand a sequence of one or more unaligned
15007       // loads into an alignment-based permutation-control instruction (lvsl
15008       // or lvsr), a series of regular vector loads (which always truncate
15009       // their input address to an aligned address), and a series of
15010       // permutations.  The results of these permutations are the requested
15011       // loaded values.  The trick is that the last "extra" load is not taken
15012       // from the address you might suspect (sizeof(vector) bytes after the
15013       // last requested load), but rather sizeof(vector) - 1 bytes after the
15014       // last requested vector. The point of this is to avoid a page fault if
15015       // the base address happened to be aligned. This works because if the
15016       // base address is aligned, then adding less than a full vector length
15017       // will cause the last vector in the sequence to be (re)loaded.
15018       // Otherwise, the next vector will be fetched as you might suspect was
15019       // necessary.
15020 
15021       // We might be able to reuse the permutation generation from
15022       // a different base address offset from this one by an aligned amount.
15023       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15024       // optimization later.
15025       Intrinsic::ID Intr, IntrLD, IntrPerm;
15026       MVT PermCntlTy, PermTy, LDTy;
15027       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15028                             : Intrinsic::ppc_altivec_lvsl;
15029       IntrLD = Intrinsic::ppc_altivec_lvx;
15030       IntrPerm = Intrinsic::ppc_altivec_vperm;
15031       PermCntlTy = MVT::v16i8;
15032       PermTy = MVT::v4i32;
15033       LDTy = MVT::v4i32;
15034 
15035       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15036 
15037       // Create the new MMO for the new base load. It is like the original MMO,
15038       // but represents an area in memory almost twice the vector size centered
15039       // on the original address. If the address is unaligned, we might start
15040       // reading up to (sizeof(vector)-1) bytes below the address of the
15041       // original unaligned load.
15042       MachineFunction &MF = DAG.getMachineFunction();
15043       MachineMemOperand *BaseMMO =
15044         MF.getMachineMemOperand(LD->getMemOperand(),
15045                                 -(long)MemVT.getStoreSize()+1,
15046                                 2*MemVT.getStoreSize()-1);
15047 
15048       // Create the new base load.
15049       SDValue LDXIntID =
15050           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15051       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15052       SDValue BaseLoad =
15053         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15054                                 DAG.getVTList(PermTy, MVT::Other),
15055                                 BaseLoadOps, LDTy, BaseMMO);
15056 
15057       // Note that the value of IncOffset (which is provided to the next
15058       // load's pointer info offset value, and thus used to calculate the
15059       // alignment), and the value of IncValue (which is actually used to
15060       // increment the pointer value) are different! This is because we
15061       // require the next load to appear to be aligned, even though it
15062       // is actually offset from the base pointer by a lesser amount.
15063       int IncOffset = VT.getSizeInBits() / 8;
15064       int IncValue = IncOffset;
15065 
15066       // Walk (both up and down) the chain looking for another load at the real
15067       // (aligned) offset (the alignment of the other load does not matter in
15068       // this case). If found, then do not use the offset reduction trick, as
15069       // that will prevent the loads from being later combined (as they would
15070       // otherwise be duplicates).
15071       if (!findConsecutiveLoad(LD, DAG))
15072         --IncValue;
15073 
15074       SDValue Increment =
15075           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15076       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15077 
15078       MachineMemOperand *ExtraMMO =
15079         MF.getMachineMemOperand(LD->getMemOperand(),
15080                                 1, 2*MemVT.getStoreSize()-1);
15081       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15082       SDValue ExtraLoad =
15083         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15084                                 DAG.getVTList(PermTy, MVT::Other),
15085                                 ExtraLoadOps, LDTy, ExtraMMO);
15086 
15087       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15088         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15089 
15090       // Because vperm has a big-endian bias, we must reverse the order
15091       // of the input vectors and complement the permute control vector
15092       // when generating little endian code.  We have already handled the
15093       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15094       // and ExtraLoad here.
15095       SDValue Perm;
15096       if (isLittleEndian)
15097         Perm = BuildIntrinsicOp(IntrPerm,
15098                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15099       else
15100         Perm = BuildIntrinsicOp(IntrPerm,
15101                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15102 
15103       if (VT != PermTy)
15104         Perm = Subtarget.hasAltivec()
15105                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15106                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15107                                  DAG.getTargetConstant(1, dl, MVT::i64));
15108                                // second argument is 1 because this rounding
15109                                // is always exact.
15110 
15111       // The output of the permutation is our loaded result, the TokenFactor is
15112       // our new chain.
15113       DCI.CombineTo(N, Perm, TF);
15114       return SDValue(N, 0);
15115     }
15116     }
15117     break;
15118     case ISD::INTRINSIC_WO_CHAIN: {
15119       bool isLittleEndian = Subtarget.isLittleEndian();
15120       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15121       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15122                                            : Intrinsic::ppc_altivec_lvsl);
15123       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15124         SDValue Add = N->getOperand(1);
15125 
15126         int Bits = 4 /* 16 byte alignment */;
15127 
15128         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15129                                   APInt::getAllOnesValue(Bits /* alignment */)
15130                                       .zext(Add.getScalarValueSizeInBits()))) {
15131           SDNode *BasePtr = Add->getOperand(0).getNode();
15132           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15133                                     UE = BasePtr->use_end();
15134                UI != UE; ++UI) {
15135             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15136                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
15137                     IID) {
15138               // We've found another LVSL/LVSR, and this address is an aligned
15139               // multiple of that one. The results will be the same, so use the
15140               // one we've just found instead.
15141 
15142               return SDValue(*UI, 0);
15143             }
15144           }
15145         }
15146 
15147         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15148           SDNode *BasePtr = Add->getOperand(0).getNode();
15149           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15150                UE = BasePtr->use_end(); UI != UE; ++UI) {
15151             if (UI->getOpcode() == ISD::ADD &&
15152                 isa<ConstantSDNode>(UI->getOperand(1)) &&
15153                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15154                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
15155                 (1ULL << Bits) == 0) {
15156               SDNode *OtherAdd = *UI;
15157               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
15158                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
15159                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15160                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
15161                   return SDValue(*VI, 0);
15162                 }
15163               }
15164             }
15165           }
15166         }
15167       }
15168 
15169       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15170       // Expose the vabsduw/h/b opportunity for down stream
15171       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15172           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15173            IID == Intrinsic::ppc_altivec_vmaxsh ||
15174            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15175         SDValue V1 = N->getOperand(1);
15176         SDValue V2 = N->getOperand(2);
15177         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15178              V1.getSimpleValueType() == MVT::v8i16 ||
15179              V1.getSimpleValueType() == MVT::v16i8) &&
15180             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15181           // (0-a, a)
15182           if (V1.getOpcode() == ISD::SUB &&
15183               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15184               V1.getOperand(1) == V2) {
15185             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15186           }
15187           // (a, 0-a)
15188           if (V2.getOpcode() == ISD::SUB &&
15189               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15190               V2.getOperand(1) == V1) {
15191             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15192           }
15193           // (x-y, y-x)
15194           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15195               V1.getOperand(0) == V2.getOperand(1) &&
15196               V1.getOperand(1) == V2.getOperand(0)) {
15197             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15198           }
15199         }
15200       }
15201     }
15202 
15203     break;
15204   case ISD::INTRINSIC_W_CHAIN:
15205     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15206     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15207     if (Subtarget.needsSwapsForVSXMemOps()) {
15208       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15209       default:
15210         break;
15211       case Intrinsic::ppc_vsx_lxvw4x:
15212       case Intrinsic::ppc_vsx_lxvd2x:
15213         return expandVSXLoadForLE(N, DCI);
15214       }
15215     }
15216     break;
15217   case ISD::INTRINSIC_VOID:
15218     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15219     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15220     if (Subtarget.needsSwapsForVSXMemOps()) {
15221       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15222       default:
15223         break;
15224       case Intrinsic::ppc_vsx_stxvw4x:
15225       case Intrinsic::ppc_vsx_stxvd2x:
15226         return expandVSXStoreForLE(N, DCI);
15227       }
15228     }
15229     break;
15230   case ISD::BSWAP: {
15231     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15232     // For subtargets without LDBRX, we can still do better than the default
15233     // expansion even for 64-bit BSWAP (LOAD).
15234     bool Is64BitBswapOn64BitTgt =
15235         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15236     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15237                                N->getOperand(0).hasOneUse();
15238     if (IsSingleUseNormalLd &&
15239         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15240          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15241       SDValue Load = N->getOperand(0);
15242       LoadSDNode *LD = cast<LoadSDNode>(Load);
15243       // Create the byte-swapping load.
15244       SDValue Ops[] = {
15245         LD->getChain(),    // Chain
15246         LD->getBasePtr(),  // Ptr
15247         DAG.getValueType(N->getValueType(0)) // VT
15248       };
15249       SDValue BSLoad =
15250         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15251                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15252                                               MVT::i64 : MVT::i32, MVT::Other),
15253                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15254 
15255       // If this is an i16 load, insert the truncate.
15256       SDValue ResVal = BSLoad;
15257       if (N->getValueType(0) == MVT::i16)
15258         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15259 
15260       // First, combine the bswap away.  This makes the value produced by the
15261       // load dead.
15262       DCI.CombineTo(N, ResVal);
15263 
15264       // Next, combine the load away, we give it a bogus result value but a real
15265       // chain result.  The result value is dead because the bswap is dead.
15266       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15267 
15268       // Return N so it doesn't get rechecked!
15269       return SDValue(N, 0);
15270     }
15271     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15272     // before legalization so that the BUILD_PAIR is handled correctly.
15273     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15274         !IsSingleUseNormalLd)
15275       return SDValue();
15276     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15277 
15278     // Can't split volatile or atomic loads.
15279     if (!LD->isSimple())
15280       return SDValue();
15281     SDValue BasePtr = LD->getBasePtr();
15282     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15283                              LD->getPointerInfo(), LD->getAlignment());
15284     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15285     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15286                           DAG.getIntPtrConstant(4, dl));
15287     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15288         LD->getMemOperand(), 4, 4);
15289     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15290     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15291     SDValue Res;
15292     if (Subtarget.isLittleEndian())
15293       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15294     else
15295       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15296     SDValue TF =
15297         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15298                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15299     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15300     return Res;
15301   }
15302   case PPCISD::VCMP:
15303     // If a VCMP_rec node already exists with exactly the same operands as this
15304     // node, use its result instead of this node (VCMP_rec computes both a CR6
15305     // and a normal output).
