xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGISel.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/IntrinsicsPowerPC.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CodeGen.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MachineValueType.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <new>
66 #include <tuple>
67 #include <utility>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "ppc-isel"
72 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection"
73 
74 STATISTIC(NumSextSetcc,
75           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(NumZextSetcc,
77           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
78 STATISTIC(SignExtensionsAdded,
79           "Number of sign extensions for compare inputs added.");
80 STATISTIC(ZeroExtensionsAdded,
81           "Number of zero extensions for compare inputs added.");
82 STATISTIC(NumLogicOpsOnComparison,
83           "Number of logical ops on i1 values calculated in GPR.");
84 STATISTIC(OmittedForNonExtendUses,
85           "Number of compares not eliminated as they have non-extending uses.");
86 STATISTIC(NumP9Setb,
87           "Number of compares lowered to setb.");
88 
89 // FIXME: Remove this once the bug has been fixed!
90 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
91 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
92 
93 static cl::opt<bool>
94     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
95                        cl::desc("use aggressive ppc isel for bit permutations"),
96                        cl::Hidden);
97 static cl::opt<bool> BPermRewriterNoMasking(
98     "ppc-bit-perm-rewriter-stress-rotates",
99     cl::desc("stress rotate selection in aggressive ppc isel for "
100              "bit permutations"),
101     cl::Hidden);
102 
103 static cl::opt<bool> EnableBranchHint(
104   "ppc-use-branch-hint", cl::init(true),
105     cl::desc("Enable static hinting of branches on ppc"),
106     cl::Hidden);
107 
108 static cl::opt<bool> EnableTLSOpt(
109   "ppc-tls-opt", cl::init(true),
110     cl::desc("Enable tls optimization peephole"),
111     cl::Hidden);
112 
113 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
114   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
115   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
116 
117 static cl::opt<ICmpInGPRType> CmpInGPR(
118   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
119   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
120   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
121              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
122              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
123              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
124              clEnumValN(ICGPR_NonExtIn, "nonextin",
125                         "Only comparisons where inputs don't need [sz]ext."),
126              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
127              clEnumValN(ICGPR_ZextI32, "zexti32",
128                         "Only i32 comparisons with zext result."),
129              clEnumValN(ICGPR_ZextI64, "zexti64",
130                         "Only i64 comparisons with zext result."),
131              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
132              clEnumValN(ICGPR_SextI32, "sexti32",
133                         "Only i32 comparisons with sext result."),
134              clEnumValN(ICGPR_SextI64, "sexti64",
135                         "Only i64 comparisons with sext result.")));
136 namespace {
137 
138   //===--------------------------------------------------------------------===//
139   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
140   /// instructions for SelectionDAG operations.
141   ///
142   class PPCDAGToDAGISel : public SelectionDAGISel {
143     const PPCTargetMachine &TM;
144     const PPCSubtarget *Subtarget = nullptr;
145     const PPCTargetLowering *PPCLowering = nullptr;
146     unsigned GlobalBaseReg = 0;
147 
148   public:
149     static char ID;
150 
151     PPCDAGToDAGISel() = delete;
152 
153     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
154         : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {}
155 
156     bool runOnMachineFunction(MachineFunction &MF) override {
157       // Make sure we re-emit a set of the global base reg if necessary
158       GlobalBaseReg = 0;
159       Subtarget = &MF.getSubtarget<PPCSubtarget>();
160       PPCLowering = Subtarget->getTargetLowering();
161       if (Subtarget->hasROPProtect()) {
162         // Create a place on the stack for the ROP Protection Hash.
163         // The ROP Protection Hash will always be 8 bytes and aligned to 8
164         // bytes.
165         MachineFrameInfo &MFI = MF.getFrameInfo();
166         PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
167         const int Result = MFI.CreateStackObject(8, Align(8), false);
168         FI->setROPProtectionHashSaveIndex(Result);
169       }
170       SelectionDAGISel::runOnMachineFunction(MF);
171 
172       return true;
173     }
174 
175     void PreprocessISelDAG() override;
176     void PostprocessISelDAG() override;
177 
178     /// getI16Imm - Return a target constant with the specified value, of type
179     /// i16.
180     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
181       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
182     }
183 
184     /// getI32Imm - Return a target constant with the specified value, of type
185     /// i32.
186     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
187       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
188     }
189 
190     /// getI64Imm - Return a target constant with the specified value, of type
191     /// i64.
192     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
193       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
194     }
195 
196     /// getSmallIPtrImm - Return a target constant of pointer type.
197     inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
198       return CurDAG->getTargetConstant(
199           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
200     }
201 
202     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
203     /// rotate and mask opcode and mask operation.
204     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
205                                 unsigned &SH, unsigned &MB, unsigned &ME);
206 
207     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
208     /// base register.  Return the virtual register that holds this value.
209     SDNode *getGlobalBaseReg();
210 
211     void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
212 
213     // Select - Convert the specified operand from a target-independent to a
214     // target-specific node if it hasn't already been changed.
215     void Select(SDNode *N) override;
216 
217     bool tryBitfieldInsert(SDNode *N);
218     bool tryBitPermutation(SDNode *N);
219     bool tryIntCompareInGPR(SDNode *N);
220 
221     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
222     // an X-Form load instruction with the offset being a relocation coming from
223     // the PPCISD::ADD_TLS.
224     bool tryTLSXFormLoad(LoadSDNode *N);
225     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
226     // an X-Form store instruction with the offset being a relocation coming from
227     // the PPCISD::ADD_TLS.
228     bool tryTLSXFormStore(StoreSDNode *N);
229     /// SelectCC - Select a comparison of the specified values with the
230     /// specified condition code, returning the CR# of the expression.
231     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
232                      const SDLoc &dl, SDValue Chain = SDValue());
233 
234     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
235     /// immediate field.  Note that the operand at this point is already the
236     /// result of a prior SelectAddressRegImm call.
237     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
238       if (N.getOpcode() == ISD::TargetConstant ||
239           N.getOpcode() == ISD::TargetGlobalAddress) {
240         Out = N;
241         return true;
242       }
243 
244       return false;
245     }
246 
247     /// SelectDSForm - Returns true if address N can be represented by the
248     /// addressing mode of DSForm instructions (a base register, plus a signed
249     /// 16-bit displacement that is a multiple of 4.
250     bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
251       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
252                                                 Align(4)) == PPC::AM_DSForm;
253     }
254 
255     /// SelectDQForm - Returns true if address N can be represented by the
256     /// addressing mode of DQForm instructions (a base register, plus a signed
257     /// 16-bit displacement that is a multiple of 16.
258     bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
259       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
260                                                 Align(16)) == PPC::AM_DQForm;
261     }
262 
263     /// SelectDForm - Returns true if address N can be represented by
264     /// the addressing mode of DForm instructions (a base register, plus a
265     /// signed 16-bit immediate.
266     bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
267       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
268                                                 std::nullopt) == PPC::AM_DForm;
269     }
270 
271     /// SelectPCRelForm - Returns true if address N can be represented by
272     /// PC-Relative addressing mode.
273     bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
274                          SDValue &Base) {
275       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
276                                                 std::nullopt) == PPC::AM_PCRel;
277     }
278 
279     /// SelectPDForm - Returns true if address N can be represented by Prefixed
280     /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
281     bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
282       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
283                                                 std::nullopt) ==
284              PPC::AM_PrefixDForm;
285     }
286 
287     /// SelectXForm - Returns true if address N can be represented by the
288     /// addressing mode of XForm instructions (an indexed [r+r] operation).
289     bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
290       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
291                                                 std::nullopt) == PPC::AM_XForm;
292     }
293 
294     /// SelectForceXForm - Given the specified address, force it to be
295     /// represented as an indexed [r+r] operation (an XForm instruction).
296     bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
297                           SDValue &Base) {
298       return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
299              PPC::AM_XForm;
300     }
301 
302     /// SelectAddrIdx - Given the specified address, check to see if it can be
303     /// represented as an indexed [r+r] operation.
304     /// This is for xform instructions whose associated displacement form is D.
305     /// The last parameter \p 0 means associated D form has no requirment for 16
306     /// bit signed displacement.
307     /// Returns false if it can be represented by [r+imm], which are preferred.
308     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
309       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
310                                               std::nullopt);
311     }
312 
313     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
314     /// represented as an indexed [r+r] operation.
315     /// This is for xform instructions whose associated displacement form is DS.
316     /// The last parameter \p 4 means associated DS form 16 bit signed
317     /// displacement must be a multiple of 4.
318     /// Returns false if it can be represented by [r+imm], which are preferred.
319     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
320       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
321                                               Align(4));
322     }
323 
324     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
325     /// represented as an indexed [r+r] operation.
326     /// This is for xform instructions whose associated displacement form is DQ.
327     /// The last parameter \p 16 means associated DQ form 16 bit signed
328     /// displacement must be a multiple of 16.
329     /// Returns false if it can be represented by [r+imm], which are preferred.
330     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
331       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
332                                               Align(16));
333     }
334 
335     /// SelectAddrIdxOnly - Given the specified address, force it to be
336     /// represented as an indexed [r+r] operation.
337     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
338       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
339     }
340 
341     /// SelectAddrImm - Returns true if the address N can be represented by
342     /// a base register plus a signed 16-bit displacement [r+imm].
343     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
344     /// displacement.
345     bool SelectAddrImm(SDValue N, SDValue &Disp,
346                        SDValue &Base) {
347       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
348                                               std::nullopt);
349     }
350 
351     /// SelectAddrImmX4 - Returns true if the address N can be represented by
352     /// a base register plus a signed 16-bit displacement that is a multiple of
353     /// 4 (last parameter). Suitable for use by STD and friends.
354     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
355       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
356     }
357 
358     /// SelectAddrImmX16 - Returns true if the address N can be represented by
359     /// a base register plus a signed 16-bit displacement that is a multiple of
360     /// 16(last parameter). Suitable for use by STXV and friends.
361     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
362       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
363                                               Align(16));
364     }
365 
366     /// SelectAddrImmX34 - Returns true if the address N can be represented by
367     /// a base register plus a signed 34-bit displacement. Suitable for use by
368     /// PSTXVP and friends.
369     bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
370       return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
371     }
372 
373     // Select an address into a single register.
374     bool SelectAddr(SDValue N, SDValue &Base) {
375       Base = N;
376       return true;
377     }
378 
379     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
380       return PPCLowering->SelectAddressPCRel(N, Base);
381     }
382 
383     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
384     /// inline asm expressions.  It is always correct to compute the value into
385     /// a register.  The case of adding a (possibly relocatable) constant to a
386     /// register can be improved, but it is wrong to substitute Reg+Reg for
387     /// Reg in an asm, because the load or store opcode would have to change.
388     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
389                                       unsigned ConstraintID,
390                                       std::vector<SDValue> &OutOps) override {
391       switch(ConstraintID) {
392       default:
393         errs() << "ConstraintID: " << ConstraintID << "\n";
394         llvm_unreachable("Unexpected asm memory constraint");
395       case InlineAsm::Constraint_es:
396       case InlineAsm::Constraint_m:
397       case InlineAsm::Constraint_o:
398       case InlineAsm::Constraint_Q:
399       case InlineAsm::Constraint_Z:
400       case InlineAsm::Constraint_Zy:
401         // We need to make sure that this one operand does not end up in r0
402         // (because we might end up lowering this as 0(%op)).
403         const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
404         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
405         SDLoc dl(Op);
406         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
407         SDValue NewOp =
408           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
409                                          dl, Op.getValueType(),
410                                          Op, RC), 0);
411 
412         OutOps.push_back(NewOp);
413         return false;
414       }
415       return true;
416     }
417 
418 // Include the pieces autogenerated from the target description.
419 #include "PPCGenDAGISel.inc"
420 
421 private:
422     bool trySETCC(SDNode *N);
423     bool tryFoldSWTestBRCC(SDNode *N);
424     bool trySelectLoopCountIntrinsic(SDNode *N);
425     bool tryAsSingleRLDICL(SDNode *N);
426     bool tryAsSingleRLDICR(SDNode *N);
427     bool tryAsSingleRLWINM(SDNode *N);
428     bool tryAsSingleRLWINM8(SDNode *N);
429     bool tryAsSingleRLWIMI(SDNode *N);
430     bool tryAsPairOfRLDICL(SDNode *N);
431     bool tryAsSingleRLDIMI(SDNode *N);
432 
433     void PeepholePPC64();
434     void PeepholePPC64ZExt();
435     void PeepholeCROps();
436 
437     SDValue combineToCMPB(SDNode *N);
438     void foldBoolExts(SDValue &Res, SDNode *&N);
439 
440     bool AllUsersSelectZero(SDNode *N);
441     void SwapAllSelectUsers(SDNode *N);
442 
443     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
444     void transferMemOperands(SDNode *N, SDNode *Result);
445   };
446 
447 } // end anonymous namespace
448 
449 char PPCDAGToDAGISel::ID = 0;
450 
451 INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
452 
453 /// getGlobalBaseReg - Output the instructions required to put the
454 /// base address to use for accessing globals into a register.
455 ///
456 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
457   if (!GlobalBaseReg) {
458     const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
459     // Insert the set of GlobalBaseReg into the first MBB of the function
460     MachineBasicBlock &FirstMBB = MF->front();
461     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
462     const Module *M = MF->getFunction().getParent();
463     DebugLoc dl;
464 
465     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
466       if (Subtarget->isTargetELF()) {
467         GlobalBaseReg = PPC::R30;
468         if (!Subtarget->isSecurePlt() &&
469             M->getPICLevel() == PICLevel::SmallPIC) {
470           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
471           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
472           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
473         } else {
474           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
475           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
476           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
477           BuildMI(FirstMBB, MBBI, dl,
478                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
479                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
480           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
481         }
482       } else {
483         GlobalBaseReg =
484           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
485         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
486         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
487       }
488     } else {
489       // We must ensure that this sequence is dominated by the prologue.
490       // FIXME: This is a bit of a big hammer since we don't get the benefits
491       // of shrink-wrapping whenever we emit this instruction. Considering
492       // this is used in any function where we emit a jump table, this may be
493       // a significant limitation. We should consider inserting this in the
494       // block where it is used and then commoning this sequence up if it
495       // appears in multiple places.
496       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
497       // MovePCtoLR8.
498       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
499       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
500       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
501       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
502     }
503   }
504   return CurDAG->getRegister(GlobalBaseReg,
505                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
506       .getNode();
507 }
508 
509 // Check if a SDValue has the toc-data attribute.
510 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
511   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
512   if (!GA)
513     return false;
514 
515   const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
516   if (!GV)
517     return false;
518 
519   if (!GV->hasAttribute("toc-data"))
520     return false;
521 
522   // TODO: These asserts should be updated as more support for the toc data
523   // transformation is added (struct support, etc.).
524 
525   assert(
526       PointerSize >= GV->getAlign().valueOrOne().value() &&
527       "GlobalVariables with an alignment requirement stricter than TOC entry "
528       "size not supported by the toc data transformation.");
529 
530   Type *GVType = GV->getValueType();
531 
532   assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
533                               "supported by the toc data transformation.");
534 
535   if (GVType->isVectorTy())
536     report_fatal_error("A GlobalVariable of Vector type is not currently "
537                        "supported by the toc data transformation.");
538 
539   if (GVType->isArrayTy())
540     report_fatal_error("A GlobalVariable of Array type is not currently "
541                        "supported by the toc data transformation.");
542 
543   if (GVType->isStructTy())
544     report_fatal_error("A GlobalVariable of Struct type is not currently "
545                        "supported by the toc data transformation.");
546 
547   assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
548          "A GlobalVariable with size larger than a TOC entry is not currently "
549          "supported by the toc data transformation.");
550 
551   if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
552     report_fatal_error("A GlobalVariable with private or local linkage is not "
553                        "currently supported by the toc data transformation.");
554 
555   assert(!GV->hasCommonLinkage() &&
556          "Tentative definitions cannot have the mapping class XMC_TD.");
557 
558   return true;
559 }
560 
561 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
562 /// operand. If so Imm will receive the 32-bit value.
563 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
564   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
565     Imm = cast<ConstantSDNode>(N)->getZExtValue();
566     return true;
567   }
568   return false;
569 }
570 
571 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
572 /// operand.  If so Imm will receive the 64-bit value.
573 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
574   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
575     Imm = cast<ConstantSDNode>(N)->getZExtValue();
576     return true;
577   }
578   return false;
579 }
580 
581 // isInt32Immediate - This method tests to see if a constant operand.
582 // If so Imm will receive the 32 bit value.
583 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
584   return isInt32Immediate(N.getNode(), Imm);
585 }
586 
587 /// isInt64Immediate - This method tests to see if the value is a 64-bit
588 /// constant operand. If so Imm will receive the 64-bit value.
589 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
590   return isInt64Immediate(N.getNode(), Imm);
591 }
592 
593 static unsigned getBranchHint(unsigned PCC,
594                               const FunctionLoweringInfo &FuncInfo,
595                               const SDValue &DestMBB) {
596   assert(isa<BasicBlockSDNode>(DestMBB));
597 
598   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
599 
600   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
601   const Instruction *BBTerm = BB->getTerminator();
602 
603   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
604 
605   const BasicBlock *TBB = BBTerm->getSuccessor(0);
606   const BasicBlock *FBB = BBTerm->getSuccessor(1);
607 
608   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
609   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
610 
611   // We only want to handle cases which are easy to predict at static time, e.g.
612   // C++ throw statement, that is very likely not taken, or calling never
613   // returned function, e.g. stdlib exit(). So we set Threshold to filter
614   // unwanted cases.
615   //
616   // Below is LLVM branch weight table, we only want to handle case 1, 2
617   //
618   // Case                  Taken:Nontaken  Example
619   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
620   // 2. Invoke-terminating 1:1048575
621   // 3. Coldblock          4:64            __builtin_expect
622   // 4. Loop Branch        124:4           For loop
623   // 5. PH/ZH/FPH          20:12
624   const uint32_t Threshold = 10000;
625 
626   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
627     return PPC::BR_NO_HINT;
628 
629   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
630                     << "::" << BB->getName() << "'\n"
631                     << " -> " << TBB->getName() << ": " << TProb << "\n"
632                     << " -> " << FBB->getName() << ": " << FProb << "\n");
633 
634   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
635 
636   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
637   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
638   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
639     std::swap(TProb, FProb);
640 
641   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
642 }
643 
644 // isOpcWithIntImmediate - This method tests to see if the node is a specific
645 // opcode and that it has a immediate integer right operand.
646 // If so Imm will receive the 32 bit value.
647 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
648   return N->getOpcode() == Opc
649          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
650 }
651 
652 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
653   SDLoc dl(SN);
654   int FI = cast<FrameIndexSDNode>(N)->getIndex();
655   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
656   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
657   if (SN->hasOneUse())
658     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
659                          getSmallIPtrImm(Offset, dl));
660   else
661     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
662                                            getSmallIPtrImm(Offset, dl)));
663 }
664 
665 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
666                                       bool isShiftMask, unsigned &SH,
667                                       unsigned &MB, unsigned &ME) {
668   // Don't even go down this path for i64, since different logic will be
669   // necessary for rldicl/rldicr/rldimi.
670   if (N->getValueType(0) != MVT::i32)
671     return false;
672 
673   unsigned Shift  = 32;
674   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
675   unsigned Opcode = N->getOpcode();
676   if (N->getNumOperands() != 2 ||
677       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
678     return false;
679 
680   if (Opcode == ISD::SHL) {
681     // apply shift left to mask if it comes first
682     if (isShiftMask) Mask = Mask << Shift;
683     // determine which bits are made indeterminant by shift
684     Indeterminant = ~(0xFFFFFFFFu << Shift);
685   } else if (Opcode == ISD::SRL) {
686     // apply shift right to mask if it comes first
687     if (isShiftMask) Mask = Mask >> Shift;
688     // determine which bits are made indeterminant by shift
689     Indeterminant = ~(0xFFFFFFFFu >> Shift);
690     // adjust for the left rotate
691     Shift = 32 - Shift;
692   } else if (Opcode == ISD::ROTL) {
693     Indeterminant = 0;
694   } else {
695     return false;
696   }
697 
698   // if the mask doesn't intersect any Indeterminant bits
699   if (Mask && !(Mask & Indeterminant)) {
700     SH = Shift & 31;
701     // make sure the mask is still a mask (wrap arounds may not be)
702     return isRunOfOnes(Mask, MB, ME);
703   }
704   return false;
705 }
706 
707 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
708   SDValue Base = ST->getBasePtr();
709   if (Base.getOpcode() != PPCISD::ADD_TLS)
710     return false;
711   SDValue Offset = ST->getOffset();
712   if (!Offset.isUndef())
713     return false;
714   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
715     return false;
716 
717   SDLoc dl(ST);
718   EVT MemVT = ST->getMemoryVT();
719   EVT RegVT = ST->getValue().getValueType();
720 
721   unsigned Opcode;
722   switch (MemVT.getSimpleVT().SimpleTy) {
723     default:
724       return false;
725     case MVT::i8: {
726       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
727       break;
728     }
729     case MVT::i16: {
730       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
731       break;
732     }
733     case MVT::i32: {
734       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
735       break;
736     }
737     case MVT::i64: {
738       Opcode = PPC::STDXTLS;
739       break;
740     }
741   }
742   SDValue Chain = ST->getChain();
743   SDVTList VTs = ST->getVTList();
744   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
745                    Chain};
746   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
747   transferMemOperands(ST, MN);
748   ReplaceNode(ST, MN);
749   return true;
750 }
751 
752 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
753   SDValue Base = LD->getBasePtr();
754   if (Base.getOpcode() != PPCISD::ADD_TLS)
755     return false;
756   SDValue Offset = LD->getOffset();
757   if (!Offset.isUndef())
758     return false;
759   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
760     return false;
761 
762   SDLoc dl(LD);
763   EVT MemVT = LD->getMemoryVT();
764   EVT RegVT = LD->getValueType(0);
765   unsigned Opcode;
766   switch (MemVT.getSimpleVT().SimpleTy) {
767     default:
768       return false;
769     case MVT::i8: {
770       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
771       break;
772     }
773     case MVT::i16: {
774       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
775       break;
776     }
777     case MVT::i32: {
778       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
779       break;
780     }
781     case MVT::i64: {
782       Opcode = PPC::LDXTLS;
783       break;
784     }
785   }
786   SDValue Chain = LD->getChain();
787   SDVTList VTs = LD->getVTList();
788   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
789   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
790   transferMemOperands(LD, MN);
791   ReplaceNode(LD, MN);
792   return true;
793 }
794 
795 /// Turn an or of two masked values into the rotate left word immediate then
796 /// mask insert (rlwimi) instruction.
797 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
798   SDValue Op0 = N->getOperand(0);
799   SDValue Op1 = N->getOperand(1);
800   SDLoc dl(N);
801 
802   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
803   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
804 
805   unsigned TargetMask = LKnown.Zero.getZExtValue();
806   unsigned InsertMask = RKnown.Zero.getZExtValue();
807 
808   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
809     unsigned Op0Opc = Op0.getOpcode();
810     unsigned Op1Opc = Op1.getOpcode();
811     unsigned Value, SH = 0;
812     TargetMask = ~TargetMask;
813     InsertMask = ~InsertMask;
814 
815     // If the LHS has a foldable shift and the RHS does not, then swap it to the
816     // RHS so that we can fold the shift into the insert.
817     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
818       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
819           Op0.getOperand(0).getOpcode() == ISD::SRL) {
820         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
821             Op1.getOperand(0).getOpcode() != ISD::SRL) {
822           std::swap(Op0, Op1);
823           std::swap(Op0Opc, Op1Opc);
824           std::swap(TargetMask, InsertMask);
825         }
826       }
827     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
828       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
829           Op1.getOperand(0).getOpcode() != ISD::SRL) {
830         std::swap(Op0, Op1);
831         std::swap(Op0Opc, Op1Opc);
832         std::swap(TargetMask, InsertMask);
833       }
834     }
835 
836     unsigned MB, ME;
837     if (isRunOfOnes(InsertMask, MB, ME)) {
838       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
839           isInt32Immediate(Op1.getOperand(1), Value)) {
840         Op1 = Op1.getOperand(0);
841         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
842       }
843       if (Op1Opc == ISD::AND) {
844        // The AND mask might not be a constant, and we need to make sure that
845        // if we're going to fold the masking with the insert, all bits not
846        // know to be zero in the mask are known to be one.
847         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
848         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
849 
850         unsigned SHOpc = Op1.getOperand(0).getOpcode();
851         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
852             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
853           // Note that Value must be in range here (less than 32) because
854           // otherwise there would not be any bits set in InsertMask.
855           Op1 = Op1.getOperand(0).getOperand(0);
856           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
857         }
858       }
859 
860       SH &= 31;
861       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
862                           getI32Imm(ME, dl) };
863       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
864       return true;
865     }
866   }
867   return false;
868 }
869 
870 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
871   unsigned MaxTruncation = 0;
872   // Cannot use range-based for loop here as we need the actual use (i.e. we
873   // need the operand number corresponding to the use). A range-based for
874   // will unbox the use and provide an SDNode*.
875   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
876        Use != UseEnd; ++Use) {
877     unsigned Opc =
878       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
879     switch (Opc) {
880     default: return 0;
881     case ISD::TRUNCATE:
882       if (Use->isMachineOpcode())
883         return 0;
884       MaxTruncation =
885         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
886       continue;
887     case ISD::STORE: {
888       if (Use->isMachineOpcode())
889         return 0;
890       StoreSDNode *STN = cast<StoreSDNode>(*Use);
891       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
892       if (MemVTSize == 64 || Use.getOperandNo() != 0)
893         return 0;
894       MaxTruncation = std::max(MaxTruncation, MemVTSize);
895       continue;
896     }
897     case PPC::STW8:
898     case PPC::STWX8:
899     case PPC::STWU8:
900     case PPC::STWUX8:
901       if (Use.getOperandNo() != 0)
902         return 0;
903       MaxTruncation = std::max(MaxTruncation, 32u);
904       continue;
905     case PPC::STH8:
906     case PPC::STHX8:
907     case PPC::STHU8:
908     case PPC::STHUX8:
909       if (Use.getOperandNo() != 0)
910         return 0;
911       MaxTruncation = std::max(MaxTruncation, 16u);
912       continue;
913     case PPC::STB8:
914     case PPC::STBX8:
915     case PPC::STBU8:
916     case PPC::STBUX8:
917       if (Use.getOperandNo() != 0)
918         return 0;
919       MaxTruncation = std::max(MaxTruncation, 8u);
920       continue;
921     }
922   }
923   return MaxTruncation;
924 }
925 
926 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
927 // zeros and return the number of bits by the left of these consecutive zeros.
928 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
929   unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
930   unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
931   if ((HiTZ + LoLZ) >= Num)
932     return (32 + HiTZ);
933   return 0;
934 }
935 
936 // Direct materialization of 64-bit constants by enumerated patterns.
937 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
938                                   uint64_t Imm, unsigned &InstCnt) {
939   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
940   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
941   unsigned TO = countTrailingOnes<uint64_t>(Imm);
942   unsigned LO = countLeadingOnes<uint64_t>(Imm);
943   unsigned Hi32 = Hi_32(Imm);
944   unsigned Lo32 = Lo_32(Imm);
945   SDNode *Result = nullptr;
946   unsigned Shift = 0;
947 
948   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
949     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
950   };
951 
952   // Following patterns use 1 instructions to materialize the Imm.
953   InstCnt = 1;
954   // 1-1) Patterns : {zeros}{15-bit valve}
955   //                 {ones}{15-bit valve}
956   if (isInt<16>(Imm)) {
957     SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
958     return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
959   }
960   // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
961   //                 {ones}{15-bit valve}{16 zeros}
962   if (TZ > 15 && (LZ > 32 || LO > 32))
963     return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
964                                   getI32Imm((Imm >> 16) & 0xffff));
965 
966   // Following patterns use 2 instructions to materialize the Imm.
967   InstCnt = 2;
968   assert(LZ < 64 && "Unexpected leading zeros here.");
969   // Count of ones follwing the leading zeros.
970   unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
971   // 2-1) Patterns : {zeros}{31-bit value}
972   //                 {ones}{31-bit value}
973   if (isInt<32>(Imm)) {
974     uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
975     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
976     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
977     return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
978                                   getI32Imm(Imm & 0xffff));
979   }
980   // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
981   //                 {zeros}{15-bit value}{zeros}
982   //                 {zeros}{ones}{15-bit value}
983   //                 {ones}{15-bit value}{zeros}
984   // We can take advantage of LI's sign-extension semantics to generate leading
985   // ones, and then use RLDIC to mask off the ones in both sides after rotation.
986   if ((LZ + FO + TZ) > 48) {
987     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
988                                     getI32Imm((Imm >> TZ) & 0xffff));
989     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
990                                   getI32Imm(TZ), getI32Imm(LZ));
991   }
992   // 2-3) Pattern : {zeros}{15-bit value}{ones}
993   // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
994   // therefore we can take advantage of LI's sign-extension semantics, and then
995   // mask them off after rotation.
996   //
997   // +--LZ--||-15-bit-||--TO--+     +-------------|--16-bit--+
998   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
999   // +------------------------+     +------------------------+
1000   // 63                      0      63                      0
1001   //          Imm                   (Imm >> (48 - LZ) & 0xffff)
1002   // +----sext-----|--16-bit--+     +clear-|-----------------+
1003   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1004   // +------------------------+     +------------------------+
1005   // 63                      0      63                      0
1006   // LI8: sext many leading zeros   RLDICL: rotate left (48 - LZ), clear left LZ
1007   if ((LZ + TO) > 48) {
1008     // Since the immediates with (LZ > 32) have been handled by previous
1009     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1010     // the Imm by a negative value.
1011     assert(LZ <= 32 && "Unexpected shift value.");
1012     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1013                                     getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1014     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1015                                   getI32Imm(48 - LZ), getI32Imm(LZ));
1016   }
1017   // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1018   //                 {ones}{15-bit value}{ones}
1019   // We can take advantage of LI's sign-extension semantics to generate leading
1020   // ones, and then use RLDICL to mask off the ones in left sides (if required)
1021   // after rotation.
