1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pattern matching instruction selector for PowerPC, 10 // converting from a legalized dag to a PPC dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCISelLowering.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/APSInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/ISDOpcodes.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/SelectionDAGISel.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/CodeGenTypes/MachineValueType.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/IntrinsicsPowerPC.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CodeGen.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <new> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "ppc-isel" 73 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection" 74 75 STATISTIC(NumSextSetcc, 76 "Number of (sext(setcc)) nodes expanded into GPR sequence."); 77 STATISTIC(NumZextSetcc, 78 "Number of (zext(setcc)) nodes expanded into GPR sequence."); 79 STATISTIC(SignExtensionsAdded, 80 "Number of sign extensions for compare inputs added."); 81 STATISTIC(ZeroExtensionsAdded, 82 "Number of zero extensions for compare inputs added."); 83 STATISTIC(NumLogicOpsOnComparison, 84 "Number of logical ops on i1 values calculated in GPR."); 85 STATISTIC(OmittedForNonExtendUses, 86 "Number of compares not eliminated as they have non-extending uses."); 87 STATISTIC(NumP9Setb, 88 "Number of compares lowered to setb."); 89 90 // FIXME: Remove this once the bug has been fixed! 91 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 92 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 93 94 static cl::opt<bool> 95 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 96 cl::desc("use aggressive ppc isel for bit permutations"), 97 cl::Hidden); 98 static cl::opt<bool> BPermRewriterNoMasking( 99 "ppc-bit-perm-rewriter-stress-rotates", 100 cl::desc("stress rotate selection in aggressive ppc isel for " 101 "bit permutations"), 102 cl::Hidden); 103 104 static cl::opt<bool> EnableBranchHint( 105 "ppc-use-branch-hint", cl::init(true), 106 cl::desc("Enable static hinting of branches on ppc"), 107 cl::Hidden); 108 109 static cl::opt<bool> EnableTLSOpt( 110 "ppc-tls-opt", cl::init(true), 111 cl::desc("Enable tls optimization peephole"), 112 cl::Hidden); 113 114 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, 115 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, 116 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; 117 118 static cl::opt<ICmpInGPRType> CmpInGPR( 119 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), 120 cl::desc("Specify the types of comparisons to emit GPR-only code for."), 121 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), 122 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), 123 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), 124 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), 125 clEnumValN(ICGPR_NonExtIn, "nonextin", 126 "Only comparisons where inputs don't need [sz]ext."), 127 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), 128 clEnumValN(ICGPR_ZextI32, "zexti32", 129 "Only i32 comparisons with zext result."), 130 clEnumValN(ICGPR_ZextI64, "zexti64", 131 "Only i64 comparisons with zext result."), 132 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), 133 clEnumValN(ICGPR_SextI32, "sexti32", 134 "Only i32 comparisons with sext result."), 135 clEnumValN(ICGPR_SextI64, "sexti64", 136 "Only i64 comparisons with sext result."))); 137 namespace { 138 139 //===--------------------------------------------------------------------===// 140 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 141 /// instructions for SelectionDAG operations. 142 /// 143 class PPCDAGToDAGISel : public SelectionDAGISel { 144 const PPCTargetMachine &TM; 145 const PPCSubtarget *Subtarget = nullptr; 146 const PPCTargetLowering *PPCLowering = nullptr; 147 unsigned GlobalBaseReg = 0; 148 149 public: 150 PPCDAGToDAGISel() = delete; 151 152 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOptLevel OptLevel) 153 : SelectionDAGISel(tm, OptLevel), TM(tm) {} 154 155 bool runOnMachineFunction(MachineFunction &MF) override { 156 // Make sure we re-emit a set of the global base reg if necessary 157 GlobalBaseReg = 0; 158 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 159 PPCLowering = Subtarget->getTargetLowering(); 160 if (Subtarget->hasROPProtect()) { 161 // Create a place on the stack for the ROP Protection Hash. 162 // The ROP Protection Hash will always be 8 bytes and aligned to 8 163 // bytes. 164 MachineFrameInfo &MFI = MF.getFrameInfo(); 165 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 166 const int Result = MFI.CreateStackObject(8, Align(8), false); 167 FI->setROPProtectionHashSaveIndex(Result); 168 } 169 SelectionDAGISel::runOnMachineFunction(MF); 170 171 return true; 172 } 173 174 void PreprocessISelDAG() override; 175 void PostprocessISelDAG() override; 176 177 /// getI16Imm - Return a target constant with the specified value, of type 178 /// i16. 179 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { 180 return CurDAG->getTargetConstant(Imm, dl, MVT::i16); 181 } 182 183 /// getI32Imm - Return a target constant with the specified value, of type 184 /// i32. 185 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 186 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 187 } 188 189 /// getI64Imm - Return a target constant with the specified value, of type 190 /// i64. 191 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 192 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 193 } 194 195 /// getSmallIPtrImm - Return a target constant of pointer type. 196 inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) { 197 return CurDAG->getTargetConstant( 198 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 199 } 200 201 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 202 /// rotate and mask opcode and mask operation. 203 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 204 unsigned &SH, unsigned &MB, unsigned &ME); 205 206 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 207 /// base register. Return the virtual register that holds this value. 208 SDNode *getGlobalBaseReg(); 209 210 void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0); 211 212 // Select - Convert the specified operand from a target-independent to a 213 // target-specific node if it hasn't already been changed. 214 void Select(SDNode *N) override; 215 216 bool tryBitfieldInsert(SDNode *N); 217 bool tryBitPermutation(SDNode *N); 218 bool tryIntCompareInGPR(SDNode *N); 219 220 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into 221 // an X-Form load instruction with the offset being a relocation coming from 222 // the PPCISD::ADD_TLS. 223 bool tryTLSXFormLoad(LoadSDNode *N); 224 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into 225 // an X-Form store instruction with the offset being a relocation coming from 226 // the PPCISD::ADD_TLS. 227 bool tryTLSXFormStore(StoreSDNode *N); 228 /// SelectCC - Select a comparison of the specified values with the 229 /// specified condition code, returning the CR# of the expression. 230 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 231 const SDLoc &dl, SDValue Chain = SDValue()); 232 233 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 234 /// immediate field. Note that the operand at this point is already the 235 /// result of a prior SelectAddressRegImm call. 236 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 237 if (N.getOpcode() == ISD::TargetConstant || 238 N.getOpcode() == ISD::TargetGlobalAddress) { 239 Out = N; 240 return true; 241 } 242 243 return false; 244 } 245 246 /// SelectDSForm - Returns true if address N can be represented by the 247 /// addressing mode of DSForm instructions (a base register, plus a signed 248 /// 16-bit displacement that is a multiple of 4. 249 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 250 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 251 Align(4)) == PPC::AM_DSForm; 252 } 253 254 /// SelectDQForm - Returns true if address N can be represented by the 255 /// addressing mode of DQForm instructions (a base register, plus a signed 256 /// 16-bit displacement that is a multiple of 16. 257 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 258 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 259 Align(16)) == PPC::AM_DQForm; 260 } 261 262 /// SelectDForm - Returns true if address N can be represented by 263 /// the addressing mode of DForm instructions (a base register, plus a 264 /// signed 16-bit immediate. 265 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 266 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 267 std::nullopt) == PPC::AM_DForm; 268 } 269 270 /// SelectPCRelForm - Returns true if address N can be represented by 271 /// PC-Relative addressing mode. 272 bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp, 273 SDValue &Base) { 274 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 275 std::nullopt) == PPC::AM_PCRel; 276 } 277 278 /// SelectPDForm - Returns true if address N can be represented by Prefixed 279 /// DForm addressing mode (a base register, plus a signed 34-bit immediate. 280 bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 281 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 282 std::nullopt) == 283 PPC::AM_PrefixDForm; 284 } 285 286 /// SelectXForm - Returns true if address N can be represented by the 287 /// addressing mode of XForm instructions (an indexed [r+r] operation). 288 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 289 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 290 std::nullopt) == PPC::AM_XForm; 291 } 292 293 /// SelectForceXForm - Given the specified address, force it to be 294 /// represented as an indexed [r+r] operation (an XForm instruction). 295 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp, 296 SDValue &Base) { 297 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) == 298 PPC::AM_XForm; 299 } 300 301 /// SelectAddrIdx - Given the specified address, check to see if it can be 302 /// represented as an indexed [r+r] operation. 303 /// This is for xform instructions whose associated displacement form is D. 304 /// The last parameter \p 0 means associated D form has no requirment for 16 305 /// bit signed displacement. 306 /// Returns false if it can be represented by [r+imm], which are preferred. 307 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 308 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 309 std::nullopt); 310 } 311 312 /// SelectAddrIdx4 - Given the specified address, check to see if it can be 313 /// represented as an indexed [r+r] operation. 314 /// This is for xform instructions whose associated displacement form is DS. 315 /// The last parameter \p 4 means associated DS form 16 bit signed 316 /// displacement must be a multiple of 4. 317 /// Returns false if it can be represented by [r+imm], which are preferred. 318 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { 319 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 320 Align(4)); 321 } 322 323 /// SelectAddrIdx16 - Given the specified address, check to see if it can be 324 /// represented as an indexed [r+r] operation. 325 /// This is for xform instructions whose associated displacement form is DQ. 326 /// The last parameter \p 16 means associated DQ form 16 bit signed 327 /// displacement must be a multiple of 16. 328 /// Returns false if it can be represented by [r+imm], which are preferred. 329 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { 330 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 331 Align(16)); 332 } 333 334 /// SelectAddrIdxOnly - Given the specified address, force it to be 335 /// represented as an indexed [r+r] operation. 336 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 337 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 338 } 339 340 /// SelectAddrImm - Returns true if the address N can be represented by 341 /// a base register plus a signed 16-bit displacement [r+imm]. 342 /// The last parameter \p 0 means D form has no requirment for 16 bit signed 343 /// displacement. 344 bool SelectAddrImm(SDValue N, SDValue &Disp, 345 SDValue &Base) { 346 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 347 std::nullopt); 348 } 349 350 /// SelectAddrImmX4 - Returns true if the address N can be represented by 351 /// a base register plus a signed 16-bit displacement that is a multiple of 352 /// 4 (last parameter). Suitable for use by STD and friends. 353 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 354 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); 355 } 356 357 /// SelectAddrImmX16 - Returns true if the address N can be represented by 358 /// a base register plus a signed 16-bit displacement that is a multiple of 359 /// 16(last parameter). Suitable for use by STXV and friends. 360 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { 361 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 362 Align(16)); 363 } 364 365 /// SelectAddrImmX34 - Returns true if the address N can be represented by 366 /// a base register plus a signed 34-bit displacement. Suitable for use by 367 /// PSTXVP and friends. 368 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) { 369 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG); 370 } 371 372 // Select an address into a single register. 373 bool SelectAddr(SDValue N, SDValue &Base) { 374 Base = N; 375 return true; 376 } 377 378 bool SelectAddrPCRel(SDValue N, SDValue &Base) { 379 return PPCLowering->SelectAddressPCRel(N, Base); 380 } 381 382 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 383 /// inline asm expressions. It is always correct to compute the value into 384 /// a register. The case of adding a (possibly relocatable) constant to a 385 /// register can be improved, but it is wrong to substitute Reg+Reg for 386 /// Reg in an asm, because the load or store opcode would have to change. 387 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 388 InlineAsm::ConstraintCode ConstraintID, 389 std::vector<SDValue> &OutOps) override { 390 switch(ConstraintID) { 391 default: 392 errs() << "ConstraintID: " 393 << InlineAsm::getMemConstraintName(ConstraintID) << "\n"; 394 llvm_unreachable("Unexpected asm memory constraint"); 395 case InlineAsm::ConstraintCode::es: 396 case InlineAsm::ConstraintCode::m: 397 case InlineAsm::ConstraintCode::o: 398 case InlineAsm::ConstraintCode::Q: 399 case InlineAsm::ConstraintCode::Z: 400 case InlineAsm::ConstraintCode::Zy: 401 // We need to make sure that this one operand does not end up in r0 402 // (because we might end up lowering this as 0(%op)). 403 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 404 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 405 SDLoc dl(Op); 406 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 407 SDValue NewOp = 408 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 409 dl, Op.getValueType(), 410 Op, RC), 0); 411 412 OutOps.push_back(NewOp); 413 return false; 414 } 415 return true; 416 } 417 418 // Include the pieces autogenerated from the target description. 419 #include "PPCGenDAGISel.inc" 420 421 private: 422 bool trySETCC(SDNode *N); 423 bool tryFoldSWTestBRCC(SDNode *N); 424 bool trySelectLoopCountIntrinsic(SDNode *N); 425 bool tryAsSingleRLDICL(SDNode *N); 426 bool tryAsSingleRLDCL(SDNode *N); 427 bool tryAsSingleRLDICR(SDNode *N); 428 bool tryAsSingleRLWINM(SDNode *N); 429 bool tryAsSingleRLWINM8(SDNode *N); 430 bool tryAsSingleRLWIMI(SDNode *N); 431 bool tryAsPairOfRLDICL(SDNode *N); 432 bool tryAsSingleRLDIMI(SDNode *N); 433 434 void PeepholePPC64(); 435 void PeepholePPC64ZExt(); 436 void PeepholeCROps(); 437 438 SDValue combineToCMPB(SDNode *N); 439 void foldBoolExts(SDValue &Res, SDNode *&N); 440 441 bool AllUsersSelectZero(SDNode *N); 442 void SwapAllSelectUsers(SDNode *N); 443 444 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; 445 void transferMemOperands(SDNode *N, SDNode *Result); 446 }; 447 448 class PPCDAGToDAGISelLegacy : public SelectionDAGISelLegacy { 449 public: 450 static char ID; 451 explicit PPCDAGToDAGISelLegacy(PPCTargetMachine &tm, 452 CodeGenOptLevel OptLevel) 453 : SelectionDAGISelLegacy( 454 ID, std::make_unique<PPCDAGToDAGISel>(tm, OptLevel)) {} 455 }; 456 } // end anonymous namespace 457 458 char PPCDAGToDAGISelLegacy::ID = 0; 459 460 INITIALIZE_PASS(PPCDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) 461 462 /// getGlobalBaseReg - Output the instructions required to put the 463 /// base address to use for accessing globals into a register. 464 /// 465 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 466 if (!GlobalBaseReg) { 467 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 468 // Insert the set of GlobalBaseReg into the first MBB of the function 469 MachineBasicBlock &FirstMBB = MF->front(); 470 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 471 const Module *M = MF->getFunction().getParent(); 472 DebugLoc dl; 473 474 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 475 if (Subtarget->isTargetELF()) { 476 GlobalBaseReg = PPC::R30; 477 if (!Subtarget->isSecurePlt() && 478 M->getPICLevel() == PICLevel::SmallPIC) { 479 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 480 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 481 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 482 } else { 483 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 484 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 485 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 486 BuildMI(FirstMBB, MBBI, dl, 487 TII.get(PPC::UpdateGBR), GlobalBaseReg) 488 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 489 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 490 } 491 } else { 492 GlobalBaseReg = 493 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); 494 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 495 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 496 } 497 } else { 498 // We must ensure that this sequence is dominated by the prologue. 499 // FIXME: This is a bit of a big hammer since we don't get the benefits 500 // of shrink-wrapping whenever we emit this instruction. Considering 501 // this is used in any function where we emit a jump table, this may be 502 // a significant limitation. We should consider inserting this in the 503 // block where it is used and then commoning this sequence up if it 504 // appears in multiple places. 505 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of 506 // MovePCtoLR8. 507 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); 508 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 509 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 510 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 511 } 512 } 513 return CurDAG->getRegister(GlobalBaseReg, 514 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 515 .getNode(); 516 } 517 518 // Check if a SDValue has the toc-data attribute. 519 static bool hasTocDataAttr(SDValue Val) { 520 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val); 521 if (!GA) 522 return false; 523 524 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal()); 525 if (!GV) 526 return false; 527 528 if (!GV->hasAttribute("toc-data")) 529 return false; 530 return true; 531 } 532 533 static CodeModel::Model getCodeModel(const PPCSubtarget &Subtarget, 534 const TargetMachine &TM, 535 const SDNode *Node) { 536 // If there isn't an attribute to override the module code model 537 // this will be the effective code model. 538 CodeModel::Model ModuleModel = TM.getCodeModel(); 539 540 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Node->getOperand(0)); 541 if (!GA) 542 return ModuleModel; 543 544 const GlobalValue *GV = GA->getGlobal(); 545 if (!GV) 546 return ModuleModel; 547 548 return Subtarget.getCodeModel(TM, GV); 549 } 550 551 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 552 /// operand. If so Imm will receive the 32-bit value. 553 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 554 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 555 Imm = N->getAsZExtVal(); 556 return true; 557 } 558 return false; 559 } 560 561 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 562 /// operand. If so Imm will receive the 64-bit value. 563 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 564 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 565 Imm = N->getAsZExtVal(); 566 return true; 567 } 568 return false; 569 } 570 571 // isInt32Immediate - This method tests to see if a constant operand. 572 // If so Imm will receive the 32 bit value. 573 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 574 return isInt32Immediate(N.getNode(), Imm); 575 } 576 577 /// isInt64Immediate - This method tests to see if the value is a 64-bit 578 /// constant operand. If so Imm will receive the 64-bit value. 579 static bool isInt64Immediate(SDValue N, uint64_t &Imm) { 580 return isInt64Immediate(N.getNode(), Imm); 581 } 582 583 static unsigned getBranchHint(unsigned PCC, 584 const FunctionLoweringInfo &FuncInfo, 585 const SDValue &DestMBB) { 586 assert(isa<BasicBlockSDNode>(DestMBB)); 587 588 if (!FuncInfo.BPI) return PPC::BR_NO_HINT; 589 590 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); 591 const Instruction *BBTerm = BB->getTerminator(); 592 593 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 594 595 const BasicBlock *TBB = BBTerm->getSuccessor(0); 596 const BasicBlock *FBB = BBTerm->getSuccessor(1); 597 598 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); 599 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); 600 601 // We only want to handle cases which are easy to predict at static time, e.g. 602 // C++ throw statement, that is very likely not taken, or calling never 603 // returned function, e.g. stdlib exit(). So we set Threshold to filter 604 // unwanted cases. 605 // 606 // Below is LLVM branch weight table, we only want to handle case 1, 2 607 // 608 // Case Taken:Nontaken Example 609 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 610 // 2. Invoke-terminating 1:1048575 611 // 3. Coldblock 4:64 __builtin_expect 612 // 4. Loop Branch 124:4 For loop 613 // 5. PH/ZH/FPH 20:12 614 const uint32_t Threshold = 10000; 615 616 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 617 return PPC::BR_NO_HINT; 618 619 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() 620 << "::" << BB->getName() << "'\n" 621 << " -> " << TBB->getName() << ": " << TProb << "\n" 622 << " -> " << FBB->getName() << ": " << FProb << "\n"); 623 624 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 625 626 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 627 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 628 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 629 std::swap(TProb, FProb); 630 631 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 632 } 633 634 // isOpcWithIntImmediate - This method tests to see if the node is a specific 635 // opcode and that it has a immediate integer right operand. 636 // If so Imm will receive the 32 bit value. 637 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 638 return N->getOpcode() == Opc 639 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 640 } 641 642 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) { 643 SDLoc dl(SN); 644 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 645 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 646 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 647 if (SN->hasOneUse()) 648 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 649 getSmallIPtrImm(Offset, dl)); 650 else 651 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 652 getSmallIPtrImm(Offset, dl))); 653 } 654 655 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 656 bool isShiftMask, unsigned &SH, 657 unsigned &MB, unsigned &ME) { 658 // Don't even go down this path for i64, since different logic will be 659 // necessary for rldicl/rldicr/rldimi. 660 if (N->getValueType(0) != MVT::i32) 661 return false; 662 663 unsigned Shift = 32; 664 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 665 unsigned Opcode = N->getOpcode(); 666 if (N->getNumOperands() != 2 || 667 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 668 return false; 669 670 if (Opcode == ISD::SHL) { 671 // apply shift left to mask if it comes first 672 if (isShiftMask) Mask = Mask << Shift; 673 // determine which bits are made indeterminant by shift 674 Indeterminant = ~(0xFFFFFFFFu << Shift); 675 } else if (Opcode == ISD::SRL) { 676 // apply shift right to mask if it comes first 677 if (isShiftMask) Mask = Mask >> Shift; 678 // determine which bits are made indeterminant by shift 679 Indeterminant = ~(0xFFFFFFFFu >> Shift); 680 // adjust for the left rotate 681 Shift = 32 - Shift; 682 } else if (Opcode == ISD::ROTL) { 683 Indeterminant = 0; 684 } else { 685 return false; 686 } 687 688 // if the mask doesn't intersect any Indeterminant bits 689 if (Mask && !(Mask & Indeterminant)) { 690 SH = Shift & 31; 691 // make sure the mask is still a mask (wrap arounds may not be) 692 return isRunOfOnes(Mask, MB, ME); 693 } 694 return false; 695 } 696 697 // isThreadPointerAcquisitionNode - Check if the operands of an ADD_TLS 698 // instruction use the thread pointer. 699 static bool isThreadPointerAcquisitionNode(SDValue Base, SelectionDAG *CurDAG) { 700 assert( 701 Base.getOpcode() == PPCISD::ADD_TLS && 702 "Only expecting the ADD_TLS instruction to acquire the thread pointer!"); 703 const PPCSubtarget &Subtarget = 704 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 705 SDValue ADDTLSOp1 = Base.getOperand(0); 706 unsigned ADDTLSOp1Opcode = ADDTLSOp1.getOpcode(); 707 708 // Account for when ADD_TLS is used for the initial-exec TLS model on Linux. 709 // 710 // Although ADD_TLS does not explicitly use the thread pointer 711 // register when LD_GOT_TPREL_L is one of it's operands, the LD_GOT_TPREL_L 712 // instruction will have a relocation specifier, @got@tprel, that is used to 713 // generate a GOT entry. The linker replaces this entry with an offset for a 714 // for a thread local variable, which will be relative to the thread pointer. 715 if (ADDTLSOp1Opcode == PPCISD::LD_GOT_TPREL_L) 716 return true; 717 // When using PC-Relative instructions for initial-exec, a MAT_PCREL_ADDR 718 // node is produced instead to represent the aforementioned situation. 719 LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSOp1); 720 if (LD && LD->getBasePtr().getOpcode() == PPCISD::MAT_PCREL_ADDR) 721 return true; 722 723 // A GET_TPOINTER PPCISD node (only produced on AIX 32-bit mode) as an operand 724 // to ADD_TLS represents a call to .__get_tpointer to get the thread pointer, 725 // later returning it into R3. 726 if (ADDTLSOp1Opcode == PPCISD::GET_TPOINTER) 727 return true; 728 729 // The ADD_TLS note is explicitly acquiring the thread pointer (X13/R13). 730 RegisterSDNode *AddFirstOpReg = 731 dyn_cast_or_null<RegisterSDNode>(ADDTLSOp1.getNode()); 732 if (AddFirstOpReg && 733 AddFirstOpReg->getReg() == Subtarget.getThreadPointerRegister()) 734 return true; 735 736 return false; 737 } 738 739 // canOptimizeTLSDFormToXForm - Optimize TLS accesses when an ADD_TLS 740 // instruction is present. An ADD_TLS instruction, followed by a D-Form memory 741 // operation, can be optimized to use an X-Form load or store, allowing the 742 // ADD_TLS node to be removed completely. 743 static bool canOptimizeTLSDFormToXForm(SelectionDAG *CurDAG, SDValue Base) { 744 745 // Do not do this transformation at -O0. 746 if (CurDAG->getTarget().getOptLevel() == CodeGenOptLevel::None) 747 return false; 748 749 // In order to perform this optimization inside tryTLSXForm[Load|Store], 750 // Base is expected to be an ADD_TLS node. 751 if (Base.getOpcode() != PPCISD::ADD_TLS) 752 return false; 753 for (auto *ADDTLSUse : Base.getNode()->uses()) { 754 // The optimization to convert the D-Form load/store into its X-Form 755 // counterpart should only occur if the source value offset of the load/ 756 // store is 0. This also means that The offset should always be undefined. 757 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSUse)) { 758 if (LD->getSrcValueOffset() != 0 || !LD->getOffset().isUndef()) 759 return false; 760 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(ADDTLSUse)) { 761 if (ST->getSrcValueOffset() != 0 || !ST->getOffset().isUndef()) 762 return false; 763 } else // Don't optimize if there are ADD_TLS users that aren't load/stores. 764 return false; 765 } 766 767 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) 768 return false; 769 770 // Does the ADD_TLS node of the load/store use the thread pointer? 771 // If the thread pointer is not used as one of the operands of ADD_TLS, 772 // then this optimization is not valid. 773 return isThreadPointerAcquisitionNode(Base, CurDAG); 774 } 775 776 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { 777 SDValue Base = ST->getBasePtr(); 778 if (!canOptimizeTLSDFormToXForm(CurDAG, Base)) 779 return false; 780 781 SDLoc dl(ST); 782 EVT MemVT = ST->getMemoryVT(); 783 EVT RegVT = ST->getValue().getValueType(); 784 785 unsigned Opcode; 786 switch (MemVT.getSimpleVT().SimpleTy) { 787 default: 788 return false; 789 case MVT::i8: { 790 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; 791 break; 792 } 793 case MVT::i16: { 794 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; 795 break; 796 } 797 case MVT::i32: { 798 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; 799 break; 800 } 801 case MVT::i64: { 802 Opcode = PPC::STDXTLS; 803 break; 804 } 805 case MVT::f32: { 806 Opcode = PPC::STFSXTLS; 807 break; 808 } 809 case MVT::f64: { 810 Opcode = PPC::STFDXTLS; 811 break; 812 } 813 } 814 SDValue Chain = ST->getChain(); 815 SDVTList VTs = ST->getVTList(); 816 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), 817 Chain}; 818 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 819 transferMemOperands(ST, MN); 820 ReplaceNode(ST, MN); 821 return true; 822 } 823 824 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { 825 SDValue Base = LD->getBasePtr(); 826 if (!canOptimizeTLSDFormToXForm(CurDAG, Base)) 827 return false; 828 829 SDLoc dl(LD); 830 EVT MemVT = LD->getMemoryVT(); 831 EVT RegVT = LD->getValueType(0); 832 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 833 unsigned Opcode; 834 switch (MemVT.getSimpleVT().SimpleTy) { 835 default: 836 return false; 837 case MVT::i8: { 838 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; 839 break; 840 } 841 case MVT::i16: { 842 if (RegVT == MVT::i32) 843 Opcode = isSExt ? PPC::LHAXTLS_32 : PPC::LHZXTLS_32; 844 else 845 Opcode = isSExt ? PPC::LHAXTLS : PPC::LHZXTLS; 846 break; 847 } 848 case MVT::i32: { 849 if (RegVT == MVT::i32) 850 Opcode = isSExt ? PPC::LWAXTLS_32 : PPC::LWZXTLS_32; 851 else 852 Opcode = isSExt ? PPC::LWAXTLS : PPC::LWZXTLS; 853 break; 854 } 855 case MVT::i64: { 856 Opcode = PPC::LDXTLS; 857 break; 858 } 859 case MVT::f32: { 860 Opcode = PPC::LFSXTLS; 861 break; 862 } 863 case MVT::f64: { 864 Opcode = PPC::LFDXTLS; 865 break; 866 } 867 } 868 SDValue Chain = LD->getChain(); 869 SDVTList VTs = LD->getVTList(); 870 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; 871 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 872 transferMemOperands(LD, MN); 873 ReplaceNode(LD, MN); 874 return true; 875 } 876 877 /// Turn an or of two masked values into the rotate left word immediate then 878 /// mask insert (rlwimi) instruction. 879 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 880 SDValue Op0 = N->getOperand(0); 881 SDValue Op1 = N->getOperand(1); 882 SDLoc dl(N); 883 884 KnownBits LKnown = CurDAG->computeKnownBits(Op0); 885 KnownBits RKnown = CurDAG->computeKnownBits(Op1); 886 887 unsigned TargetMask = LKnown.Zero.getZExtValue(); 888 unsigned InsertMask = RKnown.Zero.getZExtValue(); 889 890 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 891 unsigned Op0Opc = Op0.getOpcode(); 892 unsigned Op1Opc = Op1.getOpcode(); 893 unsigned Value, SH = 0; 894 TargetMask = ~TargetMask; 895 InsertMask = ~InsertMask; 896 897 // If the LHS has a foldable shift and the RHS does not, then swap it to the 898 // RHS so that we can fold the shift into the insert. 899 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 900 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 901 Op0.getOperand(0).getOpcode() == ISD::SRL) { 902 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 903 Op1.getOperand(0).getOpcode() != ISD::SRL) { 904 std::swap(Op0, Op1); 905 std::swap(Op0Opc, Op1Opc); 906 std::swap(TargetMask, InsertMask); 907 } 908 } 909 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 910 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 911 Op1.getOperand(0).getOpcode() != ISD::SRL) { 912 std::swap(Op0, Op1); 913 std::swap(Op0Opc, Op1Opc); 914 std::swap(TargetMask, InsertMask); 915 } 916 } 917 918 unsigned MB, ME; 919 if (isRunOfOnes(InsertMask, MB, ME)) { 920 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 921 isInt32Immediate(Op1.getOperand(1), Value)) { 922 Op1 = Op1.getOperand(0); 923 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 924 } 925 if (Op1Opc == ISD::AND) { 926 // The AND mask might not be a constant, and we need to make sure that 927 // if we're going to fold the masking with the insert, all bits not 928 // know to be zero in the mask are known to be one. 929 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); 930 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); 931 932 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 933 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 934 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 935 // Note that Value must be in range here (less than 32) because 936 // otherwise there would not be any bits set in InsertMask. 937 Op1 = Op1.getOperand(0).getOperand(0); 938 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 939 } 940 } 941 942 SH &= 31; 943 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 944 getI32Imm(ME, dl) }; 945 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 946 return true; 947 } 948 } 949 return false; 950 } 951 952 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { 953 unsigned MaxTruncation = 0; 954 // Cannot use range-based for loop here as we need the actual use (i.e. we 955 // need the operand number corresponding to the use). A range-based for 956 // will unbox the use and provide an SDNode*. 957 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); 958 Use != UseEnd; ++Use) { 959 unsigned Opc = 960 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); 961 switch (Opc) { 962 default: return 0; 963 case ISD::TRUNCATE: 964 if (Use->isMachineOpcode()) 965 return 0; 966 MaxTruncation = 967 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); 968 continue; 969 case ISD::STORE: { 970 if (Use->isMachineOpcode()) 971 return 0; 972 StoreSDNode *STN = cast<StoreSDNode>(*Use); 973 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); 974 if (MemVTSize == 64 || Use.getOperandNo() != 0) 975 return 0; 976 MaxTruncation = std::max(MaxTruncation, MemVTSize); 977 continue; 978 } 979 case PPC::STW8: 980 case PPC::STWX8: 981 case PPC::STWU8: 982 case PPC::STWUX8: 983 if (Use.getOperandNo() != 0) 984 return 0; 985 MaxTruncation = std::max(MaxTruncation, 32u); 986 continue; 987 case PPC::STH8: 988 case PPC::STHX8: 989 case PPC::STHU8: 990 case PPC::STHUX8: 991 if (Use.getOperandNo() != 0) 992 return 0; 993 MaxTruncation = std::max(MaxTruncation, 16u); 994 continue; 995 case PPC::STB8: 996 case PPC::STBX8: 997 case PPC::STBU8: 998 case PPC::STBUX8: 999 if (Use.getOperandNo() != 0) 1000 return 0; 1001 MaxTruncation = std::max(MaxTruncation, 8u); 1002 continue; 1003 } 1004 } 1005 return MaxTruncation; 1006 } 1007 1008 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive 1009 // zeros and return the number of bits by the left of these consecutive zeros. 