15306     //
15307     if (!N->getOperand(0).hasOneUse() &&
15308         !N->getOperand(1).hasOneUse() &&
15309         !N->getOperand(2).hasOneUse()) {
15310 
15311       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15312       SDNode *VCMPrecNode = nullptr;
15313 
15314       SDNode *LHSN = N->getOperand(0).getNode();
15315       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15316            UI != E; ++UI)
15317         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15318             UI->getOperand(1) == N->getOperand(1) &&
15319             UI->getOperand(2) == N->getOperand(2) &&
15320             UI->getOperand(0) == N->getOperand(0)) {
15321           VCMPrecNode = *UI;
15322           break;
15323         }
15324 
15325       // If there is no VCMP_rec node, or if the flag value has a single use,
15326       // don't transform this.
15327       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15328         break;
15329 
15330       // Look at the (necessarily single) use of the flag value.  If it has a
15331       // chain, this transformation is more complex.  Note that multiple things
15332       // could use the value result, which we should ignore.
15333       SDNode *FlagUser = nullptr;
15334       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15335            FlagUser == nullptr; ++UI) {
15336         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15337         SDNode *User = *UI;
15338         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15339           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15340             FlagUser = User;
15341             break;
15342           }
15343         }
15344       }
15345 
15346       // If the user is a MFOCRF instruction, we know this is safe.
15347       // Otherwise we give up for right now.
15348       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15349         return SDValue(VCMPrecNode, 0);
15350     }
15351     break;
15352   case ISD::BRCOND: {
15353     SDValue Cond = N->getOperand(1);
15354     SDValue Target = N->getOperand(2);
15355 
15356     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15357         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15358           Intrinsic::loop_decrement) {
15359 
15360       // We now need to make the intrinsic dead (it cannot be instruction
15361       // selected).
15362       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15363       assert(Cond.getNode()->hasOneUse() &&
15364              "Counter decrement has more than one use");
15365 
15366       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15367                          N->getOperand(0), Target);
15368     }
15369   }
15370   break;
15371   case ISD::BR_CC: {
15372     // If this is a branch on an altivec predicate comparison, lower this so
15373     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15374     // lowering is done pre-legalize, because the legalizer lowers the predicate
15375     // compare down to code that is difficult to reassemble.
15376     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15377     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15378 
15379     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15380     // value. If so, pass-through the AND to get to the intrinsic.
15381     if (LHS.getOpcode() == ISD::AND &&
15382         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15383         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15384           Intrinsic::loop_decrement &&
15385         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15386         !isNullConstant(LHS.getOperand(1)))
15387       LHS = LHS.getOperand(0);
15388 
15389     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15390         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15391           Intrinsic::loop_decrement &&
15392         isa<ConstantSDNode>(RHS)) {
15393       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15394              "Counter decrement comparison is not EQ or NE");
15395 
15396       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15397       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15398                     (CC == ISD::SETNE && !Val);
15399 
15400       // We now need to make the intrinsic dead (it cannot be instruction
15401       // selected).
15402       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15403       assert(LHS.getNode()->hasOneUse() &&
15404              "Counter decrement has more than one use");
15405 
15406       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15407                          N->getOperand(0), N->getOperand(4));
15408     }
15409 
15410     int CompareOpc;
15411     bool isDot;
15412 
15413     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15414         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15415         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15416       assert(isDot && "Can't compare against a vector result!");
15417 
15418       // If this is a comparison against something other than 0/1, then we know
15419       // that the condition is never/always true.
15420       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15421       if (Val != 0 && Val != 1) {
15422         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15423           return N->getOperand(0);
15424         // Always !=, turn it into an unconditional branch.
15425         return DAG.getNode(ISD::BR, dl, MVT::Other,
15426                            N->getOperand(0), N->getOperand(4));
15427       }
15428 
15429       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15430 
15431       // Create the PPCISD altivec 'dot' comparison node.
15432       SDValue Ops[] = {
15433         LHS.getOperand(2),  // LHS of compare
15434         LHS.getOperand(3),  // RHS of compare
15435         DAG.getConstant(CompareOpc, dl, MVT::i32)
15436       };
15437       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15438       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15439 
15440       // Unpack the result based on how the target uses it.
15441       PPC::Predicate CompOpc;
15442       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15443       default:  // Can't happen, don't crash on invalid number though.
15444       case 0:   // Branch on the value of the EQ bit of CR6.
15445         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15446         break;
15447       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15448         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15449         break;
15450       case 2:   // Branch on the value of the LT bit of CR6.
15451         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15452         break;
15453       case 3:   // Branch on the inverted value of the LT bit of CR6.
15454         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15455         break;
15456       }
15457 
15458       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15459                          DAG.getConstant(CompOpc, dl, MVT::i32),
15460                          DAG.getRegister(PPC::CR6, MVT::i32),
15461                          N->getOperand(4), CompNode.getValue(1));
15462     }
15463     break;
15464   }
15465   case ISD::BUILD_VECTOR:
15466     return DAGCombineBuildVector(N, DCI);
15467   case ISD::ABS:
15468     return combineABS(N, DCI);
15469   case ISD::VSELECT:
15470     return combineVSelect(N, DCI);
15471   }
15472 
15473   return SDValue();
15474 }
15475 
15476 SDValue
15477 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15478                                  SelectionDAG &DAG,
15479                                  SmallVectorImpl<SDNode *> &Created) const {
15480   // fold (sdiv X, pow2)
15481   EVT VT = N->getValueType(0);
15482   if (VT == MVT::i64 && !Subtarget.isPPC64())
15483     return SDValue();
15484   if ((VT != MVT::i32 && VT != MVT::i64) ||
15485       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15486     return SDValue();
15487 
15488   SDLoc DL(N);
15489   SDValue N0 = N->getOperand(0);
15490 
15491   bool IsNegPow2 = (-Divisor).isPowerOf2();
15492   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15493   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15494 
15495   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15496   Created.push_back(Op.getNode());
15497 
15498   if (IsNegPow2) {
15499     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15500     Created.push_back(Op.getNode());
15501   }
15502 
15503   return Op;
15504 }
15505 
15506 //===----------------------------------------------------------------------===//
15507 // Inline Assembly Support
15508 //===----------------------------------------------------------------------===//
15509 
15510 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15511                                                       KnownBits &Known,
15512                                                       const APInt &DemandedElts,
15513                                                       const SelectionDAG &DAG,
15514                                                       unsigned Depth) const {
15515   Known.resetAll();
15516   switch (Op.getOpcode()) {
15517   default: break;
15518   case PPCISD::LBRX: {
15519     // lhbrx is known to have the top bits cleared out.
15520     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15521       Known.Zero = 0xFFFF0000;
15522     break;
15523   }
15524   case ISD::INTRINSIC_WO_CHAIN: {
15525     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15526     default: break;
15527     case Intrinsic::ppc_altivec_vcmpbfp_p:
15528     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15529     case Intrinsic::ppc_altivec_vcmpequb_p:
15530     case Intrinsic::ppc_altivec_vcmpequh_p:
15531     case Intrinsic::ppc_altivec_vcmpequw_p:
15532     case Intrinsic::ppc_altivec_vcmpequd_p:
15533     case Intrinsic::ppc_altivec_vcmpequq_p:
15534     case Intrinsic::ppc_altivec_vcmpgefp_p:
15535     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15536     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15537     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15538     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15539     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15540     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15541     case Intrinsic::ppc_altivec_vcmpgtub_p:
15542     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15543     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15544     case Intrinsic::ppc_altivec_vcmpgtud_p:
15545     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15546       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15547       break;
15548     }
15549   }
15550   }
15551 }
15552 
15553 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15554   switch (Subtarget.getCPUDirective()) {
15555   default: break;
15556   case PPC::DIR_970:
15557   case PPC::DIR_PWR4:
15558   case PPC::DIR_PWR5:
15559   case PPC::DIR_PWR5X:
15560   case PPC::DIR_PWR6:
15561   case PPC::DIR_PWR6X:
15562   case PPC::DIR_PWR7:
15563   case PPC::DIR_PWR8:
15564   case PPC::DIR_PWR9:
15565   case PPC::DIR_PWR10:
15566   case PPC::DIR_PWR_FUTURE: {
15567     if (!ML)
15568       break;
15569 
15570     if (!DisableInnermostLoopAlign32) {
15571       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15572       // so that we can decrease cache misses and branch-prediction misses.
15573       // Actual alignment of the loop will depend on the hotness check and other
15574       // logic in alignBlocks.
15575       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15576         return Align(32);
15577     }
15578 
15579     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15580 
15581     // For small loops (between 5 and 8 instructions), align to a 32-byte
15582     // boundary so that the entire loop fits in one instruction-cache line.
15583     uint64_t LoopSize = 0;
15584     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15585       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15586         LoopSize += TII->getInstSizeInBytes(*J);
15587         if (LoopSize > 32)
15588           break;
15589       }
15590 
15591     if (LoopSize > 16 && LoopSize <= 32)
15592       return Align(32);
15593 
15594     break;
15595   }
15596   }
15597 
15598   return TargetLowering::getPrefLoopAlignment(ML);
15599 }
15600 
15601 /// getConstraintType - Given a constraint, return the type of
15602 /// constraint it is for this target.
15603 PPCTargetLowering::ConstraintType
15604 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15605   if (Constraint.size() == 1) {
15606     switch (Constraint[0]) {
15607     default: break;
15608     case 'b':
15609     case 'r':
15610     case 'f':
15611     case 'd':
15612     case 'v':
15613     case 'y':
15614       return C_RegisterClass;
15615     case 'Z':
15616       // FIXME: While Z does indicate a memory constraint, it specifically
15617       // indicates an r+r address (used in conjunction with the 'y' modifier
15618       // in the replacement string). Currently, we're forcing the base
15619       // register to be r0 in the asm printer (which is interpreted as zero)
15620       // and forming the complete address in the second register. This is
15621       // suboptimal.
15622       return C_Memory;
15623     }
15624   } else if (Constraint == "wc") { // individual CR bits.
15625     return C_RegisterClass;
15626   } else if (Constraint == "wa" || Constraint == "wd" ||
15627              Constraint == "wf" || Constraint == "ws" ||
15628              Constraint == "wi" || Constraint == "ww") {
15629     return C_RegisterClass; // VSX registers.
15630   }
15631   return TargetLowering::getConstraintType(Constraint);
15632 }
15633 
15634 /// Examine constraint type and operand type and determine a weight value.
