xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/APSInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/MachineValueType.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/IntrinsicsPowerPC.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CodeGen.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <new>
67 #include <tuple>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "ppc-isel"
73 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection"
74 
75 STATISTIC(NumSextSetcc,
76           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
77 STATISTIC(NumZextSetcc,
78           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
79 STATISTIC(SignExtensionsAdded,
80           "Number of sign extensions for compare inputs added.");
81 STATISTIC(ZeroExtensionsAdded,
82           "Number of zero extensions for compare inputs added.");
83 STATISTIC(NumLogicOpsOnComparison,
84           "Number of logical ops on i1 values calculated in GPR.");
85 STATISTIC(OmittedForNonExtendUses,
86           "Number of compares not eliminated as they have non-extending uses.");
87 STATISTIC(NumP9Setb,
88           "Number of compares lowered to setb.");
89 
90 // FIXME: Remove this once the bug has been fixed!
91 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
92 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
93 
94 static cl::opt<bool>
95     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
96                        cl::desc("use aggressive ppc isel for bit permutations"),
97                        cl::Hidden);
98 static cl::opt<bool> BPermRewriterNoMasking(
99     "ppc-bit-perm-rewriter-stress-rotates",
100     cl::desc("stress rotate selection in aggressive ppc isel for "
101              "bit permutations"),
102     cl::Hidden);
103 
104 static cl::opt<bool> EnableBranchHint(
105   "ppc-use-branch-hint", cl::init(true),
106     cl::desc("Enable static hinting of branches on ppc"),
107     cl::Hidden);
108 
109 static cl::opt<bool> EnableTLSOpt(
110   "ppc-tls-opt", cl::init(true),
111     cl::desc("Enable tls optimization peephole"),
112     cl::Hidden);
113 
114 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
115   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
116   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
117 
118 static cl::opt<ICmpInGPRType> CmpInGPR(
119   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
120   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
121   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
122              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
123              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
124              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
125              clEnumValN(ICGPR_NonExtIn, "nonextin",
126                         "Only comparisons where inputs don't need [sz]ext."),
127              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
128              clEnumValN(ICGPR_ZextI32, "zexti32",
129                         "Only i32 comparisons with zext result."),
130              clEnumValN(ICGPR_ZextI64, "zexti64",
131                         "Only i64 comparisons with zext result."),
132              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
133              clEnumValN(ICGPR_SextI32, "sexti32",
134                         "Only i32 comparisons with sext result."),
135              clEnumValN(ICGPR_SextI64, "sexti64",
136                         "Only i64 comparisons with sext result.")));
137 namespace {
138 
139   //===--------------------------------------------------------------------===//
140   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
141   /// instructions for SelectionDAG operations.
142   ///
143   class PPCDAGToDAGISel : public SelectionDAGISel {
144     const PPCTargetMachine &TM;
145     const PPCSubtarget *Subtarget = nullptr;
146     const PPCTargetLowering *PPCLowering = nullptr;
147     unsigned GlobalBaseReg = 0;
148 
149   public:
150     static char ID;
151 
152     PPCDAGToDAGISel() = delete;
153 
154     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
155         : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {}
156 
157     bool runOnMachineFunction(MachineFunction &MF) override {
158       // Make sure we re-emit a set of the global base reg if necessary
159       GlobalBaseReg = 0;
160       Subtarget = &MF.getSubtarget<PPCSubtarget>();
161       PPCLowering = Subtarget->getTargetLowering();
162       if (Subtarget->hasROPProtect()) {
163         // Create a place on the stack for the ROP Protection Hash.
164         // The ROP Protection Hash will always be 8 bytes and aligned to 8
165         // bytes.
166         MachineFrameInfo &MFI = MF.getFrameInfo();
167         PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
168         const int Result = MFI.CreateStackObject(8, Align(8), false);
169         FI->setROPProtectionHashSaveIndex(Result);
170       }
171       SelectionDAGISel::runOnMachineFunction(MF);
172 
173       return true;
174     }
175 
176     void PreprocessISelDAG() override;
177     void PostprocessISelDAG() override;
178 
179     /// getI16Imm - Return a target constant with the specified value, of type
180     /// i16.
181     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
182       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
183     }
184 
185     /// getI32Imm - Return a target constant with the specified value, of type
186     /// i32.
187     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
188       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
189     }
190 
191     /// getI64Imm - Return a target constant with the specified value, of type
192     /// i64.
193     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
194       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
195     }
196 
197     /// getSmallIPtrImm - Return a target constant of pointer type.
198     inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
199       return CurDAG->getTargetConstant(
200           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
201     }
202 
203     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
204     /// rotate and mask opcode and mask operation.
205     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
206                                 unsigned &SH, unsigned &MB, unsigned &ME);
207 
208     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
209     /// base register.  Return the virtual register that holds this value.
210     SDNode *getGlobalBaseReg();
211 
212     void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
213 
214     // Select - Convert the specified operand from a target-independent to a
215     // target-specific node if it hasn't already been changed.
216     void Select(SDNode *N) override;
217 
218     bool tryBitfieldInsert(SDNode *N);
219     bool tryBitPermutation(SDNode *N);
220     bool tryIntCompareInGPR(SDNode *N);
221 
222     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
223     // an X-Form load instruction with the offset being a relocation coming from
224     // the PPCISD::ADD_TLS.
225     bool tryTLSXFormLoad(LoadSDNode *N);
226     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
227     // an X-Form store instruction with the offset being a relocation coming from
228     // the PPCISD::ADD_TLS.
229     bool tryTLSXFormStore(StoreSDNode *N);
230     /// SelectCC - Select a comparison of the specified values with the
231     /// specified condition code, returning the CR# of the expression.
232     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
233                      const SDLoc &dl, SDValue Chain = SDValue());
234 
235     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
236     /// immediate field.  Note that the operand at this point is already the
237     /// result of a prior SelectAddressRegImm call.
238     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
239       if (N.getOpcode() == ISD::TargetConstant ||
240           N.getOpcode() == ISD::TargetGlobalAddress) {
241         Out = N;
242         return true;
243       }
244 
245       return false;
246     }
247 
248     /// SelectDSForm - Returns true if address N can be represented by the
249     /// addressing mode of DSForm instructions (a base register, plus a signed
250     /// 16-bit displacement that is a multiple of 4.
251     bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
252       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
253                                                 Align(4)) == PPC::AM_DSForm;
254     }
255 
256     /// SelectDQForm - Returns true if address N can be represented by the
257     /// addressing mode of DQForm instructions (a base register, plus a signed
258     /// 16-bit displacement that is a multiple of 16.
259     bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
260       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
261                                                 Align(16)) == PPC::AM_DQForm;
262     }
263 
264     /// SelectDForm - Returns true if address N can be represented by
265     /// the addressing mode of DForm instructions (a base register, plus a
266     /// signed 16-bit immediate.
267     bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
268       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
269                                                 std::nullopt) == PPC::AM_DForm;
270     }
271 
272     /// SelectPCRelForm - Returns true if address N can be represented by
273     /// PC-Relative addressing mode.
274     bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
275                          SDValue &Base) {
276       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
277                                                 std::nullopt) == PPC::AM_PCRel;
278     }
279 
280     /// SelectPDForm - Returns true if address N can be represented by Prefixed
281     /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
282     bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
283       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
284                                                 std::nullopt) ==
285              PPC::AM_PrefixDForm;
286     }
287 
288     /// SelectXForm - Returns true if address N can be represented by the
289     /// addressing mode of XForm instructions (an indexed [r+r] operation).
290     bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
291       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
292                                                 std::nullopt) == PPC::AM_XForm;
293     }
294 
295     /// SelectForceXForm - Given the specified address, force it to be
296     /// represented as an indexed [r+r] operation (an XForm instruction).
297     bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
298                           SDValue &Base) {
299       return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
300              PPC::AM_XForm;
301     }
302 
303     /// SelectAddrIdx - Given the specified address, check to see if it can be
304     /// represented as an indexed [r+r] operation.
305     /// This is for xform instructions whose associated displacement form is D.
306     /// The last parameter \p 0 means associated D form has no requirment for 16
307     /// bit signed displacement.
308     /// Returns false if it can be represented by [r+imm], which are preferred.
309     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
310       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
311                                               std::nullopt);
312     }
313 
314     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
315     /// represented as an indexed [r+r] operation.
316     /// This is for xform instructions whose associated displacement form is DS.
317     /// The last parameter \p 4 means associated DS form 16 bit signed
318     /// displacement must be a multiple of 4.
319     /// Returns false if it can be represented by [r+imm], which are preferred.
320     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
321       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
322                                               Align(4));
323     }
324 
325     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
326     /// represented as an indexed [r+r] operation.
327     /// This is for xform instructions whose associated displacement form is DQ.
328     /// The last parameter \p 16 means associated DQ form 16 bit signed
329     /// displacement must be a multiple of 16.
330     /// Returns false if it can be represented by [r+imm], which are preferred.
331     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
332       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
333                                               Align(16));
334     }
335 
336     /// SelectAddrIdxOnly - Given the specified address, force it to be
337     /// represented as an indexed [r+r] operation.
338     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
339       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
340     }
341 
342     /// SelectAddrImm - Returns true if the address N can be represented by
343     /// a base register plus a signed 16-bit displacement [r+imm].
344     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
345     /// displacement.
346     bool SelectAddrImm(SDValue N, SDValue &Disp,
347                        SDValue &Base) {
348       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
349                                               std::nullopt);
350     }
351 
352     /// SelectAddrImmX4 - Returns true if the address N can be represented by
353     /// a base register plus a signed 16-bit displacement that is a multiple of
354     /// 4 (last parameter). Suitable for use by STD and friends.
355     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
356       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
357     }
358 
359     /// SelectAddrImmX16 - Returns true if the address N can be represented by
360     /// a base register plus a signed 16-bit displacement that is a multiple of
361     /// 16(last parameter). Suitable for use by STXV and friends.
362     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
363       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
364                                               Align(16));
365     }
366 
367     /// SelectAddrImmX34 - Returns true if the address N can be represented by
368     /// a base register plus a signed 34-bit displacement. Suitable for use by
369     /// PSTXVP and friends.
370     bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
371       return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
372     }
373 
374     // Select an address into a single register.
375     bool SelectAddr(SDValue N, SDValue &Base) {
376       Base = N;
377       return true;
378     }
379 
380     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
381       return PPCLowering->SelectAddressPCRel(N, Base);
382     }
383 
384     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
385     /// inline asm expressions.  It is always correct to compute the value into
386     /// a register.  The case of adding a (possibly relocatable) constant to a
387     /// register can be improved, but it is wrong to substitute Reg+Reg for
388     /// Reg in an asm, because the load or store opcode would have to change.
389     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
390                                       unsigned ConstraintID,
391                                       std::vector<SDValue> &OutOps) override {
392       switch(ConstraintID) {
393       default:
394         errs() << "ConstraintID: " << ConstraintID << "\n";
395         llvm_unreachable("Unexpected asm memory constraint");
396       case InlineAsm::Constraint_es:
397       case InlineAsm::Constraint_m:
398       case InlineAsm::Constraint_o:
399       case InlineAsm::Constraint_Q:
400       case InlineAsm::Constraint_Z:
401       case InlineAsm::Constraint_Zy:
402         // We need to make sure that this one operand does not end up in r0
403         // (because we might end up lowering this as 0(%op)).
404         const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
405         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
406         SDLoc dl(Op);
407         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
408         SDValue NewOp =
409           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
410                                          dl, Op.getValueType(),
411                                          Op, RC), 0);
412 
413         OutOps.push_back(NewOp);
414         return false;
415       }
416       return true;
417     }
418 
419 // Include the pieces autogenerated from the target description.
420 #include "PPCGenDAGISel.inc"
421 
422 private:
423     bool trySETCC(SDNode *N);
424     bool tryFoldSWTestBRCC(SDNode *N);
425     bool trySelectLoopCountIntrinsic(SDNode *N);
426     bool tryAsSingleRLDICL(SDNode *N);
427     bool tryAsSingleRLDICR(SDNode *N);
428     bool tryAsSingleRLWINM(SDNode *N);
429     bool tryAsSingleRLWINM8(SDNode *N);
430     bool tryAsSingleRLWIMI(SDNode *N);
431     bool tryAsPairOfRLDICL(SDNode *N);
432     bool tryAsSingleRLDIMI(SDNode *N);
433 
434     void PeepholePPC64();
435     void PeepholePPC64ZExt();
436     void PeepholeCROps();
437 
438     SDValue combineToCMPB(SDNode *N);
439     void foldBoolExts(SDValue &Res, SDNode *&N);
440 
441     bool AllUsersSelectZero(SDNode *N);
442     void SwapAllSelectUsers(SDNode *N);
443 
444     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
445     void transferMemOperands(SDNode *N, SDNode *Result);
446   };
447 
448 } // end anonymous namespace
449 
450 char PPCDAGToDAGISel::ID = 0;
451 
452 INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
453 
454 /// getGlobalBaseReg - Output the instructions required to put the
455 /// base address to use for accessing globals into a register.
456 ///
457 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
458   if (!GlobalBaseReg) {
459     const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
460     // Insert the set of GlobalBaseReg into the first MBB of the function
461     MachineBasicBlock &FirstMBB = MF->front();
462     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
463     const Module *M = MF->getFunction().getParent();
464     DebugLoc dl;
465 
466     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
467       if (Subtarget->isTargetELF()) {
468         GlobalBaseReg = PPC::R30;
469         if (!Subtarget->isSecurePlt() &&
470             M->getPICLevel() == PICLevel::SmallPIC) {
471           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
472           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
473           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
474         } else {
475           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
476           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
477           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
478           BuildMI(FirstMBB, MBBI, dl,
479                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
480                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
481           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
482         }
483       } else {
484         GlobalBaseReg =
485           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
486         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
487         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
488       }
489     } else {
490       // We must ensure that this sequence is dominated by the prologue.
491       // FIXME: This is a bit of a big hammer since we don't get the benefits
492       // of shrink-wrapping whenever we emit this instruction. Considering
493       // this is used in any function where we emit a jump table, this may be
494       // a significant limitation. We should consider inserting this in the
495       // block where it is used and then commoning this sequence up if it
496       // appears in multiple places.
497       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
498       // MovePCtoLR8.
499       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
500       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
501       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
502       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
503     }
504   }
505   return CurDAG->getRegister(GlobalBaseReg,
506                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
507       .getNode();
508 }
509 
510 // Check if a SDValue has the toc-data attribute.
511 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
512   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
513   if (!GA)
514     return false;
515 
516   const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
517   if (!GV)
518     return false;
519 
520   if (!GV->hasAttribute("toc-data"))
521     return false;
522 
523   // TODO: These asserts should be updated as more support for the toc data
524   // transformation is added (struct support, etc.).
525 
526   assert(
527       PointerSize >= GV->getAlign().valueOrOne().value() &&
528       "GlobalVariables with an alignment requirement stricter than TOC entry "
529       "size not supported by the toc data transformation.");
530 
531   Type *GVType = GV->getValueType();
532 
533   assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
534                               "supported by the toc data transformation.");
535 
536   if (GVType->isVectorTy())
537     report_fatal_error("A GlobalVariable of Vector type is not currently "
538                        "supported by the toc data transformation.");
539 
540   if (GVType->isArrayTy())
541     report_fatal_error("A GlobalVariable of Array type is not currently "
542                        "supported by the toc data transformation.");
543 
544   if (GVType->isStructTy())
545     report_fatal_error("A GlobalVariable of Struct type is not currently "
546                        "supported by the toc data transformation.");
547 
548   assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
549          "A GlobalVariable with size larger than a TOC entry is not currently "
550          "supported by the toc data transformation.");
551 
552   if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
553     report_fatal_error("A GlobalVariable with private or local linkage is not "
554                        "currently supported by the toc data transformation.");
555 
556   assert(!GV->hasCommonLinkage() &&
557          "Tentative definitions cannot have the mapping class XMC_TD.");
558 
559   return true;
560 }
561 
562 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
563 /// operand. If so Imm will receive the 32-bit value.
564 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
565   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
566     Imm = cast<ConstantSDNode>(N)->getZExtValue();
567     return true;
568   }
569   return false;
570 }
571 
572 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
573 /// operand.  If so Imm will receive the 64-bit value.
574 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
575   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
576     Imm = cast<ConstantSDNode>(N)->getZExtValue();
577     return true;
578   }
579   return false;
580 }
581 
582 // isInt32Immediate - This method tests to see if a constant operand.
583 // If so Imm will receive the 32 bit value.
584 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
585   return isInt32Immediate(N.getNode(), Imm);
586 }
587 
588 /// isInt64Immediate - This method tests to see if the value is a 64-bit
589 /// constant operand. If so Imm will receive the 64-bit value.
590 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
591   return isInt64Immediate(N.getNode(), Imm);
592 }
593 
594 static unsigned getBranchHint(unsigned PCC,
595                               const FunctionLoweringInfo &FuncInfo,
596                               const SDValue &DestMBB) {
597   assert(isa<BasicBlockSDNode>(DestMBB));
598 
599   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
600 
601   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
602   const Instruction *BBTerm = BB->getTerminator();
603 
604   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
605 
606   const BasicBlock *TBB = BBTerm->getSuccessor(0);
607   const BasicBlock *FBB = BBTerm->getSuccessor(1);
608 
609   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
610   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
611 
612   // We only want to handle cases which are easy to predict at static time, e.g.
613   // C++ throw statement, that is very likely not taken, or calling never
614   // returned function, e.g. stdlib exit(). So we set Threshold to filter
615   // unwanted cases.
616   //
617   // Below is LLVM branch weight table, we only want to handle case 1, 2
618   //
619   // Case                  Taken:Nontaken  Example
620   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
621   // 2. Invoke-terminating 1:1048575
622   // 3. Coldblock          4:64            __builtin_expect
623   // 4. Loop Branch        124:4           For loop
624   // 5. PH/ZH/FPH          20:12
625   const uint32_t Threshold = 10000;
626 
627   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
628     return PPC::BR_NO_HINT;
629 
630   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
631                     << "::" << BB->getName() << "'\n"
632                     << " -> " << TBB->getName() << ": " << TProb << "\n"
633                     << " -> " << FBB->getName() << ": " << FProb << "\n");
634 
635   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
636 
637   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
638   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
639   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
640     std::swap(TProb, FProb);
641 
642   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
643 }
644 
645 // isOpcWithIntImmediate - This method tests to see if the node is a specific
646 // opcode and that it has a immediate integer right operand.
647 // If so Imm will receive the 32 bit value.
648 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
649   return N->getOpcode() == Opc
650          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
651 }
652 
653 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
654   SDLoc dl(SN);
655   int FI = cast<FrameIndexSDNode>(N)->getIndex();
656   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
657   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
658   if (SN->hasOneUse())
659     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
660                          getSmallIPtrImm(Offset, dl));
661   else
662     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
663                                            getSmallIPtrImm(Offset, dl)));
664 }
665 
666 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
667                                       bool isShiftMask, unsigned &SH,
668                                       unsigned &MB, unsigned &ME) {
669   // Don't even go down this path for i64, since different logic will be
670   // necessary for rldicl/rldicr/rldimi.
671   if (N->getValueType(0) != MVT::i32)
672     return false;
673 
674   unsigned Shift  = 32;
675   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
676   unsigned Opcode = N->getOpcode();
677   if (N->getNumOperands() != 2 ||
678       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
679     return false;
680 
681   if (Opcode == ISD::SHL) {
682     // apply shift left to mask if it comes first
683     if (isShiftMask) Mask = Mask << Shift;
684     // determine which bits are made indeterminant by shift
685     Indeterminant = ~(0xFFFFFFFFu << Shift);
686   } else if (Opcode == ISD::SRL) {
687     // apply shift right to mask if it comes first
688     if (isShiftMask) Mask = Mask >> Shift;
689     // determine which bits are made indeterminant by shift
690     Indeterminant = ~(0xFFFFFFFFu >> Shift);
691     // adjust for the left rotate
692     Shift = 32 - Shift;
693   } else if (Opcode == ISD::ROTL) {
694     Indeterminant = 0;
695   } else {
696     return false;
697   }
698 
699   // if the mask doesn't intersect any Indeterminant bits
700   if (Mask && !(Mask & Indeterminant)) {
701     SH = Shift & 31;
702     // make sure the mask is still a mask (wrap arounds may not be)
703     return isRunOfOnes(Mask, MB, ME);
704   }
705   return false;
706 }
707 
708 // isThreadPointerAcquisitionNode - Check if the operands of an ADD_TLS
709 // instruction use the thread pointer.
710 static bool isThreadPointerAcquisitionNode(SDValue Base, SelectionDAG *CurDAG) {
711   assert(
712       Base.getOpcode() == PPCISD::ADD_TLS &&
713       "Only expecting the ADD_TLS instruction to acquire the thread pointer!");
714   const PPCSubtarget &Subtarget =
715       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
716   SDValue ADDTLSOp1 = Base.getOperand(0);
717   unsigned ADDTLSOp1Opcode = ADDTLSOp1.getOpcode();
718 
719   // Account for when ADD_TLS is used for the initial-exec TLS model on Linux.
720   //
721   // Although ADD_TLS does not explicitly use the thread pointer
722   // register when LD_GOT_TPREL_L is one of it's operands, the LD_GOT_TPREL_L
723   // instruction will have a relocation specifier, @got@tprel, that is used to
724   // generate a GOT entry. The linker replaces this entry with an offset for a
725   // for a thread local variable, which will be relative to the thread pointer.
726   if (ADDTLSOp1Opcode == PPCISD::LD_GOT_TPREL_L)
727     return true;
728   // When using PC-Relative instructions for initial-exec, a MAT_PCREL_ADDR
729   // node is produced instead to represent the aforementioned situation.
730   LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSOp1);
731   if (LD && LD->getBasePtr().getOpcode() == PPCISD::MAT_PCREL_ADDR)
732     return true;
733 
734   // A GET_TPOINTER PPCISD node (only produced on AIX 32-bit mode) as an operand
735   // to ADD_TLS represents a call to .__get_tpointer to get the thread pointer,
736   // later returning it into R3.
737   if (ADDTLSOp1Opcode == PPCISD::GET_TPOINTER)
738     return true;
739 
740   // The ADD_TLS note is explicitly acquiring the thread pointer (X13/R13).
741   RegisterSDNode *AddFirstOpReg =
742       dyn_cast_or_null<RegisterSDNode>(ADDTLSOp1.getNode());
743   if (AddFirstOpReg &&
744       AddFirstOpReg->getReg() == Subtarget.getThreadPointerRegister())
745       return true;
746 
747   return false;
748 }
749 
750 // canOptimizeTLSDFormToXForm - Optimize TLS accesses when an ADD_TLS
751 // instruction is present. An ADD_TLS instruction, followed by a D-Form memory
752 // operation, can be optimized to use an X-Form load or store, allowing the
753 // ADD_TLS node to be removed completely.
754 static bool canOptimizeTLSDFormToXForm(SelectionDAG *CurDAG, SDValue Base) {
755 
756   // Do not do this transformation at -O0.
757   if (CurDAG->getTarget().getOptLevel() == CodeGenOpt::None)
758     return false;
759 
760   // In order to perform this optimization inside tryTLSXForm[Load|Store],
761   // Base is expected to be an ADD_TLS node.
762   if (Base.getOpcode() != PPCISD::ADD_TLS)
763     return false;
764   for (auto *ADDTLSUse : Base.getNode()->uses()) {
765     // The optimization to convert the D-Form load/store into its X-Form
766     // counterpart should only occur if the source value offset of the load/
767     // store is 0. This also means that The offset should always be undefined.
768     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSUse)) {
769       if (LD->getSrcValueOffset() != 0 || !LD->getOffset().isUndef())
770         return false;
771     } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(ADDTLSUse)) {
772       if (ST->getSrcValueOffset() != 0 || !ST->getOffset().isUndef())
773         return false;
774     } else // Don't optimize if there are ADD_TLS users that aren't load/stores.
775       return false;
776   }
777 
778   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
779     return false;
780 
781   // Does the ADD_TLS node of the load/store use the thread pointer?
782   // If the thread pointer is not used as one of the operands of ADD_TLS,
783   // then this optimization is not valid.
784   return isThreadPointerAcquisitionNode(Base, CurDAG);
785 }
786 
787 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
788   SDValue Base = ST->getBasePtr();
789   if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
790     return false;
791 
792   SDLoc dl(ST);
793   EVT MemVT = ST->getMemoryVT();
794   EVT RegVT = ST->getValue().getValueType();
795 
796   unsigned Opcode;
797   switch (MemVT.getSimpleVT().SimpleTy) {
798     default:
799       return false;
800     case MVT::i8: {
801       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
802       break;
803     }
804     case MVT::i16: {
805       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
806       break;
807     }
808     case MVT::i32: {
809       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
810       break;
811     }
812     case MVT::i64: {
813       Opcode = PPC::STDXTLS;
814       break;
815     }
816     case MVT::f32: {
817       Opcode = PPC::STFSXTLS;
818       break;
819     }
820     case MVT::f64: {
821       Opcode = PPC::STFDXTLS;
822       break;
823     }
824   }
825   SDValue Chain = ST->getChain();
826   SDVTList VTs = ST->getVTList();
827   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
828                    Chain};
829   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
830   transferMemOperands(ST, MN);
831   ReplaceNode(ST, MN);
832   return true;
833 }
834 
835 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
836   SDValue Base = LD->getBasePtr();
837   if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
838     return false;
839 
840   SDLoc dl(LD);
841   EVT MemVT = LD->getMemoryVT();
842   EVT RegVT = LD->getValueType(0);
843   bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
844   unsigned Opcode;
845   switch (MemVT.getSimpleVT().SimpleTy) {
846     default:
847       return false;
848     case MVT::i8: {
849       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
850       break;
851     }
852     case MVT::i16: {
853       if (RegVT == MVT::i32)
854         Opcode = isSExt ? PPC::LHAXTLS_32 : PPC::LHZXTLS_32;
855       else
856         Opcode = isSExt ? PPC::LHAXTLS : PPC::LHZXTLS;
857       break;
858     }
859     case MVT::i32: {
860       if (RegVT == MVT::i32)
861         Opcode = isSExt ? PPC::LWAXTLS_32 : PPC::LWZXTLS_32;
862       else
863         Opcode = isSExt ? PPC::LWAXTLS : PPC::LWZXTLS;
864       break;
865     }
866     case MVT::i64: {
867       Opcode = PPC::LDXTLS;
868       break;
869     }
870     case MVT::f32: {
871       Opcode = PPC::LFSXTLS;
872       break;
873     }
874     case MVT::f64: {
875       Opcode = PPC::LFDXTLS;
876       break;
877     }
878   }
879   SDValue Chain = LD->getChain();
880   SDVTList VTs = LD->getVTList();
881   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
882   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
883   transferMemOperands(LD, MN);
884   ReplaceNode(LD, MN);
885   return true;
886 }
887 
888 /// Turn an or of two masked values into the rotate left word immediate then
889 /// mask insert (rlwimi) instruction.
890 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
891   SDValue Op0 = N->getOperand(0);
892   SDValue Op1 = N->getOperand(1);
893   SDLoc dl(N);
894 
895   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
896   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
897 
898   unsigned TargetMask = LKnown.Zero.getZExtValue();
899   unsigned InsertMask = RKnown.Zero.getZExtValue();
900 
901   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
902     unsigned Op0Opc = Op0.getOpcode();
903     unsigned Op1Opc = Op1.getOpcode();
904     unsigned Value, SH = 0;
905     TargetMask = ~TargetMask;
906     InsertMask = ~InsertMask;
907 
908     // If the LHS has a foldable shift and the RHS does not, then swap it to the
909     // RHS so that we can fold the shift into the insert.
910     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
911       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
912           Op0.getOperand(0).getOpcode() == ISD::SRL) {
913         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
914             Op1.getOperand(0).getOpcode() != ISD::SRL) {
915           std::swap(Op0, Op1);
916           std::swap(Op0Opc, Op1Opc);
917           std::swap(TargetMask, InsertMask);
918         }
919       }
920     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
921       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
922           Op1.getOperand(0).getOpcode() != ISD::SRL) {
923         std::swap(Op0, Op1);
924         std::swap(Op0Opc, Op1Opc);
925         std::swap(TargetMask, InsertMask);
926       }
927     }
928 
929     unsigned MB, ME;
930     if (isRunOfOnes(InsertMask, MB, ME)) {
931       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
932           isInt32Immediate(Op1.getOperand(1), Value)) {
933         Op1 = Op1.getOperand(0);
934         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
935       }
936       if (Op1Opc == ISD::AND) {
937        // The AND mask might not be a constant, and we need to make sure that
938        // if we're going to fold the masking with the insert, all bits not
939        // know to be zero in the mask are known to be one.
940         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
941         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
942 
943         unsigned SHOpc = Op1.getOperand(0).getOpcode();
944         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
945             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
946           // Note that Value must be in range here (less than 32) because
947           // otherwise there would not be any bits set in InsertMask.
948           Op1 = Op1.getOperand(0).getOperand(0);
949           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
950         }
951       }
952 
953       SH &= 31;
954       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
955                           getI32Imm(ME, dl) };
956       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
957       return true;
958     }
959   }
960   return false;
961 }
962 
963 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
964   unsigned MaxTruncation = 0;
965   // Cannot use range-based for loop here as we need the actual use (i.e. we
966   // need the operand number corresponding to the use). A range-based for
967   // will unbox the use and provide an SDNode*.
968   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
969        Use != UseEnd; ++Use) {
970     unsigned Opc =
971       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
972     switch (Opc) {
973     default: return 0;
974     case ISD::TRUNCATE:
975       if (Use->isMachineOpcode())
976         return 0;
977       MaxTruncation =
978         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
979       continue;
980     case ISD::STORE: {
981       if (Use->isMachineOpcode())
982         return 0;
983       StoreSDNode *STN = cast<StoreSDNode>(*Use);
984       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
985       if (MemVTSize == 64 || Use.getOperandNo() != 0)
986         return 0;
987       MaxTruncation = std::max(MaxTruncation, MemVTSize);
988       continue;
989     }
990     case PPC::STW8:
991     case PPC::STWX8:
992     case PPC::STWU8:
993     case PPC::STWUX8:
994       if (Use.getOperandNo() != 0)
995         return 0;
996       MaxTruncation = std::max(MaxTruncation, 32u);
997       continue;
998     case PPC::STH8:
999     case PPC::STHX8:
1000     case PPC::STHU8:
1001     case PPC::STHUX8:
1002       if (Use.getOperandNo() != 0)
1003         return 0;
1004       MaxTruncation = std::max(MaxTruncation, 16u);
1005       continue;
1006     case PPC::STB8:
1007     case PPC::STBX8:
1008     case PPC::STBU8:
1009     case PPC::STBUX8:
1010       if (Use.getOperandNo() != 0)
1011         return 0;
1012       MaxTruncation = std::max(MaxTruncation, 8u);
1013       continue;
1014     }
1015   }
1016   return MaxTruncation;
1017 }
1018 
1019 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
1020 // zeros and return the number of bits by the left of these consecutive zeros.