1022   //
1023   // +-LZ-FO||-15-bit-||--TO--+     +-------------|--16-bit--+
1024   // |00011110bbbbbbbbb1111111| ->  |000000000011110bbbbbbbbb|
1025   // +------------------------+     +------------------------+
1026   // 63                      0      63                      0
1027   //            Imm                    (Imm >> TO) & 0xffff
1028   // +----sext-----|--16-bit--+     +LZ|---------------------+
1029   // |111111111111110bbbbbbbbb| ->  |00011110bbbbbbbbb1111111|
1030   // +------------------------+     +------------------------+
1031   // 63                      0      63                      0
1032   // LI8: sext many leading zeros   RLDICL: rotate left TO, clear left LZ
1033   if ((LZ + FO + TO) > 48) {
1034     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1035                                     getI32Imm((Imm >> TO) & 0xffff));
1036     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1037                                   getI32Imm(TO), getI32Imm(LZ));
1038   }
1039   // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1040   // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1041   // value, we can use LI for Lo16 without generating leading ones then add the
1042   // Hi16(in Lo32).
1043   if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1044     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1045                                     getI32Imm(Lo32 & 0xffff));
1046     return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1047                                   getI32Imm(Lo32 >> 16));
1048   }
1049   // 2-6) Patterns : {******}{49 zeros}{******}
1050   //                 {******}{49 ones}{******}
1051   // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1052   // bits remain on both sides. Rotate right the Imm to construct an int<16>
1053   // value, use LI for int<16> value and then use RLDICL without mask to rotate
1054   // it back.
1055   //
1056   // 1) findContiguousZerosAtLeast(Imm, 49)
1057   // +------|--zeros-|------+     +---ones--||---15 bit--+
1058   // |bbbbbb0000000000aaaaaa| ->  |0000000000aaaaaabbbbbb|
1059   // +----------------------+     +----------------------+
1060   // 63                    0      63                    0
1061   //
1062   // 2) findContiguousZerosAtLeast(~Imm, 49)
1063   // +------|--ones--|------+     +---ones--||---15 bit--+
1064   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1065   // +----------------------+     +----------------------+
1066   // 63                    0      63                    0
1067   if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1068       (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1069     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1070     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1071                                     getI32Imm(RotImm & 0xffff));
1072     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1073                                   getI32Imm(Shift), getI32Imm(0));
1074   }
1075 
1076   // Following patterns use 3 instructions to materialize the Imm.
1077   InstCnt = 3;
1078   // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1079   //                 {zeros}{31-bit value}{zeros}
1080   //                 {zeros}{ones}{31-bit value}
1081   //                 {ones}{31-bit value}{zeros}
1082   // We can take advantage of LIS's sign-extension semantics to generate leading
1083   // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1084   // ones in both sides after rotation.
1085   if ((LZ + FO + TZ) > 32) {
1086     uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1087     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1088     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1089     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1090                                     getI32Imm((Imm >> TZ) & 0xffff));
1091     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1092                                   getI32Imm(TZ), getI32Imm(LZ));
1093   }
1094   // 3-2) Pattern : {zeros}{31-bit value}{ones}
1095   // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
1096   // value, therefore we can take advantage of LIS's sign-extension semantics,
1097   // add the remaining bits with ORI, and then mask them off after rotation.
1098   // This is similar to Pattern 2-3, please refer to the diagram there.
1099   if ((LZ + TO) > 32) {
1100     // Since the immediates with (LZ > 32) have been handled by previous
1101     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1102     // the Imm by a negative value.
1103     assert(LZ <= 32 && "Unexpected shift value.");
1104     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1105                                     getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1106     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1107                                     getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1108     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1109                                   getI32Imm(32 - LZ), getI32Imm(LZ));
1110   }
1111   // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1112   //                 {ones}{31-bit value}{ones}
1113   // We can take advantage of LIS's sign-extension semantics to generate leading
1114   // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1115   // ones in left sides (if required) after rotation.
1116   // This is similar to Pattern 2-4, please refer to the diagram there.
1117   if ((LZ + FO + TO) > 32) {
1118     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1119                                     getI32Imm((Imm >> (TO + 16)) & 0xffff));
1120     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1121                                     getI32Imm((Imm >> TO) & 0xffff));
1122     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1123                                   getI32Imm(TO), getI32Imm(LZ));
1124   }
1125   // 3-4) Patterns : High word == Low word
1126   if (Hi32 == Lo32) {
1127     // Handle the first 32 bits.
1128     uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1129     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1130     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1131     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1132                                     getI32Imm(Lo32 & 0xffff));
1133     // Use rldimi to insert the Low word into High word.
1134     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1135                      getI32Imm(0)};
1136     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1137   }
1138   // 3-5) Patterns : {******}{33 zeros}{******}
1139   //                 {******}{33 ones}{******}
1140   // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1141   // bits remain on both sides. Rotate right the Imm to construct an int<32>
1142   // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1143   // rotate it back.
1144   // This is similar to Pattern 2-6, please refer to the diagram there.
1145   if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1146       (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1147     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1148     uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1149     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1150     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1151     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1152                                     getI32Imm(RotImm & 0xffff));
1153     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1154                                   getI32Imm(Shift), getI32Imm(0));
1155   }
1156 
1157   InstCnt = 0;
1158   return nullptr;
1159 }
1160 
1161 // Try to select instructions to generate a 64 bit immediate using prefix as
1162 // well as non prefix instructions. The function will return the SDNode
1163 // to materialize that constant or it will return nullptr if it does not
1164 // find one. The variable InstCnt is set to the number of instructions that
1165 // were selected.
1166 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1167                                         uint64_t Imm, unsigned &InstCnt) {
1168   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
1169   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
1170   unsigned TO = countTrailingOnes<uint64_t>(Imm);
1171   unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1172   unsigned Hi32 = Hi_32(Imm);
1173   unsigned Lo32 = Lo_32(Imm);
1174 
1175   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1176     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1177   };
1178 
1179   auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1180     return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1181   };
1182 
1183   // Following patterns use 1 instruction to materialize Imm.
1184   InstCnt = 1;
1185 
1186   // The pli instruction can materialize up to 34 bits directly.
1187   // If a constant fits within 34-bits, emit the pli instruction here directly.
1188   if (isInt<34>(Imm))
1189     return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1190                                   CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1191 
1192   // Require at least two instructions.
1193   InstCnt = 2;
1194   SDNode *Result = nullptr;
1195   // Patterns : {zeros}{ones}{33-bit value}{zeros}
1196   //            {zeros}{33-bit value}{zeros}
1197   //            {zeros}{ones}{33-bit value}
1198   //            {ones}{33-bit value}{zeros}
1199   // We can take advantage of PLI's sign-extension semantics to generate leading
1200   // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1201   if ((LZ + FO + TZ) > 30) {
1202     APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1203     APInt Extended = SignedInt34.sext(64);
1204     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1205                                     getI64Imm(*Extended.getRawData()));
1206     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1207                                   getI32Imm(TZ), getI32Imm(LZ));
1208   }
1209   // Pattern : {zeros}{33-bit value}{ones}
1210   // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1211   // therefore we can take advantage of PLI's sign-extension semantics, and then
1212   // mask them off after rotation.
1213   //
1214   // +--LZ--||-33-bit-||--TO--+     +-------------|--34-bit--+
1215   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1216   // +------------------------+     +------------------------+
1217   // 63                      0      63                      0
1218   //
1219   // +----sext-----|--34-bit--+     +clear-|-----------------+
1220   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1221   // +------------------------+     +------------------------+
1222   // 63                      0      63                      0
1223   if ((LZ + TO) > 30) {
1224     APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1225     APInt Extended = SignedInt34.sext(64);
1226     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1227                                     getI64Imm(*Extended.getRawData()));
1228     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1229                                   getI32Imm(30 - LZ), getI32Imm(LZ));
1230   }
1231   // Patterns : {zeros}{ones}{33-bit value}{ones}
1232   //            {ones}{33-bit value}{ones}
1233   // Similar to LI we can take advantage of PLI's sign-extension semantics to
1234   // generate leading ones, and then use RLDICL to mask off the ones in left
1235   // sides (if required) after rotation.
1236   if ((LZ + FO + TO) > 30) {
1237     APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1238     APInt Extended = SignedInt34.sext(64);
1239     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1240                                     getI64Imm(*Extended.getRawData()));
1241     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1242                                   getI32Imm(TO), getI32Imm(LZ));
1243   }
1244   // Patterns : {******}{31 zeros}{******}
1245   //          : {******}{31 ones}{******}
1246   // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1247   // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1248   // for the int<33> value and then use RLDICL without a mask to rotate it back.
1249   //
1250   // +------|--ones--|------+     +---ones--||---33 bit--+
1251   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1252   // +----------------------+     +----------------------+
1253   // 63                    0      63                    0
1254   for (unsigned Shift = 0; Shift < 63; ++Shift) {
1255     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1256     if (isInt<34>(RotImm)) {
1257       Result =
1258           CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1259       return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1260                                     SDValue(Result, 0), getI32Imm(Shift),
1261                                     getI32Imm(0));
1262     }
1263   }
1264 
1265   // Patterns : High word == Low word
1266   // This is basically a splat of a 32 bit immediate.
1267   if (Hi32 == Lo32) {
1268     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1269     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1270                      getI32Imm(0)};
1271     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1272   }
1273 
1274   InstCnt = 3;
1275   // Catch-all
1276   // This pattern can form any 64 bit immediate in 3 instructions.
1277   SDNode *ResultHi =
1278       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1279   SDNode *ResultLo =
1280       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1281   SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1282                    getI32Imm(0)};
1283   return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1284 }
1285 
1286 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1287                             unsigned *InstCnt = nullptr) {
1288   unsigned InstCntDirect = 0;
1289   // No more than 3 instructions are used if we can select the i64 immediate
1290   // directly.
1291   SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1292 
1293   const PPCSubtarget &Subtarget =
1294       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1295 
1296   // If we have prefixed instructions and there is a chance we can
1297   // materialize the constant with fewer prefixed instructions than
1298   // non-prefixed, try that.
1299   if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1300     unsigned InstCntDirectP = 0;
1301     SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1302     // Use the prefix case in either of two cases:
1303     // 1) We have no result from the non-prefix case to use.
1304     // 2) The non-prefix case uses more instructions than the prefix case.
1305     // If the prefix and non-prefix cases use the same number of instructions
1306     // we will prefer the non-prefix case.
1307     if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1308       if (InstCnt)
1309         *InstCnt = InstCntDirectP;
1310       return ResultP;
1311     }
1312   }
1313 
1314   if (Result) {
1315     if (InstCnt)
1316       *InstCnt = InstCntDirect;
1317     return Result;
1318   }
1319   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1320     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1321   };
1322   // Handle the upper 32 bit value.
1323   Result =
1324       selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1325   // Add in the last bits as required.
1326   if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) {
1327     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1328                                     SDValue(Result, 0), getI32Imm(Hi16));
1329     ++InstCntDirect;
1330   }
1331   if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) {
1332     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1333                                     getI32Imm(Lo16));
1334     ++InstCntDirect;
1335   }
1336   if (InstCnt)
1337     *InstCnt = InstCntDirect;
1338   return Result;
1339 }
1340 
1341 // Select a 64-bit constant.
1342 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1343   SDLoc dl(N);
1344 
1345   // Get 64 bit value.
1346   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1347   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1348     uint64_t SextImm = SignExtend64(Imm, MinSize);
1349     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1350     if (isInt<16>(SextImm))
1351       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1352   }
1353   return selectI64Imm(CurDAG, dl, Imm);
1354 }
1355 
1356 namespace {
1357 
1358 class BitPermutationSelector {
1359   struct ValueBit {
1360     SDValue V;
1361 
1362     // The bit number in the value, using a convention where bit 0 is the
1363     // lowest-order bit.
1364     unsigned Idx;
1365 
1366     // ConstZero means a bit we need to mask off.
1367     // Variable is a bit comes from an input variable.
1368     // VariableKnownToBeZero is also a bit comes from an input variable,
1369     // but it is known to be already zero. So we do not need to mask them.
1370     enum Kind {
1371       ConstZero,
1372       Variable,
1373       VariableKnownToBeZero
1374     } K;
1375 
1376     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1377       : V(V), Idx(I), K(K) {}
1378     ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1379 
1380     bool isZero() const {
1381       return K == ConstZero || K == VariableKnownToBeZero;
1382     }
1383 
1384     bool hasValue() const {
1385       return K == Variable || K == VariableKnownToBeZero;
1386     }
1387 
1388     SDValue getValue() const {
1389       assert(hasValue() && "Cannot get the value of a constant bit");
1390       return V;
1391     }
1392 
1393     unsigned getValueBitIndex() const {
1394       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1395       return Idx;
1396     }
1397   };
1398 
1399   // A bit group has the same underlying value and the same rotate factor.
1400   struct BitGroup {
1401     SDValue V;
1402     unsigned RLAmt;
1403     unsigned StartIdx, EndIdx;
1404 
1405     // This rotation amount assumes that the lower 32 bits of the quantity are
1406     // replicated in the high 32 bits by the rotation operator (which is done
1407     // by rlwinm and friends in 64-bit mode).
1408     bool Repl32;
1409     // Did converting to Repl32 == true change the rotation factor? If it did,
1410     // it decreased it by 32.
1411     bool Repl32CR;
1412     // Was this group coalesced after setting Repl32 to true?
1413     bool Repl32Coalesced;
1414 
1415     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1416       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1417         Repl32Coalesced(false) {
1418       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1419                         << " [" << S << ", " << E << "]\n");
1420     }
1421   };
1422 
1423   // Information on each (Value, RLAmt) pair (like the number of groups
1424   // associated with each) used to choose the lowering method.
1425   struct ValueRotInfo {
1426     SDValue V;
1427     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1428     unsigned NumGroups = 0;
1429     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1430     bool Repl32 = false;
1431 
1432     ValueRotInfo() = default;
1433 
1434     // For sorting (in reverse order) by NumGroups, and then by
1435     // FirstGroupStartIdx.
1436     bool operator < (const ValueRotInfo &Other) const {
1437       // We need to sort so that the non-Repl32 come first because, when we're
1438       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1439       // masking operation.
1440       if (Repl32 < Other.Repl32)
1441         return true;
1442       else if (Repl32 > Other.Repl32)
1443         return false;
1444       else if (NumGroups > Other.NumGroups)
1445         return true;
1446       else if (NumGroups < Other.NumGroups)
1447         return false;
1448       else if (RLAmt == 0 && Other.RLAmt != 0)
1449         return true;
1450       else if (RLAmt != 0 && Other.RLAmt == 0)
1451         return false;
1452       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1453         return true;
1454       return false;
1455     }
1456   };
1457 
1458   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1459   using ValueBitsMemoizer =
1460       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1461   ValueBitsMemoizer Memoizer;
1462 
1463   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1464   // The bool is true if something interesting was deduced, otherwise if we're
1465   // providing only a generic representation of V (or something else likewise
1466   // uninteresting for instruction selection) through the SmallVector.
1467   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1468                                                             unsigned NumBits) {
1469     auto &ValueEntry = Memoizer[V];
1470     if (ValueEntry)
1471       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1472     ValueEntry.reset(new ValueBitsMemoizedValue());
1473     bool &Interesting = ValueEntry->first;
1474     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1475     Bits.resize(NumBits);
1476 
1477     switch (V.getOpcode()) {
1478     default: break;
1479     case ISD::ROTL:
1480       if (isa<ConstantSDNode>(V.getOperand(1))) {
1481         unsigned RotAmt = V.getConstantOperandVal(1);
1482 
1483         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1484 
1485         for (unsigned i = 0; i < NumBits; ++i)
1486           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1487 
1488         return std::make_pair(Interesting = true, &Bits);
1489       }
1490       break;
1491     case ISD::SHL:
1492     case PPCISD::SHL:
1493       if (isa<ConstantSDNode>(V.getOperand(1))) {
1494         unsigned ShiftAmt = V.getConstantOperandVal(1);
1495 
1496         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1497 
1498         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1499           Bits[i] = LHSBits[i - ShiftAmt];
1500 
1501         for (unsigned i = 0; i < ShiftAmt; ++i)
1502           Bits[i] = ValueBit(ValueBit::ConstZero);
1503 
1504         return std::make_pair(Interesting = true, &Bits);
1505       }
1506       break;
1507     case ISD::SRL:
1508     case PPCISD::SRL:
1509       if (isa<ConstantSDNode>(V.getOperand(1))) {
1510         unsigned ShiftAmt = V.getConstantOperandVal(1);
1511 
1512         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1513 
1514         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1515           Bits[i] = LHSBits[i + ShiftAmt];
1516 
1517         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1518           Bits[i] = ValueBit(ValueBit::ConstZero);
1519 
1520         return std::make_pair(Interesting = true, &Bits);
1521       }
1522       break;
1523     case ISD::AND:
1524       if (isa<ConstantSDNode>(V.getOperand(1))) {
1525         uint64_t Mask = V.getConstantOperandVal(1);
1526 
1527         const SmallVector<ValueBit, 64> *LHSBits;
1528         // Mark this as interesting, only if the LHS was also interesting. This
1529         // prevents the overall procedure from matching a single immediate 'and'
1530         // (which is non-optimal because such an and might be folded with other
1531         // things if we don't select it here).
1532         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1533 
1534         for (unsigned i = 0; i < NumBits; ++i)
1535           if (((Mask >> i) & 1) == 1)
1536             Bits[i] = (*LHSBits)[i];
1537           else {
1538             // AND instruction masks this bit. If the input is already zero,
1539             // we have nothing to do here. Otherwise, make the bit ConstZero.
1540             if ((*LHSBits)[i].isZero())
1541               Bits[i] = (*LHSBits)[i];
1542             else
1543               Bits[i] = ValueBit(ValueBit::ConstZero);
1544           }
1545 
1546         return std::make_pair(Interesting, &Bits);
1547       }
1548       break;
1549     case ISD::OR: {
1550       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1551       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1552 
1553       bool AllDisjoint = true;
1554       SDValue LastVal = SDValue();
1555       unsigned LastIdx = 0;
1556       for (unsigned i = 0; i < NumBits; ++i) {
1557         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1558           // If both inputs are known to be zero and one is ConstZero and
1559           // another is VariableKnownToBeZero, we can select whichever
1560           // we like. To minimize the number of bit groups, we select
1561           // VariableKnownToBeZero if this bit is the next bit of the same
1562           // input variable from the previous bit. Otherwise, we select
1563           // ConstZero.
1564           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1565               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1566             Bits[i] = LHSBits[i];
1567           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1568                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1569             Bits[i] = RHSBits[i];
1570           else
1571             Bits[i] = ValueBit(ValueBit::ConstZero);
1572         }
1573         else if (LHSBits[i].isZero())
1574           Bits[i] = RHSBits[i];
1575         else if (RHSBits[i].isZero())
1576           Bits[i] = LHSBits[i];
1577         else {
1578           AllDisjoint = false;
1579           break;
1580         }
1581         // We remember the value and bit index of this bit.
1582         if (Bits[i].hasValue()) {
1583           LastVal = Bits[i].getValue();
1584           LastIdx = Bits[i].getValueBitIndex();
1585         }
1586         else {
1587           if (LastVal) LastVal = SDValue();
1588           LastIdx = 0;
1589         }
1590       }
1591 
1592       if (!AllDisjoint)
1593         break;
1594 
1595       return std::make_pair(Interesting = true, &Bits);
1596     }
1597     case ISD::ZERO_EXTEND: {
1598       // We support only the case with zero extension from i32 to i64 so far.
1599       if (V.getValueType() != MVT::i64 ||
1600           V.getOperand(0).getValueType() != MVT::i32)
1601         break;
1602 
1603       const SmallVector<ValueBit, 64> *LHSBits;
1604       const unsigned NumOperandBits = 32;
1605       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1606                                                     NumOperandBits);
1607 
1608       for (unsigned i = 0; i < NumOperandBits; ++i)
1609         Bits[i] = (*LHSBits)[i];
1610 
1611       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1612         Bits[i] = ValueBit(ValueBit::ConstZero);
1613 
1614       return std::make_pair(Interesting, &Bits);
1615     }
1616     case ISD::TRUNCATE: {
1617       EVT FromType = V.getOperand(0).getValueType();
1618       EVT ToType = V.getValueType();
1619       // We support only the case with truncate from i64 to i32.
1620       if (FromType != MVT::i64 || ToType != MVT::i32)
1621         break;
1622       const unsigned NumAllBits = FromType.getSizeInBits();
1623       SmallVector<ValueBit, 64> *InBits;
1624       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1625                                                     NumAllBits);
1626       const unsigned NumValidBits = ToType.getSizeInBits();
1627 
1628       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1629       // So, we cannot include this truncate.
1630       bool UseUpper32bit = false;
1631       for (unsigned i = 0; i < NumValidBits; ++i)
1632         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1633           UseUpper32bit = true;
1634           break;
1635         }
1636       if (UseUpper32bit)
1637         break;
1638 
1639       for (unsigned i = 0; i < NumValidBits; ++i)
1640         Bits[i] = (*InBits)[i];
1641 
1642       return std::make_pair(Interesting, &Bits);
1643     }
1644     case ISD::AssertZext: {
1645       // For AssertZext, we look through the operand and
1646       // mark the bits known to be zero.
1647       const SmallVector<ValueBit, 64> *LHSBits;
1648       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1649                                                     NumBits);
1650 
1651       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1652       const unsigned NumValidBits = FromType.getSizeInBits();
1653       for (unsigned i = 0; i < NumValidBits; ++i)
1654         Bits[i] = (*LHSBits)[i];
1655 
1656       // These bits are known to be zero but the AssertZext may be from a value
1657       // that already has some constant zero bits (i.e. from a masking and).
1658       for (unsigned i = NumValidBits; i < NumBits; ++i)
1659         Bits[i] = (*LHSBits)[i].hasValue()
1660                       ? ValueBit((*LHSBits)[i].getValue(),
1661                                  (*LHSBits)[i].getValueBitIndex(),
1662                                  ValueBit::VariableKnownToBeZero)
1663                       : ValueBit(ValueBit::ConstZero);
1664 
1665       return std::make_pair(Interesting, &Bits);
1666     }
1667     case ISD::LOAD:
1668       LoadSDNode *LD = cast<LoadSDNode>(V);
1669       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1670         EVT VT = LD->getMemoryVT();
1671         const unsigned NumValidBits = VT.getSizeInBits();
1672 
1673         for (unsigned i = 0; i < NumValidBits; ++i)
1674           Bits[i] = ValueBit(V, i);
1675 
1676         // These bits are known to be zero.
1677         for (unsigned i = NumValidBits; i < NumBits; ++i)
1678           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1679 
1680         // Zero-extending load itself cannot be optimized. So, it is not
1681         // interesting by itself though it gives useful information.
1682         return std::make_pair(Interesting = false, &Bits);
1683       }
1684       break;
1685     }
1686 
1687     for (unsigned i = 0; i < NumBits; ++i)
1688       Bits[i] = ValueBit(V, i);
1689 
1690     return std::make_pair(Interesting = false, &Bits);
1691   }
1692 
1693   // For each value (except the constant ones), compute the left-rotate amount
1694   // to get it from its original to final position.
1695   void computeRotationAmounts() {
1696     NeedMask = false;
1697     RLAmt.resize(Bits.size());
1698     for (unsigned i = 0; i < Bits.size(); ++i)
1699       if (Bits[i].hasValue()) {
1700         unsigned VBI = Bits[i].getValueBitIndex();
1701         if (i >= VBI)
1702           RLAmt[i] = i - VBI;
1703         else
1704           RLAmt[i] = Bits.size() - (VBI - i);
1705       } else if (Bits[i].isZero()) {
1706         NeedMask = true;
1707         RLAmt[i] = UINT32_MAX;
1708       } else {
1709         llvm_unreachable("Unknown value bit type");
1710       }
1711   }
1712 
1713   // Collect groups of consecutive bits with the same underlying value and
1714   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1715   // they break up groups.
1716   void collectBitGroups(bool LateMask) {
1717     BitGroups.clear();
1718 
1719     unsigned LastRLAmt = RLAmt[0];
1720     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1721     unsigned LastGroupStartIdx = 0;
1722     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1723     for (unsigned i = 1; i < Bits.size(); ++i) {
1724       unsigned ThisRLAmt = RLAmt[i];
1725       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1726       if (LateMask && !ThisValue) {
1727         ThisValue = LastValue;
1728         ThisRLAmt = LastRLAmt;
1729         // If we're doing late masking, then the first bit group always starts
1730         // at zero (even if the first bits were zero).
1731         if (BitGroups.empty())
1732           LastGroupStartIdx = 0;
1733       }
1734 
1735       // If this bit is known to be zero and the current group is a bit group
1736       // of zeros, we do not need to terminate the current bit group even the
1737       // Value or RLAmt does not match here. Instead, we terminate this group
1738       // when the first non-zero bit appears later.
1739       if (IsGroupOfZeros && Bits[i].isZero())
1740         continue;
1741 
1742       // If this bit has the same underlying value and the same rotate factor as
1743       // the last one, then they're part of the same group.
1744       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1745         // We cannot continue the current group if this bits is not known to
1746         // be zero in a bit group of zeros.
1747         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1748           continue;
1749 
1750       if (LastValue.getNode())
1751         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1752                                      i-1));
1753       LastRLAmt = ThisRLAmt;
1754       LastValue = ThisValue;
1755       LastGroupStartIdx = i;
1756       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1757     }
1758     if (LastValue.getNode())
1759       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1760                                    Bits.size()-1));
1761 
1762     if (BitGroups.empty())
1763       return;
1764 
1765     // We might be able to combine the first and last groups.
1766     if (BitGroups.size() > 1) {
1767       // If the first and last groups are the same, then remove the first group
1768       // in favor of the last group, making the ending index of the last group
1769       // equal to the ending index of the to-be-removed first group.
1770       if (BitGroups[0].StartIdx == 0 &&
1771           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1772           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1773           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1774         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1775         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1776         BitGroups.erase(BitGroups.begin());
1777       }
1778     }
1779   }
1780 
1781   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1782   // associated with each. If the number of groups are same, we prefer a group
1783   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1784   // instruction. If there is a degeneracy, pick the one that occurs
1785   // first (in the final value).
1786   void collectValueRotInfo() {
1787     ValueRots.clear();
1788 
1789     for (auto &BG : BitGroups) {
1790       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1791       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1792       VRI.V = BG.V;
1793       VRI.RLAmt = BG.RLAmt;
1794       VRI.Repl32 = BG.Repl32;
1795       VRI.NumGroups += 1;
1796       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1797     }
1798 
1799     // Now that we've collected the various ValueRotInfo instances, we need to
1800     // sort them.
1801     ValueRotsVec.clear();
1802     for (auto &I : ValueRots) {
1803       ValueRotsVec.push_back(I.second);
1804     }
1805     llvm::sort(ValueRotsVec);
1806   }
1807 
1808   // In 64-bit mode, rlwinm and friends have a rotation operator that
1809   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1810   // indices of these instructions can only be in the lower 32 bits, so they
1811   // can only represent some 64-bit bit groups. However, when they can be used,
1812   // the 32-bit replication can be used to represent, as a single bit group,
1813   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1814   // groups when possible. Returns true if any of the bit groups were
1815   // converted.
1816   void assignRepl32BitGroups() {
1817     // If we have bits like this:
1818     //
1819     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1820     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1821     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1822     //
1823     // But, making use of a 32-bit operation that replicates the low-order 32
1824     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1825     // of 8.
1826 
1827     auto IsAllLow32 = [this](BitGroup & BG) {
1828       if (BG.StartIdx <= BG.EndIdx) {
1829         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1830           if (!Bits[i].hasValue())
1831             continue;
1832           if (Bits[i].getValueBitIndex() >= 32)
1833             return false;
1834         }
1835       } else {
1836         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1837           if (!Bits[i].hasValue())
1838             continue;
1839           if (Bits[i].getValueBitIndex() >= 32)
1840             return false;
1841         }
1842         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1843           if (!Bits[i].hasValue())
1844             continue;
1845           if (Bits[i].getValueBitIndex() >= 32)
1846             return false;
1847         }
1848       }
1849 
1850       return true;
1851     };
1852 
1853     for (auto &BG : BitGroups) {
1854       // If this bit group has RLAmt of 0 and will not be merged with
1855       // another bit group, we don't benefit from Repl32. We don't mark
1856       // such group to give more freedom for later instruction selection.
1857       if (BG.RLAmt == 0) {
1858         auto PotentiallyMerged = [this](BitGroup & BG) {
1859           for (auto &BG2 : BitGroups)
1860             if (&BG != &BG2 && BG.V == BG2.V &&
1861                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1862               return true;
1863           return false;
1864         };
1865         if (!PotentiallyMerged(BG))
1866           continue;
1867       }
1868       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1869         if (IsAllLow32(BG)) {
1870           if (BG.RLAmt >= 32) {
1871             BG.RLAmt -= 32;
1872             BG.Repl32CR = true;
1873           }
1874 
1875           BG.Repl32 = true;
1876 
1877           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1878                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1879                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1880         }
1881       }
1882     }
1883 
1884     // Now walk through the bit groups, consolidating where possible.
1885     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1886       // We might want to remove this bit group by merging it with the previous
1887       // group (which might be the ending group).
1888       auto IP = (I == BitGroups.begin()) ?
1889                 std::prev(BitGroups.end()) : std::prev(I);
1890       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1891           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1892 
1893         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1894                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1895                           << I->StartIdx << ", " << I->EndIdx
1896                           << "] with group with range [" << IP->StartIdx << ", "
1897                           << IP->EndIdx << "]\n");
1898 
1899         IP->EndIdx = I->EndIdx;
1900         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1901         IP->Repl32Coalesced = true;
1902         I = BitGroups.erase(I);
1903         continue;
1904       } else {
1905         // There is a special case worth handling: If there is a single group
1906         // covering the entire upper 32 bits, and it can be merged with both
1907         // the next and previous groups (which might be the same group), then
1908         // do so. If it is the same group (so there will be only one group in
1909         // total), then we need to reverse the order of the range so that it
1910         // covers the entire 64 bits.
1911         if (I->StartIdx == 32 && I->EndIdx == 63) {
1912           assert(std::next(I) == BitGroups.end() &&
1913                  "bit group ends at index 63 but there is another?");
1914           auto IN = BitGroups.begin();
1915 
1916           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1917               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1918               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1919               IsAllLow32(*I)) {
1920 
1921             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1922                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1923                               << ", " << I->EndIdx
1924                               << "] with 32-bit replicated groups with ranges ["
1925                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1926                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1927 
1928             if (IP == IN) {
1929               // There is only one other group; change it to cover the whole
1930               // range (backward, so that it can still be Repl32 but cover the
1931               // whole 64-bit range).