15635 /// This object must already have been set up with the operand type
15636 /// and the current alternative constraint selected.
15637 TargetLowering::ConstraintWeight
15638 PPCTargetLowering::getSingleConstraintMatchWeight(
15639     AsmOperandInfo &info, const char *constraint) const {
15640   ConstraintWeight weight = CW_Invalid;
15641   Value *CallOperandVal = info.CallOperandVal;
15642     // If we don't have a value, we can't do a match,
15643     // but allow it at the lowest weight.
15644   if (!CallOperandVal)
15645     return CW_Default;
15646   Type *type = CallOperandVal->getType();
15647 
15648   // Look at the constraint type.
15649   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15650     return CW_Register; // an individual CR bit.
15651   else if ((StringRef(constraint) == "wa" ||
15652             StringRef(constraint) == "wd" ||
15653             StringRef(constraint) == "wf") &&
15654            type->isVectorTy())
15655     return CW_Register;
15656   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15657     return CW_Register; // just hold 64-bit integers data.
15658   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15659     return CW_Register;
15660   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15661     return CW_Register;
15662 
15663   switch (*constraint) {
15664   default:
15665     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15666     break;
15667   case 'b':
15668     if (type->isIntegerTy())
15669       weight = CW_Register;
15670     break;
15671   case 'f':
15672     if (type->isFloatTy())
15673       weight = CW_Register;
15674     break;
15675   case 'd':
15676     if (type->isDoubleTy())
15677       weight = CW_Register;
15678     break;
15679   case 'v':
15680     if (type->isVectorTy())
15681       weight = CW_Register;
15682     break;
15683   case 'y':
15684     weight = CW_Register;
15685     break;
15686   case 'Z':
15687     weight = CW_Memory;
15688     break;
15689   }
15690   return weight;
15691 }
15692 
15693 std::pair<unsigned, const TargetRegisterClass *>
15694 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15695                                                 StringRef Constraint,
15696                                                 MVT VT) const {
15697   if (Constraint.size() == 1) {
15698     // GCC RS6000 Constraint Letters
15699     switch (Constraint[0]) {
15700     case 'b':   // R1-R31
15701       if (VT == MVT::i64 && Subtarget.isPPC64())
15702         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15703       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15704     case 'r':   // R0-R31
15705       if (VT == MVT::i64 && Subtarget.isPPC64())
15706         return std::make_pair(0U, &PPC::G8RCRegClass);
15707       return std::make_pair(0U, &PPC::GPRCRegClass);
15708     // 'd' and 'f' constraints are both defined to be "the floating point
15709     // registers", where one is for 32-bit and the other for 64-bit. We don't
15710     // really care overly much here so just give them all the same reg classes.
15711     case 'd':
15712     case 'f':
15713       if (Subtarget.hasSPE()) {
15714         if (VT == MVT::f32 || VT == MVT::i32)
15715           return std::make_pair(0U, &PPC::GPRCRegClass);
15716         if (VT == MVT::f64 || VT == MVT::i64)
15717           return std::make_pair(0U, &PPC::SPERCRegClass);
15718       } else {
15719         if (VT == MVT::f32 || VT == MVT::i32)
15720           return std::make_pair(0U, &PPC::F4RCRegClass);
15721         if (VT == MVT::f64 || VT == MVT::i64)
15722           return std::make_pair(0U, &PPC::F8RCRegClass);
15723       }
15724       break;
15725     case 'v':
15726       if (Subtarget.hasAltivec())
15727         return std::make_pair(0U, &PPC::VRRCRegClass);
15728       break;
15729     case 'y':   // crrc
15730       return std::make_pair(0U, &PPC::CRRCRegClass);
15731     }
15732   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15733     // An individual CR bit.
15734     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15735   } else if ((Constraint == "wa" || Constraint == "wd" ||
15736              Constraint == "wf" || Constraint == "wi") &&
15737              Subtarget.hasVSX()) {
15738     // A VSX register for either a scalar (FP) or vector. There is no
15739     // support for single precision scalars on subtargets prior to Power8.
15740     if (VT.isVector())
15741       return std::make_pair(0U, &PPC::VSRCRegClass);
15742     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15743       return std::make_pair(0U, &PPC::VSSRCRegClass);
15744     return std::make_pair(0U, &PPC::VSFRCRegClass);
15745   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15746     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15747       return std::make_pair(0U, &PPC::VSSRCRegClass);
15748     else
15749       return std::make_pair(0U, &PPC::VSFRCRegClass);
15750   } else if (Constraint == "lr") {
15751     if (VT == MVT::i64)
15752       return std::make_pair(0U, &PPC::LR8RCRegClass);
15753     else
15754       return std::make_pair(0U, &PPC::LRRCRegClass);
15755   }
15756 
15757   // Handle special cases of physical registers that are not properly handled
15758   // by the base class.
15759   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
15760     // If we name a VSX register, we can't defer to the base class because it
15761     // will not recognize the correct register (their names will be VSL{0-31}
15762     // and V{0-31} so they won't match). So we match them here.
15763     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15764       int VSNum = atoi(Constraint.data() + 3);
15765       assert(VSNum >= 0 && VSNum <= 63 &&
15766              "Attempted to access a vsr out of range");
15767       if (VSNum < 32)
15768         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15769       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15770     }
15771 
15772     // For float registers, we can't defer to the base class as it will match
15773     // the SPILLTOVSRRC class.
15774     if (Constraint.size() > 3 && Constraint[1] == 'f') {
15775       int RegNum = atoi(Constraint.data() + 2);
15776       if (RegNum > 31 || RegNum < 0)
15777         report_fatal_error("Invalid floating point register number");
15778       if (VT == MVT::f32 || VT == MVT::i32)
15779         return Subtarget.hasSPE()
15780                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
15781                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
15782       if (VT == MVT::f64 || VT == MVT::i64)
15783         return Subtarget.hasSPE()
15784                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
15785                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
15786     }
15787   }
15788 
15789   std::pair<unsigned, const TargetRegisterClass *> R =
15790       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15791 
15792   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15793   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15794   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15795   // register.
15796   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15797   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15798   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15799       PPC::GPRCRegClass.contains(R.first))
15800     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15801                             PPC::sub_32, &PPC::G8RCRegClass),
15802                           &PPC::G8RCRegClass);
15803 
15804   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15805   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
15806     R.first = PPC::CR0;
15807     R.second = &PPC::CRRCRegClass;
15808   }
15809   // FIXME: This warning should ideally be emitted in the front end.
15810   const auto &TM = getTargetMachine();
15811   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
15812     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
15813          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
15814         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
15815       errs() << "warning: vector registers 20 to 32 are reserved in the "
15816                 "default AIX AltiVec ABI and cannot be used\n";
15817   }
15818 
15819   return R;
15820 }
15821 
15822 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15823 /// vector.  If it is invalid, don't add anything to Ops.
15824 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15825                                                      std::string &Constraint,
15826                                                      std::vector<SDValue>&Ops,
15827                                                      SelectionDAG &DAG) const {
15828   SDValue Result;
15829 
15830   // Only support length 1 constraints.
15831   if (Constraint.length() > 1) return;
15832 
15833   char Letter = Constraint[0];
15834   switch (Letter) {
15835   default: break;
15836   case 'I':
15837   case 'J':
15838   case 'K':
15839   case 'L':
15840   case 'M':
15841   case 'N':
15842   case 'O':
15843   case 'P': {
15844     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15845     if (!CST) return; // Must be an immediate to match.
15846     SDLoc dl(Op);
15847     int64_t Value = CST->getSExtValue();
15848     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15849                          // numbers are printed as such.
15850     switch (Letter) {
15851     default: llvm_unreachable("Unknown constraint letter!");
15852     case 'I':  // "I" is a signed 16-bit constant.
15853       if (isInt<16>(Value))
15854         Result = DAG.getTargetConstant(Value, dl, TCVT);
15855       break;
15856     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15857       if (isShiftedUInt<16, 16>(Value))
15858         Result = DAG.getTargetConstant(Value, dl, TCVT);
15859       break;
15860     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15861       if (isShiftedInt<16, 16>(Value))
15862         Result = DAG.getTargetConstant(Value, dl, TCVT);
15863       break;
15864     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15865       if (isUInt<16>(Value))
15866         Result = DAG.getTargetConstant(Value, dl, TCVT);
15867       break;
15868     case 'M':  // "M" is a constant that is greater than 31.
15869       if (Value > 31)
15870         Result = DAG.getTargetConstant(Value, dl, TCVT);
15871       break;
15872     case 'N':  // "N" is a positive constant that is an exact power of two.
15873       if (Value > 0 && isPowerOf2_64(Value))
15874         Result = DAG.getTargetConstant(Value, dl, TCVT);
15875       break;
15876     case 'O':  // "O" is the constant zero.
15877       if (Value == 0)
15878         Result = DAG.getTargetConstant(Value, dl, TCVT);
15879       break;
15880     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15881       if (isInt<16>(-Value))
15882         Result = DAG.getTargetConstant(Value, dl, TCVT);
15883       break;
15884     }
15885     break;
15886   }
15887   }
15888 
15889   if (Result.getNode()) {
15890     Ops.push_back(Result);
15891     return;
15892   }
15893 
15894   // Handle standard constraint letters.
15895   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15896 }
15897 
15898 // isLegalAddressingMode - Return true if the addressing mode represented
15899 // by AM is legal for this target, for a load/store of the specified type.
15900 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15901                                               const AddrMode &AM, Type *Ty,
15902                                               unsigned AS,
15903                                               Instruction *I) const {
15904   // Vector type r+i form is supported since power9 as DQ form. We don't check
15905   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15906   // imm form is preferred and the offset can be adjusted to use imm form later
15907   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15908   // max offset to check legal addressing mode, we should be a little aggressive
15909   // to contain other offsets for that LSRUse.
15910   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15911     return false;
15912 
15913   // PPC allows a sign-extended 16-bit immediate field.
15914   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15915     return false;
15916 
15917   // No global is ever allowed as a base.
15918   if (AM.BaseGV)
15919     return false;
15920 
15921   // PPC only support r+r,
15922   switch (AM.Scale) {
15923   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15924     break;
15925   case 1:
15926     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15927       return false;
15928     // Otherwise we have r+r or r+i.
15929     break;
15930   case 2:
15931     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15932       return false;
15933     // Allow 2*r as r+r.
15934     break;
15935   default:
15936     // No other scales are supported.