1021 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
1022   unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm));
1023   unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm));
1024   if ((HiTZ + LoLZ) >= Num)
1025     return (32 + HiTZ);
1026   return 0;
1027 }
1028 
1029 // Direct materialization of 64-bit constants by enumerated patterns.
1030 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
1031                                   uint64_t Imm, unsigned &InstCnt) {
1032   unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1033   unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1034   unsigned TO = llvm::countr_one<uint64_t>(Imm);
1035   unsigned LO = llvm::countl_one<uint64_t>(Imm);
1036   unsigned Hi32 = Hi_32(Imm);
1037   unsigned Lo32 = Lo_32(Imm);
1038   SDNode *Result = nullptr;
1039   unsigned Shift = 0;
1040 
1041   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1042     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1043   };
1044 
1045   // Following patterns use 1 instructions to materialize the Imm.
1046   InstCnt = 1;
1047   // 1-1) Patterns : {zeros}{15-bit valve}
1048   //                 {ones}{15-bit valve}
1049   if (isInt<16>(Imm)) {
1050     SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1051     return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1052   }
1053   // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
1054   //                 {ones}{15-bit valve}{16 zeros}
1055   if (TZ > 15 && (LZ > 32 || LO > 32))
1056     return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1057                                   getI32Imm((Imm >> 16) & 0xffff));
1058 
1059   // Following patterns use 2 instructions to materialize the Imm.
1060   InstCnt = 2;
1061   assert(LZ < 64 && "Unexpected leading zeros here.");
1062   // Count of ones follwing the leading zeros.
1063   unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ);
1064   // 2-1) Patterns : {zeros}{31-bit value}
1065   //                 {ones}{31-bit value}
1066   if (isInt<32>(Imm)) {
1067     uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
1068     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1069     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1070     return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1071                                   getI32Imm(Imm & 0xffff));
1072   }
1073   // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
1074   //                 {zeros}{15-bit value}{zeros}
1075   //                 {zeros}{ones}{15-bit value}
1076   //                 {ones}{15-bit value}{zeros}
1077   // We can take advantage of LI's sign-extension semantics to generate leading
1078   // ones, and then use RLDIC to mask off the ones in both sides after rotation.
1079   if ((LZ + FO + TZ) > 48) {
1080     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1081                                     getI32Imm((Imm >> TZ) & 0xffff));
1082     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1083                                   getI32Imm(TZ), getI32Imm(LZ));
1084   }
1085   // 2-3) Pattern : {zeros}{15-bit value}{ones}
1086   // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
1087   // therefore we can take advantage of LI's sign-extension semantics, and then
1088   // mask them off after rotation.
1089   //
1090   // +--LZ--||-15-bit-||--TO--+     +-------------|--16-bit--+
1091   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1092   // +------------------------+     +------------------------+
1093   // 63                      0      63                      0
1094   //          Imm                   (Imm >> (48 - LZ) & 0xffff)
1095   // +----sext-----|--16-bit--+     +clear-|-----------------+
1096   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1097   // +------------------------+     +------------------------+
1098   // 63                      0      63                      0
1099   // LI8: sext many leading zeros   RLDICL: rotate left (48 - LZ), clear left LZ
1100   if ((LZ + TO) > 48) {
1101     // Since the immediates with (LZ > 32) have been handled by previous
1102     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1103     // the Imm by a negative value.
1104     assert(LZ <= 32 && "Unexpected shift value.");
1105     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1106                                     getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1107     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1108                                   getI32Imm(48 - LZ), getI32Imm(LZ));
1109   }
1110   // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1111   //                 {ones}{15-bit value}{ones}
1112   // We can take advantage of LI's sign-extension semantics to generate leading
1113   // ones, and then use RLDICL to mask off the ones in left sides (if required)
1114   // after rotation.
1115   //
1116   // +-LZ-FO||-15-bit-||--TO--+     +-------------|--16-bit--+
1117   // |00011110bbbbbbbbb1111111| ->  |000000000011110bbbbbbbbb|
1118   // +------------------------+     +------------------------+
1119   // 63                      0      63                      0
1120   //            Imm                    (Imm >> TO) & 0xffff
1121   // +----sext-----|--16-bit--+     +LZ|---------------------+
1122   // |111111111111110bbbbbbbbb| ->  |00011110bbbbbbbbb1111111|
1123   // +------------------------+     +------------------------+
1124   // 63                      0      63                      0
1125   // LI8: sext many leading zeros   RLDICL: rotate left TO, clear left LZ
1126   if ((LZ + FO + TO) > 48) {
1127     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1128                                     getI32Imm((Imm >> TO) & 0xffff));
1129     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1130                                   getI32Imm(TO), getI32Imm(LZ));
1131   }
1132   // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1133   // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1134   // value, we can use LI for Lo16 without generating leading ones then add the
1135   // Hi16(in Lo32).
1136   if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1137     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1138                                     getI32Imm(Lo32 & 0xffff));
1139     return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1140                                   getI32Imm(Lo32 >> 16));
1141   }
1142   // 2-6) Patterns : {******}{49 zeros}{******}
1143   //                 {******}{49 ones}{******}
1144   // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1145   // bits remain on both sides. Rotate right the Imm to construct an int<16>
1146   // value, use LI for int<16> value and then use RLDICL without mask to rotate
1147   // it back.
1148   //
1149   // 1) findContiguousZerosAtLeast(Imm, 49)
1150   // +------|--zeros-|------+     +---ones--||---15 bit--+
1151   // |bbbbbb0000000000aaaaaa| ->  |0000000000aaaaaabbbbbb|
1152   // +----------------------+     +----------------------+
1153   // 63                    0      63                    0
1154   //
1155   // 2) findContiguousZerosAtLeast(~Imm, 49)
1156   // +------|--ones--|------+     +---ones--||---15 bit--+
1157   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1158   // +----------------------+     +----------------------+
1159   // 63                    0      63                    0
1160   if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1161       (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1162     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1163     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1164                                     getI32Imm(RotImm & 0xffff));
1165     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1166                                   getI32Imm(Shift), getI32Imm(0));
1167   }
1168 
1169   // Following patterns use 3 instructions to materialize the Imm.
1170   InstCnt = 3;
1171   // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1172   //                 {zeros}{31-bit value}{zeros}
1173   //                 {zeros}{ones}{31-bit value}
1174   //                 {ones}{31-bit value}{zeros}
1175   // We can take advantage of LIS's sign-extension semantics to generate leading
1176   // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1177   // ones in both sides after rotation.
1178   if ((LZ + FO + TZ) > 32) {
1179     uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1180     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1181     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1182     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1183                                     getI32Imm((Imm >> TZ) & 0xffff));
1184     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1185                                   getI32Imm(TZ), getI32Imm(LZ));
1186   }
1187   // 3-2) Pattern : {zeros}{31-bit value}{ones}
1188   // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
1189   // value, therefore we can take advantage of LIS's sign-extension semantics,
1190   // add the remaining bits with ORI, and then mask them off after rotation.
1191   // This is similar to Pattern 2-3, please refer to the diagram there.
1192   if ((LZ + TO) > 32) {
1193     // Since the immediates with (LZ > 32) have been handled by previous
1194     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1195     // the Imm by a negative value.
1196     assert(LZ <= 32 && "Unexpected shift value.");
1197     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1198                                     getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1199     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1200                                     getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1201     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1202                                   getI32Imm(32 - LZ), getI32Imm(LZ));
1203   }
1204   // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1205   //                 {ones}{31-bit value}{ones}
1206   // We can take advantage of LIS's sign-extension semantics to generate leading
1207   // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1208   // ones in left sides (if required) after rotation.
1209   // This is similar to Pattern 2-4, please refer to the diagram there.
1210   if ((LZ + FO + TO) > 32) {
1211     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1212                                     getI32Imm((Imm >> (TO + 16)) & 0xffff));
1213     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1214                                     getI32Imm((Imm >> TO) & 0xffff));
1215     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1216                                   getI32Imm(TO), getI32Imm(LZ));
1217   }
1218   // 3-4) Patterns : High word == Low word
1219   if (Hi32 == Lo32) {
1220     // Handle the first 32 bits.
1221     uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1222     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1223     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1224     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1225                                     getI32Imm(Lo32 & 0xffff));
1226     // Use rldimi to insert the Low word into High word.
1227     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1228                      getI32Imm(0)};
1229     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1230   }
1231   // 3-5) Patterns : {******}{33 zeros}{******}
1232   //                 {******}{33 ones}{******}
1233   // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1234   // bits remain on both sides. Rotate right the Imm to construct an int<32>
1235   // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1236   // rotate it back.
1237   // This is similar to Pattern 2-6, please refer to the diagram there.
1238   if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1239       (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1240     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1241     uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1242     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1243     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1244     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1245                                     getI32Imm(RotImm & 0xffff));
1246     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1247                                   getI32Imm(Shift), getI32Imm(0));
1248   }
1249 
1250   InstCnt = 0;
1251   return nullptr;
1252 }
1253 
1254 // Try to select instructions to generate a 64 bit immediate using prefix as
1255 // well as non prefix instructions. The function will return the SDNode
1256 // to materialize that constant or it will return nullptr if it does not
1257 // find one. The variable InstCnt is set to the number of instructions that
1258 // were selected.
1259 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1260                                         uint64_t Imm, unsigned &InstCnt) {
1261   unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1262   unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1263   unsigned TO = llvm::countr_one<uint64_t>(Imm);
1264   unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1265   unsigned Hi32 = Hi_32(Imm);
1266   unsigned Lo32 = Lo_32(Imm);
1267 
1268   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1269     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1270   };
1271 
1272   auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1273     return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1274   };
1275 
1276   // Following patterns use 1 instruction to materialize Imm.
1277   InstCnt = 1;
1278 
1279   // The pli instruction can materialize up to 34 bits directly.
1280   // If a constant fits within 34-bits, emit the pli instruction here directly.
1281   if (isInt<34>(Imm))
1282     return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1283                                   CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1284 
1285   // Require at least two instructions.
1286   InstCnt = 2;
1287   SDNode *Result = nullptr;
1288   // Patterns : {zeros}{ones}{33-bit value}{zeros}
1289   //            {zeros}{33-bit value}{zeros}
1290   //            {zeros}{ones}{33-bit value}
1291   //            {ones}{33-bit value}{zeros}
1292   // We can take advantage of PLI's sign-extension semantics to generate leading
1293   // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1294   if ((LZ + FO + TZ) > 30) {
1295     APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1296     APInt Extended = SignedInt34.sext(64);
1297     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1298                                     getI64Imm(*Extended.getRawData()));
1299     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1300                                   getI32Imm(TZ), getI32Imm(LZ));
1301   }
1302   // Pattern : {zeros}{33-bit value}{ones}
1303   // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1304   // therefore we can take advantage of PLI's sign-extension semantics, and then
1305   // mask them off after rotation.
1306   //
1307   // +--LZ--||-33-bit-||--TO--+     +-------------|--34-bit--+
1308   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1309   // +------------------------+     +------------------------+
1310   // 63                      0      63                      0
1311   //
1312   // +----sext-----|--34-bit--+     +clear-|-----------------+
1313   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1314   // +------------------------+     +------------------------+
1315   // 63                      0      63                      0
1316   if ((LZ + TO) > 30) {
1317     APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1318     APInt Extended = SignedInt34.sext(64);
1319     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1320                                     getI64Imm(*Extended.getRawData()));
1321     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1322                                   getI32Imm(30 - LZ), getI32Imm(LZ));
1323   }
1324   // Patterns : {zeros}{ones}{33-bit value}{ones}
1325   //            {ones}{33-bit value}{ones}
1326   // Similar to LI we can take advantage of PLI's sign-extension semantics to
1327   // generate leading ones, and then use RLDICL to mask off the ones in left
1328   // sides (if required) after rotation.
1329   if ((LZ + FO + TO) > 30) {
1330     APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1331     APInt Extended = SignedInt34.sext(64);
1332     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1333                                     getI64Imm(*Extended.getRawData()));
1334     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1335                                   getI32Imm(TO), getI32Imm(LZ));
1336   }
1337   // Patterns : {******}{31 zeros}{******}
1338   //          : {******}{31 ones}{******}
1339   // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1340   // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1341   // for the int<33> value and then use RLDICL without a mask to rotate it back.
1342   //
1343   // +------|--ones--|------+     +---ones--||---33 bit--+
1344   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1345   // +----------------------+     +----------------------+
1346   // 63                    0      63                    0
1347   for (unsigned Shift = 0; Shift < 63; ++Shift) {
1348     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1349     if (isInt<34>(RotImm)) {
1350       Result =
1351           CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1352       return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1353                                     SDValue(Result, 0), getI32Imm(Shift),
1354                                     getI32Imm(0));
1355     }
1356   }
1357 
1358   // Patterns : High word == Low word
1359   // This is basically a splat of a 32 bit immediate.
1360   if (Hi32 == Lo32) {
1361     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1362     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1363                      getI32Imm(0)};
1364     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1365   }
1366 
1367   InstCnt = 3;
1368   // Catch-all
1369   // This pattern can form any 64 bit immediate in 3 instructions.
1370   SDNode *ResultHi =
1371       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1372   SDNode *ResultLo =
1373       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1374   SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1375                    getI32Imm(0)};
1376   return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1377 }
1378 
1379 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1380                             unsigned *InstCnt = nullptr) {
1381   unsigned InstCntDirect = 0;
1382   // No more than 3 instructions are used if we can select the i64 immediate
1383   // directly.
1384   SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1385 
1386   const PPCSubtarget &Subtarget =
1387       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1388 
1389   // If we have prefixed instructions and there is a chance we can
1390   // materialize the constant with fewer prefixed instructions than
1391   // non-prefixed, try that.
1392   if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1393     unsigned InstCntDirectP = 0;
1394     SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1395     // Use the prefix case in either of two cases:
1396     // 1) We have no result from the non-prefix case to use.
1397     // 2) The non-prefix case uses more instructions than the prefix case.
1398     // If the prefix and non-prefix cases use the same number of instructions
1399     // we will prefer the non-prefix case.
1400     if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1401       if (InstCnt)
1402         *InstCnt = InstCntDirectP;
1403       return ResultP;
1404     }
1405   }
1406 
1407   if (Result) {
1408     if (InstCnt)
1409       *InstCnt = InstCntDirect;
1410     return Result;
1411   }
1412   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1413     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1414   };
1415 
1416   uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff;
1417   uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff;
1418 
1419   // Try to use 4 instructions to materialize the immediate which is "almost" a
1420   // splat of a 32 bit immediate.
1421   if (Hi16OfLo32 && Lo16OfLo32) {
1422     uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff;
1423     uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff;
1424     bool IsSelected = false;
1425 
1426     auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) {
1427       SDNode *Result =
1428           CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16));
1429       Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1430                                       SDValue(Result, 0), getI32Imm(Lo16));
1431       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1432                        getI32Imm(0)};
1433       return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1434     };
1435 
1436     if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) {
1437       IsSelected = true;
1438       Result = getSplat(Hi16OfLo32, Lo16OfLo32);
1439       // Modify Hi16OfHi32.
1440       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48),
1441                        getI32Imm(0)};
1442       Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1443     } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1444       IsSelected = true;
1445       Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1446       // Modify Lo16OfLo32.
1447       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1448                        getI32Imm(16), getI32Imm(31)};
1449       Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1450     } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1451       IsSelected = true;
1452       Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1453       // Modify Hi16OfLo32.
1454       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1455                        getI32Imm(0), getI32Imm(15)};
1456       Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1457     }
1458     if (IsSelected == true) {
1459       if (InstCnt)
1460         *InstCnt = 4;
1461       return Result;
1462     }
1463   }
1464 
1465   // Handle the upper 32 bit value.
1466   Result =
1467       selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1468   // Add in the last bits as required.
1469   if (Hi16OfLo32) {
1470     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1471                                     SDValue(Result, 0), getI32Imm(Hi16OfLo32));
1472     ++InstCntDirect;
1473   }
1474   if (Lo16OfLo32) {
1475     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1476                                     getI32Imm(Lo16OfLo32));
1477     ++InstCntDirect;
1478   }
1479   if (InstCnt)
1480     *InstCnt = InstCntDirect;
1481   return Result;
1482 }
1483 
1484 // Select a 64-bit constant.
1485 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1486   SDLoc dl(N);
1487 
1488   // Get 64 bit value.
1489   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1490   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1491     uint64_t SextImm = SignExtend64(Imm, MinSize);
1492     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1493     if (isInt<16>(SextImm))
1494       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1495   }
1496   return selectI64Imm(CurDAG, dl, Imm);
1497 }
1498 
1499 namespace {
1500 
1501 class BitPermutationSelector {
1502   struct ValueBit {
1503     SDValue V;
1504 
1505     // The bit number in the value, using a convention where bit 0 is the
1506     // lowest-order bit.
1507     unsigned Idx;
1508 
1509     // ConstZero means a bit we need to mask off.
1510     // Variable is a bit comes from an input variable.
1511     // VariableKnownToBeZero is also a bit comes from an input variable,
1512     // but it is known to be already zero. So we do not need to mask them.
1513     enum Kind {
1514       ConstZero,
1515       Variable,
1516       VariableKnownToBeZero
1517     } K;
1518 
1519     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1520       : V(V), Idx(I), K(K) {}
1521     ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1522 
1523     bool isZero() const {
1524       return K == ConstZero || K == VariableKnownToBeZero;
1525     }
1526 
1527     bool hasValue() const {
1528       return K == Variable || K == VariableKnownToBeZero;
1529     }
1530 
1531     SDValue getValue() const {
1532       assert(hasValue() && "Cannot get the value of a constant bit");
1533       return V;
1534     }
1535 
1536     unsigned getValueBitIndex() const {
1537       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1538       return Idx;
1539     }
1540   };
1541 
1542   // A bit group has the same underlying value and the same rotate factor.
1543   struct BitGroup {
1544     SDValue V;
1545     unsigned RLAmt;
1546     unsigned StartIdx, EndIdx;
1547 
1548     // This rotation amount assumes that the lower 32 bits of the quantity are
1549     // replicated in the high 32 bits by the rotation operator (which is done
1550     // by rlwinm and friends in 64-bit mode).
1551     bool Repl32;
1552     // Did converting to Repl32 == true change the rotation factor? If it did,
1553     // it decreased it by 32.
1554     bool Repl32CR;
1555     // Was this group coalesced after setting Repl32 to true?
1556     bool Repl32Coalesced;
1557 
1558     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1559       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1560         Repl32Coalesced(false) {
1561       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1562                         << " [" << S << ", " << E << "]\n");
1563     }
1564   };
1565 
1566   // Information on each (Value, RLAmt) pair (like the number of groups
1567   // associated with each) used to choose the lowering method.
1568   struct ValueRotInfo {
1569     SDValue V;
1570     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1571     unsigned NumGroups = 0;
1572     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1573     bool Repl32 = false;
1574 
1575     ValueRotInfo() = default;
1576 
1577     // For sorting (in reverse order) by NumGroups, and then by
1578     // FirstGroupStartIdx.
1579     bool operator < (const ValueRotInfo &Other) const {
1580       // We need to sort so that the non-Repl32 come first because, when we're
1581       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1582       // masking operation.
1583       if (Repl32 < Other.Repl32)
1584         return true;
1585       else if (Repl32 > Other.Repl32)
1586         return false;
1587       else if (NumGroups > Other.NumGroups)
1588         return true;
1589       else if (NumGroups < Other.NumGroups)
1590         return false;
1591       else if (RLAmt == 0 && Other.RLAmt != 0)
1592         return true;
1593       else if (RLAmt != 0 && Other.RLAmt == 0)
1594         return false;
1595       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1596         return true;
1597       return false;
1598     }
1599   };
1600 
1601   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1602   using ValueBitsMemoizer =
1603       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1604   ValueBitsMemoizer Memoizer;
1605 
1606   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1607   // The bool is true if something interesting was deduced, otherwise if we're
1608   // providing only a generic representation of V (or something else likewise
1609   // uninteresting for instruction selection) through the SmallVector.
1610   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1611                                                             unsigned NumBits) {
1612     auto &ValueEntry = Memoizer[V];
1613     if (ValueEntry)
1614       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1615     ValueEntry.reset(new ValueBitsMemoizedValue());
1616     bool &Interesting = ValueEntry->first;
1617     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1618     Bits.resize(NumBits);
1619 
1620     switch (V.getOpcode()) {
1621     default: break;
1622     case ISD::ROTL:
1623       if (isa<ConstantSDNode>(V.getOperand(1))) {
1624         unsigned RotAmt = V.getConstantOperandVal(1);
1625 
1626         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1627 
1628         for (unsigned i = 0; i < NumBits; ++i)
1629           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1630 
1631         return std::make_pair(Interesting = true, &Bits);
1632       }
1633       break;
1634     case ISD::SHL:
1635     case PPCISD::SHL:
1636       if (isa<ConstantSDNode>(V.getOperand(1))) {
1637         unsigned ShiftAmt = V.getConstantOperandVal(1);
1638 
1639         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1640 
1641         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1642           Bits[i] = LHSBits[i - ShiftAmt];
1643 
1644         for (unsigned i = 0; i < ShiftAmt; ++i)
1645           Bits[i] = ValueBit(ValueBit::ConstZero);
1646 
1647         return std::make_pair(Interesting = true, &Bits);
1648       }
1649       break;
1650     case ISD::SRL:
1651     case PPCISD::SRL:
1652       if (isa<ConstantSDNode>(V.getOperand(1))) {
1653         unsigned ShiftAmt = V.getConstantOperandVal(1);
1654 
1655         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1656 
1657         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1658           Bits[i] = LHSBits[i + ShiftAmt];
1659 
1660         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1661           Bits[i] = ValueBit(ValueBit::ConstZero);
1662 
1663         return std::make_pair(Interesting = true, &Bits);
1664       }
1665       break;
1666     case ISD::AND:
1667       if (isa<ConstantSDNode>(V.getOperand(1))) {
1668         uint64_t Mask = V.getConstantOperandVal(1);
1669 
1670         const SmallVector<ValueBit, 64> *LHSBits;
1671         // Mark this as interesting, only if the LHS was also interesting. This
1672         // prevents the overall procedure from matching a single immediate 'and'
1673         // (which is non-optimal because such an and might be folded with other
1674         // things if we don't select it here).
1675         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1676 
1677         for (unsigned i = 0; i < NumBits; ++i)
1678           if (((Mask >> i) & 1) == 1)
1679             Bits[i] = (*LHSBits)[i];
1680           else {
1681             // AND instruction masks this bit. If the input is already zero,
1682             // we have nothing to do here. Otherwise, make the bit ConstZero.
1683             if ((*LHSBits)[i].isZero())
1684               Bits[i] = (*LHSBits)[i];
1685             else
1686               Bits[i] = ValueBit(ValueBit::ConstZero);
1687           }
1688 
1689         return std::make_pair(Interesting, &Bits);
1690       }
1691       break;
1692     case ISD::OR: {
1693       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1694       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1695 
1696       bool AllDisjoint = true;
1697       SDValue LastVal = SDValue();
1698       unsigned LastIdx = 0;
1699       for (unsigned i = 0; i < NumBits; ++i) {
1700         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1701           // If both inputs are known to be zero and one is ConstZero and
1702           // another is VariableKnownToBeZero, we can select whichever
1703           // we like. To minimize the number of bit groups, we select
1704           // VariableKnownToBeZero if this bit is the next bit of the same
1705           // input variable from the previous bit. Otherwise, we select
1706           // ConstZero.
1707           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1708               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1709             Bits[i] = LHSBits[i];
1710           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1711                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1712             Bits[i] = RHSBits[i];
1713           else
1714             Bits[i] = ValueBit(ValueBit::ConstZero);
1715         }
1716         else if (LHSBits[i].isZero())
1717           Bits[i] = RHSBits[i];
1718         else if (RHSBits[i].isZero())
1719           Bits[i] = LHSBits[i];
1720         else {
1721           AllDisjoint = false;
1722           break;
1723         }
1724         // We remember the value and bit index of this bit.
1725         if (Bits[i].hasValue()) {
1726           LastVal = Bits[i].getValue();
1727           LastIdx = Bits[i].getValueBitIndex();
1728         }
1729         else {
1730           if (LastVal) LastVal = SDValue();
1731           LastIdx = 0;
1732         }
1733       }
1734 
1735       if (!AllDisjoint)
1736         break;
1737 
1738       return std::make_pair(Interesting = true, &Bits);
1739     }
1740     case ISD::ZERO_EXTEND: {
1741       // We support only the case with zero extension from i32 to i64 so far.
1742       if (V.getValueType() != MVT::i64 ||
1743           V.getOperand(0).getValueType() != MVT::i32)
1744         break;
1745 
1746       const SmallVector<ValueBit, 64> *LHSBits;
1747       const unsigned NumOperandBits = 32;
1748       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1749                                                     NumOperandBits);
1750 
1751       for (unsigned i = 0; i < NumOperandBits; ++i)
1752         Bits[i] = (*LHSBits)[i];
1753 
1754       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1755         Bits[i] = ValueBit(ValueBit::ConstZero);
1756 
1757       return std::make_pair(Interesting, &Bits);
1758     }
1759     case ISD::TRUNCATE: {
1760       EVT FromType = V.getOperand(0).getValueType();
1761       EVT ToType = V.getValueType();
1762       // We support only the case with truncate from i64 to i32.
1763       if (FromType != MVT::i64 || ToType != MVT::i32)
1764         break;
1765       const unsigned NumAllBits = FromType.getSizeInBits();
1766       SmallVector<ValueBit, 64> *InBits;
1767       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1768                                                     NumAllBits);
1769       const unsigned NumValidBits = ToType.getSizeInBits();
1770 
1771       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1772       // So, we cannot include this truncate.
1773       bool UseUpper32bit = false;
1774       for (unsigned i = 0; i < NumValidBits; ++i)
1775         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1776           UseUpper32bit = true;
1777           break;
1778         }
1779       if (UseUpper32bit)
1780         break;
1781 
1782       for (unsigned i = 0; i < NumValidBits; ++i)
1783         Bits[i] = (*InBits)[i];
1784 
1785       return std::make_pair(Interesting, &Bits);
1786     }
1787     case ISD::AssertZext: {
1788       // For AssertZext, we look through the operand and
1789       // mark the bits known to be zero.
1790       const SmallVector<ValueBit, 64> *LHSBits;
1791       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1792                                                     NumBits);
1793 
1794       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1795       const unsigned NumValidBits = FromType.getSizeInBits();
1796       for (unsigned i = 0; i < NumValidBits; ++i)
1797         Bits[i] = (*LHSBits)[i];
1798 
1799       // These bits are known to be zero but the AssertZext may be from a value
1800       // that already has some constant zero bits (i.e. from a masking and).
1801       for (unsigned i = NumValidBits; i < NumBits; ++i)
1802         Bits[i] = (*LHSBits)[i].hasValue()
1803                       ? ValueBit((*LHSBits)[i].getValue(),
1804                                  (*LHSBits)[i].getValueBitIndex(),
1805                                  ValueBit::VariableKnownToBeZero)
1806                       : ValueBit(ValueBit::ConstZero);
1807 
1808       return std::make_pair(Interesting, &Bits);
1809     }
1810     case ISD::LOAD:
1811       LoadSDNode *LD = cast<LoadSDNode>(V);
1812       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1813         EVT VT = LD->getMemoryVT();
1814         const unsigned NumValidBits = VT.getSizeInBits();
1815 
1816         for (unsigned i = 0; i < NumValidBits; ++i)
1817           Bits[i] = ValueBit(V, i);
1818 
1819         // These bits are known to be zero.
1820         for (unsigned i = NumValidBits; i < NumBits; ++i)
1821           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1822 
1823         // Zero-extending load itself cannot be optimized. So, it is not
1824         // interesting by itself though it gives useful information.
1825         return std::make_pair(Interesting = false, &Bits);
1826       }
1827       break;
1828     }
1829 
1830     for (unsigned i = 0; i < NumBits; ++i)
1831       Bits[i] = ValueBit(V, i);
1832 
1833     return std::make_pair(Interesting = false, &Bits);
1834   }
1835 
1836   // For each value (except the constant ones), compute the left-rotate amount
1837   // to get it from its original to final position.
1838   void computeRotationAmounts() {
1839     NeedMask = false;
1840     RLAmt.resize(Bits.size());
1841     for (unsigned i = 0; i < Bits.size(); ++i)
1842       if (Bits[i].hasValue()) {
1843         unsigned VBI = Bits[i].getValueBitIndex();
1844         if (i >= VBI)
1845           RLAmt[i] = i - VBI;
1846         else
1847           RLAmt[i] = Bits.size() - (VBI - i);
1848       } else if (Bits[i].isZero()) {
1849         NeedMask = true;
1850         RLAmt[i] = UINT32_MAX;
1851       } else {
1852         llvm_unreachable("Unknown value bit type");
1853       }
1854   }
1855 
1856   // Collect groups of consecutive bits with the same underlying value and
1857   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1858   // they break up groups.
1859   void collectBitGroups(bool LateMask) {
1860     BitGroups.clear();
1861 
1862     unsigned LastRLAmt = RLAmt[0];
1863     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1864     unsigned LastGroupStartIdx = 0;
1865     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1866     for (unsigned i = 1; i < Bits.size(); ++i) {
1867       unsigned ThisRLAmt = RLAmt[i];
1868       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1869       if (LateMask && !ThisValue) {
1870         ThisValue = LastValue;
1871         ThisRLAmt = LastRLAmt;
1872         // If we're doing late masking, then the first bit group always starts
1873         // at zero (even if the first bits were zero).
1874         if (BitGroups.empty())
1875           LastGroupStartIdx = 0;
1876       }
1877 
1878       // If this bit is known to be zero and the current group is a bit group
1879       // of zeros, we do not need to terminate the current bit group even the
1880       // Value or RLAmt does not match here. Instead, we terminate this group
1881       // when the first non-zero bit appears later.
1882       if (IsGroupOfZeros && Bits[i].isZero())
1883         continue;
1884 
1885       // If this bit has the same underlying value and the same rotate factor as
1886       // the last one, then they're part of the same group.
1887       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1888         // We cannot continue the current group if this bits is not known to
1889         // be zero in a bit group of zeros.
1890         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1891           continue;
1892 
1893       if (LastValue.getNode())
1894         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1895                                      i-1));
1896       LastRLAmt = ThisRLAmt;
1897       LastValue = ThisValue;
1898       LastGroupStartIdx = i;
1899       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1900     }
1901     if (LastValue.getNode())
1902       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1903                                    Bits.size()-1));
1904 
1905     if (BitGroups.empty())
1906       return;
1907 
1908     // We might be able to combine the first and last groups.
1909     if (BitGroups.size() > 1) {
1910       // If the first and last groups are the same, then remove the first group
1911       // in favor of the last group, making the ending index of the last group
1912       // equal to the ending index of the to-be-removed first group.
1913       if (BitGroups[0].StartIdx == 0 &&
1914           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1915           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1916           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1917         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1918         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1919         BitGroups.erase(BitGroups.begin());
1920       }
1921     }
1922   }
1923 
1924   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1925   // associated with each. If the number of groups are same, we prefer a group
1926   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1927   // instruction. If there is a degeneracy, pick the one that occurs
1928   // first (in the final value).