1932               IP->StartIdx = 31;
1933               IP->EndIdx = 30;
1934               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1935               IP->Repl32Coalesced = true;
1936               I = BitGroups.erase(I);
1937             } else {
1938               // There are two separate groups, one before this group and one
1939               // after us (at the beginning). We're going to remove this group,
1940               // but also the group at the very beginning.
1941               IP->EndIdx = IN->EndIdx;
1942               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1943               IP->Repl32Coalesced = true;
1944               I = BitGroups.erase(I);
1945               BitGroups.erase(BitGroups.begin());
1946             }
1947 
1948             // This must be the last group in the vector (and we might have
1949             // just invalidated the iterator above), so break here.
1950             break;
1951           }
1952         }
1953       }
1954 
1955       ++I;
1956     }
1957   }
1958 
1959   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1960     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1961   }
1962 
1963   uint64_t getZerosMask() {
1964     uint64_t Mask = 0;
1965     for (unsigned i = 0; i < Bits.size(); ++i) {
1966       if (Bits[i].hasValue())
1967         continue;
1968       Mask |= (UINT64_C(1) << i);
1969     }
1970 
1971     return ~Mask;
1972   }
1973 
1974   // This method extends an input value to 64 bit if input is 32-bit integer.
1975   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1976   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1977   // In such case, we extend it to 64 bit to be consistent with other values.
1978   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1979     if (V.getValueSizeInBits() == 64)
1980       return V;
1981 
1982     assert(V.getValueSizeInBits() == 32);
1983     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1984     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1985                                                    MVT::i64), 0);
1986     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1987                                                     MVT::i64, ImDef, V,
1988                                                     SubRegIdx), 0);
1989     return ExtVal;
1990   }
1991 
1992   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1993     if (V.getValueSizeInBits() == 32)
1994       return V;
1995 
1996     assert(V.getValueSizeInBits() == 64);
1997     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1998     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1999                                                     MVT::i32, V, SubRegIdx), 0);
2000     return SubVal;
2001   }
2002 
2003   // Depending on the number of groups for a particular value, it might be
2004   // better to rotate, mask explicitly (using andi/andis), and then or the
2005   // result. Select this part of the result first.
2006   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2007     if (BPermRewriterNoMasking)
2008       return;
2009 
2010     for (ValueRotInfo &VRI : ValueRotsVec) {
2011       unsigned Mask = 0;
2012       for (unsigned i = 0; i < Bits.size(); ++i) {
2013         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2014           continue;
2015         if (RLAmt[i] != VRI.RLAmt)
2016           continue;
2017         Mask |= (1u << i);
2018       }
2019 
2020       // Compute the masks for andi/andis that would be necessary.
2021       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2022       assert((ANDIMask != 0 || ANDISMask != 0) &&
2023              "No set bits in mask for value bit groups");
2024       bool NeedsRotate = VRI.RLAmt != 0;
2025 
2026       // We're trying to minimize the number of instructions. If we have one
2027       // group, using one of andi/andis can break even.  If we have three
2028       // groups, we can use both andi and andis and break even (to use both
2029       // andi and andis we also need to or the results together). We need four
2030       // groups if we also need to rotate. To use andi/andis we need to do more
2031       // than break even because rotate-and-mask instructions tend to be easier
2032       // to schedule.
2033 
2034       // FIXME: We've biased here against using andi/andis, which is right for
2035       // POWER cores, but not optimal everywhere. For example, on the A2,
2036       // andi/andis have single-cycle latency whereas the rotate-and-mask
2037       // instructions take two cycles, and it would be better to bias toward
2038       // andi/andis in break-even cases.
2039 
2040       unsigned NumAndInsts = (unsigned) NeedsRotate +
2041                              (unsigned) (ANDIMask != 0) +
2042                              (unsigned) (ANDISMask != 0) +
2043                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2044                              (unsigned) (bool) Res;
2045 
2046       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2047                         << " RL: " << VRI.RLAmt << ":"
2048                         << "\n\t\t\tisel using masking: " << NumAndInsts
2049                         << " using rotates: " << VRI.NumGroups << "\n");
2050 
2051       if (NumAndInsts >= VRI.NumGroups)
2052         continue;
2053 
2054       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2055 
2056       if (InstCnt) *InstCnt += NumAndInsts;
2057 
2058       SDValue VRot;
2059       if (VRI.RLAmt) {
2060         SDValue Ops[] =
2061           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2062             getI32Imm(0, dl), getI32Imm(31, dl) };
2063         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2064                                               Ops), 0);
2065       } else {
2066         VRot = TruncateToInt32(VRI.V, dl);
2067       }
2068 
2069       SDValue ANDIVal, ANDISVal;
2070       if (ANDIMask != 0)
2071         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2072                                                  VRot, getI32Imm(ANDIMask, dl)),
2073                           0);
2074       if (ANDISMask != 0)
2075         ANDISVal =
2076             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2077                                            getI32Imm(ANDISMask, dl)),
2078                     0);
2079 
2080       SDValue TotalVal;
2081       if (!ANDIVal)
2082         TotalVal = ANDISVal;
2083       else if (!ANDISVal)
2084         TotalVal = ANDIVal;
2085       else
2086         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2087                              ANDIVal, ANDISVal), 0);
2088 
2089       if (!Res)
2090         Res = TotalVal;
2091       else
2092         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2093                         Res, TotalVal), 0);
2094 
2095       // Now, remove all groups with this underlying value and rotation
2096       // factor.
2097       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2098         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2099       });
2100     }
2101   }
2102 
2103   // Instruction selection for the 32-bit case.
2104   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2105     SDLoc dl(N);
2106     SDValue Res;
2107 
2108     if (InstCnt) *InstCnt = 0;
2109 
2110     // Take care of cases that should use andi/andis first.
2111     SelectAndParts32(dl, Res, InstCnt);
2112 
2113     // If we've not yet selected a 'starting' instruction, and we have no zeros
2114     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2115     // number of groups), and start with this rotated value.
2116     if ((!NeedMask || LateMask) && !Res) {
2117       ValueRotInfo &VRI = ValueRotsVec[0];
2118       if (VRI.RLAmt) {
2119         if (InstCnt) *InstCnt += 1;
2120         SDValue Ops[] =
2121           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2122             getI32Imm(0, dl), getI32Imm(31, dl) };
2123         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2124                       0);
2125       } else {
2126         Res = TruncateToInt32(VRI.V, dl);
2127       }
2128 
2129       // Now, remove all groups with this underlying value and rotation factor.
2130       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2131         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2132       });
2133     }
2134 
2135     if (InstCnt) *InstCnt += BitGroups.size();
2136 
2137     // Insert the other groups (one at a time).
2138     for (auto &BG : BitGroups) {
2139       if (!Res) {
2140         SDValue Ops[] =
2141           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2142             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2143             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2144         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2145       } else {
2146         SDValue Ops[] =
2147           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2148               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2149             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2150         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2151       }
2152     }
2153 
2154     if (LateMask) {
2155       unsigned Mask = (unsigned) getZerosMask();
2156 
2157       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2158       assert((ANDIMask != 0 || ANDISMask != 0) &&
2159              "No set bits in zeros mask?");
2160 
2161       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2162                                (unsigned) (ANDISMask != 0) +
2163                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2164 
2165       SDValue ANDIVal, ANDISVal;
2166       if (ANDIMask != 0)
2167         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2168                                                  Res, getI32Imm(ANDIMask, dl)),
2169                           0);
2170       if (ANDISMask != 0)
2171         ANDISVal =
2172             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2173                                            getI32Imm(ANDISMask, dl)),
2174                     0);
2175 
2176       if (!ANDIVal)
2177         Res = ANDISVal;
2178       else if (!ANDISVal)
2179         Res = ANDIVal;
2180       else
2181         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2182                         ANDIVal, ANDISVal), 0);
2183     }
2184 
2185     return Res.getNode();
2186   }
2187 
2188   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2189                                 unsigned MaskStart, unsigned MaskEnd,
2190                                 bool IsIns) {
2191     // In the notation used by the instructions, 'start' and 'end' are reversed
2192     // because bits are counted from high to low order.
2193     unsigned InstMaskStart = 64 - MaskEnd - 1,
2194              InstMaskEnd   = 64 - MaskStart - 1;
2195 
2196     if (Repl32)
2197       return 1;
2198 
2199     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2200         InstMaskEnd == 63 - RLAmt)
2201       return 1;
2202 
2203     return 2;
2204   }
2205 
2206   // For 64-bit values, not all combinations of rotates and masks are
2207   // available. Produce one if it is available.
2208   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2209                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2210                           unsigned *InstCnt = nullptr) {
2211     // In the notation used by the instructions, 'start' and 'end' are reversed
2212     // because bits are counted from high to low order.
2213     unsigned InstMaskStart = 64 - MaskEnd - 1,
2214              InstMaskEnd   = 64 - MaskStart - 1;
2215 
2216     if (InstCnt) *InstCnt += 1;
2217 
2218     if (Repl32) {
2219       // This rotation amount assumes that the lower 32 bits of the quantity
2220       // are replicated in the high 32 bits by the rotation operator (which is
2221       // done by rlwinm and friends).
2222       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2223       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2224       SDValue Ops[] =
2225         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2226           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2227       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2228                                             Ops), 0);
2229     }
2230 
2231     if (InstMaskEnd == 63) {
2232       SDValue Ops[] =
2233         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2234           getI32Imm(InstMaskStart, dl) };
2235       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2236     }
2237 
2238     if (InstMaskStart == 0) {
2239       SDValue Ops[] =
2240         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2241           getI32Imm(InstMaskEnd, dl) };
2242       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2243     }
2244 
2245     if (InstMaskEnd == 63 - RLAmt) {
2246       SDValue Ops[] =
2247         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2248           getI32Imm(InstMaskStart, dl) };
2249       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2250     }
2251 
2252     // We cannot do this with a single instruction, so we'll use two. The
2253     // problem is that we're not free to choose both a rotation amount and mask
2254     // start and end independently. We can choose an arbitrary mask start and
2255     // end, but then the rotation amount is fixed. Rotation, however, can be
2256     // inverted, and so by applying an "inverse" rotation first, we can get the
2257     // desired result.
2258     if (InstCnt) *InstCnt += 1;
2259 
2260     // The rotation mask for the second instruction must be MaskStart.
2261     unsigned RLAmt2 = MaskStart;
2262     // The first instruction must rotate V so that the overall rotation amount
2263     // is RLAmt.
2264     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2265     if (RLAmt1)
2266       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2267     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2268   }
2269 
2270   // For 64-bit values, not all combinations of rotates and masks are
2271   // available. Produce a rotate-mask-and-insert if one is available.
2272   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2273                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2274                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2275     // In the notation used by the instructions, 'start' and 'end' are reversed
2276     // because bits are counted from high to low order.
2277     unsigned InstMaskStart = 64 - MaskEnd - 1,
2278              InstMaskEnd   = 64 - MaskStart - 1;
2279 
2280     if (InstCnt) *InstCnt += 1;
2281 
2282     if (Repl32) {
2283       // This rotation amount assumes that the lower 32 bits of the quantity
2284       // are replicated in the high 32 bits by the rotation operator (which is
2285       // done by rlwinm and friends).
2286       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2287       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2288       SDValue Ops[] =
2289         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2290           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2291       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2292                                             Ops), 0);
2293     }
2294 
2295     if (InstMaskEnd == 63 - RLAmt) {
2296       SDValue Ops[] =
2297         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2298           getI32Imm(InstMaskStart, dl) };
2299       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2300     }
2301 
2302     // We cannot do this with a single instruction, so we'll use two. The
2303     // problem is that we're not free to choose both a rotation amount and mask
2304     // start and end independently. We can choose an arbitrary mask start and
2305     // end, but then the rotation amount is fixed. Rotation, however, can be
2306     // inverted, and so by applying an "inverse" rotation first, we can get the
2307     // desired result.
2308     if (InstCnt) *InstCnt += 1;
2309 
2310     // The rotation mask for the second instruction must be MaskStart.
2311     unsigned RLAmt2 = MaskStart;
2312     // The first instruction must rotate V so that the overall rotation amount
2313     // is RLAmt.
2314     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2315     if (RLAmt1)
2316       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2317     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2318   }
2319 
2320   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2321     if (BPermRewriterNoMasking)
2322       return;
2323 
2324     // The idea here is the same as in the 32-bit version, but with additional
2325     // complications from the fact that Repl32 might be true. Because we
2326     // aggressively convert bit groups to Repl32 form (which, for small
2327     // rotation factors, involves no other change), and then coalesce, it might
2328     // be the case that a single 64-bit masking operation could handle both
2329     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2330     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2331     // completely capture the new combined bit group.
2332 
2333     for (ValueRotInfo &VRI : ValueRotsVec) {
2334       uint64_t Mask = 0;
2335 
2336       // We need to add to the mask all bits from the associated bit groups.
2337       // If Repl32 is false, we need to add bits from bit groups that have
2338       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2339       // group is trivially convertable if it overlaps only with the lower 32
2340       // bits, and the group has not been coalesced.
2341       auto MatchingBG = [VRI](const BitGroup &BG) {
2342         if (VRI.V != BG.V)
2343           return false;
2344 
2345         unsigned EffRLAmt = BG.RLAmt;
2346         if (!VRI.Repl32 && BG.Repl32) {
2347           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2348               !BG.Repl32Coalesced) {
2349             if (BG.Repl32CR)
2350               EffRLAmt += 32;
2351           } else {
2352             return false;
2353           }
2354         } else if (VRI.Repl32 != BG.Repl32) {
2355           return false;
2356         }
2357 
2358         return VRI.RLAmt == EffRLAmt;
2359       };
2360 
2361       for (auto &BG : BitGroups) {
2362         if (!MatchingBG(BG))
2363           continue;
2364 
2365         if (BG.StartIdx <= BG.EndIdx) {
2366           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2367             Mask |= (UINT64_C(1) << i);
2368         } else {
2369           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2370             Mask |= (UINT64_C(1) << i);
2371           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2372             Mask |= (UINT64_C(1) << i);
2373         }
2374       }
2375 
2376       // We can use the 32-bit andi/andis technique if the mask does not
2377       // require any higher-order bits. This can save an instruction compared
2378       // to always using the general 64-bit technique.
2379       bool Use32BitInsts = isUInt<32>(Mask);
2380       // Compute the masks for andi/andis that would be necessary.
2381       unsigned ANDIMask = (Mask & UINT16_MAX),
2382                ANDISMask = (Mask >> 16) & UINT16_MAX;
2383 
2384       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2385 
2386       unsigned NumAndInsts = (unsigned) NeedsRotate +
2387                              (unsigned) (bool) Res;
2388       unsigned NumOfSelectInsts = 0;
2389       selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2390       assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2391       if (Use32BitInsts)
2392         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2393                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2394       else
2395         NumAndInsts += NumOfSelectInsts + /* and */ 1;
2396 
2397       unsigned NumRLInsts = 0;
2398       bool FirstBG = true;
2399       bool MoreBG = false;
2400       for (auto &BG : BitGroups) {
2401         if (!MatchingBG(BG)) {
2402           MoreBG = true;
2403           continue;
2404         }
2405         NumRLInsts +=
2406           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2407                                !FirstBG);
2408         FirstBG = false;
2409       }
2410 
2411       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2412                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2413                         << "\n\t\t\tisel using masking: " << NumAndInsts
2414                         << " using rotates: " << NumRLInsts << "\n");
2415 
2416       // When we'd use andi/andis, we bias toward using the rotates (andi only
2417       // has a record form, and is cracked on POWER cores). However, when using
2418       // general 64-bit constant formation, bias toward the constant form,
2419       // because that exposes more opportunities for CSE.
2420       if (NumAndInsts > NumRLInsts)
2421         continue;
2422       // When merging multiple bit groups, instruction or is used.
2423       // But when rotate is used, rldimi can inert the rotated value into any
2424       // register, so instruction or can be avoided.
2425       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2426         continue;
2427 
2428       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2429 
2430       if (InstCnt) *InstCnt += NumAndInsts;
2431 
2432       SDValue VRot;
2433       // We actually need to generate a rotation if we have a non-zero rotation
2434       // factor or, in the Repl32 case, if we care about any of the
2435       // higher-order replicated bits. In the latter case, we generate a mask
2436       // backward so that it actually includes the entire 64 bits.
2437       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2438         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2439                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2440       else
2441         VRot = VRI.V;
2442 
2443       SDValue TotalVal;
2444       if (Use32BitInsts) {
2445         assert((ANDIMask != 0 || ANDISMask != 0) &&
2446                "No set bits in mask when using 32-bit ands for 64-bit value");
2447 
2448         SDValue ANDIVal, ANDISVal;
2449         if (ANDIMask != 0)
2450           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2451                                                    ExtendToInt64(VRot, dl),
2452                                                    getI32Imm(ANDIMask, dl)),
2453                             0);
2454         if (ANDISMask != 0)
2455           ANDISVal =
2456               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2457                                              ExtendToInt64(VRot, dl),
2458                                              getI32Imm(ANDISMask, dl)),
2459                       0);
2460 
2461         if (!ANDIVal)
2462           TotalVal = ANDISVal;
2463         else if (!ANDISVal)
2464           TotalVal = ANDIVal;
2465         else
2466           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2467                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2468       } else {
2469         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2470         TotalVal =
2471           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2472                                          ExtendToInt64(VRot, dl), TotalVal),
2473                   0);
2474      }
2475 
2476       if (!Res)
2477         Res = TotalVal;
2478       else
2479         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2480                                              ExtendToInt64(Res, dl), TotalVal),
2481                       0);
2482 
2483       // Now, remove all groups with this underlying value and rotation
2484       // factor.
2485       eraseMatchingBitGroups(MatchingBG);
2486     }
2487   }
2488 
2489   // Instruction selection for the 64-bit case.
2490   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2491     SDLoc dl(N);
2492     SDValue Res;
2493 
2494     if (InstCnt) *InstCnt = 0;
2495 
2496     // Take care of cases that should use andi/andis first.
2497     SelectAndParts64(dl, Res, InstCnt);
2498 
2499     // If we've not yet selected a 'starting' instruction, and we have no zeros
2500     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2501     // number of groups), and start with this rotated value.
2502     if ((!NeedMask || LateMask) && !Res) {
2503       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2504       // groups will come first, and so the VRI representing the largest number
2505       // of groups might not be first (it might be the first Repl32 groups).
2506       unsigned MaxGroupsIdx = 0;
2507       if (!ValueRotsVec[0].Repl32) {
2508         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2509           if (ValueRotsVec[i].Repl32) {
2510             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2511               MaxGroupsIdx = i;
2512             break;
2513           }
2514       }
2515 
2516       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2517       bool NeedsRotate = false;
2518       if (VRI.RLAmt) {
2519         NeedsRotate = true;
2520       } else if (VRI.Repl32) {
2521         for (auto &BG : BitGroups) {
2522           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2523               BG.Repl32 != VRI.Repl32)
2524             continue;
2525 
2526           // We don't need a rotate if the bit group is confined to the lower
2527           // 32 bits.
2528           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2529             continue;
2530 
2531           NeedsRotate = true;
2532           break;
2533         }
2534       }
2535 
2536       if (NeedsRotate)
2537         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2538                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2539                               InstCnt);
2540       else
2541         Res = VRI.V;
2542 
2543       // Now, remove all groups with this underlying value and rotation factor.
2544       if (Res)
2545         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2546           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2547                  BG.Repl32 == VRI.Repl32;
2548         });
2549     }
2550 
2551     // Because 64-bit rotates are more flexible than inserts, we might have a
2552     // preference regarding which one we do first (to save one instruction).
2553     if (!Res)
2554       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2555         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2556                                 false) <
2557             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2558                                 true)) {
2559           if (I != BitGroups.begin()) {
2560             BitGroup BG = *I;
2561             BitGroups.erase(I);
2562             BitGroups.insert(BitGroups.begin(), BG);
2563           }
2564 
2565           break;
2566         }
2567       }
2568 
2569     // Insert the other groups (one at a time).
2570     for (auto &BG : BitGroups) {
2571       if (!Res)
2572         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2573                               BG.EndIdx, InstCnt);
2574       else
2575         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2576                                  BG.StartIdx, BG.EndIdx, InstCnt);
2577     }
2578 
2579     if (LateMask) {
2580       uint64_t Mask = getZerosMask();
2581 
2582       // We can use the 32-bit andi/andis technique if the mask does not
2583       // require any higher-order bits. This can save an instruction compared
2584       // to always using the general 64-bit technique.
2585       bool Use32BitInsts = isUInt<32>(Mask);
2586       // Compute the masks for andi/andis that would be necessary.
2587       unsigned ANDIMask = (Mask & UINT16_MAX),
2588                ANDISMask = (Mask >> 16) & UINT16_MAX;
2589 
2590       if (Use32BitInsts) {
2591         assert((ANDIMask != 0 || ANDISMask != 0) &&
2592                "No set bits in mask when using 32-bit ands for 64-bit value");
2593 
2594         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2595                                  (unsigned) (ANDISMask != 0) +
2596                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2597 
2598         SDValue ANDIVal, ANDISVal;
2599         if (ANDIMask != 0)
2600           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2601                                                    ExtendToInt64(Res, dl),
2602                                                    getI32Imm(ANDIMask, dl)),
2603                             0);
2604         if (ANDISMask != 0)
2605           ANDISVal =
2606               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2607                                              ExtendToInt64(Res, dl),
2608                                              getI32Imm(ANDISMask, dl)),
2609                       0);
2610 
2611         if (!ANDIVal)
2612           Res = ANDISVal;
2613         else if (!ANDISVal)
2614           Res = ANDIVal;
2615         else
2616           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2617                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2618       } else {
2619         unsigned NumOfSelectInsts = 0;
2620         SDValue MaskVal =
2621             SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2622         Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2623                                              ExtendToInt64(Res, dl), MaskVal),
2624                       0);
2625         if (InstCnt)
2626           *InstCnt += NumOfSelectInsts + /* and */ 1;
2627       }
2628     }
2629 
2630     return Res.getNode();
2631   }
2632 
2633   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2634     // Fill in BitGroups.
2635     collectBitGroups(LateMask);
2636     if (BitGroups.empty())
2637       return nullptr;
2638 
2639     // For 64-bit values, figure out when we can use 32-bit instructions.
2640     if (Bits.size() == 64)
2641       assignRepl32BitGroups();
2642 
2643     // Fill in ValueRotsVec.
2644     collectValueRotInfo();
2645 
2646     if (Bits.size() == 32) {
2647       return Select32(N, LateMask, InstCnt);
2648     } else {
2649       assert(Bits.size() == 64 && "Not 64 bits here?");
2650       return Select64(N, LateMask, InstCnt);
2651     }
2652 
2653     return nullptr;
2654   }
2655 
2656   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2657     erase_if(BitGroups, F);
2658   }
2659 
2660   SmallVector<ValueBit, 64> Bits;
2661 
2662   bool NeedMask = false;
2663   SmallVector<unsigned, 64> RLAmt;
2664 
2665   SmallVector<BitGroup, 16> BitGroups;
2666 
2667   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2668   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2669 
2670   SelectionDAG *CurDAG = nullptr;
2671 
2672 public:
2673   BitPermutationSelector(SelectionDAG *DAG)
2674     : CurDAG(DAG) {}
2675 
2676   // Here we try to match complex bit permutations into a set of
2677   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2678   // known to produce optimal code for common cases (like i32 byte swapping).
2679   SDNode *Select(SDNode *N) {
2680     Memoizer.clear();
2681     auto Result =
2682         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2683     if (!Result.first)
2684       return nullptr;
2685     Bits = std::move(*Result.second);
2686 
2687     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2688                          " selection for:    ");
2689     LLVM_DEBUG(N->dump(CurDAG));
2690 
2691     // Fill it RLAmt and set NeedMask.
2692     computeRotationAmounts();
2693 
2694     if (!NeedMask)
2695       return Select(N, false);
2696 
2697     // We currently have two techniques for handling results with zeros: early
2698     // masking (the default) and late masking. Late masking is sometimes more
2699     // efficient, but because the structure of the bit groups is different, it
2700     // is hard to tell without generating both and comparing the results. With
2701     // late masking, we ignore zeros in the resulting value when inserting each
2702     // set of bit groups, and then mask in the zeros at the end. With early
2703     // masking, we only insert the non-zero parts of the result at every step.
2704 
2705     unsigned InstCnt = 0, InstCntLateMask = 0;
2706     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2707     SDNode *RN = Select(N, false, &InstCnt);
2708     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2709 
2710     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2711     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2712     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2713                       << " instructions\n");
2714 
2715     if (InstCnt <= InstCntLateMask) {
2716       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2717       return RN;
2718     }
2719 
2720     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2721     return RNLM;
2722   }
2723 };
2724 
2725 class IntegerCompareEliminator {
2726   SelectionDAG *CurDAG;
2727   PPCDAGToDAGISel *S;
2728   // Conversion type for interpreting results of a 32-bit instruction as
2729   // a 64-bit value or vice versa.
2730   enum ExtOrTruncConversion { Ext, Trunc };
2731 
2732   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2733   // in a GPR.
2734   // ZExtOrig - use the original condition code, zero-extend value
2735   // ZExtInvert - invert the condition code, zero-extend value
2736   // SExtOrig - use the original condition code, sign-extend value
2737   // SExtInvert - invert the condition code, sign-extend value
2738   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2739 
2740   // Comparisons against zero to emit GPR code sequences for. Each of these
2741   // sequences may need to be emitted for two or more equivalent patterns.
2742   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2743   // matters as well as the extension type: sext (-1/0), zext (1/0).
2744   // GEZExt - (zext (LHS >= 0))
2745   // GESExt - (sext (LHS >= 0))
2746   // LEZExt - (zext (LHS <= 0))
2747   // LESExt - (sext (LHS <= 0))
2748   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2749 
2750   SDNode *tryEXTEND(SDNode *N);
2751   SDNode *tryLogicOpOfCompares(SDNode *N);
2752   SDValue computeLogicOpInGPR(SDValue LogicOp);
2753   SDValue signExtendInputIfNeeded(SDValue Input);
2754   SDValue zeroExtendInputIfNeeded(SDValue Input);
2755   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2756   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2757                                         ZeroCompare CmpTy);
2758   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2759                               int64_t RHSValue, SDLoc dl);
2760  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2761                               int64_t RHSValue, SDLoc dl);
2762   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2763                               int64_t RHSValue, SDLoc dl);
2764   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2765                               int64_t RHSValue, SDLoc dl);
2766   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2767 
2768 public:
2769   IntegerCompareEliminator(SelectionDAG *DAG,
2770                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2771     assert(CurDAG->getTargetLoweringInfo()
2772            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2773            "Only expecting to use this on 64 bit targets.");
2774   }
2775   SDNode *Select(SDNode *N) {
2776     if (CmpInGPR == ICGPR_None)
2777       return nullptr;
2778     switch (N->getOpcode()) {
2779     default: break;
2780     case ISD::ZERO_EXTEND:
2781       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2782           CmpInGPR == ICGPR_SextI64)
2783         return nullptr;
2784       [[fallthrough]];
2785     case ISD::SIGN_EXTEND:
2786       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2787           CmpInGPR == ICGPR_ZextI64)
2788         return nullptr;
2789       return tryEXTEND(N);
2790     case ISD::AND:
2791     case ISD::OR:
2792     case ISD::XOR:
2793       return tryLogicOpOfCompares(N);
2794     }
2795     return nullptr;
2796   }
2797 };
2798 
2799 static bool isLogicOp(unsigned Opc) {
2800   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2801 }
2802 // The obvious case for wanting to keep the value in a GPR. Namely, the
2803 // result of the comparison is actually needed in a GPR.
2804 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2805   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2806           N->getOpcode() == ISD::SIGN_EXTEND) &&
2807          "Expecting a zero/sign extend node!");
2808   SDValue WideRes;
2809   // If we are zero-extending the result of a logical operation on i1
2810   // values, we can keep the values in GPRs.
2811   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2812       N->getOperand(0).getValueType() == MVT::i1 &&
2813       N->getOpcode() == ISD::ZERO_EXTEND)
2814     WideRes = computeLogicOpInGPR(N->getOperand(0));
2815   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2816     return nullptr;
2817   else
2818     WideRes =
2819       getSETCCInGPR(N->getOperand(0),
2820                     N->getOpcode() == ISD::SIGN_EXTEND ?
2821                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2822 
2823   if (!WideRes)
2824     return nullptr;
2825 
2826   SDLoc dl(N);
2827   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2828   bool Output32Bit = N->getValueType(0) == MVT::i32;
2829 
2830   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2831   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2832 
2833   SDValue ConvOp = WideRes;
2834   if (Input32Bit != Output32Bit)
2835     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2836                            ExtOrTruncConversion::Trunc);
2837   return ConvOp.getNode();
2838 }
2839 
2840 // Attempt to perform logical operations on the results of comparisons while
2841 // keeping the values in GPRs. Without doing so, these would end up being
2842 // lowered to CR-logical operations which suffer from significant latency and
2843 // low ILP.
2844 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2845   if (N->getValueType(0) != MVT::i1)
2846     return nullptr;
2847   assert(isLogicOp(N->getOpcode()) &&
2848          "Expected a logic operation on setcc results.");
2849   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2850   if (!LoweredLogical)
2851     return nullptr;
2852 
2853   SDLoc dl(N);
2854   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2855   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2856   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2857   SDValue LHS = LoweredLogical.getOperand(0);
2858   SDValue RHS = LoweredLogical.getOperand(1);
2859   SDValue WideOp;
2860   SDValue OpToConvToRecForm;
2861 
2862   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2863   // opcode that is input to the XORI.
2864   if (IsBitwiseNegate &&
2865       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2866     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2867   else if (IsBitwiseNegate)
2868     // If the input to the XORI isn't an extension, that's what we're after.
2869     OpToConvToRecForm = LoweredLogical.getOperand(0);
2870   else
2871     // If this is not an XORI, it is a reg-reg logical op and we can convert
2872     // it to record-form.
2873     OpToConvToRecForm = LoweredLogical;
2874 
2875   // Get the record-form version of the node we're looking to use to get the
2876   // CR result from.