15937     return false;
15938   }
15939 
15940   return true;
15941 }
15942 
15943 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15944                                            SelectionDAG &DAG) const {
15945   MachineFunction &MF = DAG.getMachineFunction();
15946   MachineFrameInfo &MFI = MF.getFrameInfo();
15947   MFI.setReturnAddressIsTaken(true);
15948 
15949   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15950     return SDValue();
15951 
15952   SDLoc dl(Op);
15953   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15954 
15955   // Make sure the function does not optimize away the store of the RA to
15956   // the stack.
15957   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15958   FuncInfo->setLRStoreRequired();
15959   bool isPPC64 = Subtarget.isPPC64();
15960   auto PtrVT = getPointerTy(MF.getDataLayout());
15961 
15962   if (Depth > 0) {
15963     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15964     SDValue Offset =
15965         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15966                         isPPC64 ? MVT::i64 : MVT::i32);
15967     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15968                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15969                        MachinePointerInfo());
15970   }
15971 
15972   // Just load the return address off the stack.
15973   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15974   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15975                      MachinePointerInfo());
15976 }
15977 
15978 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15979                                           SelectionDAG &DAG) const {
15980   SDLoc dl(Op);
15981   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15982 
15983   MachineFunction &MF = DAG.getMachineFunction();
15984   MachineFrameInfo &MFI = MF.getFrameInfo();
15985   MFI.setFrameAddressIsTaken(true);
15986 
15987   EVT PtrVT = getPointerTy(MF.getDataLayout());
15988   bool isPPC64 = PtrVT == MVT::i64;
15989 
15990   // Naked functions never have a frame pointer, and so we use r1. For all
15991   // other functions, this decision must be delayed until during PEI.
15992   unsigned FrameReg;
15993   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15994     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15995   else
15996     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15997 
15998   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15999                                          PtrVT);
16000   while (Depth--)
16001     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16002                             FrameAddr, MachinePointerInfo());
16003   return FrameAddr;
16004 }
16005 
16006 // FIXME? Maybe this could be a TableGen attribute on some registers and
16007 // this table could be generated automatically from RegInfo.
16008 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16009                                               const MachineFunction &MF) const {
16010   bool isPPC64 = Subtarget.isPPC64();
16011 
16012   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16013   if (!is64Bit && VT != LLT::scalar(32))
16014     report_fatal_error("Invalid register global variable type");
16015 
16016   Register Reg = StringSwitch<Register>(RegName)
16017                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16018                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16019                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16020                      .Default(Register());
16021 
16022   if (Reg)
16023     return Reg;
16024   report_fatal_error("Invalid register name global variable");
16025 }
16026 
16027 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16028   // 32-bit SVR4 ABI access everything as got-indirect.
16029   if (Subtarget.is32BitELFABI())
16030     return true;
16031 
16032   // AIX accesses everything indirectly through the TOC, which is similar to
16033   // the GOT.
16034   if (Subtarget.isAIXABI())
16035     return true;
16036 
16037   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16038   // If it is small or large code model, module locals are accessed
16039   // indirectly by loading their address from .toc/.got.
16040   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16041     return true;
16042 
16043   // JumpTable and BlockAddress are accessed as got-indirect.
16044   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16045     return true;
16046 
16047   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16048     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16049 
16050   return false;
16051 }
16052 
16053 bool
16054 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16055   // The PowerPC target isn't yet aware of offsets.
16056   return false;
16057 }
16058 
16059 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16060                                            const CallInst &I,
16061                                            MachineFunction &MF,
16062                                            unsigned Intrinsic) const {
16063   switch (Intrinsic) {
16064   case Intrinsic::ppc_atomicrmw_xchg_i128:
16065   case Intrinsic::ppc_atomicrmw_add_i128:
16066   case Intrinsic::ppc_atomicrmw_sub_i128:
16067   case Intrinsic::ppc_atomicrmw_nand_i128:
16068   case Intrinsic::ppc_atomicrmw_and_i128:
16069   case Intrinsic::ppc_atomicrmw_or_i128:
16070   case Intrinsic::ppc_atomicrmw_xor_i128:
16071   case Intrinsic::ppc_cmpxchg_i128:
16072     Info.opc = ISD::INTRINSIC_W_CHAIN;
16073     Info.memVT = MVT::i128;
16074     Info.ptrVal = I.getArgOperand(0);
16075     Info.offset = 0;
16076     Info.align = Align(16);
16077     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16078                  MachineMemOperand::MOVolatile;
16079     return true;
16080   case Intrinsic::ppc_altivec_lvx:
16081   case Intrinsic::ppc_altivec_lvxl:
16082   case Intrinsic::ppc_altivec_lvebx:
16083   case Intrinsic::ppc_altivec_lvehx:
16084   case Intrinsic::ppc_altivec_lvewx:
16085   case Intrinsic::ppc_vsx_lxvd2x:
16086   case Intrinsic::ppc_vsx_lxvw4x:
16087   case Intrinsic::ppc_vsx_lxvd2x_be:
16088   case Intrinsic::ppc_vsx_lxvw4x_be:
16089   case Intrinsic::ppc_vsx_lxvl:
16090   case Intrinsic::ppc_vsx_lxvll: {
16091     EVT VT;
16092     switch (Intrinsic) {
16093     case Intrinsic::ppc_altivec_lvebx:
16094       VT = MVT::i8;
16095       break;
16096     case Intrinsic::ppc_altivec_lvehx:
16097       VT = MVT::i16;
16098       break;
16099     case Intrinsic::ppc_altivec_lvewx:
16100       VT = MVT::i32;
16101       break;
16102     case Intrinsic::ppc_vsx_lxvd2x:
16103     case Intrinsic::ppc_vsx_lxvd2x_be:
16104       VT = MVT::v2f64;
16105       break;
16106     default:
16107       VT = MVT::v4i32;
16108       break;
16109     }
16110 
16111     Info.opc = ISD::INTRINSIC_W_CHAIN;
16112     Info.memVT = VT;
16113     Info.ptrVal = I.getArgOperand(0);
16114     Info.offset = -VT.getStoreSize()+1;
16115     Info.size = 2*VT.getStoreSize()-1;
16116     Info.align = Align(1);
16117     Info.flags = MachineMemOperand::MOLoad;
16118     return true;
16119   }
16120   case Intrinsic::ppc_altivec_stvx:
16121   case Intrinsic::ppc_altivec_stvxl:
16122   case Intrinsic::ppc_altivec_stvebx:
16123   case Intrinsic::ppc_altivec_stvehx:
16124   case Intrinsic::ppc_altivec_stvewx:
16125   case Intrinsic::ppc_vsx_stxvd2x:
16126   case Intrinsic::ppc_vsx_stxvw4x:
16127   case Intrinsic::ppc_vsx_stxvd2x_be:
16128   case Intrinsic::ppc_vsx_stxvw4x_be:
16129   case Intrinsic::ppc_vsx_stxvl:
16130   case Intrinsic::ppc_vsx_stxvll: {
16131     EVT VT;
16132     switch (Intrinsic) {
16133     case Intrinsic::ppc_altivec_stvebx:
16134       VT = MVT::i8;
16135       break;
16136     case Intrinsic::ppc_altivec_stvehx:
16137       VT = MVT::i16;
16138       break;
16139     case Intrinsic::ppc_altivec_stvewx:
16140       VT = MVT::i32;
16141       break;
16142     case Intrinsic::ppc_vsx_stxvd2x:
16143     case Intrinsic::ppc_vsx_stxvd2x_be:
16144       VT = MVT::v2f64;
16145       break;
16146     default:
16147       VT = MVT::v4i32;
16148       break;
16149     }
16150 
16151     Info.opc = ISD::INTRINSIC_VOID;
16152     Info.memVT = VT;
16153     Info.ptrVal = I.getArgOperand(1);
16154     Info.offset = -VT.getStoreSize()+1;
16155     Info.size = 2*VT.getStoreSize()-1;
16156     Info.align = Align(1);
16157     Info.flags = MachineMemOperand::MOStore;
16158     return true;
16159   }
16160   default:
16161     break;
16162   }
16163 
16164   return false;
16165 }
16166 
16167 /// It returns EVT::Other if the type should be determined using generic
16168 /// target-independent logic.
16169 EVT PPCTargetLowering::getOptimalMemOpType(
16170     const MemOp &Op, const AttributeList &FuncAttributes) const {
16171   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16172     // We should use Altivec/VSX loads and stores when available. For unaligned
16173     // addresses, unaligned VSX loads are only fast starting with the P8.
16174     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16175         (Op.isAligned(Align(16)) ||
16176          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16177       return MVT::v4i32;
16178   }
16179 
16180   if (Subtarget.isPPC64()) {
16181     return MVT::i64;
16182   }
16183 
16184   return MVT::i32;
16185 }
16186 
16187 /// Returns true if it is beneficial to convert a load of a constant
16188 /// to just the constant itself.
16189 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16190                                                           Type *Ty) const {
16191   assert(Ty->isIntegerTy());
16192 
16193   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16194   return !(BitSize == 0 || BitSize > 64);
16195 }
16196 
16197 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16198   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16199     return false;
16200   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16201   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16202   return NumBits1 == 64 && NumBits2 == 32;
16203 }
16204 
16205 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16206   if (!VT1.isInteger() || !VT2.isInteger())
16207     return false;
16208   unsigned NumBits1 = VT1.getSizeInBits();
16209   unsigned NumBits2 = VT2.getSizeInBits();
16210   return NumBits1 == 64 && NumBits2 == 32;
16211 }
16212 
16213 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16214   // Generally speaking, zexts are not free, but they are free when they can be
16215   // folded with other operations.
16216   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16217     EVT MemVT = LD->getMemoryVT();
16218     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16219          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16220         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16221          LD->getExtensionType() == ISD::ZEXTLOAD))
16222       return true;
16223   }
16224 
16225   // FIXME: Add other cases...
16226   //  - 32-bit shifts with a zext to i64
16227   //  - zext after ctlz, bswap, etc.
16228   //  - zext after and by a constant mask
16229 
16230   return TargetLowering::isZExtFree(Val, VT2);
16231 }
16232 
16233 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16234   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16235          "invalid fpext types");
16236   // Extending to float128 is not free.
