xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/APSInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGISel.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/CodeGenTypes/MachineValueType.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/IntrinsicsPowerPC.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CodeGen.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <new>
67 #include <tuple>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "ppc-isel"
73 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection"
74 
75 STATISTIC(NumSextSetcc,
76           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
77 STATISTIC(NumZextSetcc,
78           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
79 STATISTIC(SignExtensionsAdded,
80           "Number of sign extensions for compare inputs added.");
81 STATISTIC(ZeroExtensionsAdded,
82           "Number of zero extensions for compare inputs added.");
83 STATISTIC(NumLogicOpsOnComparison,
84           "Number of logical ops on i1 values calculated in GPR.");
85 STATISTIC(OmittedForNonExtendUses,
86           "Number of compares not eliminated as they have non-extending uses.");
87 STATISTIC(NumP9Setb,
88           "Number of compares lowered to setb.");
89 
90 // FIXME: Remove this once the bug has been fixed!
91 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
92 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
93 
94 static cl::opt<bool>
95     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
96                        cl::desc("use aggressive ppc isel for bit permutations"),
97                        cl::Hidden);
98 static cl::opt<bool> BPermRewriterNoMasking(
99     "ppc-bit-perm-rewriter-stress-rotates",
100     cl::desc("stress rotate selection in aggressive ppc isel for "
101              "bit permutations"),
102     cl::Hidden);
103 
104 static cl::opt<bool> EnableBranchHint(
105   "ppc-use-branch-hint", cl::init(true),
106     cl::desc("Enable static hinting of branches on ppc"),
107     cl::Hidden);
108 
109 static cl::opt<bool> EnableTLSOpt(
110   "ppc-tls-opt", cl::init(true),
111     cl::desc("Enable tls optimization peephole"),
112     cl::Hidden);
113 
114 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
115   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
116   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
117 
118 static cl::opt<ICmpInGPRType> CmpInGPR(
119   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
120   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
121   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
122              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
123              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
124              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
125              clEnumValN(ICGPR_NonExtIn, "nonextin",
126                         "Only comparisons where inputs don't need [sz]ext."),
127              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
128              clEnumValN(ICGPR_ZextI32, "zexti32",
129                         "Only i32 comparisons with zext result."),
130              clEnumValN(ICGPR_ZextI64, "zexti64",
131                         "Only i64 comparisons with zext result."),
132              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
133              clEnumValN(ICGPR_SextI32, "sexti32",
134                         "Only i32 comparisons with sext result."),
135              clEnumValN(ICGPR_SextI64, "sexti64",
136                         "Only i64 comparisons with sext result.")));
137 namespace {
138 
139   //===--------------------------------------------------------------------===//
140   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
141   /// instructions for SelectionDAG operations.
142   ///
143   class PPCDAGToDAGISel : public SelectionDAGISel {
144     const PPCTargetMachine &TM;
145     const PPCSubtarget *Subtarget = nullptr;
146     const PPCTargetLowering *PPCLowering = nullptr;
147     unsigned GlobalBaseReg = 0;
148 
149   public:
150     PPCDAGToDAGISel() = delete;
151 
152     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOptLevel OptLevel)
153         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
154 
155     bool runOnMachineFunction(MachineFunction &MF) override {
156       // Make sure we re-emit a set of the global base reg if necessary
157       GlobalBaseReg = 0;
158       Subtarget = &MF.getSubtarget<PPCSubtarget>();
159       PPCLowering = Subtarget->getTargetLowering();
160       if (Subtarget->hasROPProtect()) {
161         // Create a place on the stack for the ROP Protection Hash.
162         // The ROP Protection Hash will always be 8 bytes and aligned to 8
163         // bytes.
164         MachineFrameInfo &MFI = MF.getFrameInfo();
165         PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
166         const int Result = MFI.CreateStackObject(8, Align(8), false);
167         FI->setROPProtectionHashSaveIndex(Result);
168       }
169       SelectionDAGISel::runOnMachineFunction(MF);
170 
171       return true;
172     }
173 
174     void PreprocessISelDAG() override;
175     void PostprocessISelDAG() override;
176 
177     /// getI16Imm - Return a target constant with the specified value, of type
178     /// i16.
179     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
180       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
181     }
182 
183     /// getI32Imm - Return a target constant with the specified value, of type
184     /// i32.
185     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
186       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
187     }
188 
189     /// getI64Imm - Return a target constant with the specified value, of type
190     /// i64.
191     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
192       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
193     }
194 
195     /// getSmallIPtrImm - Return a target constant of pointer type.
196     inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
197       return CurDAG->getTargetConstant(
198           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
199     }
200 
201     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
202     /// rotate and mask opcode and mask operation.
203     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
204                                 unsigned &SH, unsigned &MB, unsigned &ME);
205 
206     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
207     /// base register.  Return the virtual register that holds this value.
208     SDNode *getGlobalBaseReg();
209 
210     void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
211 
212     // Select - Convert the specified operand from a target-independent to a
213     // target-specific node if it hasn't already been changed.
214     void Select(SDNode *N) override;
215 
216     bool tryBitfieldInsert(SDNode *N);
217     bool tryBitPermutation(SDNode *N);
218     bool tryIntCompareInGPR(SDNode *N);
219 
220     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
221     // an X-Form load instruction with the offset being a relocation coming from
222     // the PPCISD::ADD_TLS.
223     bool tryTLSXFormLoad(LoadSDNode *N);
224     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
225     // an X-Form store instruction with the offset being a relocation coming from
226     // the PPCISD::ADD_TLS.
227     bool tryTLSXFormStore(StoreSDNode *N);
228     /// SelectCC - Select a comparison of the specified values with the
229     /// specified condition code, returning the CR# of the expression.
230     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
231                      const SDLoc &dl, SDValue Chain = SDValue());
232 
233     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
234     /// immediate field.  Note that the operand at this point is already the
235     /// result of a prior SelectAddressRegImm call.
236     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
237       if (N.getOpcode() == ISD::TargetConstant ||
238           N.getOpcode() == ISD::TargetGlobalAddress) {
239         Out = N;
240         return true;
241       }
242 
243       return false;
244     }
245 
246     /// SelectDSForm - Returns true if address N can be represented by the
247     /// addressing mode of DSForm instructions (a base register, plus a signed
248     /// 16-bit displacement that is a multiple of 4.
249     bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
250       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
251                                                 Align(4)) == PPC::AM_DSForm;
252     }
253 
254     /// SelectDQForm - Returns true if address N can be represented by the
255     /// addressing mode of DQForm instructions (a base register, plus a signed
256     /// 16-bit displacement that is a multiple of 16.
257     bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
258       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
259                                                 Align(16)) == PPC::AM_DQForm;
260     }
261 
262     /// SelectDForm - Returns true if address N can be represented by
263     /// the addressing mode of DForm instructions (a base register, plus a
264     /// signed 16-bit immediate.
265     bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
266       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
267                                                 std::nullopt) == PPC::AM_DForm;
268     }
269 
270     /// SelectPCRelForm - Returns true if address N can be represented by
271     /// PC-Relative addressing mode.
272     bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
273                          SDValue &Base) {
274       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
275                                                 std::nullopt) == PPC::AM_PCRel;
276     }
277 
278     /// SelectPDForm - Returns true if address N can be represented by Prefixed
279     /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
280     bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
281       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
282                                                 std::nullopt) ==
283              PPC::AM_PrefixDForm;
284     }
285 
286     /// SelectXForm - Returns true if address N can be represented by the
287     /// addressing mode of XForm instructions (an indexed [r+r] operation).
288     bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
289       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
290                                                 std::nullopt) == PPC::AM_XForm;
291     }
292 
293     /// SelectForceXForm - Given the specified address, force it to be
294     /// represented as an indexed [r+r] operation (an XForm instruction).
295     bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
296                           SDValue &Base) {
297       return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
298              PPC::AM_XForm;
299     }
300 
301     /// SelectAddrIdx - Given the specified address, check to see if it can be
302     /// represented as an indexed [r+r] operation.
303     /// This is for xform instructions whose associated displacement form is D.
304     /// The last parameter \p 0 means associated D form has no requirment for 16
305     /// bit signed displacement.
306     /// Returns false if it can be represented by [r+imm], which are preferred.
307     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
308       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
309                                               std::nullopt);
310     }
311 
312     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
313     /// represented as an indexed [r+r] operation.
314     /// This is for xform instructions whose associated displacement form is DS.
315     /// The last parameter \p 4 means associated DS form 16 bit signed
316     /// displacement must be a multiple of 4.
317     /// Returns false if it can be represented by [r+imm], which are preferred.
318     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
319       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
320                                               Align(4));
321     }
322 
323     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
324     /// represented as an indexed [r+r] operation.
325     /// This is for xform instructions whose associated displacement form is DQ.
326     /// The last parameter \p 16 means associated DQ form 16 bit signed
327     /// displacement must be a multiple of 16.
328     /// Returns false if it can be represented by [r+imm], which are preferred.
329     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
330       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
331                                               Align(16));
332     }
333 
334     /// SelectAddrIdxOnly - Given the specified address, force it to be
335     /// represented as an indexed [r+r] operation.
336     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
337       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
338     }
339 
340     /// SelectAddrImm - Returns true if the address N can be represented by
341     /// a base register plus a signed 16-bit displacement [r+imm].
342     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
343     /// displacement.
344     bool SelectAddrImm(SDValue N, SDValue &Disp,
345                        SDValue &Base) {
346       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
347                                               std::nullopt);
348     }
349 
350     /// SelectAddrImmX4 - Returns true if the address N can be represented by
351     /// a base register plus a signed 16-bit displacement that is a multiple of
352     /// 4 (last parameter). Suitable for use by STD and friends.
353     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
354       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
355     }
356 
357     /// SelectAddrImmX16 - Returns true if the address N can be represented by
358     /// a base register plus a signed 16-bit displacement that is a multiple of
359     /// 16(last parameter). Suitable for use by STXV and friends.
360     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
361       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
362                                               Align(16));
363     }
364 
365     /// SelectAddrImmX34 - Returns true if the address N can be represented by
366     /// a base register plus a signed 34-bit displacement. Suitable for use by
367     /// PSTXVP and friends.
368     bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
369       return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
370     }
371 
372     // Select an address into a single register.
373     bool SelectAddr(SDValue N, SDValue &Base) {
374       Base = N;
375       return true;
376     }
377 
378     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
379       return PPCLowering->SelectAddressPCRel(N, Base);
380     }
381 
382     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
383     /// inline asm expressions.  It is always correct to compute the value into
384     /// a register.  The case of adding a (possibly relocatable) constant to a
385     /// register can be improved, but it is wrong to substitute Reg+Reg for
386     /// Reg in an asm, because the load or store opcode would have to change.
387     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
388                                       InlineAsm::ConstraintCode ConstraintID,
389                                       std::vector<SDValue> &OutOps) override {
390       switch(ConstraintID) {
391       default:
392         errs() << "ConstraintID: "
393                << InlineAsm::getMemConstraintName(ConstraintID) << "\n";
394         llvm_unreachable("Unexpected asm memory constraint");
395       case InlineAsm::ConstraintCode::es:
396       case InlineAsm::ConstraintCode::m:
397       case InlineAsm::ConstraintCode::o:
398       case InlineAsm::ConstraintCode::Q:
399       case InlineAsm::ConstraintCode::Z:
400       case InlineAsm::ConstraintCode::Zy:
401         // We need to make sure that this one operand does not end up in r0
402         // (because we might end up lowering this as 0(%op)).
403         const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
404         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
405         SDLoc dl(Op);
406         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
407         SDValue NewOp =
408           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
409                                          dl, Op.getValueType(),
410                                          Op, RC), 0);
411 
412         OutOps.push_back(NewOp);
413         return false;
414       }
415       return true;
416     }
417 
418 // Include the pieces autogenerated from the target description.
419 #include "PPCGenDAGISel.inc"
420 
421 private:
422     bool trySETCC(SDNode *N);
423     bool tryFoldSWTestBRCC(SDNode *N);
424     bool trySelectLoopCountIntrinsic(SDNode *N);
425     bool tryAsSingleRLDICL(SDNode *N);
426     bool tryAsSingleRLDCL(SDNode *N);
427     bool tryAsSingleRLDICR(SDNode *N);
428     bool tryAsSingleRLWINM(SDNode *N);
429     bool tryAsSingleRLWINM8(SDNode *N);
430     bool tryAsSingleRLWIMI(SDNode *N);
431     bool tryAsPairOfRLDICL(SDNode *N);
432     bool tryAsSingleRLDIMI(SDNode *N);
433 
434     void PeepholePPC64();
435     void PeepholePPC64ZExt();
436     void PeepholeCROps();
437 
438     SDValue combineToCMPB(SDNode *N);
439     void foldBoolExts(SDValue &Res, SDNode *&N);
440 
441     bool AllUsersSelectZero(SDNode *N);
442     void SwapAllSelectUsers(SDNode *N);
443 
444     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
445     void transferMemOperands(SDNode *N, SDNode *Result);
446   };
447 
448   class PPCDAGToDAGISelLegacy : public SelectionDAGISelLegacy {
449   public:
450     static char ID;
451     explicit PPCDAGToDAGISelLegacy(PPCTargetMachine &tm,
452                                    CodeGenOptLevel OptLevel)
453         : SelectionDAGISelLegacy(
454               ID, std::make_unique<PPCDAGToDAGISel>(tm, OptLevel)) {}
455   };
456 } // end anonymous namespace
457 
458 char PPCDAGToDAGISelLegacy::ID = 0;
459 
460 INITIALIZE_PASS(PPCDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false)
461 
462 /// getGlobalBaseReg - Output the instructions required to put the
463 /// base address to use for accessing globals into a register.
464 ///
465 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
466   if (!GlobalBaseReg) {
467     const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
468     // Insert the set of GlobalBaseReg into the first MBB of the function
469     MachineBasicBlock &FirstMBB = MF->front();
470     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
471     const Module *M = MF->getFunction().getParent();
472     DebugLoc dl;
473 
474     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
475       if (Subtarget->isTargetELF()) {
476         GlobalBaseReg = PPC::R30;
477         if (!Subtarget->isSecurePlt() &&
478             M->getPICLevel() == PICLevel::SmallPIC) {
479           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
480           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
481           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
482         } else {
483           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
484           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
485           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
486           BuildMI(FirstMBB, MBBI, dl,
487                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
488                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
489           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
490         }
491       } else {
492         GlobalBaseReg =
493           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
494         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
495         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
496       }
497     } else {
498       // We must ensure that this sequence is dominated by the prologue.
499       // FIXME: This is a bit of a big hammer since we don't get the benefits
500       // of shrink-wrapping whenever we emit this instruction. Considering
501       // this is used in any function where we emit a jump table, this may be
502       // a significant limitation. We should consider inserting this in the
503       // block where it is used and then commoning this sequence up if it
504       // appears in multiple places.
505       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
506       // MovePCtoLR8.
507       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
508       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
509       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
510       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
511     }
512   }
513   return CurDAG->getRegister(GlobalBaseReg,
514                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
515       .getNode();
516 }
517 
518 // Check if a SDValue has the toc-data attribute.
519 static bool hasTocDataAttr(SDValue Val) {
520   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
521   if (!GA)
522     return false;
523 
524   const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
525   if (!GV)
526     return false;
527 
528   if (!GV->hasAttribute("toc-data"))
529     return false;
530   return true;
531 }
532 
533 static CodeModel::Model getCodeModel(const PPCSubtarget &Subtarget,
534                                      const TargetMachine &TM,
535                                      const SDNode *Node) {
536   // If there isn't an attribute to override the module code model
537   // this will be the effective code model.
538   CodeModel::Model ModuleModel = TM.getCodeModel();
539 
540   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Node->getOperand(0));
541   if (!GA)
542     return ModuleModel;
543 
544   const GlobalValue *GV = GA->getGlobal();
545   if (!GV)
546     return ModuleModel;
547 
548   return Subtarget.getCodeModel(TM, GV);
549 }
550 
551 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
552 /// operand. If so Imm will receive the 32-bit value.
553 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
554   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
555     Imm = N->getAsZExtVal();
556     return true;
557   }
558   return false;
559 }
560 
561 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
562 /// operand.  If so Imm will receive the 64-bit value.
563 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
564   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
565     Imm = N->getAsZExtVal();
566     return true;
567   }
568   return false;
569 }
570 
571 // isInt32Immediate - This method tests to see if a constant operand.
572 // If so Imm will receive the 32 bit value.
573 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
574   return isInt32Immediate(N.getNode(), Imm);
575 }
576 
577 /// isInt64Immediate - This method tests to see if the value is a 64-bit
578 /// constant operand. If so Imm will receive the 64-bit value.
579 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
580   return isInt64Immediate(N.getNode(), Imm);
581 }
582 
583 static unsigned getBranchHint(unsigned PCC,
584                               const FunctionLoweringInfo &FuncInfo,
585                               const SDValue &DestMBB) {
586   assert(isa<BasicBlockSDNode>(DestMBB));
587 
588   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
589 
590   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
591   const Instruction *BBTerm = BB->getTerminator();
592 
593   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
594 
595   const BasicBlock *TBB = BBTerm->getSuccessor(0);
596   const BasicBlock *FBB = BBTerm->getSuccessor(1);
597 
598   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
599   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
600 
601   // We only want to handle cases which are easy to predict at static time, e.g.
602   // C++ throw statement, that is very likely not taken, or calling never
603   // returned function, e.g. stdlib exit(). So we set Threshold to filter
604   // unwanted cases.
605   //
606   // Below is LLVM branch weight table, we only want to handle case 1, 2
607   //
608   // Case                  Taken:Nontaken  Example
609   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
610   // 2. Invoke-terminating 1:1048575
611   // 3. Coldblock          4:64            __builtin_expect
612   // 4. Loop Branch        124:4           For loop
613   // 5. PH/ZH/FPH          20:12
614   const uint32_t Threshold = 10000;
615 
616   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
617     return PPC::BR_NO_HINT;
618 
619   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
620                     << "::" << BB->getName() << "'\n"
621                     << " -> " << TBB->getName() << ": " << TProb << "\n"
622                     << " -> " << FBB->getName() << ": " << FProb << "\n");
623 
624   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
625 
626   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
627   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
628   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
629     std::swap(TProb, FProb);
630 
631   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
632 }
633 
634 // isOpcWithIntImmediate - This method tests to see if the node is a specific
635 // opcode and that it has a immediate integer right operand.
636 // If so Imm will receive the 32 bit value.
637 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
638   return N->getOpcode() == Opc
639          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
640 }
641 
642 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
643   SDLoc dl(SN);
644   int FI = cast<FrameIndexSDNode>(N)->getIndex();
645   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
646   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
647   if (SN->hasOneUse())
648     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
649                          getSmallIPtrImm(Offset, dl));
650   else
651     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
652                                            getSmallIPtrImm(Offset, dl)));
653 }
654 
655 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
656                                       bool isShiftMask, unsigned &SH,
657                                       unsigned &MB, unsigned &ME) {
658   // Don't even go down this path for i64, since different logic will be
659   // necessary for rldicl/rldicr/rldimi.
660   if (N->getValueType(0) != MVT::i32)
661     return false;
662 
663   unsigned Shift  = 32;
664   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
665   unsigned Opcode = N->getOpcode();
666   if (N->getNumOperands() != 2 ||
667       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
668     return false;
669 
670   if (Opcode == ISD::SHL) {
671     // apply shift left to mask if it comes first
672     if (isShiftMask) Mask = Mask << Shift;
673     // determine which bits are made indeterminant by shift
674     Indeterminant = ~(0xFFFFFFFFu << Shift);
675   } else if (Opcode == ISD::SRL) {
676     // apply shift right to mask if it comes first
677     if (isShiftMask) Mask = Mask >> Shift;
678     // determine which bits are made indeterminant by shift
679     Indeterminant = ~(0xFFFFFFFFu >> Shift);
680     // adjust for the left rotate
681     Shift = 32 - Shift;
682   } else if (Opcode == ISD::ROTL) {
683     Indeterminant = 0;
684   } else {
685     return false;
686   }
687 
688   // if the mask doesn't intersect any Indeterminant bits
689   if (Mask && !(Mask & Indeterminant)) {
690     SH = Shift & 31;
691     // make sure the mask is still a mask (wrap arounds may not be)
692     return isRunOfOnes(Mask, MB, ME);
693   }
694   return false;
695 }
696 
697 // isThreadPointerAcquisitionNode - Check if the operands of an ADD_TLS
698 // instruction use the thread pointer.
699 static bool isThreadPointerAcquisitionNode(SDValue Base, SelectionDAG *CurDAG) {
700   assert(
701       Base.getOpcode() == PPCISD::ADD_TLS &&
702       "Only expecting the ADD_TLS instruction to acquire the thread pointer!");
703   const PPCSubtarget &Subtarget =
704       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
705   SDValue ADDTLSOp1 = Base.getOperand(0);
706   unsigned ADDTLSOp1Opcode = ADDTLSOp1.getOpcode();
707 
708   // Account for when ADD_TLS is used for the initial-exec TLS model on Linux.
709   //
710   // Although ADD_TLS does not explicitly use the thread pointer
711   // register when LD_GOT_TPREL_L is one of it's operands, the LD_GOT_TPREL_L
712   // instruction will have a relocation specifier, @got@tprel, that is used to
713   // generate a GOT entry. The linker replaces this entry with an offset for a
714   // for a thread local variable, which will be relative to the thread pointer.
715   if (ADDTLSOp1Opcode == PPCISD::LD_GOT_TPREL_L)
716     return true;
717   // When using PC-Relative instructions for initial-exec, a MAT_PCREL_ADDR
718   // node is produced instead to represent the aforementioned situation.
719   LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSOp1);
720   if (LD && LD->getBasePtr().getOpcode() == PPCISD::MAT_PCREL_ADDR)
721     return true;
722 
723   // A GET_TPOINTER PPCISD node (only produced on AIX 32-bit mode) as an operand
724   // to ADD_TLS represents a call to .__get_tpointer to get the thread pointer,
725   // later returning it into R3.
726   if (ADDTLSOp1Opcode == PPCISD::GET_TPOINTER)
727     return true;
728 
729   // The ADD_TLS note is explicitly acquiring the thread pointer (X13/R13).
730   RegisterSDNode *AddFirstOpReg =
731       dyn_cast_or_null<RegisterSDNode>(ADDTLSOp1.getNode());
732   if (AddFirstOpReg &&
733       AddFirstOpReg->getReg() == Subtarget.getThreadPointerRegister())
734       return true;
735 
736   return false;
737 }
738 
739 // canOptimizeTLSDFormToXForm - Optimize TLS accesses when an ADD_TLS
740 // instruction is present. An ADD_TLS instruction, followed by a D-Form memory
741 // operation, can be optimized to use an X-Form load or store, allowing the
742 // ADD_TLS node to be removed completely.
743 static bool canOptimizeTLSDFormToXForm(SelectionDAG *CurDAG, SDValue Base) {
744 
745   // Do not do this transformation at -O0.
746   if (CurDAG->getTarget().getOptLevel() == CodeGenOptLevel::None)
747       return false;
748 
749   // In order to perform this optimization inside tryTLSXForm[Load|Store],
750   // Base is expected to be an ADD_TLS node.
751   if (Base.getOpcode() != PPCISD::ADD_TLS)
752     return false;
753   for (auto *ADDTLSUse : Base.getNode()->uses()) {
754     // The optimization to convert the D-Form load/store into its X-Form
755     // counterpart should only occur if the source value offset of the load/
756     // store is 0. This also means that The offset should always be undefined.
757     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSUse)) {
758       if (LD->getSrcValueOffset() != 0 || !LD->getOffset().isUndef())
759         return false;
760     } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(ADDTLSUse)) {
761       if (ST->getSrcValueOffset() != 0 || !ST->getOffset().isUndef())
762         return false;
763     } else // Don't optimize if there are ADD_TLS users that aren't load/stores.
764       return false;
765   }
766 
767   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
768     return false;
769 
770   // Does the ADD_TLS node of the load/store use the thread pointer?
771   // If the thread pointer is not used as one of the operands of ADD_TLS,
772   // then this optimization is not valid.