1010 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) { 1011 unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm)); 1012 unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm)); 1013 if ((HiTZ + LoLZ) >= Num) 1014 return (32 + HiTZ); 1015 return 0; 1016 } 1017 1018 // Direct materialization of 64-bit constants by enumerated patterns. 1019 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, 1020 uint64_t Imm, unsigned &InstCnt) { 1021 unsigned TZ = llvm::countr_zero<uint64_t>(Imm); 1022 unsigned LZ = llvm::countl_zero<uint64_t>(Imm); 1023 unsigned TO = llvm::countr_one<uint64_t>(Imm); 1024 unsigned LO = llvm::countl_one<uint64_t>(Imm); 1025 unsigned Hi32 = Hi_32(Imm); 1026 unsigned Lo32 = Lo_32(Imm); 1027 SDNode *Result = nullptr; 1028 unsigned Shift = 0; 1029 1030 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1031 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1032 }; 1033 1034 // Following patterns use 1 instructions to materialize the Imm. 1035 InstCnt = 1; 1036 // 1-1) Patterns : {zeros}{15-bit valve} 1037 // {ones}{15-bit valve} 1038 if (isInt<16>(Imm)) { 1039 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1040 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1041 } 1042 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros} 1043 // {ones}{15-bit valve}{16 zeros} 1044 if (TZ > 15 && (LZ > 32 || LO > 32)) 1045 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1046 getI32Imm((Imm >> 16) & 0xffff)); 1047 1048 // Following patterns use 2 instructions to materialize the Imm. 1049 InstCnt = 2; 1050 assert(LZ < 64 && "Unexpected leading zeros here."); 1051 // Count of ones follwing the leading zeros. 1052 unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ); 1053 // 2-1) Patterns : {zeros}{31-bit value} 1054 // {ones}{31-bit value} 1055 if (isInt<32>(Imm)) { 1056 uint64_t ImmHi16 = (Imm >> 16) & 0xffff; 1057 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1058 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1059 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1060 getI32Imm(Imm & 0xffff)); 1061 } 1062 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros} 1063 // {zeros}{15-bit value}{zeros} 1064 // {zeros}{ones}{15-bit value} 1065 // {ones}{15-bit value}{zeros} 1066 // We can take advantage of LI's sign-extension semantics to generate leading 1067 // ones, and then use RLDIC to mask off the ones in both sides after rotation. 1068 if ((LZ + FO + TZ) > 48) { 1069 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1070 getI32Imm((Imm >> TZ) & 0xffff)); 1071 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1072 getI32Imm(TZ), getI32Imm(LZ)); 1073 } 1074 // 2-3) Pattern : {zeros}{15-bit value}{ones} 1075 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value, 1076 // therefore we can take advantage of LI's sign-extension semantics, and then 1077 // mask them off after rotation. 1078 // 1079 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+ 1080 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1081 // +------------------------+ +------------------------+ 1082 // 63 0 63 0 1083 // Imm (Imm >> (48 - LZ) & 0xffff) 1084 // +----sext-----|--16-bit--+ +clear-|-----------------+ 1085 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1086 // +------------------------+ +------------------------+ 1087 // 63 0 63 0 1088 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ 1089 if ((LZ + TO) > 48) { 1090 // Since the immediates with (LZ > 32) have been handled by previous 1091 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1092 // the Imm by a negative value. 1093 assert(LZ <= 32 && "Unexpected shift value."); 1094 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1095 getI32Imm((Imm >> (48 - LZ) & 0xffff))); 1096 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1097 getI32Imm(48 - LZ), getI32Imm(LZ)); 1098 } 1099 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones} 1100 // {ones}{15-bit value}{ones} 1101 // We can take advantage of LI's sign-extension semantics to generate leading 1102 // ones, and then use RLDICL to mask off the ones in left sides (if required) 1103 // after rotation. 1104 // 1105 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+ 1106 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb| 1107 // +------------------------+ +------------------------+ 1108 // 63 0 63 0 1109 // Imm (Imm >> TO) & 0xffff 1110 // +----sext-----|--16-bit--+ +LZ|---------------------+ 1111 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111| 1112 // +------------------------+ +------------------------+ 1113 // 63 0 63 0 1114 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ 1115 if ((LZ + FO + TO) > 48) { 1116 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1117 getI32Imm((Imm >> TO) & 0xffff)); 1118 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1119 getI32Imm(TO), getI32Imm(LZ)); 1120 } 1121 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value} 1122 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit 1123 // value, we can use LI for Lo16 without generating leading ones then add the 1124 // Hi16(in Lo32). 1125 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) { 1126 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1127 getI32Imm(Lo32 & 0xffff)); 1128 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), 1129 getI32Imm(Lo32 >> 16)); 1130 } 1131 // 2-6) Patterns : {******}{49 zeros}{******} 1132 // {******}{49 ones}{******} 1133 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15 1134 // bits remain on both sides. Rotate right the Imm to construct an int<16> 1135 // value, use LI for int<16> value and then use RLDICL without mask to rotate 1136 // it back. 1137 // 1138 // 1) findContiguousZerosAtLeast(Imm, 49) 1139 // +------|--zeros-|------+ +---ones--||---15 bit--+ 1140 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb| 1141 // +----------------------+ +----------------------+ 1142 // 63 0 63 0 1143 // 1144 // 2) findContiguousZerosAtLeast(~Imm, 49) 1145 // +------|--ones--|------+ +---ones--||---15 bit--+ 1146 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1147 // +----------------------+ +----------------------+ 1148 // 63 0 63 0 1149 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) || 1150 (Shift = findContiguousZerosAtLeast(~Imm, 49))) { 1151 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1152 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1153 getI32Imm(RotImm & 0xffff)); 1154 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1155 getI32Imm(Shift), getI32Imm(0)); 1156 } 1157 // 2-7) Patterns : High word == Low word 1158 // This may require 2 to 3 instructions, depending on whether Lo32 can be 1159 // materialized in 1 instruction. 1160 if (Hi32 == Lo32) { 1161 // Handle the first 32 bits. 1162 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff; 1163 uint64_t ImmLo16 = Lo32 & 0xffff; 1164 if (isInt<16>(Lo32)) 1165 Result = 1166 CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(ImmLo16)); 1167 else if (!ImmLo16) 1168 Result = 1169 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16)); 1170 else { 1171 InstCnt = 3; 1172 Result = 1173 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16)); 1174 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 1175 SDValue(Result, 0), getI32Imm(ImmLo16)); 1176 } 1177 // Use rldimi to insert the Low word into High word. 1178 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1179 getI32Imm(0)}; 1180 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1181 } 1182 1183 // Following patterns use 3 instructions to materialize the Imm. 1184 InstCnt = 3; 1185 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros} 1186 // {zeros}{31-bit value}{zeros} 1187 // {zeros}{ones}{31-bit value} 1188 // {ones}{31-bit value}{zeros} 1189 // We can take advantage of LIS's sign-extension semantics to generate leading 1190 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the 1191 // ones in both sides after rotation. 1192 if ((LZ + FO + TZ) > 32) { 1193 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff; 1194 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1195 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1196 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1197 getI32Imm((Imm >> TZ) & 0xffff)); 1198 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1199 getI32Imm(TZ), getI32Imm(LZ)); 1200 } 1201 // 3-2) Pattern : {zeros}{31-bit value}{ones} 1202 // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits 1203 // value, therefore we can take advantage of LIS's sign-extension semantics, 1204 // add the remaining bits with ORI, and then mask them off after rotation. 1205 // This is similar to Pattern 2-3, please refer to the diagram there. 1206 if ((LZ + TO) > 32) { 1207 // Since the immediates with (LZ > 32) have been handled by previous 1208 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1209 // the Imm by a negative value. 1210 assert(LZ <= 32 && "Unexpected shift value."); 1211 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1212 getI32Imm((Imm >> (48 - LZ)) & 0xffff)); 1213 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1214 getI32Imm((Imm >> (32 - LZ)) & 0xffff)); 1215 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1216 getI32Imm(32 - LZ), getI32Imm(LZ)); 1217 } 1218 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones} 1219 // {ones}{31-bit value}{ones} 1220 // We can take advantage of LIS's sign-extension semantics to generate leading 1221 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the 1222 // ones in left sides (if required) after rotation. 1223 // This is similar to Pattern 2-4, please refer to the diagram there. 1224 if ((LZ + FO + TO) > 32) { 1225 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1226 getI32Imm((Imm >> (TO + 16)) & 0xffff)); 1227 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1228 getI32Imm((Imm >> TO) & 0xffff)); 1229 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1230 getI32Imm(TO), getI32Imm(LZ)); 1231 } 1232 // 3-4) Patterns : {******}{33 zeros}{******} 1233 // {******}{33 ones}{******} 1234 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31 1235 // bits remain on both sides. Rotate right the Imm to construct an int<32> 1236 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to 1237 // rotate it back. 1238 // This is similar to Pattern 2-6, please refer to the diagram there. 1239 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) || 1240 (Shift = findContiguousZerosAtLeast(~Imm, 33))) { 1241 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1242 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff; 1243 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1244 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1245 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1246 getI32Imm(RotImm & 0xffff)); 1247 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1248 getI32Imm(Shift), getI32Imm(0)); 1249 } 1250 1251 InstCnt = 0; 1252 return nullptr; 1253 } 1254 1255 // Try to select instructions to generate a 64 bit immediate using prefix as 1256 // well as non prefix instructions. The function will return the SDNode 1257 // to materialize that constant or it will return nullptr if it does not 1258 // find one. The variable InstCnt is set to the number of instructions that 1259 // were selected. 1260 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl, 1261 uint64_t Imm, unsigned &InstCnt) { 1262 unsigned TZ = llvm::countr_zero<uint64_t>(Imm); 1263 unsigned LZ = llvm::countl_zero<uint64_t>(Imm); 1264 unsigned TO = llvm::countr_one<uint64_t>(Imm); 1265 unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ)); 1266 unsigned Hi32 = Hi_32(Imm); 1267 unsigned Lo32 = Lo_32(Imm); 1268 1269 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1270 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1271 }; 1272 1273 auto getI64Imm = [CurDAG, dl](uint64_t Imm) { 1274 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1275 }; 1276 1277 // Following patterns use 1 instruction to materialize Imm. 1278 InstCnt = 1; 1279 1280 // The pli instruction can materialize up to 34 bits directly. 1281 // If a constant fits within 34-bits, emit the pli instruction here directly. 1282 if (isInt<34>(Imm)) 1283 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1284 CurDAG->getTargetConstant(Imm, dl, MVT::i64)); 1285 1286 // Require at least two instructions. 1287 InstCnt = 2; 1288 SDNode *Result = nullptr; 1289 // Patterns : {zeros}{ones}{33-bit value}{zeros} 1290 // {zeros}{33-bit value}{zeros} 1291 // {zeros}{ones}{33-bit value} 1292 // {ones}{33-bit value}{zeros} 1293 // We can take advantage of PLI's sign-extension semantics to generate leading 1294 // ones, and then use RLDIC to mask off the ones on both sides after rotation. 1295 if ((LZ + FO + TZ) > 30) { 1296 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff); 1297 APInt Extended = SignedInt34.sext(64); 1298 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1299 getI64Imm(*Extended.getRawData())); 1300 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1301 getI32Imm(TZ), getI32Imm(LZ)); 1302 } 1303 // Pattern : {zeros}{33-bit value}{ones} 1304 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value, 1305 // therefore we can take advantage of PLI's sign-extension semantics, and then 1306 // mask them off after rotation. 1307 // 1308 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+ 1309 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1310 // +------------------------+ +------------------------+ 1311 // 63 0 63 0 1312 // 1313 // +----sext-----|--34-bit--+ +clear-|-----------------+ 1314 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1315 // +------------------------+ +------------------------+ 1316 // 63 0 63 0 1317 if ((LZ + TO) > 30) { 1318 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff); 1319 APInt Extended = SignedInt34.sext(64); 1320 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1321 getI64Imm(*Extended.getRawData())); 1322 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1323 getI32Imm(30 - LZ), getI32Imm(LZ)); 1324 } 1325 // Patterns : {zeros}{ones}{33-bit value}{ones} 1326 // {ones}{33-bit value}{ones} 1327 // Similar to LI we can take advantage of PLI's sign-extension semantics to 1328 // generate leading ones, and then use RLDICL to mask off the ones in left 1329 // sides (if required) after rotation. 1330 if ((LZ + FO + TO) > 30) { 1331 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff); 1332 APInt Extended = SignedInt34.sext(64); 1333 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1334 getI64Imm(*Extended.getRawData())); 1335 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1336 getI32Imm(TO), getI32Imm(LZ)); 1337 } 1338 // Patterns : {******}{31 zeros}{******} 1339 // : {******}{31 ones}{******} 1340 // If Imm contains 31 consecutive zeros/ones then the remaining bit count 1341 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI 1342 // for the int<33> value and then use RLDICL without a mask to rotate it back. 1343 // 1344 // +------|--ones--|------+ +---ones--||---33 bit--+ 1345 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1346 // +----------------------+ +----------------------+ 1347 // 63 0 63 0 1348 for (unsigned Shift = 0; Shift < 63; ++Shift) { 1349 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1350 if (isInt<34>(RotImm)) { 1351 Result = 1352 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm)); 1353 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 1354 SDValue(Result, 0), getI32Imm(Shift), 1355 getI32Imm(0)); 1356 } 1357 } 1358 1359 // Patterns : High word == Low word 1360 // This is basically a splat of a 32 bit immediate. 1361 if (Hi32 == Lo32) { 1362 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1363 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1364 getI32Imm(0)}; 1365 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1366 } 1367 1368 InstCnt = 3; 1369 // Catch-all 1370 // This pattern can form any 64 bit immediate in 3 instructions. 1371 SDNode *ResultHi = 1372 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1373 SDNode *ResultLo = 1374 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32)); 1375 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32), 1376 getI32Imm(0)}; 1377 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1378 } 1379 1380 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm, 1381 unsigned *InstCnt = nullptr) { 1382 unsigned InstCntDirect = 0; 1383 // No more than 3 instructions are used if we can select the i64 immediate 1384 // directly. 1385 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect); 1386 1387 const PPCSubtarget &Subtarget = 1388 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 1389 1390 // If we have prefixed instructions and there is a chance we can 1391 // materialize the constant with fewer prefixed instructions than 1392 // non-prefixed, try that. 1393 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) { 1394 unsigned InstCntDirectP = 0; 1395 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP); 1396 // Use the prefix case in either of two cases: 1397 // 1) We have no result from the non-prefix case to use. 1398 // 2) The non-prefix case uses more instructions than the prefix case. 1399 // If the prefix and non-prefix cases use the same number of instructions 1400 // we will prefer the non-prefix case. 1401 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) { 1402 if (InstCnt) 1403 *InstCnt = InstCntDirectP; 1404 return ResultP; 1405 } 1406 } 1407 1408 if (Result) { 1409 if (InstCnt) 1410 *InstCnt = InstCntDirect; 1411 return Result; 1412 } 1413 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1414 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1415 }; 1416 1417 uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff; 1418 uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff; 1419 1420 // Try to use 4 instructions to materialize the immediate which is "almost" a 1421 // splat of a 32 bit immediate. 1422 if (Hi16OfLo32 && Lo16OfLo32) { 1423 uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff; 1424 uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff; 1425 bool IsSelected = false; 1426 1427 auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) { 1428 SDNode *Result = 1429 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16)); 1430 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 1431 SDValue(Result, 0), getI32Imm(Lo16)); 1432 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1433 getI32Imm(0)}; 1434 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1435 }; 1436 1437 if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) { 1438 IsSelected = true; 1439 Result = getSplat(Hi16OfLo32, Lo16OfLo32); 1440 // Modify Hi16OfHi32. 1441 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48), 1442 getI32Imm(0)}; 1443 Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1444 } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { 1445 IsSelected = true; 1446 Result = getSplat(Hi16OfHi32, Lo16OfHi32); 1447 // Modify Lo16OfLo32. 1448 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), 1449 getI32Imm(16), getI32Imm(31)}; 1450 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); 1451 } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { 1452 IsSelected = true; 1453 Result = getSplat(Hi16OfHi32, Lo16OfHi32); 1454 // Modify Hi16OfLo32. 1455 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), 1456 getI32Imm(0), getI32Imm(15)}; 1457 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); 1458 } 1459 if (IsSelected == true) { 1460 if (InstCnt) 1461 *InstCnt = 4; 1462 return Result; 1463 } 1464 } 1465 1466 // Handle the upper 32 bit value. 1467 Result = 1468 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect); 1469 // Add in the last bits as required. 1470 if (Hi16OfLo32) { 1471 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 1472 SDValue(Result, 0), getI32Imm(Hi16OfLo32)); 1473 ++InstCntDirect; 1474 } 1475 if (Lo16OfLo32) { 1476 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1477 getI32Imm(Lo16OfLo32)); 1478 ++InstCntDirect; 1479 } 1480 if (InstCnt) 1481 *InstCnt = InstCntDirect; 1482 return Result; 1483 } 1484 1485 // Select a 64-bit constant. 1486 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { 1487 SDLoc dl(N); 1488 1489 // Get 64 bit value. 1490 int64_t Imm = N->getAsZExtVal(); 1491 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { 1492 uint64_t SextImm = SignExtend64(Imm, MinSize); 1493 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 1494 if (isInt<16>(SextImm)) 1495 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1496 } 1497 return selectI64Imm(CurDAG, dl, Imm); 1498 } 1499 1500 namespace { 1501 1502 class BitPermutationSelector { 1503 struct ValueBit { 1504 SDValue V; 1505 1506 // The bit number in the value, using a convention where bit 0 is the 1507 // lowest-order bit. 1508 unsigned Idx; 1509 1510 // ConstZero means a bit we need to mask off. 1511 // Variable is a bit comes from an input variable. 1512 // VariableKnownToBeZero is also a bit comes from an input variable, 1513 // but it is known to be already zero. So we do not need to mask them. 1514 enum Kind { 1515 ConstZero, 1516 Variable, 1517 VariableKnownToBeZero 1518 } K; 1519 1520 ValueBit(SDValue V, unsigned I, Kind K = Variable) 1521 : V(V), Idx(I), K(K) {} 1522 ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {} 1523 1524 bool isZero() const { 1525 return K == ConstZero || K == VariableKnownToBeZero; 1526 } 1527 1528 bool hasValue() const { 1529 return K == Variable || K == VariableKnownToBeZero; 1530 } 1531 1532 SDValue getValue() const { 1533 assert(hasValue() && "Cannot get the value of a constant bit"); 1534 return V; 1535 } 1536 1537 unsigned getValueBitIndex() const { 1538 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 1539 return Idx; 1540 } 1541 }; 1542 1543 // A bit group has the same underlying value and the same rotate factor. 1544 struct BitGroup { 1545 SDValue V; 1546 unsigned RLAmt; 1547 unsigned StartIdx, EndIdx; 1548 1549 // This rotation amount assumes that the lower 32 bits of the quantity are 1550 // replicated in the high 32 bits by the rotation operator (which is done 1551 // by rlwinm and friends in 64-bit mode). 1552 bool Repl32; 1553 // Did converting to Repl32 == true change the rotation factor? If it did, 1554 // it decreased it by 32. 1555 bool Repl32CR; 1556 // Was this group coalesced after setting Repl32 to true? 1557 bool Repl32Coalesced; 1558 1559 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 1560 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 1561 Repl32Coalesced(false) { 1562 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R 1563 << " [" << S << ", " << E << "]\n"); 1564 } 1565 }; 1566 1567 // Information on each (Value, RLAmt) pair (like the number of groups 1568 // associated with each) used to choose the lowering method. 1569 struct ValueRotInfo { 1570 SDValue V; 1571 unsigned RLAmt = std::numeric_limits<unsigned>::max(); 1572 unsigned NumGroups = 0; 1573 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); 1574 bool Repl32 = false; 1575 1576 ValueRotInfo() = default; 1577 1578 // For sorting (in reverse order) by NumGroups, and then by 1579 // FirstGroupStartIdx. 1580 bool operator < (const ValueRotInfo &Other) const { 1581 // We need to sort so that the non-Repl32 come first because, when we're 1582 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 1583 // masking operation. 1584 if (Repl32 < Other.Repl32) 1585 return true; 1586 else if (Repl32 > Other.Repl32) 1587 return false; 1588 else if (NumGroups > Other.NumGroups) 1589 return true; 1590 else if (NumGroups < Other.NumGroups) 1591 return false; 1592 else if (RLAmt == 0 && Other.RLAmt != 0) 1593 return true; 1594 else if (RLAmt != 0 && Other.RLAmt == 0) 1595 return false; 1596 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 1597 return true; 1598 return false; 1599 } 1600 }; 1601 1602 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 1603 using ValueBitsMemoizer = 1604 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 1605 ValueBitsMemoizer Memoizer; 1606 1607 // Return a pair of bool and a SmallVector pointer to a memoization entry. 1608 // The bool is true if something interesting was deduced, otherwise if we're 1609 // providing only a generic representation of V (or something else likewise 1610 // uninteresting for instruction selection) through the SmallVector. 1611 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 1612 unsigned NumBits) { 1613 auto &ValueEntry = Memoizer[V]; 1614 if (ValueEntry) 1615 return std::make_pair(ValueEntry->first, &ValueEntry->second); 1616 ValueEntry.reset(new ValueBitsMemoizedValue()); 1617 bool &Interesting = ValueEntry->first; 1618 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 1619 Bits.resize(NumBits); 1620 1621 switch (V.getOpcode()) { 1622 default: break; 1623 case ISD::ROTL: 1624 if (isa<ConstantSDNode>(V.getOperand(1))) { 1625 assert(isPowerOf2_32(NumBits) && "rotl bits should be power of 2!"); 1626 unsigned RotAmt = V.getConstantOperandVal(1) & (NumBits - 1); 1627 1628 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1629 1630 for (unsigned i = 0; i < NumBits; ++i) 1631 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 1632 1633 return std::make_pair(Interesting = true, &Bits); 1634 } 1635 break; 1636 case ISD::SHL: 1637 case PPCISD::SHL: 1638 if (isa<ConstantSDNode>(V.getOperand(1))) { 1639 // sld takes 7 bits, slw takes 6. 1640 unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1); 1641 1642 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1643 1644 if (ShiftAmt >= NumBits) { 1645 for (unsigned i = 0; i < NumBits; ++i) 1646 Bits[i] = ValueBit(ValueBit::ConstZero); 1647 } else { 1648 for (unsigned i = ShiftAmt; i < NumBits; ++i) 1649 Bits[i] = LHSBits[i - ShiftAmt]; 1650 for (unsigned i = 0; i < ShiftAmt; ++i) 1651 Bits[i] = ValueBit(ValueBit::ConstZero); 1652 } 1653 1654 return std::make_pair(Interesting = true, &Bits); 1655 } 1656 break; 1657 case ISD::SRL: 1658 case PPCISD::SRL: 1659 if (isa<ConstantSDNode>(V.getOperand(1))) { 1660 // srd takes lowest 7 bits, srw takes 6. 1661 unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1); 1662 1663 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1664 1665 if (ShiftAmt >= NumBits) { 1666 for (unsigned i = 0; i < NumBits; ++i) 1667 Bits[i] = ValueBit(ValueBit::ConstZero); 1668 } else { 1669 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 1670 Bits[i] = LHSBits[i + ShiftAmt]; 1671 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 1672 Bits[i] = ValueBit(ValueBit::ConstZero); 1673 } 1674 1675 return std::make_pair(Interesting = true, &Bits); 1676 } 1677 break; 1678 case ISD::AND: 1679 if (isa<ConstantSDNode>(V.getOperand(1))) { 1680 uint64_t Mask = V.getConstantOperandVal(1); 1681 1682 const SmallVector<ValueBit, 64> *LHSBits; 1683 // Mark this as interesting, only if the LHS was also interesting. This 1684 // prevents the overall procedure from matching a single immediate 'and' 1685 // (which is non-optimal because such an and might be folded with other 1686 // things if we don't select it here). 1687 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 1688 1689 for (unsigned i = 0; i < NumBits; ++i) 1690 if (((Mask >> i) & 1) == 1) 1691 Bits[i] = (*LHSBits)[i]; 1692 else { 1693 // AND instruction masks this bit. If the input is already zero, 1694 // we have nothing to do here. Otherwise, make the bit ConstZero. 1695 if ((*LHSBits)[i].isZero()) 1696 Bits[i] = (*LHSBits)[i]; 1697 else 1698 Bits[i] = ValueBit(ValueBit::ConstZero); 1699 } 1700 1701 return std::make_pair(Interesting, &Bits); 1702 } 1703 break; 1704 case ISD::OR: { 1705 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1706 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1707 1708 bool AllDisjoint = true; 1709 SDValue LastVal = SDValue(); 1710 unsigned LastIdx = 0; 1711 for (unsigned i = 0; i < NumBits; ++i) { 1712 if (LHSBits[i].isZero() && RHSBits[i].isZero()) { 1713 // If both inputs are known to be zero and one is ConstZero and 1714 // another is VariableKnownToBeZero, we can select whichever 1715 // we like. To minimize the number of bit groups, we select 1716 // VariableKnownToBeZero if this bit is the next bit of the same 1717 // input variable from the previous bit. Otherwise, we select 1718 // ConstZero. 1719 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && 1720 LHSBits[i].getValueBitIndex() == LastIdx + 1) 1721 Bits[i] = LHSBits[i]; 1722 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && 1723 RHSBits[i].getValueBitIndex() == LastIdx + 1) 1724 Bits[i] = RHSBits[i]; 1725 else 1726 Bits[i] = ValueBit(ValueBit::ConstZero); 1727 } 1728 else if (LHSBits[i].isZero()) 1729 Bits[i] = RHSBits[i]; 1730 else if (RHSBits[i].isZero()) 1731 Bits[i] = LHSBits[i]; 1732 else { 1733 AllDisjoint = false; 1734 break; 1735 } 1736 // We remember the value and bit index of this bit. 1737 if (Bits[i].hasValue()) { 1738 LastVal = Bits[i].getValue(); 1739 LastIdx = Bits[i].getValueBitIndex(); 1740 } 1741 else { 1742 if (LastVal) LastVal = SDValue(); 1743 LastIdx = 0; 1744 } 1745 } 1746 1747 if (!AllDisjoint) 1748 break; 1749 1750 return std::make_pair(Interesting = true, &Bits); 1751 } 1752 case ISD::ZERO_EXTEND: { 1753 // We support only the case with zero extension from i32 to i64 so far. 1754 if (V.getValueType() != MVT::i64 || 1755 V.getOperand(0).getValueType() != MVT::i32) 1756 break; 1757 1758 const SmallVector<ValueBit, 64> *LHSBits; 1759 const unsigned NumOperandBits = 32; 1760 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1761 NumOperandBits); 1762 1763 for (unsigned i = 0; i < NumOperandBits; ++i) 1764 Bits[i] = (*LHSBits)[i]; 1765 1766 for (unsigned i = NumOperandBits; i < NumBits; ++i) 1767 Bits[i] = ValueBit(ValueBit::ConstZero); 1768 1769 return std::make_pair(Interesting, &Bits); 1770 } 1771 case ISD::TRUNCATE: { 1772 EVT FromType = V.getOperand(0).getValueType(); 1773 EVT ToType = V.getValueType(); 1774 // We support only the case with truncate from i64 to i32. 1775 if (FromType != MVT::i64 || ToType != MVT::i32) 1776 break; 1777 const unsigned NumAllBits = FromType.getSizeInBits(); 1778 SmallVector<ValueBit, 64> *InBits; 1779 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), 1780 NumAllBits); 1781 const unsigned NumValidBits = ToType.getSizeInBits(); 1782 1783 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. 1784 // So, we cannot include this truncate. 1785 bool UseUpper32bit = false; 1786 for (unsigned i = 0; i < NumValidBits; ++i) 1787 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { 1788 UseUpper32bit = true; 1789 break; 1790 } 1791 if (UseUpper32bit) 1792 break; 1793 1794 for (unsigned i = 0; i < NumValidBits; ++i) 1795 Bits[i] = (*InBits)[i]; 1796 1797 return std::make_pair(Interesting, &Bits); 1798 } 1799 case ISD::AssertZext: { 1800 // For AssertZext, we look through the operand and 1801 // mark the bits known to be zero. 1802 const SmallVector<ValueBit, 64> *LHSBits; 1803 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1804 NumBits); 1805 1806 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); 1807 const unsigned NumValidBits = FromType.getSizeInBits(); 1808 for (unsigned i = 0; i < NumValidBits; ++i) 1809 Bits[i] = (*LHSBits)[i]; 1810 1811 // These bits are known to be zero but the AssertZext may be from a value 1812 // that already has some constant zero bits (i.e. from a masking and). 1813 for (unsigned i = NumValidBits; i < NumBits; ++i) 1814 Bits[i] = (*LHSBits)[i].hasValue() 1815 ? ValueBit((*LHSBits)[i].getValue(), 1816 (*LHSBits)[i].getValueBitIndex(), 1817 ValueBit::VariableKnownToBeZero) 1818 : ValueBit(ValueBit::ConstZero); 1819 1820 return std::make_pair(Interesting, &Bits); 1821 } 1822 case ISD::LOAD: 1823 LoadSDNode *LD = cast<LoadSDNode>(V); 1824 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { 1825 EVT VT = LD->getMemoryVT(); 1826 const unsigned NumValidBits = VT.getSizeInBits(); 1827 1828 for (unsigned i = 0; i < NumValidBits; ++i) 1829 Bits[i] = ValueBit(V, i); 1830 1831 // These bits are known to be zero. 1832 for (unsigned i = NumValidBits; i < NumBits; ++i) 1833 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); 1834 1835 // Zero-extending load itself cannot be optimized. So, it is not 1836 // interesting by itself though it gives useful information. 1837 return std::make_pair(Interesting = false, &Bits); 1838 } 1839 break; 1840 } 1841 1842 for (unsigned i = 0; i < NumBits; ++i) 1843 Bits[i] = ValueBit(V, i); 1844 1845 return std::make_pair(Interesting = false, &Bits); 1846 } 1847 1848 // For each value (except the constant ones), compute the left-rotate amount 1849 // to get it from its original to final position. 1850 void computeRotationAmounts() { 1851 NeedMask = false; 1852 RLAmt.resize(Bits.size()); 1853 for (unsigned i = 0; i < Bits.size(); ++i) 1854 if (Bits[i].hasValue()) { 1855 unsigned VBI = Bits[i].getValueBitIndex(); 1856 if (i >= VBI) 1857 RLAmt[i] = i - VBI; 1858 else 1859 RLAmt[i] = Bits.size() - (VBI - i); 1860 } else if (Bits[i].isZero()) { 1861 NeedMask = true; 1862 RLAmt[i] = UINT32_MAX; 1863 } else { 1864 llvm_unreachable("Unknown value bit type"); 1865 } 1866 } 1867 1868 // Collect groups of consecutive bits with the same underlying value and 1869 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1870 // they break up groups. 1871 void collectBitGroups(bool LateMask) { 1872 BitGroups.clear(); 1873 1874 unsigned LastRLAmt = RLAmt[0]; 1875 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1876 unsigned LastGroupStartIdx = 0; 1877 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1878 for (unsigned i = 1; i < Bits.size(); ++i) { 1879 unsigned ThisRLAmt = RLAmt[i]; 1880 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1881 if (LateMask && !ThisValue) { 1882 ThisValue = LastValue; 1883 ThisRLAmt = LastRLAmt; 1884 // If we're doing late masking, then the first bit group always starts 1885 // at zero (even if the first bits were zero). 1886 if (BitGroups.empty()) 1887 LastGroupStartIdx = 0; 1888 } 1889 1890 // If this bit is known to be zero and the current group is a bit group 1891 // of zeros, we do not need to terminate the current bit group even the 1892 // Value or RLAmt does not match here. Instead, we terminate this group 1893 // when the first non-zero bit appears later. 1894 if (IsGroupOfZeros && Bits[i].isZero()) 1895 continue; 1896 1897 // If this bit has the same underlying value and the same rotate factor as 1898 // the last one, then they're part of the same group. 1899 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1900 // We cannot continue the current group if this bits is not known to 1901 // be zero in a bit group of zeros. 1902 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) 1903 continue; 1904 1905 if (LastValue.getNode()) 1906 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1907 i-1)); 1908 LastRLAmt = ThisRLAmt; 1909 LastValue = ThisValue; 1910 LastGroupStartIdx = i; 1911 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1912 } 1913 if (LastValue.getNode()) 1914 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1915 Bits.size()-1)); 1916 1917 if (BitGroups.empty()) 1918 return; 1919 1920 // We might be able to combine the first and last groups. 