16237   if (DestVT == MVT::f128)
16238     return false;
16239   return true;
16240 }
16241 
16242 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16243   return isInt<16>(Imm) || isUInt<16>(Imm);
16244 }
16245 
16246 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16247   return isInt<16>(Imm) || isUInt<16>(Imm);
16248 }
16249 
16250 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16251                                                        MachineMemOperand::Flags,
16252                                                        bool *Fast) const {
16253   if (DisablePPCUnaligned)
16254     return false;
16255 
16256   // PowerPC supports unaligned memory access for simple non-vector types.
16257   // Although accessing unaligned addresses is not as efficient as accessing
16258   // aligned addresses, it is generally more efficient than manual expansion,
16259   // and generally only traps for software emulation when crossing page
16260   // boundaries.
16261 
16262   if (!VT.isSimple())
16263     return false;
16264 
16265   if (VT.isFloatingPoint() && !VT.isVector() &&
16266       !Subtarget.allowsUnalignedFPAccess())
16267     return false;
16268 
16269   if (VT.getSimpleVT().isVector()) {
16270     if (Subtarget.hasVSX()) {
16271       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16272           VT != MVT::v4f32 && VT != MVT::v4i32)
16273         return false;
16274     } else {
16275       return false;
16276     }
16277   }
16278 
16279   if (VT == MVT::ppcf128)
16280     return false;
16281 
16282   if (Fast)
16283     *Fast = true;
16284 
16285   return true;
16286 }
16287 
16288 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16289                                                SDValue C) const {
16290   // Check integral scalar types.
16291   if (!VT.isScalarInteger())
16292     return false;
16293   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16294     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16295       return false;
16296     // This transformation will generate >= 2 operations. But the following
16297     // cases will generate <= 2 instructions during ISEL. So exclude them.
16298     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16299     // HW instruction, ie. MULLI
16300     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16301     // instruction is needed than case 1, ie. MULLI and RLDICR
16302     int64_t Imm = ConstNode->getSExtValue();
16303     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16304     Imm >>= Shift;
16305     if (isInt<16>(Imm))
16306       return false;
16307     uint64_t UImm = static_cast<uint64_t>(Imm);
16308     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16309         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16310       return true;
16311   }
16312   return false;
16313 }
16314 
16315 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16316                                                    EVT VT) const {
16317   return isFMAFasterThanFMulAndFAdd(
16318       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16319 }
16320 
16321 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16322                                                    Type *Ty) const {
16323   switch (Ty->getScalarType()->getTypeID()) {
16324   case Type::FloatTyID:
16325   case Type::DoubleTyID:
16326     return true;
16327   case Type::FP128TyID:
16328     return Subtarget.hasP9Vector();
16329   default:
16330     return false;
16331   }
16332 }
16333 
16334 // FIXME: add more patterns which are not profitable to hoist.
16335 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16336   if (!I->hasOneUse())
16337     return true;
16338 
16339   Instruction *User = I->user_back();
16340   assert(User && "A single use instruction with no uses.");
16341 
16342   switch (I->getOpcode()) {
16343   case Instruction::FMul: {
16344     // Don't break FMA, PowerPC prefers FMA.
16345     if (User->getOpcode() != Instruction::FSub &&
16346         User->getOpcode() != Instruction::FAdd)
16347       return true;
16348 
16349     const TargetOptions &Options = getTargetMachine().Options;
16350     const Function *F = I->getFunction();
16351     const DataLayout &DL = F->getParent()->getDataLayout();
16352     Type *Ty = User->getOperand(0)->getType();
16353 
16354     return !(
16355         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16356         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16357         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16358   }
16359   case Instruction::Load: {
16360     // Don't break "store (load float*)" pattern, this pattern will be combined
16361     // to "store (load int32)" in later InstCombine pass. See function
16362     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16363     // cycles than loading a 32 bit integer.
16364     LoadInst *LI = cast<LoadInst>(I);
16365     // For the loads that combineLoadToOperationType does nothing, like
16366     // ordered load, it should be profitable to hoist them.
16367     // For swifterror load, it can only be used for pointer to pointer type, so
16368     // later type check should get rid of this case.
16369     if (!LI->isUnordered())
16370       return true;
16371 
16372     if (User->getOpcode() != Instruction::Store)
16373       return true;
16374 
16375     if (I->getType()->getTypeID() != Type::FloatTyID)
16376       return true;
16377 
16378     return false;
16379   }
16380   default:
16381     return true;
16382   }
16383   return true;
16384 }
16385 
16386 const MCPhysReg *
16387 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16388   // LR is a callee-save register, but we must treat it as clobbered by any call
16389   // site. Hence we include LR in the scratch registers, which are in turn added
16390   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16391   // to CTR, which is used by any indirect call.
16392   static const MCPhysReg ScratchRegs[] = {
16393     PPC::X12, PPC::LR8, PPC::CTR8, 0
16394   };
16395 
16396   return ScratchRegs;
16397 }
16398 
16399 Register PPCTargetLowering::getExceptionPointerRegister(
16400     const Constant *PersonalityFn) const {
16401   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16402 }
16403 
16404 Register PPCTargetLowering::getExceptionSelectorRegister(
16405     const Constant *PersonalityFn) const {
16406   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16407 }
16408 
16409 bool
16410 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16411                      EVT VT , unsigned DefinedValues) const {
16412   if (VT == MVT::v2i64)
16413     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16414 
16415   if (Subtarget.hasVSX())
16416     return true;
16417 
16418   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16419 }
16420 
16421 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16422   if (DisableILPPref || Subtarget.enableMachineScheduler())
16423     return TargetLowering::getSchedulingPreference(N);
16424 
16425   return Sched::ILP;
16426 }
16427 
16428 // Create a fast isel object.
16429 FastISel *
16430 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16431                                   const TargetLibraryInfo *LibInfo) const {
16432   return PPC::createFastISel(FuncInfo, LibInfo);
16433 }
16434 
16435 // 'Inverted' means the FMA opcode after negating one multiplicand.
16436 // For example, (fma -a b c) = (fnmsub a b c)
16437 static unsigned invertFMAOpcode(unsigned Opc) {
16438   switch (Opc) {
16439   default:
16440     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16441   case ISD::FMA:
16442     return PPCISD::FNMSUB;
16443   case PPCISD::FNMSUB:
16444     return ISD::FMA;
16445   }
16446 }
16447 
16448 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16449                                                 bool LegalOps, bool OptForSize,
16450                                                 NegatibleCost &Cost,
16451                                                 unsigned Depth) const {
16452   if (Depth > SelectionDAG::MaxRecursionDepth)
16453     return SDValue();
16454 
16455   unsigned Opc = Op.getOpcode();
16456   EVT VT = Op.getValueType();
16457   SDNodeFlags Flags = Op.getNode()->getFlags();
16458 
16459   switch (Opc) {
16460   case PPCISD::FNMSUB:
16461     if (!Op.hasOneUse() || !isTypeLegal(VT))
16462       break;
16463 
16464     const TargetOptions &Options = getTargetMachine().Options;
16465     SDValue N0 = Op.getOperand(0);
16466     SDValue N1 = Op.getOperand(1);
16467     SDValue N2 = Op.getOperand(2);
16468     SDLoc Loc(Op);
16469 
16470     NegatibleCost N2Cost = NegatibleCost::Expensive;
16471     SDValue NegN2 =
16472         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16473 
16474     if (!NegN2)
16475       return SDValue();
16476 
16477     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16478     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16479     // These transformations may change sign of zeroes. For example,
16480     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16481     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16482       // Try and choose the cheaper one to negate.
16483       NegatibleCost N0Cost = NegatibleCost::Expensive;
16484       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16485                                            N0Cost, Depth + 1);
16486 
16487       NegatibleCost N1Cost = NegatibleCost::Expensive;
16488       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16489                                            N1Cost, Depth + 1);
16490 
16491       if (NegN0 && N0Cost <= N1Cost) {
16492         Cost = std::min(N0Cost, N2Cost);
16493         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16494       } else if (NegN1) {
16495         Cost = std::min(N1Cost, N2Cost);
16496         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16497       }
16498     }
16499 
16500     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16501     if (isOperationLegal(ISD::FMA, VT)) {
16502       Cost = N2Cost;
16503       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16504     }
16505 
16506     break;
16507   }
16508 
16509   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16510                                               Cost, Depth);
16511 }
16512 
16513 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16514 bool PPCTargetLowering::useLoadStackGuardNode() const {
16515   if (!Subtarget.isTargetLinux())
16516     return TargetLowering::useLoadStackGuardNode();
16517   return true;
16518 }
16519 
16520 // Override to disable global variable loading on Linux and insert AIX canary
16521 // word declaration.
16522 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16523   if (Subtarget.isAIXABI()) {
16524     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16525                         Type::getInt8PtrTy(M.getContext()));
16526     return;
16527   }
16528   if (!Subtarget.isTargetLinux())
16529     return TargetLowering::insertSSPDeclarations(M);
16530 }
16531 
16532 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16533   if (Subtarget.isAIXABI())
16534     return M.getGlobalVariable(AIXSSPCanaryWordName);
16535   return TargetLowering::getSDagStackGuard(M);
16536 }
16537 
16538 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16539                                      bool ForCodeSize) const {
16540   if (!VT.isSimple() || !Subtarget.hasVSX())
16541     return false;
16542 
16543   switch(VT.getSimpleVT().SimpleTy) {
16544   default:
16545     // For FP types that are currently not supported by PPC backend, return
16546     // false. Examples: f16, f80.
16547     return false;
16548   case MVT::f32:
16549   case MVT::f64:
16550     if (Subtarget.hasPrefixInstrs()) {
16551       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16552       return true;
16553     }
16554     LLVM_FALLTHROUGH;
16555   case MVT::ppcf128:
16556     return Imm.isPosZero();
16557   }
16558 }
16559 
16560 // For vector shift operation op, fold
16561 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16562 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16563                                   SelectionDAG &DAG) {
16564   SDValue N0 = N->getOperand(0);
16565   SDValue N1 = N->getOperand(1);
16566   EVT VT = N0.getValueType();
16567   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16568   unsigned Opcode = N->getOpcode();
16569   unsigned TargetOpcode;
16570 
16571   switch (Opcode) {
16572   default:
16573     llvm_unreachable("Unexpected shift operation");
16574   case ISD::SHL:
16575     TargetOpcode = PPCISD::SHL;
16576     break;
16577   case ISD::SRL:
16578     TargetOpcode = PPCISD::SRL;
16579     break;
16580   case ISD::SRA:
16581     TargetOpcode = PPCISD::SRA;
16582     break;
16583   }
16584 
16585   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16586       N1->getOpcode() == ISD::AND)
16587     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16588       if (Mask->getZExtValue() == OpSizeInBits - 1)
16589         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16590 
16591   return SDValue();
16592 }
16593 
16594 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16595   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16596     return Value;
16597 
16598   SDValue N0 = N->getOperand(0);
16599   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16600   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16601       N0.getOpcode() != ISD::SIGN_EXTEND ||
16602       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16603       N->getValueType(0) != MVT::i64)
16604     return SDValue();
16605 
16606   // We can't save an operation here if the value is already extended, and
16607   // the existing shift is easier to combine.