1929   void collectValueRotInfo() {
1930     ValueRots.clear();
1931 
1932     for (auto &BG : BitGroups) {
1933       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1934       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1935       VRI.V = BG.V;
1936       VRI.RLAmt = BG.RLAmt;
1937       VRI.Repl32 = BG.Repl32;
1938       VRI.NumGroups += 1;
1939       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1940     }
1941 
1942     // Now that we've collected the various ValueRotInfo instances, we need to
1943     // sort them.
1944     ValueRotsVec.clear();
1945     for (auto &I : ValueRots) {
1946       ValueRotsVec.push_back(I.second);
1947     }
1948     llvm::sort(ValueRotsVec);
1949   }
1950 
1951   // In 64-bit mode, rlwinm and friends have a rotation operator that
1952   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1953   // indices of these instructions can only be in the lower 32 bits, so they
1954   // can only represent some 64-bit bit groups. However, when they can be used,
1955   // the 32-bit replication can be used to represent, as a single bit group,
1956   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1957   // groups when possible. Returns true if any of the bit groups were
1958   // converted.
1959   void assignRepl32BitGroups() {
1960     // If we have bits like this:
1961     //
1962     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1963     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1964     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1965     //
1966     // But, making use of a 32-bit operation that replicates the low-order 32
1967     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1968     // of 8.
1969 
1970     auto IsAllLow32 = [this](BitGroup & BG) {
1971       if (BG.StartIdx <= BG.EndIdx) {
1972         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1973           if (!Bits[i].hasValue())
1974             continue;
1975           if (Bits[i].getValueBitIndex() >= 32)
1976             return false;
1977         }
1978       } else {
1979         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1980           if (!Bits[i].hasValue())
1981             continue;
1982           if (Bits[i].getValueBitIndex() >= 32)
1983             return false;
1984         }
1985         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1986           if (!Bits[i].hasValue())
1987             continue;
1988           if (Bits[i].getValueBitIndex() >= 32)
1989             return false;
1990         }
1991       }
1992 
1993       return true;
1994     };
1995 
1996     for (auto &BG : BitGroups) {
1997       // If this bit group has RLAmt of 0 and will not be merged with
1998       // another bit group, we don't benefit from Repl32. We don't mark
1999       // such group to give more freedom for later instruction selection.
2000       if (BG.RLAmt == 0) {
2001         auto PotentiallyMerged = [this](BitGroup & BG) {
2002           for (auto &BG2 : BitGroups)
2003             if (&BG != &BG2 && BG.V == BG2.V &&
2004                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
2005               return true;
2006           return false;
2007         };
2008         if (!PotentiallyMerged(BG))
2009           continue;
2010       }
2011       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
2012         if (IsAllLow32(BG)) {
2013           if (BG.RLAmt >= 32) {
2014             BG.RLAmt -= 32;
2015             BG.Repl32CR = true;
2016           }
2017 
2018           BG.Repl32 = true;
2019 
2020           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
2021                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
2022                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
2023         }
2024       }
2025     }
2026 
2027     // Now walk through the bit groups, consolidating where possible.
2028     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
2029       // We might want to remove this bit group by merging it with the previous
2030       // group (which might be the ending group).
2031       auto IP = (I == BitGroups.begin()) ?
2032                 std::prev(BitGroups.end()) : std::prev(I);
2033       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
2034           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
2035 
2036         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
2037                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
2038                           << I->StartIdx << ", " << I->EndIdx
2039                           << "] with group with range [" << IP->StartIdx << ", "
2040                           << IP->EndIdx << "]\n");
2041 
2042         IP->EndIdx = I->EndIdx;
2043         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
2044         IP->Repl32Coalesced = true;
2045         I = BitGroups.erase(I);
2046         continue;
2047       } else {
2048         // There is a special case worth handling: If there is a single group
2049         // covering the entire upper 32 bits, and it can be merged with both
2050         // the next and previous groups (which might be the same group), then
2051         // do so. If it is the same group (so there will be only one group in
2052         // total), then we need to reverse the order of the range so that it
2053         // covers the entire 64 bits.
2054         if (I->StartIdx == 32 && I->EndIdx == 63) {
2055           assert(std::next(I) == BitGroups.end() &&
2056                  "bit group ends at index 63 but there is another?");
2057           auto IN = BitGroups.begin();
2058 
2059           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
2060               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
2061               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
2062               IsAllLow32(*I)) {
2063 
2064             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
2065                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
2066                               << ", " << I->EndIdx
2067                               << "] with 32-bit replicated groups with ranges ["
2068                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
2069                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
2070 
2071             if (IP == IN) {
2072               // There is only one other group; change it to cover the whole
2073               // range (backward, so that it can still be Repl32 but cover the
2074               // whole 64-bit range).
2075               IP->StartIdx = 31;
2076               IP->EndIdx = 30;
2077               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
2078               IP->Repl32Coalesced = true;
2079               I = BitGroups.erase(I);
2080             } else {
2081               // There are two separate groups, one before this group and one
2082               // after us (at the beginning). We're going to remove this group,
2083               // but also the group at the very beginning.
2084               IP->EndIdx = IN->EndIdx;
2085               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
2086               IP->Repl32Coalesced = true;
2087               I = BitGroups.erase(I);
2088               BitGroups.erase(BitGroups.begin());
2089             }
2090 
2091             // This must be the last group in the vector (and we might have
2092             // just invalidated the iterator above), so break here.
2093             break;
2094           }
2095         }
2096       }
2097 
2098       ++I;
2099     }
2100   }
2101 
2102   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
2103     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
2104   }
2105 
2106   uint64_t getZerosMask() {
2107     uint64_t Mask = 0;
2108     for (unsigned i = 0; i < Bits.size(); ++i) {
2109       if (Bits[i].hasValue())
2110         continue;
2111       Mask |= (UINT64_C(1) << i);
2112     }
2113 
2114     return ~Mask;
2115   }
2116 
2117   // This method extends an input value to 64 bit if input is 32-bit integer.
2118   // While selecting instructions in BitPermutationSelector in 64-bit mode,
2119   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
2120   // In such case, we extend it to 64 bit to be consistent with other values.
2121   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
2122     if (V.getValueSizeInBits() == 64)
2123       return V;
2124 
2125     assert(V.getValueSizeInBits() == 32);
2126     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2127     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
2128                                                    MVT::i64), 0);
2129     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
2130                                                     MVT::i64, ImDef, V,
2131                                                     SubRegIdx), 0);
2132     return ExtVal;
2133   }
2134 
2135   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
2136     if (V.getValueSizeInBits() == 32)
2137       return V;
2138 
2139     assert(V.getValueSizeInBits() == 64);
2140     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2141     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
2142                                                     MVT::i32, V, SubRegIdx), 0);
2143     return SubVal;
2144   }
2145 
2146   // Depending on the number of groups for a particular value, it might be
2147   // better to rotate, mask explicitly (using andi/andis), and then or the
2148   // result. Select this part of the result first.
2149   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2150     if (BPermRewriterNoMasking)
2151       return;
2152 
2153     for (ValueRotInfo &VRI : ValueRotsVec) {
2154       unsigned Mask = 0;
2155       for (unsigned i = 0; i < Bits.size(); ++i) {
2156         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2157           continue;
2158         if (RLAmt[i] != VRI.RLAmt)
2159           continue;
2160         Mask |= (1u << i);
2161       }
2162 
2163       // Compute the masks for andi/andis that would be necessary.
2164       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2165       assert((ANDIMask != 0 || ANDISMask != 0) &&
2166              "No set bits in mask for value bit groups");
2167       bool NeedsRotate = VRI.RLAmt != 0;
2168 
2169       // We're trying to minimize the number of instructions. If we have one
2170       // group, using one of andi/andis can break even.  If we have three
2171       // groups, we can use both andi and andis and break even (to use both
2172       // andi and andis we also need to or the results together). We need four
2173       // groups if we also need to rotate. To use andi/andis we need to do more
2174       // than break even because rotate-and-mask instructions tend to be easier
2175       // to schedule.
2176 
2177       // FIXME: We've biased here against using andi/andis, which is right for
2178       // POWER cores, but not optimal everywhere. For example, on the A2,
2179       // andi/andis have single-cycle latency whereas the rotate-and-mask
2180       // instructions take two cycles, and it would be better to bias toward
2181       // andi/andis in break-even cases.
2182 
2183       unsigned NumAndInsts = (unsigned) NeedsRotate +
2184                              (unsigned) (ANDIMask != 0) +
2185                              (unsigned) (ANDISMask != 0) +
2186                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2187                              (unsigned) (bool) Res;
2188 
2189       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2190                         << " RL: " << VRI.RLAmt << ":"
2191                         << "\n\t\t\tisel using masking: " << NumAndInsts
2192                         << " using rotates: " << VRI.NumGroups << "\n");
2193 
2194       if (NumAndInsts >= VRI.NumGroups)
2195         continue;
2196 
2197       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2198 
2199       if (InstCnt) *InstCnt += NumAndInsts;
2200 
2201       SDValue VRot;
2202       if (VRI.RLAmt) {
2203         SDValue Ops[] =
2204           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2205             getI32Imm(0, dl), getI32Imm(31, dl) };
2206         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2207                                               Ops), 0);
2208       } else {
2209         VRot = TruncateToInt32(VRI.V, dl);
2210       }
2211 
2212       SDValue ANDIVal, ANDISVal;
2213       if (ANDIMask != 0)
2214         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2215                                                  VRot, getI32Imm(ANDIMask, dl)),
2216                           0);
2217       if (ANDISMask != 0)
2218         ANDISVal =
2219             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2220                                            getI32Imm(ANDISMask, dl)),
2221                     0);
2222 
2223       SDValue TotalVal;
2224       if (!ANDIVal)
2225         TotalVal = ANDISVal;
2226       else if (!ANDISVal)
2227         TotalVal = ANDIVal;
2228       else
2229         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2230                              ANDIVal, ANDISVal), 0);
2231 
2232       if (!Res)
2233         Res = TotalVal;
2234       else
2235         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2236                         Res, TotalVal), 0);
2237 
2238       // Now, remove all groups with this underlying value and rotation
2239       // factor.
2240       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2241         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2242       });
2243     }
2244   }
2245 
2246   // Instruction selection for the 32-bit case.
2247   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2248     SDLoc dl(N);
2249     SDValue Res;
2250 
2251     if (InstCnt) *InstCnt = 0;
2252 
2253     // Take care of cases that should use andi/andis first.
2254     SelectAndParts32(dl, Res, InstCnt);
2255 
2256     // If we've not yet selected a 'starting' instruction, and we have no zeros
2257     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2258     // number of groups), and start with this rotated value.
2259     if ((!NeedMask || LateMask) && !Res) {
2260       ValueRotInfo &VRI = ValueRotsVec[0];
2261       if (VRI.RLAmt) {
2262         if (InstCnt) *InstCnt += 1;
2263         SDValue Ops[] =
2264           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2265             getI32Imm(0, dl), getI32Imm(31, dl) };
2266         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2267                       0);
2268       } else {
2269         Res = TruncateToInt32(VRI.V, dl);
2270       }
2271 
2272       // Now, remove all groups with this underlying value and rotation factor.
2273       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2274         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2275       });
2276     }
2277 
2278     if (InstCnt) *InstCnt += BitGroups.size();
2279 
2280     // Insert the other groups (one at a time).
2281     for (auto &BG : BitGroups) {
2282       if (!Res) {
2283         SDValue Ops[] =
2284           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2285             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2286             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2287         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2288       } else {
2289         SDValue Ops[] =
2290           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2291               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2292             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2293         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2294       }
2295     }
2296 
2297     if (LateMask) {
2298       unsigned Mask = (unsigned) getZerosMask();
2299 
2300       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2301       assert((ANDIMask != 0 || ANDISMask != 0) &&
2302              "No set bits in zeros mask?");
2303 
2304       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2305                                (unsigned) (ANDISMask != 0) +
2306                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2307 
2308       SDValue ANDIVal, ANDISVal;
2309       if (ANDIMask != 0)
2310         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2311                                                  Res, getI32Imm(ANDIMask, dl)),
2312                           0);
2313       if (ANDISMask != 0)
2314         ANDISVal =
2315             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2316                                            getI32Imm(ANDISMask, dl)),
2317                     0);
2318 
2319       if (!ANDIVal)
2320         Res = ANDISVal;
2321       else if (!ANDISVal)
2322         Res = ANDIVal;
2323       else
2324         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2325                         ANDIVal, ANDISVal), 0);
2326     }
2327 
2328     return Res.getNode();
2329   }
2330 
2331   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2332                                 unsigned MaskStart, unsigned MaskEnd,
2333                                 bool IsIns) {
2334     // In the notation used by the instructions, 'start' and 'end' are reversed
2335     // because bits are counted from high to low order.
2336     unsigned InstMaskStart = 64 - MaskEnd - 1,
2337              InstMaskEnd   = 64 - MaskStart - 1;
2338 
2339     if (Repl32)
2340       return 1;
2341 
2342     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2343         InstMaskEnd == 63 - RLAmt)
2344       return 1;
2345 
2346     return 2;
2347   }
2348 
2349   // For 64-bit values, not all combinations of rotates and masks are
2350   // available. Produce one if it is available.
2351   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2352                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2353                           unsigned *InstCnt = nullptr) {
2354     // In the notation used by the instructions, 'start' and 'end' are reversed
2355     // because bits are counted from high to low order.
2356     unsigned InstMaskStart = 64 - MaskEnd - 1,
2357              InstMaskEnd   = 64 - MaskStart - 1;
2358 
2359     if (InstCnt) *InstCnt += 1;
2360 
2361     if (Repl32) {
2362       // This rotation amount assumes that the lower 32 bits of the quantity
2363       // are replicated in the high 32 bits by the rotation operator (which is
2364       // done by rlwinm and friends).
2365       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2366       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2367       SDValue Ops[] =
2368         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2369           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2370       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2371                                             Ops), 0);
2372     }
2373 
2374     if (InstMaskEnd == 63) {
2375       SDValue Ops[] =
2376         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2377           getI32Imm(InstMaskStart, dl) };
2378       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2379     }
2380 
2381     if (InstMaskStart == 0) {
2382       SDValue Ops[] =
2383         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2384           getI32Imm(InstMaskEnd, dl) };
2385       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2386     }
2387 
2388     if (InstMaskEnd == 63 - RLAmt) {
2389       SDValue Ops[] =
2390         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2391           getI32Imm(InstMaskStart, dl) };
2392       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2393     }
2394 
2395     // We cannot do this with a single instruction, so we'll use two. The
2396     // problem is that we're not free to choose both a rotation amount and mask
2397     // start and end independently. We can choose an arbitrary mask start and
2398     // end, but then the rotation amount is fixed. Rotation, however, can be
2399     // inverted, and so by applying an "inverse" rotation first, we can get the
2400     // desired result.
2401     if (InstCnt) *InstCnt += 1;
2402 
2403     // The rotation mask for the second instruction must be MaskStart.
2404     unsigned RLAmt2 = MaskStart;
2405     // The first instruction must rotate V so that the overall rotation amount
2406     // is RLAmt.
2407     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2408     if (RLAmt1)
2409       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2410     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2411   }
2412 
2413   // For 64-bit values, not all combinations of rotates and masks are
2414   // available. Produce a rotate-mask-and-insert if one is available.
2415   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2416                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2417                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2418     // In the notation used by the instructions, 'start' and 'end' are reversed
2419     // because bits are counted from high to low order.
2420     unsigned InstMaskStart = 64 - MaskEnd - 1,
2421              InstMaskEnd   = 64 - MaskStart - 1;
2422 
2423     if (InstCnt) *InstCnt += 1;
2424 
2425     if (Repl32) {
2426       // This rotation amount assumes that the lower 32 bits of the quantity
2427       // are replicated in the high 32 bits by the rotation operator (which is
2428       // done by rlwinm and friends).
2429       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2430       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2431       SDValue Ops[] =
2432         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2433           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2434       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2435                                             Ops), 0);
2436     }
2437 
2438     if (InstMaskEnd == 63 - RLAmt) {
2439       SDValue Ops[] =
2440         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2441           getI32Imm(InstMaskStart, dl) };
2442       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2443     }
2444 
2445     // We cannot do this with a single instruction, so we'll use two. The
2446     // problem is that we're not free to choose both a rotation amount and mask
2447     // start and end independently. We can choose an arbitrary mask start and
2448     // end, but then the rotation amount is fixed. Rotation, however, can be
2449     // inverted, and so by applying an "inverse" rotation first, we can get the
2450     // desired result.
2451     if (InstCnt) *InstCnt += 1;
2452 
2453     // The rotation mask for the second instruction must be MaskStart.
2454     unsigned RLAmt2 = MaskStart;
2455     // The first instruction must rotate V so that the overall rotation amount
2456     // is RLAmt.
2457     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2458     if (RLAmt1)
2459       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2460     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2461   }
2462 
2463   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2464     if (BPermRewriterNoMasking)
2465       return;
2466 
2467     // The idea here is the same as in the 32-bit version, but with additional
2468     // complications from the fact that Repl32 might be true. Because we
2469     // aggressively convert bit groups to Repl32 form (which, for small
2470     // rotation factors, involves no other change), and then coalesce, it might
2471     // be the case that a single 64-bit masking operation could handle both
2472     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2473     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2474     // completely capture the new combined bit group.
2475 
2476     for (ValueRotInfo &VRI : ValueRotsVec) {
2477       uint64_t Mask = 0;
2478 
2479       // We need to add to the mask all bits from the associated bit groups.
2480       // If Repl32 is false, we need to add bits from bit groups that have
2481       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2482       // group is trivially convertable if it overlaps only with the lower 32
2483       // bits, and the group has not been coalesced.
2484       auto MatchingBG = [VRI](const BitGroup &BG) {
2485         if (VRI.V != BG.V)
2486           return false;
2487 
2488         unsigned EffRLAmt = BG.RLAmt;
2489         if (!VRI.Repl32 && BG.Repl32) {
2490           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2491               !BG.Repl32Coalesced) {
2492             if (BG.Repl32CR)
2493               EffRLAmt += 32;
2494           } else {
2495             return false;
2496           }
2497         } else if (VRI.Repl32 != BG.Repl32) {
2498           return false;
2499         }
2500 
2501         return VRI.RLAmt == EffRLAmt;
2502       };
2503 
2504       for (auto &BG : BitGroups) {
2505         if (!MatchingBG(BG))
2506           continue;
2507 
2508         if (BG.StartIdx <= BG.EndIdx) {
2509           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2510             Mask |= (UINT64_C(1) << i);
2511         } else {
2512           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2513             Mask |= (UINT64_C(1) << i);
2514           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2515             Mask |= (UINT64_C(1) << i);
2516         }
2517       }
2518 
2519       // We can use the 32-bit andi/andis technique if the mask does not
2520       // require any higher-order bits. This can save an instruction compared
2521       // to always using the general 64-bit technique.
2522       bool Use32BitInsts = isUInt<32>(Mask);
2523       // Compute the masks for andi/andis that would be necessary.
2524       unsigned ANDIMask = (Mask & UINT16_MAX),
2525                ANDISMask = (Mask >> 16) & UINT16_MAX;
2526 
2527       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2528 
2529       unsigned NumAndInsts = (unsigned) NeedsRotate +
2530                              (unsigned) (bool) Res;
2531       unsigned NumOfSelectInsts = 0;
2532       selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2533       assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2534       if (Use32BitInsts)
2535         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2536                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2537       else
2538         NumAndInsts += NumOfSelectInsts + /* and */ 1;
2539 
2540       unsigned NumRLInsts = 0;
2541       bool FirstBG = true;
2542       bool MoreBG = false;
2543       for (auto &BG : BitGroups) {
2544         if (!MatchingBG(BG)) {
2545           MoreBG = true;
2546           continue;
2547         }
2548         NumRLInsts +=
2549           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2550                                !FirstBG);
2551         FirstBG = false;
2552       }
2553 
2554       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2555                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2556                         << "\n\t\t\tisel using masking: " << NumAndInsts
2557                         << " using rotates: " << NumRLInsts << "\n");
2558 
2559       // When we'd use andi/andis, we bias toward using the rotates (andi only
2560       // has a record form, and is cracked on POWER cores). However, when using
2561       // general 64-bit constant formation, bias toward the constant form,
2562       // because that exposes more opportunities for CSE.
2563       if (NumAndInsts > NumRLInsts)
2564         continue;
2565       // When merging multiple bit groups, instruction or is used.
2566       // But when rotate is used, rldimi can inert the rotated value into any
2567       // register, so instruction or can be avoided.
2568       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2569         continue;
2570 
2571       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2572 
2573       if (InstCnt) *InstCnt += NumAndInsts;
2574 
2575       SDValue VRot;
2576       // We actually need to generate a rotation if we have a non-zero rotation
2577       // factor or, in the Repl32 case, if we care about any of the
2578       // higher-order replicated bits. In the latter case, we generate a mask
2579       // backward so that it actually includes the entire 64 bits.
2580       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2581         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2582                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2583       else
2584         VRot = VRI.V;
2585 
2586       SDValue TotalVal;
2587       if (Use32BitInsts) {
2588         assert((ANDIMask != 0 || ANDISMask != 0) &&
2589                "No set bits in mask when using 32-bit ands for 64-bit value");
2590 
2591         SDValue ANDIVal, ANDISVal;
2592         if (ANDIMask != 0)
2593           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2594                                                    ExtendToInt64(VRot, dl),
2595                                                    getI32Imm(ANDIMask, dl)),
2596                             0);
2597         if (ANDISMask != 0)
2598           ANDISVal =
2599               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2600                                              ExtendToInt64(VRot, dl),
2601                                              getI32Imm(ANDISMask, dl)),
2602                       0);
2603 
2604         if (!ANDIVal)
2605           TotalVal = ANDISVal;
2606         else if (!ANDISVal)
2607           TotalVal = ANDIVal;
2608         else
2609           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2610                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2611       } else {
2612         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2613         TotalVal =
2614           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2615                                          ExtendToInt64(VRot, dl), TotalVal),
2616                   0);
2617      }
2618 
2619       if (!Res)
2620         Res = TotalVal;
2621       else
2622         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2623                                              ExtendToInt64(Res, dl), TotalVal),
2624                       0);
2625 
2626       // Now, remove all groups with this underlying value and rotation
2627       // factor.
2628       eraseMatchingBitGroups(MatchingBG);
2629     }
2630   }
2631 
2632   // Instruction selection for the 64-bit case.
2633   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2634     SDLoc dl(N);
2635     SDValue Res;
2636 
2637     if (InstCnt) *InstCnt = 0;
2638 
2639     // Take care of cases that should use andi/andis first.
2640     SelectAndParts64(dl, Res, InstCnt);
2641 
2642     // If we've not yet selected a 'starting' instruction, and we have no zeros
2643     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2644     // number of groups), and start with this rotated value.
2645     if ((!NeedMask || LateMask) && !Res) {
2646       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2647       // groups will come first, and so the VRI representing the largest number
2648       // of groups might not be first (it might be the first Repl32 groups).
2649       unsigned MaxGroupsIdx = 0;
2650       if (!ValueRotsVec[0].Repl32) {
2651         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2652           if (ValueRotsVec[i].Repl32) {
2653             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2654               MaxGroupsIdx = i;
2655             break;
2656           }
2657       }
2658 
2659       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2660       bool NeedsRotate = false;
2661       if (VRI.RLAmt) {
2662         NeedsRotate = true;
2663       } else if (VRI.Repl32) {
2664         for (auto &BG : BitGroups) {
2665           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2666               BG.Repl32 != VRI.Repl32)
2667             continue;
2668 
2669           // We don't need a rotate if the bit group is confined to the lower
2670           // 32 bits.
2671           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2672             continue;
2673 
2674           NeedsRotate = true;
2675           break;
2676         }
2677       }
2678 
2679       if (NeedsRotate)
2680         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2681                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2682                               InstCnt);
2683       else
2684         Res = VRI.V;
2685 
2686       // Now, remove all groups with this underlying value and rotation factor.
2687       if (Res)
2688         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2689           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2690                  BG.Repl32 == VRI.Repl32;
2691         });
2692     }
2693 
2694     // Because 64-bit rotates are more flexible than inserts, we might have a
2695     // preference regarding which one we do first (to save one instruction).
2696     if (!Res)
2697       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2698         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2699                                 false) <
2700             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2701                                 true)) {
2702           if (I != BitGroups.begin()) {
2703             BitGroup BG = *I;
2704             BitGroups.erase(I);
2705             BitGroups.insert(BitGroups.begin(), BG);
2706           }
2707 
2708           break;
2709         }
2710       }
2711 
2712     // Insert the other groups (one at a time).
2713     for (auto &BG : BitGroups) {
2714       if (!Res)
2715         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2716                               BG.EndIdx, InstCnt);
2717       else
2718         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2719                                  BG.StartIdx, BG.EndIdx, InstCnt);
2720     }
2721 
2722     if (LateMask) {
2723       uint64_t Mask = getZerosMask();
2724 
2725       // We can use the 32-bit andi/andis technique if the mask does not
2726       // require any higher-order bits. This can save an instruction compared
2727       // to always using the general 64-bit technique.
2728       bool Use32BitInsts = isUInt<32>(Mask);
2729       // Compute the masks for andi/andis that would be necessary.
2730       unsigned ANDIMask = (Mask & UINT16_MAX),
2731                ANDISMask = (Mask >> 16) & UINT16_MAX;
2732 
2733       if (Use32BitInsts) {
2734         assert((ANDIMask != 0 || ANDISMask != 0) &&
2735                "No set bits in mask when using 32-bit ands for 64-bit value");
2736 
2737         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2738                                  (unsigned) (ANDISMask != 0) +
2739                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2740 
2741         SDValue ANDIVal, ANDISVal;
2742         if (ANDIMask != 0)
2743           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2744                                                    ExtendToInt64(Res, dl),
2745                                                    getI32Imm(ANDIMask, dl)),
2746                             0);
2747         if (ANDISMask != 0)
2748           ANDISVal =
2749               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2750                                              ExtendToInt64(Res, dl),
2751                                              getI32Imm(ANDISMask, dl)),
2752                       0);
2753 
2754         if (!ANDIVal)
2755           Res = ANDISVal;
2756         else if (!ANDISVal)
2757           Res = ANDIVal;
2758         else
2759           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2760                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2761       } else {
2762         unsigned NumOfSelectInsts = 0;
2763         SDValue MaskVal =
2764             SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2765         Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2766                                              ExtendToInt64(Res, dl), MaskVal),
2767                       0);
2768         if (InstCnt)
2769           *InstCnt += NumOfSelectInsts + /* and */ 1;
2770       }
2771     }
2772 
2773     return Res.getNode();
2774   }
2775 
2776   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2777     // Fill in BitGroups.
2778     collectBitGroups(LateMask);
2779     if (BitGroups.empty())
2780       return nullptr;
2781 
2782     // For 64-bit values, figure out when we can use 32-bit instructions.
2783     if (Bits.size() == 64)
2784       assignRepl32BitGroups();
2785 
2786     // Fill in ValueRotsVec.
2787     collectValueRotInfo();
2788 
2789     if (Bits.size() == 32) {
2790       return Select32(N, LateMask, InstCnt);
2791     } else {
2792       assert(Bits.size() == 64 && "Not 64 bits here?");
2793       return Select64(N, LateMask, InstCnt);
2794     }
2795 
2796     return nullptr;
2797   }
2798 
2799   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2800     erase_if(BitGroups, F);
2801   }
2802 
2803   SmallVector<ValueBit, 64> Bits;
2804 
2805   bool NeedMask = false;
2806   SmallVector<unsigned, 64> RLAmt;
2807 
2808   SmallVector<BitGroup, 16> BitGroups;
2809 
2810   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2811   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2812 
2813   SelectionDAG *CurDAG = nullptr;
2814 
2815 public:
2816   BitPermutationSelector(SelectionDAG *DAG)
2817     : CurDAG(DAG) {}
2818 
2819   // Here we try to match complex bit permutations into a set of
2820   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2821   // known to produce optimal code for common cases (like i32 byte swapping).
2822   SDNode *Select(SDNode *N) {
2823     Memoizer.clear();
2824     auto Result =
2825         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2826     if (!Result.first)
2827       return nullptr;
2828     Bits = std::move(*Result.second);
2829 
2830     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2831                          " selection for:    ");
2832     LLVM_DEBUG(N->dump(CurDAG));
2833 
2834     // Fill it RLAmt and set NeedMask.
2835     computeRotationAmounts();
2836 
2837     if (!NeedMask)
2838       return Select(N, false);
2839 
2840     // We currently have two techniques for handling results with zeros: early
2841     // masking (the default) and late masking. Late masking is sometimes more
2842     // efficient, but because the structure of the bit groups is different, it
2843     // is hard to tell without generating both and comparing the results. With
2844     // late masking, we ignore zeros in the resulting value when inserting each
2845     // set of bit groups, and then mask in the zeros at the end. With early
2846     // masking, we only insert the non-zero parts of the result at every step.
2847 
2848     unsigned InstCnt = 0, InstCntLateMask = 0;
2849     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2850     SDNode *RN = Select(N, false, &InstCnt);
2851     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2852 
2853     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2854     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2855     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2856                       << " instructions\n");
2857 
2858     if (InstCnt <= InstCntLateMask) {
2859       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2860       return RN;
2861     }
2862 
2863     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2864     return RNLM;
2865   }
2866 };
2867 
2868 class IntegerCompareEliminator {
2869   SelectionDAG *CurDAG;
2870   PPCDAGToDAGISel *S;
2871   // Conversion type for interpreting results of a 32-bit instruction as
2872   // a 64-bit value or vice versa.
2873   enum ExtOrTruncConversion { Ext, Trunc };
2874 
2875   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2876   // in a GPR.
2877   // ZExtOrig - use the original condition code, zero-extend value
2878   // ZExtInvert - invert the condition code, zero-extend value
2879   // SExtOrig - use the original condition code, sign-extend value
2880   // SExtInvert - invert the condition code, sign-extend value
2881   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2882 
2883   // Comparisons against zero to emit GPR code sequences for. Each of these
2884   // sequences may need to be emitted for two or more equivalent patterns.
2885   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2886   // matters as well as the extension type: sext (-1/0), zext (1/0).