1921 if (BitGroups.size() > 1) { 1922 // If the first and last groups are the same, then remove the first group 1923 // in favor of the last group, making the ending index of the last group 1924 // equal to the ending index of the to-be-removed first group. 1925 if (BitGroups[0].StartIdx == 0 && 1926 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1927 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1928 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1929 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1930 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1931 BitGroups.erase(BitGroups.begin()); 1932 } 1933 } 1934 } 1935 1936 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1937 // associated with each. If the number of groups are same, we prefer a group 1938 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate 1939 // instruction. If there is a degeneracy, pick the one that occurs 1940 // first (in the final value). 1941 void collectValueRotInfo() { 1942 ValueRots.clear(); 1943 1944 for (auto &BG : BitGroups) { 1945 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1946 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1947 VRI.V = BG.V; 1948 VRI.RLAmt = BG.RLAmt; 1949 VRI.Repl32 = BG.Repl32; 1950 VRI.NumGroups += 1; 1951 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1952 } 1953 1954 // Now that we've collected the various ValueRotInfo instances, we need to 1955 // sort them. 1956 ValueRotsVec.clear(); 1957 for (auto &I : ValueRots) { 1958 ValueRotsVec.push_back(I.second); 1959 } 1960 llvm::sort(ValueRotsVec); 1961 } 1962 1963 // In 64-bit mode, rlwinm and friends have a rotation operator that 1964 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1965 // indices of these instructions can only be in the lower 32 bits, so they 1966 // can only represent some 64-bit bit groups. However, when they can be used, 1967 // the 32-bit replication can be used to represent, as a single bit group, 1968 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1969 // groups when possible. Returns true if any of the bit groups were 1970 // converted. 1971 void assignRepl32BitGroups() { 1972 // If we have bits like this: 1973 // 1974 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1975 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1976 // Groups: | RLAmt = 8 | RLAmt = 40 | 1977 // 1978 // But, making use of a 32-bit operation that replicates the low-order 32 1979 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1980 // of 8. 1981 1982 auto IsAllLow32 = [this](BitGroup & BG) { 1983 if (BG.StartIdx <= BG.EndIdx) { 1984 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1985 if (!Bits[i].hasValue()) 1986 continue; 1987 if (Bits[i].getValueBitIndex() >= 32) 1988 return false; 1989 } 1990 } else { 1991 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1992 if (!Bits[i].hasValue()) 1993 continue; 1994 if (Bits[i].getValueBitIndex() >= 32) 1995 return false; 1996 } 1997 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1998 if (!Bits[i].hasValue()) 1999 continue; 2000 if (Bits[i].getValueBitIndex() >= 32) 2001 return false; 2002 } 2003 } 2004 2005 return true; 2006 }; 2007 2008 for (auto &BG : BitGroups) { 2009 // If this bit group has RLAmt of 0 and will not be merged with 2010 // another bit group, we don't benefit from Repl32. We don't mark 2011 // such group to give more freedom for later instruction selection. 2012 if (BG.RLAmt == 0) { 2013 auto PotentiallyMerged = [this](BitGroup & BG) { 2014 for (auto &BG2 : BitGroups) 2015 if (&BG != &BG2 && BG.V == BG2.V && 2016 (BG2.RLAmt == 0 || BG2.RLAmt == 32)) 2017 return true; 2018 return false; 2019 }; 2020 if (!PotentiallyMerged(BG)) 2021 continue; 2022 } 2023 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 2024 if (IsAllLow32(BG)) { 2025 if (BG.RLAmt >= 32) { 2026 BG.RLAmt -= 32; 2027 BG.Repl32CR = true; 2028 } 2029 2030 BG.Repl32 = true; 2031 2032 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " 2033 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" 2034 << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 2035 } 2036 } 2037 } 2038 2039 // Now walk through the bit groups, consolidating where possible. 2040 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 2041 // We might want to remove this bit group by merging it with the previous 2042 // group (which might be the ending group). 2043 auto IP = (I == BitGroups.begin()) ? 2044 std::prev(BitGroups.end()) : std::prev(I); 2045 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 2046 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 2047 2048 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " 2049 << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" 2050 << I->StartIdx << ", " << I->EndIdx 2051 << "] with group with range [" << IP->StartIdx << ", " 2052 << IP->EndIdx << "]\n"); 2053 2054 IP->EndIdx = I->EndIdx; 2055 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 2056 IP->Repl32Coalesced = true; 2057 I = BitGroups.erase(I); 2058 continue; 2059 } else { 2060 // There is a special case worth handling: If there is a single group 2061 // covering the entire upper 32 bits, and it can be merged with both 2062 // the next and previous groups (which might be the same group), then 2063 // do so. If it is the same group (so there will be only one group in 2064 // total), then we need to reverse the order of the range so that it 2065 // covers the entire 64 bits. 2066 if (I->StartIdx == 32 && I->EndIdx == 63) { 2067 assert(std::next(I) == BitGroups.end() && 2068 "bit group ends at index 63 but there is another?"); 2069 auto IN = BitGroups.begin(); 2070 2071 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 2072 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 2073 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 2074 IsAllLow32(*I)) { 2075 2076 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() 2077 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx 2078 << ", " << I->EndIdx 2079 << "] with 32-bit replicated groups with ranges [" 2080 << IP->StartIdx << ", " << IP->EndIdx << "] and [" 2081 << IN->StartIdx << ", " << IN->EndIdx << "]\n"); 2082 2083 if (IP == IN) { 2084 // There is only one other group; change it to cover the whole 2085 // range (backward, so that it can still be Repl32 but cover the 2086 // whole 64-bit range). 2087 IP->StartIdx = 31; 2088 IP->EndIdx = 30; 2089 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 2090 IP->Repl32Coalesced = true; 2091 I = BitGroups.erase(I); 2092 } else { 2093 // There are two separate groups, one before this group and one 2094 // after us (at the beginning). We're going to remove this group, 2095 // but also the group at the very beginning. 2096 IP->EndIdx = IN->EndIdx; 2097 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 2098 IP->Repl32Coalesced = true; 2099 I = BitGroups.erase(I); 2100 BitGroups.erase(BitGroups.begin()); 2101 } 2102 2103 // This must be the last group in the vector (and we might have 2104 // just invalidated the iterator above), so break here. 2105 break; 2106 } 2107 } 2108 } 2109 2110 ++I; 2111 } 2112 } 2113 2114 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 2115 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 2116 } 2117 2118 uint64_t getZerosMask() { 2119 uint64_t Mask = 0; 2120 for (unsigned i = 0; i < Bits.size(); ++i) { 2121 if (Bits[i].hasValue()) 2122 continue; 2123 Mask |= (UINT64_C(1) << i); 2124 } 2125 2126 return ~Mask; 2127 } 2128 2129 // This method extends an input value to 64 bit if input is 32-bit integer. 2130 // While selecting instructions in BitPermutationSelector in 64-bit mode, 2131 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. 2132 // In such case, we extend it to 64 bit to be consistent with other values. 2133 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { 2134 if (V.getValueSizeInBits() == 64) 2135 return V; 2136 2137 assert(V.getValueSizeInBits() == 32); 2138 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2139 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 2140 MVT::i64), 0); 2141 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 2142 MVT::i64, ImDef, V, 2143 SubRegIdx), 0); 2144 return ExtVal; 2145 } 2146 2147 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { 2148 if (V.getValueSizeInBits() == 32) 2149 return V; 2150 2151 assert(V.getValueSizeInBits() == 64); 2152 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2153 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, 2154 MVT::i32, V, SubRegIdx), 0); 2155 return SubVal; 2156 } 2157 2158 // Depending on the number of groups for a particular value, it might be 2159 // better to rotate, mask explicitly (using andi/andis), and then or the 2160 // result. Select this part of the result first. 2161 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2162 if (BPermRewriterNoMasking) 2163 return; 2164 2165 for (ValueRotInfo &VRI : ValueRotsVec) { 2166 unsigned Mask = 0; 2167 for (unsigned i = 0; i < Bits.size(); ++i) { 2168 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 2169 continue; 2170 if (RLAmt[i] != VRI.RLAmt) 2171 continue; 2172 Mask |= (1u << i); 2173 } 2174 2175 // Compute the masks for andi/andis that would be necessary. 2176 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2177 assert((ANDIMask != 0 || ANDISMask != 0) && 2178 "No set bits in mask for value bit groups"); 2179 bool NeedsRotate = VRI.RLAmt != 0; 2180 2181 // We're trying to minimize the number of instructions. If we have one 2182 // group, using one of andi/andis can break even. If we have three 2183 // groups, we can use both andi and andis and break even (to use both 2184 // andi and andis we also need to or the results together). We need four 2185 // groups if we also need to rotate. To use andi/andis we need to do more 2186 // than break even because rotate-and-mask instructions tend to be easier 2187 // to schedule. 2188 2189 // FIXME: We've biased here against using andi/andis, which is right for 2190 // POWER cores, but not optimal everywhere. For example, on the A2, 2191 // andi/andis have single-cycle latency whereas the rotate-and-mask 2192 // instructions take two cycles, and it would be better to bias toward 2193 // andi/andis in break-even cases. 2194 2195 unsigned NumAndInsts = (unsigned) NeedsRotate + 2196 (unsigned) (ANDIMask != 0) + 2197 (unsigned) (ANDISMask != 0) + 2198 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 2199 (unsigned) (bool) Res; 2200 2201 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2202 << " RL: " << VRI.RLAmt << ":" 2203 << "\n\t\t\tisel using masking: " << NumAndInsts 2204 << " using rotates: " << VRI.NumGroups << "\n"); 2205 2206 if (NumAndInsts >= VRI.NumGroups) 2207 continue; 2208 2209 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2210 2211 if (InstCnt) *InstCnt += NumAndInsts; 2212 2213 SDValue VRot; 2214 if (VRI.RLAmt) { 2215 SDValue Ops[] = 2216 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2217 getI32Imm(0, dl), getI32Imm(31, dl) }; 2218 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2219 Ops), 0); 2220 } else { 2221 VRot = TruncateToInt32(VRI.V, dl); 2222 } 2223 2224 SDValue ANDIVal, ANDISVal; 2225 if (ANDIMask != 0) 2226 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2227 VRot, getI32Imm(ANDIMask, dl)), 2228 0); 2229 if (ANDISMask != 0) 2230 ANDISVal = 2231 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, 2232 getI32Imm(ANDISMask, dl)), 2233 0); 2234 2235 SDValue TotalVal; 2236 if (!ANDIVal) 2237 TotalVal = ANDISVal; 2238 else if (!ANDISVal) 2239 TotalVal = ANDIVal; 2240 else 2241 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2242 ANDIVal, ANDISVal), 0); 2243 2244 if (!Res) 2245 Res = TotalVal; 2246 else 2247 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2248 Res, TotalVal), 0); 2249 2250 // Now, remove all groups with this underlying value and rotation 2251 // factor. 2252 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2253 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2254 }); 2255 } 2256 } 2257 2258 // Instruction selection for the 32-bit case. 2259 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 2260 SDLoc dl(N); 2261 SDValue Res; 2262 2263 if (InstCnt) *InstCnt = 0; 2264 2265 // Take care of cases that should use andi/andis first. 2266 SelectAndParts32(dl, Res, InstCnt); 2267 2268 // If we've not yet selected a 'starting' instruction, and we have no zeros 2269 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2270 // number of groups), and start with this rotated value. 2271 if ((!NeedMask || LateMask) && !Res) { 2272 ValueRotInfo &VRI = ValueRotsVec[0]; 2273 if (VRI.RLAmt) { 2274 if (InstCnt) *InstCnt += 1; 2275 SDValue Ops[] = 2276 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2277 getI32Imm(0, dl), getI32Imm(31, dl) }; 2278 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 2279 0); 2280 } else { 2281 Res = TruncateToInt32(VRI.V, dl); 2282 } 2283 2284 // Now, remove all groups with this underlying value and rotation factor. 2285 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2286 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2287 }); 2288 } 2289 2290 if (InstCnt) *InstCnt += BitGroups.size(); 2291 2292 // Insert the other groups (one at a time). 2293 for (auto &BG : BitGroups) { 2294 if (!Res) { 2295 SDValue Ops[] = 2296 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2297 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2298 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2299 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2300 } else { 2301 SDValue Ops[] = 2302 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2303 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2304 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2305 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 2306 } 2307 } 2308 2309 if (LateMask) { 2310 unsigned Mask = (unsigned) getZerosMask(); 2311 2312 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2313 assert((ANDIMask != 0 || ANDISMask != 0) && 2314 "No set bits in zeros mask?"); 2315 2316 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2317 (unsigned) (ANDISMask != 0) + 2318 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2319 2320 SDValue ANDIVal, ANDISVal; 2321 if (ANDIMask != 0) 2322 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2323 Res, getI32Imm(ANDIMask, dl)), 2324 0); 2325 if (ANDISMask != 0) 2326 ANDISVal = 2327 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, 2328 getI32Imm(ANDISMask, dl)), 2329 0); 2330 2331 if (!ANDIVal) 2332 Res = ANDISVal; 2333 else if (!ANDISVal) 2334 Res = ANDIVal; 2335 else 2336 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2337 ANDIVal, ANDISVal), 0); 2338 } 2339 2340 return Res.getNode(); 2341 } 2342 2343 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 2344 unsigned MaskStart, unsigned MaskEnd, 2345 bool IsIns) { 2346 // In the notation used by the instructions, 'start' and 'end' are reversed 2347 // because bits are counted from high to low order. 2348 unsigned InstMaskStart = 64 - MaskEnd - 1, 2349 InstMaskEnd = 64 - MaskStart - 1; 2350 2351 if (Repl32) 2352 return 1; 2353 2354 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 2355 InstMaskEnd == 63 - RLAmt) 2356 return 1; 2357 2358 return 2; 2359 } 2360 2361 // For 64-bit values, not all combinations of rotates and masks are 2362 // available. Produce one if it is available. 2363 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 2364 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 2365 unsigned *InstCnt = nullptr) { 2366 // In the notation used by the instructions, 'start' and 'end' are reversed 2367 // because bits are counted from high to low order. 2368 unsigned InstMaskStart = 64 - MaskEnd - 1, 2369 InstMaskEnd = 64 - MaskStart - 1; 2370 2371 if (InstCnt) *InstCnt += 1; 2372 2373 if (Repl32) { 2374 // This rotation amount assumes that the lower 32 bits of the quantity 2375 // are replicated in the high 32 bits by the rotation operator (which is 2376 // done by rlwinm and friends). 2377 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2378 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2379 SDValue Ops[] = 2380 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2381 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2382 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 2383 Ops), 0); 2384 } 2385 2386 if (InstMaskEnd == 63) { 2387 SDValue Ops[] = 2388 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2389 getI32Imm(InstMaskStart, dl) }; 2390 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 2391 } 2392 2393 if (InstMaskStart == 0) { 2394 SDValue Ops[] = 2395 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2396 getI32Imm(InstMaskEnd, dl) }; 2397 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 2398 } 2399 2400 if (InstMaskEnd == 63 - RLAmt) { 2401 SDValue Ops[] = 2402 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2403 getI32Imm(InstMaskStart, dl) }; 2404 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 2405 } 2406 2407 // We cannot do this with a single instruction, so we'll use two. The 2408 // problem is that we're not free to choose both a rotation amount and mask 2409 // start and end independently. We can choose an arbitrary mask start and 2410 // end, but then the rotation amount is fixed. Rotation, however, can be 2411 // inverted, and so by applying an "inverse" rotation first, we can get the 2412 // desired result. 2413 if (InstCnt) *InstCnt += 1; 2414 2415 // The rotation mask for the second instruction must be MaskStart. 2416 unsigned RLAmt2 = MaskStart; 2417 // The first instruction must rotate V so that the overall rotation amount 2418 // is RLAmt. 2419 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2420 if (RLAmt1) 2421 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2422 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 2423 } 2424 2425 // For 64-bit values, not all combinations of rotates and masks are 2426 // available. Produce a rotate-mask-and-insert if one is available. 2427 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 2428 unsigned RLAmt, bool Repl32, unsigned MaskStart, 2429 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 2430 // In the notation used by the instructions, 'start' and 'end' are reversed 2431 // because bits are counted from high to low order. 2432 unsigned InstMaskStart = 64 - MaskEnd - 1, 2433 InstMaskEnd = 64 - MaskStart - 1; 2434 2435 if (InstCnt) *InstCnt += 1; 2436 2437 if (Repl32) { 2438 // This rotation amount assumes that the lower 32 bits of the quantity 2439 // are replicated in the high 32 bits by the rotation operator (which is 2440 // done by rlwinm and friends). 2441 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2442 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2443 SDValue Ops[] = 2444 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2445 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2446 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 2447 Ops), 0); 2448 } 2449 2450 if (InstMaskEnd == 63 - RLAmt) { 2451 SDValue Ops[] = 2452 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2453 getI32Imm(InstMaskStart, dl) }; 2454 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 2455 } 2456 2457 // We cannot do this with a single instruction, so we'll use two. The 2458 // problem is that we're not free to choose both a rotation amount and mask 2459 // start and end independently. We can choose an arbitrary mask start and 2460 // end, but then the rotation amount is fixed. Rotation, however, can be 2461 // inverted, and so by applying an "inverse" rotation first, we can get the 2462 // desired result. 2463 if (InstCnt) *InstCnt += 1; 2464 2465 // The rotation mask for the second instruction must be MaskStart. 2466 unsigned RLAmt2 = MaskStart; 2467 // The first instruction must rotate V so that the overall rotation amount 2468 // is RLAmt. 2469 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2470 if (RLAmt1) 2471 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2472 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 2473 } 2474 2475 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2476 if (BPermRewriterNoMasking) 2477 return; 2478 2479 // The idea here is the same as in the 32-bit version, but with additional 2480 // complications from the fact that Repl32 might be true. Because we 2481 // aggressively convert bit groups to Repl32 form (which, for small 2482 // rotation factors, involves no other change), and then coalesce, it might 2483 // be the case that a single 64-bit masking operation could handle both 2484 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 2485 // form allowed coalescing, then we must use a 32-bit rotaton in order to 2486 // completely capture the new combined bit group. 2487 2488 for (ValueRotInfo &VRI : ValueRotsVec) { 2489 uint64_t Mask = 0; 2490 2491 // We need to add to the mask all bits from the associated bit groups. 2492 // If Repl32 is false, we need to add bits from bit groups that have 2493 // Repl32 true, but are trivially convertable to Repl32 false. Such a 2494 // group is trivially convertable if it overlaps only with the lower 32 2495 // bits, and the group has not been coalesced. 2496 auto MatchingBG = [VRI](const BitGroup &BG) { 2497 if (VRI.V != BG.V) 2498 return false; 2499 2500 unsigned EffRLAmt = BG.RLAmt; 2501 if (!VRI.Repl32 && BG.Repl32) { 2502 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 2503 !BG.Repl32Coalesced) { 2504 if (BG.Repl32CR) 2505 EffRLAmt += 32; 2506 } else { 2507 return false; 2508 } 2509 } else if (VRI.Repl32 != BG.Repl32) { 2510 return false; 2511 } 2512 2513 return VRI.RLAmt == EffRLAmt; 2514 }; 2515 2516 for (auto &BG : BitGroups) { 2517 if (!MatchingBG(BG)) 2518 continue; 2519 2520 if (BG.StartIdx <= BG.EndIdx) { 2521 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 2522 Mask |= (UINT64_C(1) << i); 2523 } else { 2524 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 2525 Mask |= (UINT64_C(1) << i); 2526 for (unsigned i = 0; i <= BG.EndIdx; ++i) 2527 Mask |= (UINT64_C(1) << i); 2528 } 2529 } 2530 2531 // We can use the 32-bit andi/andis technique if the mask does not 2532 // require any higher-order bits. This can save an instruction compared 2533 // to always using the general 64-bit technique. 2534 bool Use32BitInsts = isUInt<32>(Mask); 2535 // Compute the masks for andi/andis that would be necessary. 2536 unsigned ANDIMask = (Mask & UINT16_MAX), 2537 ANDISMask = (Mask >> 16) & UINT16_MAX; 2538 2539 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 2540 2541 unsigned NumAndInsts = (unsigned) NeedsRotate + 2542 (unsigned) (bool) Res; 2543 unsigned NumOfSelectInsts = 0; 2544 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts); 2545 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant."); 2546 if (Use32BitInsts) 2547 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 2548 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2549 else 2550 NumAndInsts += NumOfSelectInsts + /* and */ 1; 2551 2552 unsigned NumRLInsts = 0; 2553 bool FirstBG = true; 2554 bool MoreBG = false; 2555 for (auto &BG : BitGroups) { 2556 if (!MatchingBG(BG)) { 2557 MoreBG = true; 2558 continue; 2559 } 2560 NumRLInsts += 2561 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 2562 !FirstBG); 2563 FirstBG = false; 2564 } 2565 2566 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2567 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") 2568 << "\n\t\t\tisel using masking: " << NumAndInsts 2569 << " using rotates: " << NumRLInsts << "\n"); 2570 2571 // When we'd use andi/andis, we bias toward using the rotates (andi only 2572 // has a record form, and is cracked on POWER cores). However, when using 2573 // general 64-bit constant formation, bias toward the constant form, 2574 // because that exposes more opportunities for CSE. 2575 if (NumAndInsts > NumRLInsts) 2576 continue; 2577 // When merging multiple bit groups, instruction or is used. 2578 // But when rotate is used, rldimi can inert the rotated value into any 2579 // register, so instruction or can be avoided. 2580 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) 2581 continue; 2582 2583 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2584 2585 if (InstCnt) *InstCnt += NumAndInsts; 2586 2587 SDValue VRot; 2588 // We actually need to generate a rotation if we have a non-zero rotation 2589 // factor or, in the Repl32 case, if we care about any of the 2590 // higher-order replicated bits. In the latter case, we generate a mask 2591 // backward so that it actually includes the entire 64 bits. 2592 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 2593 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2594 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 2595 else 2596 VRot = VRI.V; 2597 2598 SDValue TotalVal; 2599 if (Use32BitInsts) { 2600 assert((ANDIMask != 0 || ANDISMask != 0) && 2601 "No set bits in mask when using 32-bit ands for 64-bit value"); 2602 2603 SDValue ANDIVal, ANDISVal; 2604 if (ANDIMask != 0) 2605 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2606 ExtendToInt64(VRot, dl), 2607 getI32Imm(ANDIMask, dl)), 2608 0); 2609 if (ANDISMask != 0) 2610 ANDISVal = 2611 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2612 ExtendToInt64(VRot, dl), 2613 getI32Imm(ANDISMask, dl)), 2614 0); 2615 2616 if (!ANDIVal) 2617 TotalVal = ANDISVal; 2618 else if (!ANDISVal) 2619 TotalVal = ANDIVal; 2620 else 2621 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2622 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2623 } else { 2624 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2625 TotalVal = 2626 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2627 ExtendToInt64(VRot, dl), TotalVal), 2628 0); 2629 } 2630 2631 if (!Res) 2632 Res = TotalVal; 2633 else 2634 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2635 ExtendToInt64(Res, dl), TotalVal), 2636 0); 2637 2638 // Now, remove all groups with this underlying value and rotation 2639 // factor. 2640 eraseMatchingBitGroups(MatchingBG); 2641 } 2642 } 2643 2644 // Instruction selection for the 64-bit case. 2645 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 2646 SDLoc dl(N); 2647 SDValue Res; 2648 2649 if (InstCnt) *InstCnt = 0; 2650 2651 // Take care of cases that should use andi/andis first. 2652 SelectAndParts64(dl, Res, InstCnt); 2653 2654 // If we've not yet selected a 'starting' instruction, and we have no zeros 2655 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2656 // number of groups), and start with this rotated value. 2657 if ((!NeedMask || LateMask) && !Res) { 2658 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 2659 // groups will come first, and so the VRI representing the largest number 2660 // of groups might not be first (it might be the first Repl32 groups). 2661 unsigned MaxGroupsIdx = 0; 2662 if (!ValueRotsVec[0].Repl32) { 2663 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 2664 if (ValueRotsVec[i].Repl32) { 2665 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 2666 MaxGroupsIdx = i; 2667 break; 2668 } 2669 } 2670 2671 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 2672 bool NeedsRotate = false; 2673 if (VRI.RLAmt) { 2674 NeedsRotate = true; 2675 } else if (VRI.Repl32) { 2676 for (auto &BG : BitGroups) { 2677 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 2678 BG.Repl32 != VRI.Repl32) 2679 continue; 2680 2681 // We don't need a rotate if the bit group is confined to the lower 2682 // 32 bits. 2683 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 2684 continue; 2685 2686 NeedsRotate = true; 2687 break; 2688 } 2689 } 2690 2691 if (NeedsRotate) 2692 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2693 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 2694 InstCnt); 2695 else 2696 Res = VRI.V; 2697 2698 // Now, remove all groups with this underlying value and rotation factor. 2699 if (Res) 2700 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2701 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 2702 BG.Repl32 == VRI.Repl32; 2703 }); 2704 } 2705 2706 // Because 64-bit rotates are more flexible than inserts, we might have a 2707 // preference regarding which one we do first (to save one instruction). 2708 if (!Res) 2709 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 2710 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2711 false) < 2712 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2713 true)) { 2714 if (I != BitGroups.begin()) { 2715 BitGroup BG = *I; 2716 BitGroups.erase(I); 2717 BitGroups.insert(BitGroups.begin(), BG); 2718 } 2719 2720 break; 2721 } 2722 } 2723 2724 // Insert the other groups (one at a time). 2725 for (auto &BG : BitGroups) { 2726 if (!Res) 2727 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 2728 BG.EndIdx, InstCnt); 2729 else 2730 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 2731 BG.StartIdx, BG.EndIdx, InstCnt); 2732 } 2733 2734 if (LateMask) { 2735 uint64_t Mask = getZerosMask(); 2736 2737 // We can use the 32-bit andi/andis technique if the mask does not 2738 // require any higher-order bits. This can save an instruction compared 2739 // to always using the general 64-bit technique. 2740 bool Use32BitInsts = isUInt<32>(Mask); 2741 // Compute the masks for andi/andis that would be necessary. 2742 unsigned ANDIMask = (Mask & UINT16_MAX), 2743 ANDISMask = (Mask >> 16) & UINT16_MAX; 2744 2745 if (Use32BitInsts) { 2746 assert((ANDIMask != 0 || ANDISMask != 0) && 2747 "No set bits in mask when using 32-bit ands for 64-bit value"); 2748 2749 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2750 (unsigned) (ANDISMask != 0) + 2751 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2752 2753 SDValue ANDIVal, ANDISVal; 2754 if (ANDIMask != 0) 2755 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2756 ExtendToInt64(Res, dl), 2757 getI32Imm(ANDIMask, dl)), 2758 0); 2759 if (ANDISMask != 0) 2760 ANDISVal = 2761 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2762 ExtendToInt64(Res, dl), 2763 getI32Imm(ANDISMask, dl)), 2764 0); 2765 2766 if (!ANDIVal) 2767 Res = ANDISVal; 2768 else if (!ANDISVal) 2769 Res = ANDIVal; 2770 else 2771 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2772 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2773 } else { 2774 unsigned NumOfSelectInsts = 0; 2775 SDValue MaskVal = 2776 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0); 2777 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2778 ExtendToInt64(Res, dl), MaskVal), 2779 0); 2780 if (InstCnt) 2781 *InstCnt += NumOfSelectInsts + /* and */ 1; 2782 } 2783 } 2784 2785 return Res.getNode(); 2786 } 2787 2788 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 2789 // Fill in BitGroups. 2790 collectBitGroups(LateMask); 2791 if (BitGroups.empty()) 2792 return nullptr; 2793 2794 // For 64-bit values, figure out when we can use 32-bit instructions. 2795 if (Bits.size() == 64) 2796 assignRepl32BitGroups(); 2797 2798 // Fill in ValueRotsVec. 2799 collectValueRotInfo(); 2800 2801 if (Bits.size() == 32) { 2802 return Select32(N, LateMask, InstCnt); 2803 } else { 2804 assert(Bits.size() == 64 && "Not 64 bits here?"); 2805 return Select64(N, LateMask, InstCnt); 2806 } 2807 2808 return nullptr; 2809 } 2810 2811 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 2812 erase_if(BitGroups, F); 2813 } 2814 2815 SmallVector<ValueBit, 64> Bits; 2816 2817 bool NeedMask = false; 2818 SmallVector<unsigned, 64> RLAmt; 2819 2820 SmallVector<BitGroup, 16> BitGroups; 2821 2822 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 2823 SmallVector<ValueRotInfo, 16> ValueRotsVec; 2824 2825 SelectionDAG *CurDAG = nullptr; 2826 2827 public: 2828 BitPermutationSelector(SelectionDAG *DAG) 2829 : CurDAG(DAG) {} 2830 2831 // Here we try to match complex bit permutations into a set of 2832 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 2833 // known to produce optimal code for common cases (like i32 byte swapping). 2834 SDNode *Select(SDNode *N) { 2835 Memoizer.clear(); 2836 auto Result = 2837 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 2838 if (!Result.first) 2839 return nullptr; 2840 Bits = std::move(*Result.second); 2841 2842 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" 2843 " selection for: "); 2844 LLVM_DEBUG(N->dump(CurDAG)); 2845 2846 // Fill it RLAmt and set NeedMask. 2847 computeRotationAmounts(); 2848 2849 if (!NeedMask) 2850 return Select(N, false); 2851 2852 // We currently have two techniques for handling results with zeros: early 2853 // masking (the default) and late masking. Late masking is sometimes more 2854 // efficient, but because the structure of the bit groups is different, it 2855 // is hard to tell without generating both and comparing the results. With 2856 // late masking, we ignore zeros in the resulting value when inserting each 2857 // set of bit groups, and then mask in the zeros at the end. With early 2858 // masking, we only insert the non-zero parts of the result at every step. 2859 2860 unsigned InstCnt = 0, InstCntLateMask = 0; 2861 LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); 2862 SDNode *RN = Select(N, false, &InstCnt); 2863 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 2864 2865 LLVM_DEBUG(dbgs() << "\tLate masking:\n"); 2866 SDNode *RNLM = Select(N, true, &InstCntLateMask); 2867 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask 2868 << " instructions\n"); 2869 2870 if (InstCnt <= InstCntLateMask) { 2871 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 2872 return RN; 2873 } 2874 2875 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 2876 return RNLM; 2877 } 2878 }; 2879 2880 class IntegerCompareEliminator { 2881 SelectionDAG *CurDAG; 2882 PPCDAGToDAGISel *S; 2883 // Conversion type for interpreting results of a 32-bit instruction as 2884 // a 64-bit value or vice versa. 2885 enum ExtOrTruncConversion { Ext, Trunc }; 2886 2887 // Modifiers to guide how an ISD::SETCC node's result is to be computed 2888 // in a GPR. 2889 // ZExtOrig - use the original condition code, zero-extend value 2890 // ZExtInvert - invert the condition code, zero-extend value 2891 // SExtOrig - use the original condition code, sign-extend value 2892 // SExtInvert - invert the condition code, sign-extend value 2893 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; 2894 2895 // Comparisons against zero to emit GPR code sequences for. Each of these 2896 // sequences may need to be emitted for two or more equivalent patterns. 2897 // For example (a >= 0) == (a > -1). The direction of the comparison (</>) 2898 // matters as well as the extension type: sext (-1/0), zext (1/0). 