16608   SDValue ExtsSrc = N0.getOperand(0);
16609   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16610       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16611     return SDValue();
16612 
16613   SDLoc DL(N0);
16614   SDValue ShiftBy = SDValue(CN1, 0);
16615   // We want the shift amount to be i32 on the extswli, but the shift could
16616   // have an i64.
16617   if (ShiftBy.getValueType() == MVT::i64)
16618     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16619 
16620   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16621                          ShiftBy);
16622 }
16623 
16624 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16625   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16626     return Value;
16627 
16628   return SDValue();
16629 }
16630 
16631 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16632   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16633     return Value;
16634 
16635   return SDValue();
16636 }
16637 
16638 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16639 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16640 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16641 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16642 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16643                                  const PPCSubtarget &Subtarget) {
16644   if (!Subtarget.isPPC64())
16645     return SDValue();
16646 
16647   SDValue LHS = N->getOperand(0);
16648   SDValue RHS = N->getOperand(1);
16649 
16650   auto isZextOfCompareWithConstant = [](SDValue Op) {
16651     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16652         Op.getValueType() != MVT::i64)
16653       return false;
16654 
16655     SDValue Cmp = Op.getOperand(0);
16656     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16657         Cmp.getOperand(0).getValueType() != MVT::i64)
16658       return false;
16659 
16660     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16661       int64_t NegConstant = 0 - Constant->getSExtValue();
16662       // Due to the limitations of the addi instruction,
16663       // -C is required to be [-32768, 32767].
16664       return isInt<16>(NegConstant);
16665     }
16666 
16667     return false;
16668   };
16669 
16670   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16671   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16672 
16673   // If there is a pattern, canonicalize a zext operand to the RHS.
16674   if (LHSHasPattern && !RHSHasPattern)
16675     std::swap(LHS, RHS);
16676   else if (!LHSHasPattern && !RHSHasPattern)
16677     return SDValue();
16678 
16679   SDLoc DL(N);
16680   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16681   SDValue Cmp = RHS.getOperand(0);
16682   SDValue Z = Cmp.getOperand(0);
16683   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
16684   int64_t NegConstant = 0 - Constant->getSExtValue();
16685 
16686   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16687   default: break;
16688   case ISD::SETNE: {
16689     //                                 when C == 0
16690     //                             --> addze X, (addic Z, -1).carry
16691     //                            /
16692     // add X, (zext(setne Z, C))--
16693     //                            \    when -32768 <= -C <= 32767 && C != 0
16694     //                             --> addze X, (addic (addi Z, -C), -1).carry
16695     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16696                               DAG.getConstant(NegConstant, DL, MVT::i64));
16697     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16698     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16699                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16700     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16701                        SDValue(Addc.getNode(), 1));
16702     }
16703   case ISD::SETEQ: {
16704     //                                 when C == 0
16705     //                             --> addze X, (subfic Z, 0).carry
16706     //                            /
16707     // add X, (zext(sete  Z, C))--
16708     //                            \    when -32768 <= -C <= 32767 && C != 0
16709     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16710     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16711                               DAG.getConstant(NegConstant, DL, MVT::i64));
16712     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16713     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16714                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16715     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16716                        SDValue(Subc.getNode(), 1));
16717     }
16718   }
16719 
16720   return SDValue();
16721 }
16722 
16723 // Transform
16724 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16725 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16726 // In this case both C1 and C2 must be known constants.
16727 // C1+C2 must fit into a 34 bit signed integer.
16728 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16729                                           const PPCSubtarget &Subtarget) {
16730   if (!Subtarget.isUsingPCRelativeCalls())
16731     return SDValue();
16732 
16733   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16734   // If we find that node try to cast the Global Address and the Constant.
16735   SDValue LHS = N->getOperand(0);
16736   SDValue RHS = N->getOperand(1);
16737 
16738   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16739     std::swap(LHS, RHS);
16740 
16741   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16742     return SDValue();
16743 
16744   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16745   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16746   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16747 
16748   // Check that both casts succeeded.
16749   if (!GSDN || !ConstNode)
16750     return SDValue();
16751 
16752   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16753   SDLoc DL(GSDN);
16754 
16755   // The signed int offset needs to fit in 34 bits.
16756   if (!isInt<34>(NewOffset))
16757     return SDValue();
16758 
16759   // The new global address is a copy of the old global address except
16760   // that it has the updated Offset.
16761   SDValue GA =
16762       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16763                                  NewOffset, GSDN->getTargetFlags());
16764   SDValue MatPCRel =
16765       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16766   return MatPCRel;
16767 }
16768 
16769 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16770   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16771     return Value;
16772 
16773   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16774     return Value;
16775 
16776   return SDValue();
16777 }
16778 
16779 // Detect TRUNCATE operations on bitcasts of float128 values.
16780 // What we are looking for here is the situtation where we extract a subset
16781 // of bits from a 128 bit float.
16782 // This can be of two forms:
16783 // 1) BITCAST of f128 feeding TRUNCATE
16784 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16785 // The reason this is required is because we do not have a legal i128 type
16786 // and so we want to prevent having to store the f128 and then reload part
16787 // of it.
16788 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16789                                            DAGCombinerInfo &DCI) const {
16790   // If we are using CRBits then try that first.
16791   if (Subtarget.useCRBits()) {
16792     // Check if CRBits did anything and return that if it did.
16793     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16794       return CRTruncValue;
16795   }
16796 
16797   SDLoc dl(N);
16798   SDValue Op0 = N->getOperand(0);
16799 
16800   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16801   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16802     EVT VT = N->getValueType(0);
16803     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16804       return SDValue();
16805     SDValue Sub = Op0.getOperand(0);
16806     if (Sub.getOpcode() == ISD::SUB) {
16807       SDValue SubOp0 = Sub.getOperand(0);
16808       SDValue SubOp1 = Sub.getOperand(1);
16809       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16810           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16811         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16812                                SubOp1.getOperand(0),
16813                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16814       }
16815     }
16816   }
16817 
16818   // Looking for a truncate of i128 to i64.
16819   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16820     return SDValue();
16821 
16822   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16823 
16824   // SRL feeding TRUNCATE.
16825   if (Op0.getOpcode() == ISD::SRL) {
16826     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16827     // The right shift has to be by 64 bits.
16828     if (!ConstNode || ConstNode->getZExtValue() != 64)
16829       return SDValue();
16830 
16831     // Switch the element number to extract.
16832     EltToExtract = EltToExtract ? 0 : 1;
16833     // Update Op0 past the SRL.
16834     Op0 = Op0.getOperand(0);
16835   }
16836 
16837   // BITCAST feeding a TRUNCATE possibly via SRL.
16838   if (Op0.getOpcode() == ISD::BITCAST &&
16839       Op0.getValueType() == MVT::i128 &&
16840       Op0.getOperand(0).getValueType() == MVT::f128) {
16841     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16842     return DCI.DAG.getNode(
16843         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16844         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16845   }
16846   return SDValue();
16847 }
16848 
16849 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16850   SelectionDAG &DAG = DCI.DAG;
16851 
16852   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16853   if (!ConstOpOrElement)
16854     return SDValue();
16855 
16856   // An imul is usually smaller than the alternative sequence for legal type.
16857   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16858       isOperationLegal(ISD::MUL, N->getValueType(0)))
16859     return SDValue();
16860 
16861   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16862     switch (this->Subtarget.getCPUDirective()) {
16863     default:
16864       // TODO: enhance the condition for subtarget before pwr8
16865       return false;
16866     case PPC::DIR_PWR8:
16867       //  type        mul     add    shl
16868       // scalar        4       1      1
16869       // vector        7       2      2
16870       return true;
16871     case PPC::DIR_PWR9:
16872     case PPC::DIR_PWR10:
16873     case PPC::DIR_PWR_FUTURE:
16874       //  type        mul     add    shl
16875       // scalar        5       2      2
16876       // vector        7       2      2
16877 
16878       // The cycle RATIO of related operations are showed as a table above.
16879       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16880       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16881       // are 4, it is always profitable; but for 3 instrs patterns
16882       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16883       // So we should only do it for vector type.
16884       return IsAddOne && IsNeg ? VT.isVector() : true;
16885     }
16886   };
16887 
16888   EVT VT = N->getValueType(0);
16889   SDLoc DL(N);
16890 
16891   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16892   bool IsNeg = MulAmt.isNegative();
16893   APInt MulAmtAbs = MulAmt.abs();
16894 
16895   if ((MulAmtAbs - 1).isPowerOf2()) {
16896     // (mul x, 2^N + 1) => (add (shl x, N), x)
16897     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16898 
16899     if (!IsProfitable(IsNeg, true, VT))
16900       return SDValue();
16901 
16902     SDValue Op0 = N->getOperand(0);
16903     SDValue Op1 =
16904         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16905                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16906     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16907 
16908     if (!IsNeg)
16909       return Res;
16910 
16911     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16912   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16913     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16914     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16915 
16916     if (!IsProfitable(IsNeg, false, VT))
16917       return SDValue();
16918 
16919     SDValue Op0 = N->getOperand(0);
16920     SDValue Op1 =
16921         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16922                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16923 
16924     if (!IsNeg)
16925       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16926     else
16927       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16928 
16929   } else {
16930     return SDValue();
16931   }
16932 }
16933 
16934 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16935 // in combiner since we need to check SD flags and other subtarget features.
16936 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16937                                           DAGCombinerInfo &DCI) const {
16938   SDValue N0 = N->getOperand(0);
16939   SDValue N1 = N->getOperand(1);
16940   SDValue N2 = N->getOperand(2);
16941   SDNodeFlags Flags = N->getFlags();
16942   EVT VT = N->getValueType(0);
16943   SelectionDAG &DAG = DCI.DAG;
16944   const TargetOptions &Options = getTargetMachine().Options;
16945   unsigned Opc = N->getOpcode();
16946   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16947   bool LegalOps = !DCI.isBeforeLegalizeOps();
16948   SDLoc Loc(N);
16949 
16950   if (!isOperationLegal(ISD::FMA, VT))
16951     return SDValue();
16952 
16953   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16954   // since (fnmsub a b c)=-0 while c-ab=+0.