2887   // GEZExt - (zext (LHS >= 0))
2888   // GESExt - (sext (LHS >= 0))
2889   // LEZExt - (zext (LHS <= 0))
2890   // LESExt - (sext (LHS <= 0))
2891   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2892 
2893   SDNode *tryEXTEND(SDNode *N);
2894   SDNode *tryLogicOpOfCompares(SDNode *N);
2895   SDValue computeLogicOpInGPR(SDValue LogicOp);
2896   SDValue signExtendInputIfNeeded(SDValue Input);
2897   SDValue zeroExtendInputIfNeeded(SDValue Input);
2898   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2899   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2900                                         ZeroCompare CmpTy);
2901   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2902                               int64_t RHSValue, SDLoc dl);
2903  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2904                               int64_t RHSValue, SDLoc dl);
2905   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2906                               int64_t RHSValue, SDLoc dl);
2907   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2908                               int64_t RHSValue, SDLoc dl);
2909   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2910 
2911 public:
2912   IntegerCompareEliminator(SelectionDAG *DAG,
2913                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2914     assert(CurDAG->getTargetLoweringInfo()
2915            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2916            "Only expecting to use this on 64 bit targets.");
2917   }
2918   SDNode *Select(SDNode *N) {
2919     if (CmpInGPR == ICGPR_None)
2920       return nullptr;
2921     switch (N->getOpcode()) {
2922     default: break;
2923     case ISD::ZERO_EXTEND:
2924       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2925           CmpInGPR == ICGPR_SextI64)
2926         return nullptr;
2927       [[fallthrough]];
2928     case ISD::SIGN_EXTEND:
2929       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2930           CmpInGPR == ICGPR_ZextI64)
2931         return nullptr;
2932       return tryEXTEND(N);
2933     case ISD::AND:
2934     case ISD::OR:
2935     case ISD::XOR:
2936       return tryLogicOpOfCompares(N);
2937     }
2938     return nullptr;
2939   }
2940 };
2941 
2942 // The obvious case for wanting to keep the value in a GPR. Namely, the
2943 // result of the comparison is actually needed in a GPR.
2944 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2945   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2946           N->getOpcode() == ISD::SIGN_EXTEND) &&
2947          "Expecting a zero/sign extend node!");
2948   SDValue WideRes;
2949   // If we are zero-extending the result of a logical operation on i1
2950   // values, we can keep the values in GPRs.
2951   if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) &&
2952       N->getOperand(0).getValueType() == MVT::i1 &&
2953       N->getOpcode() == ISD::ZERO_EXTEND)
2954     WideRes = computeLogicOpInGPR(N->getOperand(0));
2955   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2956     return nullptr;
2957   else
2958     WideRes =
2959       getSETCCInGPR(N->getOperand(0),
2960                     N->getOpcode() == ISD::SIGN_EXTEND ?
2961                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2962 
2963   if (!WideRes)
2964     return nullptr;
2965 
2966   SDLoc dl(N);
2967   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2968   bool Output32Bit = N->getValueType(0) == MVT::i32;
2969 
2970   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2971   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2972 
2973   SDValue ConvOp = WideRes;
2974   if (Input32Bit != Output32Bit)
2975     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2976                            ExtOrTruncConversion::Trunc);
2977   return ConvOp.getNode();
2978 }
2979 
2980 // Attempt to perform logical operations on the results of comparisons while
2981 // keeping the values in GPRs. Without doing so, these would end up being
2982 // lowered to CR-logical operations which suffer from significant latency and
2983 // low ILP.
2984 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2985   if (N->getValueType(0) != MVT::i1)
2986     return nullptr;
2987   assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&
2988          "Expected a logic operation on setcc results.");
2989   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2990   if (!LoweredLogical)
2991     return nullptr;
2992 
2993   SDLoc dl(N);
2994   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2995   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2996   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2997   SDValue LHS = LoweredLogical.getOperand(0);
2998   SDValue RHS = LoweredLogical.getOperand(1);
2999   SDValue WideOp;
3000   SDValue OpToConvToRecForm;
3001 
3002   // Look through any 32-bit to 64-bit implicit extend nodes to find the
3003   // opcode that is input to the XORI.
3004   if (IsBitwiseNegate &&
3005       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
3006     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
3007   else if (IsBitwiseNegate)
3008     // If the input to the XORI isn't an extension, that's what we're after.
3009     OpToConvToRecForm = LoweredLogical.getOperand(0);
3010   else
3011     // If this is not an XORI, it is a reg-reg logical op and we can convert
3012     // it to record-form.
3013     OpToConvToRecForm = LoweredLogical;
3014 
3015   // Get the record-form version of the node we're looking to use to get the
3016   // CR result from.
3017   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
3018   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
3019 
3020   // Convert the right node to record-form. This is either the logical we're
3021   // looking at or it is the input node to the negation (if we're looking at
3022   // a bitwise negation).
3023   if (NewOpc != -1 && IsBitwiseNegate) {
3024     // The input to the XORI has a record-form. Use it.
3025     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
3026            "Expected a PPC::XORI8 only for bitwise negation.");
3027     // Emit the record-form instruction.
3028     std::vector<SDValue> Ops;
3029     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
3030       Ops.push_back(OpToConvToRecForm.getOperand(i));
3031 
3032     WideOp =
3033       SDValue(CurDAG->getMachineNode(NewOpc, dl,
3034                                      OpToConvToRecForm.getValueType(),
3035                                      MVT::Glue, Ops), 0);
3036   } else {
3037     assert((NewOpc != -1 || !IsBitwiseNegate) &&
3038            "No record form available for AND8/OR8/XOR8?");
3039     WideOp =
3040         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
3041                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
3042                 0);
3043   }
3044 
3045   // Select this node to a single bit from CR0 set by the record-form node
3046   // just created. For bitwise negation, use the EQ bit which is the equivalent
3047   // of negating the result (i.e. it is a bit set when the result of the
3048   // operation is zero).
3049   SDValue SRIdxVal =
3050     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
3051   SDValue CRBit =
3052     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
3053                                    MVT::i1, CR0Reg, SRIdxVal,
3054                                    WideOp.getValue(1)), 0);
3055   return CRBit.getNode();
3056 }
3057 
3058 // Lower a logical operation on i1 values into a GPR sequence if possible.
3059 // The result can be kept in a GPR if requested.
3060 // Three types of inputs can be handled:
3061 // - SETCC
3062 // - TRUNCATE
3063 // - Logical operation (AND/OR/XOR)
3064 // There is also a special case that is handled (namely a complement operation
3065 // achieved with xor %a, -1).
3066 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
3067   assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) &&
3068         "Can only handle logic operations here.");
3069   assert(LogicOp.getValueType() == MVT::i1 &&
3070          "Can only handle logic operations on i1 values here.");
3071   SDLoc dl(LogicOp);
3072   SDValue LHS, RHS;
3073 
3074  // Special case: xor %a, -1
3075   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
3076 
3077   // Produces a GPR sequence for each operand of the binary logic operation.
3078   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
3079   // the value in a GPR and for logic operations, it will recursively produce
3080   // a GPR sequence for the operation.
3081  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
3082     unsigned OperandOpcode = Operand.getOpcode();
3083     if (OperandOpcode == ISD::SETCC)
3084       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
3085     else if (OperandOpcode == ISD::TRUNCATE) {
3086       SDValue InputOp = Operand.getOperand(0);
3087      EVT InVT = InputOp.getValueType();
3088       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
3089                                             PPC::RLDICL, dl, InVT, InputOp,
3090                                             S->getI64Imm(0, dl),
3091                                             S->getI64Imm(63, dl)), 0);
3092     } else if (ISD::isBitwiseLogicOp(OperandOpcode))
3093       return computeLogicOpInGPR(Operand);
3094     return SDValue();
3095   };
3096   LHS = getLogicOperand(LogicOp.getOperand(0));
3097   RHS = getLogicOperand(LogicOp.getOperand(1));
3098 
3099   // If a GPR sequence can't be produced for the LHS we can't proceed.
3100   // Not producing a GPR sequence for the RHS is only a problem if this isn't
3101   // a bitwise negation operation.
3102   if (!LHS || (!RHS && !IsBitwiseNegation))
3103     return SDValue();
3104 
3105   NumLogicOpsOnComparison++;
3106 
3107   // We will use the inputs as 64-bit values.
3108   if (LHS.getValueType() == MVT::i32)
3109     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
3110   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
3111     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
3112 
3113   unsigned NewOpc;
3114   switch (LogicOp.getOpcode()) {
3115   default: llvm_unreachable("Unknown logic operation.");
3116   case ISD::AND: NewOpc = PPC::AND8; break;
3117   case ISD::OR:  NewOpc = PPC::OR8;  break;
3118   case ISD::XOR: NewOpc = PPC::XOR8; break;
3119   }
3120 
3121   if (IsBitwiseNegation) {
3122     RHS = S->getI64Imm(1, dl);
3123     NewOpc = PPC::XORI8;
3124   }
3125 
3126   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
3127 
3128 }
3129 
3130 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
3131 /// Otherwise just reinterpret it as a 64-bit value.
3132 /// Useful when emitting comparison code for 32-bit values without using
3133 /// the compare instruction (which only considers the lower 32-bits).
3134 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
3135   assert(Input.getValueType() == MVT::i32 &&
3136          "Can only sign-extend 32-bit values here.");
3137   unsigned Opc = Input.getOpcode();
3138 
3139   // The value was sign extended and then truncated to 32-bits. No need to
3140   // sign extend it again.
3141   if (Opc == ISD::TRUNCATE &&
3142       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
3143        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
3144     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3145 
3146   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3147   // The input is a sign-extending load. All ppc sign-extending loads
3148   // sign-extend to the full 64-bits.
3149   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3150     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3151 
3152   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3153   // We don't sign-extend constants.
3154   if (InputConst)
3155     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3156 
3157   SDLoc dl(Input);
3158   SignExtensionsAdded++;
3159   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3160                                         MVT::i64, Input), 0);
3161 }
3162 
3163 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3164 /// Otherwise just reinterpret it as a 64-bit value.
3165 /// Useful when emitting comparison code for 32-bit values without using
3166 /// the compare instruction (which only considers the lower 32-bits).
3167 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3168   assert(Input.getValueType() == MVT::i32 &&
3169          "Can only zero-extend 32-bit values here.");
3170   unsigned Opc = Input.getOpcode();
3171 
3172   // The only condition under which we can omit the actual extend instruction:
3173   // - The value is a positive constant
3174   // - The value comes from a load that isn't a sign-extending load
3175   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3176   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3177     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3178      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3179   if (IsTruncateOfZExt)
3180     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3181 
3182   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3183   if (InputConst && InputConst->getSExtValue() >= 0)
3184     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3185 
3186   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3187   // The input is a load that doesn't sign-extend (it will be zero-extended).
3188   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3189     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3190 
3191   // None of the above, need to zero-extend.
3192   SDLoc dl(Input);
3193   ZeroExtensionsAdded++;
3194   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3195                                         S->getI64Imm(0, dl),
3196                                         S->getI64Imm(32, dl)), 0);
3197 }
3198 
3199 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3200 // course not actual zero/sign extensions that will generate machine code,
3201 // they're just a way to reinterpret a 32 bit value in a register as a
3202 // 64 bit value and vice-versa.
3203 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3204                                                 ExtOrTruncConversion Conv) {
3205   SDLoc dl(NatWidthRes);
3206 
3207   // For reinterpreting 32-bit values as 64 bit values, we generate
3208   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3209   if (Conv == ExtOrTruncConversion::Ext) {
3210     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3211     SDValue SubRegIdx =
3212       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3213     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3214                                           ImDef, NatWidthRes, SubRegIdx), 0);
3215   }
3216 
3217   assert(Conv == ExtOrTruncConversion::Trunc &&
3218          "Unknown convertion between 32 and 64 bit values.");
3219   // For reinterpreting 64-bit values as 32-bit values, we just need to
3220   // EXTRACT_SUBREG (i.e. extract the low word).
3221   SDValue SubRegIdx =
3222     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3223   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3224                                         NatWidthRes, SubRegIdx), 0);
3225 }
3226 
3227 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3228 // Handle both zero-extensions and sign-extensions.
3229 SDValue
3230 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3231                                                          ZeroCompare CmpTy) {
3232   EVT InVT = LHS.getValueType();
3233   bool Is32Bit = InVT == MVT::i32;
3234   SDValue ToExtend;
3235 
3236   // Produce the value that needs to be either zero or sign extended.
3237   switch (CmpTy) {
3238   case ZeroCompare::GEZExt:
3239   case ZeroCompare::GESExt:
3240     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3241                                               dl, InVT, LHS, LHS), 0);
3242     break;
3243   case ZeroCompare::LEZExt:
3244   case ZeroCompare::LESExt: {
3245     if (Is32Bit) {
3246       // Upper 32 bits cannot be undefined for this sequence.
3247       LHS = signExtendInputIfNeeded(LHS);
3248       SDValue Neg =
3249         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3250       ToExtend =
3251         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3252                                        Neg, S->getI64Imm(1, dl),
3253                                        S->getI64Imm(63, dl)), 0);
3254     } else {
3255       SDValue Addi =
3256         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3257                                        S->getI64Imm(~0ULL, dl)), 0);
3258       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3259                                                 Addi, LHS), 0);
3260     }
3261     break;
3262   }
3263   }
3264 
3265   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3266   if (!Is32Bit &&
3267       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3268     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3269                                           ToExtend, S->getI64Imm(1, dl),
3270                                           S->getI64Imm(63, dl)), 0);
3271   if (!Is32Bit &&
3272       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3273     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3274                                           S->getI64Imm(63, dl)), 0);
3275 
3276   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3277   // For 32-bit sequences, the extensions differ between GE/LE cases.
3278   switch (CmpTy) {
3279   case ZeroCompare::GEZExt: {
3280     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3281                            S->getI32Imm(31, dl) };
3282     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3283                                           ShiftOps), 0);
3284   }
3285   case ZeroCompare::GESExt:
3286     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3287                                           S->getI32Imm(31, dl)), 0);
3288   case ZeroCompare::LEZExt:
3289     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3290                                           S->getI32Imm(1, dl)), 0);
3291   case ZeroCompare::LESExt:
3292     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3293                                           S->getI32Imm(-1, dl)), 0);
3294   }
3295 
3296   // The above case covers all the enumerators so it can't have a default clause
3297   // to avoid compiler warnings.
3298   llvm_unreachable("Unknown zero-comparison type.");
3299 }
3300 
3301 /// Produces a zero-extended result of comparing two 32-bit values according to
3302 /// the passed condition code.
3303 SDValue
3304 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3305                                               ISD::CondCode CC,
3306                                               int64_t RHSValue, SDLoc dl) {
3307   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3308       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3309     return SDValue();
3310   bool IsRHSZero = RHSValue == 0;
3311   bool IsRHSOne = RHSValue == 1;
3312   bool IsRHSNegOne = RHSValue == -1LL;
3313   switch (CC) {
3314   default: return SDValue();
3315   case ISD::SETEQ: {
3316     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3317     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
3318     SDValue Xor = IsRHSZero ? LHS :
3319       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3320     SDValue Clz =
3321       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3322     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3323       S->getI32Imm(31, dl) };
3324     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3325                                           ShiftOps), 0);
3326   }
3327   case ISD::SETNE: {
3328     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3329     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
3330     SDValue Xor = IsRHSZero ? LHS :
3331       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3332     SDValue Clz =
3333       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3334     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3335       S->getI32Imm(31, dl) };
3336     SDValue Shift =
3337       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3338     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3339                                           S->getI32Imm(1, dl)), 0);
3340   }
3341   case ISD::SETGE: {
3342     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3343     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
3344     if(IsRHSZero)
3345       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3346 
3347     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3348     // by swapping inputs and falling through.
3349     std::swap(LHS, RHS);
3350     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3351     IsRHSZero = RHSConst && RHSConst->isZero();
3352     [[fallthrough]];
3353   }
3354   case ISD::SETLE: {
3355     if (CmpInGPR == ICGPR_NonExtIn)
3356       return SDValue();
3357     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3358     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
3359     if(IsRHSZero) {
3360       if (CmpInGPR == ICGPR_NonExtIn)
3361         return SDValue();
3362       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3363     }
3364 
3365     // The upper 32-bits of the register can't be undefined for this sequence.
3366     LHS = signExtendInputIfNeeded(LHS);
3367     RHS = signExtendInputIfNeeded(RHS);
3368     SDValue Sub =
3369       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3370     SDValue Shift =
3371       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3372                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3373               0);
3374     return
3375       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3376                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3377   }
3378   case ISD::SETGT: {
3379     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3380     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3381     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
3382     // Handle SETLT -1 (which is equivalent to SETGE 0).
3383     if (IsRHSNegOne)
3384       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3385 
3386     if (IsRHSZero) {
3387       if (CmpInGPR == ICGPR_NonExtIn)
3388         return SDValue();
3389       // The upper 32-bits of the register can't be undefined for this sequence.
3390       LHS = signExtendInputIfNeeded(LHS);
3391       RHS = signExtendInputIfNeeded(RHS);
3392       SDValue Neg =
3393         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3394       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3395                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3396     }
3397     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3398     // (%b < %a) by swapping inputs and falling through.
3399     std::swap(LHS, RHS);
3400     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3401     IsRHSZero = RHSConst && RHSConst->isZero();
3402     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3403     [[fallthrough]];
3404   }
3405   case ISD::SETLT: {
3406     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3407     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3408     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3409     // Handle SETLT 1 (which is equivalent to SETLE 0).
3410     if (IsRHSOne) {
3411       if (CmpInGPR == ICGPR_NonExtIn)
3412         return SDValue();
3413       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3414     }
3415 
3416     if (IsRHSZero) {
3417       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3418                              S->getI32Imm(31, dl) };
3419       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3420                                             ShiftOps), 0);
3421     }
3422 
3423     if (CmpInGPR == ICGPR_NonExtIn)
3424       return SDValue();
3425     // The upper 32-bits of the register can't be undefined for this sequence.
3426     LHS = signExtendInputIfNeeded(LHS);
3427     RHS = signExtendInputIfNeeded(RHS);
3428     SDValue SUBFNode =
3429       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3430     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3431                                     SUBFNode, S->getI64Imm(1, dl),
3432                                     S->getI64Imm(63, dl)), 0);
3433   }
3434   case ISD::SETUGE:
3435     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3436     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3437     std::swap(LHS, RHS);
3438     [[fallthrough]];
3439   case ISD::SETULE: {
3440     if (CmpInGPR == ICGPR_NonExtIn)
3441       return SDValue();
3442     // The upper 32-bits of the register can't be undefined for this sequence.
3443     LHS = zeroExtendInputIfNeeded(LHS);
3444     RHS = zeroExtendInputIfNeeded(RHS);
3445     SDValue Subtract =
3446       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3447     SDValue SrdiNode =
3448       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3449                                           Subtract, S->getI64Imm(1, dl),
3450                                           S->getI64Imm(63, dl)), 0);
3451     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3452                                             S->getI32Imm(1, dl)), 0);
3453   }
3454   case ISD::SETUGT:
3455     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3456     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3457     std::swap(LHS, RHS);
3458     [[fallthrough]];
3459   case ISD::SETULT: {
3460     if (CmpInGPR == ICGPR_NonExtIn)
3461       return SDValue();
3462     // The upper 32-bits of the register can't be undefined for this sequence.
3463     LHS = zeroExtendInputIfNeeded(LHS);
3464     RHS = zeroExtendInputIfNeeded(RHS);
3465     SDValue Subtract =
3466       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3467     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3468                                           Subtract, S->getI64Imm(1, dl),
3469                                           S->getI64Imm(63, dl)), 0);
3470   }
3471   }
3472 }
3473 
3474 /// Produces a sign-extended result of comparing two 32-bit values according to
3475 /// the passed condition code.
3476 SDValue
3477 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3478                                               ISD::CondCode CC,
3479                                               int64_t RHSValue, SDLoc dl) {
3480   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3481       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3482     return SDValue();
3483   bool IsRHSZero = RHSValue == 0;
3484   bool IsRHSOne = RHSValue == 1;
3485   bool IsRHSNegOne = RHSValue == -1LL;
3486 
3487   switch (CC) {
3488   default: return SDValue();
3489   case ISD::SETEQ: {
3490     // (sext (setcc %a, %b, seteq)) ->
3491     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3492     // (sext (setcc %a, 0, seteq)) ->
3493     //   (ashr (shl (ctlz %a), 58), 63)
3494     SDValue CountInput = IsRHSZero ? LHS :
3495       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3496     SDValue Cntlzw =
3497       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3498     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3499                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3500     SDValue Slwi =
3501       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3502     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3503   }
3504   case ISD::SETNE: {
3505     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3506     // flip the bit, finally take 2's complement.
3507     // (sext (setcc %a, %b, setne)) ->
3508     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3509     // Same as above, but the first xor is not needed.
3510     // (sext (setcc %a, 0, setne)) ->
3511     //   (neg (xor (lshr (ctlz %a), 5), 1))
3512     SDValue Xor = IsRHSZero ? LHS :
3513       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3514     SDValue Clz =
3515       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3516     SDValue ShiftOps[] =
3517       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3518     SDValue Shift =
3519       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3520     SDValue Xori =
3521       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3522                                      S->getI32Imm(1, dl)), 0);
3523     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3524   }
3525   case ISD::SETGE: {
3526     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3527     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3528     if (IsRHSZero)
3529       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3530 
3531     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3532     // by swapping inputs and falling through.
3533     std::swap(LHS, RHS);
3534     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3535     IsRHSZero = RHSConst && RHSConst->isZero();
3536     [[fallthrough]];
3537   }
3538   case ISD::SETLE: {
3539     if (CmpInGPR == ICGPR_NonExtIn)
3540       return SDValue();
3541     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3542     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3543     if (IsRHSZero)
3544       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3545 
3546     // The upper 32-bits of the register can't be undefined for this sequence.
3547     LHS = signExtendInputIfNeeded(LHS);
3548     RHS = signExtendInputIfNeeded(RHS);
3549     SDValue SUBFNode =
3550       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3551                                      LHS, RHS), 0);
3552     SDValue Srdi =
3553       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3554                                      SUBFNode, S->getI64Imm(1, dl),
3555                                      S->getI64Imm(63, dl)), 0);
3556     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3557                                           S->getI32Imm(-1, dl)), 0);
3558   }
3559   case ISD::SETGT: {
3560     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3561     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3562     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3563     if (IsRHSNegOne)
3564       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3565     if (IsRHSZero) {
3566       if (CmpInGPR == ICGPR_NonExtIn)
3567         return SDValue();
3568       // The upper 32-bits of the register can't be undefined for this sequence.
3569       LHS = signExtendInputIfNeeded(LHS);
3570       RHS = signExtendInputIfNeeded(RHS);
3571       SDValue Neg =
3572         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3573         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3574                                               S->getI64Imm(63, dl)), 0);
3575     }
3576     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3577     // (%b < %a) by swapping inputs and falling through.
3578     std::swap(LHS, RHS);
3579     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3580     IsRHSZero = RHSConst && RHSConst->isZero();
3581     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3582     [[fallthrough]];
3583   }
3584   case ISD::SETLT: {
3585     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3586     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3587     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3588     if (IsRHSOne) {
3589       if (CmpInGPR == ICGPR_NonExtIn)
3590         return SDValue();
3591       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3592     }
3593     if (IsRHSZero)
3594       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3595                                             S->getI32Imm(31, dl)), 0);
3596 
3597     if (CmpInGPR == ICGPR_NonExtIn)
3598       return SDValue();
3599     // The upper 32-bits of the register can't be undefined for this sequence.
3600     LHS = signExtendInputIfNeeded(LHS);
3601     RHS = signExtendInputIfNeeded(RHS);
3602     SDValue SUBFNode =
3603       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3604     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3605                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3606   }
3607   case ISD::SETUGE:
3608     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3609     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3610     std::swap(LHS, RHS);
3611     [[fallthrough]];
3612   case ISD::SETULE: {
3613     if (CmpInGPR == ICGPR_NonExtIn)
3614       return SDValue();
3615     // The upper 32-bits of the register can't be undefined for this sequence.
3616     LHS = zeroExtendInputIfNeeded(LHS);
3617     RHS = zeroExtendInputIfNeeded(RHS);
3618     SDValue Subtract =
3619       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3620     SDValue Shift =
3621       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3622                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3623               0);
3624     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3625                                           S->getI32Imm(-1, dl)), 0);
3626   }
3627   case ISD::SETUGT:
3628     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3629     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3630     std::swap(LHS, RHS);
3631     [[fallthrough]];
3632   case ISD::SETULT: {
3633     if (CmpInGPR == ICGPR_NonExtIn)
3634       return SDValue();
3635     // The upper 32-bits of the register can't be undefined for this sequence.
3636     LHS = zeroExtendInputIfNeeded(LHS);
3637     RHS = zeroExtendInputIfNeeded(RHS);
3638     SDValue Subtract =
3639       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3640     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3641                                           Subtract, S->getI64Imm(63, dl)), 0);
3642   }
3643   }
3644 }
3645 
3646 /// Produces a zero-extended result of comparing two 64-bit values according to
3647 /// the passed condition code.
3648 SDValue
3649 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3650                                               ISD::CondCode CC,
3651                                               int64_t RHSValue, SDLoc dl) {
3652   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3653       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3654     return SDValue();
3655   bool IsRHSZero = RHSValue == 0;
3656   bool IsRHSOne = RHSValue == 1;
3657   bool IsRHSNegOne = RHSValue == -1LL;
3658   switch (CC) {
3659   default: return SDValue();
3660   case ISD::SETEQ: {
3661     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3662     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3663     SDValue Xor = IsRHSZero ? LHS :
3664       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3665     SDValue Clz =
3666       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3667     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3668                                           S->getI64Imm(58, dl),
3669                                           S->getI64Imm(63, dl)), 0);
3670   }
3671   case ISD::SETNE: {
3672     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3673     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3674     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3675     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3676     SDValue Xor = IsRHSZero ? LHS :
3677       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3678     SDValue AC =
3679       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3680                                      Xor, S->getI32Imm(~0U, dl)), 0);
3681     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3682                                           Xor, AC.getValue(1)), 0);
3683   }
3684   case ISD::SETGE: {
3685     // {subc.reg, subc.CA} = (subcarry %a, %b)
3686     // (zext (setcc %a, %b, setge)) ->
3687     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3688     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3689     if (IsRHSZero)
3690       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3691     std::swap(LHS, RHS);
3692     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3693     IsRHSZero = RHSConst && RHSConst->isZero();
3694     [[fallthrough]];
3695   }
3696   case ISD::SETLE: {
3697     // {subc.reg, subc.CA} = (subcarry %b, %a)
3698     // (zext (setcc %a, %b, setge)) ->
3699     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3700     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3701     if (IsRHSZero)
3702       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3703     SDValue ShiftL =
3704       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3705                                      S->getI64Imm(1, dl),
3706                                      S->getI64Imm(63, dl)), 0);
3707     SDValue ShiftR =
3708       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3709                                      S->getI64Imm(63, dl)), 0);
3710     SDValue SubtractCarry =
3711       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3712                                      LHS, RHS), 1);
3713     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3714                                           ShiftR, ShiftL, SubtractCarry), 0);
3715   }
3716   case ISD::SETGT: {
3717     // {subc.reg, subc.CA} = (subcarry %b, %a)
3718     // (zext (setcc %a, %b, setgt)) ->
3719     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3720     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3721     if (IsRHSNegOne)
3722       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3723     if (IsRHSZero) {
3724       SDValue Addi =
3725         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3726                                        S->getI64Imm(~0ULL, dl)), 0);
3727       SDValue Nor =
3728         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3729       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3730                                             S->getI64Imm(1, dl),
3731                                             S->getI64Imm(63, dl)), 0);
3732     }
3733     std::swap(LHS, RHS);
3734     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3735     IsRHSZero = RHSConst && RHSConst->isZero();
3736     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3737     [[fallthrough]];
3738   }
3739   case ISD::SETLT: {
3740     // {subc.reg, subc.CA} = (subcarry %a, %b)
3741     // (zext (setcc %a, %b, setlt)) ->
3742     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3743     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3744     if (IsRHSOne)
3745       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3746     if (IsRHSZero)
3747       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3748                                             S->getI64Imm(1, dl),
3749                                             S->getI64Imm(63, dl)), 0);
3750     SDValue SRADINode =
3751       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3752                                      LHS, S->getI64Imm(63, dl)), 0);
3753     SDValue SRDINode =
3754       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3755                                      RHS, S->getI64Imm(1, dl),
3756                                      S->getI64Imm(63, dl)), 0);
3757     SDValue SUBFC8Carry =
3758       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3759                                      RHS, LHS), 1);
3760     SDValue ADDE8Node =
3761       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3762                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3763     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3764                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3765   }
3766   case ISD::SETUGE:
3767     // {subc.reg, subc.CA} = (subcarry %a, %b)
3768     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3769     std::swap(LHS, RHS);
3770     [[fallthrough]];
3771   case ISD::SETULE: {
3772     // {subc.reg, subc.CA} = (subcarry %b, %a)
3773     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3774     SDValue SUBFC8Carry =
3775       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3776                                      LHS, RHS), 1);
3777     SDValue SUBFE8Node =
3778       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3779                                      LHS, LHS, SUBFC8Carry), 0);
3780     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3781                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3782   }
3783   case ISD::SETUGT:
3784     // {subc.reg, subc.CA} = (subcarry %b, %a)
3785     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3786     std::swap(LHS, RHS);
3787     [[fallthrough]];
3788   case ISD::SETULT: {
3789     // {subc.reg, subc.CA} = (subcarry %a, %b)
3790     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3791     SDValue SubtractCarry =
3792       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3793                                      RHS, LHS), 1);
3794     SDValue ExtSub =
3795       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3796                                      LHS, LHS, SubtractCarry), 0);
3797     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3798                                           ExtSub), 0);
3799   }
3800   }
3801 }
3802 
3803 /// Produces a sign-extended result of comparing two 64-bit values according to
3804 /// the passed condition code.