773   return isThreadPointerAcquisitionNode(Base, CurDAG);
774 }
775 
776 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
777   SDValue Base = ST->getBasePtr();
778   if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
779     return false;
780 
781   SDLoc dl(ST);
782   EVT MemVT = ST->getMemoryVT();
783   EVT RegVT = ST->getValue().getValueType();
784 
785   unsigned Opcode;
786   switch (MemVT.getSimpleVT().SimpleTy) {
787     default:
788       return false;
789     case MVT::i8: {
790       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
791       break;
792     }
793     case MVT::i16: {
794       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
795       break;
796     }
797     case MVT::i32: {
798       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
799       break;
800     }
801     case MVT::i64: {
802       Opcode = PPC::STDXTLS;
803       break;
804     }
805     case MVT::f32: {
806       Opcode = PPC::STFSXTLS;
807       break;
808     }
809     case MVT::f64: {
810       Opcode = PPC::STFDXTLS;
811       break;
812     }
813   }
814   SDValue Chain = ST->getChain();
815   SDVTList VTs = ST->getVTList();
816   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
817                    Chain};
818   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
819   transferMemOperands(ST, MN);
820   ReplaceNode(ST, MN);
821   return true;
822 }
823 
824 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
825   SDValue Base = LD->getBasePtr();
826   if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
827     return false;
828 
829   SDLoc dl(LD);
830   EVT MemVT = LD->getMemoryVT();
831   EVT RegVT = LD->getValueType(0);
832   bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
833   unsigned Opcode;
834   switch (MemVT.getSimpleVT().SimpleTy) {
835     default:
836       return false;
837     case MVT::i8: {
838       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
839       break;
840     }
841     case MVT::i16: {
842       if (RegVT == MVT::i32)
843         Opcode = isSExt ? PPC::LHAXTLS_32 : PPC::LHZXTLS_32;
844       else
845         Opcode = isSExt ? PPC::LHAXTLS : PPC::LHZXTLS;
846       break;
847     }
848     case MVT::i32: {
849       if (RegVT == MVT::i32)
850         Opcode = isSExt ? PPC::LWAXTLS_32 : PPC::LWZXTLS_32;
851       else
852         Opcode = isSExt ? PPC::LWAXTLS : PPC::LWZXTLS;
853       break;
854     }
855     case MVT::i64: {
856       Opcode = PPC::LDXTLS;
857       break;
858     }
859     case MVT::f32: {
860       Opcode = PPC::LFSXTLS;
861       break;
862     }
863     case MVT::f64: {
864       Opcode = PPC::LFDXTLS;
865       break;
866     }
867   }
868   SDValue Chain = LD->getChain();
869   SDVTList VTs = LD->getVTList();
870   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
871   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
872   transferMemOperands(LD, MN);
873   ReplaceNode(LD, MN);
874   return true;
875 }
876 
877 /// Turn an or of two masked values into the rotate left word immediate then
878 /// mask insert (rlwimi) instruction.
879 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
880   SDValue Op0 = N->getOperand(0);
881   SDValue Op1 = N->getOperand(1);
882   SDLoc dl(N);
883 
884   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
885   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
886 
887   unsigned TargetMask = LKnown.Zero.getZExtValue();
888   unsigned InsertMask = RKnown.Zero.getZExtValue();
889 
890   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
891     unsigned Op0Opc = Op0.getOpcode();
892     unsigned Op1Opc = Op1.getOpcode();
893     unsigned Value, SH = 0;
894     TargetMask = ~TargetMask;
895     InsertMask = ~InsertMask;
896 
897     // If the LHS has a foldable shift and the RHS does not, then swap it to the
898     // RHS so that we can fold the shift into the insert.
899     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
900       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
901           Op0.getOperand(0).getOpcode() == ISD::SRL) {
902         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
903             Op1.getOperand(0).getOpcode() != ISD::SRL) {
904           std::swap(Op0, Op1);
905           std::swap(Op0Opc, Op1Opc);
906           std::swap(TargetMask, InsertMask);
907         }
908       }
909     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
910       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
911           Op1.getOperand(0).getOpcode() != ISD::SRL) {
912         std::swap(Op0, Op1);
913         std::swap(Op0Opc, Op1Opc);
914         std::swap(TargetMask, InsertMask);
915       }
916     }
917 
918     unsigned MB, ME;
919     if (isRunOfOnes(InsertMask, MB, ME)) {
920       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
921           isInt32Immediate(Op1.getOperand(1), Value)) {
922         Op1 = Op1.getOperand(0);
923         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
924       }
925       if (Op1Opc == ISD::AND) {
926        // The AND mask might not be a constant, and we need to make sure that
927        // if we're going to fold the masking with the insert, all bits not
928        // know to be zero in the mask are known to be one.
929         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
930         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
931 
932         unsigned SHOpc = Op1.getOperand(0).getOpcode();
933         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
934             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
935           // Note that Value must be in range here (less than 32) because
936           // otherwise there would not be any bits set in InsertMask.
937           Op1 = Op1.getOperand(0).getOperand(0);
938           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
939         }
940       }
941 
942       SH &= 31;
943       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
944                           getI32Imm(ME, dl) };
945       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
946       return true;
947     }
948   }
949   return false;
950 }
951 
952 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
953   unsigned MaxTruncation = 0;
954   // Cannot use range-based for loop here as we need the actual use (i.e. we
955   // need the operand number corresponding to the use). A range-based for
956   // will unbox the use and provide an SDNode*.
957   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
958        Use != UseEnd; ++Use) {
959     unsigned Opc =
960       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
961     switch (Opc) {
962     default: return 0;
963     case ISD::TRUNCATE:
964       if (Use->isMachineOpcode())
965         return 0;
966       MaxTruncation =
967         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
968       continue;
969     case ISD::STORE: {
970       if (Use->isMachineOpcode())
971         return 0;
972       StoreSDNode *STN = cast<StoreSDNode>(*Use);
973       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
974       if (MemVTSize == 64 || Use.getOperandNo() != 0)
975         return 0;
976       MaxTruncation = std::max(MaxTruncation, MemVTSize);
977       continue;
978     }
979     case PPC::STW8:
980     case PPC::STWX8:
981     case PPC::STWU8:
982     case PPC::STWUX8:
983       if (Use.getOperandNo() != 0)
984         return 0;
985       MaxTruncation = std::max(MaxTruncation, 32u);
986       continue;
987     case PPC::STH8:
988     case PPC::STHX8:
989     case PPC::STHU8:
990     case PPC::STHUX8:
991       if (Use.getOperandNo() != 0)
992         return 0;
993       MaxTruncation = std::max(MaxTruncation, 16u);
994       continue;
995     case PPC::STB8:
996     case PPC::STBX8:
997     case PPC::STBU8:
998     case PPC::STBUX8:
999       if (Use.getOperandNo() != 0)
1000         return 0;
1001       MaxTruncation = std::max(MaxTruncation, 8u);
1002       continue;
1003     }
1004   }
1005   return MaxTruncation;
1006 }
1007 
1008 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
1009 // zeros and return the number of bits by the left of these consecutive zeros.
1010 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
1011   unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm));
1012   unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm));
1013   if ((HiTZ + LoLZ) >= Num)
1014     return (32 + HiTZ);
1015   return 0;
1016 }
1017 
1018 // Direct materialization of 64-bit constants by enumerated patterns.
1019 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
1020                                   uint64_t Imm, unsigned &InstCnt) {
1021   unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1022   unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1023   unsigned TO = llvm::countr_one<uint64_t>(Imm);
1024   unsigned LO = llvm::countl_one<uint64_t>(Imm);
1025   unsigned Hi32 = Hi_32(Imm);
1026   unsigned Lo32 = Lo_32(Imm);
1027   SDNode *Result = nullptr;
1028   unsigned Shift = 0;
1029 
1030   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1031     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1032   };
1033 
1034   // Following patterns use 1 instructions to materialize the Imm.
1035   InstCnt = 1;
1036   // 1-1) Patterns : {zeros}{15-bit valve}
1037   //                 {ones}{15-bit valve}
1038   if (isInt<16>(Imm)) {
1039     SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1040     return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1041   }
1042   // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
1043   //                 {ones}{15-bit valve}{16 zeros}
1044   if (TZ > 15 && (LZ > 32 || LO > 32))
1045     return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1046                                   getI32Imm((Imm >> 16) & 0xffff));
1047 
1048   // Following patterns use 2 instructions to materialize the Imm.
1049   InstCnt = 2;
1050   assert(LZ < 64 && "Unexpected leading zeros here.");
1051   // Count of ones follwing the leading zeros.
1052   unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ);
1053   // 2-1) Patterns : {zeros}{31-bit value}
1054   //                 {ones}{31-bit value}
1055   if (isInt<32>(Imm)) {
1056     uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
1057     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1058     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1059     return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1060                                   getI32Imm(Imm & 0xffff));
1061   }
1062   // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
1063   //                 {zeros}{15-bit value}{zeros}
1064   //                 {zeros}{ones}{15-bit value}
1065   //                 {ones}{15-bit value}{zeros}
1066   // We can take advantage of LI's sign-extension semantics to generate leading
1067   // ones, and then use RLDIC to mask off the ones in both sides after rotation.
1068   if ((LZ + FO + TZ) > 48) {
1069     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1070                                     getI32Imm((Imm >> TZ) & 0xffff));
1071     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1072                                   getI32Imm(TZ), getI32Imm(LZ));
1073   }
1074   // 2-3) Pattern : {zeros}{15-bit value}{ones}
1075   // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
1076   // therefore we can take advantage of LI's sign-extension semantics, and then
1077   // mask them off after rotation.
1078   //
1079   // +--LZ--||-15-bit-||--TO--+     +-------------|--16-bit--+
1080   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1081   // +------------------------+     +------------------------+
1082   // 63                      0      63                      0
1083   //          Imm                   (Imm >> (48 - LZ) & 0xffff)
1084   // +----sext-----|--16-bit--+     +clear-|-----------------+
1085   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1086   // +------------------------+     +------------------------+
1087   // 63                      0      63                      0
1088   // LI8: sext many leading zeros   RLDICL: rotate left (48 - LZ), clear left LZ
1089   if ((LZ + TO) > 48) {
1090     // Since the immediates with (LZ > 32) have been handled by previous
1091     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1092     // the Imm by a negative value.
1093     assert(LZ <= 32 && "Unexpected shift value.");
1094     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1095                                     getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1096     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1097                                   getI32Imm(48 - LZ), getI32Imm(LZ));
1098   }
1099   // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1100   //                 {ones}{15-bit value}{ones}
1101   // We can take advantage of LI's sign-extension semantics to generate leading
1102   // ones, and then use RLDICL to mask off the ones in left sides (if required)
1103   // after rotation.
1104   //
1105   // +-LZ-FO||-15-bit-||--TO--+     +-------------|--16-bit--+
1106   // |00011110bbbbbbbbb1111111| ->  |000000000011110bbbbbbbbb|
1107   // +------------------------+     +------------------------+
1108   // 63                      0      63                      0
1109   //            Imm                    (Imm >> TO) & 0xffff
1110   // +----sext-----|--16-bit--+     +LZ|---------------------+
1111   // |111111111111110bbbbbbbbb| ->  |00011110bbbbbbbbb1111111|
1112   // +------------------------+     +------------------------+
1113   // 63                      0      63                      0
1114   // LI8: sext many leading zeros   RLDICL: rotate left TO, clear left LZ
1115   if ((LZ + FO + TO) > 48) {
1116     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1117                                     getI32Imm((Imm >> TO) & 0xffff));
1118     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1119                                   getI32Imm(TO), getI32Imm(LZ));
1120   }
1121   // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1122   // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1123   // value, we can use LI for Lo16 without generating leading ones then add the
1124   // Hi16(in Lo32).
1125   if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1126     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1127                                     getI32Imm(Lo32 & 0xffff));
1128     return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1129                                   getI32Imm(Lo32 >> 16));
1130   }
1131   // 2-6) Patterns : {******}{49 zeros}{******}
1132   //                 {******}{49 ones}{******}
1133   // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1134   // bits remain on both sides. Rotate right the Imm to construct an int<16>
1135   // value, use LI for int<16> value and then use RLDICL without mask to rotate
1136   // it back.
1137   //
1138   // 1) findContiguousZerosAtLeast(Imm, 49)
1139   // +------|--zeros-|------+     +---ones--||---15 bit--+
1140   // |bbbbbb0000000000aaaaaa| ->  |0000000000aaaaaabbbbbb|
1141   // +----------------------+     +----------------------+
1142   // 63                    0      63                    0
1143   //
1144   // 2) findContiguousZerosAtLeast(~Imm, 49)
1145   // +------|--ones--|------+     +---ones--||---15 bit--+
1146   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1147   // +----------------------+     +----------------------+
1148   // 63                    0      63                    0
1149   if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1150       (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1151     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1152     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1153                                     getI32Imm(RotImm & 0xffff));
1154     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1155                                   getI32Imm(Shift), getI32Imm(0));
1156   }
1157   // 2-7) Patterns : High word == Low word
1158   // This may require 2 to 3 instructions, depending on whether Lo32 can be
1159   // materialized in 1 instruction.
1160   if (Hi32 == Lo32) {
1161     // Handle the first 32 bits.
1162     uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1163     uint64_t ImmLo16 = Lo32 & 0xffff;
1164     if (isInt<16>(Lo32))
1165       Result =
1166           CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(ImmLo16));
1167     else if (!ImmLo16)
1168       Result =
1169           CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16));
1170     else {
1171       InstCnt = 3;
1172       Result =
1173           CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16));
1174       Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1175                                       SDValue(Result, 0), getI32Imm(ImmLo16));
1176     }
1177     // Use rldimi to insert the Low word into High word.
1178     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1179                      getI32Imm(0)};
1180     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1181   }
1182 
1183   // Following patterns use 3 instructions to materialize the Imm.
1184   InstCnt = 3;
1185   // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1186   //                 {zeros}{31-bit value}{zeros}
1187   //                 {zeros}{ones}{31-bit value}
1188   //                 {ones}{31-bit value}{zeros}
1189   // We can take advantage of LIS's sign-extension semantics to generate leading
1190   // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1191   // ones in both sides after rotation.
1192   if ((LZ + FO + TZ) > 32) {
1193     uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1194     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1195     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1196     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1197                                     getI32Imm((Imm >> TZ) & 0xffff));
1198     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1199                                   getI32Imm(TZ), getI32Imm(LZ));
1200   }
1201   // 3-2) Pattern : {zeros}{31-bit value}{ones}
1202   // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
1203   // value, therefore we can take advantage of LIS's sign-extension semantics,
1204   // add the remaining bits with ORI, and then mask them off after rotation.
1205   // This is similar to Pattern 2-3, please refer to the diagram there.
1206   if ((LZ + TO) > 32) {
1207     // Since the immediates with (LZ > 32) have been handled by previous
1208     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1209     // the Imm by a negative value.
1210     assert(LZ <= 32 && "Unexpected shift value.");
1211     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1212                                     getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1213     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1214                                     getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1215     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1216                                   getI32Imm(32 - LZ), getI32Imm(LZ));
1217   }
1218   // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1219   //                 {ones}{31-bit value}{ones}
1220   // We can take advantage of LIS's sign-extension semantics to generate leading
1221   // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1222   // ones in left sides (if required) after rotation.
1223   // This is similar to Pattern 2-4, please refer to the diagram there.
1224   if ((LZ + FO + TO) > 32) {
1225     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1226                                     getI32Imm((Imm >> (TO + 16)) & 0xffff));
1227     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1228                                     getI32Imm((Imm >> TO) & 0xffff));
1229     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1230                                   getI32Imm(TO), getI32Imm(LZ));
1231   }
1232   // 3-4) Patterns : {******}{33 zeros}{******}
1233   //                 {******}{33 ones}{******}
1234   // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1235   // bits remain on both sides. Rotate right the Imm to construct an int<32>
1236   // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1237   // rotate it back.
1238   // This is similar to Pattern 2-6, please refer to the diagram there.
1239   if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1240       (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1241     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1242     uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1243     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1244     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1245     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1246                                     getI32Imm(RotImm & 0xffff));
1247     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1248                                   getI32Imm(Shift), getI32Imm(0));
1249   }
1250 
1251   InstCnt = 0;
1252   return nullptr;
1253 }
1254 
1255 // Try to select instructions to generate a 64 bit immediate using prefix as
1256 // well as non prefix instructions. The function will return the SDNode
1257 // to materialize that constant or it will return nullptr if it does not
1258 // find one. The variable InstCnt is set to the number of instructions that
1259 // were selected.
1260 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1261                                         uint64_t Imm, unsigned &InstCnt) {
1262   unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1263   unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1264   unsigned TO = llvm::countr_one<uint64_t>(Imm);
1265   unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1266   unsigned Hi32 = Hi_32(Imm);
1267   unsigned Lo32 = Lo_32(Imm);
1268 
1269   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1270     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1271   };
1272 
1273   auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1274     return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1275   };
1276 
1277   // Following patterns use 1 instruction to materialize Imm.
1278   InstCnt = 1;
1279 
1280   // The pli instruction can materialize up to 34 bits directly.
1281   // If a constant fits within 34-bits, emit the pli instruction here directly.
1282   if (isInt<34>(Imm))
1283     return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1284                                   CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1285 
1286   // Require at least two instructions.
1287   InstCnt = 2;
1288   SDNode *Result = nullptr;
1289   // Patterns : {zeros}{ones}{33-bit value}{zeros}
1290   //            {zeros}{33-bit value}{zeros}
1291   //            {zeros}{ones}{33-bit value}
1292   //            {ones}{33-bit value}{zeros}
1293   // We can take advantage of PLI's sign-extension semantics to generate leading
1294   // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1295   if ((LZ + FO + TZ) > 30) {
1296     APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1297     APInt Extended = SignedInt34.sext(64);
1298     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1299                                     getI64Imm(*Extended.getRawData()));
1300     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1301                                   getI32Imm(TZ), getI32Imm(LZ));
1302   }
1303   // Pattern : {zeros}{33-bit value}{ones}
1304   // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1305   // therefore we can take advantage of PLI's sign-extension semantics, and then
1306   // mask them off after rotation.
1307   //
1308   // +--LZ--||-33-bit-||--TO--+     +-------------|--34-bit--+
1309   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1310   // +------------------------+     +------------------------+
1311   // 63                      0      63                      0
1312   //
1313   // +----sext-----|--34-bit--+     +clear-|-----------------+
1314   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1315   // +------------------------+     +------------------------+
1316   // 63                      0      63                      0
1317   if ((LZ + TO) > 30) {
1318     APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1319     APInt Extended = SignedInt34.sext(64);
1320     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1321                                     getI64Imm(*Extended.getRawData()));
1322     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1323                                   getI32Imm(30 - LZ), getI32Imm(LZ));
1324   }
1325   // Patterns : {zeros}{ones}{33-bit value}{ones}
1326   //            {ones}{33-bit value}{ones}
1327   // Similar to LI we can take advantage of PLI's sign-extension semantics to
1328   // generate leading ones, and then use RLDICL to mask off the ones in left
1329   // sides (if required) after rotation.
1330   if ((LZ + FO + TO) > 30) {
1331     APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1332     APInt Extended = SignedInt34.sext(64);
1333     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1334                                     getI64Imm(*Extended.getRawData()));
1335     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1336                                   getI32Imm(TO), getI32Imm(LZ));
1337   }
1338   // Patterns : {******}{31 zeros}{******}
1339   //          : {******}{31 ones}{******}
1340   // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1341   // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1342   // for the int<33> value and then use RLDICL without a mask to rotate it back.
1343   //
1344   // +------|--ones--|------+     +---ones--||---33 bit--+
1345   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1346   // +----------------------+     +----------------------+
1347   // 63                    0      63                    0
1348   for (unsigned Shift = 0; Shift < 63; ++Shift) {
1349     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1350     if (isInt<34>(RotImm)) {
1351       Result =
1352           CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1353       return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1354                                     SDValue(Result, 0), getI32Imm(Shift),
1355                                     getI32Imm(0));
1356     }
1357   }
1358 
1359   // Patterns : High word == Low word
1360   // This is basically a splat of a 32 bit immediate.
1361   if (Hi32 == Lo32) {
1362     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1363     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1364                      getI32Imm(0)};
1365     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1366   }
1367 
1368   InstCnt = 3;
1369   // Catch-all
1370   // This pattern can form any 64 bit immediate in 3 instructions.
1371   SDNode *ResultHi =
1372       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1373   SDNode *ResultLo =
1374       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1375   SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1376                    getI32Imm(0)};
1377   return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1378 }
1379 
1380 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1381                             unsigned *InstCnt = nullptr) {
1382   unsigned InstCntDirect = 0;
1383   // No more than 3 instructions are used if we can select the i64 immediate
1384   // directly.
1385   SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1386 
1387   const PPCSubtarget &Subtarget =
1388       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1389 
1390   // If we have prefixed instructions and there is a chance we can
1391   // materialize the constant with fewer prefixed instructions than
1392   // non-prefixed, try that.
1393   if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1394     unsigned InstCntDirectP = 0;
1395     SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1396     // Use the prefix case in either of two cases:
1397     // 1) We have no result from the non-prefix case to use.
1398     // 2) The non-prefix case uses more instructions than the prefix case.
1399     // If the prefix and non-prefix cases use the same number of instructions
1400     // we will prefer the non-prefix case.
1401     if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1402       if (InstCnt)
1403         *InstCnt = InstCntDirectP;
1404       return ResultP;
1405     }
1406   }
1407 
1408   if (Result) {
1409     if (InstCnt)
1410       *InstCnt = InstCntDirect;
1411     return Result;
1412   }
1413   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1414     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1415   };
1416 
1417   uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff;
1418   uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff;
1419 
1420   // Try to use 4 instructions to materialize the immediate which is "almost" a
1421   // splat of a 32 bit immediate.
1422   if (Hi16OfLo32 && Lo16OfLo32) {
1423     uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff;
1424     uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff;
1425     bool IsSelected = false;
1426 
1427     auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) {
1428       SDNode *Result =
1429           CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16));
1430       Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1431                                       SDValue(Result, 0), getI32Imm(Lo16));
1432       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1433                        getI32Imm(0)};
1434       return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1435     };
1436 
1437     if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) {
1438       IsSelected = true;
1439       Result = getSplat(Hi16OfLo32, Lo16OfLo32);
1440       // Modify Hi16OfHi32.
1441       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48),
1442                        getI32Imm(0)};
1443       Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1444     } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1445       IsSelected = true;
1446       Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1447       // Modify Lo16OfLo32.
1448       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1449                        getI32Imm(16), getI32Imm(31)};
1450       Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1451     } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1452       IsSelected = true;
1453       Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1454       // Modify Hi16OfLo32.
1455       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1456                        getI32Imm(0), getI32Imm(15)};
1457       Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1458     }
1459     if (IsSelected == true) {
1460       if (InstCnt)
1461         *InstCnt = 4;
1462       return Result;
1463     }
1464   }
1465 
1466   // Handle the upper 32 bit value.
1467   Result =
1468       selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1469   // Add in the last bits as required.
1470   if (Hi16OfLo32) {
1471     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1472                                     SDValue(Result, 0), getI32Imm(Hi16OfLo32));
1473     ++InstCntDirect;
1474   }
1475   if (Lo16OfLo32) {
1476     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1477                                     getI32Imm(Lo16OfLo32));
1478     ++InstCntDirect;
1479   }
1480   if (InstCnt)
1481     *InstCnt = InstCntDirect;
1482   return Result;
1483 }
1484 
1485 // Select a 64-bit constant.
1486 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1487   SDLoc dl(N);
1488 
1489   // Get 64 bit value.
1490   int64_t Imm = N->getAsZExtVal();
1491   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1492     uint64_t SextImm = SignExtend64(Imm, MinSize);
1493     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1494     if (isInt<16>(SextImm))
1495       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1496   }
1497   return selectI64Imm(CurDAG, dl, Imm);
1498 }
1499 
1500 namespace {
1501 
1502 class BitPermutationSelector {
1503   struct ValueBit {
1504     SDValue V;
1505 
1506     // The bit number in the value, using a convention where bit 0 is the
1507     // lowest-order bit.
1508     unsigned Idx;
1509 
1510     // ConstZero means a bit we need to mask off.
1511     // Variable is a bit comes from an input variable.
1512     // VariableKnownToBeZero is also a bit comes from an input variable,
1513     // but it is known to be already zero. So we do not need to mask them.
1514     enum Kind {
1515       ConstZero,
1516       Variable,
1517       VariableKnownToBeZero
1518     } K;
1519 
1520     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1521       : V(V), Idx(I), K(K) {}
1522     ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1523 
1524     bool isZero() const {
1525       return K == ConstZero || K == VariableKnownToBeZero;
1526     }
1527 
1528     bool hasValue() const {
1529       return K == Variable || K == VariableKnownToBeZero;
1530     }
1531 
1532     SDValue getValue() const {
1533       assert(hasValue() && "Cannot get the value of a constant bit");
1534       return V;
1535     }
1536 
1537     unsigned getValueBitIndex() const {
1538       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1539       return Idx;
1540     }
1541   };
1542 
1543   // A bit group has the same underlying value and the same rotate factor.
1544   struct BitGroup {
1545     SDValue V;
1546     unsigned RLAmt;
1547     unsigned StartIdx, EndIdx;
1548 
1549     // This rotation amount assumes that the lower 32 bits of the quantity are
1550     // replicated in the high 32 bits by the rotation operator (which is done
1551     // by rlwinm and friends in 64-bit mode).
1552     bool Repl32;
1553     // Did converting to Repl32 == true change the rotation factor? If it did,
1554     // it decreased it by 32.
1555     bool Repl32CR;
1556     // Was this group coalesced after setting Repl32 to true?
1557     bool Repl32Coalesced;
1558 
1559     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1560       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1561         Repl32Coalesced(false) {
1562       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1563                         << " [" << S << ", " << E << "]\n");
1564     }
1565   };
1566 
1567   // Information on each (Value, RLAmt) pair (like the number of groups
1568   // associated with each) used to choose the lowering method.
1569   struct ValueRotInfo {
1570     SDValue V;
1571     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1572     unsigned NumGroups = 0;
1573     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1574     bool Repl32 = false;
1575 
1576     ValueRotInfo() = default;
1577 
1578     // For sorting (in reverse order) by NumGroups, and then by
1579     // FirstGroupStartIdx.
1580     bool operator < (const ValueRotInfo &Other) const {
1581       // We need to sort so that the non-Repl32 come first because, when we're
1582       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1583       // masking operation.
1584       if (Repl32 < Other.Repl32)
1585         return true;
1586       else if (Repl32 > Other.Repl32)
1587         return false;
1588       else if (NumGroups > Other.NumGroups)
1589         return true;
1590       else if (NumGroups < Other.NumGroups)
1591         return false;
1592       else if (RLAmt == 0 && Other.RLAmt != 0)
1593         return true;
1594       else if (RLAmt != 0 && Other.RLAmt == 0)
1595         return false;
1596       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1597         return true;
1598       return false;
1599     }
1600   };
1601 
1602   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1603   using ValueBitsMemoizer =
1604       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1605   ValueBitsMemoizer Memoizer;
1606 
1607   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1608   // The bool is true if something interesting was deduced, otherwise if we're
1609   // providing only a generic representation of V (or something else likewise
1610   // uninteresting for instruction selection) through the SmallVector.