2877   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2878   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2879 
2880   // Convert the right node to record-form. This is either the logical we're
2881   // looking at or it is the input node to the negation (if we're looking at
2882   // a bitwise negation).
2883   if (NewOpc != -1 && IsBitwiseNegate) {
2884     // The input to the XORI has a record-form. Use it.
2885     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2886            "Expected a PPC::XORI8 only for bitwise negation.");
2887     // Emit the record-form instruction.
2888     std::vector<SDValue> Ops;
2889     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2890       Ops.push_back(OpToConvToRecForm.getOperand(i));
2891 
2892     WideOp =
2893       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2894                                      OpToConvToRecForm.getValueType(),
2895                                      MVT::Glue, Ops), 0);
2896   } else {
2897     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2898            "No record form available for AND8/OR8/XOR8?");
2899     WideOp =
2900         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2901                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
2902                 0);
2903   }
2904 
2905   // Select this node to a single bit from CR0 set by the record-form node
2906   // just created. For bitwise negation, use the EQ bit which is the equivalent
2907   // of negating the result (i.e. it is a bit set when the result of the
2908   // operation is zero).
2909   SDValue SRIdxVal =
2910     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2911   SDValue CRBit =
2912     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2913                                    MVT::i1, CR0Reg, SRIdxVal,
2914                                    WideOp.getValue(1)), 0);
2915   return CRBit.getNode();
2916 }
2917 
2918 // Lower a logical operation on i1 values into a GPR sequence if possible.
2919 // The result can be kept in a GPR if requested.
2920 // Three types of inputs can be handled:
2921 // - SETCC
2922 // - TRUNCATE
2923 // - Logical operation (AND/OR/XOR)
2924 // There is also a special case that is handled (namely a complement operation
2925 // achieved with xor %a, -1).
2926 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2927   assert(isLogicOp(LogicOp.getOpcode()) &&
2928         "Can only handle logic operations here.");
2929   assert(LogicOp.getValueType() == MVT::i1 &&
2930          "Can only handle logic operations on i1 values here.");
2931   SDLoc dl(LogicOp);
2932   SDValue LHS, RHS;
2933 
2934  // Special case: xor %a, -1
2935   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2936 
2937   // Produces a GPR sequence for each operand of the binary logic operation.
2938   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2939   // the value in a GPR and for logic operations, it will recursively produce
2940   // a GPR sequence for the operation.
2941  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2942     unsigned OperandOpcode = Operand.getOpcode();
2943     if (OperandOpcode == ISD::SETCC)
2944       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2945     else if (OperandOpcode == ISD::TRUNCATE) {
2946       SDValue InputOp = Operand.getOperand(0);
2947      EVT InVT = InputOp.getValueType();
2948       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2949                                             PPC::RLDICL, dl, InVT, InputOp,
2950                                             S->getI64Imm(0, dl),
2951                                             S->getI64Imm(63, dl)), 0);
2952     } else if (isLogicOp(OperandOpcode))
2953       return computeLogicOpInGPR(Operand);
2954     return SDValue();
2955   };
2956   LHS = getLogicOperand(LogicOp.getOperand(0));
2957   RHS = getLogicOperand(LogicOp.getOperand(1));
2958 
2959   // If a GPR sequence can't be produced for the LHS we can't proceed.
2960   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2961   // a bitwise negation operation.
2962   if (!LHS || (!RHS && !IsBitwiseNegation))
2963     return SDValue();
2964 
2965   NumLogicOpsOnComparison++;
2966 
2967   // We will use the inputs as 64-bit values.
2968   if (LHS.getValueType() == MVT::i32)
2969     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2970   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2971     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2972 
2973   unsigned NewOpc;
2974   switch (LogicOp.getOpcode()) {
2975   default: llvm_unreachable("Unknown logic operation.");
2976   case ISD::AND: NewOpc = PPC::AND8; break;
2977   case ISD::OR:  NewOpc = PPC::OR8;  break;
2978   case ISD::XOR: NewOpc = PPC::XOR8; break;
2979   }
2980 
2981   if (IsBitwiseNegation) {
2982     RHS = S->getI64Imm(1, dl);
2983     NewOpc = PPC::XORI8;
2984   }
2985 
2986   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2987 
2988 }
2989 
2990 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2991 /// Otherwise just reinterpret it as a 64-bit value.
2992 /// Useful when emitting comparison code for 32-bit values without using
2993 /// the compare instruction (which only considers the lower 32-bits).
2994 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2995   assert(Input.getValueType() == MVT::i32 &&
2996          "Can only sign-extend 32-bit values here.");
2997   unsigned Opc = Input.getOpcode();
2998 
2999   // The value was sign extended and then truncated to 32-bits. No need to
3000   // sign extend it again.
3001   if (Opc == ISD::TRUNCATE &&
3002       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
3003        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
3004     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3005 
3006   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3007   // The input is a sign-extending load. All ppc sign-extending loads
3008   // sign-extend to the full 64-bits.
3009   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3010     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3011 
3012   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3013   // We don't sign-extend constants.
3014   if (InputConst)
3015     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3016 
3017   SDLoc dl(Input);
3018   SignExtensionsAdded++;
3019   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3020                                         MVT::i64, Input), 0);
3021 }
3022 
3023 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3024 /// Otherwise just reinterpret it as a 64-bit value.
3025 /// Useful when emitting comparison code for 32-bit values without using
3026 /// the compare instruction (which only considers the lower 32-bits).
3027 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3028   assert(Input.getValueType() == MVT::i32 &&
3029          "Can only zero-extend 32-bit values here.");
3030   unsigned Opc = Input.getOpcode();
3031 
3032   // The only condition under which we can omit the actual extend instruction:
3033   // - The value is a positive constant
3034   // - The value comes from a load that isn't a sign-extending load
3035   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3036   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3037     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3038      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3039   if (IsTruncateOfZExt)
3040     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3041 
3042   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3043   if (InputConst && InputConst->getSExtValue() >= 0)
3044     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3045 
3046   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3047   // The input is a load that doesn't sign-extend (it will be zero-extended).
3048   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3049     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3050 
3051   // None of the above, need to zero-extend.
3052   SDLoc dl(Input);
3053   ZeroExtensionsAdded++;
3054   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3055                                         S->getI64Imm(0, dl),
3056                                         S->getI64Imm(32, dl)), 0);
3057 }
3058 
3059 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3060 // course not actual zero/sign extensions that will generate machine code,
3061 // they're just a way to reinterpret a 32 bit value in a register as a
3062 // 64 bit value and vice-versa.
3063 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3064                                                 ExtOrTruncConversion Conv) {
3065   SDLoc dl(NatWidthRes);
3066 
3067   // For reinterpreting 32-bit values as 64 bit values, we generate
3068   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3069   if (Conv == ExtOrTruncConversion::Ext) {
3070     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3071     SDValue SubRegIdx =
3072       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3073     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3074                                           ImDef, NatWidthRes, SubRegIdx), 0);
3075   }
3076 
3077   assert(Conv == ExtOrTruncConversion::Trunc &&
3078          "Unknown convertion between 32 and 64 bit values.");
3079   // For reinterpreting 64-bit values as 32-bit values, we just need to
3080   // EXTRACT_SUBREG (i.e. extract the low word).
3081   SDValue SubRegIdx =
3082     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3083   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3084                                         NatWidthRes, SubRegIdx), 0);
3085 }
3086 
3087 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3088 // Handle both zero-extensions and sign-extensions.
3089 SDValue
3090 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3091                                                          ZeroCompare CmpTy) {
3092   EVT InVT = LHS.getValueType();
3093   bool Is32Bit = InVT == MVT::i32;
3094   SDValue ToExtend;
3095 
3096   // Produce the value that needs to be either zero or sign extended.
3097   switch (CmpTy) {
3098   case ZeroCompare::GEZExt:
3099   case ZeroCompare::GESExt:
3100     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3101                                               dl, InVT, LHS, LHS), 0);
3102     break;
3103   case ZeroCompare::LEZExt:
3104   case ZeroCompare::LESExt: {
3105     if (Is32Bit) {
3106       // Upper 32 bits cannot be undefined for this sequence.
3107       LHS = signExtendInputIfNeeded(LHS);
3108       SDValue Neg =
3109         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3110       ToExtend =
3111         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3112                                        Neg, S->getI64Imm(1, dl),
3113                                        S->getI64Imm(63, dl)), 0);
3114     } else {
3115       SDValue Addi =
3116         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3117                                        S->getI64Imm(~0ULL, dl)), 0);
3118       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3119                                                 Addi, LHS), 0);
3120     }
3121     break;
3122   }
3123   }
3124 
3125   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3126   if (!Is32Bit &&
3127       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3128     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3129                                           ToExtend, S->getI64Imm(1, dl),
3130                                           S->getI64Imm(63, dl)), 0);
3131   if (!Is32Bit &&
3132       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3133     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3134                                           S->getI64Imm(63, dl)), 0);
3135 
3136   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3137   // For 32-bit sequences, the extensions differ between GE/LE cases.
3138   switch (CmpTy) {
3139   case ZeroCompare::GEZExt: {
3140     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3141                            S->getI32Imm(31, dl) };
3142     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3143                                           ShiftOps), 0);
3144   }
3145   case ZeroCompare::GESExt:
3146     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3147                                           S->getI32Imm(31, dl)), 0);
3148   case ZeroCompare::LEZExt:
3149     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3150                                           S->getI32Imm(1, dl)), 0);
3151   case ZeroCompare::LESExt:
3152     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3153                                           S->getI32Imm(-1, dl)), 0);
3154   }
3155 
3156   // The above case covers all the enumerators so it can't have a default clause
3157   // to avoid compiler warnings.
3158   llvm_unreachable("Unknown zero-comparison type.");
3159 }
3160 
3161 /// Produces a zero-extended result of comparing two 32-bit values according to
3162 /// the passed condition code.
3163 SDValue
3164 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3165                                               ISD::CondCode CC,
3166                                               int64_t RHSValue, SDLoc dl) {
3167   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3168       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3169     return SDValue();
3170   bool IsRHSZero = RHSValue == 0;
3171   bool IsRHSOne = RHSValue == 1;
3172   bool IsRHSNegOne = RHSValue == -1LL;
3173   switch (CC) {
3174   default: return SDValue();
3175   case ISD::SETEQ: {
3176     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3177     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
3178     SDValue Xor = IsRHSZero ? LHS :
3179       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3180     SDValue Clz =
3181       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3182     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3183       S->getI32Imm(31, dl) };
3184     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3185                                           ShiftOps), 0);
3186   }
3187   case ISD::SETNE: {
3188     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3189     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
3190     SDValue Xor = IsRHSZero ? LHS :
3191       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3192     SDValue Clz =
3193       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3194     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3195       S->getI32Imm(31, dl) };
3196     SDValue Shift =
3197       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3198     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3199                                           S->getI32Imm(1, dl)), 0);
3200   }
3201   case ISD::SETGE: {
3202     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3203     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
3204     if(IsRHSZero)
3205       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3206 
3207     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3208     // by swapping inputs and falling through.
3209     std::swap(LHS, RHS);
3210     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3211     IsRHSZero = RHSConst && RHSConst->isZero();
3212     [[fallthrough]];
3213   }
3214   case ISD::SETLE: {
3215     if (CmpInGPR == ICGPR_NonExtIn)
3216       return SDValue();
3217     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3218     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
3219     if(IsRHSZero) {
3220       if (CmpInGPR == ICGPR_NonExtIn)
3221         return SDValue();
3222       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3223     }
3224 
3225     // The upper 32-bits of the register can't be undefined for this sequence.
3226     LHS = signExtendInputIfNeeded(LHS);
3227     RHS = signExtendInputIfNeeded(RHS);
3228     SDValue Sub =
3229       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3230     SDValue Shift =
3231       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3232                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3233               0);
3234     return
3235       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3236                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3237   }
3238   case ISD::SETGT: {
3239     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3240     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3241     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
3242     // Handle SETLT -1 (which is equivalent to SETGE 0).
3243     if (IsRHSNegOne)
3244       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3245 
3246     if (IsRHSZero) {
3247       if (CmpInGPR == ICGPR_NonExtIn)
3248         return SDValue();
3249       // The upper 32-bits of the register can't be undefined for this sequence.
3250       LHS = signExtendInputIfNeeded(LHS);
3251       RHS = signExtendInputIfNeeded(RHS);
3252       SDValue Neg =
3253         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3254       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3255                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3256     }
3257     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3258     // (%b < %a) by swapping inputs and falling through.
3259     std::swap(LHS, RHS);
3260     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3261     IsRHSZero = RHSConst && RHSConst->isZero();
3262     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3263     [[fallthrough]];
3264   }
3265   case ISD::SETLT: {
3266     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3267     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3268     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3269     // Handle SETLT 1 (which is equivalent to SETLE 0).
3270     if (IsRHSOne) {
3271       if (CmpInGPR == ICGPR_NonExtIn)
3272         return SDValue();
3273       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3274     }
3275 
3276     if (IsRHSZero) {
3277       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3278                              S->getI32Imm(31, dl) };
3279       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3280                                             ShiftOps), 0);
3281     }
3282 
3283     if (CmpInGPR == ICGPR_NonExtIn)
3284       return SDValue();
3285     // The upper 32-bits of the register can't be undefined for this sequence.
3286     LHS = signExtendInputIfNeeded(LHS);
3287     RHS = signExtendInputIfNeeded(RHS);
3288     SDValue SUBFNode =
3289       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3290     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3291                                     SUBFNode, S->getI64Imm(1, dl),
3292                                     S->getI64Imm(63, dl)), 0);
3293   }
3294   case ISD::SETUGE:
3295     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3296     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3297     std::swap(LHS, RHS);
3298     [[fallthrough]];
3299   case ISD::SETULE: {
3300     if (CmpInGPR == ICGPR_NonExtIn)
3301       return SDValue();
3302     // The upper 32-bits of the register can't be undefined for this sequence.
3303     LHS = zeroExtendInputIfNeeded(LHS);
3304     RHS = zeroExtendInputIfNeeded(RHS);
3305     SDValue Subtract =
3306       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3307     SDValue SrdiNode =
3308       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3309                                           Subtract, S->getI64Imm(1, dl),
3310                                           S->getI64Imm(63, dl)), 0);
3311     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3312                                             S->getI32Imm(1, dl)), 0);
3313   }
3314   case ISD::SETUGT:
3315     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3316     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3317     std::swap(LHS, RHS);
3318     [[fallthrough]];
3319   case ISD::SETULT: {
3320     if (CmpInGPR == ICGPR_NonExtIn)
3321       return SDValue();
3322     // The upper 32-bits of the register can't be undefined for this sequence.
3323     LHS = zeroExtendInputIfNeeded(LHS);
3324     RHS = zeroExtendInputIfNeeded(RHS);
3325     SDValue Subtract =
3326       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3327     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3328                                           Subtract, S->getI64Imm(1, dl),
3329                                           S->getI64Imm(63, dl)), 0);
3330   }
3331   }
3332 }
3333 
3334 /// Produces a sign-extended result of comparing two 32-bit values according to
3335 /// the passed condition code.
3336 SDValue
3337 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3338                                               ISD::CondCode CC,
3339                                               int64_t RHSValue, SDLoc dl) {
3340   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3341       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3342     return SDValue();
3343   bool IsRHSZero = RHSValue == 0;
3344   bool IsRHSOne = RHSValue == 1;
3345   bool IsRHSNegOne = RHSValue == -1LL;
3346 
3347   switch (CC) {
3348   default: return SDValue();
3349   case ISD::SETEQ: {
3350     // (sext (setcc %a, %b, seteq)) ->
3351     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3352     // (sext (setcc %a, 0, seteq)) ->
3353     //   (ashr (shl (ctlz %a), 58), 63)
3354     SDValue CountInput = IsRHSZero ? LHS :
3355       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3356     SDValue Cntlzw =
3357       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3358     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3359                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3360     SDValue Slwi =
3361       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3362     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3363   }
3364   case ISD::SETNE: {
3365     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3366     // flip the bit, finally take 2's complement.
3367     // (sext (setcc %a, %b, setne)) ->
3368     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3369     // Same as above, but the first xor is not needed.
3370     // (sext (setcc %a, 0, setne)) ->
3371     //   (neg (xor (lshr (ctlz %a), 5), 1))
3372     SDValue Xor = IsRHSZero ? LHS :
3373       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3374     SDValue Clz =
3375       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3376     SDValue ShiftOps[] =
3377       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3378     SDValue Shift =
3379       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3380     SDValue Xori =
3381       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3382                                      S->getI32Imm(1, dl)), 0);
3383     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3384   }
3385   case ISD::SETGE: {
3386     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3387     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3388     if (IsRHSZero)
3389       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3390 
3391     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3392     // by swapping inputs and falling through.
3393     std::swap(LHS, RHS);
3394     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3395     IsRHSZero = RHSConst && RHSConst->isZero();
3396     [[fallthrough]];
3397   }
3398   case ISD::SETLE: {
3399     if (CmpInGPR == ICGPR_NonExtIn)
3400       return SDValue();
3401     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3402     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3403     if (IsRHSZero)
3404       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3405 
3406     // The upper 32-bits of the register can't be undefined for this sequence.
3407     LHS = signExtendInputIfNeeded(LHS);
3408     RHS = signExtendInputIfNeeded(RHS);
3409     SDValue SUBFNode =
3410       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3411                                      LHS, RHS), 0);
3412     SDValue Srdi =
3413       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3414                                      SUBFNode, S->getI64Imm(1, dl),
3415                                      S->getI64Imm(63, dl)), 0);
3416     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3417                                           S->getI32Imm(-1, dl)), 0);
3418   }
3419   case ISD::SETGT: {
3420     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3421     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3422     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3423     if (IsRHSNegOne)
3424       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3425     if (IsRHSZero) {
3426       if (CmpInGPR == ICGPR_NonExtIn)
3427         return SDValue();
3428       // The upper 32-bits of the register can't be undefined for this sequence.
3429       LHS = signExtendInputIfNeeded(LHS);
3430       RHS = signExtendInputIfNeeded(RHS);
3431       SDValue Neg =
3432         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3433         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3434                                               S->getI64Imm(63, dl)), 0);
3435     }
3436     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3437     // (%b < %a) by swapping inputs and falling through.
3438     std::swap(LHS, RHS);
3439     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3440     IsRHSZero = RHSConst && RHSConst->isZero();
3441     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3442     [[fallthrough]];
3443   }
3444   case ISD::SETLT: {
3445     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3446     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3447     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3448     if (IsRHSOne) {
3449       if (CmpInGPR == ICGPR_NonExtIn)
3450         return SDValue();
3451       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3452     }
3453     if (IsRHSZero)
3454       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3455                                             S->getI32Imm(31, dl)), 0);
3456 
3457     if (CmpInGPR == ICGPR_NonExtIn)
3458       return SDValue();
3459     // The upper 32-bits of the register can't be undefined for this sequence.
3460     LHS = signExtendInputIfNeeded(LHS);
3461     RHS = signExtendInputIfNeeded(RHS);
3462     SDValue SUBFNode =
3463       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3464     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3465                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3466   }
3467   case ISD::SETUGE:
3468     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3469     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3470     std::swap(LHS, RHS);
3471     [[fallthrough]];
3472   case ISD::SETULE: {
3473     if (CmpInGPR == ICGPR_NonExtIn)
3474       return SDValue();
3475     // The upper 32-bits of the register can't be undefined for this sequence.
3476     LHS = zeroExtendInputIfNeeded(LHS);
3477     RHS = zeroExtendInputIfNeeded(RHS);
3478     SDValue Subtract =
3479       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3480     SDValue Shift =
3481       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3482                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3483               0);
3484     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3485                                           S->getI32Imm(-1, dl)), 0);
3486   }
3487   case ISD::SETUGT:
3488     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3489     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3490     std::swap(LHS, RHS);
3491     [[fallthrough]];
3492   case ISD::SETULT: {
3493     if (CmpInGPR == ICGPR_NonExtIn)
3494       return SDValue();
3495     // The upper 32-bits of the register can't be undefined for this sequence.
3496     LHS = zeroExtendInputIfNeeded(LHS);
3497     RHS = zeroExtendInputIfNeeded(RHS);
3498     SDValue Subtract =
3499       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3500     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3501                                           Subtract, S->getI64Imm(63, dl)), 0);
3502   }
3503   }
3504 }
3505 
3506 /// Produces a zero-extended result of comparing two 64-bit values according to
3507 /// the passed condition code.
3508 SDValue
3509 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3510                                               ISD::CondCode CC,
3511                                               int64_t RHSValue, SDLoc dl) {
3512   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3513       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3514     return SDValue();
3515   bool IsRHSZero = RHSValue == 0;
3516   bool IsRHSOne = RHSValue == 1;
3517   bool IsRHSNegOne = RHSValue == -1LL;
3518   switch (CC) {
3519   default: return SDValue();
3520   case ISD::SETEQ: {
3521     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3522     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3523     SDValue Xor = IsRHSZero ? LHS :
3524       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3525     SDValue Clz =
3526       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3527     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3528                                           S->getI64Imm(58, dl),
3529                                           S->getI64Imm(63, dl)), 0);
3530   }
3531   case ISD::SETNE: {
3532     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3533     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3534     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3535     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3536     SDValue Xor = IsRHSZero ? LHS :
3537       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3538     SDValue AC =
3539       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3540                                      Xor, S->getI32Imm(~0U, dl)), 0);
3541     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3542                                           Xor, AC.getValue(1)), 0);
3543   }
3544   case ISD::SETGE: {
3545     // {subc.reg, subc.CA} = (subcarry %a, %b)
3546     // (zext (setcc %a, %b, setge)) ->
3547     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3548     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3549     if (IsRHSZero)
3550       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3551     std::swap(LHS, RHS);
3552     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3553     IsRHSZero = RHSConst && RHSConst->isZero();
3554     [[fallthrough]];
3555   }
3556   case ISD::SETLE: {
3557     // {subc.reg, subc.CA} = (subcarry %b, %a)
3558     // (zext (setcc %a, %b, setge)) ->
3559     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3560     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3561     if (IsRHSZero)
3562       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3563     SDValue ShiftL =
3564       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3565                                      S->getI64Imm(1, dl),
3566                                      S->getI64Imm(63, dl)), 0);
3567     SDValue ShiftR =
3568       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3569                                      S->getI64Imm(63, dl)), 0);
3570     SDValue SubtractCarry =
3571       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3572                                      LHS, RHS), 1);
3573     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3574                                           ShiftR, ShiftL, SubtractCarry), 0);
3575   }
3576   case ISD::SETGT: {
3577     // {subc.reg, subc.CA} = (subcarry %b, %a)
3578     // (zext (setcc %a, %b, setgt)) ->
3579     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3580     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3581     if (IsRHSNegOne)
3582       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3583     if (IsRHSZero) {
3584       SDValue Addi =
3585         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3586                                        S->getI64Imm(~0ULL, dl)), 0);
3587       SDValue Nor =
3588         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3589       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3590                                             S->getI64Imm(1, dl),
3591                                             S->getI64Imm(63, dl)), 0);
3592     }
3593     std::swap(LHS, RHS);
3594     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3595     IsRHSZero = RHSConst && RHSConst->isZero();
3596     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3597     [[fallthrough]];
3598   }
3599   case ISD::SETLT: {
3600     // {subc.reg, subc.CA} = (subcarry %a, %b)
3601     // (zext (setcc %a, %b, setlt)) ->
3602     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3603     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3604     if (IsRHSOne)
3605       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3606     if (IsRHSZero)
3607       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3608                                             S->getI64Imm(1, dl),
3609                                             S->getI64Imm(63, dl)), 0);
3610     SDValue SRADINode =
3611       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3612                                      LHS, S->getI64Imm(63, dl)), 0);
3613     SDValue SRDINode =
3614       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3615                                      RHS, S->getI64Imm(1, dl),
3616                                      S->getI64Imm(63, dl)), 0);
3617     SDValue SUBFC8Carry =
3618       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3619                                      RHS, LHS), 1);
3620     SDValue ADDE8Node =
3621       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3622                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3623     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3624                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3625   }
3626   case ISD::SETUGE:
3627     // {subc.reg, subc.CA} = (subcarry %a, %b)
3628     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3629     std::swap(LHS, RHS);
3630     [[fallthrough]];
3631   case ISD::SETULE: {
3632     // {subc.reg, subc.CA} = (subcarry %b, %a)
3633     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3634     SDValue SUBFC8Carry =
3635       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3636                                      LHS, RHS), 1);
3637     SDValue SUBFE8Node =
3638       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3639                                      LHS, LHS, SUBFC8Carry), 0);
3640     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3641                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3642   }
3643   case ISD::SETUGT:
3644     // {subc.reg, subc.CA} = (subcarry %b, %a)
3645     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3646     std::swap(LHS, RHS);
3647     [[fallthrough]];
3648   case ISD::SETULT: {
3649     // {subc.reg, subc.CA} = (subcarry %a, %b)
3650     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3651     SDValue SubtractCarry =
3652       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3653                                      RHS, LHS), 1);
3654     SDValue ExtSub =
3655       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3656                                      LHS, LHS, SubtractCarry), 0);
3657     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3658                                           ExtSub), 0);
3659   }
3660   }
3661 }
3662 
3663 /// Produces a sign-extended result of comparing two 64-bit values according to
3664 /// the passed condition code.
3665 SDValue
3666 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3667                                               ISD::CondCode CC,
3668                                               int64_t RHSValue, SDLoc dl) {
3669   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3670       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3671     return SDValue();
3672   bool IsRHSZero = RHSValue == 0;
3673   bool IsRHSOne = RHSValue == 1;
3674   bool IsRHSNegOne = RHSValue == -1LL;
3675   switch (CC) {
3676   default: return SDValue();
3677   case ISD::SETEQ: {
3678     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3679     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3680     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3681     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3682     SDValue AddInput = IsRHSZero ? LHS :
3683       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3684     SDValue Addic =
3685       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3686                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3687     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3688                                           Addic, Addic.getValue(1)), 0);
3689   }
3690   case ISD::SETNE: {
3691     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3692     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3693     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3694     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3695     SDValue Xor = IsRHSZero ? LHS :
3696       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3697     SDValue SC =
3698       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3699                                      Xor, S->getI32Imm(0, dl)), 0);
3700     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3701                                           SC, SC.getValue(1)), 0);
3702   }
3703   case ISD::SETGE: {
3704     // {subc.reg, subc.CA} = (subcarry %a, %b)
3705     // (zext (setcc %a, %b, setge)) ->
3706     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3707     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3708     if (IsRHSZero)
3709       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3710     std::swap(LHS, RHS);
3711     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3712     IsRHSZero = RHSConst && RHSConst->isZero();
3713     [[fallthrough]];
3714   }
3715   case ISD::SETLE: {
3716     // {subc.reg, subc.CA} = (subcarry %b, %a)
3717     // (zext (setcc %a, %b, setge)) ->
3718     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3719     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3720     if (IsRHSZero)
3721       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3722     SDValue ShiftR =
3723       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3724                                      S->getI64Imm(63, dl)), 0);
3725     SDValue ShiftL =
3726       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3727                                      S->getI64Imm(1, dl),
3728                                      S->getI64Imm(63, dl)), 0);
3729     SDValue SubtractCarry =
3730       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3731                                      LHS, RHS), 1);
3732     SDValue Adde =
3733       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3734                                      ShiftR, ShiftL, SubtractCarry), 0);
3735     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3736   }
3737   case ISD::SETGT: {
3738     // {subc.reg, subc.CA} = (subcarry %b, %a)
3739     // (zext (setcc %a, %b, setgt)) ->
3740     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3741     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3742     if (IsRHSNegOne)
3743       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3744     if (IsRHSZero) {
3745       SDValue Add =
3746         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3747                                        S->getI64Imm(-1, dl)), 0);
3748       SDValue Nor =
3749         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3750       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3751                                             S->getI64Imm(63, dl)), 0);
3752     }
3753     std::swap(LHS, RHS);
3754     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3755     IsRHSZero = RHSConst && RHSConst->isZero();
3756     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3757     [[fallthrough]];
3758   }
3759   case ISD::SETLT: {
3760     // {subc.reg, subc.CA} = (subcarry %a, %b)
3761     // (zext (setcc %a, %b, setlt)) ->
3762     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3763     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3764     if (IsRHSOne)
3765       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3766     if (IsRHSZero) {
3767       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3768                                             S->getI64Imm(63, dl)), 0);
3769     }
3770     SDValue SRADINode =
3771       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3772                                      LHS, S->getI64Imm(63, dl)), 0);
3773     SDValue SRDINode =
3774       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3775                                      RHS, S->getI64Imm(1, dl),
3776                                      S->getI64Imm(63, dl)), 0);
3777     SDValue SUBFC8Carry =
3778       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3779                                      RHS, LHS), 1);
3780     SDValue ADDE8Node =
3781       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3782                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3783     SDValue XORI8Node =
3784       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3785                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3786     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3787                                           XORI8Node), 0);
3788   }
3789   case ISD::SETUGE:
3790     // {subc.reg, subc.CA} = (subcarry %a, %b)
3791     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3792     std::swap(LHS, RHS);
3793     [[fallthrough]];
3794   case ISD::SETULE: {
3795     // {subc.reg, subc.CA} = (subcarry %b, %a)
3796     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3797     SDValue SubtractCarry =
3798       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3799                                      LHS, RHS), 1);
3800     SDValue ExtSub =
3801       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3802                                      LHS, SubtractCarry), 0);
3803     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3804                                           ExtSub, ExtSub), 0);
3805   }
3806   case ISD::SETUGT:
3807     // {subc.reg, subc.CA} = (subcarry %b, %a)
3808     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3809     std::swap(LHS, RHS);
3810     [[fallthrough]];
3811   case ISD::SETULT: {
3812     // {subc.reg, subc.CA} = (subcarry %a, %b)
3813     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3814     SDValue SubCarry =
3815       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3816                                      RHS, LHS), 1);
3817     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3818                                      LHS, LHS, SubCarry), 0);
3819   }
3820   }
3821 }
3822 
3823 /// Do all uses of this SDValue need the result in a GPR?
3824 /// This is meant to be used on values that have type i1 since
3825 /// it is somewhat meaningless to ask if values of other types
3826 /// should be kept in GPR's.