2899 // GEZExt - (zext (LHS >= 0)) 2900 // GESExt - (sext (LHS >= 0)) 2901 // LEZExt - (zext (LHS <= 0)) 2902 // LESExt - (sext (LHS <= 0)) 2903 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; 2904 2905 SDNode *tryEXTEND(SDNode *N); 2906 SDNode *tryLogicOpOfCompares(SDNode *N); 2907 SDValue computeLogicOpInGPR(SDValue LogicOp); 2908 SDValue signExtendInputIfNeeded(SDValue Input); 2909 SDValue zeroExtendInputIfNeeded(SDValue Input); 2910 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); 2911 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2912 ZeroCompare CmpTy); 2913 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2914 int64_t RHSValue, SDLoc dl); 2915 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2916 int64_t RHSValue, SDLoc dl); 2917 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2918 int64_t RHSValue, SDLoc dl); 2919 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2920 int64_t RHSValue, SDLoc dl); 2921 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); 2922 2923 public: 2924 IntegerCompareEliminator(SelectionDAG *DAG, 2925 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { 2926 assert(CurDAG->getTargetLoweringInfo() 2927 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && 2928 "Only expecting to use this on 64 bit targets."); 2929 } 2930 SDNode *Select(SDNode *N) { 2931 if (CmpInGPR == ICGPR_None) 2932 return nullptr; 2933 switch (N->getOpcode()) { 2934 default: break; 2935 case ISD::ZERO_EXTEND: 2936 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || 2937 CmpInGPR == ICGPR_SextI64) 2938 return nullptr; 2939 [[fallthrough]]; 2940 case ISD::SIGN_EXTEND: 2941 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || 2942 CmpInGPR == ICGPR_ZextI64) 2943 return nullptr; 2944 return tryEXTEND(N); 2945 case ISD::AND: 2946 case ISD::OR: 2947 case ISD::XOR: 2948 return tryLogicOpOfCompares(N); 2949 } 2950 return nullptr; 2951 } 2952 }; 2953 2954 // The obvious case for wanting to keep the value in a GPR. Namely, the 2955 // result of the comparison is actually needed in a GPR. 2956 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { 2957 assert((N->getOpcode() == ISD::ZERO_EXTEND || 2958 N->getOpcode() == ISD::SIGN_EXTEND) && 2959 "Expecting a zero/sign extend node!"); 2960 SDValue WideRes; 2961 // If we are zero-extending the result of a logical operation on i1 2962 // values, we can keep the values in GPRs. 2963 if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) && 2964 N->getOperand(0).getValueType() == MVT::i1 && 2965 N->getOpcode() == ISD::ZERO_EXTEND) 2966 WideRes = computeLogicOpInGPR(N->getOperand(0)); 2967 else if (N->getOperand(0).getOpcode() != ISD::SETCC) 2968 return nullptr; 2969 else 2970 WideRes = 2971 getSETCCInGPR(N->getOperand(0), 2972 N->getOpcode() == ISD::SIGN_EXTEND ? 2973 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); 2974 2975 if (!WideRes) 2976 return nullptr; 2977 2978 SDLoc dl(N); 2979 bool Input32Bit = WideRes.getValueType() == MVT::i32; 2980 bool Output32Bit = N->getValueType(0) == MVT::i32; 2981 2982 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; 2983 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; 2984 2985 SDValue ConvOp = WideRes; 2986 if (Input32Bit != Output32Bit) 2987 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : 2988 ExtOrTruncConversion::Trunc); 2989 return ConvOp.getNode(); 2990 } 2991 2992 // Attempt to perform logical operations on the results of comparisons while 2993 // keeping the values in GPRs. Without doing so, these would end up being 2994 // lowered to CR-logical operations which suffer from significant latency and 2995 // low ILP. 2996 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { 2997 if (N->getValueType(0) != MVT::i1) 2998 return nullptr; 2999 assert(ISD::isBitwiseLogicOp(N->getOpcode()) && 3000 "Expected a logic operation on setcc results."); 3001 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); 3002 if (!LoweredLogical) 3003 return nullptr; 3004 3005 SDLoc dl(N); 3006 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; 3007 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; 3008 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 3009 SDValue LHS = LoweredLogical.getOperand(0); 3010 SDValue RHS = LoweredLogical.getOperand(1); 3011 SDValue WideOp; 3012 SDValue OpToConvToRecForm; 3013 3014 // Look through any 32-bit to 64-bit implicit extend nodes to find the 3015 // opcode that is input to the XORI. 3016 if (IsBitwiseNegate && 3017 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) 3018 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); 3019 else if (IsBitwiseNegate) 3020 // If the input to the XORI isn't an extension, that's what we're after. 3021 OpToConvToRecForm = LoweredLogical.getOperand(0); 3022 else 3023 // If this is not an XORI, it is a reg-reg logical op and we can convert 3024 // it to record-form. 3025 OpToConvToRecForm = LoweredLogical; 3026 3027 // Get the record-form version of the node we're looking to use to get the 3028 // CR result from. 3029 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); 3030 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); 3031 3032 // Convert the right node to record-form. This is either the logical we're 3033 // looking at or it is the input node to the negation (if we're looking at 3034 // a bitwise negation). 3035 if (NewOpc != -1 && IsBitwiseNegate) { 3036 // The input to the XORI has a record-form. Use it. 3037 assert(LoweredLogical.getConstantOperandVal(1) == 1 && 3038 "Expected a PPC::XORI8 only for bitwise negation."); 3039 // Emit the record-form instruction. 3040 std::vector<SDValue> Ops; 3041 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) 3042 Ops.push_back(OpToConvToRecForm.getOperand(i)); 3043 3044 WideOp = 3045 SDValue(CurDAG->getMachineNode(NewOpc, dl, 3046 OpToConvToRecForm.getValueType(), 3047 MVT::Glue, Ops), 0); 3048 } else { 3049 assert((NewOpc != -1 || !IsBitwiseNegate) && 3050 "No record form available for AND8/OR8/XOR8?"); 3051 WideOp = 3052 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, 3053 dl, MVT::i64, MVT::Glue, LHS, RHS), 3054 0); 3055 } 3056 3057 // Select this node to a single bit from CR0 set by the record-form node 3058 // just created. For bitwise negation, use the EQ bit which is the equivalent 3059 // of negating the result (i.e. it is a bit set when the result of the 3060 // operation is zero). 3061 SDValue SRIdxVal = 3062 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); 3063 SDValue CRBit = 3064 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 3065 MVT::i1, CR0Reg, SRIdxVal, 3066 WideOp.getValue(1)), 0); 3067 return CRBit.getNode(); 3068 } 3069 3070 // Lower a logical operation on i1 values into a GPR sequence if possible. 3071 // The result can be kept in a GPR if requested. 3072 // Three types of inputs can be handled: 3073 // - SETCC 3074 // - TRUNCATE 3075 // - Logical operation (AND/OR/XOR) 3076 // There is also a special case that is handled (namely a complement operation 3077 // achieved with xor %a, -1). 3078 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { 3079 assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && 3080 "Can only handle logic operations here."); 3081 assert(LogicOp.getValueType() == MVT::i1 && 3082 "Can only handle logic operations on i1 values here."); 3083 SDLoc dl(LogicOp); 3084 SDValue LHS, RHS; 3085 3086 // Special case: xor %a, -1 3087 bool IsBitwiseNegation = isBitwiseNot(LogicOp); 3088 3089 // Produces a GPR sequence for each operand of the binary logic operation. 3090 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates 3091 // the value in a GPR and for logic operations, it will recursively produce 3092 // a GPR sequence for the operation. 3093 auto getLogicOperand = [&] (SDValue Operand) -> SDValue { 3094 unsigned OperandOpcode = Operand.getOpcode(); 3095 if (OperandOpcode == ISD::SETCC) 3096 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); 3097 else if (OperandOpcode == ISD::TRUNCATE) { 3098 SDValue InputOp = Operand.getOperand(0); 3099 EVT InVT = InputOp.getValueType(); 3100 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : 3101 PPC::RLDICL, dl, InVT, InputOp, 3102 S->getI64Imm(0, dl), 3103 S->getI64Imm(63, dl)), 0); 3104 } else if (ISD::isBitwiseLogicOp(OperandOpcode)) 3105 return computeLogicOpInGPR(Operand); 3106 return SDValue(); 3107 }; 3108 LHS = getLogicOperand(LogicOp.getOperand(0)); 3109 RHS = getLogicOperand(LogicOp.getOperand(1)); 3110 3111 // If a GPR sequence can't be produced for the LHS we can't proceed. 3112 // Not producing a GPR sequence for the RHS is only a problem if this isn't 3113 // a bitwise negation operation. 3114 if (!LHS || (!RHS && !IsBitwiseNegation)) 3115 return SDValue(); 3116 3117 NumLogicOpsOnComparison++; 3118 3119 // We will use the inputs as 64-bit values. 3120 if (LHS.getValueType() == MVT::i32) 3121 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); 3122 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) 3123 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); 3124 3125 unsigned NewOpc; 3126 switch (LogicOp.getOpcode()) { 3127 default: llvm_unreachable("Unknown logic operation."); 3128 case ISD::AND: NewOpc = PPC::AND8; break; 3129 case ISD::OR: NewOpc = PPC::OR8; break; 3130 case ISD::XOR: NewOpc = PPC::XOR8; break; 3131 } 3132 3133 if (IsBitwiseNegation) { 3134 RHS = S->getI64Imm(1, dl); 3135 NewOpc = PPC::XORI8; 3136 } 3137 3138 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); 3139 3140 } 3141 3142 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. 3143 /// Otherwise just reinterpret it as a 64-bit value. 3144 /// Useful when emitting comparison code for 32-bit values without using 3145 /// the compare instruction (which only considers the lower 32-bits). 3146 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { 3147 assert(Input.getValueType() == MVT::i32 && 3148 "Can only sign-extend 32-bit values here."); 3149 unsigned Opc = Input.getOpcode(); 3150 3151 // The value was sign extended and then truncated to 32-bits. No need to 3152 // sign extend it again. 3153 if (Opc == ISD::TRUNCATE && 3154 (Input.getOperand(0).getOpcode() == ISD::AssertSext || 3155 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) 3156 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3157 3158 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3159 // The input is a sign-extending load. All ppc sign-extending loads 3160 // sign-extend to the full 64-bits. 3161 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) 3162 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3163 3164 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3165 // We don't sign-extend constants. 3166 if (InputConst) 3167 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3168 3169 SDLoc dl(Input); 3170 SignExtensionsAdded++; 3171 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, 3172 MVT::i64, Input), 0); 3173 } 3174 3175 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. 3176 /// Otherwise just reinterpret it as a 64-bit value. 3177 /// Useful when emitting comparison code for 32-bit values without using 3178 /// the compare instruction (which only considers the lower 32-bits). 3179 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { 3180 assert(Input.getValueType() == MVT::i32 && 3181 "Can only zero-extend 32-bit values here."); 3182 unsigned Opc = Input.getOpcode(); 3183 3184 // The only condition under which we can omit the actual extend instruction: 3185 // - The value is a positive constant 3186 // - The value comes from a load that isn't a sign-extending load 3187 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. 3188 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && 3189 (Input.getOperand(0).getOpcode() == ISD::AssertZext || 3190 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); 3191 if (IsTruncateOfZExt) 3192 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3193 3194 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3195 if (InputConst && InputConst->getSExtValue() >= 0) 3196 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3197 3198 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3199 // The input is a load that doesn't sign-extend (it will be zero-extended). 3200 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) 3201 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3202 3203 // None of the above, need to zero-extend. 3204 SDLoc dl(Input); 3205 ZeroExtensionsAdded++; 3206 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, 3207 S->getI64Imm(0, dl), 3208 S->getI64Imm(32, dl)), 0); 3209 } 3210 3211 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of 3212 // course not actual zero/sign extensions that will generate machine code, 3213 // they're just a way to reinterpret a 32 bit value in a register as a 3214 // 64 bit value and vice-versa. 3215 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, 3216 ExtOrTruncConversion Conv) { 3217 SDLoc dl(NatWidthRes); 3218 3219 // For reinterpreting 32-bit values as 64 bit values, we generate 3220 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> 3221 if (Conv == ExtOrTruncConversion::Ext) { 3222 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); 3223 SDValue SubRegIdx = 3224 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3225 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, 3226 ImDef, NatWidthRes, SubRegIdx), 0); 3227 } 3228 3229 assert(Conv == ExtOrTruncConversion::Trunc && 3230 "Unknown convertion between 32 and 64 bit values."); 3231 // For reinterpreting 64-bit values as 32-bit values, we just need to 3232 // EXTRACT_SUBREG (i.e. extract the low word). 3233 SDValue SubRegIdx = 3234 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3235 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, 3236 NatWidthRes, SubRegIdx), 0); 3237 } 3238 3239 // Produce a GPR sequence for compound comparisons (<=, >=) against zero. 3240 // Handle both zero-extensions and sign-extensions. 3241 SDValue 3242 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 3243 ZeroCompare CmpTy) { 3244 EVT InVT = LHS.getValueType(); 3245 bool Is32Bit = InVT == MVT::i32; 3246 SDValue ToExtend; 3247 3248 // Produce the value that needs to be either zero or sign extended. 3249 switch (CmpTy) { 3250 case ZeroCompare::GEZExt: 3251 case ZeroCompare::GESExt: 3252 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, 3253 dl, InVT, LHS, LHS), 0); 3254 break; 3255 case ZeroCompare::LEZExt: 3256 case ZeroCompare::LESExt: { 3257 if (Is32Bit) { 3258 // Upper 32 bits cannot be undefined for this sequence. 3259 LHS = signExtendInputIfNeeded(LHS); 3260 SDValue Neg = 3261 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3262 ToExtend = 3263 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3264 Neg, S->getI64Imm(1, dl), 3265 S->getI64Imm(63, dl)), 0); 3266 } else { 3267 SDValue Addi = 3268 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3269 S->getI64Imm(~0ULL, dl)), 0); 3270 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 3271 Addi, LHS), 0); 3272 } 3273 break; 3274 } 3275 } 3276 3277 // For 64-bit sequences, the extensions are the same for the GE/LE cases. 3278 if (!Is32Bit && 3279 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) 3280 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3281 ToExtend, S->getI64Imm(1, dl), 3282 S->getI64Imm(63, dl)), 0); 3283 if (!Is32Bit && 3284 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) 3285 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, 3286 S->getI64Imm(63, dl)), 0); 3287 3288 assert(Is32Bit && "Should have handled the 32-bit sequences above."); 3289 // For 32-bit sequences, the extensions differ between GE/LE cases. 3290 switch (CmpTy) { 3291 case ZeroCompare::GEZExt: { 3292 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3293 S->getI32Imm(31, dl) }; 3294 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3295 ShiftOps), 0); 3296 } 3297 case ZeroCompare::GESExt: 3298 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, 3299 S->getI32Imm(31, dl)), 0); 3300 case ZeroCompare::LEZExt: 3301 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, 3302 S->getI32Imm(1, dl)), 0); 3303 case ZeroCompare::LESExt: 3304 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, 3305 S->getI32Imm(-1, dl)), 0); 3306 } 3307 3308 // The above case covers all the enumerators so it can't have a default clause 3309 // to avoid compiler warnings. 3310 llvm_unreachable("Unknown zero-comparison type."); 3311 } 3312 3313 /// Produces a zero-extended result of comparing two 32-bit values according to 3314 /// the passed condition code. 3315 SDValue 3316 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, 3317 ISD::CondCode CC, 3318 int64_t RHSValue, SDLoc dl) { 3319 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3320 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) 3321 return SDValue(); 3322 bool IsRHSZero = RHSValue == 0; 3323 bool IsRHSOne = RHSValue == 1; 3324 bool IsRHSNegOne = RHSValue == -1LL; 3325 switch (CC) { 3326 default: return SDValue(); 3327 case ISD::SETEQ: { 3328 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) 3329 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) 3330 SDValue Xor = IsRHSZero ? LHS : 3331 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3332 SDValue Clz = 3333 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3334 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3335 S->getI32Imm(31, dl) }; 3336 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3337 ShiftOps), 0); 3338 } 3339 case ISD::SETNE: { 3340 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) 3341 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) 3342 SDValue Xor = IsRHSZero ? LHS : 3343 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3344 SDValue Clz = 3345 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3346 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3347 S->getI32Imm(31, dl) }; 3348 SDValue Shift = 3349 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3350 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3351 S->getI32Imm(1, dl)), 0); 3352 } 3353 case ISD::SETGE: { 3354 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) 3355 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) 3356 if(IsRHSZero) 3357 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3358 3359 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3360 // by swapping inputs and falling through. 3361 std::swap(LHS, RHS); 3362 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3363 IsRHSZero = RHSConst && RHSConst->isZero(); 3364 [[fallthrough]]; 3365 } 3366 case ISD::SETLE: { 3367 if (CmpInGPR == ICGPR_NonExtIn) 3368 return SDValue(); 3369 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) 3370 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) 3371 if(IsRHSZero) { 3372 if (CmpInGPR == ICGPR_NonExtIn) 3373 return SDValue(); 3374 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3375 } 3376 3377 // The upper 32-bits of the register can't be undefined for this sequence. 3378 LHS = signExtendInputIfNeeded(LHS); 3379 RHS = signExtendInputIfNeeded(RHS); 3380 SDValue Sub = 3381 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3382 SDValue Shift = 3383 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, 3384 S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 3385 0); 3386 return 3387 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, 3388 MVT::i64, Shift, S->getI32Imm(1, dl)), 0); 3389 } 3390 case ISD::SETGT: { 3391 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) 3392 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) 3393 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) 3394 // Handle SETLT -1 (which is equivalent to SETGE 0). 3395 if (IsRHSNegOne) 3396 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3397 3398 if (IsRHSZero) { 3399 if (CmpInGPR == ICGPR_NonExtIn) 3400 return SDValue(); 3401 // The upper 32-bits of the register can't be undefined for this sequence. 3402 LHS = signExtendInputIfNeeded(LHS); 3403 RHS = signExtendInputIfNeeded(RHS); 3404 SDValue Neg = 3405 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3406 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3407 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); 3408 } 3409 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3410 // (%b < %a) by swapping inputs and falling through. 3411 std::swap(LHS, RHS); 3412 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3413 IsRHSZero = RHSConst && RHSConst->isZero(); 3414 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3415 [[fallthrough]]; 3416 } 3417 case ISD::SETLT: { 3418 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) 3419 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) 3420 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) 3421 // Handle SETLT 1 (which is equivalent to SETLE 0). 3422 if (IsRHSOne) { 3423 if (CmpInGPR == ICGPR_NonExtIn) 3424 return SDValue(); 3425 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3426 } 3427 3428 if (IsRHSZero) { 3429 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3430 S->getI32Imm(31, dl) }; 3431 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3432 ShiftOps), 0); 3433 } 3434 3435 if (CmpInGPR == ICGPR_NonExtIn) 3436 return SDValue(); 3437 // The upper 32-bits of the register can't be undefined for this sequence. 3438 LHS = signExtendInputIfNeeded(LHS); 3439 RHS = signExtendInputIfNeeded(RHS); 3440 SDValue SUBFNode = 3441 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3442 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3443 SUBFNode, S->getI64Imm(1, dl), 3444 S->getI64Imm(63, dl)), 0); 3445 } 3446 case ISD::SETUGE: 3447 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) 3448 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) 3449 std::swap(LHS, RHS); 3450 [[fallthrough]]; 3451 case ISD::SETULE: { 3452 if (CmpInGPR == ICGPR_NonExtIn) 3453 return SDValue(); 3454 // The upper 32-bits of the register can't be undefined for this sequence. 3455 LHS = zeroExtendInputIfNeeded(LHS); 3456 RHS = zeroExtendInputIfNeeded(RHS); 3457 SDValue Subtract = 3458 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3459 SDValue SrdiNode = 3460 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3461 Subtract, S->getI64Imm(1, dl), 3462 S->getI64Imm(63, dl)), 0); 3463 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, 3464 S->getI32Imm(1, dl)), 0); 3465 } 3466 case ISD::SETUGT: 3467 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) 3468 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) 3469 std::swap(LHS, RHS); 3470 [[fallthrough]]; 3471 case ISD::SETULT: { 3472 if (CmpInGPR == ICGPR_NonExtIn) 3473 return SDValue(); 3474 // The upper 32-bits of the register can't be undefined for this sequence. 3475 LHS = zeroExtendInputIfNeeded(LHS); 3476 RHS = zeroExtendInputIfNeeded(RHS); 3477 SDValue Subtract = 3478 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3479 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3480 Subtract, S->getI64Imm(1, dl), 3481 S->getI64Imm(63, dl)), 0); 3482 } 3483 } 3484 } 3485 3486 /// Produces a sign-extended result of comparing two 32-bit values according to 3487 /// the passed condition code. 3488 SDValue 3489 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, 3490 ISD::CondCode CC, 3491 int64_t RHSValue, SDLoc dl) { 3492 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3493 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) 3494 return SDValue(); 3495 bool IsRHSZero = RHSValue == 0; 3496 bool IsRHSOne = RHSValue == 1; 3497 bool IsRHSNegOne = RHSValue == -1LL; 3498 3499 switch (CC) { 3500 default: return SDValue(); 3501 case ISD::SETEQ: { 3502 // (sext (setcc %a, %b, seteq)) -> 3503 // (ashr (shl (ctlz (xor %a, %b)), 58), 63) 3504 // (sext (setcc %a, 0, seteq)) -> 3505 // (ashr (shl (ctlz %a), 58), 63) 3506 SDValue CountInput = IsRHSZero ? LHS : 3507 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3508 SDValue Cntlzw = 3509 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); 3510 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), 3511 S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3512 SDValue Slwi = 3513 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); 3514 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); 3515 } 3516 case ISD::SETNE: { 3517 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and 3518 // flip the bit, finally take 2's complement. 3519 // (sext (setcc %a, %b, setne)) -> 3520 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) 3521 // Same as above, but the first xor is not needed. 3522 // (sext (setcc %a, 0, setne)) -> 3523 // (neg (xor (lshr (ctlz %a), 5), 1)) 3524 SDValue Xor = IsRHSZero ? LHS : 3525 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3526 SDValue Clz = 3527 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3528 SDValue ShiftOps[] = 3529 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3530 SDValue Shift = 3531 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3532 SDValue Xori = 3533 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3534 S->getI32Imm(1, dl)), 0); 3535 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); 3536 } 3537 case ISD::SETGE: { 3538 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) 3539 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) 3540 if (IsRHSZero) 3541 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3542 3543 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3544 // by swapping inputs and falling through. 3545 std::swap(LHS, RHS); 3546 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3547 IsRHSZero = RHSConst && RHSConst->isZero(); 3548 [[fallthrough]]; 3549 } 3550 case ISD::SETLE: { 3551 if (CmpInGPR == ICGPR_NonExtIn) 3552 return SDValue(); 3553 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) 3554 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) 3555 if (IsRHSZero) 3556 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3557 3558 // The upper 32-bits of the register can't be undefined for this sequence. 3559 LHS = signExtendInputIfNeeded(LHS); 3560 RHS = signExtendInputIfNeeded(RHS); 3561 SDValue SUBFNode = 3562 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, 3563 LHS, RHS), 0); 3564 SDValue Srdi = 3565 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3566 SUBFNode, S->getI64Imm(1, dl), 3567 S->getI64Imm(63, dl)), 0); 3568 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, 3569 S->getI32Imm(-1, dl)), 0); 3570 } 3571 case ISD::SETGT: { 3572 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) 3573 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) 3574 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) 3575 if (IsRHSNegOne) 3576 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3577 if (IsRHSZero) { 3578 if (CmpInGPR == ICGPR_NonExtIn) 3579 return SDValue(); 3580 // The upper 32-bits of the register can't be undefined for this sequence. 3581 LHS = signExtendInputIfNeeded(LHS); 3582 RHS = signExtendInputIfNeeded(RHS); 3583 SDValue Neg = 3584 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3585 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, 3586 S->getI64Imm(63, dl)), 0); 3587 } 3588 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3589 // (%b < %a) by swapping inputs and falling through. 3590 std::swap(LHS, RHS); 3591 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3592 IsRHSZero = RHSConst && RHSConst->isZero(); 3593 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3594 [[fallthrough]]; 3595 } 3596 case ISD::SETLT: { 3597 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) 3598 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) 3599 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) 3600 if (IsRHSOne) { 3601 if (CmpInGPR == ICGPR_NonExtIn) 3602 return SDValue(); 3603 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3604 } 3605 if (IsRHSZero) 3606 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, 3607 S->getI32Imm(31, dl)), 0); 3608 3609 if (CmpInGPR == ICGPR_NonExtIn) 3610 return SDValue(); 3611 // The upper 32-bits of the register can't be undefined for this sequence. 3612 LHS = signExtendInputIfNeeded(LHS); 3613 RHS = signExtendInputIfNeeded(RHS); 3614 SDValue SUBFNode = 3615 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3616 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3617 SUBFNode, S->getI64Imm(63, dl)), 0); 3618 } 3619 case ISD::SETUGE: 3620 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) 3621 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) 3622 std::swap(LHS, RHS); 3623 [[fallthrough]]; 3624 case ISD::SETULE: { 3625 if (CmpInGPR == ICGPR_NonExtIn) 3626 return SDValue(); 3627 // The upper 32-bits of the register can't be undefined for this sequence. 3628 LHS = zeroExtendInputIfNeeded(LHS); 3629 RHS = zeroExtendInputIfNeeded(RHS); 3630 SDValue Subtract = 3631 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3632 SDValue Shift = 3633 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, 3634 S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 3635 0); 3636 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, 3637 S->getI32Imm(-1, dl)), 0); 3638 } 3639 case ISD::SETUGT: 3640 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) 3641 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) 3642 std::swap(LHS, RHS); 3643 [[fallthrough]]; 3644 case ISD::SETULT: { 3645 if (CmpInGPR == ICGPR_NonExtIn) 3646 return SDValue(); 3647 // The upper 32-bits of the register can't be undefined for this sequence. 3648 LHS = zeroExtendInputIfNeeded(LHS); 3649 RHS = zeroExtendInputIfNeeded(RHS); 3650 SDValue Subtract = 3651 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3652 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3653 Subtract, S->getI64Imm(63, dl)), 0); 3654 } 3655 } 3656 } 3657 3658 /// Produces a zero-extended result of comparing two 64-bit values according to 3659 /// the passed condition code. 3660 SDValue 3661 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, 3662 ISD::CondCode CC, 3663 int64_t RHSValue, SDLoc dl) { 3664 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3665 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) 3666 return SDValue(); 3667 bool IsRHSZero = RHSValue == 0; 3668 bool IsRHSOne = RHSValue == 1; 3669 bool IsRHSNegOne = RHSValue == -1LL; 3670 switch (CC) { 3671 default: return SDValue(); 3672 case ISD::SETEQ: { 3673 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) 3674 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) 3675 SDValue Xor = IsRHSZero ? LHS : 3676 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3677 SDValue Clz = 3678 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); 3679 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, 3680 S->getI64Imm(58, dl), 3681 S->getI64Imm(63, dl)), 0); 3682 } 3683 case ISD::SETNE: { 3684 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3685 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) 3686 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3687 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3688 SDValue Xor = IsRHSZero ? LHS : 3689 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3690 SDValue AC = 3691 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3692 Xor, S->getI32Imm(~0U, dl)), 0); 3693 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, 3694 Xor, AC.getValue(1)), 0); 3695 } 3696 case ISD::SETGE: { 3697 // {subc.reg, subc.CA} = (subcarry %a, %b) 3698 // (zext (setcc %a, %b, setge)) -> 3699 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) 3700 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) 3701 if (IsRHSZero) 3702 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3703 std::swap(LHS, RHS); 3704 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3705 IsRHSZero = RHSConst && RHSConst->isZero(); 3706 [[fallthrough]]; 3707 } 3708 case ISD::SETLE: { 3709 // {subc.reg, subc.CA} = (subcarry %b, %a) 3710 // (zext (setcc %a, %b, setge)) -> 3711 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) 3712 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) 3713 if (IsRHSZero) 3714 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3715 SDValue ShiftL = 3716 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3717 S->getI64Imm(1, dl), 3718 S->getI64Imm(63, dl)), 0); 3719 SDValue ShiftR = 3720 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3721 S->getI64Imm(63, dl)), 0); 3722 SDValue SubtractCarry = 3723 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3724 LHS, RHS), 1); 3725 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3726 ShiftR, ShiftL, SubtractCarry), 0); 3727 } 3728 case ISD::SETGT: { 3729 // {subc.reg, subc.CA} = (subcarry %b, %a) 3730 // (zext (setcc %a, %b, setgt)) -> 3731 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3732 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) 3733 if (IsRHSNegOne) 3734 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3735 if (IsRHSZero) { 3736 SDValue Addi = 3737 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3738 S->getI64Imm(~0ULL, dl)), 0); 3739 SDValue Nor = 3740 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); 3741 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, 3742 S->getI64Imm(1, dl), 3743 S->getI64Imm(63, dl)), 0); 3744 } 3745 std::swap(LHS, RHS); 3746 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3747 IsRHSZero = RHSConst && RHSConst->isZero(); 3748 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3749 [[fallthrough]]; 3750 } 3751 case ISD::SETLT: { 3752 // {subc.reg, subc.CA} = (subcarry %a, %b) 3753 // (zext (setcc %a, %b, setlt)) -> 3754 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3755 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) 3756 if (IsRHSOne) 3757 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3758 if (IsRHSZero) 3759 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3760 S->getI64Imm(1, dl), 3761 S->getI64Imm(63, dl)), 0); 3762 SDValue SRADINode = 3763 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3764 LHS, S->getI64Imm(63, dl)), 0); 3765 SDValue SRDINode = 3766 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3767 RHS, S->getI64Imm(1, dl), 3768 S->getI64Imm(63, dl)), 0); 3769 SDValue SUBFC8Carry = 3770 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3771 RHS, LHS), 1); 3772 SDValue ADDE8Node = 3773 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3774 SRDINode, SRADINode, SUBFC8Carry), 0); 3775 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3776 ADDE8Node, S->getI64Imm(1, dl)), 0); 3777 } 3778 case ISD::SETUGE: 3779 // {subc.reg, subc.CA} = (subcarry %a, %b) 3780 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) 3781 std::swap(LHS, RHS); 3782 [[fallthrough]]; 3783 case ISD::SETULE: { 3784 // {subc.reg, subc.CA} = (subcarry %b, %a) 3785 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) 3786 SDValue SUBFC8Carry = 3787 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3788 LHS, RHS), 1); 3789 SDValue SUBFE8Node = 3790 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, 3791 LHS, LHS, SUBFC8Carry), 0); 3792 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, 3793 SUBFE8Node, S->getI64Imm(1, dl)), 0); 3794 } 3795 case ISD::SETUGT: 3796 // {subc.reg, subc.CA} = (subcarry %b, %a) 3797 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) 3798 std::swap(LHS, RHS); 3799 [[fallthrough]]; 3800 case ISD::SETULT: { 3801 // {subc.reg, subc.CA} = (subcarry %a, %b) 3802 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) 3803 SDValue SubtractCarry = 3804 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3805 RHS, LHS), 1); 3806 SDValue ExtSub = 3807 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3808 LHS, LHS, SubtractCarry), 0); 3809 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3810 ExtSub), 0); 3811 } 3812 } 3813 } 3814 3815 /// Produces a sign-extended result of comparing two 64-bit values according to 3816 /// the passed condition code. 3817 SDValue 3818 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, 3819 ISD::CondCode CC, 3820 int64_t RHSValue, SDLoc dl) { 3821 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3822 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) 3823 return SDValue(); 3824 bool IsRHSZero = RHSValue == 0; 3825 bool IsRHSOne = RHSValue == 1; 3826 bool IsRHSNegOne = RHSValue == -1LL; 3827 switch (CC) { 3828 default: return