1611   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1612                                                             unsigned NumBits) {
1613     auto &ValueEntry = Memoizer[V];
1614     if (ValueEntry)
1615       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1616     ValueEntry.reset(new ValueBitsMemoizedValue());
1617     bool &Interesting = ValueEntry->first;
1618     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1619     Bits.resize(NumBits);
1620 
1621     switch (V.getOpcode()) {
1622     default: break;
1623     case ISD::ROTL:
1624       if (isa<ConstantSDNode>(V.getOperand(1))) {
1625         assert(isPowerOf2_32(NumBits) && "rotl bits should be power of 2!");
1626         unsigned RotAmt = V.getConstantOperandVal(1) & (NumBits - 1);
1627 
1628         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1629 
1630         for (unsigned i = 0; i < NumBits; ++i)
1631           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1632 
1633         return std::make_pair(Interesting = true, &Bits);
1634       }
1635       break;
1636     case ISD::SHL:
1637     case PPCISD::SHL:
1638       if (isa<ConstantSDNode>(V.getOperand(1))) {
1639         // sld takes 7 bits, slw takes 6.
1640         unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1);
1641 
1642         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1643 
1644         if (ShiftAmt >= NumBits) {
1645           for (unsigned i = 0; i < NumBits; ++i)
1646             Bits[i] = ValueBit(ValueBit::ConstZero);
1647         } else {
1648           for (unsigned i = ShiftAmt; i < NumBits; ++i)
1649             Bits[i] = LHSBits[i - ShiftAmt];
1650           for (unsigned i = 0; i < ShiftAmt; ++i)
1651             Bits[i] = ValueBit(ValueBit::ConstZero);
1652         }
1653 
1654         return std::make_pair(Interesting = true, &Bits);
1655       }
1656       break;
1657     case ISD::SRL:
1658     case PPCISD::SRL:
1659       if (isa<ConstantSDNode>(V.getOperand(1))) {
1660         // srd takes lowest 7 bits, srw takes 6.
1661         unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1);
1662 
1663         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1664 
1665         if (ShiftAmt >= NumBits) {
1666           for (unsigned i = 0; i < NumBits; ++i)
1667             Bits[i] = ValueBit(ValueBit::ConstZero);
1668         } else {
1669           for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1670             Bits[i] = LHSBits[i + ShiftAmt];
1671           for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1672             Bits[i] = ValueBit(ValueBit::ConstZero);
1673         }
1674 
1675         return std::make_pair(Interesting = true, &Bits);
1676       }
1677       break;
1678     case ISD::AND:
1679       if (isa<ConstantSDNode>(V.getOperand(1))) {
1680         uint64_t Mask = V.getConstantOperandVal(1);
1681 
1682         const SmallVector<ValueBit, 64> *LHSBits;
1683         // Mark this as interesting, only if the LHS was also interesting. This
1684         // prevents the overall procedure from matching a single immediate 'and'
1685         // (which is non-optimal because such an and might be folded with other
1686         // things if we don't select it here).
1687         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1688 
1689         for (unsigned i = 0; i < NumBits; ++i)
1690           if (((Mask >> i) & 1) == 1)
1691             Bits[i] = (*LHSBits)[i];
1692           else {
1693             // AND instruction masks this bit. If the input is already zero,
1694             // we have nothing to do here. Otherwise, make the bit ConstZero.
1695             if ((*LHSBits)[i].isZero())
1696               Bits[i] = (*LHSBits)[i];
1697             else
1698               Bits[i] = ValueBit(ValueBit::ConstZero);
1699           }
1700 
1701         return std::make_pair(Interesting, &Bits);
1702       }
1703       break;
1704     case ISD::OR: {
1705       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1706       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1707 
1708       bool AllDisjoint = true;
1709       SDValue LastVal = SDValue();
1710       unsigned LastIdx = 0;
1711       for (unsigned i = 0; i < NumBits; ++i) {
1712         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1713           // If both inputs are known to be zero and one is ConstZero and
1714           // another is VariableKnownToBeZero, we can select whichever
1715           // we like. To minimize the number of bit groups, we select
1716           // VariableKnownToBeZero if this bit is the next bit of the same
1717           // input variable from the previous bit. Otherwise, we select
1718           // ConstZero.
1719           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1720               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1721             Bits[i] = LHSBits[i];
1722           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1723                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1724             Bits[i] = RHSBits[i];
1725           else
1726             Bits[i] = ValueBit(ValueBit::ConstZero);
1727         }
1728         else if (LHSBits[i].isZero())
1729           Bits[i] = RHSBits[i];
1730         else if (RHSBits[i].isZero())
1731           Bits[i] = LHSBits[i];
1732         else {
1733           AllDisjoint = false;
1734           break;
1735         }
1736         // We remember the value and bit index of this bit.
1737         if (Bits[i].hasValue()) {
1738           LastVal = Bits[i].getValue();
1739           LastIdx = Bits[i].getValueBitIndex();
1740         }
1741         else {
1742           if (LastVal) LastVal = SDValue();
1743           LastIdx = 0;
1744         }
1745       }
1746 
1747       if (!AllDisjoint)
1748         break;
1749 
1750       return std::make_pair(Interesting = true, &Bits);
1751     }
1752     case ISD::ZERO_EXTEND: {
1753       // We support only the case with zero extension from i32 to i64 so far.
1754       if (V.getValueType() != MVT::i64 ||
1755           V.getOperand(0).getValueType() != MVT::i32)
1756         break;
1757 
1758       const SmallVector<ValueBit, 64> *LHSBits;
1759       const unsigned NumOperandBits = 32;
1760       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1761                                                     NumOperandBits);
1762 
1763       for (unsigned i = 0; i < NumOperandBits; ++i)
1764         Bits[i] = (*LHSBits)[i];
1765 
1766       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1767         Bits[i] = ValueBit(ValueBit::ConstZero);
1768 
1769       return std::make_pair(Interesting, &Bits);
1770     }
1771     case ISD::TRUNCATE: {
1772       EVT FromType = V.getOperand(0).getValueType();
1773       EVT ToType = V.getValueType();
1774       // We support only the case with truncate from i64 to i32.
1775       if (FromType != MVT::i64 || ToType != MVT::i32)
1776         break;
1777       const unsigned NumAllBits = FromType.getSizeInBits();
1778       SmallVector<ValueBit, 64> *InBits;
1779       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1780                                                     NumAllBits);
1781       const unsigned NumValidBits = ToType.getSizeInBits();
1782 
1783       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1784       // So, we cannot include this truncate.
1785       bool UseUpper32bit = false;
1786       for (unsigned i = 0; i < NumValidBits; ++i)
1787         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1788           UseUpper32bit = true;
1789           break;
1790         }
1791       if (UseUpper32bit)
1792         break;
1793 
1794       for (unsigned i = 0; i < NumValidBits; ++i)
1795         Bits[i] = (*InBits)[i];
1796 
1797       return std::make_pair(Interesting, &Bits);
1798     }
1799     case ISD::AssertZext: {
1800       // For AssertZext, we look through the operand and
1801       // mark the bits known to be zero.
1802       const SmallVector<ValueBit, 64> *LHSBits;
1803       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1804                                                     NumBits);
1805 
1806       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1807       const unsigned NumValidBits = FromType.getSizeInBits();
1808       for (unsigned i = 0; i < NumValidBits; ++i)
1809         Bits[i] = (*LHSBits)[i];
1810 
1811       // These bits are known to be zero but the AssertZext may be from a value
1812       // that already has some constant zero bits (i.e. from a masking and).
1813       for (unsigned i = NumValidBits; i < NumBits; ++i)
1814         Bits[i] = (*LHSBits)[i].hasValue()
1815                       ? ValueBit((*LHSBits)[i].getValue(),
1816                                  (*LHSBits)[i].getValueBitIndex(),
1817                                  ValueBit::VariableKnownToBeZero)
1818                       : ValueBit(ValueBit::ConstZero);
1819 
1820       return std::make_pair(Interesting, &Bits);
1821     }
1822     case ISD::LOAD:
1823       LoadSDNode *LD = cast<LoadSDNode>(V);
1824       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1825         EVT VT = LD->getMemoryVT();
1826         const unsigned NumValidBits = VT.getSizeInBits();
1827 
1828         for (unsigned i = 0; i < NumValidBits; ++i)
1829           Bits[i] = ValueBit(V, i);
1830 
1831         // These bits are known to be zero.
1832         for (unsigned i = NumValidBits; i < NumBits; ++i)
1833           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1834 
1835         // Zero-extending load itself cannot be optimized. So, it is not
1836         // interesting by itself though it gives useful information.
1837         return std::make_pair(Interesting = false, &Bits);
1838       }
1839       break;
1840     }
1841 
1842     for (unsigned i = 0; i < NumBits; ++i)
1843       Bits[i] = ValueBit(V, i);
1844 
1845     return std::make_pair(Interesting = false, &Bits);
1846   }
1847 
1848   // For each value (except the constant ones), compute the left-rotate amount
1849   // to get it from its original to final position.
1850   void computeRotationAmounts() {
1851     NeedMask = false;
1852     RLAmt.resize(Bits.size());
1853     for (unsigned i = 0; i < Bits.size(); ++i)
1854       if (Bits[i].hasValue()) {
1855         unsigned VBI = Bits[i].getValueBitIndex();
1856         if (i >= VBI)
1857           RLAmt[i] = i - VBI;
1858         else
1859           RLAmt[i] = Bits.size() - (VBI - i);
1860       } else if (Bits[i].isZero()) {
1861         NeedMask = true;
1862         RLAmt[i] = UINT32_MAX;
1863       } else {
1864         llvm_unreachable("Unknown value bit type");
1865       }
1866   }
1867 
1868   // Collect groups of consecutive bits with the same underlying value and
1869   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1870   // they break up groups.
1871   void collectBitGroups(bool LateMask) {
1872     BitGroups.clear();
1873 
1874     unsigned LastRLAmt = RLAmt[0];
1875     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1876     unsigned LastGroupStartIdx = 0;
1877     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1878     for (unsigned i = 1; i < Bits.size(); ++i) {
1879       unsigned ThisRLAmt = RLAmt[i];
1880       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1881       if (LateMask && !ThisValue) {
1882         ThisValue = LastValue;
1883         ThisRLAmt = LastRLAmt;
1884         // If we're doing late masking, then the first bit group always starts
1885         // at zero (even if the first bits were zero).
1886         if (BitGroups.empty())
1887           LastGroupStartIdx = 0;
1888       }
1889 
1890       // If this bit is known to be zero and the current group is a bit group
1891       // of zeros, we do not need to terminate the current bit group even the
1892       // Value or RLAmt does not match here. Instead, we terminate this group
1893       // when the first non-zero bit appears later.
1894       if (IsGroupOfZeros && Bits[i].isZero())
1895         continue;
1896 
1897       // If this bit has the same underlying value and the same rotate factor as
1898       // the last one, then they're part of the same group.
1899       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1900         // We cannot continue the current group if this bits is not known to
1901         // be zero in a bit group of zeros.
1902         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1903           continue;
1904 
1905       if (LastValue.getNode())
1906         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1907                                      i-1));
1908       LastRLAmt = ThisRLAmt;
1909       LastValue = ThisValue;
1910       LastGroupStartIdx = i;
1911       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1912     }
1913     if (LastValue.getNode())
1914       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1915                                    Bits.size()-1));
1916 
1917     if (BitGroups.empty())
1918       return;
1919 
1920     // We might be able to combine the first and last groups.
1921     if (BitGroups.size() > 1) {
1922       // If the first and last groups are the same, then remove the first group
1923       // in favor of the last group, making the ending index of the last group
1924       // equal to the ending index of the to-be-removed first group.
1925       if (BitGroups[0].StartIdx == 0 &&
1926           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1927           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1928           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1929         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1930         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1931         BitGroups.erase(BitGroups.begin());
1932       }
1933     }
1934   }
1935 
1936   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1937   // associated with each. If the number of groups are same, we prefer a group
1938   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1939   // instruction. If there is a degeneracy, pick the one that occurs
1940   // first (in the final value).
1941   void collectValueRotInfo() {
1942     ValueRots.clear();
1943 
1944     for (auto &BG : BitGroups) {
1945       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1946       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1947       VRI.V = BG.V;
1948       VRI.RLAmt = BG.RLAmt;
1949       VRI.Repl32 = BG.Repl32;
1950       VRI.NumGroups += 1;
1951       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1952     }
1953 
1954     // Now that we've collected the various ValueRotInfo instances, we need to
1955     // sort them.
1956     ValueRotsVec.clear();
1957     for (auto &I : ValueRots) {
1958       ValueRotsVec.push_back(I.second);
1959     }
1960     llvm::sort(ValueRotsVec);
1961   }
1962 
1963   // In 64-bit mode, rlwinm and friends have a rotation operator that
1964   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1965   // indices of these instructions can only be in the lower 32 bits, so they
1966   // can only represent some 64-bit bit groups. However, when they can be used,
1967   // the 32-bit replication can be used to represent, as a single bit group,
1968   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1969   // groups when possible. Returns true if any of the bit groups were
1970   // converted.
1971   void assignRepl32BitGroups() {
1972     // If we have bits like this:
1973     //
1974     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1975     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1976     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1977     //
1978     // But, making use of a 32-bit operation that replicates the low-order 32
1979     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1980     // of 8.
1981 
1982     auto IsAllLow32 = [this](BitGroup & BG) {
1983       if (BG.StartIdx <= BG.EndIdx) {
1984         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1985           if (!Bits[i].hasValue())
1986             continue;
1987           if (Bits[i].getValueBitIndex() >= 32)
1988             return false;
1989         }
1990       } else {
1991         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1992           if (!Bits[i].hasValue())
1993             continue;
1994           if (Bits[i].getValueBitIndex() >= 32)
1995             return false;
1996         }
1997         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1998           if (!Bits[i].hasValue())
1999             continue;
2000           if (Bits[i].getValueBitIndex() >= 32)
2001             return false;
2002         }
2003       }
2004 
2005       return true;
2006     };
2007 
2008     for (auto &BG : BitGroups) {
2009       // If this bit group has RLAmt of 0 and will not be merged with
2010       // another bit group, we don't benefit from Repl32. We don't mark
2011       // such group to give more freedom for later instruction selection.
2012       if (BG.RLAmt == 0) {
2013         auto PotentiallyMerged = [this](BitGroup & BG) {
2014           for (auto &BG2 : BitGroups)
2015             if (&BG != &BG2 && BG.V == BG2.V &&
2016                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
2017               return true;
2018           return false;
2019         };
2020         if (!PotentiallyMerged(BG))
2021           continue;
2022       }
2023       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
2024         if (IsAllLow32(BG)) {
2025           if (BG.RLAmt >= 32) {
2026             BG.RLAmt -= 32;
2027             BG.Repl32CR = true;
2028           }
2029 
2030           BG.Repl32 = true;
2031 
2032           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
2033                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
2034                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
2035         }
2036       }
2037     }
2038 
2039     // Now walk through the bit groups, consolidating where possible.
2040     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
2041       // We might want to remove this bit group by merging it with the previous
2042       // group (which might be the ending group).
2043       auto IP = (I == BitGroups.begin()) ?
2044                 std::prev(BitGroups.end()) : std::prev(I);
2045       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
2046           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
2047 
2048         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
2049                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
2050                           << I->StartIdx << ", " << I->EndIdx
2051                           << "] with group with range [" << IP->StartIdx << ", "
2052                           << IP->EndIdx << "]\n");
2053 
2054         IP->EndIdx = I->EndIdx;
2055         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
2056         IP->Repl32Coalesced = true;
2057         I = BitGroups.erase(I);
2058         continue;
2059       } else {
2060         // There is a special case worth handling: If there is a single group
2061         // covering the entire upper 32 bits, and it can be merged with both
2062         // the next and previous groups (which might be the same group), then
2063         // do so. If it is the same group (so there will be only one group in
2064         // total), then we need to reverse the order of the range so that it
2065         // covers the entire 64 bits.
2066         if (I->StartIdx == 32 && I->EndIdx == 63) {
2067           assert(std::next(I) == BitGroups.end() &&
2068                  "bit group ends at index 63 but there is another?");
2069           auto IN = BitGroups.begin();
2070 
2071           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
2072               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
2073               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
2074               IsAllLow32(*I)) {
2075 
2076             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
2077                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
2078                               << ", " << I->EndIdx
2079                               << "] with 32-bit replicated groups with ranges ["
2080                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
2081                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
2082 
2083             if (IP == IN) {
2084               // There is only one other group; change it to cover the whole
2085               // range (backward, so that it can still be Repl32 but cover the
2086               // whole 64-bit range).
2087               IP->StartIdx = 31;
2088               IP->EndIdx = 30;
2089               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
2090               IP->Repl32Coalesced = true;
2091               I = BitGroups.erase(I);
2092             } else {
2093               // There are two separate groups, one before this group and one
2094               // after us (at the beginning). We're going to remove this group,
2095               // but also the group at the very beginning.
2096               IP->EndIdx = IN->EndIdx;
2097               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
2098               IP->Repl32Coalesced = true;
2099               I = BitGroups.erase(I);
2100               BitGroups.erase(BitGroups.begin());
2101             }
2102 
2103             // This must be the last group in the vector (and we might have
2104             // just invalidated the iterator above), so break here.
2105             break;
2106           }
2107         }
2108       }
2109 
2110       ++I;
2111     }
2112   }
2113 
2114   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
2115     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
2116   }
2117 
2118   uint64_t getZerosMask() {
2119     uint64_t Mask = 0;
2120     for (unsigned i = 0; i < Bits.size(); ++i) {
2121       if (Bits[i].hasValue())
2122         continue;
2123       Mask |= (UINT64_C(1) << i);
2124     }
2125 
2126     return ~Mask;
2127   }
2128 
2129   // This method extends an input value to 64 bit if input is 32-bit integer.
2130   // While selecting instructions in BitPermutationSelector in 64-bit mode,
2131   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
2132   // In such case, we extend it to 64 bit to be consistent with other values.
2133   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
2134     if (V.getValueSizeInBits() == 64)
2135       return V;
2136 
2137     assert(V.getValueSizeInBits() == 32);
2138     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2139     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
2140                                                    MVT::i64), 0);
2141     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
2142                                                     MVT::i64, ImDef, V,
2143                                                     SubRegIdx), 0);
2144     return ExtVal;
2145   }
2146 
2147   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
2148     if (V.getValueSizeInBits() == 32)
2149       return V;
2150 
2151     assert(V.getValueSizeInBits() == 64);
2152     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2153     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
2154                                                     MVT::i32, V, SubRegIdx), 0);
2155     return SubVal;
2156   }
2157 
2158   // Depending on the number of groups for a particular value, it might be
2159   // better to rotate, mask explicitly (using andi/andis), and then or the
2160   // result. Select this part of the result first.
2161   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2162     if (BPermRewriterNoMasking)
2163       return;
2164 
2165     for (ValueRotInfo &VRI : ValueRotsVec) {
2166       unsigned Mask = 0;
2167       for (unsigned i = 0; i < Bits.size(); ++i) {
2168         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2169           continue;
2170         if (RLAmt[i] != VRI.RLAmt)
2171           continue;
2172         Mask |= (1u << i);
2173       }
2174 
2175       // Compute the masks for andi/andis that would be necessary.
2176       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2177       assert((ANDIMask != 0 || ANDISMask != 0) &&
2178              "No set bits in mask for value bit groups");
2179       bool NeedsRotate = VRI.RLAmt != 0;
2180 
2181       // We're trying to minimize the number of instructions. If we have one
2182       // group, using one of andi/andis can break even.  If we have three
2183       // groups, we can use both andi and andis and break even (to use both
2184       // andi and andis we also need to or the results together). We need four
2185       // groups if we also need to rotate. To use andi/andis we need to do more
2186       // than break even because rotate-and-mask instructions tend to be easier
2187       // to schedule.
2188 
2189       // FIXME: We've biased here against using andi/andis, which is right for
2190       // POWER cores, but not optimal everywhere. For example, on the A2,
2191       // andi/andis have single-cycle latency whereas the rotate-and-mask
2192       // instructions take two cycles, and it would be better to bias toward
2193       // andi/andis in break-even cases.
2194 
2195       unsigned NumAndInsts = (unsigned) NeedsRotate +
2196                              (unsigned) (ANDIMask != 0) +
2197                              (unsigned) (ANDISMask != 0) +
2198                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2199                              (unsigned) (bool) Res;
2200 
2201       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2202                         << " RL: " << VRI.RLAmt << ":"
2203                         << "\n\t\t\tisel using masking: " << NumAndInsts
2204                         << " using rotates: " << VRI.NumGroups << "\n");
2205 
2206       if (NumAndInsts >= VRI.NumGroups)
2207         continue;
2208 
2209       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2210 
2211       if (InstCnt) *InstCnt += NumAndInsts;
2212 
2213       SDValue VRot;
2214       if (VRI.RLAmt) {
2215         SDValue Ops[] =
2216           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2217             getI32Imm(0, dl), getI32Imm(31, dl) };
2218         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2219                                               Ops), 0);
2220       } else {
2221         VRot = TruncateToInt32(VRI.V, dl);
2222       }
2223 
2224       SDValue ANDIVal, ANDISVal;
2225       if (ANDIMask != 0)
2226         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2227                                                  VRot, getI32Imm(ANDIMask, dl)),
2228                           0);
2229       if (ANDISMask != 0)
2230         ANDISVal =
2231             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2232                                            getI32Imm(ANDISMask, dl)),
2233                     0);
2234 
2235       SDValue TotalVal;
2236       if (!ANDIVal)
2237         TotalVal = ANDISVal;
2238       else if (!ANDISVal)
2239         TotalVal = ANDIVal;
2240       else
2241         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2242                              ANDIVal, ANDISVal), 0);
2243 
2244       if (!Res)
2245         Res = TotalVal;
2246       else
2247         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2248                         Res, TotalVal), 0);
2249 
2250       // Now, remove all groups with this underlying value and rotation
2251       // factor.
2252       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2253         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2254       });
2255     }
2256   }
2257 
2258   // Instruction selection for the 32-bit case.
2259   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2260     SDLoc dl(N);
2261     SDValue Res;
2262 
2263     if (InstCnt) *InstCnt = 0;
2264 
2265     // Take care of cases that should use andi/andis first.
2266     SelectAndParts32(dl, Res, InstCnt);
2267 
2268     // If we've not yet selected a 'starting' instruction, and we have no zeros
2269     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2270     // number of groups), and start with this rotated value.
2271     if ((!NeedMask || LateMask) && !Res) {
2272       ValueRotInfo &VRI = ValueRotsVec[0];
2273       if (VRI.RLAmt) {
2274         if (InstCnt) *InstCnt += 1;
2275         SDValue Ops[] =
2276           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2277             getI32Imm(0, dl), getI32Imm(31, dl) };
2278         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2279                       0);
2280       } else {
2281         Res = TruncateToInt32(VRI.V, dl);
2282       }
2283 
2284       // Now, remove all groups with this underlying value and rotation factor.
2285       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2286         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2287       });
2288     }
2289 
2290     if (InstCnt) *InstCnt += BitGroups.size();
2291 
2292     // Insert the other groups (one at a time).
2293     for (auto &BG : BitGroups) {
2294       if (!Res) {
2295         SDValue Ops[] =
2296           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2297             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2298             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2299         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2300       } else {
2301         SDValue Ops[] =
2302           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2303               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2304             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2305         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2306       }
2307     }
2308 
2309     if (LateMask) {
2310       unsigned Mask = (unsigned) getZerosMask();
2311 
2312       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2313       assert((ANDIMask != 0 || ANDISMask != 0) &&
2314              "No set bits in zeros mask?");
2315 
2316       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2317                                (unsigned) (ANDISMask != 0) +
2318                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2319 
2320       SDValue ANDIVal, ANDISVal;
2321       if (ANDIMask != 0)
2322         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2323                                                  Res, getI32Imm(ANDIMask, dl)),
2324                           0);
2325       if (ANDISMask != 0)
2326         ANDISVal =
2327             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2328                                            getI32Imm(ANDISMask, dl)),
2329                     0);
2330 
2331       if (!ANDIVal)
2332         Res = ANDISVal;
2333       else if (!ANDISVal)
2334         Res = ANDIVal;
2335       else
2336         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2337                         ANDIVal, ANDISVal), 0);
2338     }
2339 
2340     return Res.getNode();
2341   }
2342 
2343   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2344                                 unsigned MaskStart, unsigned MaskEnd,
2345                                 bool IsIns) {
2346     // In the notation used by the instructions, 'start' and 'end' are reversed
2347     // because bits are counted from high to low order.
2348     unsigned InstMaskStart = 64 - MaskEnd - 1,
2349              InstMaskEnd   = 64 - MaskStart - 1;
2350 
2351     if (Repl32)
2352       return 1;
2353 
2354     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2355         InstMaskEnd == 63 - RLAmt)
2356       return 1;
2357 
2358     return 2;
2359   }
2360 
2361   // For 64-bit values, not all combinations of rotates and masks are
2362   // available. Produce one if it is available.