3827 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3828   assert(Compare.getOpcode() == ISD::SETCC &&
3829          "An ISD::SETCC node required here.");
3830 
3831   // For values that have a single use, the caller should obviously already have
3832   // checked if that use is an extending use. We check the other uses here.
3833   if (Compare.hasOneUse())
3834     return true;
3835   // We want the value in a GPR if it is being extended, used for a select, or
3836   // used in logical operations.
3837   for (auto *CompareUse : Compare.getNode()->uses())
3838     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3839         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3840         CompareUse->getOpcode() != ISD::SELECT &&
3841         !isLogicOp(CompareUse->getOpcode())) {
3842       OmittedForNonExtendUses++;
3843       return false;
3844     }
3845   return true;
3846 }
3847 
3848 /// Returns an equivalent of a SETCC node but with the result the same width as
3849 /// the inputs. This can also be used for SELECT_CC if either the true or false
3850 /// values is a power of two while the other is zero.
3851 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3852                                                 SetccInGPROpts ConvOpts) {
3853   assert((Compare.getOpcode() == ISD::SETCC ||
3854           Compare.getOpcode() == ISD::SELECT_CC) &&
3855          "An ISD::SETCC node required here.");
3856 
3857   // Don't convert this comparison to a GPR sequence because there are uses
3858   // of the i1 result (i.e. uses that require the result in the CR).
3859   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3860     return SDValue();
3861 
3862   SDValue LHS = Compare.getOperand(0);
3863   SDValue RHS = Compare.getOperand(1);
3864 
3865   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3866   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3867   ISD::CondCode CC =
3868     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3869   EVT InputVT = LHS.getValueType();
3870   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3871     return SDValue();
3872 
3873   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3874       ConvOpts == SetccInGPROpts::SExtInvert)
3875     CC = ISD::getSetCCInverse(CC, InputVT);
3876 
3877   bool Inputs32Bit = InputVT == MVT::i32;
3878 
3879   SDLoc dl(Compare);
3880   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3881   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3882   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3883     ConvOpts == SetccInGPROpts::SExtInvert;
3884 
3885   if (IsSext && Inputs32Bit)
3886     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3887   else if (Inputs32Bit)
3888     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3889   else if (IsSext)
3890     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3891   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3892 }
3893 
3894 } // end anonymous namespace
3895 
3896 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3897   if (N->getValueType(0) != MVT::i32 &&
3898       N->getValueType(0) != MVT::i64)
3899     return false;
3900 
3901   // This optimization will emit code that assumes 64-bit registers
3902   // so we don't want to run it in 32-bit mode. Also don't run it
3903   // on functions that are not to be optimized.
3904   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3905     return false;
3906 
3907   // For POWER10, it is more profitable to use the set boolean extension
3908   // instructions rather than the integer compare elimination codegen.
3909   // Users can override this via the command line option, `--ppc-gpr-icmps`.
3910   if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
3911     return false;
3912 
3913   switch (N->getOpcode()) {
3914   default: break;
3915   case ISD::ZERO_EXTEND:
3916   case ISD::SIGN_EXTEND:
3917   case ISD::AND:
3918   case ISD::OR:
3919   case ISD::XOR: {
3920     IntegerCompareEliminator ICmpElim(CurDAG, this);
3921     if (SDNode *New = ICmpElim.Select(N)) {
3922       ReplaceNode(N, New);
3923       return true;
3924     }
3925   }
3926   }
3927   return false;
3928 }
3929 
3930 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3931   if (N->getValueType(0) != MVT::i32 &&
3932       N->getValueType(0) != MVT::i64)
3933     return false;
3934 
3935   if (!UseBitPermRewriter)
3936     return false;
3937 
3938   switch (N->getOpcode()) {
3939   default: break;
3940   case ISD::SRL:
3941     // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that
3942     // uses the BRH instruction.
3943     if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 &&
3944         N->getOperand(0).getOpcode() == ISD::BSWAP) {
3945       auto &OpRight = N->getOperand(1);
3946       ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight);
3947       if (SRLConst && SRLConst->getSExtValue() == 16)
3948         return false;
3949     }
3950     LLVM_FALLTHROUGH;
3951   case ISD::ROTL:
3952   case ISD::SHL:
3953   case ISD::AND:
3954   case ISD::OR: {
3955     BitPermutationSelector BPS(CurDAG);
3956     if (SDNode *New = BPS.Select(N)) {
3957       ReplaceNode(N, New);
3958       return true;
3959     }
3960     return false;
3961   }
3962   }
3963 
3964   return false;
3965 }
3966 
3967 /// SelectCC - Select a comparison of the specified values with the specified
3968 /// condition code, returning the CR# of the expression.
3969 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3970                                   const SDLoc &dl, SDValue Chain) {
3971   // Always select the LHS.
3972   unsigned Opc;
3973 
3974   if (LHS.getValueType() == MVT::i32) {
3975     unsigned Imm;
3976     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3977       if (isInt32Immediate(RHS, Imm)) {
3978         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3979         if (isUInt<16>(Imm))
3980           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3981                                                 getI32Imm(Imm & 0xFFFF, dl)),
3982                          0);
3983         // If this is a 16-bit signed immediate, fold it.
3984         if (isInt<16>((int)Imm))
3985           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3986                                                 getI32Imm(Imm & 0xFFFF, dl)),
3987                          0);
3988 
3989         // For non-equality comparisons, the default code would materialize the
3990         // constant, then compare against it, like this:
3991         //   lis r2, 4660
3992         //   ori r2, r2, 22136
3993         //   cmpw cr0, r3, r2
3994         // Since we are just comparing for equality, we can emit this instead:
3995         //   xoris r0,r3,0x1234
3996         //   cmplwi cr0,r0,0x5678
3997         //   beq cr0,L6
3998         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3999                                            getI32Imm(Imm >> 16, dl)), 0);
4000         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
4001                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4002       }
4003       Opc = PPC::CMPLW;
4004     } else if (ISD::isUnsignedIntSetCC(CC)) {
4005       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
4006         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4007                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4008       Opc = PPC::CMPLW;
4009     } else {
4010       int16_t SImm;
4011       if (isIntS16Immediate(RHS, SImm))
4012         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4013                                               getI32Imm((int)SImm & 0xFFFF,
4014                                                         dl)),
4015                          0);
4016       Opc = PPC::CMPW;
4017     }
4018   } else if (LHS.getValueType() == MVT::i64) {
4019     uint64_t Imm;
4020     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4021       if (isInt64Immediate(RHS.getNode(), Imm)) {
4022         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4023         if (isUInt<16>(Imm))
4024           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4025                                                 getI32Imm(Imm & 0xFFFF, dl)),
4026                          0);
4027         // If this is a 16-bit signed immediate, fold it.
4028         if (isInt<16>(Imm))
4029           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4030                                                 getI32Imm(Imm & 0xFFFF, dl)),
4031                          0);
4032 
4033         // For non-equality comparisons, the default code would materialize the
4034         // constant, then compare against it, like this:
4035         //   lis r2, 4660
4036         //   ori r2, r2, 22136
4037         //   cmpd cr0, r3, r2
4038         // Since we are just comparing for equality, we can emit this instead:
4039         //   xoris r0,r3,0x1234
4040         //   cmpldi cr0,r0,0x5678
4041         //   beq cr0,L6
4042         if (isUInt<32>(Imm)) {
4043           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4044                                              getI64Imm(Imm >> 16, dl)), 0);
4045           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4046                                                 getI64Imm(Imm & 0xFFFF, dl)),
4047                          0);
4048         }
4049       }
4050       Opc = PPC::CMPLD;
4051     } else if (ISD::isUnsignedIntSetCC(CC)) {
4052       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4053         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4054                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
4055       Opc = PPC::CMPLD;
4056     } else {
4057       int16_t SImm;
4058       if (isIntS16Immediate(RHS, SImm))
4059         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4060                                               getI64Imm(SImm & 0xFFFF, dl)),
4061                          0);
4062       Opc = PPC::CMPD;
4063     }
4064   } else if (LHS.getValueType() == MVT::f32) {
4065     if (Subtarget->hasSPE()) {
4066       switch (CC) {
4067         default:
4068         case ISD::SETEQ:
4069         case ISD::SETNE:
4070           Opc = PPC::EFSCMPEQ;
4071           break;
4072         case ISD::SETLT:
4073         case ISD::SETGE:
4074         case ISD::SETOLT:
4075         case ISD::SETOGE:
4076         case ISD::SETULT:
4077         case ISD::SETUGE:
4078           Opc = PPC::EFSCMPLT;
4079           break;
4080         case ISD::SETGT:
4081         case ISD::SETLE:
4082         case ISD::SETOGT:
4083         case ISD::SETOLE:
4084         case ISD::SETUGT:
4085         case ISD::SETULE:
4086           Opc = PPC::EFSCMPGT;
4087           break;
4088       }
4089     } else
4090       Opc = PPC::FCMPUS;
4091   } else if (LHS.getValueType() == MVT::f64) {
4092     if (Subtarget->hasSPE()) {
4093       switch (CC) {
4094         default:
4095         case ISD::SETEQ:
4096         case ISD::SETNE:
4097           Opc = PPC::EFDCMPEQ;
4098           break;
4099         case ISD::SETLT:
4100         case ISD::SETGE:
4101         case ISD::SETOLT:
4102         case ISD::SETOGE:
4103         case ISD::SETULT:
4104         case ISD::SETUGE:
4105           Opc = PPC::EFDCMPLT;
4106           break;
4107         case ISD::SETGT:
4108         case ISD::SETLE:
4109         case ISD::SETOGT:
4110         case ISD::SETOLE:
4111         case ISD::SETUGT:
4112         case ISD::SETULE:
4113           Opc = PPC::EFDCMPGT;
4114           break;
4115       }
4116     } else
4117       Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4118   } else {
4119     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4120     assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4121     Opc = PPC::XSCMPUQP;
4122   }
4123   if (Chain)
4124     return SDValue(
4125         CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4126         0);
4127   else
4128     return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4129 }
4130 
4131 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4132                                            const PPCSubtarget *Subtarget) {
4133   // For SPE instructions, the result is in GT bit of the CR
4134   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4135 
4136   switch (CC) {
4137   case ISD::SETUEQ:
4138   case ISD::SETONE:
4139   case ISD::SETOLE:
4140   case ISD::SETOGE:
4141     llvm_unreachable("Should be lowered by legalize!");
4142   default: llvm_unreachable("Unknown condition!");
4143   case ISD::SETOEQ:
4144   case ISD::SETEQ:
4145     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4146   case ISD::SETUNE:
4147   case ISD::SETNE:
4148     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4149   case ISD::SETOLT:
4150   case ISD::SETLT:
4151     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4152   case ISD::SETULE:
4153   case ISD::SETLE:
4154     return PPC::PRED_LE;
4155   case ISD::SETOGT:
4156   case ISD::SETGT:
4157     return PPC::PRED_GT;
4158   case ISD::SETUGE:
4159   case ISD::SETGE:
4160     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4161   case ISD::SETO:   return PPC::PRED_NU;
4162   case ISD::SETUO:  return PPC::PRED_UN;
4163     // These two are invalid for floating point.  Assume we have int.
4164   case ISD::SETULT: return PPC::PRED_LT;
4165   case ISD::SETUGT: return PPC::PRED_GT;
4166   }
4167 }
4168 
4169 /// getCRIdxForSetCC - Return the index of the condition register field
4170 /// associated with the SetCC condition, and whether or not the field is
4171 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
4172 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4173   Invert = false;
4174   switch (CC) {
4175   default: llvm_unreachable("Unknown condition!");
4176   case ISD::SETOLT:
4177   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
4178   case ISD::SETOGT:
4179   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
4180   case ISD::SETOEQ:
4181   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
4182   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
4183   case ISD::SETUGE:
4184   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
4185   case ISD::SETULE:
4186   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
4187   case ISD::SETUNE:
4188   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
4189   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
4190   case ISD::SETUEQ:
4191   case ISD::SETOGE:
4192   case ISD::SETOLE:
4193   case ISD::SETONE:
4194     llvm_unreachable("Invalid branch code: should be expanded by legalize");
4195   // These are invalid for floating point.  Assume integer.
4196   case ISD::SETULT: return 0;
4197   case ISD::SETUGT: return 1;
4198   }
4199 }
4200 
4201 // getVCmpInst: return the vector compare instruction for the specified
4202 // vector type and condition code. Since this is for altivec specific code,
4203 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4204 // and v4f32).
4205 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4206                                 bool HasVSX, bool &Swap, bool &Negate) {
4207   Swap = false;
4208   Negate = false;
4209 
4210   if (VecVT.isFloatingPoint()) {
4211     /* Handle some cases by swapping input operands.  */
4212     switch (CC) {
4213       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4214       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4215       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4216       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4217       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4218       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4219       default: break;
4220     }
4221     /* Handle some cases by negating the result.  */
4222     switch (CC) {
4223       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4224       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4225       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4226       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4227       default: break;
4228     }
4229     /* We have instructions implementing the remaining cases.  */
4230     switch (CC) {
4231       case ISD::SETEQ:
4232       case ISD::SETOEQ:
4233         if (VecVT == MVT::v4f32)
4234           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4235         else if (VecVT == MVT::v2f64)
4236           return PPC::XVCMPEQDP;
4237         break;
4238       case ISD::SETGT:
4239       case ISD::SETOGT:
4240         if (VecVT == MVT::v4f32)
4241           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4242         else if (VecVT == MVT::v2f64)
4243           return PPC::XVCMPGTDP;
4244         break;
4245       case ISD::SETGE:
4246       case ISD::SETOGE:
4247         if (VecVT == MVT::v4f32)
4248           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4249         else if (VecVT == MVT::v2f64)
4250           return PPC::XVCMPGEDP;
4251         break;
4252       default:
4253         break;
4254     }
4255     llvm_unreachable("Invalid floating-point vector compare condition");
4256   } else {
4257     /* Handle some cases by swapping input operands.  */
4258     switch (CC) {
4259       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4260       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4261       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4262       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4263       default: break;
4264     }
4265     /* Handle some cases by negating the result.  */
4266     switch (CC) {
4267       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4268       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4269       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4270       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4271       default: break;
4272     }
4273     /* We have instructions implementing the remaining cases.  */
4274     switch (CC) {
4275       case ISD::SETEQ:
4276       case ISD::SETUEQ:
4277         if (VecVT == MVT::v16i8)
4278           return PPC::VCMPEQUB;
4279         else if (VecVT == MVT::v8i16)
4280           return PPC::VCMPEQUH;
4281         else if (VecVT == MVT::v4i32)
4282           return PPC::VCMPEQUW;
4283         else if (VecVT == MVT::v2i64)
4284           return PPC::VCMPEQUD;
4285         else if (VecVT == MVT::v1i128)
4286           return PPC::VCMPEQUQ;
4287         break;
4288       case ISD::SETGT:
4289         if (VecVT == MVT::v16i8)
4290           return PPC::VCMPGTSB;
4291         else if (VecVT == MVT::v8i16)
4292           return PPC::VCMPGTSH;
4293         else if (VecVT == MVT::v4i32)
4294           return PPC::VCMPGTSW;
4295         else if (VecVT == MVT::v2i64)
4296           return PPC::VCMPGTSD;
4297         else if (VecVT == MVT::v1i128)
4298            return PPC::VCMPGTSQ;
4299         break;
4300       case ISD::SETUGT:
4301         if (VecVT == MVT::v16i8)
4302           return PPC::VCMPGTUB;
4303         else if (VecVT == MVT::v8i16)
4304           return PPC::VCMPGTUH;
4305         else if (VecVT == MVT::v4i32)
4306           return PPC::VCMPGTUW;
4307         else if (VecVT == MVT::v2i64)
4308           return PPC::VCMPGTUD;
4309         else if (VecVT == MVT::v1i128)
4310            return PPC::VCMPGTUQ;
4311         break;
4312       default:
4313         break;
4314     }
4315     llvm_unreachable("Invalid integer vector compare condition");
4316   }
4317 }
4318 
4319 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4320   SDLoc dl(N);
4321   unsigned Imm;
4322   bool IsStrict = N->isStrictFPOpcode();
4323   ISD::CondCode CC =
4324       cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4325   EVT PtrVT =
4326       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4327   bool isPPC64 = (PtrVT == MVT::i64);
4328   SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4329 
4330   SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4331   SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4332 
4333   if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4334     // We can codegen setcc op, imm very efficiently compared to a brcond.
4335     // Check for those cases here.
4336     // setcc op, 0
4337     if (Imm == 0) {
4338       SDValue Op = LHS;
4339       switch (CC) {
4340       default: break;
4341       case ISD::SETEQ: {
4342         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4343         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4344                           getI32Imm(31, dl) };
4345         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4346         return true;
4347       }
4348       case ISD::SETNE: {
4349         if (isPPC64) break;
4350         SDValue AD =
4351           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4352                                          Op, getI32Imm(~0U, dl)), 0);
4353         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4354         return true;
4355       }
4356       case ISD::SETLT: {
4357         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4358                           getI32Imm(31, dl) };
4359         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4360         return true;
4361       }
4362       case ISD::SETGT: {
4363         SDValue T =
4364           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4365         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4366         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4367                           getI32Imm(31, dl) };
4368         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4369         return true;
4370       }
4371       }
4372     } else if (Imm == ~0U) {        // setcc op, -1
4373       SDValue Op = LHS;
4374       switch (CC) {
4375       default: break;
4376       case ISD::SETEQ:
4377         if (isPPC64) break;
4378         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4379                                             Op, getI32Imm(1, dl)), 0);
4380         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4381                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4382                                                             MVT::i32,
4383                                                             getI32Imm(0, dl)),
4384                                      0), Op.getValue(1));
4385         return true;
4386       case ISD::SETNE: {
4387         if (isPPC64) break;
4388         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4389         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4390                                             Op, getI32Imm(~0U, dl));
4391         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4392                              SDValue(AD, 1));
4393         return true;
4394       }
4395       case ISD::SETLT: {
4396         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4397                                                     getI32Imm(1, dl)), 0);
4398         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4399                                                     Op), 0);
4400         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4401                           getI32Imm(31, dl) };
4402         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4403         return true;
4404       }
4405       case ISD::SETGT: {
4406         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4407                           getI32Imm(31, dl) };
4408         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4409         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4410         return true;
4411       }
4412       }
4413     }
4414   }
4415 
4416   // Altivec Vector compare instructions do not set any CR register by default and
4417   // vector compare operations return the same type as the operands.
4418   if (!IsStrict && LHS.getValueType().isVector()) {
4419     if (Subtarget->hasSPE())
4420       return false;
4421 
4422     EVT VecVT = LHS.getValueType();
4423     bool Swap, Negate;
4424     unsigned int VCmpInst =
4425         getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4426     if (Swap)
4427       std::swap(LHS, RHS);
4428 
4429     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4430     if (Negate) {
4431       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4432       CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4433                            ResVT, VCmp, VCmp);
4434       return true;
4435     }
4436 
4437     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4438     return true;
4439   }
4440 
4441   if (Subtarget->useCRBits())
4442     return false;
4443 
4444   bool Inv;
4445   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4446   SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4447   if (IsStrict)
4448     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4449   SDValue IntCR;
4450 
4451   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4452   // The correct compare instruction is already set by SelectCC()
4453   if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4454     Idx = 1;
4455   }
4456 
4457   // Force the ccreg into CR7.
4458   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4459 
4460   SDValue InFlag;  // Null incoming flag value.
4461   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4462                                InFlag).getValue(1);
4463 
4464   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4465                                          CCReg), 0);
4466 
4467   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4468                       getI32Imm(31, dl), getI32Imm(31, dl) };
4469   if (!Inv) {
4470     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4471     return true;
4472   }
4473 
4474   // Get the specified bit.
4475   SDValue Tmp =
4476     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4477   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4478   return true;
4479 }
4480 
4481 /// Does this node represent a load/store node whose address can be represented
4482 /// with a register plus an immediate that's a multiple of \p Val:
4483 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4484   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4485   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4486   MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4487   SDValue AddrOp;
4488   if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4489     AddrOp = N->getOperand(1);
4490   else if (STN)
4491     AddrOp = STN->getOperand(2);
4492 
4493   // If the address points a frame object or a frame object with an offset,
4494   // we need to check the object alignment.
4495   short Imm = 0;
4496   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4497           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4498                                            AddrOp)) {
4499     // If op0 is a frame index that is under aligned, we can't do it either,
4500     // because it is translated to r31 or r1 + slot + offset. We won't know the
4501     // slot number until the stack frame is finalized.
4502     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4503     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4504     if ((SlotAlign % Val) != 0)
4505       return false;
4506 
4507     // If we have an offset, we need further check on the offset.
4508     if (AddrOp.getOpcode() != ISD::ADD)
4509       return true;
4510   }
4511 
4512   if (AddrOp.getOpcode() == ISD::ADD)
4513     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4514 
4515   // If the address comes from the outside, the offset will be zero.
4516   return AddrOp.getOpcode() == ISD::CopyFromReg;
4517 }
4518 
4519 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4520   // Transfer memoperands.
4521   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4522   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4523 }
4524 
4525 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4526                          bool &NeedSwapOps, bool &IsUnCmp) {
4527 
4528   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4529 
4530   SDValue LHS = N->getOperand(0);
4531   SDValue RHS = N->getOperand(1);
4532   SDValue TrueRes = N->getOperand(2);
4533   SDValue FalseRes = N->getOperand(3);
4534   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4535   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4536                      N->getSimpleValueType(0) != MVT::i32))
4537     return false;
4538 
4539   // We are looking for any of:
4540   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4541   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4542   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4543   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4544   int64_t TrueResVal = TrueConst->getSExtValue();
4545   if ((TrueResVal < -1 || TrueResVal > 1) ||
4546       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4547       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4548       (TrueResVal == 0 &&
4549        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4550     return false;
4551 
4552   SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4553                            ? FalseRes
4554                            : FalseRes.getOperand(0);
4555   bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4556   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4557       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4558     return false;
4559 
4560   // Without this setb optimization, the outer SELECT_CC will be manually
4561   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4562   // transforms pseudo instruction to isel instruction. When there are more than
4563   // one use for result like zext/sext, with current optimization we only see
4564   // isel is replaced by setb but can't see any significant gain. Since
4565   // setb has longer latency than original isel, we should avoid this. Another
4566   // point is that setb requires comparison always kept, it can break the
4567   // opportunity to get the comparison away if we have in future.
4568   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4569     return false;
4570 
4571   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4572   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4573   ISD::CondCode InnerCC =
4574       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4575   // If the inner comparison is a select_cc, make sure the true/false values are
4576   // 1/-1 and canonicalize it if needed.
4577   if (InnerIsSel) {
4578     ConstantSDNode *SelCCTrueConst =
4579         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4580     ConstantSDNode *SelCCFalseConst =
4581         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4582     if (!SelCCTrueConst || !SelCCFalseConst)
4583       return false;
4584     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4585     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4586     // The values must be -1/1 (requiring a swap) or 1/-1.
4587     if (SelCCTVal == -1 && SelCCFVal == 1) {
4588       std::swap(InnerLHS, InnerRHS);
4589     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4590       return false;
4591   }
4592 
4593   // Canonicalize unsigned case
4594   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4595     IsUnCmp = true;
4596     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4597   }
4598 
4599   bool InnerSwapped = false;
4600   if (LHS == InnerRHS && RHS == InnerLHS)
4601     InnerSwapped = true;
4602   else if (LHS != InnerLHS || RHS != InnerRHS)
4603     return false;
4604 
4605   switch (CC) {
4606   // (select_cc lhs, rhs,  0, \
4607   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4608   case ISD::SETEQ:
4609     if (!InnerIsSel)
4610       return false;
4611     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4612       return false;
4613     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4614     break;
4615 
4616   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4617   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4618   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4619   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4620   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4621   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4622   case ISD::SETULT:
4623     if (!IsUnCmp && InnerCC != ISD::SETNE)
4624       return false;
4625     IsUnCmp = true;
4626     [[fallthrough]];
4627   case ISD::SETLT:
4628     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4629         (InnerCC == ISD::SETLT && InnerSwapped))
4630       NeedSwapOps = (TrueResVal == 1);
4631     else
4632       return false;
4633     break;
4634 
4635   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4636   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4637   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4638   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4639   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4640   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4641   case ISD::SETUGT:
4642     if (!IsUnCmp && InnerCC != ISD::SETNE)
4643       return false;
4644     IsUnCmp = true;
4645     [[fallthrough]];
4646   case ISD::SETGT:
4647     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4648         (InnerCC == ISD::SETGT && InnerSwapped))
4649       NeedSwapOps = (TrueResVal == -1);
4650     else
4651       return false;
4652     break;
4653 
4654   default:
4655     return false;
4656   }
4657 
4658   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4659   LLVM_DEBUG(N->dump());
4660 
4661   return true;
4662 }
4663 
4664 // Return true if it's a software square-root/divide operand.
4665 static bool isSWTestOp(SDValue N) {
4666   if (N.getOpcode() == PPCISD::FTSQRT)
4667     return true;
4668   if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4669       N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4670     return false;
4671   switch (N.getConstantOperandVal(0)) {
4672   case Intrinsic::ppc_vsx_xvtdivdp:
4673   case Intrinsic::ppc_vsx_xvtdivsp:
4674   case Intrinsic::ppc_vsx_xvtsqrtdp:
4675   case Intrinsic::ppc_vsx_xvtsqrtsp:
4676     return true;
4677   }
4678   return false;
4679 }
4680 
4681 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4682   assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4683   // We are looking for following patterns, where `truncate to i1` actually has
4684   // the same semantic with `and 1`.
4685   // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4686   // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4687   // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4688   // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4689   // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4690   // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4691   // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4692   // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4693   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4694   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4695     return false;
4696 
4697   SDValue CmpRHS = N->getOperand(3);
4698   if (!isa<ConstantSDNode>(CmpRHS) ||
4699       cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
4700     return false;
4701 
4702   SDValue CmpLHS = N->getOperand(2);
4703   if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4704     return false;
4705 
4706   unsigned PCC = 0;
4707   bool IsCCNE = CC == ISD::SETNE;
4708   if (CmpLHS.getOpcode() == ISD::AND &&
4709       isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4710     switch (CmpLHS.getConstantOperandVal(1)) {
4711     case 1:
4712       PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4713       break;
4714     case 2:
4715       PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4716       break;
4717     case 4:
4718       PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4719       break;
4720     case 8:
4721       PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4722       break;
4723     default:
4724       return false;
4725     }
4726   else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4727            CmpLHS.getValueType() == MVT::i1)
4728     PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4729 
4730   if (PCC) {
4731     SDLoc dl(N);
4732     SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4733                      N->getOperand(0)};
4734     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4735     return true;
4736   }
4737   return false;
4738 }
4739 
4740 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) {
4741   // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
4742   // value, for example when crbits is disabled. If so, select the
4743   // loop_decrement intrinsics now.
4744   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4745   SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4746 
4747   if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) ||
4748       isNullConstant(LHS.getOperand(1)))
4749     return false;
4750 
4751   if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4752       cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() !=
4753           Intrinsic::loop_decrement)
4754     return false;
4755 
4756   if (!isa<ConstantSDNode>(RHS))
4757     return false;
4758 
4759   assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
4760          "Counter decrement comparison is not EQ or NE");
4761 
4762   SDValue OldDecrement = LHS.getOperand(0);
4763   assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!");
4764 
4765   SDLoc DecrementLoc(OldDecrement);
4766   SDValue ChainInput = OldDecrement.getOperand(0);
4767   SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc)
4768                                                  : getI32Imm(1, DecrementLoc)};
4769   unsigned DecrementOpcode =
4770       Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop;
4771   SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc,
4772                                                 MVT::i1, DecrementOps);
4773 
4774   unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4775   bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val);
4776   unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn;
4777 
4778   ReplaceUses(LHS.getValue(0), LHS.getOperand(1));
4779   CurDAG->RemoveDeadNode(LHS.getNode());
4780 
4781   // Mark the old loop_decrement intrinsic as dead.
4782   ReplaceUses(OldDecrement.getValue(1), ChainInput);
4783   CurDAG->RemoveDeadNode(OldDecrement.getNode());
4784 
4785   SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
4786                                   ChainInput, N->getOperand(0));
4787 
4788   CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0),
4789                        N->getOperand(4), Chain);
4790   return true;
4791 }
4792 
4793 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4794   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4795   unsigned Imm;
4796   if (!isInt32Immediate(N->getOperand(1), Imm))
4797     return false;
4798 
4799   SDLoc dl(N);
4800   SDValue Val = N->getOperand(0);
4801   unsigned SH, MB, ME;
4802   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4803   // with a mask, emit rlwinm
4804   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4805     Val = Val.getOperand(0);
4806     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4807                      getI32Imm(ME, dl)};
4808     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4809     return true;
4810   }
4811 
4812   // If this is just a masked value where the input is not handled, and
4813   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4814   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4815     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4816                      getI32Imm(ME, dl)};
4817     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4818     return true;
4819   }
4820 
4821   // AND X, 0 -> 0, not "rlwinm 32".
4822   if (Imm == 0) {
4823     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4824     return true;
4825   }
4826 
4827   return false;
4828 }
4829 
4830 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4831   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4832   uint64_t Imm64;
4833   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4834     return false;
4835 
4836   unsigned MB, ME;
4837   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4838     //                MB  ME
4839     // +----------------------+
4840     // |xxxxxxxxxxx00011111000|
4841     // +----------------------+
4842     //  0         32         64
4843     // We can only do it if the MB is larger than 32 and MB <= ME
4844     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4845     // we didn't rotate it.
4846     SDLoc dl(N);
4847     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4848                      getI64Imm(ME - 32, dl)};
4849     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4850     return true;
4851   }
4852 
4853   return false;
4854 }
4855 
4856 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4857   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4858   uint64_t Imm64;
4859   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4860     return false;
4861 
4862   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
4863   // it well with "andi.".
4864   if (isUInt<16>(Imm64))
4865     return false;
4866 
4867   SDLoc Loc(N);
4868   SDValue Val = N->getOperand(0);
4869 
4870   // Optimized with two rldicl's as follows:
4871   // Add missing bits on left to the mask and check that the mask is a
4872   // wrapped run of ones, i.e.
4873   // Change pattern |0001111100000011111111|
4874   //             to |1111111100000011111111|.