3805 SDValue
3806 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3807                                               ISD::CondCode CC,
3808                                               int64_t RHSValue, SDLoc dl) {
3809   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3810       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3811     return SDValue();
3812   bool IsRHSZero = RHSValue == 0;
3813   bool IsRHSOne = RHSValue == 1;
3814   bool IsRHSNegOne = RHSValue == -1LL;
3815   switch (CC) {
3816   default: return SDValue();
3817   case ISD::SETEQ: {
3818     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3819     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3820     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3821     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3822     SDValue AddInput = IsRHSZero ? LHS :
3823       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3824     SDValue Addic =
3825       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3826                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3827     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3828                                           Addic, Addic.getValue(1)), 0);
3829   }
3830   case ISD::SETNE: {
3831     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3832     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3833     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3834     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3835     SDValue Xor = IsRHSZero ? LHS :
3836       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3837     SDValue SC =
3838       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3839                                      Xor, S->getI32Imm(0, dl)), 0);
3840     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3841                                           SC, SC.getValue(1)), 0);
3842   }
3843   case ISD::SETGE: {
3844     // {subc.reg, subc.CA} = (subcarry %a, %b)
3845     // (zext (setcc %a, %b, setge)) ->
3846     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3847     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3848     if (IsRHSZero)
3849       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3850     std::swap(LHS, RHS);
3851     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3852     IsRHSZero = RHSConst && RHSConst->isZero();
3853     [[fallthrough]];
3854   }
3855   case ISD::SETLE: {
3856     // {subc.reg, subc.CA} = (subcarry %b, %a)
3857     // (zext (setcc %a, %b, setge)) ->
3858     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3859     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3860     if (IsRHSZero)
3861       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3862     SDValue ShiftR =
3863       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3864                                      S->getI64Imm(63, dl)), 0);
3865     SDValue ShiftL =
3866       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3867                                      S->getI64Imm(1, dl),
3868                                      S->getI64Imm(63, dl)), 0);
3869     SDValue SubtractCarry =
3870       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3871                                      LHS, RHS), 1);
3872     SDValue Adde =
3873       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3874                                      ShiftR, ShiftL, SubtractCarry), 0);
3875     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3876   }
3877   case ISD::SETGT: {
3878     // {subc.reg, subc.CA} = (subcarry %b, %a)
3879     // (zext (setcc %a, %b, setgt)) ->
3880     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3881     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3882     if (IsRHSNegOne)
3883       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3884     if (IsRHSZero) {
3885       SDValue Add =
3886         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3887                                        S->getI64Imm(-1, dl)), 0);
3888       SDValue Nor =
3889         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3890       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3891                                             S->getI64Imm(63, dl)), 0);
3892     }
3893     std::swap(LHS, RHS);
3894     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3895     IsRHSZero = RHSConst && RHSConst->isZero();
3896     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3897     [[fallthrough]];
3898   }
3899   case ISD::SETLT: {
3900     // {subc.reg, subc.CA} = (subcarry %a, %b)
3901     // (zext (setcc %a, %b, setlt)) ->
3902     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3903     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3904     if (IsRHSOne)
3905       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3906     if (IsRHSZero) {
3907       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3908                                             S->getI64Imm(63, dl)), 0);
3909     }
3910     SDValue SRADINode =
3911       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3912                                      LHS, S->getI64Imm(63, dl)), 0);
3913     SDValue SRDINode =
3914       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3915                                      RHS, S->getI64Imm(1, dl),
3916                                      S->getI64Imm(63, dl)), 0);
3917     SDValue SUBFC8Carry =
3918       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3919                                      RHS, LHS), 1);
3920     SDValue ADDE8Node =
3921       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3922                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3923     SDValue XORI8Node =
3924       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3925                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3926     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3927                                           XORI8Node), 0);
3928   }
3929   case ISD::SETUGE:
3930     // {subc.reg, subc.CA} = (subcarry %a, %b)
3931     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3932     std::swap(LHS, RHS);
3933     [[fallthrough]];
3934   case ISD::SETULE: {
3935     // {subc.reg, subc.CA} = (subcarry %b, %a)
3936     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3937     SDValue SubtractCarry =
3938       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3939                                      LHS, RHS), 1);
3940     SDValue ExtSub =
3941       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3942                                      LHS, SubtractCarry), 0);
3943     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3944                                           ExtSub, ExtSub), 0);
3945   }
3946   case ISD::SETUGT:
3947     // {subc.reg, subc.CA} = (subcarry %b, %a)
3948     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3949     std::swap(LHS, RHS);
3950     [[fallthrough]];
3951   case ISD::SETULT: {
3952     // {subc.reg, subc.CA} = (subcarry %a, %b)
3953     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3954     SDValue SubCarry =
3955       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3956                                      RHS, LHS), 1);
3957     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3958                                      LHS, LHS, SubCarry), 0);
3959   }
3960   }
3961 }
3962 
3963 /// Do all uses of this SDValue need the result in a GPR?
3964 /// This is meant to be used on values that have type i1 since
3965 /// it is somewhat meaningless to ask if values of other types
3966 /// should be kept in GPR's.
3967 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3968   assert(Compare.getOpcode() == ISD::SETCC &&
3969          "An ISD::SETCC node required here.");
3970 
3971   // For values that have a single use, the caller should obviously already have
3972   // checked if that use is an extending use. We check the other uses here.
3973   if (Compare.hasOneUse())
3974     return true;
3975   // We want the value in a GPR if it is being extended, used for a select, or
3976   // used in logical operations.
3977   for (auto *CompareUse : Compare.getNode()->uses())
3978     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3979         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3980         CompareUse->getOpcode() != ISD::SELECT &&
3981         !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) {
3982       OmittedForNonExtendUses++;
3983       return false;
3984     }
3985   return true;
3986 }
3987 
3988 /// Returns an equivalent of a SETCC node but with the result the same width as
3989 /// the inputs. This can also be used for SELECT_CC if either the true or false
3990 /// values is a power of two while the other is zero.
3991 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3992                                                 SetccInGPROpts ConvOpts) {
3993   assert((Compare.getOpcode() == ISD::SETCC ||
3994           Compare.getOpcode() == ISD::SELECT_CC) &&
3995          "An ISD::SETCC node required here.");
3996 
3997   // Don't convert this comparison to a GPR sequence because there are uses
3998   // of the i1 result (i.e. uses that require the result in the CR).
3999   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
4000     return SDValue();
4001 
4002   SDValue LHS = Compare.getOperand(0);
4003   SDValue RHS = Compare.getOperand(1);
4004 
4005   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
4006   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
4007   ISD::CondCode CC =
4008     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
4009   EVT InputVT = LHS.getValueType();
4010   if (InputVT != MVT::i32 && InputVT != MVT::i64)
4011     return SDValue();
4012 
4013   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
4014       ConvOpts == SetccInGPROpts::SExtInvert)
4015     CC = ISD::getSetCCInverse(CC, InputVT);
4016 
4017   bool Inputs32Bit = InputVT == MVT::i32;
4018 
4019   SDLoc dl(Compare);
4020   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
4021   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
4022   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
4023     ConvOpts == SetccInGPROpts::SExtInvert;
4024 
4025   if (IsSext && Inputs32Bit)
4026     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4027   else if (Inputs32Bit)
4028     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4029   else if (IsSext)
4030     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4031   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4032 }
4033 
4034 } // end anonymous namespace
4035 
4036 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
4037   if (N->getValueType(0) != MVT::i32 &&
4038       N->getValueType(0) != MVT::i64)
4039     return false;
4040 
4041   // This optimization will emit code that assumes 64-bit registers
4042   // so we don't want to run it in 32-bit mode. Also don't run it
4043   // on functions that are not to be optimized.
4044   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
4045     return false;
4046 
4047   // For POWER10, it is more profitable to use the set boolean extension
4048   // instructions rather than the integer compare elimination codegen.
4049   // Users can override this via the command line option, `--ppc-gpr-icmps`.
4050   if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
4051     return false;
4052 
4053   switch (N->getOpcode()) {
4054   default: break;
4055   case ISD::ZERO_EXTEND:
4056   case ISD::SIGN_EXTEND:
4057   case ISD::AND:
4058   case ISD::OR:
4059   case ISD::XOR: {
4060     IntegerCompareEliminator ICmpElim(CurDAG, this);
4061     if (SDNode *New = ICmpElim.Select(N)) {
4062       ReplaceNode(N, New);
4063       return true;
4064     }
4065   }
4066   }
4067   return false;
4068 }
4069 
4070 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
4071   if (N->getValueType(0) != MVT::i32 &&
4072       N->getValueType(0) != MVT::i64)
4073     return false;
4074 
4075   if (!UseBitPermRewriter)
4076     return false;
4077 
4078   switch (N->getOpcode()) {
4079   default: break;
4080   case ISD::SRL:
4081     // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that
4082     // uses the BRH instruction.
4083     if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 &&
4084         N->getOperand(0).getOpcode() == ISD::BSWAP) {
4085       auto &OpRight = N->getOperand(1);
4086       ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight);
4087       if (SRLConst && SRLConst->getSExtValue() == 16)
4088         return false;
4089     }
4090     [[fallthrough]];
4091   case ISD::ROTL:
4092   case ISD::SHL:
4093   case ISD::AND:
4094   case ISD::OR: {
4095     BitPermutationSelector BPS(CurDAG);
4096     if (SDNode *New = BPS.Select(N)) {
4097       ReplaceNode(N, New);
4098       return true;
4099     }
4100     return false;
4101   }
4102   }
4103 
4104   return false;
4105 }
4106 
4107 /// SelectCC - Select a comparison of the specified values with the specified
4108 /// condition code, returning the CR# of the expression.
4109 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4110                                   const SDLoc &dl, SDValue Chain) {
4111   // Always select the LHS.
4112   unsigned Opc;
4113 
4114   if (LHS.getValueType() == MVT::i32) {
4115     unsigned Imm;
4116     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4117       if (isInt32Immediate(RHS, Imm)) {
4118         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4119         if (isUInt<16>(Imm))
4120           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4121                                                 getI32Imm(Imm & 0xFFFF, dl)),
4122                          0);
4123         // If this is a 16-bit signed immediate, fold it.
4124         if (isInt<16>((int)Imm))
4125           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4126                                                 getI32Imm(Imm & 0xFFFF, dl)),
4127                          0);
4128 
4129         // For non-equality comparisons, the default code would materialize the
4130         // constant, then compare against it, like this:
4131         //   lis r2, 4660
4132         //   ori r2, r2, 22136
4133         //   cmpw cr0, r3, r2
4134         // Since we are just comparing for equality, we can emit this instead:
4135         //   xoris r0,r3,0x1234
4136         //   cmplwi cr0,r0,0x5678
4137         //   beq cr0,L6
4138         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
4139                                            getI32Imm(Imm >> 16, dl)), 0);
4140         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
4141                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4142       }
4143       Opc = PPC::CMPLW;
4144     } else if (ISD::isUnsignedIntSetCC(CC)) {
4145       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
4146         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4147                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4148       Opc = PPC::CMPLW;
4149     } else {
4150       int16_t SImm;
4151       if (isIntS16Immediate(RHS, SImm))
4152         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4153                                               getI32Imm((int)SImm & 0xFFFF,
4154                                                         dl)),
4155                          0);
4156       Opc = PPC::CMPW;
4157     }
4158   } else if (LHS.getValueType() == MVT::i64) {
4159     uint64_t Imm;
4160     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4161       if (isInt64Immediate(RHS.getNode(), Imm)) {
4162         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4163         if (isUInt<16>(Imm))
4164           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4165                                                 getI32Imm(Imm & 0xFFFF, dl)),
4166                          0);
4167         // If this is a 16-bit signed immediate, fold it.
4168         if (isInt<16>(Imm))
4169           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4170                                                 getI32Imm(Imm & 0xFFFF, dl)),
4171                          0);
4172 
4173         // For non-equality comparisons, the default code would materialize the
4174         // constant, then compare against it, like this:
4175         //   lis r2, 4660
4176         //   ori r2, r2, 22136
4177         //   cmpd cr0, r3, r2
4178         // Since we are just comparing for equality, we can emit this instead:
4179         //   xoris r0,r3,0x1234
4180         //   cmpldi cr0,r0,0x5678
4181         //   beq cr0,L6
4182         if (isUInt<32>(Imm)) {
4183           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4184                                              getI64Imm(Imm >> 16, dl)), 0);
4185           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4186                                                 getI64Imm(Imm & 0xFFFF, dl)),
4187                          0);
4188         }
4189       }
4190       Opc = PPC::CMPLD;
4191     } else if (ISD::isUnsignedIntSetCC(CC)) {
4192       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4193         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4194                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
4195       Opc = PPC::CMPLD;
4196     } else {
4197       int16_t SImm;
4198       if (isIntS16Immediate(RHS, SImm))
4199         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4200                                               getI64Imm(SImm & 0xFFFF, dl)),
4201                          0);
4202       Opc = PPC::CMPD;
4203     }
4204   } else if (LHS.getValueType() == MVT::f32) {
4205     if (Subtarget->hasSPE()) {
4206       switch (CC) {
4207         default:
4208         case ISD::SETEQ:
4209         case ISD::SETNE:
4210           Opc = PPC::EFSCMPEQ;
4211           break;
4212         case ISD::SETLT:
4213         case ISD::SETGE:
4214         case ISD::SETOLT:
4215         case ISD::SETOGE:
4216         case ISD::SETULT:
4217         case ISD::SETUGE:
4218           Opc = PPC::EFSCMPLT;
4219           break;
4220         case ISD::SETGT:
4221         case ISD::SETLE:
4222         case ISD::SETOGT:
4223         case ISD::SETOLE:
4224         case ISD::SETUGT:
4225         case ISD::SETULE:
4226           Opc = PPC::EFSCMPGT;
4227           break;
4228       }
4229     } else
4230       Opc = PPC::FCMPUS;
4231   } else if (LHS.getValueType() == MVT::f64) {
4232     if (Subtarget->hasSPE()) {
4233       switch (CC) {
4234         default:
4235         case ISD::SETEQ:
4236         case ISD::SETNE:
4237           Opc = PPC::EFDCMPEQ;
4238           break;
4239         case ISD::SETLT:
4240         case ISD::SETGE:
4241         case ISD::SETOLT:
4242         case ISD::SETOGE:
4243         case ISD::SETULT:
4244         case ISD::SETUGE:
4245           Opc = PPC::EFDCMPLT;
4246           break;
4247         case ISD::SETGT:
4248         case ISD::SETLE:
4249         case ISD::SETOGT:
4250         case ISD::SETOLE:
4251         case ISD::SETUGT:
4252         case ISD::SETULE:
4253           Opc = PPC::EFDCMPGT;
4254           break;
4255       }
4256     } else
4257       Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4258   } else {
4259     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4260     assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4261     Opc = PPC::XSCMPUQP;
4262   }
4263   if (Chain)
4264     return SDValue(
4265         CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4266         0);
4267   else
4268     return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4269 }
4270 
4271 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4272                                            const PPCSubtarget *Subtarget) {
4273   // For SPE instructions, the result is in GT bit of the CR
4274   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4275 
4276   switch (CC) {
4277   case ISD::SETUEQ:
4278   case ISD::SETONE:
4279   case ISD::SETOLE:
4280   case ISD::SETOGE:
4281     llvm_unreachable("Should be lowered by legalize!");
4282   default: llvm_unreachable("Unknown condition!");
4283   case ISD::SETOEQ:
4284   case ISD::SETEQ:
4285     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4286   case ISD::SETUNE:
4287   case ISD::SETNE:
4288     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4289   case ISD::SETOLT:
4290   case ISD::SETLT:
4291     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4292   case ISD::SETULE:
4293   case ISD::SETLE:
4294     return PPC::PRED_LE;
4295   case ISD::SETOGT:
4296   case ISD::SETGT:
4297     return PPC::PRED_GT;
4298   case ISD::SETUGE:
4299   case ISD::SETGE:
4300     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4301   case ISD::SETO:   return PPC::PRED_NU;
4302   case ISD::SETUO:  return PPC::PRED_UN;
4303     // These two are invalid for floating point.  Assume we have int.
4304   case ISD::SETULT: return PPC::PRED_LT;
4305   case ISD::SETUGT: return PPC::PRED_GT;
4306   }
4307 }
4308 
4309 /// getCRIdxForSetCC - Return the index of the condition register field
4310 /// associated with the SetCC condition, and whether or not the field is
4311 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
4312 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4313   Invert = false;
4314   switch (CC) {
4315   default: llvm_unreachable("Unknown condition!");
4316   case ISD::SETOLT:
4317   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
4318   case ISD::SETOGT:
4319   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
4320   case ISD::SETOEQ:
4321   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
4322   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
4323   case ISD::SETUGE:
4324   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
4325   case ISD::SETULE:
4326   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
4327   case ISD::SETUNE:
4328   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
4329   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
4330   case ISD::SETUEQ:
4331   case ISD::SETOGE:
4332   case ISD::SETOLE:
4333   case ISD::SETONE:
4334     llvm_unreachable("Invalid branch code: should be expanded by legalize");
4335   // These are invalid for floating point.  Assume integer.
4336   case ISD::SETULT: return 0;
4337   case ISD::SETUGT: return 1;
4338   }
4339 }
4340 
4341 // getVCmpInst: return the vector compare instruction for the specified
4342 // vector type and condition code. Since this is for altivec specific code,
4343 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4344 // and v4f32).
4345 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4346                                 bool HasVSX, bool &Swap, bool &Negate) {
4347   Swap = false;
4348   Negate = false;
4349 
4350   if (VecVT.isFloatingPoint()) {
4351     /* Handle some cases by swapping input operands.  */
4352     switch (CC) {
4353       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4354       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4355       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4356       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4357       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4358       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4359       default: break;
4360     }
4361     /* Handle some cases by negating the result.  */
4362     switch (CC) {
4363       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4364       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4365       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4366       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4367       default: break;
4368     }
4369     /* We have instructions implementing the remaining cases.  */
4370     switch (CC) {
4371       case ISD::SETEQ:
4372       case ISD::SETOEQ:
4373         if (VecVT == MVT::v4f32)
4374           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4375         else if (VecVT == MVT::v2f64)
4376           return PPC::XVCMPEQDP;
4377         break;
4378       case ISD::SETGT:
4379       case ISD::SETOGT:
4380         if (VecVT == MVT::v4f32)
4381           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4382         else if (VecVT == MVT::v2f64)
4383           return PPC::XVCMPGTDP;
4384         break;
4385       case ISD::SETGE:
4386       case ISD::SETOGE:
4387         if (VecVT == MVT::v4f32)
4388           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4389         else if (VecVT == MVT::v2f64)
4390           return PPC::XVCMPGEDP;
4391         break;
4392       default:
4393         break;
4394     }
4395     llvm_unreachable("Invalid floating-point vector compare condition");
4396   } else {
4397     /* Handle some cases by swapping input operands.  */
4398     switch (CC) {
4399       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4400       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4401       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4402       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4403       default: break;
4404     }
4405     /* Handle some cases by negating the result.  */
4406     switch (CC) {
4407       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4408       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4409       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4410       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4411       default: break;
4412     }
4413     /* We have instructions implementing the remaining cases.  */
4414     switch (CC) {
4415       case ISD::SETEQ:
4416       case ISD::SETUEQ:
4417         if (VecVT == MVT::v16i8)
4418           return PPC::VCMPEQUB;
4419         else if (VecVT == MVT::v8i16)
4420           return PPC::VCMPEQUH;
4421         else if (VecVT == MVT::v4i32)
4422           return PPC::VCMPEQUW;
4423         else if (VecVT == MVT::v2i64)
4424           return PPC::VCMPEQUD;
4425         else if (VecVT == MVT::v1i128)
4426           return PPC::VCMPEQUQ;
4427         break;
4428       case ISD::SETGT:
4429         if (VecVT == MVT::v16i8)
4430           return PPC::VCMPGTSB;
4431         else if (VecVT == MVT::v8i16)
4432           return PPC::VCMPGTSH;
4433         else if (VecVT == MVT::v4i32)
4434           return PPC::VCMPGTSW;
4435         else if (VecVT == MVT::v2i64)
4436           return PPC::VCMPGTSD;
4437         else if (VecVT == MVT::v1i128)
4438            return PPC::VCMPGTSQ;
4439         break;
4440       case ISD::SETUGT:
4441         if (VecVT == MVT::v16i8)
4442           return PPC::VCMPGTUB;
4443         else if (VecVT == MVT::v8i16)
4444           return PPC::VCMPGTUH;
4445         else if (VecVT == MVT::v4i32)
4446           return PPC::VCMPGTUW;
4447         else if (VecVT == MVT::v2i64)
4448           return PPC::VCMPGTUD;
4449         else if (VecVT == MVT::v1i128)
4450            return PPC::VCMPGTUQ;
4451         break;
4452       default:
4453         break;
4454     }
4455     llvm_unreachable("Invalid integer vector compare condition");
4456   }
4457 }
4458 
4459 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4460   SDLoc dl(N);
4461   unsigned Imm;
4462   bool IsStrict = N->isStrictFPOpcode();
4463   ISD::CondCode CC =
4464       cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4465   EVT PtrVT =
4466       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4467   bool isPPC64 = (PtrVT == MVT::i64);
4468   SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4469 
4470   SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4471   SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4472 
4473   if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4474     // We can codegen setcc op, imm very efficiently compared to a brcond.
4475     // Check for those cases here.
4476     // setcc op, 0
4477     if (Imm == 0) {
4478       SDValue Op = LHS;
4479       switch (CC) {
4480       default: break;
4481       case ISD::SETEQ: {
4482         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4483         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4484                           getI32Imm(31, dl) };
4485         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4486         return true;
4487       }
4488       case ISD::SETNE: {
4489         if (isPPC64) break;
4490         SDValue AD =
4491           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4492                                          Op, getI32Imm(~0U, dl)), 0);
4493         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4494         return true;
4495       }
4496       case ISD::SETLT: {
4497         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4498                           getI32Imm(31, dl) };
4499         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4500         return true;
4501       }
4502       case ISD::SETGT: {
4503         SDValue T =
4504           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4505         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4506         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4507                           getI32Imm(31, dl) };
4508         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4509         return true;
4510       }
4511       }
4512     } else if (Imm == ~0U) {        // setcc op, -1
4513       SDValue Op = LHS;
4514       switch (CC) {
4515       default: break;
4516       case ISD::SETEQ:
4517         if (isPPC64) break;
4518         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4519                                             Op, getI32Imm(1, dl)), 0);
4520         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4521                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4522                                                             MVT::i32,
4523                                                             getI32Imm(0, dl)),
4524                                      0), Op.getValue(1));
4525         return true;
4526       case ISD::SETNE: {
4527         if (isPPC64) break;
4528         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4529         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4530                                             Op, getI32Imm(~0U, dl));
4531         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4532                              SDValue(AD, 1));
4533         return true;
4534       }
4535       case ISD::SETLT: {
4536         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4537                                                     getI32Imm(1, dl)), 0);
4538         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4539                                                     Op), 0);
4540         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4541                           getI32Imm(31, dl) };
4542         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4543         return true;
4544       }
4545       case ISD::SETGT: {
4546         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4547                           getI32Imm(31, dl) };
4548         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4549         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4550         return true;
4551       }
4552       }
4553     }
4554   }
4555 
4556   // Altivec Vector compare instructions do not set any CR register by default and
4557   // vector compare operations return the same type as the operands.
4558   if (!IsStrict && LHS.getValueType().isVector()) {
4559     if (Subtarget->hasSPE())
4560       return false;
4561 
4562     EVT VecVT = LHS.getValueType();
4563     bool Swap, Negate;
4564     unsigned int VCmpInst =
4565         getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4566     if (Swap)
4567       std::swap(LHS, RHS);
4568 
4569     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4570     if (Negate) {
4571       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4572       CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4573                            ResVT, VCmp, VCmp);
4574       return true;
4575     }
4576 
4577     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4578     return true;
4579   }
4580 
4581   if (Subtarget->useCRBits())
4582     return false;
4583 
4584   bool Inv;
4585   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4586   SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4587   if (IsStrict)
4588     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4589   SDValue IntCR;
4590 
4591   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4592   // The correct compare instruction is already set by SelectCC()
4593   if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4594     Idx = 1;
4595   }
4596 
4597   // Force the ccreg into CR7.
4598   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4599 
4600   SDValue InGlue;  // Null incoming flag value.
4601   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4602                                InGlue).getValue(1);
4603 
4604   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4605                                          CCReg), 0);
4606 
4607   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4608                       getI32Imm(31, dl), getI32Imm(31, dl) };
4609   if (!Inv) {
4610     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4611     return true;
4612   }
4613 
4614   // Get the specified bit.
4615   SDValue Tmp =
4616     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4617   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4618   return true;
4619 }
4620 
4621 /// Does this node represent a load/store node whose address can be represented
4622 /// with a register plus an immediate that's a multiple of \p Val:
4623 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4624   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4625   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4626   MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4627   SDValue AddrOp;
4628   if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4629     AddrOp = N->getOperand(1);
4630   else if (STN)
4631     AddrOp = STN->getOperand(2);
4632 
4633   // If the address points a frame object or a frame object with an offset,
4634   // we need to check the object alignment.
4635   short Imm = 0;
4636   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4637           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4638                                            AddrOp)) {
4639     // If op0 is a frame index that is under aligned, we can't do it either,
4640     // because it is translated to r31 or r1 + slot + offset. We won't know the
4641     // slot number until the stack frame is finalized.
4642     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4643     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4644     if ((SlotAlign % Val) != 0)
4645       return false;
4646 
4647     // If we have an offset, we need further check on the offset.
4648     if (AddrOp.getOpcode() != ISD::ADD)
4649       return true;
4650   }
4651 
4652   if (AddrOp.getOpcode() == ISD::ADD)
4653     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4654 
4655   // If the address comes from the outside, the offset will be zero.
4656   return AddrOp.getOpcode() == ISD::CopyFromReg;
4657 }
4658 
4659 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4660   // Transfer memoperands.
4661   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4662   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4663 }
4664 
4665 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4666                          bool &NeedSwapOps, bool &IsUnCmp) {
4667 
4668   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4669 
4670   SDValue LHS = N->getOperand(0);
4671   SDValue RHS = N->getOperand(1);
4672   SDValue TrueRes = N->getOperand(2);
4673   SDValue FalseRes = N->getOperand(3);
4674   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4675   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4676                      N->getSimpleValueType(0) != MVT::i32))
4677     return false;
4678 
4679   // We are looking for any of:
4680   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4681   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4682   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4683   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4684   int64_t TrueResVal = TrueConst->getSExtValue();
4685   if ((TrueResVal < -1 || TrueResVal > 1) ||
4686       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4687       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4688       (TrueResVal == 0 &&
4689        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4690     return false;
4691 
4692   SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4693                            ? FalseRes
4694                            : FalseRes.getOperand(0);
4695   bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4696   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4697       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4698     return false;
4699 
4700   // Without this setb optimization, the outer SELECT_CC will be manually
4701   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4702   // transforms pseudo instruction to isel instruction. When there are more than
4703   // one use for result like zext/sext, with current optimization we only see
4704   // isel is replaced by setb but can't see any significant gain. Since
4705   // setb has longer latency than original isel, we should avoid this. Another
4706   // point is that setb requires comparison always kept, it can break the
4707   // opportunity to get the comparison away if we have in future.
4708   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4709     return false;
4710 
4711   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4712   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4713   ISD::CondCode InnerCC =
4714       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4715   // If the inner comparison is a select_cc, make sure the true/false values are
4716   // 1/-1 and canonicalize it if needed.
4717   if (InnerIsSel) {
4718     ConstantSDNode *SelCCTrueConst =
4719         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4720     ConstantSDNode *SelCCFalseConst =
4721         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4722     if (!SelCCTrueConst || !SelCCFalseConst)
4723       return false;
4724     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4725     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4726     // The values must be -1/1 (requiring a swap) or 1/-1.
4727     if (SelCCTVal == -1 && SelCCFVal == 1) {
4728       std::swap(InnerLHS, InnerRHS);
4729     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4730       return false;
4731   }
4732 
4733   // Canonicalize unsigned case
4734   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4735     IsUnCmp = true;
4736     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4737   }
4738 
4739   bool InnerSwapped = false;
4740   if (LHS == InnerRHS && RHS == InnerLHS)
4741     InnerSwapped = true;
4742   else if (LHS != InnerLHS || RHS != InnerRHS)
4743     return false;
4744 
4745   switch (CC) {
4746   // (select_cc lhs, rhs,  0, \
4747   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4748   case ISD::SETEQ:
4749     if (!InnerIsSel)
4750       return false;
4751     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4752       return false;
4753     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4754     break;
4755 
4756   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4757   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4758   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4759   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4760   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4761   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4762   case ISD::SETULT:
4763     if (!IsUnCmp && InnerCC != ISD::SETNE)
4764       return false;
4765     IsUnCmp = true;
4766     [[fallthrough]];
4767   case ISD::SETLT:
4768     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4769         (InnerCC == ISD::SETLT && InnerSwapped))
4770       NeedSwapOps = (TrueResVal == 1);
4771     else
4772       return false;
4773     break;
4774 
4775   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4776   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4777   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4778   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4779   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4780   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4781   case ISD::SETUGT:
4782     if (!IsUnCmp && InnerCC != ISD::SETNE)
4783       return false;
4784     IsUnCmp = true;
4785     [[fallthrough]];
4786   case ISD::SETGT:
4787     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4788         (InnerCC == ISD::SETGT && InnerSwapped))
4789       NeedSwapOps = (TrueResVal == -1);
4790     else
4791       return false;
4792     break;
4793 
4794   default:
4795     return false;
4796   }
4797 
4798   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4799   LLVM_DEBUG(N->dump());
4800 
4801   return true;
4802 }
4803 
4804 // Return true if it's a software square-root/divide operand.
4805 static bool isSWTestOp(SDValue N) {
4806   if (N.getOpcode() == PPCISD::FTSQRT)
4807     return true;
4808   if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4809       N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4810     return false;
4811   switch (N.getConstantOperandVal(0)) {
4812   case Intrinsic::ppc_vsx_xvtdivdp:
4813   case Intrinsic::ppc_vsx_xvtdivsp:
4814   case Intrinsic::ppc_vsx_xvtsqrtdp:
4815   case Intrinsic::ppc_vsx_xvtsqrtsp:
4816     return true;
4817   }
4818   return false;
4819 }
4820 
4821 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4822   assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4823   // We are looking for following patterns, where `truncate to i1` actually has
4824   // the same semantic with `and 1`.
4825   // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4826   // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4827   // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4828   // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4829   // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4830   // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4831   // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4832   // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4833   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4834   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4835     return false;
4836 
4837   SDValue CmpRHS = N->getOperand(3);
4838   if (!isa<ConstantSDNode>(CmpRHS) ||
4839       cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
4840     return false;
4841 
4842   SDValue CmpLHS = N->getOperand(2);
4843   if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4844     return false;
4845 
4846   unsigned PCC = 0;
4847   bool IsCCNE = CC == ISD::SETNE;
4848   if (CmpLHS.getOpcode() == ISD::AND &&
4849       isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4850     switch (CmpLHS.getConstantOperandVal(1)) {
4851     case 1:
4852       PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4853       break;
4854     case 2:
4855       PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4856       break;
4857     case 4:
4858       PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4859       break;
4860     case 8:
4861       PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4862       break;
4863     default:
4864       return false;
4865     }
4866   else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4867            CmpLHS.getValueType() == MVT::i1)
4868     PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4869 
4870   if (PCC) {
4871     SDLoc dl(N);
4872     SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4873                      N->getOperand(0)};
4874     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4875     return true;
4876   }
4877   return false;
4878 }
4879 
4880 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) {
4881   // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
4882   // value, for example when crbits is disabled. If so, select the
4883   // loop_decrement intrinsics now.
4884   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4885   SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4886 
4887   if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) ||
4888       isNullConstant(LHS.getOperand(1)))
4889     return false;
4890 
4891   if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4892       cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() !=
4893           Intrinsic::loop_decrement)
4894     return false;
4895 
4896   if (!isa<ConstantSDNode>(RHS))
4897     return false;
4898 
4899   assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
4900          "Counter decrement comparison is not EQ or NE");
4901 
4902   SDValue OldDecrement = LHS.getOperand(0);
4903   assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!");
4904 
4905   SDLoc DecrementLoc(OldDecrement);
4906   SDValue ChainInput = OldDecrement.getOperand(0);
4907   SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc)
4908                                                  : getI32Imm(1, DecrementLoc)};
4909   unsigned DecrementOpcode =
4910       Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop;
4911   SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc,
4912                                                 MVT::i1, DecrementOps);
4913 
4914   unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4915   bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val);
4916   unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn;
4917 
4918   ReplaceUses(LHS.getValue(0), LHS.getOperand(1));
4919   CurDAG->RemoveDeadNode(LHS.getNode());
4920 
4921   // Mark the old loop_decrement intrinsic as dead.