2363   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2364                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2365                           unsigned *InstCnt = nullptr) {
2366     // In the notation used by the instructions, 'start' and 'end' are reversed
2367     // because bits are counted from high to low order.
2368     unsigned InstMaskStart = 64 - MaskEnd - 1,
2369              InstMaskEnd   = 64 - MaskStart - 1;
2370 
2371     if (InstCnt) *InstCnt += 1;
2372 
2373     if (Repl32) {
2374       // This rotation amount assumes that the lower 32 bits of the quantity
2375       // are replicated in the high 32 bits by the rotation operator (which is
2376       // done by rlwinm and friends).
2377       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2378       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2379       SDValue Ops[] =
2380         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2381           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2382       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2383                                             Ops), 0);
2384     }
2385 
2386     if (InstMaskEnd == 63) {
2387       SDValue Ops[] =
2388         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2389           getI32Imm(InstMaskStart, dl) };
2390       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2391     }
2392 
2393     if (InstMaskStart == 0) {
2394       SDValue Ops[] =
2395         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2396           getI32Imm(InstMaskEnd, dl) };
2397       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2398     }
2399 
2400     if (InstMaskEnd == 63 - RLAmt) {
2401       SDValue Ops[] =
2402         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2403           getI32Imm(InstMaskStart, dl) };
2404       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2405     }
2406 
2407     // We cannot do this with a single instruction, so we'll use two. The
2408     // problem is that we're not free to choose both a rotation amount and mask
2409     // start and end independently. We can choose an arbitrary mask start and
2410     // end, but then the rotation amount is fixed. Rotation, however, can be
2411     // inverted, and so by applying an "inverse" rotation first, we can get the
2412     // desired result.
2413     if (InstCnt) *InstCnt += 1;
2414 
2415     // The rotation mask for the second instruction must be MaskStart.
2416     unsigned RLAmt2 = MaskStart;
2417     // The first instruction must rotate V so that the overall rotation amount
2418     // is RLAmt.
2419     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2420     if (RLAmt1)
2421       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2422     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2423   }
2424 
2425   // For 64-bit values, not all combinations of rotates and masks are
2426   // available. Produce a rotate-mask-and-insert if one is available.
2427   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2428                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2429                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2430     // In the notation used by the instructions, 'start' and 'end' are reversed
2431     // because bits are counted from high to low order.
2432     unsigned InstMaskStart = 64 - MaskEnd - 1,
2433              InstMaskEnd   = 64 - MaskStart - 1;
2434 
2435     if (InstCnt) *InstCnt += 1;
2436 
2437     if (Repl32) {
2438       // This rotation amount assumes that the lower 32 bits of the quantity
2439       // are replicated in the high 32 bits by the rotation operator (which is
2440       // done by rlwinm and friends).
2441       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2442       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2443       SDValue Ops[] =
2444         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2445           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2446       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2447                                             Ops), 0);
2448     }
2449 
2450     if (InstMaskEnd == 63 - RLAmt) {
2451       SDValue Ops[] =
2452         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2453           getI32Imm(InstMaskStart, dl) };
2454       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2455     }
2456 
2457     // We cannot do this with a single instruction, so we'll use two. The
2458     // problem is that we're not free to choose both a rotation amount and mask
2459     // start and end independently. We can choose an arbitrary mask start and
2460     // end, but then the rotation amount is fixed. Rotation, however, can be
2461     // inverted, and so by applying an "inverse" rotation first, we can get the
2462     // desired result.
2463     if (InstCnt) *InstCnt += 1;
2464 
2465     // The rotation mask for the second instruction must be MaskStart.
2466     unsigned RLAmt2 = MaskStart;
2467     // The first instruction must rotate V so that the overall rotation amount
2468     // is RLAmt.
2469     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2470     if (RLAmt1)
2471       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2472     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2473   }
2474 
2475   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2476     if (BPermRewriterNoMasking)
2477       return;
2478 
2479     // The idea here is the same as in the 32-bit version, but with additional
2480     // complications from the fact that Repl32 might be true. Because we
2481     // aggressively convert bit groups to Repl32 form (which, for small
2482     // rotation factors, involves no other change), and then coalesce, it might
2483     // be the case that a single 64-bit masking operation could handle both
2484     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2485     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2486     // completely capture the new combined bit group.
2487 
2488     for (ValueRotInfo &VRI : ValueRotsVec) {
2489       uint64_t Mask = 0;
2490 
2491       // We need to add to the mask all bits from the associated bit groups.
2492       // If Repl32 is false, we need to add bits from bit groups that have
2493       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2494       // group is trivially convertable if it overlaps only with the lower 32
2495       // bits, and the group has not been coalesced.
2496       auto MatchingBG = [VRI](const BitGroup &BG) {
2497         if (VRI.V != BG.V)
2498           return false;
2499 
2500         unsigned EffRLAmt = BG.RLAmt;
2501         if (!VRI.Repl32 && BG.Repl32) {
2502           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2503               !BG.Repl32Coalesced) {
2504             if (BG.Repl32CR)
2505               EffRLAmt += 32;
2506           } else {
2507             return false;
2508           }
2509         } else if (VRI.Repl32 != BG.Repl32) {
2510           return false;
2511         }
2512 
2513         return VRI.RLAmt == EffRLAmt;
2514       };
2515 
2516       for (auto &BG : BitGroups) {
2517         if (!MatchingBG(BG))
2518           continue;
2519 
2520         if (BG.StartIdx <= BG.EndIdx) {
2521           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2522             Mask |= (UINT64_C(1) << i);
2523         } else {
2524           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2525             Mask |= (UINT64_C(1) << i);
2526           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2527             Mask |= (UINT64_C(1) << i);
2528         }
2529       }
2530 
2531       // We can use the 32-bit andi/andis technique if the mask does not
2532       // require any higher-order bits. This can save an instruction compared
2533       // to always using the general 64-bit technique.
2534       bool Use32BitInsts = isUInt<32>(Mask);
2535       // Compute the masks for andi/andis that would be necessary.
2536       unsigned ANDIMask = (Mask & UINT16_MAX),
2537                ANDISMask = (Mask >> 16) & UINT16_MAX;
2538 
2539       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2540 
2541       unsigned NumAndInsts = (unsigned) NeedsRotate +
2542                              (unsigned) (bool) Res;
2543       unsigned NumOfSelectInsts = 0;
2544       selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2545       assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2546       if (Use32BitInsts)
2547         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2548                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2549       else
2550         NumAndInsts += NumOfSelectInsts + /* and */ 1;
2551 
2552       unsigned NumRLInsts = 0;
2553       bool FirstBG = true;
2554       bool MoreBG = false;
2555       for (auto &BG : BitGroups) {
2556         if (!MatchingBG(BG)) {
2557           MoreBG = true;
2558           continue;
2559         }
2560         NumRLInsts +=
2561           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2562                                !FirstBG);
2563         FirstBG = false;
2564       }
2565 
2566       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2567                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2568                         << "\n\t\t\tisel using masking: " << NumAndInsts
2569                         << " using rotates: " << NumRLInsts << "\n");
2570 
2571       // When we'd use andi/andis, we bias toward using the rotates (andi only
2572       // has a record form, and is cracked on POWER cores). However, when using
2573       // general 64-bit constant formation, bias toward the constant form,
2574       // because that exposes more opportunities for CSE.
2575       if (NumAndInsts > NumRLInsts)
2576         continue;
2577       // When merging multiple bit groups, instruction or is used.
2578       // But when rotate is used, rldimi can inert the rotated value into any
2579       // register, so instruction or can be avoided.
2580       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2581         continue;
2582 
2583       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2584 
2585       if (InstCnt) *InstCnt += NumAndInsts;
2586 
2587       SDValue VRot;
2588       // We actually need to generate a rotation if we have a non-zero rotation
2589       // factor or, in the Repl32 case, if we care about any of the
2590       // higher-order replicated bits. In the latter case, we generate a mask
2591       // backward so that it actually includes the entire 64 bits.
2592       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2593         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2594                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2595       else
2596         VRot = VRI.V;
2597 
2598       SDValue TotalVal;
2599       if (Use32BitInsts) {
2600         assert((ANDIMask != 0 || ANDISMask != 0) &&
2601                "No set bits in mask when using 32-bit ands for 64-bit value");
2602 
2603         SDValue ANDIVal, ANDISVal;
2604         if (ANDIMask != 0)
2605           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2606                                                    ExtendToInt64(VRot, dl),
2607                                                    getI32Imm(ANDIMask, dl)),
2608                             0);
2609         if (ANDISMask != 0)
2610           ANDISVal =
2611               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2612                                              ExtendToInt64(VRot, dl),
2613                                              getI32Imm(ANDISMask, dl)),
2614                       0);
2615 
2616         if (!ANDIVal)
2617           TotalVal = ANDISVal;
2618         else if (!ANDISVal)
2619           TotalVal = ANDIVal;
2620         else
2621           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2622                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2623       } else {
2624         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2625         TotalVal =
2626           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2627                                          ExtendToInt64(VRot, dl), TotalVal),
2628                   0);
2629      }
2630 
2631       if (!Res)
2632         Res = TotalVal;
2633       else
2634         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2635                                              ExtendToInt64(Res, dl), TotalVal),
2636                       0);
2637 
2638       // Now, remove all groups with this underlying value and rotation
2639       // factor.
2640       eraseMatchingBitGroups(MatchingBG);
2641     }
2642   }
2643 
2644   // Instruction selection for the 64-bit case.
2645   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2646     SDLoc dl(N);
2647     SDValue Res;
2648 
2649     if (InstCnt) *InstCnt = 0;
2650 
2651     // Take care of cases that should use andi/andis first.
2652     SelectAndParts64(dl, Res, InstCnt);
2653 
2654     // If we've not yet selected a 'starting' instruction, and we have no zeros
2655     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2656     // number of groups), and start with this rotated value.
2657     if ((!NeedMask || LateMask) && !Res) {
2658       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2659       // groups will come first, and so the VRI representing the largest number
2660       // of groups might not be first (it might be the first Repl32 groups).
2661       unsigned MaxGroupsIdx = 0;
2662       if (!ValueRotsVec[0].Repl32) {
2663         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2664           if (ValueRotsVec[i].Repl32) {
2665             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2666               MaxGroupsIdx = i;
2667             break;
2668           }
2669       }
2670 
2671       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2672       bool NeedsRotate = false;
2673       if (VRI.RLAmt) {
2674         NeedsRotate = true;
2675       } else if (VRI.Repl32) {
2676         for (auto &BG : BitGroups) {
2677           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2678               BG.Repl32 != VRI.Repl32)
2679             continue;
2680 
2681           // We don't need a rotate if the bit group is confined to the lower
2682           // 32 bits.
2683           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2684             continue;
2685 
2686           NeedsRotate = true;
2687           break;
2688         }
2689       }
2690 
2691       if (NeedsRotate)
2692         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2693                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2694                               InstCnt);
2695       else
2696         Res = VRI.V;
2697 
2698       // Now, remove all groups with this underlying value and rotation factor.
2699       if (Res)
2700         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2701           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2702                  BG.Repl32 == VRI.Repl32;
2703         });
2704     }
2705 
2706     // Because 64-bit rotates are more flexible than inserts, we might have a
2707     // preference regarding which one we do first (to save one instruction).
2708     if (!Res)
2709       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2710         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2711                                 false) <
2712             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2713                                 true)) {
2714           if (I != BitGroups.begin()) {
2715             BitGroup BG = *I;
2716             BitGroups.erase(I);
2717             BitGroups.insert(BitGroups.begin(), BG);
2718           }
2719 
2720           break;
2721         }
2722       }
2723 
2724     // Insert the other groups (one at a time).
2725     for (auto &BG : BitGroups) {
2726       if (!Res)
2727         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2728                               BG.EndIdx, InstCnt);
2729       else
2730         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2731                                  BG.StartIdx, BG.EndIdx, InstCnt);
2732     }
2733 
2734     if (LateMask) {
2735       uint64_t Mask = getZerosMask();
2736 
2737       // We can use the 32-bit andi/andis technique if the mask does not
2738       // require any higher-order bits. This can save an instruction compared
2739       // to always using the general 64-bit technique.
2740       bool Use32BitInsts = isUInt<32>(Mask);
2741       // Compute the masks for andi/andis that would be necessary.
2742       unsigned ANDIMask = (Mask & UINT16_MAX),
2743                ANDISMask = (Mask >> 16) & UINT16_MAX;
2744 
2745       if (Use32BitInsts) {
2746         assert((ANDIMask != 0 || ANDISMask != 0) &&
2747                "No set bits in mask when using 32-bit ands for 64-bit value");
2748 
2749         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2750                                  (unsigned) (ANDISMask != 0) +
2751                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2752 
2753         SDValue ANDIVal, ANDISVal;
2754         if (ANDIMask != 0)
2755           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2756                                                    ExtendToInt64(Res, dl),
2757                                                    getI32Imm(ANDIMask, dl)),
2758                             0);
2759         if (ANDISMask != 0)
2760           ANDISVal =
2761               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2762                                              ExtendToInt64(Res, dl),
2763                                              getI32Imm(ANDISMask, dl)),
2764                       0);
2765 
2766         if (!ANDIVal)
2767           Res = ANDISVal;
2768         else if (!ANDISVal)
2769           Res = ANDIVal;
2770         else
2771           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2772                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2773       } else {
2774         unsigned NumOfSelectInsts = 0;
2775         SDValue MaskVal =
2776             SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2777         Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2778                                              ExtendToInt64(Res, dl), MaskVal),
2779                       0);
2780         if (InstCnt)
2781           *InstCnt += NumOfSelectInsts + /* and */ 1;
2782       }
2783     }
2784 
2785     return Res.getNode();
2786   }
2787 
2788   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2789     // Fill in BitGroups.
2790     collectBitGroups(LateMask);
2791     if (BitGroups.empty())
2792       return nullptr;
2793 
2794     // For 64-bit values, figure out when we can use 32-bit instructions.
2795     if (Bits.size() == 64)
2796       assignRepl32BitGroups();
2797 
2798     // Fill in ValueRotsVec.
2799     collectValueRotInfo();
2800 
2801     if (Bits.size() == 32) {
2802       return Select32(N, LateMask, InstCnt);
2803     } else {
2804       assert(Bits.size() == 64 && "Not 64 bits here?");
2805       return Select64(N, LateMask, InstCnt);
2806     }
2807 
2808     return nullptr;
2809   }
2810 
2811   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2812     erase_if(BitGroups, F);
2813   }
2814 
2815   SmallVector<ValueBit, 64> Bits;
2816 
2817   bool NeedMask = false;
2818   SmallVector<unsigned, 64> RLAmt;
2819 
2820   SmallVector<BitGroup, 16> BitGroups;
2821 
2822   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2823   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2824 
2825   SelectionDAG *CurDAG = nullptr;
2826 
2827 public:
2828   BitPermutationSelector(SelectionDAG *DAG)
2829     : CurDAG(DAG) {}
2830 
2831   // Here we try to match complex bit permutations into a set of
2832   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2833   // known to produce optimal code for common cases (like i32 byte swapping).
2834   SDNode *Select(SDNode *N) {
2835     Memoizer.clear();
2836     auto Result =
2837         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2838     if (!Result.first)
2839       return nullptr;
2840     Bits = std::move(*Result.second);
2841 
2842     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2843                          " selection for:    ");
2844     LLVM_DEBUG(N->dump(CurDAG));
2845 
2846     // Fill it RLAmt and set NeedMask.
2847     computeRotationAmounts();
2848 
2849     if (!NeedMask)
2850       return Select(N, false);
2851 
2852     // We currently have two techniques for handling results with zeros: early
2853     // masking (the default) and late masking. Late masking is sometimes more
2854     // efficient, but because the structure of the bit groups is different, it
2855     // is hard to tell without generating both and comparing the results. With
2856     // late masking, we ignore zeros in the resulting value when inserting each
2857     // set of bit groups, and then mask in the zeros at the end. With early
2858     // masking, we only insert the non-zero parts of the result at every step.
2859 
2860     unsigned InstCnt = 0, InstCntLateMask = 0;
2861     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2862     SDNode *RN = Select(N, false, &InstCnt);
2863     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2864 
2865     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2866     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2867     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2868                       << " instructions\n");
2869 
2870     if (InstCnt <= InstCntLateMask) {
2871       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2872       return RN;
2873     }
2874 
2875     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2876     return RNLM;
2877   }
2878 };
2879 
2880 class IntegerCompareEliminator {
2881   SelectionDAG *CurDAG;
2882   PPCDAGToDAGISel *S;
2883   // Conversion type for interpreting results of a 32-bit instruction as
2884   // a 64-bit value or vice versa.
2885   enum ExtOrTruncConversion { Ext, Trunc };
2886 
2887   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2888   // in a GPR.
2889   // ZExtOrig - use the original condition code, zero-extend value
2890   // ZExtInvert - invert the condition code, zero-extend value
2891   // SExtOrig - use the original condition code, sign-extend value
2892   // SExtInvert - invert the condition code, sign-extend value
2893   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2894 
2895   // Comparisons against zero to emit GPR code sequences for. Each of these
2896   // sequences may need to be emitted for two or more equivalent patterns.
2897   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2898   // matters as well as the extension type: sext (-1/0), zext (1/0).
2899   // GEZExt - (zext (LHS >= 0))
2900   // GESExt - (sext (LHS >= 0))
2901   // LEZExt - (zext (LHS <= 0))
2902   // LESExt - (sext (LHS <= 0))
2903   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2904 
2905   SDNode *tryEXTEND(SDNode *N);
2906   SDNode *tryLogicOpOfCompares(SDNode *N);
2907   SDValue computeLogicOpInGPR(SDValue LogicOp);
2908   SDValue signExtendInputIfNeeded(SDValue Input);
2909   SDValue zeroExtendInputIfNeeded(SDValue Input);
2910   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2911   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2912                                         ZeroCompare CmpTy);
2913   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2914                               int64_t RHSValue, SDLoc dl);
2915  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2916                               int64_t RHSValue, SDLoc dl);
2917   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2918                               int64_t RHSValue, SDLoc dl);
2919   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2920                               int64_t RHSValue, SDLoc dl);
2921   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2922 
2923 public:
2924   IntegerCompareEliminator(SelectionDAG *DAG,
2925                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2926     assert(CurDAG->getTargetLoweringInfo()
2927            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2928            "Only expecting to use this on 64 bit targets.");
2929   }
2930   SDNode *Select(SDNode *N) {
2931     if (CmpInGPR == ICGPR_None)
2932       return nullptr;
2933     switch (N->getOpcode()) {
2934     default: break;
2935     case ISD::ZERO_EXTEND:
2936       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2937           CmpInGPR == ICGPR_SextI64)
2938         return nullptr;
2939       [[fallthrough]];
2940     case ISD::SIGN_EXTEND:
2941       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2942           CmpInGPR == ICGPR_ZextI64)
2943         return nullptr;
2944       return tryEXTEND(N);
2945     case ISD::AND:
2946     case ISD::OR:
2947     case ISD::XOR:
2948       return tryLogicOpOfCompares(N);
2949     }
2950     return nullptr;
2951   }
2952 };
2953 
2954 // The obvious case for wanting to keep the value in a GPR. Namely, the
2955 // result of the comparison is actually needed in a GPR.
2956 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2957   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2958           N->getOpcode() == ISD::SIGN_EXTEND) &&
2959          "Expecting a zero/sign extend node!");
2960   SDValue WideRes;
2961   // If we are zero-extending the result of a logical operation on i1
2962   // values, we can keep the values in GPRs.
2963   if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) &&
2964       N->getOperand(0).getValueType() == MVT::i1 &&
2965       N->getOpcode() == ISD::ZERO_EXTEND)
2966     WideRes = computeLogicOpInGPR(N->getOperand(0));
2967   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2968     return nullptr;
2969   else
2970     WideRes =
2971       getSETCCInGPR(N->getOperand(0),
2972                     N->getOpcode() == ISD::SIGN_EXTEND ?
2973                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2974 
2975   if (!WideRes)
2976     return nullptr;
2977 
2978   SDLoc dl(N);
2979   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2980   bool Output32Bit = N->getValueType(0) == MVT::i32;
2981 
2982   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2983   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2984 
2985   SDValue ConvOp = WideRes;
2986   if (Input32Bit != Output32Bit)
2987     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2988                            ExtOrTruncConversion::Trunc);
2989   return ConvOp.getNode();
2990 }
2991 
2992 // Attempt to perform logical operations on the results of comparisons while
2993 // keeping the values in GPRs. Without doing so, these would end up being
2994 // lowered to CR-logical operations which suffer from significant latency and
2995 // low ILP.
2996 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2997   if (N->getValueType(0) != MVT::i1)
2998     return nullptr;
2999   assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&
3000          "Expected a logic operation on setcc results.");
3001   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
3002   if (!LoweredLogical)
3003     return nullptr;
3004 
3005   SDLoc dl(N);
3006   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
3007   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
3008   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
3009   SDValue LHS = LoweredLogical.getOperand(0);
3010   SDValue RHS = LoweredLogical.getOperand(1);
3011   SDValue WideOp;
3012   SDValue OpToConvToRecForm;
3013 
3014   // Look through any 32-bit to 64-bit implicit extend nodes to find the
3015   // opcode that is input to the XORI.
3016   if (IsBitwiseNegate &&
3017       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
3018     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
3019   else if (IsBitwiseNegate)
3020     // If the input to the XORI isn't an extension, that's what we're after.
3021     OpToConvToRecForm = LoweredLogical.getOperand(0);
3022   else
3023     // If this is not an XORI, it is a reg-reg logical op and we can convert
3024     // it to record-form.
3025     OpToConvToRecForm = LoweredLogical;
3026 
3027   // Get the record-form version of the node we're looking to use to get the
3028   // CR result from.
3029   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
3030   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
3031 
3032   // Convert the right node to record-form. This is either the logical we're
3033   // looking at or it is the input node to the negation (if we're looking at
3034   // a bitwise negation).
3035   if (NewOpc != -1 && IsBitwiseNegate) {
3036     // The input to the XORI has a record-form. Use it.
3037     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
3038            "Expected a PPC::XORI8 only for bitwise negation.");
3039     // Emit the record-form instruction.
3040     std::vector<SDValue> Ops;
3041     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
3042       Ops.push_back(OpToConvToRecForm.getOperand(i));
3043 
3044     WideOp =
3045       SDValue(CurDAG->getMachineNode(NewOpc, dl,
3046                                      OpToConvToRecForm.getValueType(),
3047                                      MVT::Glue, Ops), 0);
3048   } else {
3049     assert((NewOpc != -1 || !IsBitwiseNegate) &&
3050            "No record form available for AND8/OR8/XOR8?");
3051     WideOp =
3052         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
3053                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
3054                 0);
3055   }
3056 
3057   // Select this node to a single bit from CR0 set by the record-form node
3058   // just created. For bitwise negation, use the EQ bit which is the equivalent
3059   // of negating the result (i.e. it is a bit set when the result of the
3060   // operation is zero).
3061   SDValue SRIdxVal =
3062     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
3063   SDValue CRBit =
3064     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
3065                                    MVT::i1, CR0Reg, SRIdxVal,
3066                                    WideOp.getValue(1)), 0);
3067   return CRBit.getNode();
3068 }
3069 
3070 // Lower a logical operation on i1 values into a GPR sequence if possible.
3071 // The result can be kept in a GPR if requested.
3072 // Three types of inputs can be handled:
3073 // - SETCC
3074 // - TRUNCATE
3075 // - Logical operation (AND/OR/XOR)
3076 // There is also a special case that is handled (namely a complement operation
3077 // achieved with xor %a, -1).
3078 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
3079   assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) &&
3080         "Can only handle logic operations here.");
3081   assert(LogicOp.getValueType() == MVT::i1 &&
3082          "Can only handle logic operations on i1 values here.");
3083   SDLoc dl(LogicOp);
3084   SDValue LHS, RHS;
3085 
3086  // Special case: xor %a, -1
3087   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
3088 
3089   // Produces a GPR sequence for each operand of the binary logic operation.
3090   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
3091   // the value in a GPR and for logic operations, it will recursively produce
3092   // a GPR sequence for the operation.
3093  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
3094     unsigned OperandOpcode = Operand.getOpcode();
3095     if (OperandOpcode == ISD::SETCC)
3096       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
3097     else if (OperandOpcode == ISD::TRUNCATE) {
3098       SDValue InputOp = Operand.getOperand(0);
3099      EVT InVT = InputOp.getValueType();
3100       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
3101                                             PPC::RLDICL, dl, InVT, InputOp,
3102                                             S->getI64Imm(0, dl),
3103                                             S->getI64Imm(63, dl)), 0);
3104     } else if (ISD::isBitwiseLogicOp(OperandOpcode))
3105       return computeLogicOpInGPR(Operand);
3106     return SDValue();
3107   };
3108   LHS = getLogicOperand(LogicOp.getOperand(0));
3109   RHS = getLogicOperand(LogicOp.getOperand(1));
3110 
3111   // If a GPR sequence can't be produced for the LHS we can't proceed.
3112   // Not producing a GPR sequence for the RHS is only a problem if this isn't
3113   // a bitwise negation operation.
3114   if (!LHS || (!RHS && !IsBitwiseNegation))
3115     return SDValue();
3116 
3117   NumLogicOpsOnComparison++;
3118 
3119   // We will use the inputs as 64-bit values.