4875   unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
4876   if (NumOfLeadingZeros != 0)
4877     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
4878 
4879   unsigned MB, ME;
4880   if (!isRunOfOnes64(Imm64, MB, ME))
4881     return false;
4882 
4883   //         ME     MB                   MB-ME+63
4884   // +----------------------+     +----------------------+
4885   // |1111111100000011111111| ->  |0000001111111111111111|
4886   // +----------------------+     +----------------------+
4887   //  0                    63      0                    63
4888   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
4889   unsigned OnesOnLeft = ME + 1;
4890   unsigned ZerosInBetween = (MB - ME + 63) & 63;
4891   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
4892   // on the left the bits that are already zeros in the mask.
4893   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
4894                                        getI64Imm(OnesOnLeft, Loc),
4895                                        getI64Imm(ZerosInBetween, Loc)),
4896                 0);
4897   //        MB-ME+63                      ME     MB
4898   // +----------------------+     +----------------------+
4899   // |0000001111111111111111| ->  |0001111100000011111111|
4900   // +----------------------+     +----------------------+
4901   //  0                    63      0                    63
4902   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
4903   // left the number of ones we previously added.
4904   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
4905                    getI64Imm(NumOfLeadingZeros, Loc)};
4906   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4907   return true;
4908 }
4909 
4910 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
4911   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4912   unsigned Imm;
4913   if (!isInt32Immediate(N->getOperand(1), Imm))
4914     return false;
4915 
4916   SDValue Val = N->getOperand(0);
4917   unsigned Imm2;
4918   // ISD::OR doesn't get all the bitfield insertion fun.
4919   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4920   // bitfield insert.
4921   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
4922     return false;
4923 
4924   // The idea here is to check whether this is equivalent to:
4925   //   (c1 & m) | (x & ~m)
4926   // where m is a run-of-ones mask. The logic here is that, for each bit in
4927   // c1 and c2:
4928   //  - if both are 1, then the output will be 1.
4929   //  - if both are 0, then the output will be 0.
4930   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4931   //    come from x.
4932   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4933   //    be 0.
4934   //  If that last condition is never the case, then we can form m from the
4935   //  bits that are the same between c1 and c2.
4936   unsigned MB, ME;
4937   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
4938     SDLoc dl(N);
4939     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
4940                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
4941     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4942     return true;
4943   }
4944 
4945   return false;
4946 }
4947 
4948 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
4949   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4950   uint64_t Imm64;
4951   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
4952     return false;
4953 
4954   // If this is a 64-bit zero-extension mask, emit rldicl.
4955   unsigned MB = 64 - countTrailingOnes(Imm64);
4956   unsigned SH = 0;
4957   unsigned Imm;
4958   SDValue Val = N->getOperand(0);
4959   SDLoc dl(N);
4960 
4961   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4962     auto Op0 = Val.getOperand(0);
4963     if (Op0.getOpcode() == ISD::SRL &&
4964         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4965 
4966       auto ResultType = Val.getNode()->getValueType(0);
4967       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
4968       SDValue IDVal(ImDef, 0);
4969 
4970       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
4971                                            IDVal, Op0.getOperand(0),
4972                                            getI32Imm(1, dl)),
4973                     0);
4974       SH = 64 - Imm;
4975     }
4976   }
4977 
4978   // If the operand is a logical right shift, we can fold it into this
4979   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4980   // for n <= mb. The right shift is really a left rotate followed by a
4981   // mask, and this mask is a more-restrictive sub-mask of the mask implied
4982   // by the shift.
4983   if (Val.getOpcode() == ISD::SRL &&
4984       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4985     assert(Imm < 64 && "Illegal shift amount");
4986     Val = Val.getOperand(0);
4987     SH = 64 - Imm;
4988   }
4989 
4990   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
4991   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4992   return true;
4993 }
4994 
4995 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
4996   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4997   uint64_t Imm64;
4998   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4999       !isMask_64(~Imm64))
5000     return false;
5001 
5002   // If this is a negated 64-bit zero-extension mask,
5003   // i.e. the immediate is a sequence of ones from most significant side
5004   // and all zero for reminder, we should use rldicr.
5005   unsigned MB = 63 - countTrailingOnes(~Imm64);
5006   unsigned SH = 0;
5007   SDLoc dl(N);
5008   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
5009   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5010   return true;
5011 }
5012 
5013 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
5014   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
5015   uint64_t Imm64;
5016   unsigned MB, ME;
5017   SDValue N0 = N->getOperand(0);
5018 
5019   // We won't get fewer instructions if the imm is 32-bit integer.
5020   // rldimi requires the imm to have consecutive ones with both sides zero.
5021   // Also, make sure the first Op has only one use, otherwise this may increase
5022   // register pressure since rldimi is destructive.
5023   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5024       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
5025     return false;
5026 
5027   unsigned SH = 63 - ME;
5028   SDLoc Dl(N);
5029   // Use select64Imm for making LI instr instead of directly putting Imm64
5030   SDValue Ops[] = {
5031       N->getOperand(0),
5032       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
5033       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
5034   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
5035   return true;
5036 }
5037 
5038 // Select - Convert the specified operand from a target-independent to a
5039 // target-specific node if it hasn't already been changed.
5040 void PPCDAGToDAGISel::Select(SDNode *N) {
5041   SDLoc dl(N);
5042   if (N->isMachineOpcode()) {
5043     N->setNodeId(-1);
5044     return;   // Already selected.
5045   }
5046 
5047   // In case any misguided DAG-level optimizations form an ADD with a
5048   // TargetConstant operand, crash here instead of miscompiling (by selecting
5049   // an r+r add instead of some kind of r+i add).
5050   if (N->getOpcode() == ISD::ADD &&
5051       N->getOperand(1).getOpcode() == ISD::TargetConstant)
5052     llvm_unreachable("Invalid ADD with TargetConstant operand");
5053 
5054   // Try matching complex bit permutations before doing anything else.
5055   if (tryBitPermutation(N))
5056     return;
5057 
5058   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
5059   if (tryIntCompareInGPR(N))
5060     return;
5061 
5062   switch (N->getOpcode()) {
5063   default: break;
5064 
5065   case ISD::Constant:
5066     if (N->getValueType(0) == MVT::i64) {
5067       ReplaceNode(N, selectI64Imm(CurDAG, N));
5068       return;
5069     }
5070     break;
5071 
5072   case ISD::INTRINSIC_VOID: {
5073     auto IntrinsicID = N->getConstantOperandVal(1);
5074     if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
5075         IntrinsicID != Intrinsic::ppc_trapd &&
5076         IntrinsicID != Intrinsic::ppc_trap)
5077         break;
5078     unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw ||
5079                        IntrinsicID == Intrinsic::ppc_trapd)
5080                           ? PPC::TDI
5081                           : PPC::TWI;
5082     SmallVector<SDValue, 4> OpsWithMD;
5083     unsigned MDIndex;
5084     if (IntrinsicID == Intrinsic::ppc_tdw ||
5085         IntrinsicID == Intrinsic::ppc_tw) {
5086       SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5087       int16_t SImmOperand2;
5088       int16_t SImmOperand3;
5089       int16_t SImmOperand4;
5090       bool isOperand2IntS16Immediate =
5091           isIntS16Immediate(N->getOperand(2), SImmOperand2);
5092       bool isOperand3IntS16Immediate =
5093           isIntS16Immediate(N->getOperand(3), SImmOperand3);
5094       // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5095       // reg or imm + imm. The imm + imm form will be optimized to either an
5096       // unconditional trap or a nop in a later pass.
5097       if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5098         Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5099       else if (isOperand3IntS16Immediate)
5100         // The 2nd and 3rd operands are reg + imm.
5101         Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5102       else {
5103         // The 2nd and 3rd operands are imm + reg.
5104         bool isOperand4IntS16Immediate =
5105             isIntS16Immediate(N->getOperand(4), SImmOperand4);
5106         (void)isOperand4IntS16Immediate;
5107         assert(isOperand4IntS16Immediate &&
5108                "The 4th operand is not an Immediate");
5109         // We need to flip the condition immediate TO.
5110         int16_t TO = int(SImmOperand4) & 0x1F;
5111         // We swap the first and second bit of TO if they are not same.
5112         if ((TO & 0x1) != ((TO & 0x2) >> 1))
5113           TO = (TO & 0x1) ? TO + 1 : TO - 1;
5114         // We swap the fourth and fifth bit of TO if they are not same.
5115         if ((TO & 0x8) != ((TO & 0x10) >> 1))
5116           TO = (TO & 0x8) ? TO + 8 : TO - 8;
5117         Ops[0] = getI32Imm(TO, dl);
5118         Ops[1] = N->getOperand(3);
5119         Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5120       }
5121       OpsWithMD = {Ops[0], Ops[1], Ops[2]};
5122       MDIndex = 5;
5123     } else {
5124       OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)};
5125       MDIndex = 3;
5126     }
5127 
5128     if (N->getNumOperands() > MDIndex) {
5129       SDValue MDV = N->getOperand(MDIndex);
5130       const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
5131       assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!");
5132       assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>(
5133            MD->getOperand(0))->getString().equals("ppc-trap-reason"))
5134            && "Unsupported annotation data type!");
5135       for (unsigned i = 1; i < MD->getNumOperands(); i++) {
5136         assert(isa<MDString>(MD->getOperand(i)) &&
5137                "Invalid data type for annotation ppc-trap-reason!");
5138         OpsWithMD.push_back(
5139             getI32Imm(std::stoi(cast<MDString>(
5140                       MD->getOperand(i))->getString().str()), dl));
5141       }
5142     }
5143     OpsWithMD.push_back(N->getOperand(0)); // chain
5144     CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD);
5145     return;
5146   }
5147 
5148   case ISD::INTRINSIC_WO_CHAIN: {
5149     // We emit the PPC::FSELS instruction here because of type conflicts with
5150     // the comparison operand. The FSELS instruction is defined to use an 8-byte
5151     // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5152     // value for the comparison. When selecting through a .td file, a type
5153     // error is raised. Must check this first so we never break on the
5154     // !Subtarget->isISA3_1() check.
5155     auto IntID = N->getConstantOperandVal(0);
5156     if (IntID == Intrinsic::ppc_fsels) {
5157       SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5158       CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5159       return;
5160     }
5161 
5162     if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5163       auto Pred = N->getConstantOperandVal(1);
5164       unsigned Opcode =
5165           IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5166       unsigned SubReg = 0;
5167       unsigned ShiftVal = 0;
5168       bool Reverse = false;
5169       switch (Pred) {
5170       case 0:
5171         SubReg = PPC::sub_eq;
5172         ShiftVal = 1;
5173         break;
5174       case 1:
5175         SubReg = PPC::sub_eq;
5176         ShiftVal = 1;
5177         Reverse = true;
5178         break;
5179       case 2:
5180         SubReg = PPC::sub_lt;
5181         ShiftVal = 3;
5182         break;
5183       case 3:
5184         SubReg = PPC::sub_lt;
5185         ShiftVal = 3;
5186         Reverse = true;
5187         break;
5188       case 4:
5189         SubReg = PPC::sub_gt;
5190         ShiftVal = 2;
5191         break;
5192       case 5:
5193         SubReg = PPC::sub_gt;
5194         ShiftVal = 2;
5195         Reverse = true;
5196         break;
5197       case 6:
5198         SubReg = PPC::sub_un;
5199         break;
5200       case 7:
5201         SubReg = PPC::sub_un;
5202         Reverse = true;
5203         break;
5204       }
5205 
5206       EVT VTs[] = {MVT::v16i8, MVT::Glue};
5207       SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5208                        CurDAG->getTargetConstant(0, dl, MVT::i32)};
5209       SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5210       SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5211       // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5212       // MFOCRF and shift/negate the value.
5213       if (Subtarget->isISA3_1()) {
5214         SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5215         SDValue CRBit = SDValue(
5216             CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5217                                    CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5218             0);
5219         CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5220                              CRBit);
5221       } else {
5222         SDValue Move =
5223             SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5224                                            BCDOp.getValue(1)),
5225                     0);
5226         SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5227                          getI32Imm(31, dl), getI32Imm(31, dl)};
5228         if (!Reverse)
5229           CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5230         else {
5231           SDValue Shift = SDValue(
5232               CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5233           CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5234         }
5235       }
5236       return;
5237     }
5238 
5239     if (!Subtarget->isISA3_1())
5240       break;
5241     unsigned Opcode = 0;
5242     switch (IntID) {
5243     default:
5244       break;
5245     case Intrinsic::ppc_altivec_vstribr_p:
5246       Opcode = PPC::VSTRIBR_rec;
5247       break;
5248     case Intrinsic::ppc_altivec_vstribl_p:
5249       Opcode = PPC::VSTRIBL_rec;
5250       break;
5251     case Intrinsic::ppc_altivec_vstrihr_p:
5252       Opcode = PPC::VSTRIHR_rec;
5253       break;
5254     case Intrinsic::ppc_altivec_vstrihl_p:
5255       Opcode = PPC::VSTRIHL_rec;
5256       break;
5257     }
5258     if (!Opcode)
5259       break;
5260 
5261     // Generate the appropriate vector string isolate intrinsic to match.
5262     EVT VTs[] = {MVT::v16i8, MVT::Glue};
5263     SDValue VecStrOp =
5264         SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5265     // Vector string isolate instructions update the EQ bit of CR6.
5266     // Generate a SETBC instruction to extract the bit and place it in a GPR.
5267     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5268     SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5269     SDValue CRBit = SDValue(
5270         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5271                                CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5272         0);
5273     CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5274     return;
5275   }
5276 
5277   case ISD::SETCC:
5278   case ISD::STRICT_FSETCC:
5279   case ISD::STRICT_FSETCCS:
5280     if (trySETCC(N))
5281       return;
5282     break;
5283   // These nodes will be transformed into GETtlsADDR32 node, which
5284   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5285   case PPCISD::ADDI_TLSLD_L_ADDR:
5286   case PPCISD::ADDI_TLSGD_L_ADDR: {
5287     const Module *Mod = MF->getFunction().getParent();
5288     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5289         !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5290         Mod->getPICLevel() == PICLevel::SmallPIC)
5291       break;
5292     // Attach global base pointer on GETtlsADDR32 node in order to
5293     // generate secure plt code for TLS symbols.
5294     getGlobalBaseReg();
5295   } break;
5296   case PPCISD::CALL: {
5297     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5298         !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5299         !Subtarget->isTargetELF())
5300       break;
5301 
5302     SDValue Op = N->getOperand(1);
5303 
5304     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5305       if (GA->getTargetFlags() == PPCII::MO_PLT)
5306         getGlobalBaseReg();
5307     }
5308     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5309       if (ES->getTargetFlags() == PPCII::MO_PLT)
5310         getGlobalBaseReg();
5311     }
5312   }
5313     break;
5314 
5315   case PPCISD::GlobalBaseReg:
5316     ReplaceNode(N, getGlobalBaseReg());
5317     return;
5318 
5319   case ISD::FrameIndex:
5320     selectFrameIndex(N, N);
5321     return;
5322 
5323   case PPCISD::MFOCRF: {
5324     SDValue InFlag = N->getOperand(1);
5325     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5326                                           N->getOperand(0), InFlag));
5327     return;
5328   }
5329 
5330   case PPCISD::READ_TIME_BASE:
5331     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5332                                           MVT::Other, N->getOperand(0)));
5333     return;
5334 
5335   case PPCISD::SRA_ADDZE: {
5336     SDValue N0 = N->getOperand(0);
5337     SDValue ShiftAmt =
5338       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5339                                   getConstantIntValue(), dl,
5340                                   N->getValueType(0));
5341     if (N->getValueType(0) == MVT::i64) {
5342       SDNode *Op =
5343         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5344                                N0, ShiftAmt);
5345       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5346                            SDValue(Op, 1));
5347       return;
5348     } else {
5349       assert(N->getValueType(0) == MVT::i32 &&
5350              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5351       SDNode *Op =
5352         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5353                                N0, ShiftAmt);
5354       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5355                            SDValue(Op, 1));
5356       return;
5357     }
5358   }
5359 
5360   case ISD::STORE: {
5361     // Change TLS initial-exec D-form stores to X-form stores.
5362     StoreSDNode *ST = cast<StoreSDNode>(N);
5363     if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
5364         ST->getAddressingMode() != ISD::PRE_INC)
5365       if (tryTLSXFormStore(ST))
5366         return;
5367     break;
5368   }
5369   case ISD::LOAD: {
5370     // Handle preincrement loads.
5371     LoadSDNode *LD = cast<LoadSDNode>(N);
5372     EVT LoadedVT = LD->getMemoryVT();
5373 
5374     // Normal loads are handled by code generated from the .td file.
5375     if (LD->getAddressingMode() != ISD::PRE_INC) {
5376       // Change TLS initial-exec D-form loads to X-form loads.
5377       if (EnableTLSOpt && Subtarget->isELFv2ABI())
5378         if (tryTLSXFormLoad(LD))
5379           return;
5380       break;
5381     }
5382 
5383     SDValue Offset = LD->getOffset();
5384     if (Offset.getOpcode() == ISD::TargetConstant ||
5385         Offset.getOpcode() == ISD::TargetGlobalAddress) {
5386 
5387       unsigned Opcode;
5388       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5389       if (LD->getValueType(0) != MVT::i64) {
5390         // Handle PPC32 integer and normal FP loads.
5391         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5392         switch (LoadedVT.getSimpleVT().SimpleTy) {
5393           default: llvm_unreachable("Invalid PPC load type!");
5394           case MVT::f64: Opcode = PPC::LFDU; break;
5395           case MVT::f32: Opcode = PPC::LFSU; break;
5396           case MVT::i32: Opcode = PPC::LWZU; break;
5397           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5398           case MVT::i1:
5399           case MVT::i8:  Opcode = PPC::LBZU; break;
5400         }
5401       } else {
5402         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5403         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5404         switch (LoadedVT.getSimpleVT().SimpleTy) {
5405           default: llvm_unreachable("Invalid PPC load type!");
5406           case MVT::i64: Opcode = PPC::LDU; break;
5407           case MVT::i32: Opcode = PPC::LWZU8; break;
5408           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5409           case MVT::i1:
5410           case MVT::i8:  Opcode = PPC::LBZU8; break;
5411         }
5412       }
5413 
5414       SDValue Chain = LD->getChain();
5415       SDValue Base = LD->getBasePtr();
5416       SDValue Ops[] = { Offset, Base, Chain };
5417       SDNode *MN = CurDAG->getMachineNode(
5418           Opcode, dl, LD->getValueType(0),
5419           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5420       transferMemOperands(N, MN);
5421       ReplaceNode(N, MN);
5422       return;
5423     } else {
5424       unsigned Opcode;
5425       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5426       if (LD->getValueType(0) != MVT::i64) {
5427         // Handle PPC32 integer and normal FP loads.
5428         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5429         switch (LoadedVT.getSimpleVT().SimpleTy) {
5430           default: llvm_unreachable("Invalid PPC load type!");
5431           case MVT::f64: Opcode = PPC::LFDUX; break;
5432           case MVT::f32: Opcode = PPC::LFSUX; break;
5433           case MVT::i32: Opcode = PPC::LWZUX; break;
5434           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5435           case MVT::i1:
5436           case MVT::i8:  Opcode = PPC::LBZUX; break;
5437         }
5438       } else {
5439         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5440         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5441                "Invalid sext update load");
5442         switch (LoadedVT.getSimpleVT().SimpleTy) {
5443           default: llvm_unreachable("Invalid PPC load type!");
5444           case MVT::i64: Opcode = PPC::LDUX; break;
5445           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
5446           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5447           case MVT::i1:
5448           case MVT::i8:  Opcode = PPC::LBZUX8; break;
5449         }
5450       }
5451 
5452       SDValue Chain = LD->getChain();
5453       SDValue Base = LD->getBasePtr();
5454       SDValue Ops[] = { Base, Offset, Chain };
5455       SDNode *MN = CurDAG->getMachineNode(
5456           Opcode, dl, LD->getValueType(0),
5457           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5458       transferMemOperands(N, MN);
5459       ReplaceNode(N, MN);
5460       return;
5461     }
5462   }
5463 
5464   case ISD::AND:
5465     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5466     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
5467         tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
5468       return;
5469 
5470     // Other cases are autogenerated.
5471     break;
5472   case ISD::OR: {
5473     if (N->getValueType(0) == MVT::i32)
5474       if (tryBitfieldInsert(N))
5475         return;
5476 
5477     int16_t Imm;
5478     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5479         isIntS16Immediate(N->getOperand(1), Imm)) {
5480       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5481 
5482       // If this is equivalent to an add, then we can fold it with the
5483       // FrameIndex calculation.
5484       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5485         selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5486         return;
5487       }
5488     }
5489 
5490     // If this is 'or' against an imm with consecutive ones and both sides zero,
5491     // try to emit rldimi
5492     if (tryAsSingleRLDIMI(N))
5493       return;
5494 
5495     // OR with a 32-bit immediate can be handled by ori + oris
5496     // without creating an immediate in a GPR.
5497     uint64_t Imm64 = 0;
5498     bool IsPPC64 = Subtarget->isPPC64();
5499     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5500         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5501       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5502       uint64_t ImmHi = Imm64 >> 16;
5503       uint64_t ImmLo = Imm64 & 0xFFFF;
5504       if (ImmHi != 0 && ImmLo != 0) {
5505         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5506                                             N->getOperand(0),
5507                                             getI16Imm(ImmLo, dl));
5508         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5509         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5510         return;
5511       }
5512     }
5513 
5514     // Other cases are autogenerated.
5515     break;
5516   }
5517   case ISD::XOR: {
5518     // XOR with a 32-bit immediate can be handled by xori + xoris
5519     // without creating an immediate in a GPR.
5520     uint64_t Imm64 = 0;
5521     bool IsPPC64 = Subtarget->isPPC64();
5522     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5523         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5524       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5525       uint64_t ImmHi = Imm64 >> 16;
5526       uint64_t ImmLo = Imm64 & 0xFFFF;
5527       if (ImmHi != 0 && ImmLo != 0) {
5528         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5529                                             N->getOperand(0),
5530                                             getI16Imm(ImmLo, dl));
5531         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5532         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5533         return;
5534       }
5535     }
5536 
5537     break;
5538   }
5539   case ISD::ADD: {
5540     int16_t Imm;
5541     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5542         isIntS16Immediate(N->getOperand(1), Imm)) {
5543       selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5544       return;
5545     }
5546 
5547     break;
5548   }
5549   case ISD::SHL: {
5550     unsigned Imm, SH, MB, ME;
5551     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5552         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5553       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5554                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5555                           getI32Imm(ME, dl) };
5556       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5557       return;
5558     }
5559 
5560     // Other cases are autogenerated.
5561     break;
5562   }
5563   case ISD::SRL: {
5564     unsigned Imm, SH, MB, ME;
5565     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5566         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5567       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5568                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5569                           getI32Imm(ME, dl) };
5570       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5571       return;
5572     }
5573 
5574     // Other cases are autogenerated.
5575     break;
5576   }
5577   case ISD::MUL: {
5578     SDValue Op1 = N->getOperand(1);
5579     if (Op1.getOpcode() != ISD::Constant ||
5580         (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5581       break;
5582 
5583     // If the multiplier fits int16, we can handle it with mulli.
5584     int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
5585     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
5586     if (isInt<16>(Imm) || !Shift)
5587       break;
5588 
5589     // If the shifted value fits int16, we can do this transformation:
5590     // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5591     // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5592     uint64_t ImmSh = Imm >> Shift;
5593     if (!isInt<16>(ImmSh))
5594       break;
5595 
5596     uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5597     if (Op1.getValueType() == MVT::i64) {
5598       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5599       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5600                                                N->getOperand(0), SDImm);
5601 
5602       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5603                        getI32Imm(63 - Shift, dl)};
5604       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5605       return;
5606     } else {
5607       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5608       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5609                                               N->getOperand(0), SDImm);
5610 
5611       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5612                        getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5613       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5614       return;
5615     }
5616     break;
5617   }
5618   // FIXME: Remove this once the ANDI glue bug is fixed:
5619   case PPCISD::ANDI_rec_1_EQ_BIT:
5620   case PPCISD::ANDI_rec_1_GT_BIT: {
5621     if (!ANDIGlueBug)
5622       break;
5623 
5624     EVT InVT = N->getOperand(0).getValueType();
5625     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5626            "Invalid input type for ANDI_rec_1_EQ_BIT");
5627 
5628     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5629     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5630                                         N->getOperand(0),
5631                                         CurDAG->getTargetConstant(1, dl, InVT)),
5632                  0);
5633     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5634     SDValue SRIdxVal = CurDAG->getTargetConstant(
5635         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5636         dl, MVT::i32);
5637 
5638     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5639                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5640     return;
5641   }
5642   case ISD::SELECT_CC: {
5643     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5644     EVT PtrVT =
5645         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5646     bool isPPC64 = (PtrVT == MVT::i64);
5647 
5648     // If this is a select of i1 operands, we'll pattern match it.
5649     if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5650       break;
5651 
5652     if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5653       bool NeedSwapOps = false;
5654       bool IsUnCmp = false;
5655       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5656         SDValue LHS = N->getOperand(0);
5657         SDValue RHS = N->getOperand(1);
5658         if (NeedSwapOps)
5659           std::swap(LHS, RHS);
5660 
5661         // Make use of SelectCC to generate the comparison to set CR bits, for
5662         // equality comparisons having one literal operand, SelectCC probably
5663         // doesn't need to materialize the whole literal and just use xoris to
5664         // check it first, it leads the following comparison result can't
5665         // exactly represent GT/LT relationship. So to avoid this we specify
5666         // SETGT/SETUGT here instead of SETEQ.
5667         SDValue GenCC =
5668             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5669         CurDAG->SelectNodeTo(
5670             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5671             N->getValueType(0), GenCC);
5672         NumP9Setb++;
5673         return;
5674       }
5675     }
5676 
5677     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5678     if (!isPPC64)
5679       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
5680         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
5681           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
5682             if (N1C->isZero() && N3C->isZero() && N2C->getZExtValue() == 1ULL &&
5683                 CC == ISD::SETNE &&
5684                 // FIXME: Implement this optzn for PPC64.
5685                 N->getValueType(0) == MVT::i32) {
5686               SDNode *Tmp =
5687                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5688                                        N->getOperand(0), getI32Imm(~0U, dl));
5689               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5690                                    N->getOperand(0), SDValue(Tmp, 1));
5691               return;
5692             }
5693 
5694     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5695 
5696     if (N->getValueType(0) == MVT::i1) {
5697       // An i1 select is: (c & t) | (!c & f).
5698       bool Inv;
5699       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5700 
5701       unsigned SRI;
5702       switch (Idx) {
5703       default: llvm_unreachable("Invalid CC index");
5704       case 0: SRI = PPC::sub_lt; break;
5705       case 1: SRI = PPC::sub_gt; break;
5706       case 2: SRI = PPC::sub_eq; break;
5707       case 3: SRI = PPC::sub_un; break;
5708       }
5709 
5710       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5711 
5712       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5713                                               CCBit, CCBit), 0);
5714       SDValue C =    Inv ? NotCCBit : CCBit,
5715               NotC = Inv ? CCBit    : NotCCBit;
5716 
5717       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5718                                            C, N->getOperand(2)), 0);
5719       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5720                                               NotC, N->getOperand(3)), 0);
5721 
5722       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5723       return;
5724     }
5725 
5726     unsigned BROpc =
5727         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5728 
5729     unsigned SelectCCOp;
5730     if (N->getValueType(0) == MVT::i32)
5731       SelectCCOp = PPC::SELECT_CC_I4;
5732     else if (N->getValueType(0) == MVT::i64)
5733       SelectCCOp = PPC::SELECT_CC_I8;
5734     else if (N->getValueType(0) == MVT::f32) {
5735       if (Subtarget->hasP8Vector())
5736         SelectCCOp = PPC::SELECT_CC_VSSRC;
5737       else if (Subtarget->hasSPE())
5738         SelectCCOp = PPC::SELECT_CC_SPE4;
5739       else
5740         SelectCCOp = PPC::SELECT_CC_F4;
5741     } else if (N->getValueType(0) == MVT::f64) {
5742       if (Subtarget->hasVSX())
5743         SelectCCOp = PPC::SELECT_CC_VSFRC;
5744       else if (Subtarget->hasSPE())
5745         SelectCCOp = PPC::SELECT_CC_SPE;
5746       else
5747         SelectCCOp = PPC::SELECT_CC_F8;
5748     } else if (N->getValueType(0) == MVT::f128)
5749       SelectCCOp = PPC::SELECT_CC_F16;
5750     else if (Subtarget->hasSPE())
5751       SelectCCOp = PPC::SELECT_CC_SPE;
5752     else if (N->getValueType(0) == MVT::v2f64 ||
5753              N->getValueType(0) == MVT::v2i64)
5754       SelectCCOp = PPC::SELECT_CC_VSRC;
5755     else
5756       SelectCCOp = PPC::SELECT_CC_VRRC;
5757 
5758     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5759                         getI32Imm(BROpc, dl) };
5760     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5761     return;
5762   }
5763   case ISD::VECTOR_SHUFFLE:
5764     if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5765                                 N->getValueType(0) == MVT::v2i64)) {
5766       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5767 
5768       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5769               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5770       unsigned DM[2];
5771 
5772       for (int i = 0; i < 2; ++i)
5773         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5774           DM[i] = 0;
5775         else
5776           DM[i] = 1;
5777 
5778       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5779           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5780           isa<LoadSDNode>(Op1.getOperand(0))) {
5781         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5782         SDValue Base, Offset;
5783 
5784         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5785             (LD->getMemoryVT() == MVT::f64 ||
5786              LD->getMemoryVT() == MVT::i64) &&
5787             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5788           SDValue Chain = LD->getChain();
5789           SDValue Ops[] = { Base, Offset, Chain };
5790           MachineMemOperand *MemOp = LD->getMemOperand();
5791           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5792                                               N->getValueType(0), Ops);
5793           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5794           return;
5795         }
5796       }
5797 
5798       // For little endian, we must swap the input operands and adjust
5799       // the mask elements (reverse and invert them).