16955   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16956     return SDValue();
16957 
16958   // (fma (fneg a) b c) => (fnmsub a b c)
16959   // (fnmsub (fneg a) b c) => (fma a b c)
16960   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16961     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16962 
16963   // (fma a (fneg b) c) => (fnmsub a b c)
16964   // (fnmsub a (fneg b) c) => (fma a b c)
16965   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16966     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16967 
16968   return SDValue();
16969 }
16970 
16971 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16972   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16973   if (!Subtarget.is64BitELFABI())
16974     return false;
16975 
16976   // If not a tail call then no need to proceed.
16977   if (!CI->isTailCall())
16978     return false;
16979 
16980   // If sibling calls have been disabled and tail-calls aren't guaranteed
16981   // there is no reason to duplicate.
16982   auto &TM = getTargetMachine();
16983   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16984     return false;
16985 
16986   // Can't tail call a function called indirectly, or if it has variadic args.
16987   const Function *Callee = CI->getCalledFunction();
16988   if (!Callee || Callee->isVarArg())
16989     return false;
16990 
16991   // Make sure the callee and caller calling conventions are eligible for tco.
16992   const Function *Caller = CI->getParent()->getParent();
16993   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16994                                            CI->getCallingConv()))
16995       return false;
16996 
16997   // If the function is local then we have a good chance at tail-calling it
16998   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16999 }
17000 
17001 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17002   if (!Subtarget.hasVSX())
17003     return false;
17004   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17005     return true;
17006   return VT == MVT::f32 || VT == MVT::f64 ||
17007     VT == MVT::v4f32 || VT == MVT::v2f64;
17008 }
17009 
17010 bool PPCTargetLowering::
17011 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17012   const Value *Mask = AndI.getOperand(1);
17013   // If the mask is suitable for andi. or andis. we should sink the and.
17014   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17015     // Can't handle constants wider than 64-bits.
17016     if (CI->getBitWidth() > 64)
17017       return false;
17018     int64_t ConstVal = CI->getZExtValue();
17019     return isUInt<16>(ConstVal) ||
17020       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17021   }
17022 
17023   // For non-constant masks, we can always use the record-form and.
17024   return true;
17025 }
17026 
17027 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17028 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17029 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17030 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17031 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17032 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17033   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17034   assert(Subtarget.hasP9Altivec() &&
17035          "Only combine this when P9 altivec supported!");
17036   EVT VT = N->getValueType(0);
17037   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17038     return SDValue();
17039 
17040   SelectionDAG &DAG = DCI.DAG;
17041   SDLoc dl(N);
17042   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17043     // Even for signed integers, if it's known to be positive (as signed
17044     // integer) due to zero-extended inputs.
17045     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17046     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17047     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17048          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17049         (SubOpcd1 == ISD::ZERO_EXTEND ||
17050          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17051       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17052                          N->getOperand(0)->getOperand(0),
17053                          N->getOperand(0)->getOperand(1),
17054                          DAG.getTargetConstant(0, dl, MVT::i32));
17055     }
17056 
17057     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17058     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17059         N->getOperand(0).hasOneUse()) {
17060       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17061                          N->getOperand(0)->getOperand(0),
17062                          N->getOperand(0)->getOperand(1),
17063                          DAG.getTargetConstant(1, dl, MVT::i32));
17064     }
17065   }
17066 
17067   return SDValue();
17068 }
17069 
17070 // For type v4i32/v8ii16/v16i8, transform
17071 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17072 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17073 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17074 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17075 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17076                                           DAGCombinerInfo &DCI) const {
17077   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17078   assert(Subtarget.hasP9Altivec() &&
17079          "Only combine this when P9 altivec supported!");
17080 
17081   SelectionDAG &DAG = DCI.DAG;
17082   SDLoc dl(N);
17083   SDValue Cond = N->getOperand(0);
17084   SDValue TrueOpnd = N->getOperand(1);
17085   SDValue FalseOpnd = N->getOperand(2);
17086   EVT VT = N->getOperand(1).getValueType();
17087 
17088   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17089       FalseOpnd.getOpcode() != ISD::SUB)
17090     return SDValue();
17091 
17092   // ABSD only available for type v4i32/v8i16/v16i8
17093   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17094     return SDValue();
17095 
17096   // At least to save one more dependent computation
17097   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17098     return SDValue();
17099 
17100   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17101 
17102   // Can only handle unsigned comparison here
17103   switch (CC) {
17104   default:
17105     return SDValue();
17106   case ISD::SETUGT:
17107   case ISD::SETUGE:
17108     break;
17109   case ISD::SETULT:
17110   case ISD::SETULE:
17111     std::swap(TrueOpnd, FalseOpnd);
17112     break;
17113   }
17114 
17115   SDValue CmpOpnd1 = Cond.getOperand(0);
17116   SDValue CmpOpnd2 = Cond.getOperand(1);
17117 
17118   // SETCC CmpOpnd1 CmpOpnd2 cond
17119   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17120   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17121   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17122       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17123       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17124       FalseOpnd.getOperand(1) == CmpOpnd1) {
17125     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17126                        CmpOpnd1, CmpOpnd2,
17127                        DAG.getTargetConstant(0, dl, MVT::i32));
17128   }
17129 
17130   return SDValue();
17131 }
17132 
17133 /// getAddrModeForFlags - Based on the set of address flags, select the most
17134 /// optimal instruction format to match by.
17135 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17136   // This is not a node we should be handling here.
17137   if (Flags == PPC::MOF_None)
17138     return PPC::AM_None;
17139   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17140   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17141     if ((Flags & FlagSet) == FlagSet)
17142       return PPC::AM_DForm;
17143   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17144     if ((Flags & FlagSet) == FlagSet)
17145       return PPC::AM_DSForm;
17146   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17147     if ((Flags & FlagSet) == FlagSet)
17148       return PPC::AM_DQForm;
17149   // If no other forms are selected, return an X-Form as it is the most
17150   // general addressing mode.
17151   return PPC::AM_XForm;
17152 }
17153 
17154 /// Set alignment flags based on whether or not the Frame Index is aligned.
17155 /// Utilized when computing flags for address computation when selecting
17156 /// load and store instructions.
17157 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17158                                SelectionDAG &DAG) {
17159   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17160   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17161   if (!FI)
17162     return;
17163   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17164   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17165   // If this is (add $FI, $S16Imm), the alignment flags are already set
17166   // based on the immediate. We just need to clear the alignment flags
17167   // if the FI alignment is weaker.
17168   if ((FrameIndexAlign % 4) != 0)
17169     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17170   if ((FrameIndexAlign % 16) != 0)
17171     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17172   // If the address is a plain FrameIndex, set alignment flags based on
17173   // FI alignment.
17174   if (!IsAdd) {
17175     if ((FrameIndexAlign % 4) == 0)
17176       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17177     if ((FrameIndexAlign % 16) == 0)
17178       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17179   }
17180 }
17181 
17182 /// Given a node, compute flags that are used for address computation when
17183 /// selecting load and store instructions. The flags computed are stored in
17184 /// FlagSet. This function takes into account whether the node is a constant,
17185 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17186 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17187                                               SelectionDAG &DAG) {
17188   // Set the alignment flags for the node depending on if the node is
17189   // 4-byte or 16-byte aligned.
17190   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17191     if ((Imm & 0x3) == 0)
17192       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17193     if ((Imm & 0xf) == 0)
17194       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17195   };
17196 
17197   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17198     // All 32-bit constants can be computed as LIS + Disp.
17199     const APInt &ConstImm = CN->getAPIntValue();
17200     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17201       FlagSet |= PPC::MOF_AddrIsSImm32;
17202       SetAlignFlagsForImm(ConstImm.getZExtValue());
17203       setAlignFlagsForFI(N, FlagSet, DAG);
17204     }
17205     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17206       FlagSet |= PPC::MOF_RPlusSImm34;
17207     else // Let constant materialization handle large constants.
17208       FlagSet |= PPC::MOF_NotAddNorCst;
17209   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17210     // This address can be represented as an addition of:
17211     // - Register + Imm16 (possibly a multiple of 4/16)
17212     // - Register + Imm34
17213     // - Register + PPCISD::Lo
17214     // - Register + Register
17215     // In any case, we won't have to match this as Base + Zero.
17216     SDValue RHS = N.getOperand(1);
17217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17218       const APInt &ConstImm = CN->getAPIntValue();
17219       if (ConstImm.isSignedIntN(16)) {
17220         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17221         SetAlignFlagsForImm(ConstImm.getZExtValue());
17222         setAlignFlagsForFI(N, FlagSet, DAG);
17223       }
17224       if (ConstImm.isSignedIntN(34))
17225         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17226       else
17227         FlagSet |= PPC::MOF_RPlusR; // Register.
17228     } else if (RHS.getOpcode() == PPCISD::Lo &&
17229                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17230       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17231     else
17232       FlagSet |= PPC::MOF_RPlusR;
17233   } else { // The address computation is not a constant or an addition.
17234     setAlignFlagsForFI(N, FlagSet, DAG);
17235     FlagSet |= PPC::MOF_NotAddNorCst;
17236   }
17237 }
17238 
17239 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17240 /// the address flags of the load/store instruction that is to be matched.
17241 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17242                                            SelectionDAG &DAG) const {
17243   unsigned FlagSet = PPC::MOF_None;
17244 
17245   // Compute subtarget flags.
17246   if (!Subtarget.hasP9Vector())
17247     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17248   else {
17249     FlagSet |= PPC::MOF_SubtargetP9;
17250     if (Subtarget.hasPrefixInstrs())
17251       FlagSet |= PPC::MOF_SubtargetP10;
17252   }
17253   if (Subtarget.hasSPE())
17254     FlagSet |= PPC::MOF_SubtargetSPE;
17255 
17256   // Mark this as something we don't want to handle here if it is atomic
17257   // or pre-increment instruction.
17258   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17259     if (LSB->isIndexed())
17260       return PPC::MOF_None;
17261 
17262   // Compute in-memory type flags. This is based on if there are scalars,
17263   // floats or vectors.