SDValue(); 3829 case ISD::SETEQ: { 3830 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3831 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) 3832 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3833 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3834 SDValue AddInput = IsRHSZero ? LHS : 3835 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3836 SDValue Addic = 3837 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3838 AddInput, S->getI32Imm(~0U, dl)), 0); 3839 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, 3840 Addic, Addic.getValue(1)), 0); 3841 } 3842 case ISD::SETNE: { 3843 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) 3844 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) 3845 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) 3846 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) 3847 SDValue Xor = IsRHSZero ? LHS : 3848 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3849 SDValue SC = 3850 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, 3851 Xor, S->getI32Imm(0, dl)), 0); 3852 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, 3853 SC, SC.getValue(1)), 0); 3854 } 3855 case ISD::SETGE: { 3856 // {subc.reg, subc.CA} = (subcarry %a, %b) 3857 // (zext (setcc %a, %b, setge)) -> 3858 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) 3859 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) 3860 if (IsRHSZero) 3861 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3862 std::swap(LHS, RHS); 3863 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3864 IsRHSZero = RHSConst && RHSConst->isZero(); 3865 [[fallthrough]]; 3866 } 3867 case ISD::SETLE: { 3868 // {subc.reg, subc.CA} = (subcarry %b, %a) 3869 // (zext (setcc %a, %b, setge)) -> 3870 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) 3871 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) 3872 if (IsRHSZero) 3873 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3874 SDValue ShiftR = 3875 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3876 S->getI64Imm(63, dl)), 0); 3877 SDValue ShiftL = 3878 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3879 S->getI64Imm(1, dl), 3880 S->getI64Imm(63, dl)), 0); 3881 SDValue SubtractCarry = 3882 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3883 LHS, RHS), 1); 3884 SDValue Adde = 3885 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3886 ShiftR, ShiftL, SubtractCarry), 0); 3887 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); 3888 } 3889 case ISD::SETGT: { 3890 // {subc.reg, subc.CA} = (subcarry %b, %a) 3891 // (zext (setcc %a, %b, setgt)) -> 3892 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3893 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) 3894 if (IsRHSNegOne) 3895 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3896 if (IsRHSZero) { 3897 SDValue Add = 3898 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3899 S->getI64Imm(-1, dl)), 0); 3900 SDValue Nor = 3901 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); 3902 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, 3903 S->getI64Imm(63, dl)), 0); 3904 } 3905 std::swap(LHS, RHS); 3906 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3907 IsRHSZero = RHSConst && RHSConst->isZero(); 3908 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3909 [[fallthrough]]; 3910 } 3911 case ISD::SETLT: { 3912 // {subc.reg, subc.CA} = (subcarry %a, %b) 3913 // (zext (setcc %a, %b, setlt)) -> 3914 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3915 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) 3916 if (IsRHSOne) 3917 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3918 if (IsRHSZero) { 3919 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, 3920 S->getI64Imm(63, dl)), 0); 3921 } 3922 SDValue SRADINode = 3923 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3924 LHS, S->getI64Imm(63, dl)), 0); 3925 SDValue SRDINode = 3926 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3927 RHS, S->getI64Imm(1, dl), 3928 S->getI64Imm(63, dl)), 0); 3929 SDValue SUBFC8Carry = 3930 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3931 RHS, LHS), 1); 3932 SDValue ADDE8Node = 3933 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, 3934 SRDINode, SRADINode, SUBFC8Carry), 0); 3935 SDValue XORI8Node = 3936 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3937 ADDE8Node, S->getI64Imm(1, dl)), 0); 3938 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3939 XORI8Node), 0); 3940 } 3941 case ISD::SETUGE: 3942 // {subc.reg, subc.CA} = (subcarry %a, %b) 3943 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) 3944 std::swap(LHS, RHS); 3945 [[fallthrough]]; 3946 case ISD::SETULE: { 3947 // {subc.reg, subc.CA} = (subcarry %b, %a) 3948 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) 3949 SDValue SubtractCarry = 3950 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3951 LHS, RHS), 1); 3952 SDValue ExtSub = 3953 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, 3954 LHS, SubtractCarry), 0); 3955 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, 3956 ExtSub, ExtSub), 0); 3957 } 3958 case ISD::SETUGT: 3959 // {subc.reg, subc.CA} = (subcarry %b, %a) 3960 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) 3961 std::swap(LHS, RHS); 3962 [[fallthrough]]; 3963 case ISD::SETULT: { 3964 // {subc.reg, subc.CA} = (subcarry %a, %b) 3965 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) 3966 SDValue SubCarry = 3967 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3968 RHS, LHS), 1); 3969 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3970 LHS, LHS, SubCarry), 0); 3971 } 3972 } 3973 } 3974 3975 /// Do all uses of this SDValue need the result in a GPR? 3976 /// This is meant to be used on values that have type i1 since 3977 /// it is somewhat meaningless to ask if values of other types 3978 /// should be kept in GPR's. 3979 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { 3980 assert(Compare.getOpcode() == ISD::SETCC && 3981 "An ISD::SETCC node required here."); 3982 3983 // For values that have a single use, the caller should obviously already have 3984 // checked if that use is an extending use. We check the other uses here. 3985 if (Compare.hasOneUse()) 3986 return true; 3987 // We want the value in a GPR if it is being extended, used for a select, or 3988 // used in logical operations. 3989 for (auto *CompareUse : Compare.getNode()->uses()) 3990 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && 3991 CompareUse->getOpcode() != ISD::ZERO_EXTEND && 3992 CompareUse->getOpcode() != ISD::SELECT && 3993 !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) { 3994 OmittedForNonExtendUses++; 3995 return false; 3996 } 3997 return true; 3998 } 3999 4000 /// Returns an equivalent of a SETCC node but with the result the same width as 4001 /// the inputs. This can also be used for SELECT_CC if either the true or false 4002 /// values is a power of two while the other is zero. 4003 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, 4004 SetccInGPROpts ConvOpts) { 4005 assert((Compare.getOpcode() == ISD::SETCC || 4006 Compare.getOpcode() == ISD::SELECT_CC) && 4007 "An ISD::SETCC node required here."); 4008 4009 // Don't convert this comparison to a GPR sequence because there are uses 4010 // of the i1 result (i.e. uses that require the result in the CR). 4011 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) 4012 return SDValue(); 4013 4014 SDValue LHS = Compare.getOperand(0); 4015 SDValue RHS = Compare.getOperand(1); 4016 4017 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. 4018 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; 4019 ISD::CondCode CC = 4020 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); 4021 EVT InputVT = LHS.getValueType(); 4022 if (InputVT != MVT::i32 && InputVT != MVT::i64) 4023 return SDValue(); 4024 4025 if (ConvOpts == SetccInGPROpts::ZExtInvert || 4026 ConvOpts == SetccInGPROpts::SExtInvert) 4027 CC = ISD::getSetCCInverse(CC, InputVT); 4028 4029 bool Inputs32Bit = InputVT == MVT::i32; 4030 4031 SDLoc dl(Compare); 4032 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 4033 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; 4034 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || 4035 ConvOpts == SetccInGPROpts::SExtInvert; 4036 4037 if (IsSext && Inputs32Bit) 4038 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 4039 else if (Inputs32Bit) 4040 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 4041 else if (IsSext) 4042 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 4043 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 4044 } 4045 4046 } // end anonymous namespace 4047 4048 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { 4049 if (N->getValueType(0) != MVT::i32 && 4050 N->getValueType(0) != MVT::i64) 4051 return false; 4052 4053 // This optimization will emit code that assumes 64-bit registers 4054 // so we don't want to run it in 32-bit mode. Also don't run it 4055 // on functions that are not to be optimized. 4056 if (TM.getOptLevel() == CodeGenOptLevel::None || !TM.isPPC64()) 4057 return false; 4058 4059 // For POWER10, it is more profitable to use the set boolean extension 4060 // instructions rather than the integer compare elimination codegen. 4061 // Users can override this via the command line option, `--ppc-gpr-icmps`. 4062 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1()) 4063 return false; 4064 4065 switch (N->getOpcode()) { 4066 default: break; 4067 case ISD::ZERO_EXTEND: 4068 case ISD::SIGN_EXTEND: 4069 case ISD::AND: 4070 case ISD::OR: 4071 case ISD::XOR: { 4072 IntegerCompareEliminator ICmpElim(CurDAG, this); 4073 if (SDNode *New = ICmpElim.Select(N)) { 4074 ReplaceNode(N, New); 4075 return true; 4076 } 4077 } 4078 } 4079 return false; 4080 } 4081 4082 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 4083 if (N->getValueType(0) != MVT::i32 && 4084 N->getValueType(0) != MVT::i64) 4085 return false; 4086 4087 if (!UseBitPermRewriter) 4088 return false; 4089 4090 switch (N->getOpcode()) { 4091 default: break; 4092 case ISD::SRL: 4093 // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that 4094 // uses the BRH instruction. 4095 if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 && 4096 N->getOperand(0).getOpcode() == ISD::BSWAP) { 4097 auto &OpRight = N->getOperand(1); 4098 ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight); 4099 if (SRLConst && SRLConst->getSExtValue() == 16) 4100 return false; 4101 } 4102 [[fallthrough]]; 4103 case ISD::ROTL: 4104 case ISD::SHL: 4105 case ISD::AND: 4106 case ISD::OR: { 4107 BitPermutationSelector BPS(CurDAG); 4108 if (SDNode *New = BPS.Select(N)) { 4109 ReplaceNode(N, New); 4110 return true; 4111 } 4112 return false; 4113 } 4114 } 4115 4116 return false; 4117 } 4118 4119 /// SelectCC - Select a comparison of the specified values with the specified 4120 /// condition code, returning the CR# of the expression. 4121 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 4122 const SDLoc &dl, SDValue Chain) { 4123 // Always select the LHS. 4124 unsigned Opc; 4125 4126 if (LHS.getValueType() == MVT::i32) { 4127 unsigned Imm; 4128 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 4129 if (isInt32Immediate(RHS, Imm)) { 4130 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 4131 if (isUInt<16>(Imm)) 4132 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 4133 getI32Imm(Imm & 0xFFFF, dl)), 4134 0); 4135 // If this is a 16-bit signed immediate, fold it. 4136 if (isInt<16>((int)Imm)) 4137 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 4138 getI32Imm(Imm & 0xFFFF, dl)), 4139 0); 4140 4141 // For non-equality comparisons, the default code would materialize the 4142 // constant, then compare against it, like this: 4143 // lis r2, 4660 4144 // ori r2, r2, 22136 4145 // cmpw cr0, r3, r2 4146 // Since we are just comparing for equality, we can emit this instead: 4147 // xoris r0,r3,0x1234 4148 // cmplwi cr0,r0,0x5678 4149 // beq cr0,L6 4150 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 4151 getI32Imm(Imm >> 16, dl)), 0); 4152 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 4153 getI32Imm(Imm & 0xFFFF, dl)), 0); 4154 } 4155 Opc = PPC::CMPLW; 4156 } else if (ISD::isUnsignedIntSetCC(CC)) { 4157 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 4158 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 4159 getI32Imm(Imm & 0xFFFF, dl)), 0); 4160 Opc = PPC::CMPLW; 4161 } else { 4162 int16_t SImm; 4163 if (isIntS16Immediate(RHS, SImm)) 4164 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 4165 getI32Imm((int)SImm & 0xFFFF, 4166 dl)), 4167 0); 4168 Opc = PPC::CMPW; 4169 } 4170 } else if (LHS.getValueType() == MVT::i64) { 4171 uint64_t Imm; 4172 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 4173 if (isInt64Immediate(RHS.getNode(), Imm)) { 4174 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 4175 if (isUInt<16>(Imm)) 4176 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4177 getI32Imm(Imm & 0xFFFF, dl)), 4178 0); 4179 // If this is a 16-bit signed immediate, fold it. 4180 if (isInt<16>(Imm)) 4181 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4182 getI32Imm(Imm & 0xFFFF, dl)), 4183 0); 4184 4185 // For non-equality comparisons, the default code would materialize the 4186 // constant, then compare against it, like this: 4187 // lis r2, 4660 4188 // ori r2, r2, 22136 4189 // cmpd cr0, r3, r2 4190 // Since we are just comparing for equality, we can emit this instead: 4191 // xoris r0,r3,0x1234 4192 // cmpldi cr0,r0,0x5678 4193 // beq cr0,L6 4194 if (isUInt<32>(Imm)) { 4195 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 4196 getI64Imm(Imm >> 16, dl)), 0); 4197 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 4198 getI64Imm(Imm & 0xFFFF, dl)), 4199 0); 4200 } 4201 } 4202 Opc = PPC::CMPLD; 4203 } else if (ISD::isUnsignedIntSetCC(CC)) { 4204 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 4205 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4206 getI64Imm(Imm & 0xFFFF, dl)), 0); 4207 Opc = PPC::CMPLD; 4208 } else { 4209 int16_t SImm; 4210 if (isIntS16Immediate(RHS, SImm)) 4211 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4212 getI64Imm(SImm & 0xFFFF, dl)), 4213 0); 4214 Opc = PPC::CMPD; 4215 } 4216 } else if (LHS.getValueType() == MVT::f32) { 4217 if (Subtarget->hasSPE()) { 4218 switch (CC) { 4219 default: 4220 case ISD::SETEQ: 4221 case ISD::SETNE: 4222 Opc = PPC::EFSCMPEQ; 4223 break; 4224 case ISD::SETLT: 4225 case ISD::SETGE: 4226 case ISD::SETOLT: 4227 case ISD::SETOGE: 4228 case ISD::SETULT: 4229 case ISD::SETUGE: 4230 Opc = PPC::EFSCMPLT; 4231 break; 4232 case ISD::SETGT: 4233 case ISD::SETLE: 4234 case ISD::SETOGT: 4235 case ISD::SETOLE: 4236 case ISD::SETUGT: 4237 case ISD::SETULE: 4238 Opc = PPC::EFSCMPGT; 4239 break; 4240 } 4241 } else 4242 Opc = PPC::FCMPUS; 4243 } else if (LHS.getValueType() == MVT::f64) { 4244 if (Subtarget->hasSPE()) { 4245 switch (CC) { 4246 default: 4247 case ISD::SETEQ: 4248 case ISD::SETNE: 4249 Opc = PPC::EFDCMPEQ; 4250 break; 4251 case ISD::SETLT: 4252 case ISD::SETGE: 4253 case ISD::SETOLT: 4254 case ISD::SETOGE: 4255 case ISD::SETULT: 4256 case ISD::SETUGE: 4257 Opc = PPC::EFDCMPLT; 4258 break; 4259 case ISD::SETGT: 4260 case ISD::SETLE: 4261 case ISD::SETOGT: 4262 case ISD::SETOLE: 4263 case ISD::SETUGT: 4264 case ISD::SETULE: 4265 Opc = PPC::EFDCMPGT; 4266 break; 4267 } 4268 } else 4269 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 4270 } else { 4271 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); 4272 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector"); 4273 Opc = PPC::XSCMPUQP; 4274 } 4275 if (Chain) 4276 return SDValue( 4277 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain), 4278 0); 4279 else 4280 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 4281 } 4282 4283 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, 4284 const PPCSubtarget *Subtarget) { 4285 // For SPE instructions, the result is in GT bit of the CR 4286 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); 4287 4288 switch (CC) { 4289 case ISD::SETUEQ: 4290 case ISD::SETONE: 4291 case ISD::SETOLE: 4292 case ISD::SETOGE: 4293 llvm_unreachable("Should be lowered by legalize!"); 4294 default: llvm_unreachable("Unknown condition!"); 4295 case ISD::SETOEQ: 4296 case ISD::SETEQ: 4297 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; 4298 case ISD::SETUNE: 4299 case ISD::SETNE: 4300 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; 4301 case ISD::SETOLT: 4302 case ISD::SETLT: 4303 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; 4304 case ISD::SETULE: 4305 case ISD::SETLE: 4306 return PPC::PRED_LE; 4307 case ISD::SETOGT: 4308 case ISD::SETGT: 4309 return PPC::PRED_GT; 4310 case ISD::SETUGE: 4311 case ISD::SETGE: 4312 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; 4313 case ISD::SETO: return PPC::PRED_NU; 4314 case ISD::SETUO: return PPC::PRED_UN; 4315 // These two are invalid for floating point. Assume we have int. 4316 case ISD::SETULT: return PPC::PRED_LT; 4317 case ISD::SETUGT: return PPC::PRED_GT; 4318 } 4319 } 4320 4321 /// getCRIdxForSetCC - Return the index of the condition register field 4322 /// associated with the SetCC condition, and whether or not the field is 4323 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 4324 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 4325 Invert = false; 4326 switch (CC) { 4327 default: llvm_unreachable("Unknown condition!"); 4328 case ISD::SETOLT: 4329 case ISD::SETLT: return 0; // Bit #0 = SETOLT 4330 case ISD::SETOGT: 4331 case ISD::SETGT: return 1; // Bit #1 = SETOGT 4332 case ISD::SETOEQ: 4333 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 4334 case ISD::SETUO: return 3; // Bit #3 = SETUO 4335 case ISD::SETUGE: 4336 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 4337 case ISD::SETULE: 4338 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 4339 case ISD::SETUNE: 4340 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 4341 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 4342 case ISD::SETUEQ: 4343 case ISD::SETOGE: 4344 case ISD::SETOLE: 4345 case ISD::SETONE: 4346 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 4347 // These are invalid for floating point. Assume integer. 4348 case ISD::SETULT: return 0; 4349 case ISD::SETUGT: return 1; 4350 } 4351 } 4352 4353 // getVCmpInst: return the vector compare instruction for the specified 4354 // vector type and condition code. Since this is for altivec specific code, 4355 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128, 4356 // and v4f32). 4357 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 4358 bool HasVSX, bool &Swap, bool &Negate) { 4359 Swap = false; 4360 Negate = false; 4361 4362 if (VecVT.isFloatingPoint()) { 4363 /* Handle some cases by swapping input operands. */ 4364 switch (CC) { 4365 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 4366 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4367 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 4368 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 4369 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4370 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 4371 default: break; 4372 } 4373 /* Handle some cases by negating the result. */ 4374 switch (CC) { 4375 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4376 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 4377 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 4378 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 4379 default: break; 4380 } 4381 /* We have instructions implementing the remaining cases. */ 4382 switch (CC) { 4383 case ISD::SETEQ: 4384 case ISD::SETOEQ: 4385 if (VecVT == MVT::v4f32) 4386 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 4387 else if (VecVT == MVT::v2f64) 4388 return PPC::XVCMPEQDP; 4389 break; 4390 case ISD::SETGT: 4391 case ISD::SETOGT: 4392 if (VecVT == MVT::v4f32) 4393 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 4394 else if (VecVT == MVT::v2f64) 4395 return PPC::XVCMPGTDP; 4396 break; 4397 case ISD::SETGE: 4398 case ISD::SETOGE: 4399 if (VecVT == MVT::v4f32) 4400 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 4401 else if (VecVT == MVT::v2f64) 4402 return PPC::XVCMPGEDP; 4403 break; 4404 default: 4405 break; 4406 } 4407 llvm_unreachable("Invalid floating-point vector compare condition"); 4408 } else { 4409 /* Handle some cases by swapping input operands. */ 4410 switch (CC) { 4411 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 4412 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4413 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4414 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 4415 default: break; 4416 } 4417 /* Handle some cases by negating the result. */ 4418 switch (CC) { 4419 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4420 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 4421 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 4422 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 4423 default: break; 4424 } 4425 /* We have instructions implementing the remaining cases. */ 4426 switch (CC) { 4427 case ISD::SETEQ: 4428 case ISD::SETUEQ: 4429 if (VecVT == MVT::v16i8) 4430 return PPC::VCMPEQUB; 4431 else if (VecVT == MVT::v8i16) 4432 return PPC::VCMPEQUH; 4433 else if (VecVT == MVT::v4i32) 4434 return PPC::VCMPEQUW; 4435 else if (VecVT == MVT::v2i64) 4436 return PPC::VCMPEQUD; 4437 else if (VecVT == MVT::v1i128) 4438 return PPC::VCMPEQUQ; 4439 break; 4440 case ISD::SETGT: 4441 if (VecVT == MVT::v16i8) 4442 return PPC::VCMPGTSB; 4443 else if (VecVT == MVT::v8i16) 4444 return PPC::VCMPGTSH; 4445 else if (VecVT == MVT::v4i32) 4446 return PPC::VCMPGTSW; 4447 else if (VecVT == MVT::v2i64) 4448 return PPC::VCMPGTSD; 4449 else if (VecVT == MVT::v1i128) 4450 return PPC::VCMPGTSQ; 4451 break; 4452 case ISD::SETUGT: 4453 if (VecVT == MVT::v16i8) 4454 return PPC::VCMPGTUB; 4455 else if (VecVT == MVT::v8i16) 4456 return PPC::VCMPGTUH; 4457 else if (VecVT == MVT::v4i32) 4458 return PPC::VCMPGTUW; 4459 else if (VecVT == MVT::v2i64) 4460 return PPC::VCMPGTUD; 4461 else if (VecVT == MVT::v1i128) 4462 return PPC::VCMPGTUQ; 4463 break; 4464 default: 4465 break; 4466 } 4467 llvm_unreachable("Invalid integer vector compare condition"); 4468 } 4469 } 4470 4471 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 4472 SDLoc dl(N); 4473 unsigned Imm; 4474 bool IsStrict = N->isStrictFPOpcode(); 4475 ISD::CondCode CC = 4476 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get(); 4477 EVT PtrVT = 4478 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4479 bool isPPC64 = (PtrVT == MVT::i64); 4480 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4481 4482 SDValue LHS = N->getOperand(IsStrict ? 1 : 0); 4483 SDValue RHS = N->getOperand(IsStrict ? 2 : 1); 4484 4485 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) { 4486 // We can codegen setcc op, imm very efficiently compared to a brcond. 4487 // Check for those cases here. 4488 // setcc op, 0 4489 if (Imm == 0) { 4490 SDValue Op = LHS; 4491 switch (CC) { 4492 default: break; 4493 case ISD::SETEQ: { 4494 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 4495 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 4496 getI32Imm(31, dl) }; 4497 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4498 return true; 4499 } 4500 case ISD::SETNE: { 4501 if (isPPC64) break; 4502 SDValue AD = 4503 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4504 Op, getI32Imm(~0U, dl)), 0); 4505 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 4506 return true; 4507 } 4508 case ISD::SETLT: { 4509 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4510 getI32Imm(31, dl) }; 4511 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4512 return true; 4513 } 4514 case ISD::SETGT: { 4515 SDValue T = 4516 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 4517 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 4518 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 4519 getI32Imm(31, dl) }; 4520 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4521 return true; 4522 } 4523 } 4524 } else if (Imm == ~0U) { // setcc op, -1 4525 SDValue Op = LHS; 4526 switch (CC) { 4527 default: break; 4528 case ISD::SETEQ: 4529 if (isPPC64) break; 4530 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4531 Op, getI32Imm(1, dl)), 0); 4532 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 4533 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 4534 MVT::i32, 4535 getI32Imm(0, dl)), 4536 0), Op.getValue(1)); 4537 return true; 4538 case ISD::SETNE: { 4539 if (isPPC64) break; 4540 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 4541 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4542 Op, getI32Imm(~0U, dl)); 4543 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 4544 SDValue(AD, 1)); 4545 return true; 4546 } 4547 case ISD::SETLT: { 4548 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 4549 getI32Imm(1, dl)), 0); 4550 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 4551 Op), 0); 4552 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 4553 getI32Imm(31, dl) }; 4554 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4555 return true; 4556 } 4557 case ISD::SETGT: { 4558 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4559 getI32Imm(31, dl) }; 4560 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4561 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 4562 return true; 4563 } 4564 } 4565 } 4566 } 4567 4568 // Altivec Vector compare instructions do not set any CR register by default and 4569 // vector compare operations return the same type as the operands. 4570 if (!IsStrict && LHS.getValueType().isVector()) { 4571 if (Subtarget->hasSPE()) 4572 return false; 4573 4574 EVT VecVT = LHS.getValueType(); 4575 bool Swap, Negate; 4576 unsigned int VCmpInst = 4577 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); 4578 if (Swap) 4579 std::swap(LHS, RHS); 4580 4581 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 4582 if (Negate) { 4583 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 4584 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 4585 ResVT, VCmp, VCmp); 4586 return true; 4587 } 4588 4589 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 4590 return true; 4591 } 4592 4593 if (Subtarget->useCRBits()) 4594 return false; 4595 4596 bool Inv; 4597 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4598 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain); 4599 if (IsStrict) 4600 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1)); 4601 SDValue IntCR; 4602 4603 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that 4604 // The correct compare instruction is already set by SelectCC() 4605 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { 4606 Idx = 1; 4607 } 4608 4609 // Force the ccreg into CR7. 4610 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 4611 4612 SDValue InGlue; // Null incoming flag value. 4613 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 4614 InGlue).getValue(1); 4615 4616 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 4617 CCReg), 0); 4618 4619 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 4620 getI32Imm(31, dl), getI32Imm(31, dl) }; 4621 if (!Inv) { 4622 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4623 return true; 4624 } 4625 4626 // Get the specified bit. 4627 SDValue Tmp = 4628 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4629 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 4630 return true; 4631 } 4632 4633 /// Does this node represent a load/store node whose address can be represented 4634 /// with a register plus an immediate that's a multiple of \p Val: 4635 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { 4636 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); 4637 StoreSDNode *STN = dyn_cast<StoreSDNode>(N); 4638 MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N); 4639 SDValue AddrOp; 4640 if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT)) 4641 AddrOp = N->getOperand(1); 4642 else if (STN) 4643 AddrOp = STN->getOperand(2); 4644 4645 // If the address points a frame object or a frame object with an offset, 4646 // we need to check the object alignment. 4647 short Imm = 0; 4648 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( 4649 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : 4650 AddrOp)) { 4651 // If op0 is a frame index that is under aligned, we can't do it either, 4652 // because it is translated to r31 or r1 + slot + offset. We won't know the 4653 // slot number until the stack frame is finalized. 4654 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); 4655 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); 4656 if ((SlotAlign % Val) != 0) 4657 return false; 4658 4659 // If we have an offset, we need further check on the offset. 4660 if (AddrOp.getOpcode() != ISD::ADD) 4661 return true; 4662 } 4663 4664 if (AddrOp.getOpcode() == ISD::ADD) 4665 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); 4666 4667 // If the address comes from the outside, the offset will be zero. 4668 return AddrOp.getOpcode() == ISD::CopyFromReg; 4669 } 4670 4671 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 4672 // Transfer memoperands. 4673 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4674 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 4675 } 4676 4677 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, 4678 bool &NeedSwapOps, bool &IsUnCmp) { 4679 4680 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); 4681 4682 SDValue LHS = N->getOperand(0); 4683 SDValue RHS = N->getOperand(1); 4684 SDValue TrueRes = N->getOperand(2); 4685 SDValue FalseRes = N->getOperand(3); 4686 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); 4687 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && 4688 N->getSimpleValueType(0) != MVT::i32)) 4689 return false; 4690 4691 // We are looking for any of: 4692 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4693 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4694 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) 4695 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) 4696 int64_t TrueResVal = TrueConst->getSExtValue(); 4697 if ((TrueResVal < -1 || TrueResVal > 1) || 4698 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || 4699 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || 4700 (TrueResVal == 0 && 4701 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) 4702 return false; 4703 4704 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC 4705 ? FalseRes 4706 : FalseRes.getOperand(0); 4707 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC; 4708 if (SetOrSelCC.getOpcode() != ISD::SETCC && 4709 SetOrSelCC.getOpcode() != ISD::SELECT_CC) 4710 return false; 4711 4712 // Without this setb optimization, the outer SELECT_CC will be manually 4713 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass 4714 // transforms pseudo instruction to isel instruction. When there are more than 4715 // one use for result like zext/sext, with current optimization we only see 4716 // isel is replaced by setb but can't see any significant gain. Since 4717 // setb has longer latency than original isel, we should avoid this. Another 4718 // point is that setb requires comparison always kept, it can break the 4719 // opportunity to get the comparison away if we have in future. 4720 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) 4721 return false; 4722 4723 SDValue InnerLHS = SetOrSelCC.getOperand(0); 4724 SDValue InnerRHS = SetOrSelCC.getOperand(1); 4725 ISD::CondCode InnerCC = 4726 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); 4727 // If the inner comparison is a select_cc, make sure the true/false values are 4728 // 1/-1 and canonicalize it if needed. 4729 if (InnerIsSel) { 4730 ConstantSDNode *SelCCTrueConst = 4731 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); 4732 ConstantSDNode *SelCCFalseConst = 4733 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); 4734 if (!SelCCTrueConst || !SelCCFalseConst) 4735 return false; 4736 int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); 4737 int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); 4738 // The values must be -1/1 (requiring a swap) or 1/-1. 4739 if (SelCCTVal == -1 && SelCCFVal == 1) { 4740 std::swap(InnerLHS, InnerRHS); 4741 } else if (SelCCTVal != 1 || SelCCFVal != -1) 4742 return false; 4743 } 4744 4745 // Canonicalize unsigned case 4746 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { 4747 IsUnCmp = true; 4748 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; 4749 } 4750 4751 bool InnerSwapped = false; 4752 if (LHS == InnerRHS && RHS == InnerLHS) 4753 InnerSwapped = true; 4754 else if (LHS != InnerLHS || RHS != InnerRHS) 4755 return false; 4756 4757 switch (CC) { 4758 // (select_cc lhs, rhs, 0, \ 4759 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) 4760 case ISD::SETEQ: 4761 if (!InnerIsSel) 4762 return false; 4763 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) 4764 return false; 4765 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; 4766 break; 4767 4768 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4769 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) 4770 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) 4771 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4772 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) 4773 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) 4774 case ISD::SETULT: 4775 if (!IsUnCmp && InnerCC != ISD::SETNE) 4776 return false; 4777 IsUnCmp = true; 4778 [[fallthrough]]; 4779 case ISD::SETLT: 4780 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || 4781 (InnerCC == ISD::SETLT && InnerSwapped)) 4782 NeedSwapOps = (TrueResVal == 1); 4783 else 4784 return false; 4785 break; 4786 4787 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4788 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) 4789 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) 4790 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4791 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) 4792 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) 4793 case ISD::SETUGT: 4794 if (!IsUnCmp && InnerCC != ISD::SETNE) 4795 return false; 4796 IsUnCmp = true; 4797 [[fallthrough]]; 4798 case ISD::SETGT: 4799 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || 4800 (InnerCC == ISD::SETGT && InnerSwapped)) 4801 NeedSwapOps = (TrueResVal == -1); 4802 else 4803 return false; 4804 break; 4805 4806 default: 4807 return false; 4808 } 4809 4810 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); 4811 LLVM_DEBUG(N->dump()); 4812 4813 return true; 4814 } 4815 4816 // Return true if it's a software square-root/divide operand. 4817 static bool isSWTestOp(SDValue N) { 4818 if (N.getOpcode() == PPCISD::FTSQRT) 4819 return true; 4820 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) || 4821 N.getOpcode() != ISD::INTRINSIC_WO_CHAIN) 4822 return false; 4823 switch (N.getConstantOperandVal(0)) { 4824 case Intrinsic::ppc_vsx_xvtdivdp: 4825 case Intrinsic::ppc_vsx_xvtdivsp: 4826 case Intrinsic::ppc_vsx_xvtsqrtdp: 4827 case Intrinsic::ppc_vsx_xvtsqrtsp: 4828 return true; 4829 } 4830 return false; 4831 } 4832 4833 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) { 4834 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected."); 4835 // We are looking for following patterns, where `truncate to i1` actually has 4836 // the same semantic with `and 1`. 