4922   ReplaceUses(OldDecrement.getValue(1), ChainInput);
4923   CurDAG->RemoveDeadNode(OldDecrement.getNode());
4924 
4925   SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
4926                                   ChainInput, N->getOperand(0));
4927 
4928   CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0),
4929                        N->getOperand(4), Chain);
4930   return true;
4931 }
4932 
4933 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4934   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4935   unsigned Imm;
4936   if (!isInt32Immediate(N->getOperand(1), Imm))
4937     return false;
4938 
4939   SDLoc dl(N);
4940   SDValue Val = N->getOperand(0);
4941   unsigned SH, MB, ME;
4942   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4943   // with a mask, emit rlwinm
4944   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4945     Val = Val.getOperand(0);
4946     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4947                      getI32Imm(ME, dl)};
4948     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4949     return true;
4950   }
4951 
4952   // If this is just a masked value where the input is not handled, and
4953   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4954   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4955     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4956                      getI32Imm(ME, dl)};
4957     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4958     return true;
4959   }
4960 
4961   // AND X, 0 -> 0, not "rlwinm 32".
4962   if (Imm == 0) {
4963     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4964     return true;
4965   }
4966 
4967   return false;
4968 }
4969 
4970 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4971   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4972   uint64_t Imm64;
4973   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4974     return false;
4975 
4976   unsigned MB, ME;
4977   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4978     //                MB  ME
4979     // +----------------------+
4980     // |xxxxxxxxxxx00011111000|
4981     // +----------------------+
4982     //  0         32         64
4983     // We can only do it if the MB is larger than 32 and MB <= ME
4984     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4985     // we didn't rotate it.
4986     SDLoc dl(N);
4987     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4988                      getI64Imm(ME - 32, dl)};
4989     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4990     return true;
4991   }
4992 
4993   return false;
4994 }
4995 
4996 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4997   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4998   uint64_t Imm64;
4999   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
5000     return false;
5001 
5002   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
5003   // it well with "andi.".
5004   if (isUInt<16>(Imm64))
5005     return false;
5006 
5007   SDLoc Loc(N);
5008   SDValue Val = N->getOperand(0);
5009 
5010   // Optimized with two rldicl's as follows:
5011   // Add missing bits on left to the mask and check that the mask is a
5012   // wrapped run of ones, i.e.
5013   // Change pattern |0001111100000011111111|
5014   //             to |1111111100000011111111|.
5015   unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64);
5016   if (NumOfLeadingZeros != 0)
5017     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
5018 
5019   unsigned MB, ME;
5020   if (!isRunOfOnes64(Imm64, MB, ME))
5021     return false;
5022 
5023   //         ME     MB                   MB-ME+63
5024   // +----------------------+     +----------------------+
5025   // |1111111100000011111111| ->  |0000001111111111111111|
5026   // +----------------------+     +----------------------+
5027   //  0                    63      0                    63
5028   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
5029   unsigned OnesOnLeft = ME + 1;
5030   unsigned ZerosInBetween = (MB - ME + 63) & 63;
5031   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
5032   // on the left the bits that are already zeros in the mask.
5033   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
5034                                        getI64Imm(OnesOnLeft, Loc),
5035                                        getI64Imm(ZerosInBetween, Loc)),
5036                 0);
5037   //        MB-ME+63                      ME     MB
5038   // +----------------------+     +----------------------+
5039   // |0000001111111111111111| ->  |0001111100000011111111|
5040   // +----------------------+     +----------------------+
5041   //  0                    63      0                    63
5042   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
5043   // left the number of ones we previously added.
5044   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
5045                    getI64Imm(NumOfLeadingZeros, Loc)};
5046   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5047   return true;
5048 }
5049 
5050 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
5051   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5052   unsigned Imm;
5053   if (!isInt32Immediate(N->getOperand(1), Imm))
5054     return false;
5055 
5056   SDValue Val = N->getOperand(0);
5057   unsigned Imm2;
5058   // ISD::OR doesn't get all the bitfield insertion fun.
5059   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
5060   // bitfield insert.
5061   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
5062     return false;
5063 
5064   // The idea here is to check whether this is equivalent to:
5065   //   (c1 & m) | (x & ~m)
5066   // where m is a run-of-ones mask. The logic here is that, for each bit in
5067   // c1 and c2:
5068   //  - if both are 1, then the output will be 1.
5069   //  - if both are 0, then the output will be 0.
5070   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
5071   //    come from x.
5072   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
5073   //    be 0.
5074   //  If that last condition is never the case, then we can form m from the
5075   //  bits that are the same between c1 and c2.
5076   unsigned MB, ME;
5077   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
5078     SDLoc dl(N);
5079     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
5080                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
5081     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
5082     return true;
5083   }
5084 
5085   return false;
5086 }
5087 
5088 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
5089   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5090   uint64_t Imm64;
5091   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
5092     return false;
5093 
5094   // If this is a 64-bit zero-extension mask, emit rldicl.
5095   unsigned MB = 64 - llvm::countr_one(Imm64);
5096   unsigned SH = 0;
5097   unsigned Imm;
5098   SDValue Val = N->getOperand(0);
5099   SDLoc dl(N);
5100 
5101   if (Val.getOpcode() == ISD::ANY_EXTEND) {
5102     auto Op0 = Val.getOperand(0);
5103     if (Op0.getOpcode() == ISD::SRL &&
5104         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
5105 
5106       auto ResultType = Val.getNode()->getValueType(0);
5107       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
5108       SDValue IDVal(ImDef, 0);
5109 
5110       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
5111                                            IDVal, Op0.getOperand(0),
5112                                            getI32Imm(1, dl)),
5113                     0);
5114       SH = 64 - Imm;
5115     }
5116   }
5117 
5118   // If the operand is a logical right shift, we can fold it into this
5119   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
5120   // for n <= mb. The right shift is really a left rotate followed by a
5121   // mask, and this mask is a more-restrictive sub-mask of the mask implied
5122   // by the shift.
5123   if (Val.getOpcode() == ISD::SRL &&
5124       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
5125     assert(Imm < 64 && "Illegal shift amount");
5126     Val = Val.getOperand(0);
5127     SH = 64 - Imm;
5128   }
5129 
5130   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
5131   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5132   return true;
5133 }
5134 
5135 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
5136   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5137   uint64_t Imm64;
5138   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5139       !isMask_64(~Imm64))
5140     return false;
5141 
5142   // If this is a negated 64-bit zero-extension mask,
5143   // i.e. the immediate is a sequence of ones from most significant side
5144   // and all zero for reminder, we should use rldicr.
5145   unsigned MB = 63 - llvm::countr_one(~Imm64);
5146   unsigned SH = 0;
5147   SDLoc dl(N);
5148   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
5149   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5150   return true;
5151 }
5152 
5153 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
5154   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
5155   uint64_t Imm64;
5156   unsigned MB, ME;
5157   SDValue N0 = N->getOperand(0);
5158 
5159   // We won't get fewer instructions if the imm is 32-bit integer.
5160   // rldimi requires the imm to have consecutive ones with both sides zero.
5161   // Also, make sure the first Op has only one use, otherwise this may increase
5162   // register pressure since rldimi is destructive.
5163   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5164       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
5165     return false;
5166 
5167   unsigned SH = 63 - ME;
5168   SDLoc Dl(N);
5169   // Use select64Imm for making LI instr instead of directly putting Imm64
5170   SDValue Ops[] = {
5171       N->getOperand(0),
5172       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
5173       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
5174   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
5175   return true;
5176 }
5177 
5178 // Select - Convert the specified operand from a target-independent to a
5179 // target-specific node if it hasn't already been changed.
5180 void PPCDAGToDAGISel::Select(SDNode *N) {
5181   SDLoc dl(N);
5182   if (N->isMachineOpcode()) {
5183     N->setNodeId(-1);
5184     return;   // Already selected.
5185   }
5186 
5187   // In case any misguided DAG-level optimizations form an ADD with a
5188   // TargetConstant operand, crash here instead of miscompiling (by selecting
5189   // an r+r add instead of some kind of r+i add).
5190   if (N->getOpcode() == ISD::ADD &&
5191       N->getOperand(1).getOpcode() == ISD::TargetConstant)
5192     llvm_unreachable("Invalid ADD with TargetConstant operand");
5193 
5194   // Try matching complex bit permutations before doing anything else.
5195   if (tryBitPermutation(N))
5196     return;
5197 
5198   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
5199   if (tryIntCompareInGPR(N))
5200     return;
5201 
5202   switch (N->getOpcode()) {
5203   default: break;
5204 
5205   case ISD::Constant:
5206     if (N->getValueType(0) == MVT::i64) {
5207       ReplaceNode(N, selectI64Imm(CurDAG, N));
5208       return;
5209     }
5210     break;
5211 
5212   case ISD::INTRINSIC_VOID: {
5213     auto IntrinsicID = N->getConstantOperandVal(1);
5214     if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
5215         IntrinsicID != Intrinsic::ppc_trapd &&
5216         IntrinsicID != Intrinsic::ppc_trap)
5217         break;
5218     unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw ||
5219                        IntrinsicID == Intrinsic::ppc_trapd)
5220                           ? PPC::TDI
5221                           : PPC::TWI;
5222     SmallVector<SDValue, 4> OpsWithMD;
5223     unsigned MDIndex;
5224     if (IntrinsicID == Intrinsic::ppc_tdw ||
5225         IntrinsicID == Intrinsic::ppc_tw) {
5226       SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5227       int16_t SImmOperand2;
5228       int16_t SImmOperand3;
5229       int16_t SImmOperand4;
5230       bool isOperand2IntS16Immediate =
5231           isIntS16Immediate(N->getOperand(2), SImmOperand2);
5232       bool isOperand3IntS16Immediate =
5233           isIntS16Immediate(N->getOperand(3), SImmOperand3);
5234       // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5235       // reg or imm + imm. The imm + imm form will be optimized to either an
5236       // unconditional trap or a nop in a later pass.
5237       if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5238         Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5239       else if (isOperand3IntS16Immediate)
5240         // The 2nd and 3rd operands are reg + imm.
5241         Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5242       else {
5243         // The 2nd and 3rd operands are imm + reg.
5244         bool isOperand4IntS16Immediate =
5245             isIntS16Immediate(N->getOperand(4), SImmOperand4);
5246         (void)isOperand4IntS16Immediate;
5247         assert(isOperand4IntS16Immediate &&
5248                "The 4th operand is not an Immediate");
5249         // We need to flip the condition immediate TO.
5250         int16_t TO = int(SImmOperand4) & 0x1F;
5251         // We swap the first and second bit of TO if they are not same.
5252         if ((TO & 0x1) != ((TO & 0x2) >> 1))
5253           TO = (TO & 0x1) ? TO + 1 : TO - 1;
5254         // We swap the fourth and fifth bit of TO if they are not same.
5255         if ((TO & 0x8) != ((TO & 0x10) >> 1))
5256           TO = (TO & 0x8) ? TO + 8 : TO - 8;
5257         Ops[0] = getI32Imm(TO, dl);
5258         Ops[1] = N->getOperand(3);
5259         Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5260       }
5261       OpsWithMD = {Ops[0], Ops[1], Ops[2]};
5262       MDIndex = 5;
5263     } else {
5264       OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)};
5265       MDIndex = 3;
5266     }
5267 
5268     if (N->getNumOperands() > MDIndex) {
5269       SDValue MDV = N->getOperand(MDIndex);
5270       const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
5271       assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!");
5272       assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>(
5273            MD->getOperand(0))->getString().equals("ppc-trap-reason"))
5274            && "Unsupported annotation data type!");
5275       for (unsigned i = 1; i < MD->getNumOperands(); i++) {
5276         assert(isa<MDString>(MD->getOperand(i)) &&
5277                "Invalid data type for annotation ppc-trap-reason!");
5278         OpsWithMD.push_back(
5279             getI32Imm(std::stoi(cast<MDString>(
5280                       MD->getOperand(i))->getString().str()), dl));
5281       }
5282     }
5283     OpsWithMD.push_back(N->getOperand(0)); // chain
5284     CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD);
5285     return;
5286   }
5287 
5288   case ISD::INTRINSIC_WO_CHAIN: {
5289     // We emit the PPC::FSELS instruction here because of type conflicts with
5290     // the comparison operand. The FSELS instruction is defined to use an 8-byte
5291     // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5292     // value for the comparison. When selecting through a .td file, a type
5293     // error is raised. Must check this first so we never break on the
5294     // !Subtarget->isISA3_1() check.
5295     auto IntID = N->getConstantOperandVal(0);
5296     if (IntID == Intrinsic::ppc_fsels) {
5297       SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5298       CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5299       return;
5300     }
5301 
5302     if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5303       auto Pred = N->getConstantOperandVal(1);
5304       unsigned Opcode =
5305           IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5306       unsigned SubReg = 0;
5307       unsigned ShiftVal = 0;
5308       bool Reverse = false;
5309       switch (Pred) {
5310       case 0:
5311         SubReg = PPC::sub_eq;
5312         ShiftVal = 1;
5313         break;
5314       case 1:
5315         SubReg = PPC::sub_eq;
5316         ShiftVal = 1;
5317         Reverse = true;
5318         break;
5319       case 2:
5320         SubReg = PPC::sub_lt;
5321         ShiftVal = 3;
5322         break;
5323       case 3:
5324         SubReg = PPC::sub_lt;
5325         ShiftVal = 3;
5326         Reverse = true;
5327         break;
5328       case 4:
5329         SubReg = PPC::sub_gt;
5330         ShiftVal = 2;
5331         break;
5332       case 5:
5333         SubReg = PPC::sub_gt;
5334         ShiftVal = 2;
5335         Reverse = true;
5336         break;
5337       case 6:
5338         SubReg = PPC::sub_un;
5339         break;
5340       case 7:
5341         SubReg = PPC::sub_un;
5342         Reverse = true;
5343         break;
5344       }
5345 
5346       EVT VTs[] = {MVT::v16i8, MVT::Glue};
5347       SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5348                        CurDAG->getTargetConstant(0, dl, MVT::i32)};
5349       SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5350       SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5351       // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5352       // MFOCRF and shift/negate the value.
5353       if (Subtarget->isISA3_1()) {
5354         SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5355         SDValue CRBit = SDValue(
5356             CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5357                                    CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5358             0);
5359         CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5360                              CRBit);
5361       } else {
5362         SDValue Move =
5363             SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5364                                            BCDOp.getValue(1)),
5365                     0);
5366         SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5367                          getI32Imm(31, dl), getI32Imm(31, dl)};
5368         if (!Reverse)
5369           CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5370         else {
5371           SDValue Shift = SDValue(
5372               CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5373           CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5374         }
5375       }
5376       return;
5377     }
5378 
5379     if (!Subtarget->isISA3_1())
5380       break;
5381     unsigned Opcode = 0;
5382     switch (IntID) {
5383     default:
5384       break;
5385     case Intrinsic::ppc_altivec_vstribr_p:
5386       Opcode = PPC::VSTRIBR_rec;
5387       break;
5388     case Intrinsic::ppc_altivec_vstribl_p:
5389       Opcode = PPC::VSTRIBL_rec;
5390       break;
5391     case Intrinsic::ppc_altivec_vstrihr_p:
5392       Opcode = PPC::VSTRIHR_rec;
5393       break;
5394     case Intrinsic::ppc_altivec_vstrihl_p:
5395       Opcode = PPC::VSTRIHL_rec;
5396       break;
5397     }
5398     if (!Opcode)
5399       break;
5400 
5401     // Generate the appropriate vector string isolate intrinsic to match.
5402     EVT VTs[] = {MVT::v16i8, MVT::Glue};
5403     SDValue VecStrOp =
5404         SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5405     // Vector string isolate instructions update the EQ bit of CR6.
5406     // Generate a SETBC instruction to extract the bit and place it in a GPR.
5407     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5408     SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5409     SDValue CRBit = SDValue(
5410         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5411                                CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5412         0);
5413     CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5414     return;
5415   }
5416 
5417   case ISD::SETCC:
5418   case ISD::STRICT_FSETCC:
5419   case ISD::STRICT_FSETCCS:
5420     if (trySETCC(N))
5421       return;
5422     break;
5423   // These nodes will be transformed into GETtlsADDR32 node, which
5424   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5425   case PPCISD::ADDI_TLSLD_L_ADDR:
5426   case PPCISD::ADDI_TLSGD_L_ADDR: {
5427     const Module *Mod = MF->getFunction().getParent();
5428     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5429         !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5430         Mod->getPICLevel() == PICLevel::SmallPIC)
5431       break;
5432     // Attach global base pointer on GETtlsADDR32 node in order to
5433     // generate secure plt code for TLS symbols.
5434     getGlobalBaseReg();
5435   } break;
5436   case PPCISD::CALL: {
5437     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5438         !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5439         !Subtarget->isTargetELF())
5440       break;
5441 
5442     SDValue Op = N->getOperand(1);
5443 
5444     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5445       if (GA->getTargetFlags() == PPCII::MO_PLT)
5446         getGlobalBaseReg();
5447     }
5448     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5449       if (ES->getTargetFlags() == PPCII::MO_PLT)
5450         getGlobalBaseReg();
5451     }
5452   }
5453     break;
5454 
5455   case PPCISD::GlobalBaseReg:
5456     ReplaceNode(N, getGlobalBaseReg());
5457     return;
5458 
5459   case ISD::FrameIndex:
5460     selectFrameIndex(N, N);
5461     return;
5462 
5463   case PPCISD::MFOCRF: {
5464     SDValue InGlue = N->getOperand(1);
5465     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5466                                           N->getOperand(0), InGlue));
5467     return;
5468   }
5469 
5470   case PPCISD::READ_TIME_BASE:
5471     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5472                                           MVT::Other, N->getOperand(0)));
5473     return;
5474 
5475   case PPCISD::SRA_ADDZE: {
5476     SDValue N0 = N->getOperand(0);
5477     SDValue ShiftAmt =
5478       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5479                                   getConstantIntValue(), dl,
5480                                   N->getValueType(0));
5481     if (N->getValueType(0) == MVT::i64) {
5482       SDNode *Op =
5483         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5484                                N0, ShiftAmt);
5485       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5486                            SDValue(Op, 1));
5487       return;
5488     } else {
5489       assert(N->getValueType(0) == MVT::i32 &&
5490              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5491       SDNode *Op =
5492         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5493                                N0, ShiftAmt);
5494       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5495                            SDValue(Op, 1));
5496       return;
5497     }
5498   }
5499 
5500   case ISD::STORE: {
5501     // Change TLS initial-exec (or TLS local-exec on AIX) D-form stores to
5502     // X-form stores.
5503     StoreSDNode *ST = cast<StoreSDNode>(N);
5504     if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()) &&
5505         ST->getAddressingMode() != ISD::PRE_INC)
5506       if (tryTLSXFormStore(ST))
5507         return;
5508     break;
5509   }
5510   case ISD::LOAD: {
5511     // Handle preincrement loads.
5512     LoadSDNode *LD = cast<LoadSDNode>(N);
5513     EVT LoadedVT = LD->getMemoryVT();
5514 
5515     // Normal loads are handled by code generated from the .td file.
5516     if (LD->getAddressingMode() != ISD::PRE_INC) {
5517       // Change TLS initial-exec (or TLS local-exec on AIX) D-form loads to
5518       // X-form loads.
5519       if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()))
5520         if (tryTLSXFormLoad(LD))
5521           return;
5522       break;
5523     }
5524 
5525     SDValue Offset = LD->getOffset();
5526     if (Offset.getOpcode() == ISD::TargetConstant ||
5527         Offset.getOpcode() == ISD::TargetGlobalAddress) {
5528 
5529       unsigned Opcode;
5530       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5531       if (LD->getValueType(0) != MVT::i64) {
5532         // Handle PPC32 integer and normal FP loads.
5533         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5534         switch (LoadedVT.getSimpleVT().SimpleTy) {
5535           default: llvm_unreachable("Invalid PPC load type!");
5536           case MVT::f64: Opcode = PPC::LFDU; break;
5537           case MVT::f32: Opcode = PPC::LFSU; break;
5538           case MVT::i32: Opcode = PPC::LWZU; break;
5539           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5540           case MVT::i1:
5541           case MVT::i8:  Opcode = PPC::LBZU; break;
5542         }
5543       } else {
5544         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5545         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5546         switch (LoadedVT.getSimpleVT().SimpleTy) {
5547           default: llvm_unreachable("Invalid PPC load type!");
5548           case MVT::i64: Opcode = PPC::LDU; break;
5549           case MVT::i32: Opcode = PPC::LWZU8; break;
5550           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5551           case MVT::i1:
5552           case MVT::i8:  Opcode = PPC::LBZU8; break;
5553         }
5554       }
5555 
5556       SDValue Chain = LD->getChain();
5557       SDValue Base = LD->getBasePtr();
5558       SDValue Ops[] = { Offset, Base, Chain };
5559       SDNode *MN = CurDAG->getMachineNode(
5560           Opcode, dl, LD->getValueType(0),
5561           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5562       transferMemOperands(N, MN);
5563       ReplaceNode(N, MN);
5564       return;
5565     } else {
5566       unsigned Opcode;
5567       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5568       if (LD->getValueType(0) != MVT::i64) {
5569         // Handle PPC32 integer and normal FP loads.
5570         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5571         switch (LoadedVT.getSimpleVT().SimpleTy) {
5572           default: llvm_unreachable("Invalid PPC load type!");
5573           case MVT::f64: Opcode = PPC::LFDUX; break;
5574           case MVT::f32: Opcode = PPC::LFSUX; break;
5575           case MVT::i32: Opcode = PPC::LWZUX; break;
5576           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5577           case MVT::i1:
5578           case MVT::i8:  Opcode = PPC::LBZUX; break;
5579         }
5580       } else {
5581         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5582         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5583                "Invalid sext update load");
5584         switch (LoadedVT.getSimpleVT().SimpleTy) {
5585           default: llvm_unreachable("Invalid PPC load type!");
5586           case MVT::i64: Opcode = PPC::LDUX; break;
5587           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
5588           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5589           case MVT::i1:
5590           case MVT::i8:  Opcode = PPC::LBZUX8; break;
5591         }
5592       }
5593 
5594       SDValue Chain = LD->getChain();
5595       SDValue Base = LD->getBasePtr();
5596       SDValue Ops[] = { Base, Offset, Chain };
5597       SDNode *MN = CurDAG->getMachineNode(
5598           Opcode, dl, LD->getValueType(0),
5599           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5600       transferMemOperands(N, MN);
5601       ReplaceNode(N, MN);
5602       return;
5603     }
5604   }
5605 
5606   case ISD::AND:
5607     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5608     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
5609         tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
5610       return;
5611 
5612     // Other cases are autogenerated.
5613     break;
5614   case ISD::OR: {
5615     if (N->getValueType(0) == MVT::i32)
5616       if (tryBitfieldInsert(N))
5617         return;
5618 
5619     int16_t Imm;
5620     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5621         isIntS16Immediate(N->getOperand(1), Imm)) {
5622       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5623 
5624       // If this is equivalent to an add, then we can fold it with the
5625       // FrameIndex calculation.
5626       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5627         selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5628         return;
5629       }
5630     }
5631 
5632     // If this is 'or' against an imm with consecutive ones and both sides zero,
5633     // try to emit rldimi
5634     if (tryAsSingleRLDIMI(N))
5635       return;
5636 
5637     // OR with a 32-bit immediate can be handled by ori + oris
5638     // without creating an immediate in a GPR.
5639     uint64_t Imm64 = 0;
5640     bool IsPPC64 = Subtarget->isPPC64();
5641     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5642         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5643       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5644       uint64_t ImmHi = Imm64 >> 16;
5645       uint64_t ImmLo = Imm64 & 0xFFFF;
5646       if (ImmHi != 0 && ImmLo != 0) {
5647         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5648                                             N->getOperand(0),
5649                                             getI16Imm(ImmLo, dl));
5650         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5651         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5652         return;
5653       }
5654     }
5655 
5656     // Other cases are autogenerated.
5657     break;
5658   }
5659   case ISD::XOR: {
5660     // XOR with a 32-bit immediate can be handled by xori + xoris
5661     // without creating an immediate in a GPR.
5662     uint64_t Imm64 = 0;
5663     bool IsPPC64 = Subtarget->isPPC64();
5664     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5665         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5666       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5667       uint64_t ImmHi = Imm64 >> 16;
5668       uint64_t ImmLo = Imm64 & 0xFFFF;
5669       if (ImmHi != 0 && ImmLo != 0) {
5670         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5671                                             N->getOperand(0),
5672                                             getI16Imm(ImmLo, dl));
5673         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5674         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5675         return;
5676       }
5677     }
5678 
5679     break;
5680   }
5681   case ISD::ADD: {
5682     int16_t Imm;
5683     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5684         isIntS16Immediate(N->getOperand(1), Imm)) {
5685       selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5686       return;
5687     }
5688 
5689     break;
5690   }
5691   case ISD::SHL: {
5692     unsigned Imm, SH, MB, ME;
5693     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5694         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5695       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5696                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5697                           getI32Imm(ME, dl) };
5698       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5699       return;
5700     }
5701 
5702     // Other cases are autogenerated.
5703     break;
5704   }
5705   case ISD::SRL: {
5706     unsigned Imm, SH, MB, ME;
5707     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5708         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5709       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5710                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5711                           getI32Imm(ME, dl) };
5712       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5713       return;
5714     }
5715 
5716     // Other cases are autogenerated.
5717     break;
5718   }
5719   case ISD::MUL: {
5720     SDValue Op1 = N->getOperand(1);
5721     if (Op1.getOpcode() != ISD::Constant ||
5722         (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5723       break;
5724 
5725     // If the multiplier fits int16, we can handle it with mulli.
5726     int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
5727     unsigned Shift = llvm::countr_zero<uint64_t>(Imm);
5728     if (isInt<16>(Imm) || !Shift)
5729       break;
5730 
5731     // If the shifted value fits int16, we can do this transformation:
5732     // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5733     // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5734     uint64_t ImmSh = Imm >> Shift;
5735     if (!isInt<16>(ImmSh))
5736       break;
5737 
5738     uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5739     if (Op1.getValueType() == MVT::i64) {
5740       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5741       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5742                                                N->getOperand(0), SDImm);
5743 
5744       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5745                        getI32Imm(63 - Shift, dl)};
5746       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5747       return;
5748     } else {
5749       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5750       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5751                                               N->getOperand(0), SDImm);
5752 
5753       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5754                        getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5755       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5756       return;
5757     }
5758     break;
5759   }
5760   // FIXME: Remove this once the ANDI glue bug is fixed:
5761   case PPCISD::ANDI_rec_1_EQ_BIT:
5762   case PPCISD::ANDI_rec_1_GT_BIT: {
5763     if (!ANDIGlueBug)
5764       break;
5765 
5766     EVT InVT = N->getOperand(0).getValueType();
5767     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5768            "Invalid input type for ANDI_rec_1_EQ_BIT");
5769 
5770     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5771     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5772                                         N->getOperand(0),
5773                                         CurDAG->getTargetConstant(1, dl, InVT)),
5774                  0);
5775     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5776     SDValue SRIdxVal = CurDAG->getTargetConstant(
5777         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5778         dl, MVT::i32);
5779 
5780     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5781                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5782     return;
5783   }
5784   case ISD::SELECT_CC: {
5785     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5786     EVT PtrVT =
5787         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5788     bool isPPC64 = (PtrVT == MVT::i64);
5789 
5790     // If this is a select of i1 operands, we'll pattern match it.
5791     if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5792       break;
5793 
5794     if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5795       bool NeedSwapOps = false;
5796       bool IsUnCmp = false;
5797       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5798         SDValue LHS = N->getOperand(0);
5799         SDValue RHS = N->getOperand(1);
5800         if (NeedSwapOps)
5801           std::swap(LHS, RHS);
5802 
5803         // Make use of SelectCC to generate the comparison to set CR bits, for
5804         // equality comparisons having one literal operand, SelectCC probably
5805         // doesn't need to materialize the whole literal and just use xoris to
5806         // check it first, it leads the following comparison result can't
5807         // exactly represent GT/LT relationship. So to avoid this we specify
5808         // SETGT/SETUGT here instead of SETEQ.
5809         SDValue GenCC =
5810             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5811         CurDAG->SelectNodeTo(
5812             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5813             N->getValueType(0), GenCC);
5814         NumP9Setb++;
5815         return;
5816       }
5817     }
5818 
5819     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5820     if (!isPPC64 && isNullConstant(N->getOperand(1)) &&
5821         isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) &&
5822         CC == ISD::SETNE &&
5823         // FIXME: Implement this optzn for PPC64.
5824         N->getValueType(0) == MVT::i32) {
5825       SDNode *Tmp =
5826           CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5827                                  N->getOperand(0), getI32Imm(~0U, dl));
5828       CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5829                            N->getOperand(0), SDValue(Tmp, 1));
5830       return;
5831     }
5832 
5833     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5834 
5835     if (N->getValueType(0) == MVT::i1) {
5836       // An i1 select is: (c & t) | (!c & f).
5837       bool Inv;
5838       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5839 
5840       unsigned SRI;
5841       switch (Idx) {
5842       default: llvm_unreachable("Invalid CC index");
5843       case 0: SRI = PPC::sub_lt; break;
5844       case 1: SRI = PPC::sub_gt; break;
5845       case 2: SRI = PPC::sub_eq; break;
5846       case 3: SRI = PPC::sub_un; break;
5847       }
5848 
5849       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5850 
5851       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5852                                               CCBit, CCBit), 0);
5853       SDValue C =    Inv ? NotCCBit : CCBit,
5854               NotC = Inv ? CCBit    : NotCCBit;
5855 
5856       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5857                                            C, N->getOperand(2)), 0);
5858       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5859                                               NotC, N->getOperand(3)), 0);
5860 
5861       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5862       return;
5863     }
5864 
5865     unsigned BROpc =
5866         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5867 
5868     unsigned SelectCCOp;
5869     if (N->getValueType(0) == MVT::i32)
5870       SelectCCOp = PPC::SELECT_CC_I4;
5871     else if (N->getValueType(0) == MVT::i64)
5872       SelectCCOp = PPC::SELECT_CC_I8;
5873     else if (N->getValueType(0) == MVT::f32) {
5874       if (Subtarget->hasP8Vector())
5875         SelectCCOp = PPC::SELECT_CC_VSSRC;
5876       else if (Subtarget->hasSPE())
5877         SelectCCOp = PPC::SELECT_CC_SPE4;
5878       else
5879         SelectCCOp = PPC::SELECT_CC_F4;
5880     } else if (N->getValueType(0) == MVT::f64) {
5881       if (Subtarget->hasVSX())
5882         SelectCCOp = PPC::SELECT_CC_VSFRC;
5883       else if (Subtarget->hasSPE())
5884         SelectCCOp = PPC::SELECT_CC_SPE;
5885       else
5886         SelectCCOp = PPC::SELECT_CC_F8;
5887     } else if (N->getValueType(0) == MVT::f128)
5888       SelectCCOp = PPC::SELECT_CC_F16;
5889     else if (Subtarget->hasSPE())
5890       SelectCCOp = PPC::SELECT_CC_SPE;
5891     else if (N->getValueType(0) == MVT::v2f64 ||
5892              N->getValueType(0) == MVT::v2i64)
5893       SelectCCOp = PPC::SELECT_CC_VSRC;
5894     else
5895       SelectCCOp = PPC::SELECT_CC_VRRC;
5896 
5897     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5898                         getI32Imm(BROpc, dl) };
5899     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5900     return;
5901   }
5902   case ISD::VECTOR_SHUFFLE:
5903     if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5904                                 N->getValueType(0) == MVT::v2i64)) {
5905       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5906 
5907       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5908               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5909       unsigned DM[2];
5910 
5911       for (int i = 0; i < 2; ++i)
5912         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5913           DM[i] = 0;
5914         else
5915           DM[i] = 1;
5916 
5917       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5918           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5919           isa<LoadSDNode>(Op1.getOperand(0))) {
5920         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5921         SDValue Base, Offset;
5922 
5923         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5924             (LD->getMemoryVT() == MVT::f64 ||
5925              LD->getMemoryVT() == MVT::i64) &&
5926             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5927           SDValue Chain = LD->getChain();
5928           SDValue Ops[] = { Base, Offset, Chain };
5929           MachineMemOperand *MemOp = LD->getMemOperand();
5930           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5931                                               N->getValueType(0), Ops);
5932           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5933           return;
5934         }
5935       }
5936 
5937       // For little endian, we must swap the input operands and adjust
5938       // the mask elements (reverse and invert them).