17264   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17265   assert(MN && "Parent should be a MemSDNode!");
17266   EVT MemVT = MN->getMemoryVT();
17267   unsigned Size = MemVT.getSizeInBits();
17268   if (MemVT.isScalarInteger()) {
17269     assert(Size <= 64 && "Not expecting scalar integers larger than 8 bytes!");
17270     if (Size < 32)
17271       FlagSet |= PPC::MOF_SubWordInt;
17272     else if (Size == 32)
17273       FlagSet |= PPC::MOF_WordInt;
17274     else
17275       FlagSet |= PPC::MOF_DoubleWordInt;
17276   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17277     if (Size == 128)
17278       FlagSet |= PPC::MOF_Vector;
17279     else if (Size == 256)
17280       FlagSet |= PPC::MOF_Vector256;
17281     else
17282       llvm_unreachable("Not expecting illegal vectors!");
17283   } else { // Floating point type: can be scalar, f128 or vector types.
17284     if (Size == 32 || Size == 64)
17285       FlagSet |= PPC::MOF_ScalarFloat;
17286     else if (MemVT == MVT::f128 || MemVT.isVector())
17287       FlagSet |= PPC::MOF_Vector;
17288     else
17289       llvm_unreachable("Not expecting illegal scalar floats!");
17290   }
17291 
17292   // Compute flags for address computation.
17293   computeFlagsForAddressComputation(N, FlagSet, DAG);
17294 
17295   // Compute type extension flags.
17296   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17297     switch (LN->getExtensionType()) {
17298     case ISD::SEXTLOAD:
17299       FlagSet |= PPC::MOF_SExt;
17300       break;
17301     case ISD::EXTLOAD:
17302     case ISD::ZEXTLOAD:
17303       FlagSet |= PPC::MOF_ZExt;
17304       break;
17305     case ISD::NON_EXTLOAD:
17306       FlagSet |= PPC::MOF_NoExt;
17307       break;
17308     }
17309   } else
17310     FlagSet |= PPC::MOF_NoExt;
17311 
17312   // For integers, no extension is the same as zero extension.
17313   // We set the extension mode to zero extension so we don't have
17314   // to add separate entries in AddrModesMap for loads and stores.
17315   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17316     FlagSet |= PPC::MOF_ZExt;
17317     FlagSet &= ~PPC::MOF_NoExt;
17318   }
17319 
17320   // If we don't have prefixed instructions, 34-bit constants should be
17321   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17322   bool IsNonP1034BitConst =
17323       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17324        FlagSet) == PPC::MOF_RPlusSImm34;
17325   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17326       IsNonP1034BitConst)
17327     FlagSet |= PPC::MOF_NotAddNorCst;
17328 
17329   return FlagSet;
17330 }
17331 
17332 /// SelectForceXFormMode - Given the specified address, force it to be
17333 /// represented as an indexed [r+r] operation (an XForm instruction).
17334 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17335                                                       SDValue &Base,
17336                                                       SelectionDAG &DAG) const {
17337 
17338   PPC::AddrMode Mode = PPC::AM_XForm;
17339   int16_t ForceXFormImm = 0;
17340   if (provablyDisjointOr(DAG, N) &&
17341       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17342     Disp = N.getOperand(0);
17343     Base = N.getOperand(1);
17344     return Mode;
17345   }
17346 
17347   // If the address is the result of an add, we will utilize the fact that the
17348   // address calculation includes an implicit add.  However, we can reduce
17349   // register pressure if we do not materialize a constant just for use as the
17350   // index register.  We only get rid of the add if it is not an add of a
17351   // value and a 16-bit signed constant and both have a single use.
17352   if (N.getOpcode() == ISD::ADD &&
17353       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17354        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17355     Disp = N.getOperand(0);
17356     Base = N.getOperand(1);
17357     return Mode;
17358   }
17359 
17360   // Otherwise, use R0 as the base register.
17361   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17362                          N.getValueType());
17363   Base = N;
17364 
17365   return Mode;
17366 }
17367 
17368 // If we happen to match to an aligned D-Form, check if the Frame Index is
17369 // adequately aligned. If it is not, reset the mode to match to X-Form.
17370 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17371                                    PPC::AddrMode &Mode) {
17372   if (!isa<FrameIndexSDNode>(N))
17373     return;
17374   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17375       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17376     Mode = PPC::AM_XForm;
17377 }
17378 
17379 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17380 /// compute the address flags of the node, get the optimal address mode based
17381 /// on the flags, and set the Base and Disp based on the address mode.
17382 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17383                                                        SDValue N, SDValue &Disp,
17384                                                        SDValue &Base,
17385                                                        SelectionDAG &DAG,
17386                                                        MaybeAlign Align) const {
17387   SDLoc DL(Parent);
17388 
17389   // Compute the address flags.
17390   unsigned Flags = computeMOFlags(Parent, N, DAG);
17391 
17392   // Get the optimal address mode based on the Flags.
17393   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17394 
17395   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17396   // Select an X-Form load if it is not.
17397   setXFormForUnalignedFI(N, Flags, Mode);
17398 
17399   // Set Base and Disp accordingly depending on the address mode.
17400   switch (Mode) {
17401   case PPC::AM_DForm:
17402   case PPC::AM_DSForm:
17403   case PPC::AM_DQForm: {
17404     // This is a register plus a 16-bit immediate. The base will be the
17405     // register and the displacement will be the immediate unless it
17406     // isn't sufficiently aligned.
17407     if (Flags & PPC::MOF_RPlusSImm16) {
17408       SDValue Op0 = N.getOperand(0);
17409       SDValue Op1 = N.getOperand(1);
17410       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17411       if (!Align || isAligned(*Align, Imm)) {
17412         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17413         Base = Op0;
17414         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17415           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17416           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17417         }
17418         break;
17419       }
17420     }
17421     // This is a register plus the @lo relocation. The base is the register
17422     // and the displacement is the global address.
17423     else if (Flags & PPC::MOF_RPlusLo) {
17424       Disp = N.getOperand(1).getOperand(0); // The global address.
17425       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17426              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17427              Disp.getOpcode() == ISD::TargetConstantPool ||
17428              Disp.getOpcode() == ISD::TargetJumpTable);
17429       Base = N.getOperand(0);
17430       break;
17431     }
17432     // This is a constant address at most 32 bits. The base will be
17433     // zero or load-immediate-shifted and the displacement will be
17434     // the low 16 bits of the address.
17435     else if (Flags & PPC::MOF_AddrIsSImm32) {
17436       auto *CN = cast<ConstantSDNode>(N);
17437       EVT CNType = CN->getValueType(0);
17438       uint64_t CNImm = CN->getZExtValue();
17439       // If this address fits entirely in a 16-bit sext immediate field, codegen
17440       // this as "d, 0".
17441       int16_t Imm;
17442       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17443         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17444         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17445                                CNType);
17446         break;
17447       }
17448       // Handle 32-bit sext immediate with LIS + Addr mode.
17449       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17450           (!Align || isAligned(*Align, CNImm))) {
17451         int32_t Addr = (int32_t)CNImm;
17452         // Otherwise, break this down into LIS + Disp.
17453         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17454         Base =
17455             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17456         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17457         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17458         break;
17459       }
17460     }
17461     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17462     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17463     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17464       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17465       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17466     } else
17467       Base = N;
17468     break;
17469   }
17470   case PPC::AM_None:
17471     break;
17472   default: { // By default, X-Form is always available to be selected.
17473     // When a frame index is not aligned, we also match by XForm.
17474     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17475     Base = FI ? N : N.getOperand(1);
17476     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17477                                 N.getValueType())
17478               : N.getOperand(0);
17479     break;
17480   }
17481   }
17482   return Mode;
17483 }
17484 
17485 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17486                                                  bool Return,
17487                                                  bool IsVarArg) const {
17488   switch (CC) {
17489   case CallingConv::Cold:
17490     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
17491   default:
17492     return CC_PPC64_ELF_FIS;
17493   }
17494 }
17495 
17496 TargetLowering::AtomicExpansionKind
17497 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
17498   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
17499   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17500     return AtomicExpansionKind::MaskedIntrinsic;
17501   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
17502 }
17503 
17504 TargetLowering::AtomicExpansionKind
17505 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
17506   unsigned Size = AI->getPointerOperand()
17507                       ->getType()
17508                       ->getPointerElementType()
17509                       ->getPrimitiveSizeInBits();
17510   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17511     return AtomicExpansionKind::MaskedIntrinsic;
17512   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
17513 }
17514 
17515 static Intrinsic::ID
17516 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
17517   switch (BinOp) {
17518   default:
17519     llvm_unreachable("Unexpected AtomicRMW BinOp");
17520   case AtomicRMWInst::Xchg:
17521     return Intrinsic::ppc_atomicrmw_xchg_i128;
17522   case AtomicRMWInst::Add:
17523     return Intrinsic::ppc_atomicrmw_add_i128;
17524   case AtomicRMWInst::Sub:
17525     return Intrinsic::ppc_atomicrmw_sub_i128;
17526   case AtomicRMWInst::And:
17527     return Intrinsic::ppc_atomicrmw_and_i128;
17528   case AtomicRMWInst::Or:
17529     return Intrinsic::ppc_atomicrmw_or_i128;
17530   case AtomicRMWInst::Xor:
17531     return Intrinsic::ppc_atomicrmw_xor_i128;
17532   case AtomicRMWInst::Nand:
17533     return Intrinsic::ppc_atomicrmw_nand_i128;
17534   }
17535 }
17536 
17537 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
17538     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
17539     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
17540   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17541          "Only support quadword now");
17542   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17543   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17544   assert(ValTy->getPrimitiveSizeInBits() == 128);
17545   Function *RMW = Intrinsic::getDeclaration(
17546       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
17547   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17548   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
17549   Value *IncrHi =
17550       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
17551   Value *Addr =
17552       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17553   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
17554   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17555   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17556   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17557   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17558   return Builder.CreateOr(
17559       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17560 }
17561 
17562 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
17563     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
17564     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
17565   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17566          "Only support quadword now");
17567   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17568   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17569   assert(ValTy->getPrimitiveSizeInBits() == 128);
17570   Function *IntCmpXchg =
17571       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
17572   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17573   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
17574   Value *CmpHi =
17575       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
17576   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
17577   Value *NewHi =
17578       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
17579   Value *Addr =
17580       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17581   emitLeadingFence(Builder, CI, Ord);
17582   Value *LoHi =
17583       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
17584   emitTrailingFence(Builder, CI, Ord);
17585   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17586   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17587   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17588   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17589   return Builder.CreateOr(
17590       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17591 }
17592