4837 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp) 4838 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp) 4839 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp) 4840 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp) 4841 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp) 4842 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp) 4843 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp) 4844 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp) 4845 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4846 if (CC != ISD::SETEQ && CC != ISD::SETNE) 4847 return false; 4848 4849 SDValue CmpRHS = N->getOperand(3); 4850 if (!isNullConstant(CmpRHS)) 4851 return false; 4852 4853 SDValue CmpLHS = N->getOperand(2); 4854 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0))) 4855 return false; 4856 4857 unsigned PCC = 0; 4858 bool IsCCNE = CC == ISD::SETNE; 4859 if (CmpLHS.getOpcode() == ISD::AND && 4860 isa<ConstantSDNode>(CmpLHS.getOperand(1))) 4861 switch (CmpLHS.getConstantOperandVal(1)) { 4862 case 1: 4863 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4864 break; 4865 case 2: 4866 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE; 4867 break; 4868 case 4: 4869 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE; 4870 break; 4871 case 8: 4872 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE; 4873 break; 4874 default: 4875 return false; 4876 } 4877 else if (CmpLHS.getOpcode() == ISD::TRUNCATE && 4878 CmpLHS.getValueType() == MVT::i1) 4879 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4880 4881 if (PCC) { 4882 SDLoc dl(N); 4883 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4), 4884 N->getOperand(0)}; 4885 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 4886 return true; 4887 } 4888 return false; 4889 } 4890 4891 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) { 4892 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 4893 // value, for example when crbits is disabled. If so, select the 4894 // loop_decrement intrinsics now. 4895 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4896 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 4897 4898 if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) || 4899 isNullConstant(LHS.getOperand(1))) 4900 return false; 4901 4902 if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN || 4903 LHS.getOperand(0).getConstantOperandVal(1) != Intrinsic::loop_decrement) 4904 return false; 4905 4906 if (!isa<ConstantSDNode>(RHS)) 4907 return false; 4908 4909 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 4910 "Counter decrement comparison is not EQ or NE"); 4911 4912 SDValue OldDecrement = LHS.getOperand(0); 4913 assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!"); 4914 4915 SDLoc DecrementLoc(OldDecrement); 4916 SDValue ChainInput = OldDecrement.getOperand(0); 4917 SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc) 4918 : getI32Imm(1, DecrementLoc)}; 4919 unsigned DecrementOpcode = 4920 Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop; 4921 SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc, 4922 MVT::i1, DecrementOps); 4923 4924 unsigned Val = RHS->getAsZExtVal(); 4925 bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val); 4926 unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn; 4927 4928 ReplaceUses(LHS.getValue(0), LHS.getOperand(1)); 4929 CurDAG->RemoveDeadNode(LHS.getNode()); 4930 4931 // Mark the old loop_decrement intrinsic as dead. 4932 ReplaceUses(OldDecrement.getValue(1), ChainInput); 4933 CurDAG->RemoveDeadNode(OldDecrement.getNode()); 4934 4935 SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, 4936 ChainInput, N->getOperand(0)); 4937 4938 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0), 4939 N->getOperand(4), Chain); 4940 return true; 4941 } 4942 4943 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { 4944 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4945 unsigned Imm; 4946 if (!isInt32Immediate(N->getOperand(1), Imm)) 4947 return false; 4948 4949 SDLoc dl(N); 4950 SDValue Val = N->getOperand(0); 4951 unsigned SH, MB, ME; 4952 // If this is an and of a value rotated between 0 and 31 bits and then and'd 4953 // with a mask, emit rlwinm 4954 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { 4955 Val = Val.getOperand(0); 4956 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 4957 getI32Imm(ME, dl)}; 4958 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4959 return true; 4960 } 4961 4962 // If this is just a masked value where the input is not handled, and 4963 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 4964 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { 4965 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), 4966 getI32Imm(ME, dl)}; 4967 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4968 return true; 4969 } 4970 4971 // AND X, 0 -> 0, not "rlwinm 32". 4972 if (Imm == 0) { 4973 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 4974 return true; 4975 } 4976 4977 return false; 4978 } 4979 4980 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { 4981 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4982 uint64_t Imm64; 4983 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 4984 return false; 4985 4986 unsigned MB, ME; 4987 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { 4988 // MB ME 4989 // +----------------------+ 4990 // |xxxxxxxxxxx00011111000| 4991 // +----------------------+ 4992 // 0 32 64 4993 // We can only do it if the MB is larger than 32 and MB <= ME 4994 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even 4995 // we didn't rotate it. 4996 SDLoc dl(N); 4997 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), 4998 getI64Imm(ME - 32, dl)}; 4999 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); 5000 return true; 5001 } 5002 5003 return false; 5004 } 5005 5006 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { 5007 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5008 uint64_t Imm64; 5009 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 5010 return false; 5011 5012 // Do nothing if it is 16-bit imm as the pattern in the .td file handle 5013 // it well with "andi.". 5014 if (isUInt<16>(Imm64)) 5015 return false; 5016 5017 SDLoc Loc(N); 5018 SDValue Val = N->getOperand(0); 5019 5020 // Optimized with two rldicl's as follows: 5021 // Add missing bits on left to the mask and check that the mask is a 5022 // wrapped run of ones, i.e. 5023 // Change pattern |0001111100000011111111| 5024 // to |1111111100000011111111|. 5025 unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64); 5026 if (NumOfLeadingZeros != 0) 5027 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); 5028 5029 unsigned MB, ME; 5030 if (!isRunOfOnes64(Imm64, MB, ME)) 5031 return false; 5032 5033 // ME MB MB-ME+63 5034 // +----------------------+ +----------------------+ 5035 // |1111111100000011111111| -> |0000001111111111111111| 5036 // +----------------------+ +----------------------+ 5037 // 0 63 0 63 5038 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. 5039 unsigned OnesOnLeft = ME + 1; 5040 unsigned ZerosInBetween = (MB - ME + 63) & 63; 5041 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear 5042 // on the left the bits that are already zeros in the mask. 5043 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, 5044 getI64Imm(OnesOnLeft, Loc), 5045 getI64Imm(ZerosInBetween, Loc)), 5046 0); 5047 // MB-ME+63 ME MB 5048 // +----------------------+ +----------------------+ 5049 // |0000001111111111111111| -> |0001111100000011111111| 5050 // +----------------------+ +----------------------+ 5051 // 0 63 0 63 5052 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the 5053 // left the number of ones we previously added. 5054 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), 5055 getI64Imm(NumOfLeadingZeros, Loc)}; 5056 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 5057 return true; 5058 } 5059 5060 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { 5061 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5062 unsigned Imm; 5063 if (!isInt32Immediate(N->getOperand(1), Imm)) 5064 return false; 5065 5066 SDValue Val = N->getOperand(0); 5067 unsigned Imm2; 5068 // ISD::OR doesn't get all the bitfield insertion fun. 5069 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 5070 // bitfield insert. 5071 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) 5072 return false; 5073 5074 // The idea here is to check whether this is equivalent to: 5075 // (c1 & m) | (x & ~m) 5076 // where m is a run-of-ones mask. The logic here is that, for each bit in 5077 // c1 and c2: 5078 // - if both are 1, then the output will be 1. 5079 // - if both are 0, then the output will be 0. 5080 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 5081 // come from x. 5082 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 5083 // be 0. 5084 // If that last condition is never the case, then we can form m from the 5085 // bits that are the same between c1 and c2. 5086 unsigned MB, ME; 5087 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { 5088 SDLoc dl(N); 5089 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), 5090 getI32Imm(MB, dl), getI32Imm(ME, dl)}; 5091 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 5092 return true; 5093 } 5094 5095 return false; 5096 } 5097 5098 bool PPCDAGToDAGISel::tryAsSingleRLDCL(SDNode *N) { 5099 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5100 5101 uint64_t Imm64; 5102 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) 5103 return false; 5104 5105 SDValue Val = N->getOperand(0); 5106 5107 if (Val.getOpcode() != ISD::ROTL) 5108 return false; 5109 5110 // Looking to try to avoid a situation like this one: 5111 // %2 = tail call i64 @llvm.fshl.i64(i64 %word, i64 %word, i64 23) 5112 // %and1 = and i64 %2, 9223372036854775807 5113 // In this function we are looking to try to match RLDCL. However, the above 5114 // DAG would better match RLDICL instead which is not what we are looking 5115 // for here. 5116 SDValue RotateAmt = Val.getOperand(1); 5117 if (RotateAmt.getOpcode() == ISD::Constant) 5118 return false; 5119 5120 unsigned MB = 64 - llvm::countr_one(Imm64); 5121 SDLoc dl(N); 5122 SDValue Ops[] = {Val.getOperand(0), RotateAmt, getI32Imm(MB, dl)}; 5123 CurDAG->SelectNodeTo(N, PPC::RLDCL, MVT::i64, Ops); 5124 return true; 5125 } 5126 5127 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { 5128 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5129 uint64_t Imm64; 5130 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) 5131 return false; 5132 5133 // If this is a 64-bit zero-extension mask, emit rldicl. 5134 unsigned MB = 64 - llvm::countr_one(Imm64); 5135 unsigned SH = 0; 5136 unsigned Imm; 5137 SDValue Val = N->getOperand(0); 5138 SDLoc dl(N); 5139 5140 if (Val.getOpcode() == ISD::ANY_EXTEND) { 5141 auto Op0 = Val.getOperand(0); 5142 if (Op0.getOpcode() == ISD::SRL && 5143 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { 5144 5145 auto ResultType = Val.getNode()->getValueType(0); 5146 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); 5147 SDValue IDVal(ImDef, 0); 5148 5149 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, 5150 IDVal, Op0.getOperand(0), 5151 getI32Imm(1, dl)), 5152 0); 5153 SH = 64 - Imm; 5154 } 5155 } 5156 5157 // If the operand is a logical right shift, we can fold it into this 5158 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 5159 // for n <= mb. The right shift is really a left rotate followed by a 5160 // mask, and this mask is a more-restrictive sub-mask of the mask implied 5161 // by the shift. 5162 if (Val.getOpcode() == ISD::SRL && 5163 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 5164 assert(Imm < 64 && "Illegal shift amount"); 5165 Val = Val.getOperand(0); 5166 SH = 64 - Imm; 5167 } 5168 5169 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; 5170 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 5171 return true; 5172 } 5173 5174 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { 5175 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5176 uint64_t Imm64; 5177 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 5178 !isMask_64(~Imm64)) 5179 return false; 5180 5181 // If this is a negated 64-bit zero-extension mask, 5182 // i.e. the immediate is a sequence of ones from most significant side 5183 // and all zero for reminder, we should use rldicr. 5184 unsigned MB = 63 - llvm::countr_one(~Imm64); 5185 unsigned SH = 0; 5186 SDLoc dl(N); 5187 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; 5188 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 5189 return true; 5190 } 5191 5192 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { 5193 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected"); 5194 uint64_t Imm64; 5195 unsigned MB, ME; 5196 SDValue N0 = N->getOperand(0); 5197 5198 // We won't get fewer instructions if the imm is 32-bit integer. 5199 // rldimi requires the imm to have consecutive ones with both sides zero. 5200 // Also, make sure the first Op has only one use, otherwise this may increase 5201 // register pressure since rldimi is destructive. 5202 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 5203 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) 5204 return false; 5205 5206 unsigned SH = 63 - ME; 5207 SDLoc Dl(N); 5208 // Use select64Imm for making LI instr instead of directly putting Imm64 5209 SDValue Ops[] = { 5210 N->getOperand(0), 5211 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), 5212 getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; 5213 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); 5214 return true; 5215 } 5216 5217 // Select - Convert the specified operand from a target-independent to a 5218 // target-specific node if it hasn't already been changed. 5219 void PPCDAGToDAGISel::Select(SDNode *N) { 5220 SDLoc dl(N); 5221 if (N->isMachineOpcode()) { 5222 N->setNodeId(-1); 5223 return; // Already selected. 5224 } 5225 5226 // In case any misguided DAG-level optimizations form an ADD with a 5227 // TargetConstant operand, crash here instead of miscompiling (by selecting 5228 // an r+r add instead of some kind of r+i add). 5229 if (N->getOpcode() == ISD::ADD && 5230 N->getOperand(1).getOpcode() == ISD::TargetConstant) 5231 llvm_unreachable("Invalid ADD with TargetConstant operand"); 5232 5233 // Try matching complex bit permutations before doing anything else. 5234 if (tryBitPermutation(N)) 5235 return; 5236 5237 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). 5238 if (tryIntCompareInGPR(N)) 5239 return; 5240 5241 switch (N->getOpcode()) { 5242 default: break; 5243 5244 case ISD::Constant: 5245 if (N->getValueType(0) == MVT::i64) { 5246 ReplaceNode(N, selectI64Imm(CurDAG, N)); 5247 return; 5248 } 5249 break; 5250 5251 case ISD::INTRINSIC_VOID: { 5252 auto IntrinsicID = N->getConstantOperandVal(1); 5253 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && 5254 IntrinsicID != Intrinsic::ppc_trapd && 5255 IntrinsicID != Intrinsic::ppc_trap) 5256 break; 5257 unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw || 5258 IntrinsicID == Intrinsic::ppc_trapd) 5259 ? PPC::TDI 5260 : PPC::TWI; 5261 SmallVector<SDValue, 4> OpsWithMD; 5262 unsigned MDIndex; 5263 if (IntrinsicID == Intrinsic::ppc_tdw || 5264 IntrinsicID == Intrinsic::ppc_tw) { 5265 SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)}; 5266 int16_t SImmOperand2; 5267 int16_t SImmOperand3; 5268 int16_t SImmOperand4; 5269 bool isOperand2IntS16Immediate = 5270 isIntS16Immediate(N->getOperand(2), SImmOperand2); 5271 bool isOperand3IntS16Immediate = 5272 isIntS16Immediate(N->getOperand(3), SImmOperand3); 5273 // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg + 5274 // reg or imm + imm. The imm + imm form will be optimized to either an 5275 // unconditional trap or a nop in a later pass. 5276 if (isOperand2IntS16Immediate == isOperand3IntS16Immediate) 5277 Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW; 5278 else if (isOperand3IntS16Immediate) 5279 // The 2nd and 3rd operands are reg + imm. 5280 Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl); 5281 else { 5282 // The 2nd and 3rd operands are imm + reg. 5283 bool isOperand4IntS16Immediate = 5284 isIntS16Immediate(N->getOperand(4), SImmOperand4); 5285 (void)isOperand4IntS16Immediate; 5286 assert(isOperand4IntS16Immediate && 5287 "The 4th operand is not an Immediate"); 5288 // We need to flip the condition immediate TO. 5289 int16_t TO = int(SImmOperand4) & 0x1F; 5290 // We swap the first and second bit of TO if they are not same. 5291 if ((TO & 0x1) != ((TO & 0x2) >> 1)) 5292 TO = (TO & 0x1) ? TO + 1 : TO - 1; 5293 // We swap the fourth and fifth bit of TO if they are not same. 5294 if ((TO & 0x8) != ((TO & 0x10) >> 1)) 5295 TO = (TO & 0x8) ? TO + 8 : TO - 8; 5296 Ops[0] = getI32Imm(TO, dl); 5297 Ops[1] = N->getOperand(3); 5298 Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl); 5299 } 5300 OpsWithMD = {Ops[0], Ops[1], Ops[2]}; 5301 MDIndex = 5; 5302 } else { 5303 OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)}; 5304 MDIndex = 3; 5305 } 5306 5307 if (N->getNumOperands() > MDIndex) { 5308 SDValue MDV = N->getOperand(MDIndex); 5309 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 5310 assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!"); 5311 assert((isa<MDString>(MD->getOperand(0)) && 5312 cast<MDString>(MD->getOperand(0))->getString() == 5313 "ppc-trap-reason") && 5314 "Unsupported annotation data type!"); 5315 for (unsigned i = 1; i < MD->getNumOperands(); i++) { 5316 assert(isa<MDString>(MD->getOperand(i)) && 5317 "Invalid data type for annotation ppc-trap-reason!"); 5318 OpsWithMD.push_back( 5319 getI32Imm(std::stoi(cast<MDString>( 5320 MD->getOperand(i))->getString().str()), dl)); 5321 } 5322 } 5323 OpsWithMD.push_back(N->getOperand(0)); // chain 5324 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD); 5325 return; 5326 } 5327 5328 case ISD::INTRINSIC_WO_CHAIN: { 5329 // We emit the PPC::FSELS instruction here because of type conflicts with 5330 // the comparison operand. The FSELS instruction is defined to use an 8-byte 5331 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte 5332 // value for the comparison. When selecting through a .td file, a type 5333 // error is raised. Must check this first so we never break on the 5334 // !Subtarget->isISA3_1() check. 5335 auto IntID = N->getConstantOperandVal(0); 5336 if (IntID == Intrinsic::ppc_fsels) { 5337 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)}; 5338 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops); 5339 return; 5340 } 5341 5342 if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) { 5343 auto Pred = N->getConstantOperandVal(1); 5344 unsigned Opcode = 5345 IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec; 5346 unsigned SubReg = 0; 5347 unsigned ShiftVal = 0; 5348 bool Reverse = false; 5349 switch (Pred) { 5350 case 0: 5351 SubReg = PPC::sub_eq; 5352 ShiftVal = 1; 5353 break; 5354 case 1: 5355 SubReg = PPC::sub_eq; 5356 ShiftVal = 1; 5357 Reverse = true; 5358 break; 5359 case 2: 5360 SubReg = PPC::sub_lt; 5361 ShiftVal = 3; 5362 break; 5363 case 3: 5364 SubReg = PPC::sub_lt; 5365 ShiftVal = 3; 5366 Reverse = true; 5367 break; 5368 case 4: 5369 SubReg = PPC::sub_gt; 5370 ShiftVal = 2; 5371 break; 5372 case 5: 5373 SubReg = PPC::sub_gt; 5374 ShiftVal = 2; 5375 Reverse = true; 5376 break; 5377 case 6: 5378 SubReg = PPC::sub_un; 5379 break; 5380 case 7: 5381 SubReg = PPC::sub_un; 5382 Reverse = true; 5383 break; 5384 } 5385 5386 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5387 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), 5388 CurDAG->getTargetConstant(0, dl, MVT::i32)}; 5389 SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0); 5390 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5391 // On Power10, we can use SETBC[R]. On prior architectures, we have to use 5392 // MFOCRF and shift/negate the value. 5393 if (Subtarget->isISA3_1()) { 5394 SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32); 5395 SDValue CRBit = SDValue( 5396 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5397 CR6Reg, SubRegIdx, BCDOp.getValue(1)), 5398 0); 5399 CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32, 5400 CRBit); 5401 } else { 5402 SDValue Move = 5403 SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg, 5404 BCDOp.getValue(1)), 5405 0); 5406 SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl), 5407 getI32Imm(31, dl), getI32Imm(31, dl)}; 5408 if (!Reverse) 5409 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5410 else { 5411 SDValue Shift = SDValue( 5412 CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 5413 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl)); 5414 } 5415 } 5416 return; 5417 } 5418 5419 if (!Subtarget->isISA3_1()) 5420 break; 5421 unsigned Opcode = 0; 5422 switch (IntID) { 5423 default: 5424 break; 5425 case Intrinsic::ppc_altivec_vstribr_p: 5426 Opcode = PPC::VSTRIBR_rec; 5427 break; 5428 case Intrinsic::ppc_altivec_vstribl_p: 5429 Opcode = PPC::VSTRIBL_rec; 5430 break; 5431 case Intrinsic::ppc_altivec_vstrihr_p: 5432 Opcode = PPC::VSTRIHR_rec; 5433 break; 5434 case Intrinsic::ppc_altivec_vstrihl_p: 5435 Opcode = PPC::VSTRIHL_rec; 5436 break; 5437 } 5438 if (!Opcode) 5439 break; 5440 5441 // Generate the appropriate vector string isolate intrinsic to match. 5442 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5443 SDValue VecStrOp = 5444 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0); 5445 // Vector string isolate instructions update the EQ bit of CR6. 5446 // Generate a SETBC instruction to extract the bit and place it in a GPR. 5447 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32); 5448 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5449 SDValue CRBit = SDValue( 5450 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5451 CR6Reg, SubRegIdx, VecStrOp.getValue(1)), 5452 0); 5453 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit); 5454 return; 5455 } 5456 5457 case ISD::SETCC: 5458 case ISD::STRICT_FSETCC: 5459 case ISD::STRICT_FSETCCS: 5460 if (trySETCC(N)) 5461 return; 5462 break; 5463 // These nodes will be transformed into GETtlsADDR32 node, which 5464 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT 5465 case PPCISD::ADDI_TLSLD_L_ADDR: 5466 case PPCISD::ADDI_TLSGD_L_ADDR: { 5467 const Module *Mod = MF->getFunction().getParent(); 5468 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5469 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || 5470 Mod->getPICLevel() == PICLevel::SmallPIC) 5471 break; 5472 // Attach global base pointer on GETtlsADDR32 node in order to 5473 // generate secure plt code for TLS symbols. 5474 getGlobalBaseReg(); 5475 } break; 5476 case PPCISD::CALL: { 5477 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5478 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || 5479 !Subtarget->isTargetELF()) 5480 break; 5481 5482 SDValue Op = N->getOperand(1); 5483 5484 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5485 if (GA->getTargetFlags() == PPCII::MO_PLT) 5486 getGlobalBaseReg(); 5487 } 5488 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 5489 if (ES->getTargetFlags() == PPCII::MO_PLT) 5490 getGlobalBaseReg(); 5491 } 5492 } 5493 break; 5494 5495 case PPCISD::GlobalBaseReg: 5496 ReplaceNode(N, getGlobalBaseReg()); 5497 return; 5498 5499 case ISD::FrameIndex: 5500 selectFrameIndex(N, N); 5501 return; 5502 5503 case PPCISD::MFOCRF: { 5504 SDValue InGlue = N->getOperand(1); 5505 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 5506 N->getOperand(0), InGlue)); 5507 return; 5508 } 5509 5510 case PPCISD::READ_TIME_BASE: 5511 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 5512 MVT::Other, N->getOperand(0))); 5513 return; 5514 5515 case PPCISD::SRA_ADDZE: { 5516 SDValue N0 = N->getOperand(0); 5517 SDValue ShiftAmt = 5518 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 5519 getConstantIntValue(), dl, 5520 N->getValueType(0)); 5521 if (N->getValueType(0) == MVT::i64) { 5522 SDNode *Op = 5523 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 5524 N0, ShiftAmt); 5525 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 5526 SDValue(Op, 1)); 5527 return; 5528 } else { 5529 assert(N->getValueType(0) == MVT::i32 && 5530 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 5531 SDNode *Op = 5532 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 5533 N0, ShiftAmt); 5534 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 5535 SDValue(Op, 1)); 5536 return; 5537 } 5538 } 5539 5540 case ISD::STORE: { 5541 // Change TLS initial-exec (or TLS local-exec on AIX) D-form stores to 5542 // X-form stores. 5543 StoreSDNode *ST = cast<StoreSDNode>(N); 5544 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()) && 5545 ST->getAddressingMode() != ISD::PRE_INC) 5546 if (tryTLSXFormStore(ST)) 5547 return; 5548 break; 5549 } 5550 case ISD::LOAD: { 5551 // Handle preincrement loads. 5552 LoadSDNode *LD = cast<LoadSDNode>(N); 5553 EVT LoadedVT = LD->getMemoryVT(); 5554 5555 // Normal loads are handled by code generated from the .td file. 5556 if (LD->getAddressingMode() != ISD::PRE_INC) { 5557 // Change TLS initial-exec (or TLS local-exec on AIX) D-form loads to 5558 // X-form loads. 5559 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI())) 5560 if (tryTLSXFormLoad(LD)) 5561 return; 5562 break; 5563 } 5564 5565 SDValue Offset = LD->getOffset(); 5566 if (Offset.getOpcode() == ISD::TargetConstant || 5567 Offset.getOpcode() == ISD::TargetGlobalAddress) { 5568 5569 unsigned Opcode; 5570 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5571 if (LD->getValueType(0) != MVT::i64) { 5572 // Handle PPC32 integer and normal FP loads. 5573 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5574 switch (LoadedVT.getSimpleVT().SimpleTy) { 5575 default: llvm_unreachable("Invalid PPC load type!"); 5576 case MVT::f64: Opcode = PPC::LFDU; break; 5577 case MVT::f32: Opcode = PPC::LFSU; break; 5578 case MVT::i32: Opcode = PPC::LWZU; break; 5579 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 5580 case MVT::i1: 5581 case MVT::i8: Opcode = PPC::LBZU; break; 5582 } 5583 } else { 5584 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5585 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5586 switch (LoadedVT.getSimpleVT().SimpleTy) { 5587 default: llvm_unreachable("Invalid PPC load type!"); 5588 case MVT::i64: Opcode = PPC::LDU; break; 5589 case MVT::i32: Opcode = PPC::LWZU8; break; 5590 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 5591 case MVT::i1: 5592 case MVT::i8: Opcode = PPC::LBZU8; break; 5593 } 5594 } 5595 5596 SDValue Chain = LD->getChain(); 5597 SDValue Base = LD->getBasePtr(); 5598 SDValue Ops[] = { Offset, Base, Chain }; 5599 SDNode *MN = CurDAG->getMachineNode( 5600 Opcode, dl, LD->getValueType(0), 5601 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5602 transferMemOperands(N, MN); 5603 ReplaceNode(N, MN); 5604 return; 5605 } else { 5606 unsigned Opcode; 5607 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5608 if (LD->getValueType(0) != MVT::i64) { 5609 // Handle PPC32 integer and normal FP loads. 5610 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5611 switch (LoadedVT.getSimpleVT().SimpleTy) { 5612 default: llvm_unreachable("Invalid PPC load type!"); 5613 case MVT::f64: Opcode = PPC::LFDUX; break; 5614 case MVT::f32: Opcode = PPC::LFSUX; break; 5615 case MVT::i32: Opcode = PPC::LWZUX; break; 5616 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 5617 case MVT::i1: 5618 case MVT::i8: Opcode = PPC::LBZUX; break; 5619 } 5620 } else { 5621 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5622 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 5623 "Invalid sext update load"); 5624 switch (LoadedVT.getSimpleVT().SimpleTy) { 5625 default: llvm_unreachable("Invalid PPC load type!"); 5626 case MVT::i64: Opcode = PPC::LDUX; break; 5627 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 5628 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 5629 case MVT::i1: 5630 case MVT::i8: Opcode = PPC::LBZUX8; break; 5631 } 5632 } 5633 5634 SDValue Chain = LD->getChain(); 5635 SDValue Base = LD->getBasePtr(); 5636 SDValue Ops[] = { Base, Offset, Chain }; 5637 SDNode *MN = CurDAG->getMachineNode( 5638 Opcode, dl, LD->getValueType(0), 5639 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5640 transferMemOperands(N, MN); 5641 ReplaceNode(N, MN); 5642 return; 5643 } 5644 } 5645 5646 case ISD::AND: 5647 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr 5648 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDCL(N) || 5649 tryAsSingleRLDICL(N) || tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || 5650 tryAsPairOfRLDICL(N)) 5651 return; 5652 5653 // Other cases are autogenerated. 5654 break; 5655 case ISD::OR: { 5656 if (N->getValueType(0) == MVT::i32) 5657 if (tryBitfieldInsert(N)) 5658 return; 5659 5660 int16_t Imm; 5661 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5662 isIntS16Immediate(N->getOperand(1), Imm)) { 5663 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); 5664 5665 // If this is equivalent to an add, then we can fold it with the 5666 // FrameIndex calculation. 5667 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 5668 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); 5669 return; 5670 } 5671 } 5672 5673 // If this is 'or' against an imm with consecutive ones and both sides zero, 5674 // try to emit rldimi 5675 if (tryAsSingleRLDIMI(N)) 5676 return; 5677 5678 // OR with a 32-bit immediate can be handled by ori + oris 5679 // without creating an immediate in a GPR. 5680 uint64_t Imm64 = 0; 5681 bool IsPPC64 = Subtarget->isPPC64(); 5682 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5683 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5684 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. 5685 uint64_t ImmHi = Imm64 >> 16; 5686 uint64_t ImmLo = Imm64 & 0xFFFF; 5687 if (ImmHi != 0 && ImmLo != 0) { 5688 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 5689 N->getOperand(0), 5690 getI16Imm(ImmLo, dl)); 5691 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5692 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); 5693 return; 5694 } 5695 } 5696 5697 // Other cases are autogenerated. 5698 break; 5699 } 5700 case ISD::XOR: { 5701 // XOR with a 32-bit immediate can be handled by xori + xoris 5702 // without creating an immediate in a GPR. 5703 uint64_t Imm64 = 0; 5704 bool IsPPC64 = Subtarget->isPPC64(); 5705 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5706 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5707 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. 5708 uint64_t ImmHi = Imm64 >> 16; 5709 uint64_t ImmLo = Imm64 & 0xFFFF; 5710 if (ImmHi != 0 && ImmLo != 0) { 5711 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 5712 N->getOperand(0), 5713 getI16Imm(ImmLo, dl)); 5714 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5715 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); 5716 return; 5717 } 5718 } 5719 5720 break; 5721 } 5722 case ISD::ADD: { 5723 int16_t Imm; 5724 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5725 isIntS16Immediate(N->getOperand(1), Imm)) { 5726 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); 5727 return; 5728 } 5729 5730 break; 5731 } 5732 case ISD::SHL: { 5733 unsigned Imm, SH, MB, ME; 5734 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5735 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5736 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5737 getI32Imm(SH, dl), getI32Imm(MB, dl), 5738 getI32Imm(ME, dl) }; 5739 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5740 return; 5741 } 5742 5743 // Other cases are autogenerated. 5744 break; 5745 } 5746 case ISD::SRL: { 5747 unsigned Imm, SH, MB, ME; 5748 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5749 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5750 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5751 getI32Imm(SH, dl), getI32Imm(MB, dl), 5752 getI32Imm(ME, dl) }; 5753 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5754 return; 5755 } 5756 5757 // Other cases are autogenerated. 5758 break; 5759 } 5760 case ISD::MUL: { 5761 SDValue Op1 = N->getOperand(1); 5762 if (Op1.getOpcode() != ISD::Constant || 5763 (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32)) 5764 break; 5765 5766 // If the multiplier fits int16, we can handle it with mulli. 5767 int64_t Imm = Op1->getAsZExtVal(); 5768 unsigned Shift = llvm::countr_zero<uint64_t>(Imm); 5769 if (isInt<16>(Imm) || !Shift) 5770 break; 5771 5772 // If the shifted value fits int16, we can do this transformation: 5773 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to 5774 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2). 5775 uint64_t ImmSh = Imm >> Shift; 5776 if (!isInt<16>(ImmSh)) 5777 break; 5778 5779 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16); 5780 if (Op1.getValueType() == MVT::i64) { 5781 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 5782 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64, 5783 N->getOperand(0), SDImm); 5784 5785 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), 5786 getI32Imm(63 - Shift, dl)}; 5787 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 5788 return; 5789 } else { 5790 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32); 5791 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32, 5792 N->getOperand(0), SDImm); 5793 5794 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), 5795 getI32Imm(0, dl), getI32Imm(31 - Shift, dl)}; 5796 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5797 return; 5798 } 5799 break; 5800 } 5801 // FIXME: Remove this once the ANDI glue bug is fixed: 5802 case PPCISD::ANDI_rec_1_EQ_BIT: 5803 case PPCISD::ANDI_rec_1_GT_BIT: { 5804 if (!ANDIGlueBug) 5805 break; 5806 5807 EVT InVT = N->getOperand(0).getValueType(); 5808 assert((InVT == MVT::i64 || InVT == MVT::i32) && 5809 "Invalid input type for ANDI_rec_1_EQ_BIT"); 5810 5811 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; 5812 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 5813 N->getOperand(0), 5814 CurDAG->getTargetConstant(1, dl, InVT)), 5815 0); 5816 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 5817 SDValue SRIdxVal = CurDAG->getTargetConstant( 5818 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, 5819 dl, MVT::i32); 5820 5821 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 5822 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 5823 return; 5824 } 5825 case ISD::SELECT_CC: { 5826 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 5827 EVT PtrVT = 5828 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 5829 bool isPPC64 = (PtrVT == MVT::i64); 5830 5831 // If this is a select of i1 operands, we'll pattern match it. 5832 if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) 5833 break; 5834 5835 if (Subtarget->isISA3_0() && Subtarget->isPPC64()) { 5836 bool NeedSwapOps = false; 5837 bool IsUnCmp = false; 5838 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { 5839 SDValue LHS = N->getOperand(0); 5840 SDValue RHS = N->getOperand(1); 5841 if (NeedSwapOps) 5842 std::swap(LHS, RHS); 5843 5844 // Make use of SelectCC to generate the comparison to set CR bits, for 5845 // equality comparisons having one literal operand, SelectCC probably 5846 // doesn't need to materialize the whole literal and just use xoris to 5847 // check it first, it leads the following comparison result can't 5848 // exactly represent GT/LT relationship. So to avoid this we specify 5849 // SETGT/SETUGT here instead of SETEQ. 