5939       if (Subtarget->isLittleEndian()) {
5940         std::swap(Op1, Op2);
5941         unsigned tmp = DM[0];
5942         DM[0] = 1 - DM[1];
5943         DM[1] = 1 - tmp;
5944       }
5945 
5946       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5947                                               MVT::i32);
5948       SDValue Ops[] = { Op1, Op2, DMV };
5949       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5950       return;
5951     }
5952 
5953     break;
5954   case PPCISD::BDNZ:
5955   case PPCISD::BDZ: {
5956     bool IsPPC64 = Subtarget->isPPC64();
5957     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5958     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5959                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5960                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5961                          MVT::Other, Ops);
5962     return;
5963   }
5964   case PPCISD::COND_BRANCH: {
5965     // Op #0 is the Chain.
5966     // Op #1 is the PPC::PRED_* number.
5967     // Op #2 is the CR#
5968     // Op #3 is the Dest MBB
5969     // Op #4 is the Flag.
5970     // Prevent PPC::PRED_* from being selected into LI.
5971     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5972     if (EnableBranchHint)
5973       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5974 
5975     SDValue Pred = getI32Imm(PCC, dl);
5976     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5977       N->getOperand(0), N->getOperand(4) };
5978     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5979     return;
5980   }
5981   case ISD::BR_CC: {
5982     if (tryFoldSWTestBRCC(N))
5983       return;
5984     if (trySelectLoopCountIntrinsic(N))
5985       return;
5986     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5987     unsigned PCC =
5988         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
5989 
5990     if (N->getOperand(2).getValueType() == MVT::i1) {
5991       unsigned Opc;
5992       bool Swap;
5993       switch (PCC) {
5994       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5995       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5996       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5997       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5998       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5999       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
6000       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
6001       }
6002 
6003       // A signed comparison of i1 values produces the opposite result to an
6004       // unsigned one if the condition code includes less-than or greater-than.
6005       // This is because 1 is the most negative signed i1 number and the most
6006       // positive unsigned i1 number. The CR-logical operations used for such
6007       // comparisons are non-commutative so for signed comparisons vs. unsigned
6008       // ones, the input operands just need to be swapped.
6009       if (ISD::isSignedIntSetCC(CC))
6010         Swap = !Swap;
6011 
6012       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
6013                                              N->getOperand(Swap ? 3 : 2),
6014                                              N->getOperand(Swap ? 2 : 3)), 0);
6015       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
6016                            N->getOperand(0));
6017       return;
6018     }
6019 
6020     if (EnableBranchHint)
6021       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
6022 
6023     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
6024     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
6025                         N->getOperand(4), N->getOperand(0) };
6026     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
6027     return;
6028   }
6029   case ISD::BRIND: {
6030     // FIXME: Should custom lower this.
6031     SDValue Chain = N->getOperand(0);
6032     SDValue Target = N->getOperand(1);
6033     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
6034     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
6035     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
6036                                            Chain), 0);
6037     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
6038     return;
6039   }
6040   case PPCISD::TOC_ENTRY: {
6041     const bool isPPC64 = Subtarget->isPPC64();
6042     const bool isELFABI = Subtarget->isSVR4ABI();
6043     const bool isAIXABI = Subtarget->isAIXABI();
6044 
6045     // PowerPC only support small, medium and large code model.
6046     const CodeModel::Model CModel = TM.getCodeModel();
6047     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
6048            "PowerPC doesn't support tiny or kernel code models.");
6049 
6050     if (isAIXABI && CModel == CodeModel::Medium)
6051       report_fatal_error("Medium code model is not supported on AIX.");
6052 
6053     // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
6054     // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
6055     // small code model, we need to check for a toc-data attribute.
6056     if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
6057       break;
6058 
6059     auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
6060                                    EVT OperandTy) {
6061       SDValue GA = TocEntry->getOperand(0);
6062       SDValue TocBase = TocEntry->getOperand(1);
6063       SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
6064       transferMemOperands(TocEntry, MN);
6065       ReplaceNode(TocEntry, MN);
6066     };
6067 
6068     // Handle 32-bit small code model.
6069     if (!isPPC64 && CModel == CodeModel::Small) {
6070       // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
6071       // PPC::ADDItoc, or PPC::LWZtoc
6072       if (isELFABI) {
6073         assert(TM.isPositionIndependent() &&
6074                "32-bit ELF can only have TOC entries in position independent"
6075                " code.");
6076         // 32-bit ELF always uses a small code model toc access.
6077         replaceWith(PPC::LWZtoc, N, MVT::i32);
6078         return;
6079       }
6080 
6081       assert(isAIXABI && "ELF ABI already handled");
6082 
6083       if (hasTocDataAttr(N->getOperand(0),
6084                          CurDAG->getDataLayout().getPointerSize())) {
6085         replaceWith(PPC::ADDItoc, N, MVT::i32);
6086         return;
6087       }
6088 
6089       replaceWith(PPC::LWZtoc, N, MVT::i32);
6090       return;
6091     }
6092 
6093     if (isPPC64 && CModel == CodeModel::Small) {
6094       assert(isAIXABI && "ELF ABI handled in common SelectCode");
6095 
6096       if (hasTocDataAttr(N->getOperand(0),
6097                          CurDAG->getDataLayout().getPointerSize())) {
6098         replaceWith(PPC::ADDItoc8, N, MVT::i64);
6099         return;
6100       }
6101       // Break if it doesn't have toc data attribute. Proceed with common
6102       // SelectCode.
6103       break;
6104     }
6105 
6106     assert(CModel != CodeModel::Small && "All small code models handled.");
6107 
6108     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
6109            " ELF/AIX or 32-bit AIX in the following.");
6110 
6111     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
6112     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
6113     // generate two instructions as described below. The first source operand
6114     // is a symbol reference. If it must be toc-referenced according to
6115     // Subtarget, we generate:
6116     // [32-bit AIX]
6117     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
6118     // [64-bit ELF/AIX]
6119     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
6120     // Otherwise we generate:
6121     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
6122     SDValue GA = N->getOperand(0);
6123     SDValue TOCbase = N->getOperand(1);
6124 
6125     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
6126     SDNode *Tmp = CurDAG->getMachineNode(
6127         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
6128 
6129     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
6130       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
6131       // the address.
6132       SDNode *MN = CurDAG->getMachineNode(
6133           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
6134 
6135       transferMemOperands(N, MN);
6136       ReplaceNode(N, MN);
6137       return;
6138     }
6139 
6140     // Build the address relative to the TOC-pointer.
6141     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
6142                                           SDValue(Tmp, 0), GA));
6143     return;
6144   }
6145   case PPCISD::PPC32_PICGOT:
6146     // Generate a PIC-safe GOT reference.
6147     assert(Subtarget->is32BitELFABI() &&
6148            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
6149     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
6150                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
6151                          MVT::i32);
6152     return;
6153 
6154   case PPCISD::VADD_SPLAT: {
6155     // This expands into one of three sequences, depending on whether
6156     // the first operand is odd or even, positive or negative.
6157     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
6158            isa<ConstantSDNode>(N->getOperand(1)) &&
6159            "Invalid operand on VADD_SPLAT!");
6160 
6161     int Elt     = N->getConstantOperandVal(0);
6162     int EltSize = N->getConstantOperandVal(1);
6163     unsigned Opc1, Opc2, Opc3;
6164     EVT VT;
6165 
6166     if (EltSize == 1) {
6167       Opc1 = PPC::VSPLTISB;
6168       Opc2 = PPC::VADDUBM;
6169       Opc3 = PPC::VSUBUBM;
6170       VT = MVT::v16i8;
6171     } else if (EltSize == 2) {
6172       Opc1 = PPC::VSPLTISH;
6173       Opc2 = PPC::VADDUHM;
6174       Opc3 = PPC::VSUBUHM;
6175       VT = MVT::v8i16;
6176     } else {
6177       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
6178       Opc1 = PPC::VSPLTISW;
6179       Opc2 = PPC::VADDUWM;
6180       Opc3 = PPC::VSUBUWM;
6181       VT = MVT::v4i32;
6182     }
6183 
6184     if ((Elt & 1) == 0) {
6185       // Elt is even, in the range [-32,-18] + [16,30].
6186       //
6187       // Convert: VADD_SPLAT elt, size
6188       // Into:    tmp = VSPLTIS[BHW] elt
6189       //          VADDU[BHW]M tmp, tmp
6190       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
6191       SDValue EltVal = getI32Imm(Elt >> 1, dl);
6192       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6193       SDValue TmpVal = SDValue(Tmp, 0);
6194       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
6195       return;
6196     } else if (Elt > 0) {
6197       // Elt is odd and positive, in the range [17,31].
6198       //
6199       // Convert: VADD_SPLAT elt, size
6200       // Into:    tmp1 = VSPLTIS[BHW] elt-16
6201       //          tmp2 = VSPLTIS[BHW] -16
6202       //          VSUBU[BHW]M tmp1, tmp2
6203       SDValue EltVal = getI32Imm(Elt - 16, dl);
6204       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6205       EltVal = getI32Imm(-16, dl);
6206       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6207       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
6208                                             SDValue(Tmp2, 0)));
6209       return;
6210     } else {
6211       // Elt is odd and negative, in the range [-31,-17].
6212       //
6213       // Convert: VADD_SPLAT elt, size
6214       // Into:    tmp1 = VSPLTIS[BHW] elt+16
6215       //          tmp2 = VSPLTIS[BHW] -16
6216       //          VADDU[BHW]M tmp1, tmp2
6217       SDValue EltVal = getI32Imm(Elt + 16, dl);
6218       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6219       EltVal = getI32Imm(-16, dl);
6220       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6221       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
6222                                             SDValue(Tmp2, 0)));
6223       return;
6224     }
6225   }
6226   case PPCISD::LD_SPLAT: {
6227     // Here we want to handle splat load for type v16i8 and v8i16 when there is
6228     // no direct move, we don't need to use stack for this case. If target has
6229     // direct move, we should be able to get the best selection in the .td file.
6230     if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
6231       break;
6232 
6233     EVT Type = N->getValueType(0);
6234     if (Type != MVT::v16i8 && Type != MVT::v8i16)
6235       break;
6236 
6237     // If the alignment for the load is 16 or bigger, we don't need the
6238     // permutated mask to get the required value. The value must be the 0
6239     // element in big endian target or 7/15 in little endian target in the
6240     // result vsx register of lvx instruction.
6241     // Select the instruction in the .td file.
6242     if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
6243         isOffsetMultipleOf(N, 16))
6244       break;
6245 
6246     SDValue ZeroReg =
6247         CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
6248                             Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
6249     unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
6250     // v16i8 LD_SPLAT addr
6251     // ======>
6252     // Mask = LVSR/LVSL 0, addr
6253     // LoadLow = LVX 0, addr
6254     // Perm = VPERM LoadLow, LoadLow, Mask
6255     // Splat = VSPLTB 15/0, Perm
6256     //
6257     // v8i16 LD_SPLAT addr
6258     // ======>
6259     // Mask = LVSR/LVSL 0, addr
6260     // LoadLow = LVX 0, addr
6261     // LoadHigh = LVX (LI, 1), addr
6262     // Perm = VPERM LoadLow, LoadHigh, Mask
6263     // Splat = VSPLTH 7/0, Perm
6264     unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6265     unsigned SplatElemIndex =
6266         Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6267 
6268     SDNode *Mask = CurDAG->getMachineNode(
6269         Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6270         N->getOperand(1));
6271 
6272     SDNode *LoadLow =
6273         CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6274                                {ZeroReg, N->getOperand(1), N->getOperand(0)});
6275 
6276     SDNode *LoadHigh = LoadLow;
6277     if (Type == MVT::v8i16) {
6278       LoadHigh = CurDAG->getMachineNode(
6279           PPC::LVX, dl, MVT::v16i8, MVT::Other,
6280           {SDValue(CurDAG->getMachineNode(
6281                        LIOpcode, dl, MVT::i32,
6282                        CurDAG->getTargetConstant(1, dl, MVT::i8)),
6283                    0),
6284            N->getOperand(1), SDValue(LoadLow, 1)});
6285     }
6286 
6287     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6288     transferMemOperands(N, LoadHigh);
6289 
6290     SDNode *Perm =
6291         CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6292                                SDValue(LoadHigh, 0), SDValue(Mask, 0));
6293     CurDAG->SelectNodeTo(N, SplatOp, Type,
6294                          CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6295                          SDValue(Perm, 0));
6296     return;
6297   }
6298   }
6299 
6300   SelectCode(N);
6301 }
6302 
6303 // If the target supports the cmpb instruction, do the idiom recognition here.
6304 // We don't do this as a DAG combine because we don't want to do it as nodes
6305 // are being combined (because we might miss part of the eventual idiom). We
6306 // don't want to do it during instruction selection because we want to reuse
6307 // the logic for lowering the masking operations already part of the
6308 // instruction selector.
6309 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6310   SDLoc dl(N);
6311 
6312   assert(N->getOpcode() == ISD::OR &&
6313          "Only OR nodes are supported for CMPB");
6314 
6315   SDValue Res;
6316   if (!Subtarget->hasCMPB())
6317     return Res;
6318 
6319   if (N->getValueType(0) != MVT::i32 &&
6320       N->getValueType(0) != MVT::i64)
6321     return Res;
6322 
6323   EVT VT = N->getValueType(0);
6324 
6325   SDValue RHS, LHS;
6326   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6327   uint64_t Mask = 0, Alt = 0;
6328 
6329   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6330                                uint64_t &Mask, uint64_t &Alt,
6331                                SDValue &LHS, SDValue &RHS) {
6332     if (O.getOpcode() != ISD::SELECT_CC)
6333       return false;
6334     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6335 
6336     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6337         !isa<ConstantSDNode>(O.getOperand(3)))
6338       return false;
6339 
6340     uint64_t PM = O.getConstantOperandVal(2);
6341     uint64_t PAlt = O.getConstantOperandVal(3);
6342     for (b = 0; b < 8; ++b) {
6343       uint64_t Mask = UINT64_C(0xFF) << (8*b);
6344       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6345         break;
6346     }
6347 
6348     if (b == 8)
6349       return false;
6350     Mask |= PM;
6351     Alt  |= PAlt;
6352 
6353     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6354         O.getConstantOperandVal(1) != 0) {
6355       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6356       if (Op0.getOpcode() == ISD::TRUNCATE)
6357         Op0 = Op0.getOperand(0);
6358       if (Op1.getOpcode() == ISD::TRUNCATE)
6359         Op1 = Op1.getOperand(0);
6360 
6361       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6362           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6363           isa<ConstantSDNode>(Op0.getOperand(1))) {
6364 
6365         unsigned Bits = Op0.getValueSizeInBits();
6366         if (b != Bits/8-1)
6367           return false;
6368         if (Op0.getConstantOperandVal(1) != Bits-8)
6369           return false;
6370 
6371         LHS = Op0.getOperand(0);
6372         RHS = Op1.getOperand(0);
6373         return true;
6374       }
6375 
6376       // When we have small integers (i16 to be specific), the form present
6377       // post-legalization uses SETULT in the SELECT_CC for the
6378       // higher-order byte, depending on the fact that the
6379       // even-higher-order bytes are known to all be zero, for example:
6380       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6381       // (so when the second byte is the same, because all higher-order
6382       // bits from bytes 3 and 4 are known to be zero, the result of the
6383       // xor can be at most 255)
6384       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6385           isa<ConstantSDNode>(O.getOperand(1))) {
6386 
6387         uint64_t ULim = O.getConstantOperandVal(1);
6388         if (ULim != (UINT64_C(1) << b*8))
6389           return false;
6390 
6391         // Now we need to make sure that the upper bytes are known to be
6392         // zero.
6393         unsigned Bits = Op0.getValueSizeInBits();
6394         if (!CurDAG->MaskedValueIsZero(
6395                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6396           return false;
6397 
6398         LHS = Op0.getOperand(0);
6399         RHS = Op0.getOperand(1);
6400         return true;
6401       }
6402 
6403       return false;
6404     }
6405 
6406     if (CC != ISD::SETEQ)
6407       return false;
6408 
6409     SDValue Op = O.getOperand(0);
6410     if (Op.getOpcode() == ISD::AND) {
6411       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6412         return false;
6413       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6414         return false;
6415 
6416       SDValue XOR = Op.getOperand(0);
6417       if (XOR.getOpcode() == ISD::TRUNCATE)
6418         XOR = XOR.getOperand(0);
6419       if (XOR.getOpcode() != ISD::XOR)
6420         return false;
6421 
6422       LHS = XOR.getOperand(0);
6423       RHS = XOR.getOperand(1);
6424       return true;
6425     } else if (Op.getOpcode() == ISD::SRL) {
6426       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6427         return false;
6428       unsigned Bits = Op.getValueSizeInBits();
6429       if (b != Bits/8-1)
6430         return false;
6431       if (Op.getConstantOperandVal(1) != Bits-8)
6432         return false;
6433 
6434       SDValue XOR = Op.getOperand(0);
6435       if (XOR.getOpcode() == ISD::TRUNCATE)
6436         XOR = XOR.getOperand(0);
6437       if (XOR.getOpcode() != ISD::XOR)
6438         return false;
6439 
6440       LHS = XOR.getOperand(0);
6441       RHS = XOR.getOperand(1);
6442       return true;
6443     }
6444 
6445     return false;
6446   };
6447 
6448   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6449   while (!Queue.empty()) {
6450     SDValue V = Queue.pop_back_val();
6451 
6452     for (const SDValue &O : V.getNode()->ops()) {
6453       unsigned b = 0;
6454       uint64_t M = 0, A = 0;
6455       SDValue OLHS, ORHS;
6456       if (O.getOpcode() == ISD::OR) {
6457         Queue.push_back(O);
6458       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6459         if (!LHS) {
6460           LHS = OLHS;
6461           RHS = ORHS;
6462           BytesFound[b] = true;
6463           Mask |= M;
6464           Alt  |= A;
6465         } else if ((LHS == ORHS && RHS == OLHS) ||
6466                    (RHS == ORHS && LHS == OLHS)) {
6467           BytesFound[b] = true;
6468           Mask |= M;
6469           Alt  |= A;
6470         } else {
6471           return Res;
6472         }
6473       } else {
6474         return Res;
6475       }
6476     }
6477   }
6478 
6479   unsigned LastB = 0, BCnt = 0;
6480   for (unsigned i = 0; i < 8; ++i)
6481     if (BytesFound[LastB]) {
6482       ++BCnt;
6483       LastB = i;
6484     }
6485 
6486   if (!LastB || BCnt < 2)
6487     return Res;
6488 
6489   // Because we'll be zero-extending the output anyway if don't have a specific
6490   // value for each input byte (via the Mask), we can 'anyext' the inputs.
6491   if (LHS.getValueType() != VT) {
6492     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6493     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6494   }
6495 
6496   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6497 
6498   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6499   if (NonTrivialMask && !Alt) {
6500     // Res = Mask & CMPB
6501     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6502                           CurDAG->getConstant(Mask, dl, VT));
6503   } else if (Alt) {
6504     // Res = (CMPB & Mask) | (~CMPB & Alt)
6505     // Which, as suggested here:
6506     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6507     // can be written as:
6508     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6509     // useful because the (Alt ^ Mask) can be pre-computed.
6510     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6511                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
6512     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6513                           CurDAG->getConstant(Alt, dl, VT));
6514   }
6515 
6516   return Res;
6517 }
6518 
6519 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6520 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6521 // involves constant materialization of a 0 or a 1 or both. If the result of
6522 // the extension is then operated upon by some operator that can be constant
6523 // folded with a constant 0 or 1, and that constant can be materialized using
6524 // only one instruction (like a zero or one), then we should fold in those
6525 // operations with the select.
6526 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6527   if (!Subtarget->useCRBits())
6528     return;
6529 
6530   if (N->getOpcode() != ISD::ZERO_EXTEND &&
6531       N->getOpcode() != ISD::SIGN_EXTEND &&
6532       N->getOpcode() != ISD::ANY_EXTEND)
6533     return;
6534 
6535   if (N->getOperand(0).getValueType() != MVT::i1)
6536     return;
6537 
6538   if (!N->hasOneUse())
6539     return;
6540 
6541   SDLoc dl(N);
6542   EVT VT = N->getValueType(0);
6543   SDValue Cond = N->getOperand(0);
6544   SDValue ConstTrue =
6545     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6546   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6547 
6548   do {
6549     SDNode *User = *N->use_begin();
6550     if (User->getNumOperands() != 2)
6551       break;
6552 
6553     auto TryFold = [this, N, User, dl](SDValue Val) {
6554       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6555       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6556       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6557 
6558       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6559                                             User->getValueType(0), {O0, O1});
6560     };
6561 
6562     // FIXME: When the semantics of the interaction between select and undef
6563     // are clearly defined, it may turn out to be unnecessary to break here.
6564     SDValue TrueRes = TryFold(ConstTrue);
6565     if (!TrueRes || TrueRes.isUndef())
6566       break;
6567     SDValue FalseRes = TryFold(ConstFalse);
6568     if (!FalseRes || FalseRes.isUndef())
6569       break;
6570 
6571     // For us to materialize these using one instruction, we must be able to
6572     // represent them as signed 16-bit integers.
6573     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
6574              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
6575     if (!isInt<16>(True) || !isInt<16>(False))
6576       break;
6577 
6578     // We can replace User with a new SELECT node, and try again to see if we
6579     // can fold the select with its user.
6580     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6581     N = User;
6582     ConstTrue = TrueRes;
6583     ConstFalse = FalseRes;
6584   } while (N->hasOneUse());
6585 }
6586 
6587 void PPCDAGToDAGISel::PreprocessISelDAG() {
6588   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6589 
6590   bool MadeChange = false;
6591   while (Position != CurDAG->allnodes_begin()) {
6592     SDNode *N = &*--Position;
6593     if (N->use_empty())
6594       continue;
6595 
6596     SDValue Res;
6597     switch (N->getOpcode()) {
6598     default: break;
6599     case ISD::OR:
6600       Res = combineToCMPB(N);
6601       break;
6602     }
6603 
6604     if (!Res)
6605       foldBoolExts(Res, N);
6606 
6607     if (Res) {
6608       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
6609       LLVM_DEBUG(N->dump(CurDAG));
6610       LLVM_DEBUG(dbgs() << "\nNew: ");
6611       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6612       LLVM_DEBUG(dbgs() << "\n");
6613 
6614       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6615       MadeChange = true;
6616     }
6617   }
6618 
6619   if (MadeChange)
6620     CurDAG->RemoveDeadNodes();
6621 }
6622 
6623 /// PostprocessISelDAG - Perform some late peephole optimizations
6624 /// on the DAG representation.
6625 void PPCDAGToDAGISel::PostprocessISelDAG() {
6626   // Skip peepholes at -O0.
6627   if (TM.getOptLevel() == CodeGenOpt::None)
6628     return;
6629 
6630   PeepholePPC64();
6631   PeepholeCROps();
6632   PeepholePPC64ZExt();
6633 }
6634 
6635 // Check if all users of this node will become isel where the second operand
6636 // is the constant zero. If this is so, and if we can negate the condition,
6637 // then we can flip the true and false operands. This will allow the zero to
6638 // be folded with the isel so that we don't need to materialize a register
6639 // containing zero.
6640 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6641   for (const SDNode *User : N->uses()) {
6642     if (!User->isMachineOpcode())
6643       return false;
6644     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6645         User->getMachineOpcode() != PPC::SELECT_I8)
6646       return false;
6647 
6648     SDNode *Op1 = User->getOperand(1).getNode();
6649     SDNode *Op2 = User->getOperand(2).getNode();
6650     // If we have a degenerate select with two equal operands, swapping will
6651     // not do anything, and we may run into an infinite loop.
6652     if (Op1 == Op2)
6653       return false;
6654 
6655     if (!Op2->isMachineOpcode())
6656       return false;
6657 
6658     if (Op2->getMachineOpcode() != PPC::LI &&
6659         Op2->getMachineOpcode() != PPC::LI8)
6660       return false;
6661 
6662     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
6663     if (!C)
6664       return false;
6665 
6666     if (!C->isZero())
6667       return false;
6668   }
6669 
6670   return true;
6671 }
6672 
6673 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6674   SmallVector<SDNode *, 4> ToReplace;
6675   for (SDNode *User : N->uses()) {
6676     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6677             User->getMachineOpcode() == PPC::SELECT_I8) &&
6678            "Must have all select users");
6679     ToReplace.push_back(User);
6680   }
6681 
6682   for (SDNode *User : ToReplace) {
6683     SDNode *ResNode =
6684       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6685                              User->getValueType(0), User->getOperand(0),
6686                              User->getOperand(2),
6687                              User->getOperand(1));
6688 
6689     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6690     LLVM_DEBUG(User->dump(CurDAG));
6691     LLVM_DEBUG(dbgs() << "\nNew: ");
6692     LLVM_DEBUG(ResNode->dump(CurDAG));
6693     LLVM_DEBUG(dbgs() << "\n");
6694 
6695     ReplaceUses(User, ResNode);
6696   }
6697 }
6698 
6699 void PPCDAGToDAGISel::PeepholeCROps() {
6700   bool IsModified;
6701   do {
6702     IsModified = false;
6703     for (SDNode &Node : CurDAG->allnodes()) {
6704       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6705       if (!MachineNode || MachineNode->use_empty())
6706         continue;
6707       SDNode *ResNode = MachineNode;
6708 
6709       bool Op1Set   = false, Op1Unset = false,
6710            Op1Not   = false,
6711            Op2Set   = false, Op2Unset = false,
6712            Op2Not   = false;
6713 
6714       unsigned Opcode = MachineNode->getMachineOpcode();
6715       switch (Opcode) {
6716       default: break;
6717       case PPC::CRAND:
6718       case PPC::CRNAND:
6719       case PPC::CROR:
6720       case PPC::CRXOR:
6721       case PPC::CRNOR:
6722       case PPC::CREQV:
6723       case PPC::CRANDC:
6724       case PPC::CRORC: {
6725         SDValue Op = MachineNode->getOperand(1);
6726         if (Op.isMachineOpcode()) {
6727           if (Op.getMachineOpcode() == PPC::CRSET)
6728             Op2Set = true;
6729           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6730             Op2Unset = true;
6731           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6732                     Op.getOperand(0) == Op.getOperand(1)) ||
6733                    Op.getMachineOpcode() == PPC::CRNOT)
6734             Op2Not = true;
6735         }
6736         [[fallthrough]];
6737       }
6738       case PPC::BC:
6739       case PPC::BCn:
6740       case PPC::SELECT_I4:
6741       case PPC::SELECT_I8:
6742       case PPC::SELECT_F4:
6743       case PPC::SELECT_F8:
6744       case PPC::SELECT_SPE:
6745       case PPC::SELECT_SPE4:
6746       case PPC::SELECT_VRRC:
6747       case PPC::SELECT_VSFRC:
6748       case PPC::SELECT_VSSRC:
6749       case PPC::SELECT_VSRC: {
6750         SDValue Op = MachineNode->getOperand(0);
6751         if (Op.isMachineOpcode()) {
6752           if (Op.getMachineOpcode() == PPC::CRSET)
6753             Op1Set = true;
6754           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6755             Op1Unset = true;
6756           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6757                     Op.getOperand(0) == Op.getOperand(1)) ||
6758                    Op.getMachineOpcode() == PPC::CRNOT)
6759             Op1Not = true;
6760         }
6761         }
6762         break;
6763       }
6764 
6765       bool SelectSwap = false;
6766       switch (Opcode) {
6767       default: break;
6768       case PPC::CRAND:
6769         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6770           // x & x = x
6771           ResNode = MachineNode->getOperand(0).getNode();
6772         else if (Op1Set)
6773           // 1 & y = y
6774           ResNode = MachineNode->getOperand(1).getNode();
6775         else if (Op2Set)
6776           // x & 1 = x
6777           ResNode = MachineNode->getOperand(0).getNode();
6778         else if (Op1Unset || Op2Unset)
6779           // x & 0 = 0 & y = 0
6780           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6781                                            MVT::i1);
6782         else if (Op1Not)
6783           // ~x & y = andc(y, x)
6784           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6785                                            MVT::i1, MachineNode->getOperand(1),
6786                                            MachineNode->getOperand(0).
6787                                              getOperand(0));
6788         else if (Op2Not)
6789           // x & ~y = andc(x, y)
6790           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6791                                            MVT::i1, MachineNode->getOperand(0),
6792                                            MachineNode->getOperand(1).
6793                                              getOperand(0));
6794         else if (AllUsersSelectZero(MachineNode)) {
6795           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6796                                            MVT::i1, MachineNode->getOperand(0),
6797                                            MachineNode->getOperand(1));
6798           SelectSwap = true;
6799         }
6800         break;
6801       case PPC::CRNAND:
6802         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6803           // nand(x, x) -> nor(x, x)
6804           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6805                                            MVT::i1, MachineNode->getOperand(0),
6806                                            MachineNode->getOperand(0));
6807         else if (Op1Set)
6808           // nand(1, y) -> nor(y, y)
6809           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6810                                            MVT::i1, MachineNode->getOperand(1),
6811                                            MachineNode->getOperand(1));
6812         else if (Op2Set)
6813           // nand(x, 1) -> nor(x, x)
6814           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6815                                            MVT::i1, MachineNode->getOperand(0),
6816                                            MachineNode->getOperand(0));
6817         else if (Op1Unset || Op2Unset)
6818           // nand(x, 0) = nand(0, y) = 1
6819           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6820                                            MVT::i1);
6821         else if (Op1Not)
6822           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6823           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6824                                            MVT::i1, MachineNode->getOperand(0).
6825                                                       getOperand(0),
6826                                            MachineNode->getOperand(1));
6827         else if (Op2Not)
6828           // nand(x, ~y) = ~x | y = orc(y, x)
6829           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6830                                            MVT::i1, MachineNode->getOperand(1).