3120   if (LHS.getValueType() == MVT::i32)
3121     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
3122   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
3123     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
3124 
3125   unsigned NewOpc;
3126   switch (LogicOp.getOpcode()) {
3127   default: llvm_unreachable("Unknown logic operation.");
3128   case ISD::AND: NewOpc = PPC::AND8; break;
3129   case ISD::OR:  NewOpc = PPC::OR8;  break;
3130   case ISD::XOR: NewOpc = PPC::XOR8; break;
3131   }
3132 
3133   if (IsBitwiseNegation) {
3134     RHS = S->getI64Imm(1, dl);
3135     NewOpc = PPC::XORI8;
3136   }
3137 
3138   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
3139 
3140 }
3141 
3142 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
3143 /// Otherwise just reinterpret it as a 64-bit value.
3144 /// Useful when emitting comparison code for 32-bit values without using
3145 /// the compare instruction (which only considers the lower 32-bits).
3146 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
3147   assert(Input.getValueType() == MVT::i32 &&
3148          "Can only sign-extend 32-bit values here.");
3149   unsigned Opc = Input.getOpcode();
3150 
3151   // The value was sign extended and then truncated to 32-bits. No need to
3152   // sign extend it again.
3153   if (Opc == ISD::TRUNCATE &&
3154       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
3155        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
3156     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3157 
3158   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3159   // The input is a sign-extending load. All ppc sign-extending loads
3160   // sign-extend to the full 64-bits.
3161   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3162     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3163 
3164   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3165   // We don't sign-extend constants.
3166   if (InputConst)
3167     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3168 
3169   SDLoc dl(Input);
3170   SignExtensionsAdded++;
3171   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3172                                         MVT::i64, Input), 0);
3173 }
3174 
3175 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3176 /// Otherwise just reinterpret it as a 64-bit value.
3177 /// Useful when emitting comparison code for 32-bit values without using
3178 /// the compare instruction (which only considers the lower 32-bits).
3179 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3180   assert(Input.getValueType() == MVT::i32 &&
3181          "Can only zero-extend 32-bit values here.");
3182   unsigned Opc = Input.getOpcode();
3183 
3184   // The only condition under which we can omit the actual extend instruction:
3185   // - The value is a positive constant
3186   // - The value comes from a load that isn't a sign-extending load
3187   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3188   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3189     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3190      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3191   if (IsTruncateOfZExt)
3192     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3193 
3194   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3195   if (InputConst && InputConst->getSExtValue() >= 0)
3196     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3197 
3198   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3199   // The input is a load that doesn't sign-extend (it will be zero-extended).
3200   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3201     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3202 
3203   // None of the above, need to zero-extend.
3204   SDLoc dl(Input);
3205   ZeroExtensionsAdded++;
3206   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3207                                         S->getI64Imm(0, dl),
3208                                         S->getI64Imm(32, dl)), 0);
3209 }
3210 
3211 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3212 // course not actual zero/sign extensions that will generate machine code,
3213 // they're just a way to reinterpret a 32 bit value in a register as a
3214 // 64 bit value and vice-versa.
3215 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3216                                                 ExtOrTruncConversion Conv) {
3217   SDLoc dl(NatWidthRes);
3218 
3219   // For reinterpreting 32-bit values as 64 bit values, we generate
3220   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3221   if (Conv == ExtOrTruncConversion::Ext) {
3222     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3223     SDValue SubRegIdx =
3224       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3225     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3226                                           ImDef, NatWidthRes, SubRegIdx), 0);
3227   }
3228 
3229   assert(Conv == ExtOrTruncConversion::Trunc &&
3230          "Unknown convertion between 32 and 64 bit values.");
3231   // For reinterpreting 64-bit values as 32-bit values, we just need to
3232   // EXTRACT_SUBREG (i.e. extract the low word).
3233   SDValue SubRegIdx =
3234     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3235   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3236                                         NatWidthRes, SubRegIdx), 0);
3237 }
3238 
3239 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3240 // Handle both zero-extensions and sign-extensions.
3241 SDValue
3242 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3243                                                          ZeroCompare CmpTy) {
3244   EVT InVT = LHS.getValueType();
3245   bool Is32Bit = InVT == MVT::i32;
3246   SDValue ToExtend;
3247 
3248   // Produce the value that needs to be either zero or sign extended.
3249   switch (CmpTy) {
3250   case ZeroCompare::GEZExt:
3251   case ZeroCompare::GESExt:
3252     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3253                                               dl, InVT, LHS, LHS), 0);
3254     break;
3255   case ZeroCompare::LEZExt:
3256   case ZeroCompare::LESExt: {
3257     if (Is32Bit) {
3258       // Upper 32 bits cannot be undefined for this sequence.
3259       LHS = signExtendInputIfNeeded(LHS);
3260       SDValue Neg =
3261         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3262       ToExtend =
3263         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3264                                        Neg, S->getI64Imm(1, dl),
3265                                        S->getI64Imm(63, dl)), 0);
3266     } else {
3267       SDValue Addi =
3268         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3269                                        S->getI64Imm(~0ULL, dl)), 0);
3270       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3271                                                 Addi, LHS), 0);
3272     }
3273     break;
3274   }
3275   }
3276 
3277   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3278   if (!Is32Bit &&
3279       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3280     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3281                                           ToExtend, S->getI64Imm(1, dl),
3282                                           S->getI64Imm(63, dl)), 0);
3283   if (!Is32Bit &&
3284       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3285     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3286                                           S->getI64Imm(63, dl)), 0);
3287 
3288   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3289   // For 32-bit sequences, the extensions differ between GE/LE cases.
3290   switch (CmpTy) {
3291   case ZeroCompare::GEZExt: {
3292     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3293                            S->getI32Imm(31, dl) };
3294     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3295                                           ShiftOps), 0);
3296   }
3297   case ZeroCompare::GESExt:
3298     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3299                                           S->getI32Imm(31, dl)), 0);
3300   case ZeroCompare::LEZExt:
3301     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3302                                           S->getI32Imm(1, dl)), 0);
3303   case ZeroCompare::LESExt:
3304     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3305                                           S->getI32Imm(-1, dl)), 0);
3306   }
3307 
3308   // The above case covers all the enumerators so it can't have a default clause
3309   // to avoid compiler warnings.
3310   llvm_unreachable("Unknown zero-comparison type.");
3311 }
3312 
3313 /// Produces a zero-extended result of comparing two 32-bit values according to
3314 /// the passed condition code.
3315 SDValue
3316 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3317                                               ISD::CondCode CC,
3318                                               int64_t RHSValue, SDLoc dl) {
3319   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3320       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3321     return SDValue();
3322   bool IsRHSZero = RHSValue == 0;
3323   bool IsRHSOne = RHSValue == 1;
3324   bool IsRHSNegOne = RHSValue == -1LL;
3325   switch (CC) {
3326   default: return SDValue();
3327   case ISD::SETEQ: {
3328     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3329     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
3330     SDValue Xor = IsRHSZero ? LHS :
3331       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3332     SDValue Clz =
3333       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3334     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3335       S->getI32Imm(31, dl) };
3336     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3337                                           ShiftOps), 0);
3338   }
3339   case ISD::SETNE: {
3340     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3341     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
3342     SDValue Xor = IsRHSZero ? LHS :
3343       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3344     SDValue Clz =
3345       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3346     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3347       S->getI32Imm(31, dl) };
3348     SDValue Shift =
3349       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3350     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3351                                           S->getI32Imm(1, dl)), 0);
3352   }
3353   case ISD::SETGE: {
3354     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3355     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
3356     if(IsRHSZero)
3357       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3358 
3359     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3360     // by swapping inputs and falling through.
3361     std::swap(LHS, RHS);
3362     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3363     IsRHSZero = RHSConst && RHSConst->isZero();
3364     [[fallthrough]];
3365   }
3366   case ISD::SETLE: {
3367     if (CmpInGPR == ICGPR_NonExtIn)
3368       return SDValue();
3369     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3370     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
3371     if(IsRHSZero) {
3372       if (CmpInGPR == ICGPR_NonExtIn)
3373         return SDValue();
3374       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3375     }
3376 
3377     // The upper 32-bits of the register can't be undefined for this sequence.
3378     LHS = signExtendInputIfNeeded(LHS);
3379     RHS = signExtendInputIfNeeded(RHS);
3380     SDValue Sub =
3381       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3382     SDValue Shift =
3383       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3384                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3385               0);
3386     return
3387       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3388                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3389   }
3390   case ISD::SETGT: {
3391     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3392     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3393     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
3394     // Handle SETLT -1 (which is equivalent to SETGE 0).
3395     if (IsRHSNegOne)
3396       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3397 
3398     if (IsRHSZero) {
3399       if (CmpInGPR == ICGPR_NonExtIn)
3400         return SDValue();
3401       // The upper 32-bits of the register can't be undefined for this sequence.
3402       LHS = signExtendInputIfNeeded(LHS);
3403       RHS = signExtendInputIfNeeded(RHS);
3404       SDValue Neg =
3405         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3406       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3407                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3408     }
3409     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3410     // (%b < %a) by swapping inputs and falling through.
3411     std::swap(LHS, RHS);
3412     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3413     IsRHSZero = RHSConst && RHSConst->isZero();
3414     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3415     [[fallthrough]];
3416   }
3417   case ISD::SETLT: {
3418     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3419     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3420     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3421     // Handle SETLT 1 (which is equivalent to SETLE 0).
3422     if (IsRHSOne) {
3423       if (CmpInGPR == ICGPR_NonExtIn)
3424         return SDValue();
3425       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3426     }
3427 
3428     if (IsRHSZero) {
3429       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3430                              S->getI32Imm(31, dl) };
3431       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3432                                             ShiftOps), 0);
3433     }
3434 
3435     if (CmpInGPR == ICGPR_NonExtIn)
3436       return SDValue();
3437     // The upper 32-bits of the register can't be undefined for this sequence.
3438     LHS = signExtendInputIfNeeded(LHS);
3439     RHS = signExtendInputIfNeeded(RHS);
3440     SDValue SUBFNode =
3441       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3442     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3443                                     SUBFNode, S->getI64Imm(1, dl),
3444                                     S->getI64Imm(63, dl)), 0);
3445   }
3446   case ISD::SETUGE:
3447     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3448     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3449     std::swap(LHS, RHS);
3450     [[fallthrough]];
3451   case ISD::SETULE: {
3452     if (CmpInGPR == ICGPR_NonExtIn)
3453       return SDValue();
3454     // The upper 32-bits of the register can't be undefined for this sequence.
3455     LHS = zeroExtendInputIfNeeded(LHS);
3456     RHS = zeroExtendInputIfNeeded(RHS);
3457     SDValue Subtract =
3458       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3459     SDValue SrdiNode =
3460       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3461                                           Subtract, S->getI64Imm(1, dl),
3462                                           S->getI64Imm(63, dl)), 0);
3463     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3464                                             S->getI32Imm(1, dl)), 0);
3465   }
3466   case ISD::SETUGT:
3467     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3468     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3469     std::swap(LHS, RHS);
3470     [[fallthrough]];
3471   case ISD::SETULT: {
3472     if (CmpInGPR == ICGPR_NonExtIn)
3473       return SDValue();
3474     // The upper 32-bits of the register can't be undefined for this sequence.
3475     LHS = zeroExtendInputIfNeeded(LHS);
3476     RHS = zeroExtendInputIfNeeded(RHS);
3477     SDValue Subtract =
3478       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3479     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3480                                           Subtract, S->getI64Imm(1, dl),
3481                                           S->getI64Imm(63, dl)), 0);
3482   }
3483   }
3484 }
3485 
3486 /// Produces a sign-extended result of comparing two 32-bit values according to
3487 /// the passed condition code.
3488 SDValue
3489 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3490                                               ISD::CondCode CC,
3491                                               int64_t RHSValue, SDLoc dl) {
3492   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3493       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3494     return SDValue();
3495   bool IsRHSZero = RHSValue == 0;
3496   bool IsRHSOne = RHSValue == 1;
3497   bool IsRHSNegOne = RHSValue == -1LL;
3498 
3499   switch (CC) {
3500   default: return SDValue();
3501   case ISD::SETEQ: {
3502     // (sext (setcc %a, %b, seteq)) ->
3503     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3504     // (sext (setcc %a, 0, seteq)) ->
3505     //   (ashr (shl (ctlz %a), 58), 63)
3506     SDValue CountInput = IsRHSZero ? LHS :
3507       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3508     SDValue Cntlzw =
3509       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3510     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3511                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3512     SDValue Slwi =
3513       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3514     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3515   }
3516   case ISD::SETNE: {
3517     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3518     // flip the bit, finally take 2's complement.
3519     // (sext (setcc %a, %b, setne)) ->
3520     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3521     // Same as above, but the first xor is not needed.
3522     // (sext (setcc %a, 0, setne)) ->
3523     //   (neg (xor (lshr (ctlz %a), 5), 1))
3524     SDValue Xor = IsRHSZero ? LHS :
3525       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3526     SDValue Clz =
3527       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3528     SDValue ShiftOps[] =
3529       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3530     SDValue Shift =
3531       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3532     SDValue Xori =
3533       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3534                                      S->getI32Imm(1, dl)), 0);
3535     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3536   }
3537   case ISD::SETGE: {
3538     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3539     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3540     if (IsRHSZero)
3541       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3542 
3543     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3544     // by swapping inputs and falling through.
3545     std::swap(LHS, RHS);
3546     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3547     IsRHSZero = RHSConst && RHSConst->isZero();
3548     [[fallthrough]];
3549   }
3550   case ISD::SETLE: {
3551     if (CmpInGPR == ICGPR_NonExtIn)
3552       return SDValue();
3553     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3554     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3555     if (IsRHSZero)
3556       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3557 
3558     // The upper 32-bits of the register can't be undefined for this sequence.
3559     LHS = signExtendInputIfNeeded(LHS);
3560     RHS = signExtendInputIfNeeded(RHS);
3561     SDValue SUBFNode =
3562       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3563                                      LHS, RHS), 0);
3564     SDValue Srdi =
3565       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3566                                      SUBFNode, S->getI64Imm(1, dl),
3567                                      S->getI64Imm(63, dl)), 0);
3568     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3569                                           S->getI32Imm(-1, dl)), 0);
3570   }
3571   case ISD::SETGT: {
3572     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3573     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3574     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3575     if (IsRHSNegOne)
3576       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3577     if (IsRHSZero) {
3578       if (CmpInGPR == ICGPR_NonExtIn)
3579         return SDValue();
3580       // The upper 32-bits of the register can't be undefined for this sequence.
3581       LHS = signExtendInputIfNeeded(LHS);
3582       RHS = signExtendInputIfNeeded(RHS);
3583       SDValue Neg =
3584         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3585         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3586                                               S->getI64Imm(63, dl)), 0);
3587     }
3588     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3589     // (%b < %a) by swapping inputs and falling through.
3590     std::swap(LHS, RHS);
3591     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3592     IsRHSZero = RHSConst && RHSConst->isZero();
3593     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3594     [[fallthrough]];
3595   }
3596   case ISD::SETLT: {
3597     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3598     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3599     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3600     if (IsRHSOne) {
3601       if (CmpInGPR == ICGPR_NonExtIn)
3602         return SDValue();
3603       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3604     }
3605     if (IsRHSZero)
3606       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3607                                             S->getI32Imm(31, dl)), 0);
3608 
3609     if (CmpInGPR == ICGPR_NonExtIn)
3610       return SDValue();
3611     // The upper 32-bits of the register can't be undefined for this sequence.
3612     LHS = signExtendInputIfNeeded(LHS);
3613     RHS = signExtendInputIfNeeded(RHS);
3614     SDValue SUBFNode =
3615       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3616     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3617                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3618   }
3619   case ISD::SETUGE:
3620     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3621     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3622     std::swap(LHS, RHS);
3623     [[fallthrough]];
3624   case ISD::SETULE: {
3625     if (CmpInGPR == ICGPR_NonExtIn)
3626       return SDValue();
3627     // The upper 32-bits of the register can't be undefined for this sequence.
3628     LHS = zeroExtendInputIfNeeded(LHS);
3629     RHS = zeroExtendInputIfNeeded(RHS);
3630     SDValue Subtract =
3631       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3632     SDValue Shift =
3633       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3634                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3635               0);
3636     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3637                                           S->getI32Imm(-1, dl)), 0);
3638   }
3639   case ISD::SETUGT:
3640     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3641     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3642     std::swap(LHS, RHS);
3643     [[fallthrough]];
3644   case ISD::SETULT: {
3645     if (CmpInGPR == ICGPR_NonExtIn)
3646       return SDValue();
3647     // The upper 32-bits of the register can't be undefined for this sequence.
3648     LHS = zeroExtendInputIfNeeded(LHS);
3649     RHS = zeroExtendInputIfNeeded(RHS);
3650     SDValue Subtract =
3651       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3652     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3653                                           Subtract, S->getI64Imm(63, dl)), 0);
3654   }
3655   }
3656 }
3657 
3658 /// Produces a zero-extended result of comparing two 64-bit values according to
3659 /// the passed condition code.
3660 SDValue
3661 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3662                                               ISD::CondCode CC,
3663                                               int64_t RHSValue, SDLoc dl) {
3664   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3665       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3666     return SDValue();
3667   bool IsRHSZero = RHSValue == 0;
3668   bool IsRHSOne = RHSValue == 1;
3669   bool IsRHSNegOne = RHSValue == -1LL;
3670   switch (CC) {
3671   default: return SDValue();
3672   case ISD::SETEQ: {
3673     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3674     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3675     SDValue Xor = IsRHSZero ? LHS :
3676       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3677     SDValue Clz =
3678       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3679     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3680                                           S->getI64Imm(58, dl),
3681                                           S->getI64Imm(63, dl)), 0);
3682   }
3683   case ISD::SETNE: {
3684     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3685     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3686     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3687     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3688     SDValue Xor = IsRHSZero ? LHS :
3689       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3690     SDValue AC =
3691       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3692                                      Xor, S->getI32Imm(~0U, dl)), 0);
3693     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3694                                           Xor, AC.getValue(1)), 0);
3695   }
3696   case ISD::SETGE: {
3697     // {subc.reg, subc.CA} = (subcarry %a, %b)
3698     // (zext (setcc %a, %b, setge)) ->
3699     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3700     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3701     if (IsRHSZero)
3702       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3703     std::swap(LHS, RHS);
3704     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3705     IsRHSZero = RHSConst && RHSConst->isZero();
3706     [[fallthrough]];
3707   }
3708   case ISD::SETLE: {
3709     // {subc.reg, subc.CA} = (subcarry %b, %a)
3710     // (zext (setcc %a, %b, setge)) ->
3711     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3712     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3713     if (IsRHSZero)
3714       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3715     SDValue ShiftL =
3716       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3717                                      S->getI64Imm(1, dl),
3718                                      S->getI64Imm(63, dl)), 0);
3719     SDValue ShiftR =
3720       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3721                                      S->getI64Imm(63, dl)), 0);
3722     SDValue SubtractCarry =
3723       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3724                                      LHS, RHS), 1);
3725     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3726                                           ShiftR, ShiftL, SubtractCarry), 0);
3727   }
3728   case ISD::SETGT: {
3729     // {subc.reg, subc.CA} = (subcarry %b, %a)
3730     // (zext (setcc %a, %b, setgt)) ->
3731     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3732     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3733     if (IsRHSNegOne)
3734       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3735     if (IsRHSZero) {
3736       SDValue Addi =
3737         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3738                                        S->getI64Imm(~0ULL, dl)), 0);
3739       SDValue Nor =
3740         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3741       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3742                                             S->getI64Imm(1, dl),
3743                                             S->getI64Imm(63, dl)), 0);
3744     }
3745     std::swap(LHS, RHS);
3746     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3747     IsRHSZero = RHSConst && RHSConst->isZero();
3748     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3749     [[fallthrough]];
3750   }
3751   case ISD::SETLT: {
3752     // {subc.reg, subc.CA} = (subcarry %a, %b)
3753     // (zext (setcc %a, %b, setlt)) ->
3754     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3755     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3756     if (IsRHSOne)
3757       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3758     if (IsRHSZero)
3759       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3760                                             S->getI64Imm(1, dl),
3761                                             S->getI64Imm(63, dl)), 0);
3762     SDValue SRADINode =
3763       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3764                                      LHS, S->getI64Imm(63, dl)), 0);
3765     SDValue SRDINode =
3766       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3767                                      RHS, S->getI64Imm(1, dl),
3768                                      S->getI64Imm(63, dl)), 0);
3769     SDValue SUBFC8Carry =
3770       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3771                                      RHS, LHS), 1);
3772     SDValue ADDE8Node =
3773       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3774                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3775     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3776                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3777   }
3778   case ISD::SETUGE:
3779     // {subc.reg, subc.CA} = (subcarry %a, %b)
3780     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3781     std::swap(LHS, RHS);
3782     [[fallthrough]];
3783   case ISD::SETULE: {
3784     // {subc.reg, subc.CA} = (subcarry %b, %a)
3785     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3786     SDValue SUBFC8Carry =
3787       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3788                                      LHS, RHS), 1);
3789     SDValue SUBFE8Node =
3790       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3791                                      LHS, LHS, SUBFC8Carry), 0);
3792     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3793                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3794   }
3795   case ISD::SETUGT:
3796     // {subc.reg, subc.CA} = (subcarry %b, %a)
3797     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3798     std::swap(LHS, RHS);
3799     [[fallthrough]];
3800   case ISD::SETULT: {
3801     // {subc.reg, subc.CA} = (subcarry %a, %b)
3802     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3803     SDValue SubtractCarry =
3804       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3805                                      RHS, LHS), 1);
3806     SDValue ExtSub =
3807       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3808                                      LHS, LHS, SubtractCarry), 0);
3809     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3810                                           ExtSub), 0);
3811   }
3812   }
3813 }
3814 
3815 /// Produces a sign-extended result of comparing two 64-bit values according to
3816 /// the passed condition code.
3817 SDValue
3818 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3819                                               ISD::CondCode CC,
3820                                               int64_t RHSValue, SDLoc dl) {
3821   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3822       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3823     return SDValue();
3824   bool IsRHSZero = RHSValue == 0;
3825   bool IsRHSOne = RHSValue == 1;
3826   bool IsRHSNegOne = RHSValue == -1LL;
3827   switch (CC) {
3828   default: return SDValue();
3829   case ISD::SETEQ: {
3830     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3831     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3832     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3833     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3834     SDValue AddInput = IsRHSZero ? LHS :
3835       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3836     SDValue Addic =
3837       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3838                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3839     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3840                                           Addic, Addic.getValue(1)), 0);
3841   }
3842   case ISD::SETNE: {
3843     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3844     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3845     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3846     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3847     SDValue Xor = IsRHSZero ? LHS :
3848       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3849     SDValue SC =
3850       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3851                                      Xor, S->getI32Imm(0, dl)), 0);
3852     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3853                                           SC, SC.getValue(1)), 0);
3854   }
3855   case ISD::SETGE: {
3856     // {subc.reg, subc.CA} = (subcarry %a, %b)
3857     // (zext (setcc %a, %b, setge)) ->
3858     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3859     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3860     if (IsRHSZero)
3861       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3862     std::swap(LHS, RHS);
3863     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3864     IsRHSZero = RHSConst && RHSConst->isZero();
3865     [[fallthrough]];
3866   }
3867   case ISD::SETLE: {
3868     // {subc.reg, subc.CA} = (subcarry %b, %a)
3869     // (zext (setcc %a, %b, setge)) ->
3870     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3871     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3872     if (IsRHSZero)
3873       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3874     SDValue ShiftR =
3875       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3876                                      S->getI64Imm(63, dl)), 0);
3877     SDValue ShiftL =
3878       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3879                                      S->getI64Imm(1, dl),
3880                                      S->getI64Imm(63, dl)), 0);
3881     SDValue SubtractCarry =
3882       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3883                                      LHS, RHS), 1);
3884     SDValue Adde =
3885       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3886                                      ShiftR, ShiftL, SubtractCarry), 0);
3887     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3888   }
3889   case ISD::SETGT: {
3890     // {subc.reg, subc.CA} = (subcarry %b, %a)
3891     // (zext (setcc %a, %b, setgt)) ->
3892     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3893     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3894     if (IsRHSNegOne)
3895       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3896     if (IsRHSZero) {
3897       SDValue Add =
3898         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3899                                        S->getI64Imm(-1, dl)), 0);
3900       SDValue Nor =
3901         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3902       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3903                                             S->getI64Imm(63, dl)), 0);
3904     }
3905     std::swap(LHS, RHS);
3906     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3907     IsRHSZero = RHSConst && RHSConst->isZero();
3908     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3909     [[fallthrough]];
3910   }
3911   case ISD::SETLT: {
3912     // {subc.reg, subc.CA} = (subcarry %a, %b)
3913     // (zext (setcc %a, %b, setlt)) ->
3914     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3915     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3916     if (IsRHSOne)
3917       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3918     if (IsRHSZero) {
3919       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3920                                             S->getI64Imm(63, dl)), 0);
3921     }
3922     SDValue SRADINode =
3923       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3924                                      LHS, S->getI64Imm(63, dl)), 0);
3925     SDValue SRDINode =
3926       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3927                                      RHS, S->getI64Imm(1, dl),
3928                                      S->getI64Imm(63, dl)), 0);
3929     SDValue SUBFC8Carry =
3930       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3931                                      RHS, LHS), 1);
3932     SDValue ADDE8Node =
3933       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3934                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3935     SDValue XORI8Node =
3936       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3937                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3938     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3939                                           XORI8Node), 0);
3940   }
3941   case ISD::SETUGE:
3942     // {subc.reg, subc.CA} = (subcarry %a, %b)
3943     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3944     std::swap(LHS, RHS);
3945     [[fallthrough]];
3946   case ISD::SETULE: {
3947     // {subc.reg, subc.CA} = (subcarry %b, %a)
3948     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3949     SDValue SubtractCarry =
3950       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3951                                      LHS, RHS), 1);
3952     SDValue ExtSub =
3953       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3954                                      LHS, SubtractCarry), 0);
3955     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3956                                           ExtSub, ExtSub), 0);
3957   }
3958   case ISD::SETUGT:
3959     // {subc.reg, subc.CA} = (subcarry %b, %a)
3960     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3961     std::swap(LHS, RHS);
3962     [[fallthrough]];
3963   case ISD::SETULT: {
3964     // {subc.reg, subc.CA} = (subcarry %a, %b)
3965     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3966     SDValue SubCarry =
3967       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3968                                      RHS, LHS), 1);
3969     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3970                                      LHS, LHS, SubCarry), 0);
3971   }
3972   }
3973 }
3974 
3975 /// Do all uses of this SDValue need the result in a GPR?