5850 SDValue GenCC = 5851 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); 5852 CurDAG->SelectNodeTo( 5853 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, 5854 N->getValueType(0), GenCC); 5855 NumP9Setb++; 5856 return; 5857 } 5858 } 5859 5860 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 5861 if (!isPPC64 && isNullConstant(N->getOperand(1)) && 5862 isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) && 5863 CC == ISD::SETNE && 5864 // FIXME: Implement this optzn for PPC64. 5865 N->getValueType(0) == MVT::i32) { 5866 SDNode *Tmp = 5867 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 5868 N->getOperand(0), getI32Imm(~0U, dl)); 5869 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 5870 N->getOperand(0), SDValue(Tmp, 1)); 5871 return; 5872 } 5873 5874 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 5875 5876 if (N->getValueType(0) == MVT::i1) { 5877 // An i1 select is: (c & t) | (!c & f). 5878 bool Inv; 5879 unsigned Idx = getCRIdxForSetCC(CC, Inv); 5880 5881 unsigned SRI; 5882 switch (Idx) { 5883 default: llvm_unreachable("Invalid CC index"); 5884 case 0: SRI = PPC::sub_lt; break; 5885 case 1: SRI = PPC::sub_gt; break; 5886 case 2: SRI = PPC::sub_eq; break; 5887 case 3: SRI = PPC::sub_un; break; 5888 } 5889 5890 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 5891 5892 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 5893 CCBit, CCBit), 0); 5894 SDValue C = Inv ? NotCCBit : CCBit, 5895 NotC = Inv ? CCBit : NotCCBit; 5896 5897 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5898 C, N->getOperand(2)), 0); 5899 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5900 NotC, N->getOperand(3)), 0); 5901 5902 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 5903 return; 5904 } 5905 5906 unsigned BROpc = 5907 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget); 5908 5909 unsigned SelectCCOp; 5910 if (N->getValueType(0) == MVT::i32) 5911 SelectCCOp = PPC::SELECT_CC_I4; 5912 else if (N->getValueType(0) == MVT::i64) 5913 SelectCCOp = PPC::SELECT_CC_I8; 5914 else if (N->getValueType(0) == MVT::f32) { 5915 if (Subtarget->hasP8Vector()) 5916 SelectCCOp = PPC::SELECT_CC_VSSRC; 5917 else if (Subtarget->hasSPE()) 5918 SelectCCOp = PPC::SELECT_CC_SPE4; 5919 else 5920 SelectCCOp = PPC::SELECT_CC_F4; 5921 } else if (N->getValueType(0) == MVT::f64) { 5922 if (Subtarget->hasVSX()) 5923 SelectCCOp = PPC::SELECT_CC_VSFRC; 5924 else if (Subtarget->hasSPE()) 5925 SelectCCOp = PPC::SELECT_CC_SPE; 5926 else 5927 SelectCCOp = PPC::SELECT_CC_F8; 5928 } else if (N->getValueType(0) == MVT::f128) 5929 SelectCCOp = PPC::SELECT_CC_F16; 5930 else if (Subtarget->hasSPE()) 5931 SelectCCOp = PPC::SELECT_CC_SPE; 5932 else if (N->getValueType(0) == MVT::v2f64 || 5933 N->getValueType(0) == MVT::v2i64) 5934 SelectCCOp = PPC::SELECT_CC_VSRC; 5935 else 5936 SelectCCOp = PPC::SELECT_CC_VRRC; 5937 5938 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 5939 getI32Imm(BROpc, dl) }; 5940 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 5941 return; 5942 } 5943 case ISD::VECTOR_SHUFFLE: 5944 if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 5945 N->getValueType(0) == MVT::v2i64)) { 5946 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5947 5948 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 5949 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 5950 unsigned DM[2]; 5951 5952 for (int i = 0; i < 2; ++i) 5953 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 5954 DM[i] = 0; 5955 else 5956 DM[i] = 1; 5957 5958 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 5959 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 5960 isa<LoadSDNode>(Op1.getOperand(0))) { 5961 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 5962 SDValue Base, Offset; 5963 5964 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 5965 (LD->getMemoryVT() == MVT::f64 || 5966 LD->getMemoryVT() == MVT::i64) && 5967 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 5968 SDValue Chain = LD->getChain(); 5969 SDValue Ops[] = { Base, Offset, Chain }; 5970 MachineMemOperand *MemOp = LD->getMemOperand(); 5971 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, 5972 N->getValueType(0), Ops); 5973 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); 5974 return; 5975 } 5976 } 5977 5978 // For little endian, we must swap the input operands and adjust 5979 // the mask elements (reverse and invert them). 5980 if (Subtarget->isLittleEndian()) { 5981 std::swap(Op1, Op2); 5982 unsigned tmp = DM[0]; 5983 DM[0] = 1 - DM[1]; 5984 DM[1] = 1 - tmp; 5985 } 5986 5987 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 5988 MVT::i32); 5989 SDValue Ops[] = { Op1, Op2, DMV }; 5990 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 5991 return; 5992 } 5993 5994 break; 5995 case PPCISD::BDNZ: 5996 case PPCISD::BDZ: { 5997 bool IsPPC64 = Subtarget->isPPC64(); 5998 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 5999 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 6000 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 6001 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 6002 MVT::Other, Ops); 6003 return; 6004 } 6005 case PPCISD::COND_BRANCH: { 6006 // Op #0 is the Chain. 6007 // Op #1 is the PPC::PRED_* number. 6008 // Op #2 is the CR# 6009 // Op #3 is the Dest MBB 6010 // Op #4 is the Flag. 6011 // Prevent PPC::PRED_* from being selected into LI. 6012 unsigned PCC = N->getConstantOperandVal(1); 6013 if (EnableBranchHint) 6014 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); 6015 6016 SDValue Pred = getI32Imm(PCC, dl); 6017 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 6018 N->getOperand(0), N->getOperand(4) }; 6019 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 6020 return; 6021 } 6022 case ISD::BR_CC: { 6023 if (tryFoldSWTestBRCC(N)) 6024 return; 6025 if (trySelectLoopCountIntrinsic(N)) 6026 return; 6027 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 6028 unsigned PCC = 6029 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget); 6030 6031 if (N->getOperand(2).getValueType() == MVT::i1) { 6032 unsigned Opc; 6033 bool Swap; 6034 switch (PCC) { 6035 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 6036 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 6037 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 6038 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 6039 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 6040 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 6041 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 6042 } 6043 6044 // A signed comparison of i1 values produces the opposite result to an 6045 // unsigned one if the condition code includes less-than or greater-than. 6046 // This is because 1 is the most negative signed i1 number and the most 6047 // positive unsigned i1 number. The CR-logical operations used for such 6048 // comparisons are non-commutative so for signed comparisons vs. unsigned 6049 // ones, the input operands just need to be swapped. 6050 if (ISD::isSignedIntSetCC(CC)) 6051 Swap = !Swap; 6052 6053 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 6054 N->getOperand(Swap ? 3 : 2), 6055 N->getOperand(Swap ? 2 : 3)), 0); 6056 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 6057 N->getOperand(0)); 6058 return; 6059 } 6060 6061 if (EnableBranchHint) 6062 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); 6063 6064 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 6065 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 6066 N->getOperand(4), N->getOperand(0) }; 6067 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 6068 return; 6069 } 6070 case ISD::BRIND: { 6071 // FIXME: Should custom lower this. 6072 SDValue Chain = N->getOperand(0); 6073 SDValue Target = N->getOperand(1); 6074 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 6075 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 6076 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 6077 Chain), 0); 6078 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 6079 return; 6080 } 6081 case PPCISD::TOC_ENTRY: { 6082 const bool isPPC64 = Subtarget->isPPC64(); 6083 const bool isELFABI = Subtarget->isSVR4ABI(); 6084 const bool isAIXABI = Subtarget->isAIXABI(); 6085 6086 // PowerPC only support small, medium and large code model. 6087 const CodeModel::Model CModel = getCodeModel(*Subtarget, TM, N); 6088 6089 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && 6090 "PowerPC doesn't support tiny or kernel code models."); 6091 6092 if (isAIXABI && CModel == CodeModel::Medium) 6093 report_fatal_error("Medium code model is not supported on AIX."); 6094 6095 // For 64-bit ELF small code model, we allow SelectCodeCommon to handle 6096 // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX 6097 // small code model, we need to check for a toc-data attribute. 6098 if (isPPC64 && !isAIXABI && CModel == CodeModel::Small) 6099 break; 6100 6101 auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry, 6102 EVT OperandTy) { 6103 SDValue GA = TocEntry->getOperand(0); 6104 SDValue TocBase = TocEntry->getOperand(1); 6105 SDNode *MN = nullptr; 6106 if (OpCode == PPC::ADDItoc || OpCode == PPC::ADDItoc8) 6107 // toc-data access doesn't involve in loading from got, no need to 6108 // keep memory operands. 6109 MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, TocBase, GA); 6110 else { 6111 MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase); 6112 transferMemOperands(TocEntry, MN); 6113 } 6114 ReplaceNode(TocEntry, MN); 6115 }; 6116 6117 // Handle 32-bit small code model. 6118 if (!isPPC64 && CModel == CodeModel::Small) { 6119 // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either 6120 // PPC::ADDItoc, or PPC::LWZtoc 6121 if (isELFABI) { 6122 assert(TM.isPositionIndependent() && 6123 "32-bit ELF can only have TOC entries in position independent" 6124 " code."); 6125 // 32-bit ELF always uses a small code model toc access. 6126 replaceWith(PPC::LWZtoc, N, MVT::i32); 6127 return; 6128 } 6129 6130 assert(isAIXABI && "ELF ABI already handled"); 6131 6132 if (hasTocDataAttr(N->getOperand(0))) { 6133 replaceWith(PPC::ADDItoc, N, MVT::i32); 6134 return; 6135 } 6136 6137 replaceWith(PPC::LWZtoc, N, MVT::i32); 6138 return; 6139 } 6140 6141 if (isPPC64 && CModel == CodeModel::Small) { 6142 assert(isAIXABI && "ELF ABI handled in common SelectCode"); 6143 6144 if (hasTocDataAttr(N->getOperand(0))) { 6145 replaceWith(PPC::ADDItoc8, N, MVT::i64); 6146 return; 6147 } 6148 // Break if it doesn't have toc data attribute. Proceed with common 6149 // SelectCode. 6150 break; 6151 } 6152 6153 assert(CModel != CodeModel::Small && "All small code models handled."); 6154 6155 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" 6156 " ELF/AIX or 32-bit AIX in the following."); 6157 6158 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode, 6159 // 64-bit medium (ELF-only), or 64-bit large (ELF and AIX) code model code 6160 // that does not contain TOC data symbols. We generate two instructions as 6161 // described below. The first source operand is a symbol reference. If it 6162 // must be referenced via the TOC according to Subtarget, we generate: 6163 // [32-bit AIX] 6164 // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) 6165 // [64-bit ELF/AIX] 6166 // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) 6167 // Otherwise for medium code model ELF we generate: 6168 // ADDItocL8(ADDIStocHA8(%x2, @sym), @sym) 6169 6170 // And finally for AIX with toc-data we generate: 6171 // [32-bit AIX] 6172 // ADDItocL(ADDIStocHA(%x2, @sym), @sym) 6173 // [64-bit AIX] 6174 // ADDItocL8(ADDIStocHA8(%x2, @sym), @sym) 6175 6176 SDValue GA = N->getOperand(0); 6177 SDValue TOCbase = N->getOperand(1); 6178 6179 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 6180 SDNode *Tmp = CurDAG->getMachineNode( 6181 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); 6182 6183 // On AIX, if the symbol has the toc-data attribute it will be defined 6184 // in the TOC entry, so we use an ADDItocL/ADDItocL8. 6185 if (isAIXABI && hasTocDataAttr(GA)) { 6186 ReplaceNode( 6187 N, CurDAG->getMachineNode(isPPC64 ? PPC::ADDItocL8 : PPC::ADDItocL, 6188 dl, VT, SDValue(Tmp, 0), GA)); 6189 return; 6190 } 6191 6192 if (PPCLowering->isAccessedAsGotIndirect(GA)) { 6193 // If it is accessed as got-indirect, we need an extra LWZ/LD to load 6194 // the address. 6195 SDNode *MN = CurDAG->getMachineNode( 6196 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); 6197 6198 transferMemOperands(N, MN); 6199 ReplaceNode(N, MN); 6200 return; 6201 } 6202 6203 assert(isPPC64 && "TOC_ENTRY already handled for 32-bit."); 6204 // Build the address relative to the TOC-pointer. 6205 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL8, dl, MVT::i64, 6206 SDValue(Tmp, 0), GA)); 6207 return; 6208 } 6209 case PPCISD::PPC32_PICGOT: 6210 // Generate a PIC-safe GOT reference. 6211 assert(Subtarget->is32BitELFABI() && 6212 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 6213 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 6214 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 6215 MVT::i32); 6216 return; 6217 6218 case PPCISD::VADD_SPLAT: { 6219 // This expands into one of three sequences, depending on whether 6220 // the first operand is odd or even, positive or negative. 6221 assert(isa<ConstantSDNode>(N->getOperand(0)) && 6222 isa<ConstantSDNode>(N->getOperand(1)) && 6223 "Invalid operand on VADD_SPLAT!"); 6224 6225 int Elt = N->getConstantOperandVal(0); 6226 int EltSize = N->getConstantOperandVal(1); 6227 unsigned Opc1, Opc2, Opc3; 6228 EVT VT; 6229 6230 if (EltSize == 1) { 6231 Opc1 = PPC::VSPLTISB; 6232 Opc2 = PPC::VADDUBM; 6233 Opc3 = PPC::VSUBUBM; 6234 VT = MVT::v16i8; 6235 } else if (EltSize == 2) { 6236 Opc1 = PPC::VSPLTISH; 6237 Opc2 = PPC::VADDUHM; 6238 Opc3 = PPC::VSUBUHM; 6239 VT = MVT::v8i16; 6240 } else { 6241 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 6242 Opc1 = PPC::VSPLTISW; 6243 Opc2 = PPC::VADDUWM; 6244 Opc3 = PPC::VSUBUWM; 6245 VT = MVT::v4i32; 6246 } 6247 6248 if ((Elt & 1) == 0) { 6249 // Elt is even, in the range [-32,-18] + [16,30]. 6250 // 6251 // Convert: VADD_SPLAT elt, size 6252 // Into: tmp = VSPLTIS[BHW] elt 6253 // VADDU[BHW]M tmp, tmp 6254 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 6255 SDValue EltVal = getI32Imm(Elt >> 1, dl); 6256 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6257 SDValue TmpVal = SDValue(Tmp, 0); 6258 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 6259 return; 6260 } else if (Elt > 0) { 6261 // Elt is odd and positive, in the range [17,31]. 6262 // 6263 // Convert: VADD_SPLAT elt, size 6264 // Into: tmp1 = VSPLTIS[BHW] elt-16 6265 // tmp2 = VSPLTIS[BHW] -16 6266 // VSUBU[BHW]M tmp1, tmp2 6267 SDValue EltVal = getI32Imm(Elt - 16, dl); 6268 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6269 EltVal = getI32Imm(-16, dl); 6270 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6271 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 6272 SDValue(Tmp2, 0))); 6273 return; 6274 } else { 6275 // Elt is odd and negative, in the range [-31,-17]. 6276 // 6277 // Convert: VADD_SPLAT elt, size 6278 // Into: tmp1 = VSPLTIS[BHW] elt+16 6279 // tmp2 = VSPLTIS[BHW] -16 6280 // VADDU[BHW]M tmp1, tmp2 6281 SDValue EltVal = getI32Imm(Elt + 16, dl); 6282 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6283 EltVal = getI32Imm(-16, dl); 6284 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6285 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 6286 SDValue(Tmp2, 0))); 6287 return; 6288 } 6289 } 6290 case PPCISD::LD_SPLAT: { 6291 // Here we want to handle splat load for type v16i8 and v8i16 when there is 6292 // no direct move, we don't need to use stack for this case. If target has 6293 // direct move, we should be able to get the best selection in the .td file. 6294 if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove()) 6295 break; 6296 6297 EVT Type = N->getValueType(0); 6298 if (Type != MVT::v16i8 && Type != MVT::v8i16) 6299 break; 6300 6301 // If the alignment for the load is 16 or bigger, we don't need the 6302 // permutated mask to get the required value. The value must be the 0 6303 // element in big endian target or 7/15 in little endian target in the 6304 // result vsx register of lvx instruction. 6305 // Select the instruction in the .td file. 6306 if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) && 6307 isOffsetMultipleOf(N, 16)) 6308 break; 6309 6310 SDValue ZeroReg = 6311 CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO, 6312 Subtarget->isPPC64() ? MVT::i64 : MVT::i32); 6313 unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI; 6314 // v16i8 LD_SPLAT addr 6315 // ======> 6316 // Mask = LVSR/LVSL 0, addr 6317 // LoadLow = LVX 0, addr 6318 // Perm = VPERM LoadLow, LoadLow, Mask 6319 // Splat = VSPLTB 15/0, Perm 6320 // 6321 // v8i16 LD_SPLAT addr 6322 // ======> 6323 // Mask = LVSR/LVSL 0, addr 6324 // LoadLow = LVX 0, addr 6325 // LoadHigh = LVX (LI, 1), addr 6326 // Perm = VPERM LoadLow, LoadHigh, Mask 6327 // Splat = VSPLTH 7/0, Perm 6328 unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH; 6329 unsigned SplatElemIndex = 6330 Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0; 6331 6332 SDNode *Mask = CurDAG->getMachineNode( 6333 Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg, 6334 N->getOperand(1)); 6335 6336 SDNode *LoadLow = 6337 CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other, 6338 {ZeroReg, N->getOperand(1), N->getOperand(0)}); 6339 6340 SDNode *LoadHigh = LoadLow; 6341 if (Type == MVT::v8i16) { 6342 LoadHigh = CurDAG->getMachineNode( 6343 PPC::LVX, dl, MVT::v16i8, MVT::Other, 6344 {SDValue(CurDAG->getMachineNode( 6345 LIOpcode, dl, MVT::i32, 6346 CurDAG->getTargetConstant(1, dl, MVT::i8)), 6347 0), 6348 N->getOperand(1), SDValue(LoadLow, 1)}); 6349 } 6350 6351 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1)); 6352 transferMemOperands(N, LoadHigh); 6353 6354 SDNode *Perm = 6355 CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0), 6356 SDValue(LoadHigh, 0), SDValue(Mask, 0)); 6357 CurDAG->SelectNodeTo(N, SplatOp, Type, 6358 CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8), 6359 SDValue(Perm, 0)); 6360 return; 6361 } 6362 } 6363 6364 SelectCode(N); 6365 } 6366 6367 // If the target supports the cmpb instruction, do the idiom recognition here. 6368 // We don't do this as a DAG combine because we don't want to do it as nodes 6369 // are being combined (because we might miss part of the eventual idiom). We 6370 // don't want to do it during instruction selection because we want to reuse 6371 // the logic for lowering the masking operations already part of the 6372 // instruction selector. 6373 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 6374 SDLoc dl(N); 6375 6376 assert(N->getOpcode() == ISD::OR && 6377 "Only OR nodes are supported for CMPB"); 6378 6379 SDValue Res; 6380 if (!Subtarget->hasCMPB()) 6381 return Res; 6382 6383 if (N->getValueType(0) != MVT::i32 && 6384 N->getValueType(0) != MVT::i64) 6385 return Res; 6386 6387 EVT VT = N->getValueType(0); 6388 6389 SDValue RHS, LHS; 6390 bool BytesFound[8] = {false, false, false, false, false, false, false, false}; 6391 uint64_t Mask = 0, Alt = 0; 6392 6393 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 6394 uint64_t &Mask, uint64_t &Alt, 6395 SDValue &LHS, SDValue &RHS) { 6396 if (O.getOpcode() != ISD::SELECT_CC) 6397 return false; 6398 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 6399 6400 if (!isa<ConstantSDNode>(O.getOperand(2)) || 6401 !isa<ConstantSDNode>(O.getOperand(3))) 6402 return false; 6403 6404 uint64_t PM = O.getConstantOperandVal(2); 6405 uint64_t PAlt = O.getConstantOperandVal(3); 6406 for (b = 0; b < 8; ++b) { 6407 uint64_t Mask = UINT64_C(0xFF) << (8*b); 6408 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 6409 break; 6410 } 6411 6412 if (b == 8) 6413 return false; 6414 Mask |= PM; 6415 Alt |= PAlt; 6416 6417 if (!isa<ConstantSDNode>(O.getOperand(1)) || 6418 O.getConstantOperandVal(1) != 0) { 6419 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 6420 if (Op0.getOpcode() == ISD::TRUNCATE) 6421 Op0 = Op0.getOperand(0); 6422 if (Op1.getOpcode() == ISD::TRUNCATE) 6423 Op1 = Op1.getOperand(0); 6424 6425 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 6426 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 6427 isa<ConstantSDNode>(Op0.getOperand(1))) { 6428 6429 unsigned Bits = Op0.getValueSizeInBits(); 6430 if (b != Bits/8-1) 6431 return false; 6432 if (Op0.getConstantOperandVal(1) != Bits-8) 6433 return false; 6434 6435 LHS = Op0.getOperand(0); 6436 RHS = Op1.getOperand(0); 6437 return true; 6438 } 6439 6440 // When we have small integers (i16 to be specific), the form present 6441 // post-legalization uses SETULT in the SELECT_CC for the 6442 // higher-order byte, depending on the fact that the 6443 // even-higher-order bytes are known to all be zero, for example: 6444 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 6445 // (so when the second byte is the same, because all higher-order 6446 // bits from bytes 3 and 4 are known to be zero, the result of the 6447 // xor can be at most 255) 6448 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 6449 isa<ConstantSDNode>(O.getOperand(1))) { 6450 6451 uint64_t ULim = O.getConstantOperandVal(1); 6452 if (ULim != (UINT64_C(1) << b*8)) 6453 return false; 6454 6455 // Now we need to make sure that the upper bytes are known to be 6456 // zero. 6457 unsigned Bits = Op0.getValueSizeInBits(); 6458 if (!CurDAG->MaskedValueIsZero( 6459 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 6460 return false; 6461 6462 LHS = Op0.getOperand(0); 6463 RHS = Op0.getOperand(1); 6464 return true; 6465 } 6466 6467 return false; 6468 } 6469 6470 if (CC != ISD::SETEQ) 6471 return false; 6472 6473 SDValue Op = O.getOperand(0); 6474 if (Op.getOpcode() == ISD::AND) { 6475 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6476 return false; 6477 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 6478 return false; 6479 6480 SDValue XOR = Op.getOperand(0); 6481 if (XOR.getOpcode() == ISD::TRUNCATE) 6482 XOR = XOR.getOperand(0); 6483 if (XOR.getOpcode() != ISD::XOR) 6484 return false; 6485 6486 LHS = XOR.getOperand(0); 6487 RHS = XOR.getOperand(1); 6488 return true; 6489 } else if (Op.getOpcode() == ISD::SRL) { 6490 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6491 return false; 6492 unsigned Bits = Op.getValueSizeInBits(); 6493 if (b != Bits/8-1) 6494 return false; 6495 if (Op.getConstantOperandVal(1) != Bits-8) 6496 return false; 6497 6498 SDValue XOR = Op.getOperand(0); 6499 if (XOR.getOpcode() == ISD::TRUNCATE) 6500 XOR = XOR.getOperand(0); 6501 if (XOR.getOpcode() != ISD::XOR) 6502 return false; 6503 6504 LHS = XOR.getOperand(0); 6505 RHS = XOR.getOperand(1); 6506 return true; 6507 } 6508 6509 return false; 6510 }; 6511 6512 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 6513 while (!Queue.empty()) { 6514 SDValue V = Queue.pop_back_val(); 6515 6516 for (const SDValue &O : V.getNode()->ops()) { 6517 unsigned b = 0; 6518 uint64_t M = 0, A = 0; 6519 SDValue OLHS, ORHS; 6520 if (O.getOpcode() == ISD::OR) { 6521 Queue.push_back(O); 6522 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 6523 if (!LHS) { 6524 LHS = OLHS; 6525 RHS = ORHS; 6526 BytesFound[b] = true; 6527 Mask |= M; 6528 Alt |= A; 6529 } else if ((LHS == ORHS && RHS == OLHS) || 6530 (RHS == ORHS && LHS == OLHS)) { 6531 BytesFound[b] = true; 6532 Mask |= M; 6533 Alt |= A; 6534 } else { 6535 return Res; 6536 } 6537 } else { 6538 return Res; 6539 } 6540 } 6541 } 6542 6543 unsigned LastB = 0, BCnt = 0; 6544 for (unsigned i = 0; i < 8; ++i) 6545 if (BytesFound[LastB]) { 6546 ++BCnt; 6547 LastB = i; 6548 } 6549 6550 if (!LastB || BCnt < 2) 6551 return Res; 6552 6553 // Because we'll be zero-extending the output anyway if don't have a specific 6554 // value for each input byte (via the Mask), we can 'anyext' the inputs. 6555 if (LHS.getValueType() != VT) { 6556 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 6557 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 6558 } 6559 6560 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 6561 6562 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 6563 if (NonTrivialMask && !Alt) { 6564 // Res = Mask & CMPB 6565 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6566 CurDAG->getConstant(Mask, dl, VT)); 6567 } else if (Alt) { 6568 // Res = (CMPB & Mask) | (~CMPB & Alt) 6569 // Which, as suggested here: 6570 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 6571 // can be written as: 6572 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 6573 // useful because the (Alt ^ Mask) can be pre-computed. 6574 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6575 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 6576 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 6577 CurDAG->getConstant(Alt, dl, VT)); 6578 } 6579 6580 return Res; 6581 } 6582 6583 // When CR bit registers are enabled, an extension of an i1 variable to a i32 6584 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 6585 // involves constant materialization of a 0 or a 1 or both. If the result of 6586 // the extension is then operated upon by some operator that can be constant 6587 // folded with a constant 0 or 1, and that constant can be materialized using 6588 // only one instruction (like a zero or one), then we should fold in those 6589 // operations with the select. 6590 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 6591 if (!Subtarget->useCRBits()) 6592 return; 6593 6594 if (N->getOpcode() != ISD::ZERO_EXTEND && 6595 N->getOpcode() != ISD::SIGN_EXTEND && 6596 N->getOpcode() != ISD::ANY_EXTEND) 6597 return; 6598 6599 if (N->getOperand(0).getValueType() != MVT::i1) 6600 return; 6601 6602 if (!N->hasOneUse()) 6603 return; 6604 6605 SDLoc dl(N); 6606 EVT VT = N->getValueType(0); 6607 SDValue Cond = N->getOperand(0); 6608 SDValue ConstTrue = 6609 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 6610 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 6611 6612 do { 6613 SDNode *User = *N->use_begin(); 6614 if (User->getNumOperands() != 2) 6615 break; 6616 6617 auto TryFold = [this, N, User, dl](SDValue Val) { 6618 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 6619 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 6620 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 6621 6622 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 6623 User->getValueType(0), {O0, O1}); 6624 }; 6625 6626 // FIXME: When the semantics of the interaction between select and undef 6627 // are clearly defined, it may turn out to be unnecessary to break here. 6628 SDValue TrueRes = TryFold(ConstTrue); 6629 if (!TrueRes || TrueRes.isUndef()) 6630 break; 6631 SDValue FalseRes = TryFold(ConstFalse); 6632 if (!FalseRes || FalseRes.isUndef()) 6633 break; 6634 6635 // For us to materialize these using one instruction, we must be able to 6636 // represent them as signed 16-bit integers. 6637 uint64_t True = TrueRes->getAsZExtVal(), False = FalseRes->getAsZExtVal(); 6638 if (!isInt<16>(True) || !isInt<16>(False)) 6639 break; 6640 6641 // We can replace User with a new SELECT node, and try again to see if we 6642 // can fold the select with its user. 6643 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 6644 N = User; 6645 ConstTrue = TrueRes; 6646 ConstFalse = FalseRes; 6647 } while (N->hasOneUse()); 6648 } 6649 6650 void PPCDAGToDAGISel::PreprocessISelDAG() { 6651 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6652 6653 bool MadeChange = false; 6654 while (Position != CurDAG->allnodes_begin()) { 6655 SDNode *N = &*--Position; 6656 if (N->use_empty()) 6657 continue; 6658 6659 SDValue Res; 6660 switch (N->getOpcode()) { 6661 default: break; 6662 case ISD::OR: 6663 Res = combineToCMPB(N); 6664 break; 6665 } 6666 6667 if (!Res) 6668 foldBoolExts(Res, N); 6669 6670 if (Res) { 6671 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 6672 LLVM_DEBUG(N->dump(CurDAG)); 6673 LLVM_DEBUG(dbgs() << "\nNew: "); 6674 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 6675 LLVM_DEBUG(dbgs() << "\n"); 6676 6677 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 6678 MadeChange = true; 6679 } 6680 } 6681 6682 if (MadeChange) 6683 CurDAG->RemoveDeadNodes(); 6684 } 6685 6686 /// PostprocessISelDAG - Perform some late peephole optimizations 6687 /// on the DAG representation. 6688 void PPCDAGToDAGISel::PostprocessISelDAG() { 6689 // Skip peepholes at -O0. 6690 if (TM.getOptLevel() == CodeGenOptLevel::None) 6691 return; 6692 6693 PeepholePPC64(); 6694 PeepholeCROps(); 6695 PeepholePPC64ZExt(); 6696 } 6697 6698 // Check if all users of this node will become isel where the second operand 6699 // is the constant zero. If this is so, and if we can negate the condition, 6700 // then we can flip the true and false operands. This will allow the zero to 6701 // be folded with the isel so that we don't need to materialize a register 6702 // containing zero. 6703 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 6704 for (const SDNode *User : N->uses()) { 6705 if (!User->isMachineOpcode()) 6706 return false; 6707 if (User->getMachineOpcode() != PPC::SELECT_I4 && 6708 User->getMachineOpcode() != PPC::SELECT_I8) 6709 return false; 6710 6711 SDNode *Op1 = User->getOperand(1).getNode(); 6712 SDNode *Op2 = User->getOperand(2).getNode(); 6713 // If we have a degenerate select with two equal operands, swapping will 6714 // not do anything, and we may run into an infinite loop. 6715 if (Op1 == Op2) 6716 return false; 6717 6718 if (!Op2->isMachineOpcode()) 6719 return false; 6720 6721 if (Op2->getMachineOpcode() != PPC::LI && 6722 Op2->getMachineOpcode() != PPC::LI8) 6723 return false; 6724 6725 if (!isNullConstant(Op2->getOperand(0))) 6726 return false; 6727 } 6728 6729 return true; 6730 } 6731 6732 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 6733 SmallVector<SDNode *, 4> ToReplace; 6734 for (SDNode *User : N->uses()) { 6735 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 6736 User->getMachineOpcode() == PPC::SELECT_I8) && 6737 "Must have all select users"); 6738 ToReplace.push_back(User); 6739 } 6740 6741 for (SDNode *User : ToReplace) { 6742 SDNode *ResNode = 6743 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 6744 User->getValueType(0), User->getOperand(0), 6745 User->getOperand(2), 6746 User->getOperand(1)); 6747 6748 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6749 LLVM_DEBUG(User->dump(CurDAG)); 6750 LLVM_DEBUG(dbgs() << "\nNew: "); 6751 LLVM_DEBUG(ResNode->dump(CurDAG)); 6752 LLVM_DEBUG(dbgs() << "\n"); 6753 6754 ReplaceUses(User, ResNode); 6755 } 6756 } 6757 6758 void PPCDAGToDAGISel::PeepholeCROps() { 6759 bool IsModified; 6760 do { 6761 IsModified = false; 6762 for (SDNode &Node : CurDAG->allnodes()) { 6763 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 6764 if (!MachineNode || MachineNode->use_empty()) 6765 continue; 6766 SDNode *ResNode = MachineNode; 6767 6768 bool Op1Set = false, Op1Unset = false, 6769 Op1Not = false, 6770 Op2Set = false, Op2Unset = false, 6771 Op2Not = false; 6772 6773 unsigned Opcode = MachineNode->getMachineOpcode(); 6774 switch (Opcode) { 6775 default: break; 6776 case PPC::CRAND: 6777 case PPC::CRNAND: 6778 case PPC::CROR: 6779 case PPC::CRXOR: 6780 case PPC::CRNOR: 6781 case PPC::CREQV: 6782 case PPC::CRANDC: 6783 case PPC::CRORC: { 6784 SDValue Op = MachineNode->getOperand(1); 6785 if (Op.isMachineOpcode()) { 6786 if (Op.getMachineOpcode() == PPC::CRSET) 6787 Op2Set = true; 6788 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6789 Op2Unset = true; 6790 else if ((Op.getMachineOpcode() == PPC::CRNOR && 6791 Op.getOperand(0) == Op.getOperand(1)) || 6792 Op.getMachineOpcode() == PPC::CRNOT) 6793 Op2Not = true; 6794 } 6795 [[fallthrough]]; 6796 } 6797 case PPC::BC: 6798 case PPC::BCn: 6799 case PPC::SELECT_I4: 6800 case PPC::SELECT_I8: 6801 case PPC::SELECT_F4: 6802 case PPC::SELECT_F8: 6803 case PPC::SELECT_SPE: 6804 case PPC::SELECT_SPE4: 6805 case PPC::SELECT_VRRC: 6806 case PPC::SELECT_VSFRC: 6807 case PPC::SELECT_VSSRC: 6808 case PPC::SELECT_VSRC: { 6809 SDValue Op = MachineNode->getOperand(0); 6810 if (Op.isMachineOpcode()) { 6811 if (Op.getMachineOpcode() == PPC::CRSET) 6812 Op1Set = true; 6813 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6814 Op1Unset = true; 6815 else if ((Op.getMachineOpcode() == PPC::CRNOR && 6816 Op.getOperand(0) == Op.getOperand(1)) || 6817 Op.getMachineOpcode() == PPC::CRNOT) 6818 Op1Not = true; 6819 } 6820 } 6821 break; 6822 } 6823 6824 bool SelectSwap = false; 6825 switch (Opcode) { 6826 default: break; 6827 case PPC::CRAND: 6828 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6829 // x & x = x 6830 ResNode = MachineNode->getOperand(0).getNode(); 6831 else if (Op1Set) 6832 // 1 & y = y 6833 ResNode = MachineNode->getOperand(1).getNode(); 6834 else if (Op2Set) 6835 // x & 1 = x 6836 ResNode = MachineNode->getOperand(0).getNode(); 6837 else if (Op1Unset || Op2Unset) 6838 // x & 0 = 0 & y = 0 6839 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6840 MVT::i1); 6841 else if (Op1Not) 6842 // ~x & y = andc(y, x) 6843 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6844 MVT::i1, MachineNode->getOperand(1), 6845 MachineNode->getOperand(0). 6846 getOperand(0)); 6847 else if (Op2Not) 6848 // x & ~y = andc(x, y) 6849 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6850 MVT::i1, MachineNode->getOperand(0), 6851 MachineNode->getOperand(1). 6852 getOperand(0)); 6853 else if (AllUsersSelectZero(MachineNode)) { 6854 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6855 MVT::i1, MachineNode->getOperand(0), 6856 MachineNode->getOperand(1)); 6857 SelectSwap = true; 6858 } 6859 break; 6860 case PPC::CRNAND: 6861 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6862 // nand(x, x) -> nor(x, x) 6863 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6864 MVT::i1, MachineNode->getOperand(0), 6865 MachineNode->getOperand(0)); 6866 else if (Op1Set) 6867 // nand(1, y) -> nor(y, y) 6868 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6869 MVT::i1, MachineNode->getOperand(1), 6870 MachineNode->getOperand(1)); 6871 else if (Op2Set) 6872 // nand(x, 1) -> nor(x, x) 6873 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6874 MVT::i1, MachineNode->getOperand(0), 6875 MachineNode->getOperand(0)); 6876 else if (Op1Unset || Op2Unset) 6877 // nand(x, 0) = nand(0, y) = 1 6878 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6879 MVT::i1); 6880 else if (Op1Not) 6881 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 6882 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6883 MVT::i1, MachineNode->getOperand(0). 6884 getOperand(0), 6885 MachineNode->getOperand(1)); 6886 else if (Op2Not) 6887 // nand(x, ~y) = ~x | y = orc(y, x) 6888 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6889 MVT::i1, MachineNode->getOperand(1). 6890 getOperand(0), 6891 MachineNode->getOperand(0)); 6892 else if (AllUsersSelectZero(MachineNode)) { 6893 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6894 MVT::i1, MachineNode->getOperand(0), 6895 MachineNode->getOperand(1)); 6896 SelectSwap = true; 6897 } 6898 break; 6899 case PPC::CROR: 6900 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6901 // x | x = x 6902 ResNode = MachineNode->getOperand(0).getNode(); 6903 else if (Op1Set || Op2Set) 6904 // x | 1 = 1 | y = 1 6905 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6906 MVT::i1); 6907 else if (Op1Unset) 6908 // 0 | y = y 6909 ResNode = MachineNode->getOperand(1).getNode(); 6910 else if (Op2Unset) 6911 // x | 0 = x 6912 ResNode = MachineNode->getOperand(0).getNode(); 6913 else if (Op1Not) 6914 // ~x | y = orc(y, x) 6915 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6916 MVT::i1, MachineNode->getOperand(1), 6917 MachineNode->getOperand(0). 