6831                                                       getOperand(0),
6832                                            MachineNode->getOperand(0));
6833         else if (AllUsersSelectZero(MachineNode)) {
6834           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6835                                            MVT::i1, MachineNode->getOperand(0),
6836                                            MachineNode->getOperand(1));
6837           SelectSwap = true;
6838         }
6839         break;
6840       case PPC::CROR:
6841         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6842           // x | x = x
6843           ResNode = MachineNode->getOperand(0).getNode();
6844         else if (Op1Set || Op2Set)
6845           // x | 1 = 1 | y = 1
6846           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6847                                            MVT::i1);
6848         else if (Op1Unset)
6849           // 0 | y = y
6850           ResNode = MachineNode->getOperand(1).getNode();
6851         else if (Op2Unset)
6852           // x | 0 = x
6853           ResNode = MachineNode->getOperand(0).getNode();
6854         else if (Op1Not)
6855           // ~x | y = orc(y, x)
6856           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6857                                            MVT::i1, MachineNode->getOperand(1),
6858                                            MachineNode->getOperand(0).
6859                                              getOperand(0));
6860         else if (Op2Not)
6861           // x | ~y = orc(x, y)
6862           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6863                                            MVT::i1, MachineNode->getOperand(0),
6864                                            MachineNode->getOperand(1).
6865                                              getOperand(0));
6866         else if (AllUsersSelectZero(MachineNode)) {
6867           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6868                                            MVT::i1, MachineNode->getOperand(0),
6869                                            MachineNode->getOperand(1));
6870           SelectSwap = true;
6871         }
6872         break;
6873       case PPC::CRXOR:
6874         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6875           // xor(x, x) = 0
6876           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6877                                            MVT::i1);
6878         else if (Op1Set)
6879           // xor(1, y) -> nor(y, y)
6880           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6881                                            MVT::i1, MachineNode->getOperand(1),
6882                                            MachineNode->getOperand(1));
6883         else if (Op2Set)
6884           // xor(x, 1) -> nor(x, x)
6885           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6886                                            MVT::i1, MachineNode->getOperand(0),
6887                                            MachineNode->getOperand(0));
6888         else if (Op1Unset)
6889           // xor(0, y) = y
6890           ResNode = MachineNode->getOperand(1).getNode();
6891         else if (Op2Unset)
6892           // xor(x, 0) = x
6893           ResNode = MachineNode->getOperand(0).getNode();
6894         else if (Op1Not)
6895           // xor(~x, y) = eqv(x, y)
6896           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6897                                            MVT::i1, MachineNode->getOperand(0).
6898                                                       getOperand(0),
6899                                            MachineNode->getOperand(1));
6900         else if (Op2Not)
6901           // xor(x, ~y) = eqv(x, y)
6902           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6903                                            MVT::i1, MachineNode->getOperand(0),
6904                                            MachineNode->getOperand(1).
6905                                              getOperand(0));
6906         else if (AllUsersSelectZero(MachineNode)) {
6907           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6908                                            MVT::i1, MachineNode->getOperand(0),
6909                                            MachineNode->getOperand(1));
6910           SelectSwap = true;
6911         }
6912         break;
6913       case PPC::CRNOR:
6914         if (Op1Set || Op2Set)
6915           // nor(1, y) -> 0
6916           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6917                                            MVT::i1);
6918         else if (Op1Unset)
6919           // nor(0, y) = ~y -> nor(y, y)
6920           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6921                                            MVT::i1, MachineNode->getOperand(1),
6922                                            MachineNode->getOperand(1));
6923         else if (Op2Unset)
6924           // nor(x, 0) = ~x
6925           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6926                                            MVT::i1, MachineNode->getOperand(0),
6927                                            MachineNode->getOperand(0));
6928         else if (Op1Not)
6929           // nor(~x, y) = andc(x, y)
6930           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6931                                            MVT::i1, MachineNode->getOperand(0).
6932                                                       getOperand(0),
6933                                            MachineNode->getOperand(1));
6934         else if (Op2Not)
6935           // nor(x, ~y) = andc(y, x)
6936           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6937                                            MVT::i1, MachineNode->getOperand(1).
6938                                                       getOperand(0),
6939                                            MachineNode->getOperand(0));
6940         else if (AllUsersSelectZero(MachineNode)) {
6941           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6942                                            MVT::i1, MachineNode->getOperand(0),
6943                                            MachineNode->getOperand(1));
6944           SelectSwap = true;
6945         }
6946         break;
6947       case PPC::CREQV:
6948         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6949           // eqv(x, x) = 1
6950           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6951                                            MVT::i1);
6952         else if (Op1Set)
6953           // eqv(1, y) = y
6954           ResNode = MachineNode->getOperand(1).getNode();
6955         else if (Op2Set)
6956           // eqv(x, 1) = x
6957           ResNode = MachineNode->getOperand(0).getNode();
6958         else if (Op1Unset)
6959           // eqv(0, y) = ~y -> nor(y, y)
6960           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6961                                            MVT::i1, MachineNode->getOperand(1),
6962                                            MachineNode->getOperand(1));
6963         else if (Op2Unset)
6964           // eqv(x, 0) = ~x
6965           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6966                                            MVT::i1, MachineNode->getOperand(0),
6967                                            MachineNode->getOperand(0));
6968         else if (Op1Not)
6969           // eqv(~x, y) = xor(x, y)
6970           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6971                                            MVT::i1, MachineNode->getOperand(0).
6972                                                       getOperand(0),
6973                                            MachineNode->getOperand(1));
6974         else if (Op2Not)
6975           // eqv(x, ~y) = xor(x, y)
6976           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6977                                            MVT::i1, MachineNode->getOperand(0),
6978                                            MachineNode->getOperand(1).
6979                                              getOperand(0));
6980         else if (AllUsersSelectZero(MachineNode)) {
6981           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6982                                            MVT::i1, MachineNode->getOperand(0),
6983                                            MachineNode->getOperand(1));
6984           SelectSwap = true;
6985         }
6986         break;
6987       case PPC::CRANDC:
6988         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6989           // andc(x, x) = 0
6990           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6991                                            MVT::i1);
6992         else if (Op1Set)
6993           // andc(1, y) = ~y
6994           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6995                                            MVT::i1, MachineNode->getOperand(1),
6996                                            MachineNode->getOperand(1));
6997         else if (Op1Unset || Op2Set)
6998           // andc(0, y) = andc(x, 1) = 0
6999           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
7000                                            MVT::i1);
7001         else if (Op2Unset)
7002           // andc(x, 0) = x
7003           ResNode = MachineNode->getOperand(0).getNode();
7004         else if (Op1Not)
7005           // andc(~x, y) = ~(x | y) = nor(x, y)
7006           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7007                                            MVT::i1, MachineNode->getOperand(0).
7008                                                       getOperand(0),
7009                                            MachineNode->getOperand(1));
7010         else if (Op2Not)
7011           // andc(x, ~y) = x & y
7012           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
7013                                            MVT::i1, MachineNode->getOperand(0),
7014                                            MachineNode->getOperand(1).
7015                                              getOperand(0));
7016         else if (AllUsersSelectZero(MachineNode)) {
7017           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
7018                                            MVT::i1, MachineNode->getOperand(1),
7019                                            MachineNode->getOperand(0));
7020           SelectSwap = true;
7021         }
7022         break;
7023       case PPC::CRORC:
7024         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7025           // orc(x, x) = 1
7026           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7027                                            MVT::i1);
7028         else if (Op1Set || Op2Unset)
7029           // orc(1, y) = orc(x, 0) = 1
7030           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7031                                            MVT::i1);
7032         else if (Op2Set)
7033           // orc(x, 1) = x
7034           ResNode = MachineNode->getOperand(0).getNode();
7035         else if (Op1Unset)
7036           // orc(0, y) = ~y
7037           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7038                                            MVT::i1, MachineNode->getOperand(1),
7039                                            MachineNode->getOperand(1));
7040         else if (Op1Not)
7041           // orc(~x, y) = ~(x & y) = nand(x, y)
7042           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
7043                                            MVT::i1, MachineNode->getOperand(0).
7044                                                       getOperand(0),
7045                                            MachineNode->getOperand(1));
7046         else if (Op2Not)
7047           // orc(x, ~y) = x | y
7048           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
7049                                            MVT::i1, MachineNode->getOperand(0),
7050                                            MachineNode->getOperand(1).
7051                                              getOperand(0));
7052         else if (AllUsersSelectZero(MachineNode)) {
7053           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
7054                                            MVT::i1, MachineNode->getOperand(1),
7055                                            MachineNode->getOperand(0));
7056           SelectSwap = true;
7057         }
7058         break;
7059       case PPC::SELECT_I4:
7060       case PPC::SELECT_I8:
7061       case PPC::SELECT_F4:
7062       case PPC::SELECT_F8:
7063       case PPC::SELECT_SPE:
7064       case PPC::SELECT_SPE4:
7065       case PPC::SELECT_VRRC:
7066       case PPC::SELECT_VSFRC:
7067       case PPC::SELECT_VSSRC:
7068       case PPC::SELECT_VSRC:
7069         if (Op1Set)
7070           ResNode = MachineNode->getOperand(1).getNode();
7071         else if (Op1Unset)
7072           ResNode = MachineNode->getOperand(2).getNode();
7073         else if (Op1Not)
7074           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
7075                                            SDLoc(MachineNode),
7076                                            MachineNode->getValueType(0),
7077                                            MachineNode->getOperand(0).
7078                                              getOperand(0),
7079                                            MachineNode->getOperand(2),
7080                                            MachineNode->getOperand(1));
7081         break;
7082       case PPC::BC:
7083       case PPC::BCn:
7084         if (Op1Not)
7085           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
7086                                                                PPC::BC,
7087                                            SDLoc(MachineNode),
7088                                            MVT::Other,
7089                                            MachineNode->getOperand(0).
7090                                              getOperand(0),
7091                                            MachineNode->getOperand(1),
7092                                            MachineNode->getOperand(2));
7093         // FIXME: Handle Op1Set, Op1Unset here too.
7094         break;
7095       }
7096 
7097       // If we're inverting this node because it is used only by selects that
7098       // we'd like to swap, then swap the selects before the node replacement.
7099       if (SelectSwap)
7100         SwapAllSelectUsers(MachineNode);
7101 
7102       if (ResNode != MachineNode) {
7103         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
7104         LLVM_DEBUG(MachineNode->dump(CurDAG));
7105         LLVM_DEBUG(dbgs() << "\nNew: ");
7106         LLVM_DEBUG(ResNode->dump(CurDAG));
7107         LLVM_DEBUG(dbgs() << "\n");
7108 
7109         ReplaceUses(MachineNode, ResNode);
7110         IsModified = true;
7111       }
7112     }
7113     if (IsModified)
7114       CurDAG->RemoveDeadNodes();
7115   } while (IsModified);
7116 }
7117 
7118 // Gather the set of 32-bit operations that are known to have their
7119 // higher-order 32 bits zero, where ToPromote contains all such operations.
7120 static bool PeepholePPC64ZExtGather(SDValue Op32,
7121                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
7122   if (!Op32.isMachineOpcode())
7123     return false;
7124 
7125   // First, check for the "frontier" instructions (those that will clear the
7126   // higher-order 32 bits.
7127 
7128   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
7129   // around. If it does not, then these instructions will clear the
7130   // higher-order bits.
7131   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
7132        Op32.getMachineOpcode() == PPC::RLWNM) &&
7133       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
7134     ToPromote.insert(Op32.getNode());
7135     return true;
7136   }
7137 
7138   // SLW and SRW always clear the higher-order bits.
7139   if (Op32.getMachineOpcode() == PPC::SLW ||
7140       Op32.getMachineOpcode() == PPC::SRW) {
7141     ToPromote.insert(Op32.getNode());
7142     return true;
7143   }
7144 
7145   // For LI and LIS, we need the immediate to be positive (so that it is not
7146   // sign extended).
7147   if (Op32.getMachineOpcode() == PPC::LI ||
7148       Op32.getMachineOpcode() == PPC::LIS) {
7149     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
7150       return false;
7151 
7152     ToPromote.insert(Op32.getNode());
7153     return true;
7154   }
7155 
7156   // LHBRX and LWBRX always clear the higher-order bits.
7157   if (Op32.getMachineOpcode() == PPC::LHBRX ||
7158       Op32.getMachineOpcode() == PPC::LWBRX) {
7159     ToPromote.insert(Op32.getNode());
7160     return true;
7161   }
7162 
7163   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
7164   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
7165       Op32.getMachineOpcode() == PPC::CNTTZW) {
7166     ToPromote.insert(Op32.getNode());
7167     return true;
7168   }
7169 
7170   // Next, check for those instructions we can look through.
7171 
7172   // Assuming the mask does not wrap around, then the higher-order bits are
7173   // taken directly from the first operand.
7174   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
7175       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
7176     SmallPtrSet<SDNode *, 16> ToPromote1;
7177     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7178       return false;
7179 
7180     ToPromote.insert(Op32.getNode());
7181     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7182     return true;
7183   }
7184 
7185   // For OR, the higher-order bits are zero if that is true for both operands.
7186   // For SELECT_I4, the same is true (but the relevant operand numbers are
7187   // shifted by 1).
7188   if (Op32.getMachineOpcode() == PPC::OR ||
7189       Op32.getMachineOpcode() == PPC::SELECT_I4) {
7190     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
7191     SmallPtrSet<SDNode *, 16> ToPromote1;
7192     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
7193       return false;
7194     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
7195       return false;
7196 
7197     ToPromote.insert(Op32.getNode());
7198     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7199     return true;
7200   }
7201 
7202   // For ORI and ORIS, we need the higher-order bits of the first operand to be
7203   // zero, and also for the constant to be positive (so that it is not sign
7204   // extended).
7205   if (Op32.getMachineOpcode() == PPC::ORI ||
7206       Op32.getMachineOpcode() == PPC::ORIS) {
7207     SmallPtrSet<SDNode *, 16> ToPromote1;
7208     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7209       return false;
7210     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
7211       return false;
7212 
7213     ToPromote.insert(Op32.getNode());
7214     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7215     return true;
7216   }
7217 
7218   // The higher-order bits of AND are zero if that is true for at least one of
7219   // the operands.
7220   if (Op32.getMachineOpcode() == PPC::AND) {
7221     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
7222     bool Op0OK =
7223       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7224     bool Op1OK =
7225       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
7226     if (!Op0OK && !Op1OK)
7227       return false;
7228 
7229     ToPromote.insert(Op32.getNode());
7230 
7231     if (Op0OK)
7232       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7233 
7234     if (Op1OK)
7235       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
7236 
7237     return true;
7238   }
7239 
7240   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
7241   // of the first operand, or if the second operand is positive (so that it is
7242   // not sign extended).
7243   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
7244       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
7245     SmallPtrSet<SDNode *, 16> ToPromote1;
7246     bool Op0OK =
7247       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7248     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
7249     if (!Op0OK && !Op1OK)
7250       return false;
7251 
7252     ToPromote.insert(Op32.getNode());
7253 
7254     if (Op0OK)
7255       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7256 
7257     return true;
7258   }
7259 
7260   return false;
7261 }
7262 
7263 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7264   if (!Subtarget->isPPC64())
7265     return;
7266 
7267   // When we zero-extend from i32 to i64, we use a pattern like this:
7268   // def : Pat<(i64 (zext i32:$in)),
7269   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7270   //                   0, 32)>;
7271   // There are several 32-bit shift/rotate instructions, however, that will
7272   // clear the higher-order bits of their output, rendering the RLDICL
7273   // unnecessary. When that happens, we remove it here, and redefine the
7274   // relevant 32-bit operation to be a 64-bit operation.
7275 
7276   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7277 
7278   bool MadeChange = false;
7279   while (Position != CurDAG->allnodes_begin()) {
7280     SDNode *N = &*--Position;
7281     // Skip dead nodes and any non-machine opcodes.
7282     if (N->use_empty() || !N->isMachineOpcode())
7283       continue;
7284 
7285     if (N->getMachineOpcode() != PPC::RLDICL)
7286       continue;
7287 
7288     if (N->getConstantOperandVal(1) != 0 ||
7289         N->getConstantOperandVal(2) != 32)
7290       continue;
7291 
7292     SDValue ISR = N->getOperand(0);
7293     if (!ISR.isMachineOpcode() ||
7294         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7295       continue;
7296 
7297     if (!ISR.hasOneUse())
7298       continue;
7299 
7300     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7301       continue;
7302 
7303     SDValue IDef = ISR.getOperand(0);
7304     if (!IDef.isMachineOpcode() ||
7305         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7306       continue;
7307 
7308     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7309     // can get rid of it.
7310 
7311     SDValue Op32 = ISR->getOperand(1);
7312     if (!Op32.isMachineOpcode())
7313       continue;
7314 
7315     // There are some 32-bit instructions that always clear the high-order 32
7316     // bits, there are also some instructions (like AND) that we can look
7317     // through.
7318     SmallPtrSet<SDNode *, 16> ToPromote;
7319     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7320       continue;
7321 
7322     // If the ToPromote set contains nodes that have uses outside of the set
7323     // (except for the original INSERT_SUBREG), then abort the transformation.
7324     bool OutsideUse = false;
7325     for (SDNode *PN : ToPromote) {
7326       for (SDNode *UN : PN->uses()) {
7327         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7328           OutsideUse = true;
7329           break;
7330         }
7331       }
7332 
7333       if (OutsideUse)
7334         break;
7335     }
7336     if (OutsideUse)
7337       continue;
7338 
7339     MadeChange = true;
7340 
7341     // We now know that this zero extension can be removed by promoting to
7342     // nodes in ToPromote to 64-bit operations, where for operations in the
7343     // frontier of the set, we need to insert INSERT_SUBREGs for their
7344     // operands.
7345     for (SDNode *PN : ToPromote) {
7346       unsigned NewOpcode;
7347       switch (PN->getMachineOpcode()) {
7348       default:
7349         llvm_unreachable("Don't know the 64-bit variant of this instruction");
7350       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
7351       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
7352       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
7353       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
7354       case PPC::LI:        NewOpcode = PPC::LI8; break;
7355       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
7356       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
7357       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
7358       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
7359       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
7360       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
7361       case PPC::OR:        NewOpcode = PPC::OR8; break;
7362       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7363       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
7364       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
7365       case PPC::AND:       NewOpcode = PPC::AND8; break;
7366       case PPC::ANDI_rec:
7367         NewOpcode = PPC::ANDI8_rec;
7368         break;
7369       case PPC::ANDIS_rec:
7370         NewOpcode = PPC::ANDIS8_rec;
7371         break;
7372       }
7373 
7374       // Note: During the replacement process, the nodes will be in an
7375       // inconsistent state (some instructions will have operands with values
7376       // of the wrong type). Once done, however, everything should be right
7377       // again.
7378 
7379       SmallVector<SDValue, 4> Ops;
7380       for (const SDValue &V : PN->ops()) {
7381         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7382             !isa<ConstantSDNode>(V)) {
7383           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7384           SDNode *ReplOp =
7385             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7386                                    ISR.getNode()->getVTList(), ReplOpOps);
7387           Ops.push_back(SDValue(ReplOp, 0));
7388         } else {
7389           Ops.push_back(V);
7390         }
7391       }
7392 
7393       // Because all to-be-promoted nodes only have users that are other
7394       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7395       // the i32 result value type with i64.
7396 
7397       SmallVector<EVT, 2> NewVTs;
7398       SDVTList VTs = PN->getVTList();
7399       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7400         if (VTs.VTs[i] == MVT::i32)
7401           NewVTs.push_back(MVT::i64);
7402         else
7403           NewVTs.push_back(VTs.VTs[i]);
7404 
7405       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
7406       LLVM_DEBUG(PN->dump(CurDAG));
7407 
7408       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7409 
7410       LLVM_DEBUG(dbgs() << "\nNew: ");
7411       LLVM_DEBUG(PN->dump(CurDAG));
7412       LLVM_DEBUG(dbgs() << "\n");
7413     }
7414 
7415     // Now we replace the original zero extend and its associated INSERT_SUBREG
7416     // with the value feeding the INSERT_SUBREG (which has now been promoted to
7417     // return an i64).
7418 
7419     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
7420     LLVM_DEBUG(N->dump(CurDAG));
7421     LLVM_DEBUG(dbgs() << "\nNew: ");
7422     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7423     LLVM_DEBUG(dbgs() << "\n");
7424 
7425     ReplaceUses(N, Op32.getNode());
7426   }
7427 
7428   if (MadeChange)
7429     CurDAG->RemoveDeadNodes();
7430 }
7431 
7432 static bool isVSXSwap(SDValue N) {
7433   if (!N->isMachineOpcode())
7434     return false;
7435   unsigned Opc = N->getMachineOpcode();
7436 
7437   // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7438   // operand is 2.
7439   if (Opc == PPC::XXPERMDIs) {
7440     return isa<ConstantSDNode>(N->getOperand(1)) &&
7441            N->getConstantOperandVal(1) == 2;
7442   } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7443     return N->getOperand(0) == N->getOperand(1) &&
7444            isa<ConstantSDNode>(N->getOperand(2)) &&
7445            N->getConstantOperandVal(2) == 2;
7446   }
7447 
7448   return false;
7449 }
7450 
7451 // TODO: Make this complete and replace with a table-gen bit.
7452 static bool isLaneInsensitive(SDValue N) {
7453   if (!N->isMachineOpcode())
7454     return false;
7455   unsigned Opc = N->getMachineOpcode();
7456 
7457   switch (Opc) {
7458   default:
7459     return false;
7460   case PPC::VAVGSB:
7461   case PPC::VAVGUB:
7462   case PPC::VAVGSH:
7463   case PPC::VAVGUH:
7464   case PPC::VAVGSW:
7465   case PPC::VAVGUW:
7466   case PPC::VMAXFP:
7467   case PPC::VMAXSB:
7468   case PPC::VMAXUB:
7469   case PPC::VMAXSH:
7470   case PPC::VMAXUH:
7471   case PPC::VMAXSW:
7472   case PPC::VMAXUW:
7473   case PPC::VMINFP:
7474   case PPC::VMINSB:
7475   case PPC::VMINUB:
7476   case PPC::VMINSH:
7477   case PPC::VMINUH:
7478   case PPC::VMINSW:
7479   case PPC::VMINUW:
7480   case PPC::VADDFP:
7481   case PPC::VADDUBM:
7482   case PPC::VADDUHM:
7483   case PPC::VADDUWM:
7484   case PPC::VSUBFP:
7485   case PPC::VSUBUBM:
7486   case PPC::VSUBUHM:
7487   case PPC::VSUBUWM:
7488   case PPC::VAND:
7489   case PPC::VANDC:
7490   case PPC::VOR:
7491   case PPC::VORC:
7492   case PPC::VXOR:
7493   case PPC::VNOR:
7494   case PPC::VMULUWM:
7495     return true;
7496   }
7497 }
7498 
7499 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7500 // lane-insensitive.
7501 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7502   // Our desired xxswap might be source of COPY_TO_REGCLASS.
7503   // TODO: Can we put this a common method for DAG?
7504   auto SkipRCCopy = [](SDValue V) {
7505     while (V->isMachineOpcode() &&
7506            V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7507       // All values in the chain should have single use.
7508       if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7509         return SDValue();
7510       V = V->getOperand(0);
7511     }
7512     return V.hasOneUse() ? V : SDValue();
7513   };
7514 
7515   SDValue VecOp = SkipRCCopy(N->getOperand(0));
7516   if (!VecOp || !isLaneInsensitive(VecOp))
7517     return;
7518 
7519   SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7520           RHS = SkipRCCopy(VecOp.getOperand(1));
7521   if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7522     return;
7523 
7524   // These swaps may still have chain-uses here, count on dead code elimination
7525   // in following passes to remove them.
7526   DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7527   DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7528   DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7529 }
7530 
7531 void PPCDAGToDAGISel::PeepholePPC64() {
7532   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7533 
7534   while (Position != CurDAG->allnodes_begin()) {
7535     SDNode *N = &*--Position;
7536     // Skip dead nodes and any non-machine opcodes.
7537     if (N->use_empty() || !N->isMachineOpcode())
7538       continue;
7539 
7540     if (isVSXSwap(SDValue(N, 0)))
7541       reduceVSXSwap(N, CurDAG);
7542 
7543     unsigned FirstOp;
7544     unsigned StorageOpcode = N->getMachineOpcode();
7545     bool RequiresMod4Offset = false;
7546 
7547     switch (StorageOpcode) {
7548     default: continue;
7549 
7550     case PPC::LWA:
7551     case PPC::LD:
7552     case PPC::DFLOADf64:
7553     case PPC::DFLOADf32:
7554       RequiresMod4Offset = true;
7555       [[fallthrough]];
7556     case PPC::LBZ:
7557     case PPC::LBZ8:
7558     case PPC::LFD:
7559     case PPC::LFS:
7560     case PPC::LHA:
7561     case PPC::LHA8:
7562     case PPC::LHZ:
7563     case PPC::LHZ8:
7564     case PPC::LWZ:
7565     case PPC::LWZ8:
7566       FirstOp = 0;
7567       break;
7568 
7569     case PPC::STD:
7570     case PPC::DFSTOREf64:
7571     case PPC::DFSTOREf32:
7572       RequiresMod4Offset = true;
7573       [[fallthrough]];
7574     case PPC::STB:
7575     case PPC::STB8:
7576     case PPC::STFD:
7577     case PPC::STFS:
7578     case PPC::STH:
7579     case PPC::STH8:
7580     case PPC::STW:
7581     case PPC::STW8:
7582       FirstOp = 1;
7583       break;
7584     }
7585 
7586     // If this is a load or store with a zero offset, or within the alignment,
7587     // we may be able to fold an add-immediate into the memory operation.
7588     // The check against alignment is below, as it can't occur until we check
7589     // the arguments to N
7590     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7591       continue;
7592 
7593     SDValue Base = N->getOperand(FirstOp + 1);
7594     if (!Base.isMachineOpcode())
7595       continue;
7596 
7597     unsigned Flags = 0;
7598     bool ReplaceFlags = true;
7599 
7600     // When the feeding operation is an add-immediate of some sort,
7601     // determine whether we need to add relocation information to the
7602     // target flags on the immediate operand when we fold it into the
7603     // load instruction.
7604     //
7605     // For something like ADDItocL, the relocation information is
7606     // inferred from the opcode; when we process it in the AsmPrinter,
7607     // we add the necessary relocation there.  A load, though, can receive
7608     // relocation from various flavors of ADDIxxx, so we need to carry
7609     // the relocation information in the target flags.
7610     switch (Base.getMachineOpcode()) {
7611     default: continue;
7612 
7613     case PPC::ADDI8:
7614     case PPC::ADDI:
7615       // In some cases (such as TLS) the relocation information
7616       // is already in place on the operand, so copying the operand
7617       // is sufficient.
7618       ReplaceFlags = false;
7619       // For these cases, the immediate may not be divisible by 4, in
7620       // which case the fold is illegal for DS-form instructions.  (The
7621       // other cases provide aligned addresses and are always safe.)
7622       if (RequiresMod4Offset &&
7623           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
7624            Base.getConstantOperandVal(1) % 4 != 0))
7625         continue;
7626       break;
7627     case PPC::ADDIdtprelL:
7628       Flags = PPCII::MO_DTPREL_LO;
7629       break;
7630     case PPC::ADDItlsldL:
7631       Flags = PPCII::MO_TLSLD_LO;
7632       break;
7633     case PPC::ADDItocL:
7634       Flags = PPCII::MO_TOC_LO;
7635       break;
7636     }
7637 
7638     SDValue ImmOpnd = Base.getOperand(1);
7639 
7640     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7641     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7642     // we might have needed different @ha relocation values for the offset
7643     // pointers).
7644     int MaxDisplacement = 7;
7645     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7646       const GlobalValue *GV = GA->getGlobal();
7647       Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7648       MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7649     }
7650 
7651     bool UpdateHBase = false;
7652     SDValue HBase = Base.getOperand(0);
7653 
7654     int Offset = N->getConstantOperandVal(FirstOp);
7655     if (ReplaceFlags) {
7656       if (Offset < 0 || Offset > MaxDisplacement) {
7657         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7658         // one use, then we can do this for any offset, we just need to also
7659         // update the offset (i.e. the symbol addend) on the addis also.
7660         if (Base.getMachineOpcode() != PPC::ADDItocL)
7661           continue;
7662 
7663         if (!HBase.isMachineOpcode() ||
7664             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7665           continue;
7666 
7667         if (!Base.hasOneUse() || !HBase.hasOneUse())
7668           continue;
7669 
7670         SDValue HImmOpnd = HBase.getOperand(1);
7671         if (HImmOpnd != ImmOpnd)
7672           continue;
7673 
7674         UpdateHBase = true;
7675       }
7676     } else {
7677       // If we're directly folding the addend from an addi instruction, then:
7678       //  1. In general, the offset on the memory access must be zero.
7679       //  2. If the addend is a constant, then it can be combined with a
7680       //     non-zero offset, but only if the result meets the encoding
7681       //     requirements.
7682       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7683         Offset += C->getSExtValue();
7684 
7685         if (RequiresMod4Offset && (Offset % 4) != 0)
7686           continue;
7687 
7688         if (!isInt<16>(Offset))
7689           continue;
7690 
7691         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7692                                             ImmOpnd.getValueType());
7693       } else if (Offset != 0) {
7694         continue;
7695       }
7696     }
7697 
7698     // We found an opportunity.  Reverse the operands from the add
7699     // immediate and substitute them into the load or store.  If
7700     // needed, update the target flags for the immediate operand to
7701     // reflect the necessary relocation information.
7702     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
7703     LLVM_DEBUG(Base->dump(CurDAG));
7704     LLVM_DEBUG(dbgs() << "\nN: ");
7705     LLVM_DEBUG(N->dump(CurDAG));
7706     LLVM_DEBUG(dbgs() << "\n");
7707 
7708     // If the relocation information isn't already present on the
7709     // immediate operand, add it now.
7710     if (ReplaceFlags) {
7711       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7712         SDLoc dl(GA);
7713         const GlobalValue *GV = GA->getGlobal();
7714         Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7715         // We can't perform this optimization for data whose alignment
7716         // is insufficient for the instruction encoding.
7717         if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7718           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7719           continue;
7720         }
7721         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7722       } else if (ConstantPoolSDNode *CP =
7723                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7724         const Constant *C = CP->getConstVal();
7725         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7726                                                 Offset, Flags);
7727       }
7728     }
7729 
7730     if (FirstOp == 1) // Store
7731       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7732                                        Base.getOperand(0), N->getOperand(3));
7733     else // Load
7734       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7735                                        N->getOperand(2));
7736 
7737     if (UpdateHBase)
7738       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7739                                        ImmOpnd);
7740 
7741     // The add-immediate may now be dead, in which case remove it.
7742     if (Base.getNode()->use_empty())
7743       CurDAG->RemoveDeadNode(Base.getNode());
7744   }
7745 }
7746 
7747 /// createPPCISelDag - This pass converts a legalized DAG into a
7748 /// PowerPC-specific DAG, ready for instruction scheduling.
7749 ///
7750 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7751                                      CodeGenOpt::Level OptLevel) {
7752   return new PPCDAGToDAGISel(TM, OptLevel);
7753 }
7754