5800       if (Subtarget->isLittleEndian()) {
5801         std::swap(Op1, Op2);
5802         unsigned tmp = DM[0];
5803         DM[0] = 1 - DM[1];
5804         DM[1] = 1 - tmp;
5805       }
5806 
5807       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5808                                               MVT::i32);
5809       SDValue Ops[] = { Op1, Op2, DMV };
5810       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5811       return;
5812     }
5813 
5814     break;
5815   case PPCISD::BDNZ:
5816   case PPCISD::BDZ: {
5817     bool IsPPC64 = Subtarget->isPPC64();
5818     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5819     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5820                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5821                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5822                          MVT::Other, Ops);
5823     return;
5824   }
5825   case PPCISD::COND_BRANCH: {
5826     // Op #0 is the Chain.
5827     // Op #1 is the PPC::PRED_* number.
5828     // Op #2 is the CR#
5829     // Op #3 is the Dest MBB
5830     // Op #4 is the Flag.
5831     // Prevent PPC::PRED_* from being selected into LI.
5832     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5833     if (EnableBranchHint)
5834       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5835 
5836     SDValue Pred = getI32Imm(PCC, dl);
5837     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5838       N->getOperand(0), N->getOperand(4) };
5839     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5840     return;
5841   }
5842   case ISD::BR_CC: {
5843     if (tryFoldSWTestBRCC(N))
5844       return;
5845     if (trySelectLoopCountIntrinsic(N))
5846       return;
5847     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5848     unsigned PCC =
5849         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
5850 
5851     if (N->getOperand(2).getValueType() == MVT::i1) {
5852       unsigned Opc;
5853       bool Swap;
5854       switch (PCC) {
5855       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5856       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5857       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5858       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5859       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5860       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5861       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
5862       }
5863 
5864       // A signed comparison of i1 values produces the opposite result to an
5865       // unsigned one if the condition code includes less-than or greater-than.
5866       // This is because 1 is the most negative signed i1 number and the most
5867       // positive unsigned i1 number. The CR-logical operations used for such
5868       // comparisons are non-commutative so for signed comparisons vs. unsigned
5869       // ones, the input operands just need to be swapped.
5870       if (ISD::isSignedIntSetCC(CC))
5871         Swap = !Swap;
5872 
5873       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5874                                              N->getOperand(Swap ? 3 : 2),
5875                                              N->getOperand(Swap ? 2 : 3)), 0);
5876       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5877                            N->getOperand(0));
5878       return;
5879     }
5880 
5881     if (EnableBranchHint)
5882       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
5883 
5884     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5885     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5886                         N->getOperand(4), N->getOperand(0) };
5887     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5888     return;
5889   }
5890   case ISD::BRIND: {
5891     // FIXME: Should custom lower this.
5892     SDValue Chain = N->getOperand(0);
5893     SDValue Target = N->getOperand(1);
5894     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5895     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5896     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5897                                            Chain), 0);
5898     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5899     return;
5900   }
5901   case PPCISD::TOC_ENTRY: {
5902     const bool isPPC64 = Subtarget->isPPC64();
5903     const bool isELFABI = Subtarget->isSVR4ABI();
5904     const bool isAIXABI = Subtarget->isAIXABI();
5905 
5906     // PowerPC only support small, medium and large code model.
5907     const CodeModel::Model CModel = TM.getCodeModel();
5908     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
5909            "PowerPC doesn't support tiny or kernel code models.");
5910 
5911     if (isAIXABI && CModel == CodeModel::Medium)
5912       report_fatal_error("Medium code model is not supported on AIX.");
5913 
5914     // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
5915     // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
5916     // small code model, we need to check for a toc-data attribute.
5917     if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
5918       break;
5919 
5920     auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
5921                                    EVT OperandTy) {
5922       SDValue GA = TocEntry->getOperand(0);
5923       SDValue TocBase = TocEntry->getOperand(1);
5924       SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
5925       transferMemOperands(TocEntry, MN);
5926       ReplaceNode(TocEntry, MN);
5927     };
5928 
5929     // Handle 32-bit small code model.
5930     if (!isPPC64 && CModel == CodeModel::Small) {
5931       // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
5932       // PPC::ADDItoc, or PPC::LWZtoc
5933       if (isELFABI) {
5934         assert(TM.isPositionIndependent() &&
5935                "32-bit ELF can only have TOC entries in position independent"
5936                " code.");
5937         // 32-bit ELF always uses a small code model toc access.
5938         replaceWith(PPC::LWZtoc, N, MVT::i32);
5939         return;
5940       }
5941 
5942       assert(isAIXABI && "ELF ABI already handled");
5943 
5944       if (hasTocDataAttr(N->getOperand(0),
5945                          CurDAG->getDataLayout().getPointerSize())) {
5946         replaceWith(PPC::ADDItoc, N, MVT::i32);
5947         return;
5948       }
5949 
5950       replaceWith(PPC::LWZtoc, N, MVT::i32);
5951       return;
5952     }
5953 
5954     if (isPPC64 && CModel == CodeModel::Small) {
5955       assert(isAIXABI && "ELF ABI handled in common SelectCode");
5956 
5957       if (hasTocDataAttr(N->getOperand(0),
5958                          CurDAG->getDataLayout().getPointerSize())) {
5959         replaceWith(PPC::ADDItoc8, N, MVT::i64);
5960         return;
5961       }
5962       // Break if it doesn't have toc data attribute. Proceed with common
5963       // SelectCode.
5964       break;
5965     }
5966 
5967     assert(CModel != CodeModel::Small && "All small code models handled.");
5968 
5969     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
5970            " ELF/AIX or 32-bit AIX in the following.");
5971 
5972     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
5973     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
5974     // generate two instructions as described below. The first source operand
5975     // is a symbol reference. If it must be toc-referenced according to
5976     // Subtarget, we generate:
5977     // [32-bit AIX]
5978     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
5979     // [64-bit ELF/AIX]
5980     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
5981     // Otherwise we generate:
5982     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
5983     SDValue GA = N->getOperand(0);
5984     SDValue TOCbase = N->getOperand(1);
5985 
5986     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5987     SDNode *Tmp = CurDAG->getMachineNode(
5988         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
5989 
5990     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5991       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
5992       // the address.
5993       SDNode *MN = CurDAG->getMachineNode(
5994           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
5995 
5996       transferMemOperands(N, MN);
5997       ReplaceNode(N, MN);
5998       return;
5999     }
6000 
6001     // Build the address relative to the TOC-pointer.
6002     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
6003                                           SDValue(Tmp, 0), GA));
6004     return;
6005   }
6006   case PPCISD::PPC32_PICGOT:
6007     // Generate a PIC-safe GOT reference.
6008     assert(Subtarget->is32BitELFABI() &&
6009            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
6010     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
6011                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
6012                          MVT::i32);
6013     return;
6014 
6015   case PPCISD::VADD_SPLAT: {
6016     // This expands into one of three sequences, depending on whether
6017     // the first operand is odd or even, positive or negative.
6018     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
6019            isa<ConstantSDNode>(N->getOperand(1)) &&
6020            "Invalid operand on VADD_SPLAT!");
6021 
6022     int Elt     = N->getConstantOperandVal(0);
6023     int EltSize = N->getConstantOperandVal(1);
6024     unsigned Opc1, Opc2, Opc3;
6025     EVT VT;
6026 
6027     if (EltSize == 1) {
6028       Opc1 = PPC::VSPLTISB;
6029       Opc2 = PPC::VADDUBM;
6030       Opc3 = PPC::VSUBUBM;
6031       VT = MVT::v16i8;
6032     } else if (EltSize == 2) {
6033       Opc1 = PPC::VSPLTISH;
6034       Opc2 = PPC::VADDUHM;
6035       Opc3 = PPC::VSUBUHM;
6036       VT = MVT::v8i16;
6037     } else {
6038       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
6039       Opc1 = PPC::VSPLTISW;
6040       Opc2 = PPC::VADDUWM;
6041       Opc3 = PPC::VSUBUWM;
6042       VT = MVT::v4i32;
6043     }
6044 
6045     if ((Elt & 1) == 0) {
6046       // Elt is even, in the range [-32,-18] + [16,30].
6047       //
6048       // Convert: VADD_SPLAT elt, size
6049       // Into:    tmp = VSPLTIS[BHW] elt
6050       //          VADDU[BHW]M tmp, tmp
6051       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
6052       SDValue EltVal = getI32Imm(Elt >> 1, dl);
6053       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6054       SDValue TmpVal = SDValue(Tmp, 0);
6055       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
6056       return;
6057     } else if (Elt > 0) {
6058       // Elt is odd and positive, in the range [17,31].
6059       //
6060       // Convert: VADD_SPLAT elt, size
6061       // Into:    tmp1 = VSPLTIS[BHW] elt-16
6062       //          tmp2 = VSPLTIS[BHW] -16
6063       //          VSUBU[BHW]M tmp1, tmp2
6064       SDValue EltVal = getI32Imm(Elt - 16, dl);
6065       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6066       EltVal = getI32Imm(-16, dl);
6067       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6068       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
6069                                             SDValue(Tmp2, 0)));
6070       return;
6071     } else {
6072       // Elt is odd and negative, in the range [-31,-17].
6073       //
6074       // Convert: VADD_SPLAT elt, size
6075       // Into:    tmp1 = VSPLTIS[BHW] elt+16
6076       //          tmp2 = VSPLTIS[BHW] -16
6077       //          VADDU[BHW]M tmp1, tmp2
6078       SDValue EltVal = getI32Imm(Elt + 16, dl);
6079       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6080       EltVal = getI32Imm(-16, dl);
6081       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6082       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
6083                                             SDValue(Tmp2, 0)));
6084       return;
6085     }
6086   }
6087   case PPCISD::LD_SPLAT: {
6088     // Here we want to handle splat load for type v16i8 and v8i16 when there is
6089     // no direct move, we don't need to use stack for this case. If target has
6090     // direct move, we should be able to get the best selection in the .td file.
6091     if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
6092       break;
6093 
6094     EVT Type = N->getValueType(0);
6095     if (Type != MVT::v16i8 && Type != MVT::v8i16)
6096       break;
6097 
6098     // If the alignment for the load is 16 or bigger, we don't need the
6099     // permutated mask to get the required value. The value must be the 0
6100     // element in big endian target or 7/15 in little endian target in the
6101     // result vsx register of lvx instruction.
6102     // Select the instruction in the .td file.
6103     if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
6104         isOffsetMultipleOf(N, 16))
6105       break;
6106 
6107     SDValue ZeroReg =
6108         CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
6109                             Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
6110     unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
6111     // v16i8 LD_SPLAT addr
6112     // ======>
6113     // Mask = LVSR/LVSL 0, addr
6114     // LoadLow = LVX 0, addr
6115     // Perm = VPERM LoadLow, LoadLow, Mask
6116     // Splat = VSPLTB 15/0, Perm
6117     //
6118     // v8i16 LD_SPLAT addr
6119     // ======>
6120     // Mask = LVSR/LVSL 0, addr
6121     // LoadLow = LVX 0, addr
6122     // LoadHigh = LVX (LI, 1), addr
6123     // Perm = VPERM LoadLow, LoadHigh, Mask
6124     // Splat = VSPLTH 7/0, Perm
6125     unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6126     unsigned SplatElemIndex =
6127         Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6128 
6129     SDNode *Mask = CurDAG->getMachineNode(
6130         Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6131         N->getOperand(1));
6132 
6133     SDNode *LoadLow =
6134         CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6135                                {ZeroReg, N->getOperand(1), N->getOperand(0)});
6136 
6137     SDNode *LoadHigh = LoadLow;
6138     if (Type == MVT::v8i16) {
6139       LoadHigh = CurDAG->getMachineNode(
6140           PPC::LVX, dl, MVT::v16i8, MVT::Other,
6141           {SDValue(CurDAG->getMachineNode(
6142                        LIOpcode, dl, MVT::i32,
6143                        CurDAG->getTargetConstant(1, dl, MVT::i8)),
6144                    0),
6145            N->getOperand(1), SDValue(LoadLow, 1)});
6146     }
6147 
6148     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6149     transferMemOperands(N, LoadHigh);
6150 
6151     SDNode *Perm =
6152         CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6153                                SDValue(LoadHigh, 0), SDValue(Mask, 0));
6154     CurDAG->SelectNodeTo(N, SplatOp, Type,
6155                          CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6156                          SDValue(Perm, 0));
6157     return;
6158   }
6159   }
6160 
6161   SelectCode(N);
6162 }
6163 
6164 // If the target supports the cmpb instruction, do the idiom recognition here.
6165 // We don't do this as a DAG combine because we don't want to do it as nodes
6166 // are being combined (because we might miss part of the eventual idiom). We
6167 // don't want to do it during instruction selection because we want to reuse
6168 // the logic for lowering the masking operations already part of the
6169 // instruction selector.
6170 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6171   SDLoc dl(N);
6172 
6173   assert(N->getOpcode() == ISD::OR &&
6174          "Only OR nodes are supported for CMPB");
6175 
6176   SDValue Res;
6177   if (!Subtarget->hasCMPB())
6178     return Res;
6179 
6180   if (N->getValueType(0) != MVT::i32 &&
6181       N->getValueType(0) != MVT::i64)
6182     return Res;
6183 
6184   EVT VT = N->getValueType(0);
6185 
6186   SDValue RHS, LHS;
6187   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6188   uint64_t Mask = 0, Alt = 0;
6189 
6190   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6191                                uint64_t &Mask, uint64_t &Alt,
6192                                SDValue &LHS, SDValue &RHS) {
6193     if (O.getOpcode() != ISD::SELECT_CC)
6194       return false;
6195     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6196 
6197     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6198         !isa<ConstantSDNode>(O.getOperand(3)))
6199       return false;
6200 
6201     uint64_t PM = O.getConstantOperandVal(2);
6202     uint64_t PAlt = O.getConstantOperandVal(3);
6203     for (b = 0; b < 8; ++b) {
6204       uint64_t Mask = UINT64_C(0xFF) << (8*b);
6205       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6206         break;
6207     }
6208 
6209     if (b == 8)
6210       return false;
6211     Mask |= PM;
6212     Alt  |= PAlt;
6213 
6214     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6215         O.getConstantOperandVal(1) != 0) {
6216       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6217       if (Op0.getOpcode() == ISD::TRUNCATE)
6218         Op0 = Op0.getOperand(0);
6219       if (Op1.getOpcode() == ISD::TRUNCATE)
6220         Op1 = Op1.getOperand(0);
6221 
6222       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6223           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6224           isa<ConstantSDNode>(Op0.getOperand(1))) {
6225 
6226         unsigned Bits = Op0.getValueSizeInBits();
6227         if (b != Bits/8-1)
6228           return false;
6229         if (Op0.getConstantOperandVal(1) != Bits-8)
6230           return false;
6231 
6232         LHS = Op0.getOperand(0);
6233         RHS = Op1.getOperand(0);
6234         return true;
6235       }
6236 
6237       // When we have small integers (i16 to be specific), the form present
6238       // post-legalization uses SETULT in the SELECT_CC for the
6239       // higher-order byte, depending on the fact that the
6240       // even-higher-order bytes are known to all be zero, for example:
6241       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6242       // (so when the second byte is the same, because all higher-order
6243       // bits from bytes 3 and 4 are known to be zero, the result of the
6244       // xor can be at most 255)
6245       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6246           isa<ConstantSDNode>(O.getOperand(1))) {
6247 
6248         uint64_t ULim = O.getConstantOperandVal(1);
6249         if (ULim != (UINT64_C(1) << b*8))
6250           return false;
6251 
6252         // Now we need to make sure that the upper bytes are known to be
6253         // zero.
6254         unsigned Bits = Op0.getValueSizeInBits();
6255         if (!CurDAG->MaskedValueIsZero(
6256                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6257           return false;
6258 
6259         LHS = Op0.getOperand(0);
6260         RHS = Op0.getOperand(1);
6261         return true;
6262       }
6263 
6264       return false;
6265     }
6266 
6267     if (CC != ISD::SETEQ)
6268       return false;
6269 
6270     SDValue Op = O.getOperand(0);
6271     if (Op.getOpcode() == ISD::AND) {
6272       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6273         return false;
6274       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6275         return false;
6276 
6277       SDValue XOR = Op.getOperand(0);
6278       if (XOR.getOpcode() == ISD::TRUNCATE)
6279         XOR = XOR.getOperand(0);
6280       if (XOR.getOpcode() != ISD::XOR)
6281         return false;
6282 
6283       LHS = XOR.getOperand(0);
6284       RHS = XOR.getOperand(1);
6285       return true;
6286     } else if (Op.getOpcode() == ISD::SRL) {
6287       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6288         return false;
6289       unsigned Bits = Op.getValueSizeInBits();
6290       if (b != Bits/8-1)
6291         return false;
6292       if (Op.getConstantOperandVal(1) != Bits-8)
6293         return false;
6294 
6295       SDValue XOR = Op.getOperand(0);
6296       if (XOR.getOpcode() == ISD::TRUNCATE)
6297         XOR = XOR.getOperand(0);
6298       if (XOR.getOpcode() != ISD::XOR)
6299         return false;
6300 
6301       LHS = XOR.getOperand(0);
6302       RHS = XOR.getOperand(1);
6303       return true;
6304     }
6305 
6306     return false;
6307   };
6308 
6309   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6310   while (!Queue.empty()) {
6311     SDValue V = Queue.pop_back_val();
6312 
6313     for (const SDValue &O : V.getNode()->ops()) {
6314       unsigned b = 0;
6315       uint64_t M = 0, A = 0;
6316       SDValue OLHS, ORHS;
6317       if (O.getOpcode() == ISD::OR) {
6318         Queue.push_back(O);
6319       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6320         if (!LHS) {
6321           LHS = OLHS;
6322           RHS = ORHS;
6323           BytesFound[b] = true;
6324           Mask |= M;
6325           Alt  |= A;
6326         } else if ((LHS == ORHS && RHS == OLHS) ||
6327                    (RHS == ORHS && LHS == OLHS)) {
6328           BytesFound[b] = true;
6329           Mask |= M;
6330           Alt  |= A;
6331         } else {
6332           return Res;
6333         }
6334       } else {
6335         return Res;
6336       }
6337     }
6338   }
6339 
6340   unsigned LastB = 0, BCnt = 0;
6341   for (unsigned i = 0; i < 8; ++i)
6342     if (BytesFound[LastB]) {
6343       ++BCnt;
6344       LastB = i;
6345     }
6346 
6347   if (!LastB || BCnt < 2)
6348     return Res;
6349 
6350   // Because we'll be zero-extending the output anyway if don't have a specific
6351   // value for each input byte (via the Mask), we can 'anyext' the inputs.
6352   if (LHS.getValueType() != VT) {
6353     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6354     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6355   }
6356 
6357   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6358 
6359   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6360   if (NonTrivialMask && !Alt) {
6361     // Res = Mask & CMPB
6362     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6363                           CurDAG->getConstant(Mask, dl, VT));
6364   } else if (Alt) {
6365     // Res = (CMPB & Mask) | (~CMPB & Alt)
6366     // Which, as suggested here:
6367     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6368     // can be written as:
6369     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6370     // useful because the (Alt ^ Mask) can be pre-computed.
6371     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6372                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
6373     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6374                           CurDAG->getConstant(Alt, dl, VT));
6375   }
6376 
6377   return Res;
6378 }
6379 
6380 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6381 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6382 // involves constant materialization of a 0 or a 1 or both. If the result of
6383 // the extension is then operated upon by some operator that can be constant
6384 // folded with a constant 0 or 1, and that constant can be materialized using
6385 // only one instruction (like a zero or one), then we should fold in those
6386 // operations with the select.
6387 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6388   if (!Subtarget->useCRBits())
6389     return;
6390 
6391   if (N->getOpcode() != ISD::ZERO_EXTEND &&
6392       N->getOpcode() != ISD::SIGN_EXTEND &&
6393       N->getOpcode() != ISD::ANY_EXTEND)
6394     return;
6395 
6396   if (N->getOperand(0).getValueType() != MVT::i1)
6397     return;
6398 
6399   if (!N->hasOneUse())
6400     return;
6401 
6402   SDLoc dl(N);
6403   EVT VT = N->getValueType(0);
6404   SDValue Cond = N->getOperand(0);
6405   SDValue ConstTrue =
6406     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6407   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6408 
6409   do {
6410     SDNode *User = *N->use_begin();
6411     if (User->getNumOperands() != 2)
6412       break;
6413 
6414     auto TryFold = [this, N, User, dl](SDValue Val) {
6415       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6416       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6417       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6418 
6419       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6420                                             User->getValueType(0), {O0, O1});
6421     };
6422 
6423     // FIXME: When the semantics of the interaction between select and undef
6424     // are clearly defined, it may turn out to be unnecessary to break here.
6425     SDValue TrueRes = TryFold(ConstTrue);
6426     if (!TrueRes || TrueRes.isUndef())
6427       break;
6428     SDValue FalseRes = TryFold(ConstFalse);
6429     if (!FalseRes || FalseRes.isUndef())
6430       break;
6431 
6432     // For us to materialize these using one instruction, we must be able to
6433     // represent them as signed 16-bit integers.
6434     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
6435              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
6436     if (!isInt<16>(True) || !isInt<16>(False))
6437       break;
6438 
6439     // We can replace User with a new SELECT node, and try again to see if we
6440     // can fold the select with its user.
6441     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6442     N = User;
6443     ConstTrue = TrueRes;
6444     ConstFalse = FalseRes;
6445   } while (N->hasOneUse());
6446 }
6447 
6448 void PPCDAGToDAGISel::PreprocessISelDAG() {
6449   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6450 
6451   bool MadeChange = false;
6452   while (Position != CurDAG->allnodes_begin()) {
6453     SDNode *N = &*--Position;
6454     if (N->use_empty())
6455       continue;
6456 
6457     SDValue Res;
6458     switch (N->getOpcode()) {
6459     default: break;
6460     case ISD::OR:
6461       Res = combineToCMPB(N);
6462       break;
6463     }
6464 
6465     if (!Res)
6466       foldBoolExts(Res, N);
6467 
6468     if (Res) {
6469       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
6470       LLVM_DEBUG(N->dump(CurDAG));
6471       LLVM_DEBUG(dbgs() << "\nNew: ");
6472       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6473       LLVM_DEBUG(dbgs() << "\n");
6474 
6475       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6476       MadeChange = true;
6477     }
6478   }
6479 
6480   if (MadeChange)
6481     CurDAG->RemoveDeadNodes();
6482 }
6483 
6484 /// PostprocessISelDAG - Perform some late peephole optimizations
6485 /// on the DAG representation.
6486 void PPCDAGToDAGISel::PostprocessISelDAG() {
6487   // Skip peepholes at -O0.
6488   if (TM.getOptLevel() == CodeGenOpt::None)
6489     return;
6490 
6491   PeepholePPC64();
6492   PeepholeCROps();
6493   PeepholePPC64ZExt();
6494 }
6495 
6496 // Check if all users of this node will become isel where the second operand
6497 // is the constant zero. If this is so, and if we can negate the condition,
6498 // then we can flip the true and false operands. This will allow the zero to
6499 // be folded with the isel so that we don't need to materialize a register
6500 // containing zero.
6501 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6502   for (const SDNode *User : N->uses()) {
6503     if (!User->isMachineOpcode())
6504       return false;
6505     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6506         User->getMachineOpcode() != PPC::SELECT_I8)
6507       return false;
6508 
6509     SDNode *Op1 = User->getOperand(1).getNode();
6510     SDNode *Op2 = User->getOperand(2).getNode();
6511     // If we have a degenerate select with two equal operands, swapping will
6512     // not do anything, and we may run into an infinite loop.
6513     if (Op1 == Op2)
6514       return false;
6515 
6516     if (!Op2->isMachineOpcode())
6517       return false;
6518 
6519     if (Op2->getMachineOpcode() != PPC::LI &&
6520         Op2->getMachineOpcode() != PPC::LI8)
6521       return false;
6522 
6523     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
6524     if (!C)
6525       return false;
6526 
6527     if (!C->isZero())
6528       return false;
6529   }
6530 
6531   return true;
6532 }
6533 
6534 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6535   SmallVector<SDNode *, 4> ToReplace;
6536   for (SDNode *User : N->uses()) {
6537     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6538             User->getMachineOpcode() == PPC::SELECT_I8) &&
6539            "Must have all select users");
6540     ToReplace.push_back(User);
6541   }
6542 
6543   for (SDNode *User : ToReplace) {
6544     SDNode *ResNode =
6545       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6546                              User->getValueType(0), User->getOperand(0),
6547                              User->getOperand(2),
6548                              User->getOperand(1));
6549 
6550     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6551     LLVM_DEBUG(User->dump(CurDAG));
6552     LLVM_DEBUG(dbgs() << "\nNew: ");
6553     LLVM_DEBUG(ResNode->dump(CurDAG));
6554     LLVM_DEBUG(dbgs() << "\n");
6555 
6556     ReplaceUses(User, ResNode);
6557   }
6558 }
6559 
6560 void PPCDAGToDAGISel::PeepholeCROps() {
6561   bool IsModified;
6562   do {
6563     IsModified = false;
6564     for (SDNode &Node : CurDAG->allnodes()) {
6565       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6566       if (!MachineNode || MachineNode->use_empty())
6567         continue;
6568       SDNode *ResNode = MachineNode;
6569 
6570       bool Op1Set   = false, Op1Unset = false,
6571            Op1Not   = false,
6572            Op2Set   = false, Op2Unset = false,
6573            Op2Not   = false;
6574 
6575       unsigned Opcode = MachineNode->getMachineOpcode();
6576       switch (Opcode) {
6577       default: break;
6578       case PPC::CRAND:
6579       case PPC::CRNAND:
6580       case PPC::CROR:
6581       case PPC::CRXOR:
6582       case PPC::CRNOR:
6583       case PPC::CREQV:
6584       case PPC::CRANDC:
6585       case PPC::CRORC: {
6586         SDValue Op = MachineNode->getOperand(1);
6587         if (Op.isMachineOpcode()) {
6588           if (Op.getMachineOpcode() == PPC::CRSET)
6589             Op2Set = true;
6590           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6591             Op2Unset = true;
6592           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6593                     Op.getOperand(0) == Op.getOperand(1)) ||
6594                    Op.getMachineOpcode() == PPC::CRNOT)
6595             Op2Not = true;
6596         }
6597         [[fallthrough]];
6598       }
6599       case PPC::BC:
6600       case PPC::BCn:
6601       case PPC::SELECT_I4:
6602       case PPC::SELECT_I8:
6603       case PPC::SELECT_F4:
6604       case PPC::SELECT_F8:
6605       case PPC::SELECT_SPE:
6606       case PPC::SELECT_SPE4:
6607       case PPC::SELECT_VRRC:
6608       case PPC::SELECT_VSFRC:
6609       case PPC::SELECT_VSSRC:
6610       case PPC::SELECT_VSRC: {
6611         SDValue Op = MachineNode->getOperand(0);
6612         if (Op.isMachineOpcode()) {
6613           if (Op.getMachineOpcode() == PPC::CRSET)
6614             Op1Set = true;
6615           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6616             Op1Unset = true;
6617           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6618                     Op.getOperand(0) == Op.getOperand(1)) ||
6619                    Op.getMachineOpcode() == PPC::CRNOT)
6620             Op1Not = true;
6621         }
6622         }
6623         break;
6624       }
6625 
6626       bool SelectSwap = false;
6627       switch (Opcode) {
6628       default: break;
6629       case PPC::CRAND:
6630         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6631           // x & x = x
6632           ResNode = MachineNode->getOperand(0).getNode();
6633         else if (Op1Set)
6634           // 1 & y = y
6635           ResNode = MachineNode->getOperand(1).getNode();
6636         else if (Op2Set)
6637           // x & 1 = x
6638           ResNode = MachineNode->getOperand(0).getNode();
6639         else if (Op1Unset || Op2Unset)
6640           // x & 0 = 0 & y = 0
6641           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6642                                            MVT::i1);
6643         else if (Op1Not)
6644           // ~x & y = andc(y, x)
6645           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6646                                            MVT::i1, MachineNode->getOperand(1),
6647                                            MachineNode->getOperand(0).
6648                                              getOperand(0));
6649         else if (Op2Not)
6650           // x & ~y = andc(x, y)
6651           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6652                                            MVT::i1, MachineNode->getOperand(0),
6653                                            MachineNode->getOperand(1).
6654                                              getOperand(0));
6655         else if (AllUsersSelectZero(MachineNode)) {
6656           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6657                                            MVT::i1, MachineNode->getOperand(0),
6658                                            MachineNode->getOperand(1));
6659           SelectSwap = true;
6660         }
6661         break;
6662       case PPC::CRNAND:
6663         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6664           // nand(x, x) -> nor(x, x)
6665           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6666                                            MVT::i1, MachineNode->getOperand(0),
6667                                            MachineNode->getOperand(0));
6668         else if (Op1Set)
6669           // nand(1, y) -> nor(y, y)
6670           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6671                                            MVT::i1, MachineNode->getOperand(1),
6672                                            MachineNode->getOperand(1));
6673         else if (Op2Set)
6674           // nand(x, 1) -> nor(x, x)
6675           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6676                                            MVT::i1, MachineNode->getOperand(0),
6677                                            MachineNode->getOperand(0));
6678         else if (Op1Unset || Op2Unset)
6679           // nand(x, 0) = nand(0, y) = 1
6680           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6681                                            MVT::i1);
6682         else if (Op1Not)
6683           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6684           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6685                                            MVT::i1, MachineNode->getOperand(0).
6686                                                       getOperand(0),
6687                                            MachineNode->getOperand(1));
6688         else if (Op2Not)
6689           // nand(x, ~y) = ~x | y = orc(y, x)
6690           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6691                                            MVT::i1, MachineNode->getOperand(1).