6918 getOperand(0)); 6919 else if (Op2Not) 6920 // x | ~y = orc(x, y) 6921 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6922 MVT::i1, MachineNode->getOperand(0), 6923 MachineNode->getOperand(1). 6924 getOperand(0)); 6925 else if (AllUsersSelectZero(MachineNode)) { 6926 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6927 MVT::i1, MachineNode->getOperand(0), 6928 MachineNode->getOperand(1)); 6929 SelectSwap = true; 6930 } 6931 break; 6932 case PPC::CRXOR: 6933 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6934 // xor(x, x) = 0 6935 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6936 MVT::i1); 6937 else if (Op1Set) 6938 // xor(1, y) -> nor(y, y) 6939 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6940 MVT::i1, MachineNode->getOperand(1), 6941 MachineNode->getOperand(1)); 6942 else if (Op2Set) 6943 // xor(x, 1) -> nor(x, x) 6944 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6945 MVT::i1, MachineNode->getOperand(0), 6946 MachineNode->getOperand(0)); 6947 else if (Op1Unset) 6948 // xor(0, y) = y 6949 ResNode = MachineNode->getOperand(1).getNode(); 6950 else if (Op2Unset) 6951 // xor(x, 0) = x 6952 ResNode = MachineNode->getOperand(0).getNode(); 6953 else if (Op1Not) 6954 // xor(~x, y) = eqv(x, y) 6955 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6956 MVT::i1, MachineNode->getOperand(0). 6957 getOperand(0), 6958 MachineNode->getOperand(1)); 6959 else if (Op2Not) 6960 // xor(x, ~y) = eqv(x, y) 6961 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6962 MVT::i1, MachineNode->getOperand(0), 6963 MachineNode->getOperand(1). 6964 getOperand(0)); 6965 else if (AllUsersSelectZero(MachineNode)) { 6966 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6967 MVT::i1, MachineNode->getOperand(0), 6968 MachineNode->getOperand(1)); 6969 SelectSwap = true; 6970 } 6971 break; 6972 case PPC::CRNOR: 6973 if (Op1Set || Op2Set) 6974 // nor(1, y) -> 0 6975 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6976 MVT::i1); 6977 else if (Op1Unset) 6978 // nor(0, y) = ~y -> nor(y, y) 6979 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6980 MVT::i1, MachineNode->getOperand(1), 6981 MachineNode->getOperand(1)); 6982 else if (Op2Unset) 6983 // nor(x, 0) = ~x 6984 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6985 MVT::i1, MachineNode->getOperand(0), 6986 MachineNode->getOperand(0)); 6987 else if (Op1Not) 6988 // nor(~x, y) = andc(x, y) 6989 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6990 MVT::i1, MachineNode->getOperand(0). 6991 getOperand(0), 6992 MachineNode->getOperand(1)); 6993 else if (Op2Not) 6994 // nor(x, ~y) = andc(y, x) 6995 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6996 MVT::i1, MachineNode->getOperand(1). 6997 getOperand(0), 6998 MachineNode->getOperand(0)); 6999 else if (AllUsersSelectZero(MachineNode)) { 7000 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 7001 MVT::i1, MachineNode->getOperand(0), 7002 MachineNode->getOperand(1)); 7003 SelectSwap = true; 7004 } 7005 break; 7006 case PPC::CREQV: 7007 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 7008 // eqv(x, x) = 1 7009 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 7010 MVT::i1); 7011 else if (Op1Set) 7012 // eqv(1, y) = y 7013 ResNode = MachineNode->getOperand(1).getNode(); 7014 else if (Op2Set) 7015 // eqv(x, 1) = x 7016 ResNode = MachineNode->getOperand(0).getNode(); 7017 else if (Op1Unset) 7018 // eqv(0, y) = ~y -> nor(y, y) 7019 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7020 MVT::i1, MachineNode->getOperand(1), 7021 MachineNode->getOperand(1)); 7022 else if (Op2Unset) 7023 // eqv(x, 0) = ~x 7024 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7025 MVT::i1, MachineNode->getOperand(0), 7026 MachineNode->getOperand(0)); 7027 else if (Op1Not) 7028 // eqv(~x, y) = xor(x, y) 7029 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 7030 MVT::i1, MachineNode->getOperand(0). 7031 getOperand(0), 7032 MachineNode->getOperand(1)); 7033 else if (Op2Not) 7034 // eqv(x, ~y) = xor(x, y) 7035 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 7036 MVT::i1, MachineNode->getOperand(0), 7037 MachineNode->getOperand(1). 7038 getOperand(0)); 7039 else if (AllUsersSelectZero(MachineNode)) { 7040 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 7041 MVT::i1, MachineNode->getOperand(0), 7042 MachineNode->getOperand(1)); 7043 SelectSwap = true; 7044 } 7045 break; 7046 case PPC::CRANDC: 7047 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 7048 // andc(x, x) = 0 7049 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 7050 MVT::i1); 7051 else if (Op1Set) 7052 // andc(1, y) = ~y 7053 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7054 MVT::i1, MachineNode->getOperand(1), 7055 MachineNode->getOperand(1)); 7056 else if (Op1Unset || Op2Set) 7057 // andc(0, y) = andc(x, 1) = 0 7058 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 7059 MVT::i1); 7060 else if (Op2Unset) 7061 // andc(x, 0) = x 7062 ResNode = MachineNode->getOperand(0).getNode(); 7063 else if (Op1Not) 7064 // andc(~x, y) = ~(x | y) = nor(x, y) 7065 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7066 MVT::i1, MachineNode->getOperand(0). 7067 getOperand(0), 7068 MachineNode->getOperand(1)); 7069 else if (Op2Not) 7070 // andc(x, ~y) = x & y 7071 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 7072 MVT::i1, MachineNode->getOperand(0), 7073 MachineNode->getOperand(1). 7074 getOperand(0)); 7075 else if (AllUsersSelectZero(MachineNode)) { 7076 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 7077 MVT::i1, MachineNode->getOperand(1), 7078 MachineNode->getOperand(0)); 7079 SelectSwap = true; 7080 } 7081 break; 7082 case PPC::CRORC: 7083 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 7084 // orc(x, x) = 1 7085 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 7086 MVT::i1); 7087 else if (Op1Set || Op2Unset) 7088 // orc(1, y) = orc(x, 0) = 1 7089 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 7090 MVT::i1); 7091 else if (Op2Set) 7092 // orc(x, 1) = x 7093 ResNode = MachineNode->getOperand(0).getNode(); 7094 else if (Op1Unset) 7095 // orc(0, y) = ~y 7096 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7097 MVT::i1, MachineNode->getOperand(1), 7098 MachineNode->getOperand(1)); 7099 else if (Op1Not) 7100 // orc(~x, y) = ~(x & y) = nand(x, y) 7101 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 7102 MVT::i1, MachineNode->getOperand(0). 7103 getOperand(0), 7104 MachineNode->getOperand(1)); 7105 else if (Op2Not) 7106 // orc(x, ~y) = x | y 7107 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 7108 MVT::i1, MachineNode->getOperand(0), 7109 MachineNode->getOperand(1). 7110 getOperand(0)); 7111 else if (AllUsersSelectZero(MachineNode)) { 7112 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 7113 MVT::i1, MachineNode->getOperand(1), 7114 MachineNode->getOperand(0)); 7115 SelectSwap = true; 7116 } 7117 break; 7118 case PPC::SELECT_I4: 7119 case PPC::SELECT_I8: 7120 case PPC::SELECT_F4: 7121 case PPC::SELECT_F8: 7122 case PPC::SELECT_SPE: 7123 case PPC::SELECT_SPE4: 7124 case PPC::SELECT_VRRC: 7125 case PPC::SELECT_VSFRC: 7126 case PPC::SELECT_VSSRC: 7127 case PPC::SELECT_VSRC: 7128 if (Op1Set) 7129 ResNode = MachineNode->getOperand(1).getNode(); 7130 else if (Op1Unset) 7131 ResNode = MachineNode->getOperand(2).getNode(); 7132 else if (Op1Not) 7133 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 7134 SDLoc(MachineNode), 7135 MachineNode->getValueType(0), 7136 MachineNode->getOperand(0). 7137 getOperand(0), 7138 MachineNode->getOperand(2), 7139 MachineNode->getOperand(1)); 7140 break; 7141 case PPC::BC: 7142 case PPC::BCn: 7143 if (Op1Not) 7144 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 7145 PPC::BC, 7146 SDLoc(MachineNode), 7147 MVT::Other, 7148 MachineNode->getOperand(0). 7149 getOperand(0), 7150 MachineNode->getOperand(1), 7151 MachineNode->getOperand(2)); 7152 // FIXME: Handle Op1Set, Op1Unset here too. 7153 break; 7154 } 7155 7156 // If we're inverting this node because it is used only by selects that 7157 // we'd like to swap, then swap the selects before the node replacement. 7158 if (SelectSwap) 7159 SwapAllSelectUsers(MachineNode); 7160 7161 if (ResNode != MachineNode) { 7162 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 7163 LLVM_DEBUG(MachineNode->dump(CurDAG)); 7164 LLVM_DEBUG(dbgs() << "\nNew: "); 7165 LLVM_DEBUG(ResNode->dump(CurDAG)); 7166 LLVM_DEBUG(dbgs() << "\n"); 7167 7168 ReplaceUses(MachineNode, ResNode); 7169 IsModified = true; 7170 } 7171 } 7172 if (IsModified) 7173 CurDAG->RemoveDeadNodes(); 7174 } while (IsModified); 7175 } 7176 7177 // Gather the set of 32-bit operations that are known to have their 7178 // higher-order 32 bits zero, where ToPromote contains all such operations. 7179 static bool PeepholePPC64ZExtGather(SDValue Op32, 7180 SmallPtrSetImpl<SDNode *> &ToPromote) { 7181 if (!Op32.isMachineOpcode()) 7182 return false; 7183 7184 // First, check for the "frontier" instructions (those that will clear the 7185 // higher-order 32 bits. 7186 7187 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 7188 // around. If it does not, then these instructions will clear the 7189 // higher-order bits. 7190 if ((Op32.getMachineOpcode() == PPC::RLWINM || 7191 Op32.getMachineOpcode() == PPC::RLWNM) && 7192 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 7193 ToPromote.insert(Op32.getNode()); 7194 return true; 7195 } 7196 7197 // SLW and SRW always clear the higher-order bits. 7198 if (Op32.getMachineOpcode() == PPC::SLW || 7199 Op32.getMachineOpcode() == PPC::SRW) { 7200 ToPromote.insert(Op32.getNode()); 7201 return true; 7202 } 7203 7204 // For LI and LIS, we need the immediate to be positive (so that it is not 7205 // sign extended). 7206 if (Op32.getMachineOpcode() == PPC::LI || 7207 Op32.getMachineOpcode() == PPC::LIS) { 7208 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 7209 return false; 7210 7211 ToPromote.insert(Op32.getNode()); 7212 return true; 7213 } 7214 7215 // LHBRX and LWBRX always clear the higher-order bits. 7216 if (Op32.getMachineOpcode() == PPC::LHBRX || 7217 Op32.getMachineOpcode() == PPC::LWBRX) { 7218 ToPromote.insert(Op32.getNode()); 7219 return true; 7220 } 7221 7222 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. 7223 if (Op32.getMachineOpcode() == PPC::CNTLZW || 7224 Op32.getMachineOpcode() == PPC::CNTTZW) { 7225 ToPromote.insert(Op32.getNode()); 7226 return true; 7227 } 7228 7229 // Next, check for those instructions we can look through. 7230 7231 // Assuming the mask does not wrap around, then the higher-order bits are 7232 // taken directly from the first operand. 7233 if (Op32.getMachineOpcode() == PPC::RLWIMI && 7234 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 7235 SmallPtrSet<SDNode *, 16> ToPromote1; 7236 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 7237 return false; 7238 7239 ToPromote.insert(Op32.getNode()); 7240 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7241 return true; 7242 } 7243 7244 // For OR, the higher-order bits are zero if that is true for both operands. 7245 // For SELECT_I4, the same is true (but the relevant operand numbers are 7246 // shifted by 1). 7247 if (Op32.getMachineOpcode() == PPC::OR || 7248 Op32.getMachineOpcode() == PPC::SELECT_I4) { 7249 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 7250 SmallPtrSet<SDNode *, 16> ToPromote1; 7251 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 7252 return false; 7253 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 7254 return false; 7255 7256 ToPromote.insert(Op32.getNode()); 7257 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7258 return true; 7259 } 7260 7261 // For ORI and ORIS, we need the higher-order bits of the first operand to be 7262 // zero, and also for the constant to be positive (so that it is not sign 7263 // extended). 7264 if (Op32.getMachineOpcode() == PPC::ORI || 7265 Op32.getMachineOpcode() == PPC::ORIS) { 7266 SmallPtrSet<SDNode *, 16> ToPromote1; 7267 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 7268 return false; 7269 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 7270 return false; 7271 7272 ToPromote.insert(Op32.getNode()); 7273 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7274 return true; 7275 } 7276 7277 // The higher-order bits of AND are zero if that is true for at least one of 7278 // the operands. 7279 if (Op32.getMachineOpcode() == PPC::AND) { 7280 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 7281 bool Op0OK = 7282 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 7283 bool Op1OK = 7284 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 7285 if (!Op0OK && !Op1OK) 7286 return false; 7287 7288 ToPromote.insert(Op32.getNode()); 7289 7290 if (Op0OK) 7291 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7292 7293 if (Op1OK) 7294 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 7295 7296 return true; 7297 } 7298 7299 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 7300 // of the first operand, or if the second operand is positive (so that it is 7301 // not sign extended). 7302 if (Op32.getMachineOpcode() == PPC::ANDI_rec || 7303 Op32.getMachineOpcode() == PPC::ANDIS_rec) { 7304 SmallPtrSet<SDNode *, 16> ToPromote1; 7305 bool Op0OK = 7306 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 7307 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 7308 if (!Op0OK && !Op1OK) 7309 return false; 7310 7311 ToPromote.insert(Op32.getNode()); 7312 7313 if (Op0OK) 7314 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7315 7316 return true; 7317 } 7318 7319 return false; 7320 } 7321 7322 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 7323 if (!Subtarget->isPPC64()) 7324 return; 7325 7326 // When we zero-extend from i32 to i64, we use a pattern like this: 7327 // def : Pat<(i64 (zext i32:$in)), 7328 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 7329 // 0, 32)>; 7330 // There are several 32-bit shift/rotate instructions, however, that will 7331 // clear the higher-order bits of their output, rendering the RLDICL 7332 // unnecessary. When that happens, we remove it here, and redefine the 7333 // relevant 32-bit operation to be a 64-bit operation. 7334 7335 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7336 7337 bool MadeChange = false; 7338 while (Position != CurDAG->allnodes_begin()) { 7339 SDNode *N = &*--Position; 7340 // Skip dead nodes and any non-machine opcodes. 7341 if (N->use_empty() || !N->isMachineOpcode()) 7342 continue; 7343 7344 if (N->getMachineOpcode() != PPC::RLDICL) 7345 continue; 7346 7347 if (N->getConstantOperandVal(1) != 0 || 7348 N->getConstantOperandVal(2) != 32) 7349 continue; 7350 7351 SDValue ISR = N->getOperand(0); 7352 if (!ISR.isMachineOpcode() || 7353 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 7354 continue; 7355 7356 if (!ISR.hasOneUse()) 7357 continue; 7358 7359 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 7360 continue; 7361 7362 SDValue IDef = ISR.getOperand(0); 7363 if (!IDef.isMachineOpcode() || 7364 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 7365 continue; 7366 7367 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 7368 // can get rid of it. 7369 7370 SDValue Op32 = ISR->getOperand(1); 7371 if (!Op32.isMachineOpcode()) 7372 continue; 7373 7374 // There are some 32-bit instructions that always clear the high-order 32 7375 // bits, there are also some instructions (like AND) that we can look 7376 // through. 7377 SmallPtrSet<SDNode *, 16> ToPromote; 7378 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 7379 continue; 7380 7381 // If the ToPromote set contains nodes that have uses outside of the set 7382 // (except for the original INSERT_SUBREG), then abort the transformation. 7383 bool OutsideUse = false; 7384 for (SDNode *PN : ToPromote) { 7385 for (SDNode *UN : PN->uses()) { 7386 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 7387 OutsideUse = true; 7388 break; 7389 } 7390 } 7391 7392 if (OutsideUse) 7393 break; 7394 } 7395 if (OutsideUse) 7396 continue; 7397 7398 MadeChange = true; 7399 7400 // We now know that this zero extension can be removed by promoting to 7401 // nodes in ToPromote to 64-bit operations, where for operations in the 7402 // frontier of the set, we need to insert INSERT_SUBREGs for their 7403 // operands. 7404 for (SDNode *PN : ToPromote) { 7405 unsigned NewOpcode; 7406 switch (PN->getMachineOpcode()) { 7407 default: 7408 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 7409 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 7410 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 7411 case PPC::SLW: NewOpcode = PPC::SLW8; break; 7412 case PPC::SRW: NewOpcode = PPC::SRW8; break; 7413 case PPC::LI: NewOpcode = PPC::LI8; break; 7414 case PPC::LIS: NewOpcode = PPC::LIS8; break; 7415 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 7416 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 7417 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 7418 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; 7419 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 7420 case PPC::OR: NewOpcode = PPC::OR8; break; 7421 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 7422 case PPC::ORI: NewOpcode = PPC::ORI8; break; 7423 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 7424 case PPC::AND: NewOpcode = PPC::AND8; break; 7425 case PPC::ANDI_rec: 7426 NewOpcode = PPC::ANDI8_rec; 7427 break; 7428 case PPC::ANDIS_rec: 7429 NewOpcode = PPC::ANDIS8_rec; 7430 break; 7431 } 7432 7433 // Note: During the replacement process, the nodes will be in an 7434 // inconsistent state (some instructions will have operands with values 7435 // of the wrong type). Once done, however, everything should be right 7436 // again. 7437 7438 SmallVector<SDValue, 4> Ops; 7439 for (const SDValue &V : PN->ops()) { 7440 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 7441 !isa<ConstantSDNode>(V)) { 7442 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 7443 SDNode *ReplOp = 7444 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 7445 ISR.getNode()->getVTList(), ReplOpOps); 7446 Ops.push_back(SDValue(ReplOp, 0)); 7447 } else { 7448 Ops.push_back(V); 7449 } 7450 } 7451 7452 // Because all to-be-promoted nodes only have users that are other 7453 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 7454 // the i32 result value type with i64. 7455 7456 SmallVector<EVT, 2> NewVTs; 7457 SDVTList VTs = PN->getVTList(); 7458 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 7459 if (VTs.VTs[i] == MVT::i32) 7460 NewVTs.push_back(MVT::i64); 7461 else 7462 NewVTs.push_back(VTs.VTs[i]); 7463 7464 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 7465 LLVM_DEBUG(PN->dump(CurDAG)); 7466 7467 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 7468 7469 LLVM_DEBUG(dbgs() << "\nNew: "); 7470 LLVM_DEBUG(PN->dump(CurDAG)); 7471 LLVM_DEBUG(dbgs() << "\n"); 7472 } 7473 7474 // Now we replace the original zero extend and its associated INSERT_SUBREG 7475 // with the value feeding the INSERT_SUBREG (which has now been promoted to 7476 // return an i64). 7477 7478 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 7479 LLVM_DEBUG(N->dump(CurDAG)); 7480 LLVM_DEBUG(dbgs() << "\nNew: "); 7481 LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); 7482 LLVM_DEBUG(dbgs() << "\n"); 7483 7484 ReplaceUses(N, Op32.getNode()); 7485 } 7486 7487 if (MadeChange) 7488 CurDAG->RemoveDeadNodes(); 7489 } 7490 7491 static bool isVSXSwap(SDValue N) { 7492 if (!N->isMachineOpcode()) 7493 return false; 7494 unsigned Opc = N->getMachineOpcode(); 7495 7496 // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate 7497 // operand is 2. 7498 if (Opc == PPC::XXPERMDIs) { 7499 return isa<ConstantSDNode>(N->getOperand(1)) && 7500 N->getConstantOperandVal(1) == 2; 7501 } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) { 7502 return N->getOperand(0) == N->getOperand(1) && 7503 isa<ConstantSDNode>(N->getOperand(2)) && 7504 N->getConstantOperandVal(2) == 2; 7505 } 7506 7507 return false; 7508 } 7509 7510 // TODO: Make this complete and replace with a table-gen bit. 7511 static bool isLaneInsensitive(SDValue N) { 7512 if (!N->isMachineOpcode()) 7513 return false; 7514 unsigned Opc = N->getMachineOpcode(); 7515 7516 switch (Opc) { 7517 default: 7518 return false; 7519 case PPC::VAVGSB: 7520 case PPC::VAVGUB: 7521 case PPC::VAVGSH: 7522 case PPC::VAVGUH: 7523 case PPC::VAVGSW: 7524 case PPC::VAVGUW: 7525 case PPC::VMAXFP: 7526 case PPC::VMAXSB: 7527 case PPC::VMAXUB: 7528 case PPC::VMAXSH: 7529 case PPC::VMAXUH: 7530 case PPC::VMAXSW: 7531 case PPC::VMAXUW: 7532 case PPC::VMINFP: 7533 case PPC::VMINSB: 7534 case PPC::VMINUB: 7535 case PPC::VMINSH: 7536 case PPC::VMINUH: 7537 case PPC::VMINSW: 7538 case PPC::VMINUW: 7539 case PPC::VADDFP: 7540 case PPC::VADDUBM: 7541 case PPC::VADDUHM: 7542 case PPC::VADDUWM: 7543 case PPC::VSUBFP: 7544 case PPC::VSUBUBM: 7545 case PPC::VSUBUHM: 7546 case PPC::VSUBUWM: 7547 case PPC::VAND: 7548 case PPC::VANDC: 7549 case PPC::VOR: 7550 case PPC::VORC: 7551 case PPC::VXOR: 7552 case PPC::VNOR: 7553 case PPC::VMULUWM: 7554 return true; 7555 } 7556 } 7557 7558 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is 7559 // lane-insensitive. 7560 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) { 7561 // Our desired xxswap might be source of COPY_TO_REGCLASS. 7562 // TODO: Can we put this a common method for DAG? 7563 auto SkipRCCopy = [](SDValue V) { 7564 while (V->isMachineOpcode() && 7565 V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) { 7566 // All values in the chain should have single use. 7567 if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode())) 7568 return SDValue(); 7569 V = V->getOperand(0); 7570 } 7571 return V.hasOneUse() ? V : SDValue(); 7572 }; 7573 7574 SDValue VecOp = SkipRCCopy(N->getOperand(0)); 7575 if (!VecOp || !isLaneInsensitive(VecOp)) 7576 return; 7577 7578 SDValue LHS = SkipRCCopy(VecOp.getOperand(0)), 7579 RHS = SkipRCCopy(VecOp.getOperand(1)); 7580 if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS)) 7581 return; 7582 7583 // These swaps may still have chain-uses here, count on dead code elimination 7584 // in following passes to remove them. 7585 DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0)); 7586 DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0)); 7587 DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0)); 7588 } 7589 7590 // Check if an SDValue has the 'aix-small-tls' global variable attribute. 7591 static bool hasAIXSmallTLSAttr(SDValue Val) { 7592 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val)) 7593 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal())) 7594 if (GV->hasAttribute("aix-small-tls")) 7595 return true; 7596 7597 return false; 7598 } 7599 7600 // Is an ADDI eligible for folding for non-TOC-based local-[exec|dynamic] 7601 // accesses? 7602 static bool isEligibleToFoldADDIForFasterLocalAccesses(SelectionDAG *DAG, 7603 SDValue ADDIToFold) { 7604 // Check if ADDIToFold (the ADDI that we want to fold into local-exec 7605 // accesses), is truly an ADDI. 7606 if (!ADDIToFold.isMachineOpcode() || 7607 (ADDIToFold.getMachineOpcode() != PPC::ADDI8)) 7608 return false; 7609 7610 // Folding is only allowed for the AIX small-local-[exec|dynamic] TLS target 7611 // attribute or when the 'aix-small-tls' global variable attribute is present. 7612 const PPCSubtarget &Subtarget = 7613 DAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 7614 SDValue TLSVarNode = ADDIToFold.getOperand(1); 7615 if (!(Subtarget.hasAIXSmallLocalDynamicTLS() || 7616 Subtarget.hasAIXSmallLocalExecTLS() || hasAIXSmallTLSAttr(TLSVarNode))) 7617 return false; 7618 7619 // The second operand of the ADDIToFold should be the global TLS address 7620 // (the local-exec TLS variable). We only perform the folding if the TLS 7621 // variable is the second operand. 7622 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(TLSVarNode); 7623 if (!GA) 7624 return false; 7625 7626 if (DAG->getTarget().getTLSModel(GA->getGlobal()) == TLSModel::LocalExec) { 7627 // The first operand of the ADDIToFold should be the thread pointer. 7628 // This transformation is only performed if the first operand of the 7629 // addi is the thread pointer. 7630 SDValue TPRegNode = ADDIToFold.getOperand(0); 7631 RegisterSDNode *TPReg = dyn_cast<RegisterSDNode>(TPRegNode.getNode()); 7632 if (!TPReg || (TPReg->getReg() != Subtarget.getThreadPointerRegister())) 7633 return false; 7634 } 7635 7636 // The local-[exec|dynamic] TLS variable should only have the 7637 // [MO_TPREL_FLAG|MO_TLSLD_FLAG] target flags, so this optimization is not 7638 // performed otherwise if the flag is not set. 7639 unsigned TargetFlags = GA->getTargetFlags(); 7640 if (!(TargetFlags == PPCII::MO_TPREL_FLAG || 7641 TargetFlags == PPCII::MO_TLSLD_FLAG)) 7642 return false; 7643 7644 // If all conditions are satisfied, the ADDI is valid for folding. 7645 return true; 7646 } 7647 7648 // For non-TOC-based local-[exec|dynamic] access where an addi is feeding into 7649 // another addi, fold this sequence into a single addi if possible. Before this 7650 // optimization, the sequence appears as: 7651 // addi rN, r13, sym@[le|ld] 7652 // addi rM, rN, imm 7653 // After this optimization, we can fold the two addi into a single one: 7654 // addi rM, r13, sym@[le|ld] + imm 7655 static void foldADDIForFasterLocalAccesses(SDNode *N, SelectionDAG *DAG) { 7656 if (N->getMachineOpcode() != PPC::ADDI8) 7657 return; 7658 7659 // InitialADDI is the addi feeding into N (also an addi), and the addi that 7660 // we want optimized out. 7661 SDValue InitialADDI = N->getOperand(0); 7662 7663 if (!isEligibleToFoldADDIForFasterLocalAccesses(DAG, InitialADDI)) 7664 return; 7665 7666 // The second operand of the InitialADDI should be the global TLS address 7667 // (the local-[exec|dynamic] TLS variable), with the 7668 // [MO_TPREL_FLAG|MO_TLSLD_FLAG] target flag. This has been checked in 7669 // isEligibleToFoldADDIForFasterLocalAccesses(). 7670 SDValue TLSVarNode = InitialADDI.getOperand(1); 7671 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(TLSVarNode); 7672 assert(GA && "Expecting a valid GlobalAddressSDNode when folding addi into " 7673 "local-[exec|dynamic] accesses!"); 7674 unsigned TargetFlags = GA->getTargetFlags(); 7675 7676 // The second operand of the addi that we want to preserve will be an 7677 // immediate. We add this immediate, together with the address of the TLS 7678 // variable found in InitialADDI, in order to preserve the correct TLS address 7679 // information during assembly printing. The offset is likely to be non-zero 7680 // when we end up in this case. 7681 int Offset = N->getConstantOperandVal(1); 7682 TLSVarNode = DAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), MVT::i64, 7683 Offset, TargetFlags); 7684 7685 (void)DAG->UpdateNodeOperands(N, InitialADDI.getOperand(0), TLSVarNode); 7686 if (InitialADDI.getNode()->use_empty()) 7687 DAG->RemoveDeadNode(InitialADDI.getNode()); 7688 } 7689 7690 void PPCDAGToDAGISel::PeepholePPC64() { 7691 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7692 7693 while (Position != CurDAG->allnodes_begin()) { 7694 SDNode *N = &*--Position; 7695 // Skip dead nodes and any non-machine opcodes. 7696 if (N->use_empty() || !N->isMachineOpcode()) 7697 continue; 7698 7699 if (isVSXSwap(SDValue(N, 0))) 7700 reduceVSXSwap(N, CurDAG); 7701 7702 // This optimization is performed for non-TOC-based local-[exec|dynamic] 7703 // accesses. 7704 foldADDIForFasterLocalAccesses(N, CurDAG); 7705 7706 unsigned FirstOp; 7707 unsigned StorageOpcode = N->getMachineOpcode(); 7708 bool RequiresMod4Offset = false; 7709 7710 switch (StorageOpcode) { 7711 default: continue; 7712 7713 case PPC::LWA: 7714 case PPC::LD: 7715 case PPC::DFLOADf64: 7716 case PPC::DFLOADf32: 7717 RequiresMod4Offset = true; 7718 [[fallthrough]]; 7719 case PPC::LBZ: 7720 case PPC::LBZ8: 7721 case PPC::LFD: 7722 case PPC::LFS: 7723 case PPC::LHA: 7724 case PPC::LHA8: 7725 case PPC::LHZ: 7726 case PPC::LHZ8: 7727 case PPC::LWZ: 7728 case PPC::LWZ8: 7729 FirstOp = 0; 7730 break; 7731 7732 case PPC::STD: 7733 case PPC::DFSTOREf64: 7734 case PPC::DFSTOREf32: 7735 RequiresMod4Offset = true; 7736 [[fallthrough]]; 7737 case PPC::STB: 7738 case PPC::STB8: 7739 case PPC::STFD: 7740 case PPC::STFS: 7741 case PPC::STH: 7742 case PPC::STH8: 7743 case PPC::STW: 7744 case PPC::STW8: 7745 FirstOp = 1; 7746 break; 7747 } 7748 7749 // If this is a load or store with a zero offset, or within the alignment, 7750 // we may be able to fold an add-immediate into the memory operation. 7751 // The check against alignment is below, as it can't occur until we check 7752 // the arguments to N 7753 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 7754 continue; 7755 7756 SDValue Base = N->getOperand(FirstOp + 1); 7757 if (!Base.isMachineOpcode()) 7758 continue; 7759 7760 unsigned Flags = 0; 7761 bool ReplaceFlags = true; 7762 7763 // When the feeding operation is an add-immediate of some sort, 7764 // determine whether we need to add relocation information to the 7765 // target flags on the immediate operand when we fold it into the 7766 // load instruction. 7767 // 7768 // For something like ADDItocL8, the relocation information is 7769 // inferred from the opcode; when we process it in the AsmPrinter, 7770 // we add the necessary relocation there. A load, though, can receive 7771 // relocation from various flavors of ADDIxxx, so we need to carry 7772 // the relocation information in the target flags. 7773 switch (Base.getMachineOpcode()) { 7774 default: continue; 7775 7776 case PPC::ADDI8: 7777 case PPC::ADDI: 7778 // In some cases (such as TLS) the relocation information 7779 // is already in place on the operand, so copying the operand 7780 // is sufficient. 7781 ReplaceFlags = false; 7782 break; 7783 case PPC::ADDIdtprelL: 7784 Flags = PPCII::MO_DTPREL_LO; 7785 break; 7786 case PPC::ADDItlsldL: 7787 Flags = PPCII::MO_TLSLD_LO; 7788 break; 7789 case PPC::ADDItocL8: 7790 // Skip the following peephole optimizations for ADDItocL8 on AIX which 7791 // is used for toc-data access. 7792 if (Subtarget->isAIXABI()) 7793 continue; 7794 Flags = PPCII::MO_TOC_LO; 7795 break; 7796 } 7797 7798 SDValue ImmOpnd = Base.getOperand(1); 7799 7800 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 7801 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 7802 // we might have needed different @ha relocation values for the offset 7803 // pointers). 7804 int MaxDisplacement = 7; 7805 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7806 const GlobalValue *GV = GA->getGlobal(); 7807 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7808 MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement); 7809 } 7810 7811 bool UpdateHBase = false; 7812 SDValue HBase = Base.getOperand(0); 7813 7814 int Offset = N->getConstantOperandVal(FirstOp); 7815 if (ReplaceFlags) { 7816 if (Offset < 0 || Offset > MaxDisplacement) { 7817 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 7818 // one use, then we can do this for any offset, we just need to also 7819 // update the offset (i.e. the symbol addend) on the addis also. 7820 if (Base.getMachineOpcode() != PPC::ADDItocL8) 7821 continue; 7822 7823 if (!HBase.isMachineOpcode() || 7824 HBase.getMachineOpcode() != PPC::ADDIStocHA8) 7825 continue; 7826 7827 if (!Base.hasOneUse() || !HBase.hasOneUse()) 7828 continue; 7829 7830 SDValue HImmOpnd = HBase.getOperand(1); 7831 if (HImmOpnd != ImmOpnd) 7832 continue; 7833 7834 UpdateHBase = true; 7835 } 7836 } else { 7837 // Global addresses can be folded, but only if they are sufficiently 7838 // aligned. 7839 if (RequiresMod4Offset) { 7840 if (GlobalAddressSDNode *GA = 7841 dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7842 const GlobalValue *GV = GA->getGlobal(); 7843 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7844 if (Alignment < 4) 7845 continue; 7846 } 7847 } 7848 7849 // If we're directly folding the addend from an addi instruction, then: 7850 // 1. In general, the offset on the memory access must be zero. 7851 // 2. If the addend is a constant, then it can be combined with a 7852 // non-zero offset, but only if the result meets the encoding 7853 // requirements. 7854 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 7855 Offset += C->getSExtValue(); 7856 7857 if (RequiresMod4Offset && (Offset % 4) != 0) 7858 continue; 7859 7860 if (!isInt<16>(Offset)) 7861 continue; 7862 7863 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 7864 ImmOpnd.getValueType()); 7865 } else if (Offset != 0) { 7866 // This optimization is performed for non-TOC-based local-[exec|dynamic] 7867 // accesses. 7868 if (isEligibleToFoldADDIForFasterLocalAccesses(CurDAG, Base)) { 7869 // Add the non-zero offset information into the load or store 7870 // instruction to be used for non-TOC-based local-[exec|dynamic] 7871 // accesses. 7872 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd); 7873 assert(GA && "Expecting a valid GlobalAddressSDNode when folding " 7874 "addi into local-[exec|dynamic] accesses!"); 7875 ImmOpnd = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 7876 MVT::i64, Offset, 7877 GA->getTargetFlags()); 7878 } else 7879 continue; 7880 } 7881 } 7882 7883 // We found an opportunity. Reverse the operands from the add 7884 // immediate and substitute them into the load or store. If 7885 // needed, update the target flags for the immediate operand to 7886 // reflect the necessary relocation information. 7887 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 7888 LLVM_DEBUG(Base->dump(CurDAG)); 7889 LLVM_DEBUG(dbgs() << "\nN: "); 7890 LLVM_DEBUG(N->dump(CurDAG)); 7891 LLVM_DEBUG(dbgs() << "\n"); 7892 7893 // If the relocation information isn't already present on the 7894 // immediate operand, add it now. 7895 if (ReplaceFlags) { 7896 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7897 SDLoc dl(GA); 7898 const GlobalValue *GV = GA->getGlobal(); 7899 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7900 // We can't perform this optimization for data whose alignment 7901 // is insufficient for the instruction encoding. 7902 if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { 7903 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 7904 continue; 7905 } 7906 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 7907 } else if (ConstantPoolSDNode *CP = 7908 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 7909 const Constant *C = CP->getConstVal(); 7910 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(), 7911 Offset, Flags); 7912 } 7913 } 7914 7915 if (FirstOp == 1) // Store 7916 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 7917 Base.getOperand(0), N->getOperand(3)); 7918 else // Load 7919 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 7920 N->getOperand(2)); 7921 7922 if (UpdateHBase) 7923 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 7924 ImmOpnd); 7925 7926 // The add-immediate may now be dead, in which case remove it. 7927 if (Base.getNode()->use_empty()) 7928 CurDAG->RemoveDeadNode(Base.getNode()); 7929 } 7930 } 7931 7932 /// createPPCISelDag - This pass converts a legalized DAG into a 7933 /// PowerPC-specific DAG, ready for instruction scheduling. 7934 /// 7935 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, 7936 CodeGenOptLevel OptLevel) { 7937 return new PPCDAGToDAGISelLegacy(TM, OptLevel); 7938 } 7939