3976 /// This is meant to be used on values that have type i1 since
3977 /// it is somewhat meaningless to ask if values of other types
3978 /// should be kept in GPR's.
3979 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3980   assert(Compare.getOpcode() == ISD::SETCC &&
3981          "An ISD::SETCC node required here.");
3982 
3983   // For values that have a single use, the caller should obviously already have
3984   // checked if that use is an extending use. We check the other uses here.
3985   if (Compare.hasOneUse())
3986     return true;
3987   // We want the value in a GPR if it is being extended, used for a select, or
3988   // used in logical operations.
3989   for (auto *CompareUse : Compare.getNode()->uses())
3990     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3991         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3992         CompareUse->getOpcode() != ISD::SELECT &&
3993         !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) {
3994       OmittedForNonExtendUses++;
3995       return false;
3996     }
3997   return true;
3998 }
3999 
4000 /// Returns an equivalent of a SETCC node but with the result the same width as
4001 /// the inputs. This can also be used for SELECT_CC if either the true or false
4002 /// values is a power of two while the other is zero.
4003 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
4004                                                 SetccInGPROpts ConvOpts) {
4005   assert((Compare.getOpcode() == ISD::SETCC ||
4006           Compare.getOpcode() == ISD::SELECT_CC) &&
4007          "An ISD::SETCC node required here.");
4008 
4009   // Don't convert this comparison to a GPR sequence because there are uses
4010   // of the i1 result (i.e. uses that require the result in the CR).
4011   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
4012     return SDValue();
4013 
4014   SDValue LHS = Compare.getOperand(0);
4015   SDValue RHS = Compare.getOperand(1);
4016 
4017   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
4018   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
4019   ISD::CondCode CC =
4020     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
4021   EVT InputVT = LHS.getValueType();
4022   if (InputVT != MVT::i32 && InputVT != MVT::i64)
4023     return SDValue();
4024 
4025   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
4026       ConvOpts == SetccInGPROpts::SExtInvert)
4027     CC = ISD::getSetCCInverse(CC, InputVT);
4028 
4029   bool Inputs32Bit = InputVT == MVT::i32;
4030 
4031   SDLoc dl(Compare);
4032   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
4033   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
4034   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
4035     ConvOpts == SetccInGPROpts::SExtInvert;
4036 
4037   if (IsSext && Inputs32Bit)
4038     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4039   else if (Inputs32Bit)
4040     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4041   else if (IsSext)
4042     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4043   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4044 }
4045 
4046 } // end anonymous namespace
4047 
4048 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
4049   if (N->getValueType(0) != MVT::i32 &&
4050       N->getValueType(0) != MVT::i64)
4051     return false;
4052 
4053   // This optimization will emit code that assumes 64-bit registers
4054   // so we don't want to run it in 32-bit mode. Also don't run it
4055   // on functions that are not to be optimized.
4056   if (TM.getOptLevel() == CodeGenOptLevel::None || !TM.isPPC64())
4057     return false;
4058 
4059   // For POWER10, it is more profitable to use the set boolean extension
4060   // instructions rather than the integer compare elimination codegen.
4061   // Users can override this via the command line option, `--ppc-gpr-icmps`.
4062   if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
4063     return false;
4064 
4065   switch (N->getOpcode()) {
4066   default: break;
4067   case ISD::ZERO_EXTEND:
4068   case ISD::SIGN_EXTEND:
4069   case ISD::AND:
4070   case ISD::OR:
4071   case ISD::XOR: {
4072     IntegerCompareEliminator ICmpElim(CurDAG, this);
4073     if (SDNode *New = ICmpElim.Select(N)) {
4074       ReplaceNode(N, New);
4075       return true;
4076     }
4077   }
4078   }
4079   return false;
4080 }
4081 
4082 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
4083   if (N->getValueType(0) != MVT::i32 &&
4084       N->getValueType(0) != MVT::i64)
4085     return false;
4086 
4087   if (!UseBitPermRewriter)
4088     return false;
4089 
4090   switch (N->getOpcode()) {
4091   default: break;
4092   case ISD::SRL:
4093     // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that
4094     // uses the BRH instruction.
4095     if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 &&
4096         N->getOperand(0).getOpcode() == ISD::BSWAP) {
4097       auto &OpRight = N->getOperand(1);
4098       ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight);
4099       if (SRLConst && SRLConst->getSExtValue() == 16)
4100         return false;
4101     }
4102     [[fallthrough]];
4103   case ISD::ROTL:
4104   case ISD::SHL:
4105   case ISD::AND:
4106   case ISD::OR: {
4107     BitPermutationSelector BPS(CurDAG);
4108     if (SDNode *New = BPS.Select(N)) {
4109       ReplaceNode(N, New);
4110       return true;
4111     }
4112     return false;
4113   }
4114   }
4115 
4116   return false;
4117 }
4118 
4119 /// SelectCC - Select a comparison of the specified values with the specified
4120 /// condition code, returning the CR# of the expression.
4121 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4122                                   const SDLoc &dl, SDValue Chain) {
4123   // Always select the LHS.
4124   unsigned Opc;
4125 
4126   if (LHS.getValueType() == MVT::i32) {
4127     unsigned Imm;
4128     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4129       if (isInt32Immediate(RHS, Imm)) {
4130         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4131         if (isUInt<16>(Imm))
4132           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4133                                                 getI32Imm(Imm & 0xFFFF, dl)),
4134                          0);
4135         // If this is a 16-bit signed immediate, fold it.
4136         if (isInt<16>((int)Imm))
4137           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4138                                                 getI32Imm(Imm & 0xFFFF, dl)),
4139                          0);
4140 
4141         // For non-equality comparisons, the default code would materialize the
4142         // constant, then compare against it, like this:
4143         //   lis r2, 4660
4144         //   ori r2, r2, 22136
4145         //   cmpw cr0, r3, r2
4146         // Since we are just comparing for equality, we can emit this instead:
4147         //   xoris r0,r3,0x1234
4148         //   cmplwi cr0,r0,0x5678
4149         //   beq cr0,L6
4150         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
4151                                            getI32Imm(Imm >> 16, dl)), 0);
4152         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
4153                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4154       }
4155       Opc = PPC::CMPLW;
4156     } else if (ISD::isUnsignedIntSetCC(CC)) {
4157       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
4158         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4159                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4160       Opc = PPC::CMPLW;
4161     } else {
4162       int16_t SImm;
4163       if (isIntS16Immediate(RHS, SImm))
4164         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4165                                               getI32Imm((int)SImm & 0xFFFF,
4166                                                         dl)),
4167                          0);
4168       Opc = PPC::CMPW;
4169     }
4170   } else if (LHS.getValueType() == MVT::i64) {
4171     uint64_t Imm;
4172     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4173       if (isInt64Immediate(RHS.getNode(), Imm)) {
4174         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4175         if (isUInt<16>(Imm))
4176           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4177                                                 getI32Imm(Imm & 0xFFFF, dl)),
4178                          0);
4179         // If this is a 16-bit signed immediate, fold it.
4180         if (isInt<16>(Imm))
4181           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4182                                                 getI32Imm(Imm & 0xFFFF, dl)),
4183                          0);
4184 
4185         // For non-equality comparisons, the default code would materialize the
4186         // constant, then compare against it, like this:
4187         //   lis r2, 4660
4188         //   ori r2, r2, 22136
4189         //   cmpd cr0, r3, r2
4190         // Since we are just comparing for equality, we can emit this instead:
4191         //   xoris r0,r3,0x1234
4192         //   cmpldi cr0,r0,0x5678
4193         //   beq cr0,L6
4194         if (isUInt<32>(Imm)) {
4195           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4196                                              getI64Imm(Imm >> 16, dl)), 0);
4197           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4198                                                 getI64Imm(Imm & 0xFFFF, dl)),
4199                          0);
4200         }
4201       }
4202       Opc = PPC::CMPLD;
4203     } else if (ISD::isUnsignedIntSetCC(CC)) {
4204       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4205         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4206                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
4207       Opc = PPC::CMPLD;
4208     } else {
4209       int16_t SImm;
4210       if (isIntS16Immediate(RHS, SImm))
4211         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4212                                               getI64Imm(SImm & 0xFFFF, dl)),
4213                          0);
4214       Opc = PPC::CMPD;
4215     }
4216   } else if (LHS.getValueType() == MVT::f32) {
4217     if (Subtarget->hasSPE()) {
4218       switch (CC) {
4219         default:
4220         case ISD::SETEQ:
4221         case ISD::SETNE:
4222           Opc = PPC::EFSCMPEQ;
4223           break;
4224         case ISD::SETLT:
4225         case ISD::SETGE:
4226         case ISD::SETOLT:
4227         case ISD::SETOGE:
4228         case ISD::SETULT:
4229         case ISD::SETUGE:
4230           Opc = PPC::EFSCMPLT;
4231           break;
4232         case ISD::SETGT:
4233         case ISD::SETLE:
4234         case ISD::SETOGT:
4235         case ISD::SETOLE:
4236         case ISD::SETUGT:
4237         case ISD::SETULE:
4238           Opc = PPC::EFSCMPGT;
4239           break;
4240       }
4241     } else
4242       Opc = PPC::FCMPUS;
4243   } else if (LHS.getValueType() == MVT::f64) {
4244     if (Subtarget->hasSPE()) {
4245       switch (CC) {
4246         default:
4247         case ISD::SETEQ:
4248         case ISD::SETNE:
4249           Opc = PPC::EFDCMPEQ;
4250           break;
4251         case ISD::SETLT:
4252         case ISD::SETGE:
4253         case ISD::SETOLT:
4254         case ISD::SETOGE:
4255         case ISD::SETULT:
4256         case ISD::SETUGE:
4257           Opc = PPC::EFDCMPLT;
4258           break;
4259         case ISD::SETGT:
4260         case ISD::SETLE:
4261         case ISD::SETOGT:
4262         case ISD::SETOLE:
4263         case ISD::SETUGT:
4264         case ISD::SETULE:
4265           Opc = PPC::EFDCMPGT;
4266           break;
4267       }
4268     } else
4269       Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4270   } else {
4271     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4272     assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4273     Opc = PPC::XSCMPUQP;
4274   }
4275   if (Chain)
4276     return SDValue(
4277         CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4278         0);
4279   else
4280     return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4281 }
4282 
4283 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4284                                            const PPCSubtarget *Subtarget) {
4285   // For SPE instructions, the result is in GT bit of the CR
4286   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4287 
4288   switch (CC) {
4289   case ISD::SETUEQ:
4290   case ISD::SETONE:
4291   case ISD::SETOLE:
4292   case ISD::SETOGE:
4293     llvm_unreachable("Should be lowered by legalize!");
4294   default: llvm_unreachable("Unknown condition!");
4295   case ISD::SETOEQ:
4296   case ISD::SETEQ:
4297     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4298   case ISD::SETUNE:
4299   case ISD::SETNE:
4300     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4301   case ISD::SETOLT:
4302   case ISD::SETLT:
4303     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4304   case ISD::SETULE:
4305   case ISD::SETLE:
4306     return PPC::PRED_LE;
4307   case ISD::SETOGT:
4308   case ISD::SETGT:
4309     return PPC::PRED_GT;
4310   case ISD::SETUGE:
4311   case ISD::SETGE:
4312     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4313   case ISD::SETO:   return PPC::PRED_NU;
4314   case ISD::SETUO:  return PPC::PRED_UN;
4315     // These two are invalid for floating point.  Assume we have int.
4316   case ISD::SETULT: return PPC::PRED_LT;
4317   case ISD::SETUGT: return PPC::PRED_GT;
4318   }
4319 }
4320 
4321 /// getCRIdxForSetCC - Return the index of the condition register field
4322 /// associated with the SetCC condition, and whether or not the field is
4323 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
4324 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4325   Invert = false;
4326   switch (CC) {
4327   default: llvm_unreachable("Unknown condition!");
4328   case ISD::SETOLT:
4329   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
4330   case ISD::SETOGT:
4331   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
4332   case ISD::SETOEQ:
4333   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
4334   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
4335   case ISD::SETUGE:
4336   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
4337   case ISD::SETULE:
4338   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
4339   case ISD::SETUNE:
4340   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
4341   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
4342   case ISD::SETUEQ:
4343   case ISD::SETOGE:
4344   case ISD::SETOLE:
4345   case ISD::SETONE:
4346     llvm_unreachable("Invalid branch code: should be expanded by legalize");
4347   // These are invalid for floating point.  Assume integer.
4348   case ISD::SETULT: return 0;
4349   case ISD::SETUGT: return 1;
4350   }
4351 }
4352 
4353 // getVCmpInst: return the vector compare instruction for the specified
4354 // vector type and condition code. Since this is for altivec specific code,
4355 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4356 // and v4f32).
4357 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4358                                 bool HasVSX, bool &Swap, bool &Negate) {
4359   Swap = false;
4360   Negate = false;
4361 
4362   if (VecVT.isFloatingPoint()) {
4363     /* Handle some cases by swapping input operands.  */
4364     switch (CC) {
4365       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4366       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4367       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4368       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4369       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4370       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4371       default: break;
4372     }
4373     /* Handle some cases by negating the result.  */
4374     switch (CC) {
4375       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4376       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4377       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4378       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4379       default: break;
4380     }
4381     /* We have instructions implementing the remaining cases.  */
4382     switch (CC) {
4383       case ISD::SETEQ:
4384       case ISD::SETOEQ:
4385         if (VecVT == MVT::v4f32)
4386           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4387         else if (VecVT == MVT::v2f64)
4388           return PPC::XVCMPEQDP;
4389         break;
4390       case ISD::SETGT:
4391       case ISD::SETOGT:
4392         if (VecVT == MVT::v4f32)
4393           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4394         else if (VecVT == MVT::v2f64)
4395           return PPC::XVCMPGTDP;
4396         break;
4397       case ISD::SETGE:
4398       case ISD::SETOGE:
4399         if (VecVT == MVT::v4f32)
4400           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4401         else if (VecVT == MVT::v2f64)
4402           return PPC::XVCMPGEDP;
4403         break;
4404       default:
4405         break;
4406     }
4407     llvm_unreachable("Invalid floating-point vector compare condition");
4408   } else {
4409     /* Handle some cases by swapping input operands.  */
4410     switch (CC) {
4411       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4412       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4413       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4414       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4415       default: break;
4416     }
4417     /* Handle some cases by negating the result.  */
4418     switch (CC) {
4419       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4420       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4421       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4422       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4423       default: break;
4424     }
4425     /* We have instructions implementing the remaining cases.  */
4426     switch (CC) {
4427       case ISD::SETEQ:
4428       case ISD::SETUEQ:
4429         if (VecVT == MVT::v16i8)
4430           return PPC::VCMPEQUB;
4431         else if (VecVT == MVT::v8i16)
4432           return PPC::VCMPEQUH;
4433         else if (VecVT == MVT::v4i32)
4434           return PPC::VCMPEQUW;
4435         else if (VecVT == MVT::v2i64)
4436           return PPC::VCMPEQUD;
4437         else if (VecVT == MVT::v1i128)
4438           return PPC::VCMPEQUQ;
4439         break;
4440       case ISD::SETGT:
4441         if (VecVT == MVT::v16i8)
4442           return PPC::VCMPGTSB;
4443         else if (VecVT == MVT::v8i16)
4444           return PPC::VCMPGTSH;
4445         else if (VecVT == MVT::v4i32)
4446           return PPC::VCMPGTSW;
4447         else if (VecVT == MVT::v2i64)
4448           return PPC::VCMPGTSD;
4449         else if (VecVT == MVT::v1i128)
4450            return PPC::VCMPGTSQ;
4451         break;
4452       case ISD::SETUGT:
4453         if (VecVT == MVT::v16i8)
4454           return PPC::VCMPGTUB;
4455         else if (VecVT == MVT::v8i16)
4456           return PPC::VCMPGTUH;
4457         else if (VecVT == MVT::v4i32)
4458           return PPC::VCMPGTUW;
4459         else if (VecVT == MVT::v2i64)
4460           return PPC::VCMPGTUD;
4461         else if (VecVT == MVT::v1i128)
4462            return PPC::VCMPGTUQ;
4463         break;
4464       default:
4465         break;
4466     }
4467     llvm_unreachable("Invalid integer vector compare condition");
4468   }
4469 }
4470 
4471 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4472   SDLoc dl(N);
4473   unsigned Imm;
4474   bool IsStrict = N->isStrictFPOpcode();
4475   ISD::CondCode CC =
4476       cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4477   EVT PtrVT =
4478       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4479   bool isPPC64 = (PtrVT == MVT::i64);
4480   SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4481 
4482   SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4483   SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4484 
4485   if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4486     // We can codegen setcc op, imm very efficiently compared to a brcond.
4487     // Check for those cases here.
4488     // setcc op, 0
4489     if (Imm == 0) {
4490       SDValue Op = LHS;
4491       switch (CC) {
4492       default: break;
4493       case ISD::SETEQ: {
4494         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4495         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4496                           getI32Imm(31, dl) };
4497         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4498         return true;
4499       }
4500       case ISD::SETNE: {
4501         if (isPPC64) break;
4502         SDValue AD =
4503           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4504                                          Op, getI32Imm(~0U, dl)), 0);
4505         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4506         return true;
4507       }
4508       case ISD::SETLT: {
4509         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4510                           getI32Imm(31, dl) };
4511         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4512         return true;
4513       }
4514       case ISD::SETGT: {
4515         SDValue T =
4516           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4517         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4518         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4519                           getI32Imm(31, dl) };
4520         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4521         return true;
4522       }
4523       }
4524     } else if (Imm == ~0U) {        // setcc op, -1
4525       SDValue Op = LHS;
4526       switch (CC) {
4527       default: break;
4528       case ISD::SETEQ:
4529         if (isPPC64) break;
4530         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4531                                             Op, getI32Imm(1, dl)), 0);
4532         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4533                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4534                                                             MVT::i32,
4535                                                             getI32Imm(0, dl)),
4536                                      0), Op.getValue(1));
4537         return true;
4538       case ISD::SETNE: {
4539         if (isPPC64) break;
4540         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4541         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4542                                             Op, getI32Imm(~0U, dl));
4543         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4544                              SDValue(AD, 1));
4545         return true;
4546       }
4547       case ISD::SETLT: {
4548         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4549                                                     getI32Imm(1, dl)), 0);
4550         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4551                                                     Op), 0);
4552         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4553                           getI32Imm(31, dl) };
4554         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4555         return true;
4556       }
4557       case ISD::SETGT: {
4558         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4559                           getI32Imm(31, dl) };
4560         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4561         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4562         return true;
4563       }
4564       }
4565     }
4566   }
4567 
4568   // Altivec Vector compare instructions do not set any CR register by default and
4569   // vector compare operations return the same type as the operands.
4570   if (!IsStrict && LHS.getValueType().isVector()) {
4571     if (Subtarget->hasSPE())
4572       return false;
4573 
4574     EVT VecVT = LHS.getValueType();
4575     bool Swap, Negate;
4576     unsigned int VCmpInst =
4577         getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4578     if (Swap)
4579       std::swap(LHS, RHS);
4580 
4581     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4582     if (Negate) {
4583       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4584       CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4585                            ResVT, VCmp, VCmp);
4586       return true;
4587     }
4588 
4589     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4590     return true;
4591   }
4592 
4593   if (Subtarget->useCRBits())
4594     return false;
4595 
4596   bool Inv;
4597   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4598   SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4599   if (IsStrict)
4600     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4601   SDValue IntCR;
4602 
4603   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4604   // The correct compare instruction is already set by SelectCC()
4605   if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4606     Idx = 1;
4607   }
4608 
4609   // Force the ccreg into CR7.
4610   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4611 
4612   SDValue InGlue;  // Null incoming flag value.
4613   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4614                                InGlue).getValue(1);
4615 
4616   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4617                                          CCReg), 0);
4618 
4619   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4620                       getI32Imm(31, dl), getI32Imm(31, dl) };
4621   if (!Inv) {
4622     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4623     return true;
4624   }
4625 
4626   // Get the specified bit.
4627   SDValue Tmp =
4628     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4629   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4630   return true;
4631 }
4632 
4633 /// Does this node represent a load/store node whose address can be represented
4634 /// with a register plus an immediate that's a multiple of \p Val:
4635 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4636   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4637   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4638   MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4639   SDValue AddrOp;
4640   if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4641     AddrOp = N->getOperand(1);
4642   else if (STN)
4643     AddrOp = STN->getOperand(2);
4644 
4645   // If the address points a frame object or a frame object with an offset,
4646   // we need to check the object alignment.
4647   short Imm = 0;
4648   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4649           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4650                                            AddrOp)) {
4651     // If op0 is a frame index that is under aligned, we can't do it either,
4652     // because it is translated to r31 or r1 + slot + offset. We won't know the
4653     // slot number until the stack frame is finalized.
4654     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4655     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4656     if ((SlotAlign % Val) != 0)
4657       return false;
4658 
4659     // If we have an offset, we need further check on the offset.
4660     if (AddrOp.getOpcode() != ISD::ADD)
4661       return true;
4662   }
4663 
4664   if (AddrOp.getOpcode() == ISD::ADD)
4665     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4666 
4667   // If the address comes from the outside, the offset will be zero.
4668   return AddrOp.getOpcode() == ISD::CopyFromReg;
4669 }
4670 
4671 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4672   // Transfer memoperands.
4673   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4674   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4675 }
4676 
4677 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4678                          bool &NeedSwapOps, bool &IsUnCmp) {
4679 
4680   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4681 
4682   SDValue LHS = N->getOperand(0);
4683   SDValue RHS = N->getOperand(1);
4684   SDValue TrueRes = N->getOperand(2);
4685   SDValue FalseRes = N->getOperand(3);
4686   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4687   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4688                      N->getSimpleValueType(0) != MVT::i32))
4689     return false;
4690 
4691   // We are looking for any of:
4692   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4693   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4694   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4695   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4696   int64_t TrueResVal = TrueConst->getSExtValue();
4697   if ((TrueResVal < -1 || TrueResVal > 1) ||
4698       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4699       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4700       (TrueResVal == 0 &&
4701        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4702     return false;
4703 
4704   SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4705                            ? FalseRes
4706                            : FalseRes.getOperand(0);
4707   bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4708   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4709       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4710     return false;
4711 
4712   // Without this setb optimization, the outer SELECT_CC will be manually
4713   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4714   // transforms pseudo instruction to isel instruction. When there are more than
4715   // one use for result like zext/sext, with current optimization we only see
4716   // isel is replaced by setb but can't see any significant gain. Since
4717   // setb has longer latency than original isel, we should avoid this. Another
4718   // point is that setb requires comparison always kept, it can break the
4719   // opportunity to get the comparison away if we have in future.
4720   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4721     return false;
4722 
4723   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4724   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4725   ISD::CondCode InnerCC =
4726       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4727   // If the inner comparison is a select_cc, make sure the true/false values are
4728   // 1/-1 and canonicalize it if needed.
4729   if (InnerIsSel) {
4730     ConstantSDNode *SelCCTrueConst =
4731         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4732     ConstantSDNode *SelCCFalseConst =
4733         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4734     if (!SelCCTrueConst || !SelCCFalseConst)
4735       return false;
4736     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4737     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4738     // The values must be -1/1 (requiring a swap) or 1/-1.
4739     if (SelCCTVal == -1 && SelCCFVal == 1) {
4740       std::swap(InnerLHS, InnerRHS);
4741     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4742       return false;
4743   }
4744 
4745   // Canonicalize unsigned case
4746   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4747     IsUnCmp = true;
4748     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4749   }
4750 
4751   bool InnerSwapped = false;
4752   if (LHS == InnerRHS && RHS == InnerLHS)
4753     InnerSwapped = true;
4754   else if (LHS != InnerLHS || RHS != InnerRHS)
4755     return false;
4756 
4757   switch (CC) {
4758   // (select_cc lhs, rhs,  0, \
4759   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4760   case ISD::SETEQ:
4761     if (!InnerIsSel)
4762       return false;
4763     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4764       return false;
4765     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4766     break;
4767 
4768   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4769   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4770   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4771   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4772   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4773   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4774   case ISD::SETULT:
4775     if (!IsUnCmp && InnerCC != ISD::SETNE)
4776       return false;
4777     IsUnCmp = true;
4778     [[fallthrough]];
4779   case ISD::SETLT:
4780     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4781         (InnerCC == ISD::SETLT && InnerSwapped))
4782       NeedSwapOps = (TrueResVal == 1);
4783     else
4784       return false;
4785     break;
4786 
4787   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4788   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4789   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4790   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4791   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4792   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4793   case ISD::SETUGT:
4794     if (!IsUnCmp && InnerCC != ISD::SETNE)
4795       return false;
4796     IsUnCmp = true;
4797     [[fallthrough]];
4798   case ISD::SETGT:
4799     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4800         (InnerCC == ISD::SETGT && InnerSwapped))
4801       NeedSwapOps = (TrueResVal == -1);
4802     else
4803       return false;
4804     break;
4805 
4806   default:
4807     return false;
4808   }
4809 
4810   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4811   LLVM_DEBUG(N->dump());
4812 
4813   return true;
4814 }
4815 
4816 // Return true if it's a software square-root/divide operand.