6692                                                       getOperand(0),
6693                                            MachineNode->getOperand(0));
6694         else if (AllUsersSelectZero(MachineNode)) {
6695           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6696                                            MVT::i1, MachineNode->getOperand(0),
6697                                            MachineNode->getOperand(1));
6698           SelectSwap = true;
6699         }
6700         break;
6701       case PPC::CROR:
6702         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6703           // x | x = x
6704           ResNode = MachineNode->getOperand(0).getNode();
6705         else if (Op1Set || Op2Set)
6706           // x | 1 = 1 | y = 1
6707           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6708                                            MVT::i1);
6709         else if (Op1Unset)
6710           // 0 | y = y
6711           ResNode = MachineNode->getOperand(1).getNode();
6712         else if (Op2Unset)
6713           // x | 0 = x
6714           ResNode = MachineNode->getOperand(0).getNode();
6715         else if (Op1Not)
6716           // ~x | y = orc(y, x)
6717           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6718                                            MVT::i1, MachineNode->getOperand(1),
6719                                            MachineNode->getOperand(0).
6720                                              getOperand(0));
6721         else if (Op2Not)
6722           // x | ~y = orc(x, y)
6723           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6724                                            MVT::i1, MachineNode->getOperand(0),
6725                                            MachineNode->getOperand(1).
6726                                              getOperand(0));
6727         else if (AllUsersSelectZero(MachineNode)) {
6728           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6729                                            MVT::i1, MachineNode->getOperand(0),
6730                                            MachineNode->getOperand(1));
6731           SelectSwap = true;
6732         }
6733         break;
6734       case PPC::CRXOR:
6735         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6736           // xor(x, x) = 0
6737           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6738                                            MVT::i1);
6739         else if (Op1Set)
6740           // xor(1, y) -> nor(y, y)
6741           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6742                                            MVT::i1, MachineNode->getOperand(1),
6743                                            MachineNode->getOperand(1));
6744         else if (Op2Set)
6745           // xor(x, 1) -> nor(x, x)
6746           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6747                                            MVT::i1, MachineNode->getOperand(0),
6748                                            MachineNode->getOperand(0));
6749         else if (Op1Unset)
6750           // xor(0, y) = y
6751           ResNode = MachineNode->getOperand(1).getNode();
6752         else if (Op2Unset)
6753           // xor(x, 0) = x
6754           ResNode = MachineNode->getOperand(0).getNode();
6755         else if (Op1Not)
6756           // xor(~x, y) = eqv(x, y)
6757           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6758                                            MVT::i1, MachineNode->getOperand(0).
6759                                                       getOperand(0),
6760                                            MachineNode->getOperand(1));
6761         else if (Op2Not)
6762           // xor(x, ~y) = eqv(x, y)
6763           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6764                                            MVT::i1, MachineNode->getOperand(0),
6765                                            MachineNode->getOperand(1).
6766                                              getOperand(0));
6767         else if (AllUsersSelectZero(MachineNode)) {
6768           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6769                                            MVT::i1, MachineNode->getOperand(0),
6770                                            MachineNode->getOperand(1));
6771           SelectSwap = true;
6772         }
6773         break;
6774       case PPC::CRNOR:
6775         if (Op1Set || Op2Set)
6776           // nor(1, y) -> 0
6777           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6778                                            MVT::i1);
6779         else if (Op1Unset)
6780           // nor(0, y) = ~y -> nor(y, y)
6781           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6782                                            MVT::i1, MachineNode->getOperand(1),
6783                                            MachineNode->getOperand(1));
6784         else if (Op2Unset)
6785           // nor(x, 0) = ~x
6786           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6787                                            MVT::i1, MachineNode->getOperand(0),
6788                                            MachineNode->getOperand(0));
6789         else if (Op1Not)
6790           // nor(~x, y) = andc(x, y)
6791           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6792                                            MVT::i1, MachineNode->getOperand(0).
6793                                                       getOperand(0),
6794                                            MachineNode->getOperand(1));
6795         else if (Op2Not)
6796           // nor(x, ~y) = andc(y, x)
6797           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6798                                            MVT::i1, MachineNode->getOperand(1).
6799                                                       getOperand(0),
6800                                            MachineNode->getOperand(0));
6801         else if (AllUsersSelectZero(MachineNode)) {
6802           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6803                                            MVT::i1, MachineNode->getOperand(0),
6804                                            MachineNode->getOperand(1));
6805           SelectSwap = true;
6806         }
6807         break;
6808       case PPC::CREQV:
6809         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6810           // eqv(x, x) = 1
6811           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6812                                            MVT::i1);
6813         else if (Op1Set)
6814           // eqv(1, y) = y
6815           ResNode = MachineNode->getOperand(1).getNode();
6816         else if (Op2Set)
6817           // eqv(x, 1) = x
6818           ResNode = MachineNode->getOperand(0).getNode();
6819         else if (Op1Unset)
6820           // eqv(0, y) = ~y -> nor(y, y)
6821           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6822                                            MVT::i1, MachineNode->getOperand(1),
6823                                            MachineNode->getOperand(1));
6824         else if (Op2Unset)
6825           // eqv(x, 0) = ~x
6826           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6827                                            MVT::i1, MachineNode->getOperand(0),
6828                                            MachineNode->getOperand(0));
6829         else if (Op1Not)
6830           // eqv(~x, y) = xor(x, y)
6831           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6832                                            MVT::i1, MachineNode->getOperand(0).
6833                                                       getOperand(0),
6834                                            MachineNode->getOperand(1));
6835         else if (Op2Not)
6836           // eqv(x, ~y) = xor(x, y)
6837           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6838                                            MVT::i1, MachineNode->getOperand(0),
6839                                            MachineNode->getOperand(1).
6840                                              getOperand(0));
6841         else if (AllUsersSelectZero(MachineNode)) {
6842           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6843                                            MVT::i1, MachineNode->getOperand(0),
6844                                            MachineNode->getOperand(1));
6845           SelectSwap = true;
6846         }
6847         break;
6848       case PPC::CRANDC:
6849         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6850           // andc(x, x) = 0
6851           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6852                                            MVT::i1);
6853         else if (Op1Set)
6854           // andc(1, y) = ~y
6855           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6856                                            MVT::i1, MachineNode->getOperand(1),
6857                                            MachineNode->getOperand(1));
6858         else if (Op1Unset || Op2Set)
6859           // andc(0, y) = andc(x, 1) = 0
6860           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6861                                            MVT::i1);
6862         else if (Op2Unset)
6863           // andc(x, 0) = x
6864           ResNode = MachineNode->getOperand(0).getNode();
6865         else if (Op1Not)
6866           // andc(~x, y) = ~(x | y) = nor(x, y)
6867           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6868                                            MVT::i1, MachineNode->getOperand(0).
6869                                                       getOperand(0),
6870                                            MachineNode->getOperand(1));
6871         else if (Op2Not)
6872           // andc(x, ~y) = x & y
6873           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6874                                            MVT::i1, MachineNode->getOperand(0),
6875                                            MachineNode->getOperand(1).
6876                                              getOperand(0));
6877         else if (AllUsersSelectZero(MachineNode)) {
6878           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6879                                            MVT::i1, MachineNode->getOperand(1),
6880                                            MachineNode->getOperand(0));
6881           SelectSwap = true;
6882         }
6883         break;
6884       case PPC::CRORC:
6885         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6886           // orc(x, x) = 1
6887           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6888                                            MVT::i1);
6889         else if (Op1Set || Op2Unset)
6890           // orc(1, y) = orc(x, 0) = 1
6891           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6892                                            MVT::i1);
6893         else if (Op2Set)
6894           // orc(x, 1) = x
6895           ResNode = MachineNode->getOperand(0).getNode();
6896         else if (Op1Unset)
6897           // orc(0, y) = ~y
6898           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6899                                            MVT::i1, MachineNode->getOperand(1),
6900                                            MachineNode->getOperand(1));
6901         else if (Op1Not)
6902           // orc(~x, y) = ~(x & y) = nand(x, y)
6903           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6904                                            MVT::i1, MachineNode->getOperand(0).
6905                                                       getOperand(0),
6906                                            MachineNode->getOperand(1));
6907         else if (Op2Not)
6908           // orc(x, ~y) = x | y
6909           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6910                                            MVT::i1, MachineNode->getOperand(0),
6911                                            MachineNode->getOperand(1).
6912                                              getOperand(0));
6913         else if (AllUsersSelectZero(MachineNode)) {
6914           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6915                                            MVT::i1, MachineNode->getOperand(1),
6916                                            MachineNode->getOperand(0));
6917           SelectSwap = true;
6918         }
6919         break;
6920       case PPC::SELECT_I4:
6921       case PPC::SELECT_I8:
6922       case PPC::SELECT_F4:
6923       case PPC::SELECT_F8:
6924       case PPC::SELECT_SPE:
6925       case PPC::SELECT_SPE4:
6926       case PPC::SELECT_VRRC:
6927       case PPC::SELECT_VSFRC:
6928       case PPC::SELECT_VSSRC:
6929       case PPC::SELECT_VSRC:
6930         if (Op1Set)
6931           ResNode = MachineNode->getOperand(1).getNode();
6932         else if (Op1Unset)
6933           ResNode = MachineNode->getOperand(2).getNode();
6934         else if (Op1Not)
6935           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
6936                                            SDLoc(MachineNode),
6937                                            MachineNode->getValueType(0),
6938                                            MachineNode->getOperand(0).
6939                                              getOperand(0),
6940                                            MachineNode->getOperand(2),
6941                                            MachineNode->getOperand(1));
6942         break;
6943       case PPC::BC:
6944       case PPC::BCn:
6945         if (Op1Not)
6946           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
6947                                                                PPC::BC,
6948                                            SDLoc(MachineNode),
6949                                            MVT::Other,
6950                                            MachineNode->getOperand(0).
6951                                              getOperand(0),
6952                                            MachineNode->getOperand(1),
6953                                            MachineNode->getOperand(2));
6954         // FIXME: Handle Op1Set, Op1Unset here too.
6955         break;
6956       }
6957 
6958       // If we're inverting this node because it is used only by selects that
6959       // we'd like to swap, then swap the selects before the node replacement.
6960       if (SelectSwap)
6961         SwapAllSelectUsers(MachineNode);
6962 
6963       if (ResNode != MachineNode) {
6964         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6965         LLVM_DEBUG(MachineNode->dump(CurDAG));
6966         LLVM_DEBUG(dbgs() << "\nNew: ");
6967         LLVM_DEBUG(ResNode->dump(CurDAG));
6968         LLVM_DEBUG(dbgs() << "\n");
6969 
6970         ReplaceUses(MachineNode, ResNode);
6971         IsModified = true;
6972       }
6973     }
6974     if (IsModified)
6975       CurDAG->RemoveDeadNodes();
6976   } while (IsModified);
6977 }
6978 
6979 // Gather the set of 32-bit operations that are known to have their
6980 // higher-order 32 bits zero, where ToPromote contains all such operations.
6981 static bool PeepholePPC64ZExtGather(SDValue Op32,
6982                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
6983   if (!Op32.isMachineOpcode())
6984     return false;
6985 
6986   // First, check for the "frontier" instructions (those that will clear the
6987   // higher-order 32 bits.
6988 
6989   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6990   // around. If it does not, then these instructions will clear the
6991   // higher-order bits.
6992   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6993        Op32.getMachineOpcode() == PPC::RLWNM) &&
6994       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6995     ToPromote.insert(Op32.getNode());
6996     return true;
6997   }
6998 
6999   // SLW and SRW always clear the higher-order bits.
7000   if (Op32.getMachineOpcode() == PPC::SLW ||
7001       Op32.getMachineOpcode() == PPC::SRW) {
7002     ToPromote.insert(Op32.getNode());
7003     return true;
7004   }
7005 
7006   // For LI and LIS, we need the immediate to be positive (so that it is not
7007   // sign extended).
7008   if (Op32.getMachineOpcode() == PPC::LI ||
7009       Op32.getMachineOpcode() == PPC::LIS) {
7010     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
7011       return false;
7012 
7013     ToPromote.insert(Op32.getNode());
7014     return true;
7015   }
7016 
7017   // LHBRX and LWBRX always clear the higher-order bits.
7018   if (Op32.getMachineOpcode() == PPC::LHBRX ||
7019       Op32.getMachineOpcode() == PPC::LWBRX) {
7020     ToPromote.insert(Op32.getNode());
7021     return true;
7022   }
7023 
7024   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
7025   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
7026       Op32.getMachineOpcode() == PPC::CNTTZW) {
7027     ToPromote.insert(Op32.getNode());
7028     return true;
7029   }
7030 
7031   // Next, check for those instructions we can look through.
7032 
7033   // Assuming the mask does not wrap around, then the higher-order bits are
7034   // taken directly from the first operand.
7035   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
7036       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
7037     SmallPtrSet<SDNode *, 16> ToPromote1;
7038     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7039       return false;
7040 
7041     ToPromote.insert(Op32.getNode());
7042     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7043     return true;
7044   }
7045 
7046   // For OR, the higher-order bits are zero if that is true for both operands.
7047   // For SELECT_I4, the same is true (but the relevant operand numbers are
7048   // shifted by 1).
7049   if (Op32.getMachineOpcode() == PPC::OR ||
7050       Op32.getMachineOpcode() == PPC::SELECT_I4) {
7051     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
7052     SmallPtrSet<SDNode *, 16> ToPromote1;
7053     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
7054       return false;
7055     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
7056       return false;
7057 
7058     ToPromote.insert(Op32.getNode());
7059     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7060     return true;
7061   }
7062 
7063   // For ORI and ORIS, we need the higher-order bits of the first operand to be
7064   // zero, and also for the constant to be positive (so that it is not sign
7065   // extended).
7066   if (Op32.getMachineOpcode() == PPC::ORI ||
7067       Op32.getMachineOpcode() == PPC::ORIS) {
7068     SmallPtrSet<SDNode *, 16> ToPromote1;
7069     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7070       return false;
7071     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
7072       return false;
7073 
7074     ToPromote.insert(Op32.getNode());
7075     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7076     return true;
7077   }
7078 
7079   // The higher-order bits of AND are zero if that is true for at least one of
7080   // the operands.
7081   if (Op32.getMachineOpcode() == PPC::AND) {
7082     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
7083     bool Op0OK =
7084       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7085     bool Op1OK =
7086       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
7087     if (!Op0OK && !Op1OK)
7088       return false;
7089 
7090     ToPromote.insert(Op32.getNode());
7091 
7092     if (Op0OK)
7093       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7094 
7095     if (Op1OK)
7096       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
7097 
7098     return true;
7099   }
7100 
7101   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
7102   // of the first operand, or if the second operand is positive (so that it is
7103   // not sign extended).
7104   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
7105       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
7106     SmallPtrSet<SDNode *, 16> ToPromote1;
7107     bool Op0OK =
7108       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7109     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
7110     if (!Op0OK && !Op1OK)
7111       return false;
7112 
7113     ToPromote.insert(Op32.getNode());
7114 
7115     if (Op0OK)
7116       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7117 
7118     return true;
7119   }
7120 
7121   return false;
7122 }
7123 
7124 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7125   if (!Subtarget->isPPC64())
7126     return;
7127 
7128   // When we zero-extend from i32 to i64, we use a pattern like this:
7129   // def : Pat<(i64 (zext i32:$in)),
7130   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7131   //                   0, 32)>;
7132   // There are several 32-bit shift/rotate instructions, however, that will
7133   // clear the higher-order bits of their output, rendering the RLDICL
7134   // unnecessary. When that happens, we remove it here, and redefine the
7135   // relevant 32-bit operation to be a 64-bit operation.
7136 
7137   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7138 
7139   bool MadeChange = false;
7140   while (Position != CurDAG->allnodes_begin()) {
7141     SDNode *N = &*--Position;
7142     // Skip dead nodes and any non-machine opcodes.
7143     if (N->use_empty() || !N->isMachineOpcode())
7144       continue;
7145 
7146     if (N->getMachineOpcode() != PPC::RLDICL)
7147       continue;
7148 
7149     if (N->getConstantOperandVal(1) != 0 ||
7150         N->getConstantOperandVal(2) != 32)
7151       continue;
7152 
7153     SDValue ISR = N->getOperand(0);
7154     if (!ISR.isMachineOpcode() ||
7155         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7156       continue;
7157 
7158     if (!ISR.hasOneUse())
7159       continue;
7160 
7161     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7162       continue;
7163 
7164     SDValue IDef = ISR.getOperand(0);
7165     if (!IDef.isMachineOpcode() ||
7166         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7167       continue;
7168 
7169     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7170     // can get rid of it.
7171 
7172     SDValue Op32 = ISR->getOperand(1);
7173     if (!Op32.isMachineOpcode())
7174       continue;
7175 
7176     // There are some 32-bit instructions that always clear the high-order 32
7177     // bits, there are also some instructions (like AND) that we can look
7178     // through.
7179     SmallPtrSet<SDNode *, 16> ToPromote;
7180     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7181       continue;
7182 
7183     // If the ToPromote set contains nodes that have uses outside of the set
7184     // (except for the original INSERT_SUBREG), then abort the transformation.
7185     bool OutsideUse = false;
7186     for (SDNode *PN : ToPromote) {
7187       for (SDNode *UN : PN->uses()) {
7188         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7189           OutsideUse = true;
7190           break;
7191         }
7192       }
7193 
7194       if (OutsideUse)
7195         break;
7196     }
7197     if (OutsideUse)
7198       continue;
7199 
7200     MadeChange = true;
7201 
7202     // We now know that this zero extension can be removed by promoting to
7203     // nodes in ToPromote to 64-bit operations, where for operations in the
7204     // frontier of the set, we need to insert INSERT_SUBREGs for their
7205     // operands.
7206     for (SDNode *PN : ToPromote) {
7207       unsigned NewOpcode;
7208       switch (PN->getMachineOpcode()) {
7209       default:
7210         llvm_unreachable("Don't know the 64-bit variant of this instruction");
7211       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
7212       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
7213       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
7214       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
7215       case PPC::LI:        NewOpcode = PPC::LI8; break;
7216       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
7217       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
7218       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
7219       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
7220       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
7221       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
7222       case PPC::OR:        NewOpcode = PPC::OR8; break;
7223       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7224       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
7225       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
7226       case PPC::AND:       NewOpcode = PPC::AND8; break;
7227       case PPC::ANDI_rec:
7228         NewOpcode = PPC::ANDI8_rec;
7229         break;
7230       case PPC::ANDIS_rec:
7231         NewOpcode = PPC::ANDIS8_rec;
7232         break;
7233       }
7234 
7235       // Note: During the replacement process, the nodes will be in an
7236       // inconsistent state (some instructions will have operands with values
7237       // of the wrong type). Once done, however, everything should be right
7238       // again.
7239 
7240       SmallVector<SDValue, 4> Ops;
7241       for (const SDValue &V : PN->ops()) {
7242         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7243             !isa<ConstantSDNode>(V)) {
7244           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7245           SDNode *ReplOp =
7246             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7247                                    ISR.getNode()->getVTList(), ReplOpOps);
7248           Ops.push_back(SDValue(ReplOp, 0));
7249         } else {
7250           Ops.push_back(V);
7251         }
7252       }
7253 
7254       // Because all to-be-promoted nodes only have users that are other
7255       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7256       // the i32 result value type with i64.
7257 
7258       SmallVector<EVT, 2> NewVTs;
7259       SDVTList VTs = PN->getVTList();
7260       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7261         if (VTs.VTs[i] == MVT::i32)
7262           NewVTs.push_back(MVT::i64);
7263         else
7264           NewVTs.push_back(VTs.VTs[i]);
7265 
7266       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
7267       LLVM_DEBUG(PN->dump(CurDAG));
7268 
7269       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7270 
7271       LLVM_DEBUG(dbgs() << "\nNew: ");
7272       LLVM_DEBUG(PN->dump(CurDAG));
7273       LLVM_DEBUG(dbgs() << "\n");
7274     }
7275 
7276     // Now we replace the original zero extend and its associated INSERT_SUBREG
7277     // with the value feeding the INSERT_SUBREG (which has now been promoted to
7278     // return an i64).
7279 
7280     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
7281     LLVM_DEBUG(N->dump(CurDAG));
7282     LLVM_DEBUG(dbgs() << "\nNew: ");
7283     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7284     LLVM_DEBUG(dbgs() << "\n");
7285 
7286     ReplaceUses(N, Op32.getNode());
7287   }
7288 
7289   if (MadeChange)
7290     CurDAG->RemoveDeadNodes();
7291 }
7292 
7293 static bool isVSXSwap(SDValue N) {
7294   if (!N->isMachineOpcode())
7295     return false;
7296   unsigned Opc = N->getMachineOpcode();
7297 
7298   // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7299   // operand is 2.
7300   if (Opc == PPC::XXPERMDIs) {
7301     return isa<ConstantSDNode>(N->getOperand(1)) &&
7302            N->getConstantOperandVal(1) == 2;
7303   } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7304     return N->getOperand(0) == N->getOperand(1) &&
7305            isa<ConstantSDNode>(N->getOperand(2)) &&
7306            N->getConstantOperandVal(2) == 2;
7307   }
7308 
7309   return false;
7310 }
7311 
7312 // TODO: Make this complete and replace with a table-gen bit.
7313 static bool isLaneInsensitive(SDValue N) {
7314   if (!N->isMachineOpcode())
7315     return false;
7316   unsigned Opc = N->getMachineOpcode();
7317 
7318   switch (Opc) {
7319   default:
7320     return false;
7321   case PPC::VAVGSB:
7322   case PPC::VAVGUB:
7323   case PPC::VAVGSH:
7324   case PPC::VAVGUH:
7325   case PPC::VAVGSW:
7326   case PPC::VAVGUW:
7327   case PPC::VMAXFP:
7328   case PPC::VMAXSB:
7329   case PPC::VMAXUB:
7330   case PPC::VMAXSH:
7331   case PPC::VMAXUH:
7332   case PPC::VMAXSW:
7333   case PPC::VMAXUW:
7334   case PPC::VMINFP:
7335   case PPC::VMINSB:
7336   case PPC::VMINUB:
7337   case PPC::VMINSH:
7338   case PPC::VMINUH:
7339   case PPC::VMINSW:
7340   case PPC::VMINUW:
7341   case PPC::VADDFP:
7342   case PPC::VADDUBM:
7343   case PPC::VADDUHM:
7344   case PPC::VADDUWM:
7345   case PPC::VSUBFP:
7346   case PPC::VSUBUBM:
7347   case PPC::VSUBUHM:
7348   case PPC::VSUBUWM:
7349   case PPC::VAND:
7350   case PPC::VANDC:
7351   case PPC::VOR:
7352   case PPC::VORC:
7353   case PPC::VXOR:
7354   case PPC::VNOR:
7355   case PPC::VMULUWM:
7356     return true;
7357   }
7358 }
7359 
7360 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7361 // lane-insensitive.
7362 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7363   // Our desired xxswap might be source of COPY_TO_REGCLASS.
7364   // TODO: Can we put this a common method for DAG?
7365   auto SkipRCCopy = [](SDValue V) {
7366     while (V->isMachineOpcode() &&
7367            V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7368       // All values in the chain should have single use.
7369       if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7370         return SDValue();
7371       V = V->getOperand(0);
7372     }
7373     return V.hasOneUse() ? V : SDValue();
7374   };
7375 
7376   SDValue VecOp = SkipRCCopy(N->getOperand(0));
7377   if (!VecOp || !isLaneInsensitive(VecOp))
7378     return;
7379 
7380   SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7381           RHS = SkipRCCopy(VecOp.getOperand(1));
7382   if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7383     return;
7384 
7385   // These swaps may still have chain-uses here, count on dead code elimination
7386   // in following passes to remove them.
7387   DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7388   DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7389   DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7390 }
7391 
7392 void PPCDAGToDAGISel::PeepholePPC64() {
7393   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7394 
7395   while (Position != CurDAG->allnodes_begin()) {
7396     SDNode *N = &*--Position;
7397     // Skip dead nodes and any non-machine opcodes.
7398     if (N->use_empty() || !N->isMachineOpcode())
7399       continue;
7400 
7401     if (isVSXSwap(SDValue(N, 0)))
7402       reduceVSXSwap(N, CurDAG);
7403 
7404     unsigned FirstOp;
7405     unsigned StorageOpcode = N->getMachineOpcode();
7406     bool RequiresMod4Offset = false;
7407 
7408     switch (StorageOpcode) {
7409     default: continue;
7410 
7411     case PPC::LWA:
7412     case PPC::LD:
7413     case PPC::DFLOADf64:
7414     case PPC::DFLOADf32:
7415       RequiresMod4Offset = true;
7416       [[fallthrough]];
7417     case PPC::LBZ:
7418     case PPC::LBZ8:
7419     case PPC::LFD:
7420     case PPC::LFS:
7421     case PPC::LHA:
7422     case PPC::LHA8:
7423     case PPC::LHZ:
7424     case PPC::LHZ8:
7425     case PPC::LWZ:
7426     case PPC::LWZ8:
7427       FirstOp = 0;
7428       break;
7429 
7430     case PPC::STD:
7431     case PPC::DFSTOREf64:
7432     case PPC::DFSTOREf32:
7433       RequiresMod4Offset = true;
7434       [[fallthrough]];
7435     case PPC::STB:
7436     case PPC::STB8:
7437     case PPC::STFD:
7438     case PPC::STFS:
7439     case PPC::STH:
7440     case PPC::STH8:
7441     case PPC::STW:
7442     case PPC::STW8:
7443       FirstOp = 1;
7444       break;
7445     }
7446 
7447     // If this is a load or store with a zero offset, or within the alignment,
7448     // we may be able to fold an add-immediate into the memory operation.
7449     // The check against alignment is below, as it can't occur until we check
7450     // the arguments to N
7451     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7452       continue;
7453 
7454     SDValue Base = N->getOperand(FirstOp + 1);
7455     if (!Base.isMachineOpcode())
7456       continue;
7457 
7458     unsigned Flags = 0;
7459     bool ReplaceFlags = true;
7460 
7461     // When the feeding operation is an add-immediate of some sort,
7462     // determine whether we need to add relocation information to the
7463     // target flags on the immediate operand when we fold it into the
7464     // load instruction.
7465     //
7466     // For something like ADDItocL, the relocation information is
7467     // inferred from the opcode; when we process it in the AsmPrinter,
7468     // we add the necessary relocation there.  A load, though, can receive
7469     // relocation from various flavors of ADDIxxx, so we need to carry
7470     // the relocation information in the target flags.
7471     switch (Base.getMachineOpcode()) {
7472     default: continue;
7473 
7474     case PPC::ADDI8:
7475     case PPC::ADDI:
7476       // In some cases (such as TLS) the relocation information
7477       // is already in place on the operand, so copying the operand
7478       // is sufficient.
7479       ReplaceFlags = false;
7480       // For these cases, the immediate may not be divisible by 4, in
7481       // which case the fold is illegal for DS-form instructions.  (The
7482       // other cases provide aligned addresses and are always safe.)
7483       if (RequiresMod4Offset &&
7484           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
7485            Base.getConstantOperandVal(1) % 4 != 0))
7486         continue;
7487       break;
7488     case PPC::ADDIdtprelL:
7489       Flags = PPCII::MO_DTPREL_LO;
7490       break;
7491     case PPC::ADDItlsldL:
7492       Flags = PPCII::MO_TLSLD_LO;
7493       break;
7494     case PPC::ADDItocL:
7495       Flags = PPCII::MO_TOC_LO;
7496       break;
7497     }
7498 
7499     SDValue ImmOpnd = Base.getOperand(1);
7500 
7501     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7502     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7503     // we might have needed different @ha relocation values for the offset
7504     // pointers).
7505     int MaxDisplacement = 7;
7506     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7507       const GlobalValue *GV = GA->getGlobal();
7508       Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7509       MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7510     }
7511 
7512     bool UpdateHBase = false;
7513     SDValue HBase = Base.getOperand(0);
7514 
7515     int Offset = N->getConstantOperandVal(FirstOp);
7516     if (ReplaceFlags) {
7517       if (Offset < 0 || Offset > MaxDisplacement) {
7518         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7519         // one use, then we can do this for any offset, we just need to also
7520         // update the offset (i.e. the symbol addend) on the addis also.
7521         if (Base.getMachineOpcode() != PPC::ADDItocL)
7522           continue;
7523 
7524         if (!HBase.isMachineOpcode() ||
7525             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7526           continue;
7527 
7528         if (!Base.hasOneUse() || !HBase.hasOneUse())
7529           continue;
7530 
7531         SDValue HImmOpnd = HBase.getOperand(1);
7532         if (HImmOpnd != ImmOpnd)
7533           continue;
7534 
7535         UpdateHBase = true;
7536       }
7537     } else {
7538       // If we're directly folding the addend from an addi instruction, then:
7539       //  1. In general, the offset on the memory access must be zero.
7540       //  2. If the addend is a constant, then it can be combined with a
7541       //     non-zero offset, but only if the result meets the encoding
7542       //     requirements.
7543       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7544         Offset += C->getSExtValue();
7545 
7546         if (RequiresMod4Offset && (Offset % 4) != 0)
7547           continue;
7548 
7549         if (!isInt<16>(Offset))
7550           continue;
7551 
7552         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7553                                             ImmOpnd.getValueType());
7554       } else if (Offset != 0) {
7555         continue;
7556       }
7557     }
7558 
7559     // We found an opportunity.  Reverse the operands from the add
7560     // immediate and substitute them into the load or store.  If
7561     // needed, update the target flags for the immediate operand to
7562     // reflect the necessary relocation information.
7563     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
7564     LLVM_DEBUG(Base->dump(CurDAG));
7565     LLVM_DEBUG(dbgs() << "\nN: ");
7566     LLVM_DEBUG(N->dump(CurDAG));
7567     LLVM_DEBUG(dbgs() << "\n");
7568 
7569     // If the relocation information isn't already present on the
7570     // immediate operand, add it now.
7571     if (ReplaceFlags) {
7572       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7573         SDLoc dl(GA);
7574         const GlobalValue *GV = GA->getGlobal();
7575         Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7576         // We can't perform this optimization for data whose alignment
7577         // is insufficient for the instruction encoding.
7578         if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7579           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7580           continue;
7581         }
7582         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7583       } else if (ConstantPoolSDNode *CP =
7584                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7585         const Constant *C = CP->getConstVal();
7586         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7587                                                 Offset, Flags);
7588       }
7589     }
7590 
7591     if (FirstOp == 1) // Store
7592       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7593                                        Base.getOperand(0), N->getOperand(3));
7594     else // Load
7595       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7596                                        N->getOperand(2));
7597 
7598     if (UpdateHBase)
7599       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7600                                        ImmOpnd);
7601 
7602     // The add-immediate may now be dead, in which case remove it.
7603     if (Base.getNode()->use_empty())
7604       CurDAG->RemoveDeadNode(Base.getNode());
7605   }
7606 }
7607 
7608 /// createPPCISelDag - This pass converts a legalized DAG into a
7609 /// PowerPC-specific DAG, ready for instruction scheduling.
7610 ///
7611 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7612                                      CodeGenOpt::Level OptLevel) {
7613   return new PPCDAGToDAGISel(TM, OptLevel);
7614 }
7615