4817 static bool isSWTestOp(SDValue N) {
4818   if (N.getOpcode() == PPCISD::FTSQRT)
4819     return true;
4820   if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4821       N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4822     return false;
4823   switch (N.getConstantOperandVal(0)) {
4824   case Intrinsic::ppc_vsx_xvtdivdp:
4825   case Intrinsic::ppc_vsx_xvtdivsp:
4826   case Intrinsic::ppc_vsx_xvtsqrtdp:
4827   case Intrinsic::ppc_vsx_xvtsqrtsp:
4828     return true;
4829   }
4830   return false;
4831 }
4832 
4833 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4834   assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4835   // We are looking for following patterns, where `truncate to i1` actually has
4836   // the same semantic with `and 1`.
4837   // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4838   // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4839   // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4840   // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4841   // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4842   // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4843   // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4844   // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4845   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4846   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4847     return false;
4848 
4849   SDValue CmpRHS = N->getOperand(3);
4850   if (!isNullConstant(CmpRHS))
4851     return false;
4852 
4853   SDValue CmpLHS = N->getOperand(2);
4854   if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4855     return false;
4856 
4857   unsigned PCC = 0;
4858   bool IsCCNE = CC == ISD::SETNE;
4859   if (CmpLHS.getOpcode() == ISD::AND &&
4860       isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4861     switch (CmpLHS.getConstantOperandVal(1)) {
4862     case 1:
4863       PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4864       break;
4865     case 2:
4866       PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4867       break;
4868     case 4:
4869       PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4870       break;
4871     case 8:
4872       PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4873       break;
4874     default:
4875       return false;
4876     }
4877   else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4878            CmpLHS.getValueType() == MVT::i1)
4879     PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4880 
4881   if (PCC) {
4882     SDLoc dl(N);
4883     SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4884                      N->getOperand(0)};
4885     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4886     return true;
4887   }
4888   return false;
4889 }
4890 
4891 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) {
4892   // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
4893   // value, for example when crbits is disabled. If so, select the
4894   // loop_decrement intrinsics now.
4895   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4896   SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4897 
4898   if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) ||
4899       isNullConstant(LHS.getOperand(1)))
4900     return false;
4901 
4902   if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4903       LHS.getOperand(0).getConstantOperandVal(1) != Intrinsic::loop_decrement)
4904     return false;
4905 
4906   if (!isa<ConstantSDNode>(RHS))
4907     return false;
4908 
4909   assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
4910          "Counter decrement comparison is not EQ or NE");
4911 
4912   SDValue OldDecrement = LHS.getOperand(0);
4913   assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!");
4914 
4915   SDLoc DecrementLoc(OldDecrement);
4916   SDValue ChainInput = OldDecrement.getOperand(0);
4917   SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc)
4918                                                  : getI32Imm(1, DecrementLoc)};
4919   unsigned DecrementOpcode =
4920       Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop;
4921   SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc,
4922                                                 MVT::i1, DecrementOps);
4923 
4924   unsigned Val = RHS->getAsZExtVal();
4925   bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val);
4926   unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn;
4927 
4928   ReplaceUses(LHS.getValue(0), LHS.getOperand(1));
4929   CurDAG->RemoveDeadNode(LHS.getNode());
4930 
4931   // Mark the old loop_decrement intrinsic as dead.
4932   ReplaceUses(OldDecrement.getValue(1), ChainInput);
4933   CurDAG->RemoveDeadNode(OldDecrement.getNode());
4934 
4935   SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
4936                                   ChainInput, N->getOperand(0));
4937 
4938   CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0),
4939                        N->getOperand(4), Chain);
4940   return true;
4941 }
4942 
4943 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4944   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4945   unsigned Imm;
4946   if (!isInt32Immediate(N->getOperand(1), Imm))
4947     return false;
4948 
4949   SDLoc dl(N);
4950   SDValue Val = N->getOperand(0);
4951   unsigned SH, MB, ME;
4952   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4953   // with a mask, emit rlwinm
4954   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4955     Val = Val.getOperand(0);
4956     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4957                      getI32Imm(ME, dl)};
4958     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4959     return true;
4960   }
4961 
4962   // If this is just a masked value where the input is not handled, and
4963   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4964   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4965     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4966                      getI32Imm(ME, dl)};
4967     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4968     return true;
4969   }
4970 
4971   // AND X, 0 -> 0, not "rlwinm 32".
4972   if (Imm == 0) {
4973     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4974     return true;
4975   }
4976 
4977   return false;
4978 }
4979 
4980 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4981   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4982   uint64_t Imm64;
4983   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4984     return false;
4985 
4986   unsigned MB, ME;
4987   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4988     //                MB  ME
4989     // +----------------------+
4990     // |xxxxxxxxxxx00011111000|
4991     // +----------------------+
4992     //  0         32         64
4993     // We can only do it if the MB is larger than 32 and MB <= ME
4994     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4995     // we didn't rotate it.
4996     SDLoc dl(N);
4997     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4998                      getI64Imm(ME - 32, dl)};
4999     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
5000     return true;
5001   }
5002 
5003   return false;
5004 }
5005 
5006 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
5007   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5008   uint64_t Imm64;
5009   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
5010     return false;
5011 
5012   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
5013   // it well with "andi.".
5014   if (isUInt<16>(Imm64))
5015     return false;
5016 
5017   SDLoc Loc(N);
5018   SDValue Val = N->getOperand(0);
5019 
5020   // Optimized with two rldicl's as follows:
5021   // Add missing bits on left to the mask and check that the mask is a
5022   // wrapped run of ones, i.e.
5023   // Change pattern |0001111100000011111111|
5024   //             to |1111111100000011111111|.
5025   unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64);
5026   if (NumOfLeadingZeros != 0)
5027     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
5028 
5029   unsigned MB, ME;
5030   if (!isRunOfOnes64(Imm64, MB, ME))
5031     return false;
5032 
5033   //         ME     MB                   MB-ME+63
5034   // +----------------------+     +----------------------+
5035   // |1111111100000011111111| ->  |0000001111111111111111|
5036   // +----------------------+     +----------------------+
5037   //  0                    63      0                    63
5038   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
5039   unsigned OnesOnLeft = ME + 1;
5040   unsigned ZerosInBetween = (MB - ME + 63) & 63;
5041   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
5042   // on the left the bits that are already zeros in the mask.
5043   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
5044                                        getI64Imm(OnesOnLeft, Loc),
5045                                        getI64Imm(ZerosInBetween, Loc)),
5046                 0);
5047   //        MB-ME+63                      ME     MB
5048   // +----------------------+     +----------------------+
5049   // |0000001111111111111111| ->  |0001111100000011111111|
5050   // +----------------------+     +----------------------+
5051   //  0                    63      0                    63
5052   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
5053   // left the number of ones we previously added.
5054   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
5055                    getI64Imm(NumOfLeadingZeros, Loc)};
5056   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5057   return true;
5058 }
5059 
5060 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
5061   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5062   unsigned Imm;
5063   if (!isInt32Immediate(N->getOperand(1), Imm))
5064     return false;
5065 
5066   SDValue Val = N->getOperand(0);
5067   unsigned Imm2;
5068   // ISD::OR doesn't get all the bitfield insertion fun.
5069   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
5070   // bitfield insert.
5071   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
5072     return false;
5073 
5074   // The idea here is to check whether this is equivalent to:
5075   //   (c1 & m) | (x & ~m)
5076   // where m is a run-of-ones mask. The logic here is that, for each bit in
5077   // c1 and c2:
5078   //  - if both are 1, then the output will be 1.
5079   //  - if both are 0, then the output will be 0.
5080   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
5081   //    come from x.
5082   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
5083   //    be 0.
5084   //  If that last condition is never the case, then we can form m from the
5085   //  bits that are the same between c1 and c2.
5086   unsigned MB, ME;
5087   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
5088     SDLoc dl(N);
5089     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
5090                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
5091     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
5092     return true;
5093   }
5094 
5095   return false;
5096 }
5097 
5098 bool PPCDAGToDAGISel::tryAsSingleRLDCL(SDNode *N) {
5099   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5100 
5101   uint64_t Imm64;
5102   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
5103     return false;
5104 
5105   SDValue Val = N->getOperand(0);
5106 
5107   if (Val.getOpcode() != ISD::ROTL)
5108     return false;
5109 
5110   // Looking to try to avoid a situation like this one:
5111   //   %2 = tail call i64 @llvm.fshl.i64(i64 %word, i64 %word, i64 23)
5112   //   %and1 = and i64 %2, 9223372036854775807
5113   // In this function we are looking to try to match RLDCL. However, the above
5114   // DAG would better match RLDICL instead which is not what we are looking
5115   // for here.
5116   SDValue RotateAmt = Val.getOperand(1);
5117   if (RotateAmt.getOpcode() == ISD::Constant)
5118     return false;
5119 
5120   unsigned MB = 64 - llvm::countr_one(Imm64);
5121   SDLoc dl(N);
5122   SDValue Ops[] = {Val.getOperand(0), RotateAmt, getI32Imm(MB, dl)};
5123   CurDAG->SelectNodeTo(N, PPC::RLDCL, MVT::i64, Ops);
5124   return true;
5125 }
5126 
5127 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
5128   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5129   uint64_t Imm64;
5130   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
5131     return false;
5132 
5133   // If this is a 64-bit zero-extension mask, emit rldicl.
5134   unsigned MB = 64 - llvm::countr_one(Imm64);
5135   unsigned SH = 0;
5136   unsigned Imm;
5137   SDValue Val = N->getOperand(0);
5138   SDLoc dl(N);
5139 
5140   if (Val.getOpcode() == ISD::ANY_EXTEND) {
5141     auto Op0 = Val.getOperand(0);
5142     if (Op0.getOpcode() == ISD::SRL &&
5143         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
5144 
5145       auto ResultType = Val.getNode()->getValueType(0);
5146       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
5147       SDValue IDVal(ImDef, 0);
5148 
5149       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
5150                                            IDVal, Op0.getOperand(0),
5151                                            getI32Imm(1, dl)),
5152                     0);
5153       SH = 64 - Imm;
5154     }
5155   }
5156 
5157   // If the operand is a logical right shift, we can fold it into this
5158   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
5159   // for n <= mb. The right shift is really a left rotate followed by a
5160   // mask, and this mask is a more-restrictive sub-mask of the mask implied
5161   // by the shift.
5162   if (Val.getOpcode() == ISD::SRL &&
5163       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
5164     assert(Imm < 64 && "Illegal shift amount");
5165     Val = Val.getOperand(0);
5166     SH = 64 - Imm;
5167   }
5168 
5169   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
5170   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5171   return true;
5172 }
5173 
5174 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
5175   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5176   uint64_t Imm64;
5177   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5178       !isMask_64(~Imm64))
5179     return false;
5180 
5181   // If this is a negated 64-bit zero-extension mask,
5182   // i.e. the immediate is a sequence of ones from most significant side
5183   // and all zero for reminder, we should use rldicr.
5184   unsigned MB = 63 - llvm::countr_one(~Imm64);
5185   unsigned SH = 0;
5186   SDLoc dl(N);
5187   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
5188   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5189   return true;
5190 }
5191 
5192 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
5193   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
5194   uint64_t Imm64;
5195   unsigned MB, ME;
5196   SDValue N0 = N->getOperand(0);
5197 
5198   // We won't get fewer instructions if the imm is 32-bit integer.
5199   // rldimi requires the imm to have consecutive ones with both sides zero.
5200   // Also, make sure the first Op has only one use, otherwise this may increase
5201   // register pressure since rldimi is destructive.
5202   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5203       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
5204     return false;
5205 
5206   unsigned SH = 63 - ME;
5207   SDLoc Dl(N);
5208   // Use select64Imm for making LI instr instead of directly putting Imm64
5209   SDValue Ops[] = {
5210       N->getOperand(0),
5211       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
5212       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
5213   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
5214   return true;
5215 }
5216 
5217 // Select - Convert the specified operand from a target-independent to a
5218 // target-specific node if it hasn't already been changed.
5219 void PPCDAGToDAGISel::Select(SDNode *N) {
5220   SDLoc dl(N);
5221   if (N->isMachineOpcode()) {
5222     N->setNodeId(-1);
5223     return;   // Already selected.
5224   }
5225 
5226   // In case any misguided DAG-level optimizations form an ADD with a
5227   // TargetConstant operand, crash here instead of miscompiling (by selecting
5228   // an r+r add instead of some kind of r+i add).
5229   if (N->getOpcode() == ISD::ADD &&
5230       N->getOperand(1).getOpcode() == ISD::TargetConstant)
5231     llvm_unreachable("Invalid ADD with TargetConstant operand");
5232 
5233   // Try matching complex bit permutations before doing anything else.
5234   if (tryBitPermutation(N))
5235     return;
5236 
5237   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
5238   if (tryIntCompareInGPR(N))
5239     return;
5240 
5241   switch (N->getOpcode()) {
5242   default: break;
5243 
5244   case ISD::Constant:
5245     if (N->getValueType(0) == MVT::i64) {
5246       ReplaceNode(N, selectI64Imm(CurDAG, N));
5247       return;
5248     }
5249     break;
5250 
5251   case ISD::INTRINSIC_VOID: {
5252     auto IntrinsicID = N->getConstantOperandVal(1);
5253     if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
5254         IntrinsicID != Intrinsic::ppc_trapd &&
5255         IntrinsicID != Intrinsic::ppc_trap)
5256         break;
5257     unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw ||
5258                        IntrinsicID == Intrinsic::ppc_trapd)
5259                           ? PPC::TDI
5260                           : PPC::TWI;
5261     SmallVector<SDValue, 4> OpsWithMD;
5262     unsigned MDIndex;
5263     if (IntrinsicID == Intrinsic::ppc_tdw ||
5264         IntrinsicID == Intrinsic::ppc_tw) {
5265       SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5266       int16_t SImmOperand2;
5267       int16_t SImmOperand3;
5268       int16_t SImmOperand4;
5269       bool isOperand2IntS16Immediate =
5270           isIntS16Immediate(N->getOperand(2), SImmOperand2);
5271       bool isOperand3IntS16Immediate =
5272           isIntS16Immediate(N->getOperand(3), SImmOperand3);
5273       // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5274       // reg or imm + imm. The imm + imm form will be optimized to either an
5275       // unconditional trap or a nop in a later pass.
5276       if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5277         Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5278       else if (isOperand3IntS16Immediate)
5279         // The 2nd and 3rd operands are reg + imm.
5280         Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5281       else {
5282         // The 2nd and 3rd operands are imm + reg.
5283         bool isOperand4IntS16Immediate =
5284             isIntS16Immediate(N->getOperand(4), SImmOperand4);
5285         (void)isOperand4IntS16Immediate;
5286         assert(isOperand4IntS16Immediate &&
5287                "The 4th operand is not an Immediate");
5288         // We need to flip the condition immediate TO.
5289         int16_t TO = int(SImmOperand4) & 0x1F;
5290         // We swap the first and second bit of TO if they are not same.
5291         if ((TO & 0x1) != ((TO & 0x2) >> 1))
5292           TO = (TO & 0x1) ? TO + 1 : TO - 1;
5293         // We swap the fourth and fifth bit of TO if they are not same.
5294         if ((TO & 0x8) != ((TO & 0x10) >> 1))
5295           TO = (TO & 0x8) ? TO + 8 : TO - 8;
5296         Ops[0] = getI32Imm(TO, dl);
5297         Ops[1] = N->getOperand(3);
5298         Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5299       }
5300       OpsWithMD = {Ops[0], Ops[1], Ops[2]};
5301       MDIndex = 5;
5302     } else {
5303       OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)};
5304       MDIndex = 3;
5305     }
5306 
5307     if (N->getNumOperands() > MDIndex) {
5308       SDValue MDV = N->getOperand(MDIndex);
5309       const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
5310       assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!");
5311       assert((isa<MDString>(MD->getOperand(0)) &&
5312               cast<MDString>(MD->getOperand(0))->getString() ==
5313                   "ppc-trap-reason") &&
5314              "Unsupported annotation data type!");
5315       for (unsigned i = 1; i < MD->getNumOperands(); i++) {
5316         assert(isa<MDString>(MD->getOperand(i)) &&
5317                "Invalid data type for annotation ppc-trap-reason!");
5318         OpsWithMD.push_back(
5319             getI32Imm(std::stoi(cast<MDString>(
5320                       MD->getOperand(i))->getString().str()), dl));
5321       }
5322     }
5323     OpsWithMD.push_back(N->getOperand(0)); // chain
5324     CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD);
5325     return;
5326   }
5327 
5328   case ISD::INTRINSIC_WO_CHAIN: {
5329     // We emit the PPC::FSELS instruction here because of type conflicts with
5330     // the comparison operand. The FSELS instruction is defined to use an 8-byte
5331     // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5332     // value for the comparison. When selecting through a .td file, a type
5333     // error is raised. Must check this first so we never break on the
5334     // !Subtarget->isISA3_1() check.
5335     auto IntID = N->getConstantOperandVal(0);
5336     if (IntID == Intrinsic::ppc_fsels) {
5337       SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5338       CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5339       return;
5340     }
5341 
5342     if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5343       auto Pred = N->getConstantOperandVal(1);
5344       unsigned Opcode =
5345           IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5346       unsigned SubReg = 0;
5347       unsigned ShiftVal = 0;
5348       bool Reverse = false;
5349       switch (Pred) {
5350       case 0:
5351         SubReg = PPC::sub_eq;
5352         ShiftVal = 1;
5353         break;
5354       case 1:
5355         SubReg = PPC::sub_eq;
5356         ShiftVal = 1;
5357         Reverse = true;
5358         break;
5359       case 2:
5360         SubReg = PPC::sub_lt;
5361         ShiftVal = 3;
5362         break;
5363       case 3:
5364         SubReg = PPC::sub_lt;
5365         ShiftVal = 3;
5366         Reverse = true;
5367         break;
5368       case 4:
5369         SubReg = PPC::sub_gt;
5370         ShiftVal = 2;
5371         break;
5372       case 5:
5373         SubReg = PPC::sub_gt;
5374         ShiftVal = 2;
5375         Reverse = true;
5376         break;
5377       case 6:
5378         SubReg = PPC::sub_un;
5379         break;
5380       case 7:
5381         SubReg = PPC::sub_un;
5382         Reverse = true;
5383         break;
5384       }
5385 
5386       EVT VTs[] = {MVT::v16i8, MVT::Glue};
5387       SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5388                        CurDAG->getTargetConstant(0, dl, MVT::i32)};
5389       SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5390       SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5391       // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5392       // MFOCRF and shift/negate the value.
5393       if (Subtarget->isISA3_1()) {
5394         SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5395         SDValue CRBit = SDValue(
5396             CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5397                                    CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5398             0);
5399         CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5400                              CRBit);
5401       } else {
5402         SDValue Move =
5403             SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5404                                            BCDOp.getValue(1)),
5405                     0);
5406         SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5407                          getI32Imm(31, dl), getI32Imm(31, dl)};
5408         if (!Reverse)
5409           CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5410         else {
5411           SDValue Shift = SDValue(
5412               CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5413           CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5414         }
5415       }
5416       return;
5417     }
5418 
5419     if (!Subtarget->isISA3_1())
5420       break;
5421     unsigned Opcode = 0;
5422     switch (IntID) {
5423     default:
5424       break;
5425     case Intrinsic::ppc_altivec_vstribr_p:
5426       Opcode = PPC::VSTRIBR_rec;
5427       break;
5428     case Intrinsic::ppc_altivec_vstribl_p:
5429       Opcode = PPC::VSTRIBL_rec;
5430       break;
5431     case Intrinsic::ppc_altivec_vstrihr_p:
5432       Opcode = PPC::VSTRIHR_rec;
5433       break;
5434     case Intrinsic::ppc_altivec_vstrihl_p:
5435       Opcode = PPC::VSTRIHL_rec;
5436       break;
5437     }
5438     if (!Opcode)
5439       break;
5440 
5441     // Generate the appropriate vector string isolate intrinsic to match.
5442     EVT VTs[] = {MVT::v16i8, MVT::Glue};
5443     SDValue VecStrOp =
5444         SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5445     // Vector string isolate instructions update the EQ bit of CR6.
5446     // Generate a SETBC instruction to extract the bit and place it in a GPR.
5447     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5448     SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5449     SDValue CRBit = SDValue(
5450         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5451                                CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5452         0);
5453     CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5454     return;
5455   }
5456 
5457   case ISD::SETCC:
5458   case ISD::STRICT_FSETCC:
5459   case ISD::STRICT_FSETCCS:
5460     if (trySETCC(N))
5461       return;
5462     break;
5463   // These nodes will be transformed into GETtlsADDR32 node, which
5464   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5465   case PPCISD::ADDI_TLSLD_L_ADDR:
5466   case PPCISD::ADDI_TLSGD_L_ADDR: {
5467     const Module *Mod = MF->getFunction().getParent();
5468     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5469         !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5470         Mod->getPICLevel() == PICLevel::SmallPIC)
5471       break;
5472     // Attach global base pointer on GETtlsADDR32 node in order to
5473     // generate secure plt code for TLS symbols.
5474     getGlobalBaseReg();
5475   } break;
5476   case PPCISD::CALL: {
5477     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5478         !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5479         !Subtarget->isTargetELF())
5480       break;
5481 
5482     SDValue Op = N->getOperand(1);
5483 
5484     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5485       if (GA->getTargetFlags() == PPCII::MO_PLT)
5486         getGlobalBaseReg();
5487     }
5488     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5489       if (ES->getTargetFlags() == PPCII::MO_PLT)
5490         getGlobalBaseReg();
5491     }
5492   }
5493     break;
5494 
5495   case PPCISD::GlobalBaseReg:
5496     ReplaceNode(N, getGlobalBaseReg());
5497     return;
5498 
5499   case ISD::FrameIndex:
5500     selectFrameIndex(N, N);
5501     return;
5502 
5503   case PPCISD::MFOCRF: {
5504     SDValue InGlue = N->getOperand(1);
5505     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5506                                           N->getOperand(0), InGlue));
5507     return;
5508   }
5509 
5510   case PPCISD::READ_TIME_BASE:
5511     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5512                                           MVT::Other, N->getOperand(0)));
5513     return;
5514 
5515   case PPCISD::SRA_ADDZE: {
5516     SDValue N0 = N->getOperand(0);
5517     SDValue ShiftAmt =
5518       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5519                                   getConstantIntValue(), dl,
5520                                   N->getValueType(0));
5521     if (N->getValueType(0) == MVT::i64) {
5522       SDNode *Op =
5523         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5524                                N0, ShiftAmt);
5525       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5526                            SDValue(Op, 1));
5527       return;
5528     } else {
5529       assert(N->getValueType(0) == MVT::i32 &&
5530              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5531       SDNode *Op =
5532         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5533                                N0, ShiftAmt);
5534       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5535                            SDValue(Op, 1));
5536       return;
5537     }
5538   }
5539 
5540   case ISD::STORE: {
5541     // Change TLS initial-exec (or TLS local-exec on AIX) D-form stores to
5542     // X-form stores.
5543     StoreSDNode *ST = cast<StoreSDNode>(N);
5544     if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()) &&
5545         ST->getAddressingMode() != ISD::PRE_INC)
5546       if (tryTLSXFormStore(ST))
5547         return;
5548     break;
5549   }
5550   case ISD::LOAD: {
5551     // Handle preincrement loads.
5552     LoadSDNode *LD = cast<LoadSDNode>(N);
5553     EVT LoadedVT = LD->getMemoryVT();
5554 
5555     // Normal loads are handled by code generated from the .td file.
5556     if (LD->getAddressingMode() != ISD::PRE_INC) {
5557       // Change TLS initial-exec (or TLS local-exec on AIX) D-form loads to
5558       // X-form loads.
5559       if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()))
5560         if (tryTLSXFormLoad(LD))
5561           return;
5562       break;
5563     }
5564 
5565     SDValue Offset = LD->getOffset();
5566     if (Offset.getOpcode() == ISD::TargetConstant ||
5567         Offset.getOpcode() == ISD::TargetGlobalAddress) {
5568 
5569       unsigned Opcode;
5570       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5571       if (LD->getValueType(0) != MVT::i64) {
5572         // Handle PPC32 integer and normal FP loads.
5573         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5574         switch (LoadedVT.getSimpleVT().SimpleTy) {
5575           default: llvm_unreachable("Invalid PPC load type!");
5576           case MVT::f64: Opcode = PPC::LFDU; break;
5577           case MVT::f32: Opcode = PPC::LFSU; break;
5578           case MVT::i32: Opcode = PPC::LWZU; break;
5579           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5580           case MVT::i1:
5581           case MVT::i8:  Opcode = PPC::LBZU; break;
5582         }
5583       } else {
5584         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5585         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5586         switch (LoadedVT.getSimpleVT().SimpleTy) {
5587           default: llvm_unreachable("Invalid PPC load type!");
5588           case MVT::i64: Opcode = PPC::LDU; break;
5589           case MVT::i32: Opcode = PPC::LWZU8; break;
5590           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5591           case MVT::i1:
5592           case MVT::i8:  Opcode = PPC::LBZU8; break;
5593         }
5594       }
5595 
5596       SDValue Chain = LD->getChain();
5597       SDValue Base = LD->getBasePtr();
5598       SDValue Ops[] = { Offset, Base, Chain };
5599       SDNode *MN = CurDAG->getMachineNode(
5600           Opcode, dl, LD->getValueType(0),
5601           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5602       transferMemOperands(N, MN);
5603       ReplaceNode(N, MN);
5604       return;
5605     } else {
5606       unsigned Opcode;
5607       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5608       if (LD->getValueType(0) != MVT::i64) {
5609         // Handle PPC32 integer and normal FP loads.
5610         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5611         switch (LoadedVT.getSimpleVT().SimpleTy) {
5612           default: llvm_unreachable("Invalid PPC load type!");
5613           case MVT::f64: Opcode = PPC::LFDUX; break;
5614           case MVT::f32: Opcode = PPC::LFSUX; break;
5615           case MVT::i32: Opcode = PPC::LWZUX; break;
5616           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5617           case MVT::i1:
5618           case MVT::i8:  Opcode = PPC::LBZUX; break;
5619         }
5620       } else {
5621         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5622         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5623                "Invalid sext update load");
5624         switch (LoadedVT.getSimpleVT().SimpleTy) {
5625           default: llvm_unreachable("Invalid PPC load type!");
5626           case MVT::i64: Opcode = PPC::LDUX; break;
5627           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
5628           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5629           case MVT::i1:
5630           case MVT::i8:  Opcode = PPC::LBZUX8; break;
5631         }
5632       }
5633 
5634       SDValue Chain = LD->getChain();
5635       SDValue Base = LD->getBasePtr();
5636       SDValue Ops[] = { Base, Offset, Chain };
5637       SDNode *MN = CurDAG->getMachineNode(
5638           Opcode, dl, LD->getValueType(0),
5639           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5640       transferMemOperands(N, MN);
5641       ReplaceNode(N, MN);
5642       return;
5643     }
5644   }
5645 
5646   case ISD::AND:
5647     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5648     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDCL(N) ||
5649         tryAsSingleRLDICL(N) || tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) ||
5650         tryAsPairOfRLDICL(N))
5651       return;
5652 
5653     // Other cases are autogenerated.
5654     break;
5655   case ISD::OR: {
5656     if (N->getValueType(0) == MVT::i32)
5657       if (tryBitfieldInsert(N))
5658         return;
5659 
5660     int16_t Imm;
5661     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5662         isIntS16Immediate(N->getOperand(1), Imm)) {
5663       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5664 
5665       // If this is equivalent to an add, then we can fold it with the
5666       // FrameIndex calculation.
5667       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5668         selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5669         return;
5670       }
5671     }
5672 
5673     // If this is 'or' against an imm with consecutive ones and both sides zero,
5674     // try to emit rldimi
5675     if (tryAsSingleRLDIMI(N))
5676       return;
5677 
5678     // OR with a 32-bit immediate can be handled by ori + oris
5679     // without creating an immediate in a GPR.
5680     uint64_t Imm64 = 0;
5681     bool IsPPC64 = Subtarget->isPPC64();
5682     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5683         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5684       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5685       uint64_t ImmHi = Imm64 >> 16;
5686       uint64_t ImmLo = Imm64 & 0xFFFF;
5687       if (ImmHi != 0 && ImmLo != 0) {
5688         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5689                                             N->getOperand(0),
5690                                             getI16Imm(ImmLo, dl));
5691         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5692         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5693         return;
5694       }
5695     }
5696 
5697     // Other cases are autogenerated.
5698     break;
5699   }
5700   case ISD::XOR: {
5701     // XOR with a 32-bit immediate can be handled by xori + xoris
5702     // without creating an immediate in a GPR.
5703     uint64_t Imm64 = 0;
5704     bool IsPPC64 = Subtarget->isPPC64();
5705     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5706         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5707       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5708       uint64_t ImmHi = Imm64 >> 16;
5709       uint64_t ImmLo = Imm64 & 0xFFFF;
5710       if (ImmHi != 0 && ImmLo != 0) {
5711         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5712                                             N->getOperand(0),
5713                                             getI16Imm(ImmLo, dl));
5714         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5715         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5716         return;
5717       }
5718     }
5719 
5720     break;
5721   }
5722   case ISD::ADD: {
5723     int16_t Imm;
5724     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5725         isIntS16Immediate(N->getOperand(1), Imm)) {
5726       selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5727       return;
5728     }
5729 
5730     break;
5731   }
5732   case ISD::SHL: {
5733     unsigned Imm, SH, MB, ME;
5734     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5735         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5736       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5737                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5738                           getI32Imm(ME, dl) };
5739       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5740       return;
5741     }
5742 
5743     // Other cases are autogenerated.
5744     break;
5745   }
5746   case ISD::SRL: {
5747     unsigned Imm, SH, MB, ME;
5748     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5749         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5750       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5751                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5752                           getI32Imm(ME, dl) };
5753       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5754       return;
5755     }
5756 
5757     // Other cases are autogenerated.
5758     break;
5759   }
5760   case ISD::MUL: {
5761     SDValue Op1 = N->getOperand(1);
5762     if (Op1.getOpcode() != ISD::Constant ||
5763         (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5764       break;
5765 
5766     // If the multiplier fits int16, we can handle it with mulli.
5767     int64_t Imm = Op1->getAsZExtVal();
5768     unsigned Shift = llvm::countr_zero<uint64_t>(Imm);
5769     if (isInt<16>(Imm) || !Shift)
5770       break;
5771 
5772     // If the shifted value fits int16, we can do this transformation:
5773     // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5774     // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5775     uint64_t ImmSh = Imm >> Shift;
5776     if (!isInt<16>(ImmSh))
5777       break;
5778 
5779     uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5780     if (Op1.getValueType() == MVT::i64) {
5781       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5782       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5783                                                N->getOperand(0), SDImm);
5784 
5785       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5786                        getI32Imm(63 - Shift, dl)};
5787       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5788       return;
5789     } else {
5790       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5791       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5792                                               N->getOperand(0), SDImm);
5793 
5794       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5795                        getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5796       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5797       return;
5798     }
5799     break;
5800   }
5801   // FIXME: Remove this once the ANDI glue bug is fixed:
5802   case PPCISD::ANDI_rec_1_EQ_BIT:
5803   case PPCISD::ANDI_rec_1_GT_BIT: {
5804     if (!ANDIGlueBug)
5805       break;
5806 
5807     EVT InVT = N->getOperand(0).getValueType();
5808     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5809            "Invalid input type for ANDI_rec_1_EQ_BIT");
5810 
5811     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5812     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5813                                         N->getOperand(0),
5814                                         CurDAG->getTargetConstant(1, dl, InVT)),
5815                  0);
5816     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5817     SDValue SRIdxVal = CurDAG->getTargetConstant(
5818         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5819         dl, MVT::i32);
5820 
5821     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5822                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5823     return;
5824   }
5825   case ISD::SELECT_CC: {
5826     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5827     EVT PtrVT =
5828         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5829     bool isPPC64 = (PtrVT == MVT::i64);
5830 
5831     // If this is a select of i1 operands, we'll pattern match it.
5832     if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5833       break;
5834 
5835     if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5836       bool NeedSwapOps = false;
5837       bool IsUnCmp = false;
5838       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5839         SDValue LHS = N->getOperand(0);
5840         SDValue RHS = N->getOperand(1);
5841         if (NeedSwapOps)
5842           std::swap(LHS, RHS);
5843 
5844         // Make use of SelectCC to generate the comparison to set CR bits, for
5845         // equality comparisons having one literal operand, SelectCC probably
5846         // doesn't need to materialize the whole literal and just use xoris to
5847         // check it first, it leads the following comparison result can't
5848         // exactly represent GT/LT relationship. So to avoid this we specify
5849         // SETGT/SETUGT here instead of SETEQ.
5850         SDValue GenCC =
5851             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5852         CurDAG->SelectNodeTo(
5853             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5854             N->getValueType(0), GenCC);
5855         NumP9Setb++;
5856         return;
5857       }
5858     }
5859 
5860     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5861     if (!isPPC64 && isNullConstant(N->getOperand(1)) &&
5862         isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) &&
5863         CC == ISD::SETNE &&
5864         // FIXME: Implement this optzn for PPC64.
5865         N->getValueType(0) == MVT::i32) {
5866       SDNode *Tmp =
5867           CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5868                                  N->getOperand(0), getI32Imm(~0U, dl));
5869       CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5870                            N->getOperand(0), SDValue(Tmp, 1));
5871       return;
5872     }
5873 
5874     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5875 
5876     if (N->getValueType(0) == MVT::i1) {
5877       // An i1 select is: (c & t) | (!c & f).
5878       bool Inv;
5879       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5880 
5881       unsigned SRI;
5882       switch (Idx) {
5883       default: llvm_unreachable("Invalid CC index");
5884       case 0: SRI = PPC::sub_lt; break;
5885       case 1: SRI = PPC::sub_gt; break;
5886       case 2: SRI = PPC::sub_eq; break;
5887       case 3: SRI = PPC::sub_un; break;
5888       }
5889 
5890       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5891 
5892       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5893                                               CCBit, CCBit), 0);
5894       SDValue C =    Inv ? NotCCBit : CCBit,
5895               NotC = Inv ? CCBit    : NotCCBit;
5896 
5897       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5898                                            C, N->getOperand(2)), 0);
5899       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5900                                               NotC, N->getOperand(3)), 0);
5901 
5902       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5903       return;
5904     }
5905 
5906     unsigned BROpc =
5907         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5908 
5909     unsigned SelectCCOp;
5910     if (N->getValueType(0) == MVT::i32)
5911       SelectCCOp = PPC::SELECT_CC_I4;
5912     else if (N->getValueType(0) == MVT::i64)
5913       SelectCCOp = PPC::SELECT_CC_I8;
5914     else if (N->getValueType(0) == MVT::f32) {
5915       if (Subtarget->hasP8Vector())
5916         SelectCCOp = PPC::SELECT_CC_VSSRC;
5917       else if (Subtarget->hasSPE())
5918         SelectCCOp = PPC::SELECT_CC_SPE4;
5919       else
5920         SelectCCOp = PPC::SELECT_CC_F4;
5921     } else if (N->getValueType(0) == MVT::f64) {
5922       if (Subtarget->hasVSX())
5923         SelectCCOp = PPC::SELECT_CC_VSFRC;
5924       else if (Subtarget->hasSPE())
5925         SelectCCOp = PPC::SELECT_CC_SPE;
5926       else
5927         SelectCCOp = PPC::SELECT_CC_F8;
5928     } else if (N->getValueType(0) == MVT::f128)
5929       SelectCCOp = PPC::SELECT_CC_F16;
5930     else if (Subtarget->hasSPE())
5931       SelectCCOp = PPC::SELECT_CC_SPE;
5932     else if (N->getValueType(0) == MVT::v2f64 ||
5933              N->getValueType(0) == MVT::v2i64)
5934       SelectCCOp = PPC::SELECT_CC_VSRC;
5935     else
5936       SelectCCOp = PPC::SELECT_CC_VRRC;
5937 
5938     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5939                         getI32Imm(BROpc, dl) };
5940     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5941     return;
5942   }
5943   case ISD::VECTOR_SHUFFLE:
5944     if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5945                                 N->getValueType(0) == MVT::v2i64)) {
5946       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5947 
5948       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5949               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5950       unsigned DM[2];
5951 
5952       for (int i = 0; i < 2; ++i)
5953         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5954           DM[i] = 0;
5955         else
5956           DM[i] = 1;
5957 
5958       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5959           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5960           isa<LoadSDNode>(Op1.getOperand(0))) {
5961         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5962         SDValue Base, Offset;
5963 
5964         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5965             (LD->getMemoryVT() == MVT::f64 ||
5966              LD->getMemoryVT() == MVT::i64) &&
5967             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5968           SDValue Chain = LD->getChain();
5969           SDValue Ops[] = { Base, Offset, Chain };
5970           MachineMemOperand *MemOp = LD->getMemOperand();
5971           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5972                                               N->getValueType(0), Ops);
5973           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5974           return;
5975         }
5976       }
5977 
5978       // For little endian, we must swap the input operands and adjust
5979       // the mask elements (reverse and invert them).
5980       if (Subtarget->isLittleEndian()) {
5981         std::swap(Op1, Op2);
5982         unsigned tmp = DM[0];
5983         DM[0] = 1 - DM[1];
5984         DM[1] = 1 - tmp;
5985       }
5986 
5987       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5988                                               MVT::i32);
5989       SDValue Ops[] = { Op1, Op2, DMV };
5990       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5991       return;
5992     }
5993 
5994     break;
5995   case PPCISD::BDNZ:
5996   case PPCISD::BDZ: {
5997     bool IsPPC64 = Subtarget->isPPC64();
5998     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5999     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
6000                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
6001                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
6002                          MVT::Other, Ops);
6003     return;
6004   }
6005   case PPCISD::COND_BRANCH: {
6006     // Op #0 is the Chain.
6007     // Op #1 is the PPC::PRED_* number.
6008     // Op #2 is the CR#
6009     // Op #3 is the Dest MBB
6010     // Op #4 is the Flag.
6011     // Prevent PPC::PRED_* from being selected into LI.
6012     unsigned PCC = N->getConstantOperandVal(1);
6013     if (EnableBranchHint)
6014       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
6015 
6016     SDValue Pred = getI32Imm(PCC, dl);
6017     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
6018       N->getOperand(0), N->getOperand(4) };
6019     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
6020     return;
6021   }
6022   case ISD::BR_CC: {
6023     if (tryFoldSWTestBRCC(N))
6024       return;
6025     if (trySelectLoopCountIntrinsic(N))
6026       return;
6027     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6028     unsigned PCC =
6029         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
6030 
6031     if (N->getOperand(2).getValueType() == MVT::i1) {
6032       unsigned Opc;
6033       bool Swap;
6034       switch (PCC) {
6035       default: llvm_unreachable("Unexpected Boolean-operand predicate");
6036       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
6037       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
6038       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
6039       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
6040       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
6041       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
6042       }
6043 
6044       // A signed comparison of i1 values produces the opposite result to an
6045       // unsigned one if the condition code includes less-than or greater-than.
6046       // This is because 1 is the most negative signed i1 number and the most
6047       // positive unsigned i1 number. The CR-logical operations used for such
6048       // comparisons are non-commutative so for signed comparisons vs. unsigned
6049       // ones, the input operands just need to be swapped.
6050       if (ISD::isSignedIntSetCC(CC))
6051         Swap = !Swap;
6052 
6053       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
6054                                              N->getOperand(Swap ? 3 : 2),
6055                                              N->getOperand(Swap ? 2 : 3)), 0);
6056       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
6057                            N->getOperand(0));
6058       return;
6059     }
6060 
6061     if (EnableBranchHint)
6062       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
6063 
6064     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
6065     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
6066                         N->getOperand(4), N->getOperand(0) };
6067     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
6068     return;
6069   }
6070   case ISD::BRIND: {
6071     // FIXME: Should custom lower this.
6072     SDValue Chain = N->getOperand(0);
6073     SDValue Target = N->getOperand(1);
6074     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
6075     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
6076     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
6077                                            Chain), 0);
6078     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
6079     return;
6080   }
6081   case PPCISD::TOC_ENTRY: {
6082     const bool isPPC64 = Subtarget->isPPC64();
6083     const bool isELFABI = Subtarget->isSVR4ABI();
6084     const bool isAIXABI = Subtarget->isAIXABI();
6085 
6086     // PowerPC only support small, medium and large code model.
6087     const CodeModel::Model CModel = getCodeModel(*Subtarget, TM, N);
6088 
6089     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
6090            "PowerPC doesn't support tiny or kernel code models.");
6091 
6092     if (isAIXABI && CModel == CodeModel::Medium)
6093       report_fatal_error("Medium code model is not supported on AIX.");
6094 
6095     // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
6096     // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
6097     // small code model, we need to check for a toc-data attribute.
6098     if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
6099       break;
6100 
6101     auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
6102                                    EVT OperandTy) {
6103       SDValue GA = TocEntry->getOperand(0);
6104       SDValue TocBase = TocEntry->getOperand(1);
6105       SDNode *MN = nullptr;
6106       if (OpCode == PPC::ADDItoc || OpCode == PPC::ADDItoc8)
6107         // toc-data access doesn't involve in loading from got, no need to
6108         // keep memory operands.
6109         MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, TocBase, GA);
6110       else {
6111         MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
6112         transferMemOperands(TocEntry, MN);
6113       }
6114       ReplaceNode(TocEntry, MN);
6115     };
6116 
6117     // Handle 32-bit small code model.
6118     if (!isPPC64 && CModel == CodeModel::Small) {
6119       // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
6120       // PPC::ADDItoc, or PPC::LWZtoc
6121       if (isELFABI) {
6122         assert(TM.isPositionIndependent() &&
6123                "32-bit ELF can only have TOC entries in position independent"
6124                " code.");
6125         // 32-bit ELF always uses a small code model toc access.
6126         replaceWith(PPC::LWZtoc, N, MVT::i32);
6127         return;
6128       }
6129 
6130       assert(isAIXABI && "ELF ABI already handled");
6131 
6132       if (hasTocDataAttr(N->getOperand(0))) {
6133         replaceWith(PPC::ADDItoc, N, MVT::i32);
6134         return;
6135       }
6136 
6137       replaceWith(PPC::LWZtoc, N, MVT::i32);
6138       return;
6139     }
6140 
6141     if (isPPC64 && CModel == CodeModel::Small) {
6142       assert(isAIXABI && "ELF ABI handled in common SelectCode");
6143 
6144       if (hasTocDataAttr(N->getOperand(0))) {
6145         replaceWith(PPC::ADDItoc8, N, MVT::i64);
6146         return;
6147       }
6148       // Break if it doesn't have toc data attribute. Proceed with common
6149       // SelectCode.
6150       break;
6151     }
6152 
6153     assert(CModel != CodeModel::Small && "All small code models handled.");
6154 
6155     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
6156            " ELF/AIX or 32-bit AIX in the following.");
6157 
6158     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode,
6159     // 64-bit medium (ELF-only), or 64-bit large (ELF and AIX) code model code
6160     // that does not contain TOC data symbols. We generate two instructions as
6161     // described below. The first source operand is a symbol reference. If it
6162     // must be referenced via the TOC according to Subtarget, we generate:
6163     // [32-bit AIX]
6164     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
6165     // [64-bit ELF/AIX]
6166     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
6167     // Otherwise for medium code model ELF we generate:
6168     //   ADDItocL8(ADDIStocHA8(%x2, @sym), @sym)
6169 
6170     // And finally for AIX with toc-data we generate:
6171     // [32-bit AIX]
6172     //   ADDItocL(ADDIStocHA(%x2, @sym), @sym)
6173     // [64-bit AIX]
6174     //   ADDItocL8(ADDIStocHA8(%x2, @sym), @sym)
6175 
6176     SDValue GA = N->getOperand(0);
6177     SDValue TOCbase = N->getOperand(1);
6178 
6179     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
6180     SDNode *Tmp = CurDAG->getMachineNode(
6181         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
6182 
6183     // On AIX, if the symbol has the toc-data attribute it will be defined
6184     // in the TOC entry, so we use an ADDItocL/ADDItocL8.
6185     if (isAIXABI && hasTocDataAttr(GA)) {
6186       ReplaceNode(
6187           N, CurDAG->getMachineNode(isPPC64 ? PPC::ADDItocL8 : PPC::ADDItocL,
6188                                     dl, VT, SDValue(Tmp, 0), GA));
6189       return;
6190     }
6191 
6192     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
6193       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
6194       // the address.
6195       SDNode *MN = CurDAG->getMachineNode(
6196           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
6197 
6198       transferMemOperands(N, MN);
6199       ReplaceNode(N, MN);
6200       return;
6201     }
6202 
6203     assert(isPPC64 && "TOC_ENTRY already handled for 32-bit.");
6204     // Build the address relative to the TOC-pointer.
6205     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL8, dl, MVT::i64,
6206                                           SDValue(Tmp, 0), GA));
6207     return;
6208   }
6209   case PPCISD::PPC32_PICGOT:
6210     // Generate a PIC-safe GOT reference.
6211     assert(Subtarget->is32BitELFABI() &&
6212            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
6213     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
6214                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
6215                          MVT::i32);
6216     return;
6217 
6218   case PPCISD::VADD_SPLAT: {
6219     // This expands into one of three sequences, depending on whether
6220     // the first operand is odd or even, positive or negative.
6221     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
6222            isa<ConstantSDNode>(N->getOperand(1)) &&
6223            "Invalid operand on VADD_SPLAT!");
6224 
6225     int Elt     = N->getConstantOperandVal(0);
6226     int EltSize = N->getConstantOperandVal(1);
6227     unsigned Opc1, Opc2, Opc3;
6228     EVT VT;
6229 
6230     if (EltSize == 1) {
6231       Opc1 = PPC::VSPLTISB;
6232       Opc2 = PPC::VADDUBM;
6233       Opc3 = PPC::VSUBUBM;
6234       VT = MVT::v16i8;
6235     } else if (EltSize == 2) {
6236       Opc1 = PPC::VSPLTISH;
6237       Opc2 = PPC::VADDUHM;
6238       Opc3 = PPC::VSUBUHM;
6239       VT = MVT::v8i16;
6240     } else {
6241       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
6242       Opc1 = PPC::VSPLTISW;
6243       Opc2 = PPC::VADDUWM;
6244       Opc3 = PPC::VSUBUWM;
6245       VT = MVT::v4i32;
6246     }
6247 
6248     if ((Elt & 1) == 0) {
6249       // Elt is even, in the range [-32,-18] + [16,30].
6250       //
6251       // Convert: VADD_SPLAT elt, size
6252       // Into:    tmp = VSPLTIS[BHW] elt
6253       //          VADDU[BHW]M tmp, tmp
6254       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
6255       SDValue EltVal = getI32Imm(Elt >> 1, dl);
6256       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6257       SDValue TmpVal = SDValue(Tmp, 0);
6258       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
6259       return;
6260     } else if (Elt > 0) {
6261       // Elt is odd and positive, in the range [17,31].
6262       //
6263       // Convert: VADD_SPLAT elt, size
6264       // Into:    tmp1 = VSPLTIS[BHW] elt-16
6265       //          tmp2 = VSPLTIS[BHW] -16
6266       //          VSUBU[BHW]M tmp1, tmp2
6267       SDValue EltVal = getI32Imm(Elt - 16, dl);
6268       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6269       EltVal = getI32Imm(-16, dl);
6270       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6271       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
6272                                             SDValue(Tmp2, 0)));
6273       return;
6274     } else {
6275       // Elt is odd and negative, in the range [-31,-17].
6276       //
6277       // Convert: VADD_SPLAT elt, size
6278       // Into:    tmp1 = VSPLTIS[BHW] elt+16
6279       //          tmp2 = VSPLTIS[BHW] -16
6280       //          VADDU[BHW]M tmp1, tmp2
6281       SDValue EltVal = getI32Imm(Elt + 16, dl);
6282       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6283       EltVal = getI32Imm(-16, dl);
6284       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6285       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
6286                                             SDValue(Tmp2, 0)));
6287       return;
6288     }
6289   }
6290   case PPCISD::LD_SPLAT: {
6291     // Here we want to handle splat load for type v16i8 and v8i16 when there is
6292     // no direct move, we don't need to use stack for this case. If target has
6293     // direct move, we should be able to get the best selection in the .td file.
6294     if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
6295       break;
6296 
6297     EVT Type = N->getValueType(0);
6298     if (Type != MVT::v16i8 && Type != MVT::v8i16)
6299       break;
6300 
6301     // If the alignment for the load is 16 or bigger, we don't need the
6302     // permutated mask to get the required value. The value must be the 0
6303     // element in big endian target or 7/15 in little endian target in the
6304     // result vsx register of lvx instruction.
6305     // Select the instruction in the .td file.
6306     if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
6307         isOffsetMultipleOf(N, 16))
6308       break;
6309 
6310     SDValue ZeroReg =
6311         CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
6312                             Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
6313     unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
6314     // v16i8 LD_SPLAT addr
6315     // ======>
6316     // Mask = LVSR/LVSL 0, addr
6317     // LoadLow = LVX 0, addr
6318     // Perm = VPERM LoadLow, LoadLow, Mask
6319     // Splat = VSPLTB 15/0, Perm
6320     //
6321     // v8i16 LD_SPLAT addr
6322     // ======>
6323     // Mask = LVSR/LVSL 0, addr
6324     // LoadLow = LVX 0, addr
6325     // LoadHigh = LVX (LI, 1), addr
6326     // Perm = VPERM LoadLow, LoadHigh, Mask
6327     // Splat = VSPLTH 7/0, Perm
6328     unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6329     unsigned SplatElemIndex =
6330         Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6331 
6332     SDNode *Mask = CurDAG->getMachineNode(
6333         Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6334         N->getOperand(1));
6335 
6336     SDNode *LoadLow =
6337         CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6338                                {ZeroReg, N->getOperand(1), N->getOperand(0)});
6339 
6340     SDNode *LoadHigh = LoadLow;
6341     if (Type == MVT::v8i16) {
6342       LoadHigh = CurDAG->getMachineNode(
6343           PPC::LVX, dl, MVT::v16i8, MVT::Other,
6344           {SDValue(CurDAG->getMachineNode(
6345                        LIOpcode, dl, MVT::i32,
6346                        CurDAG->getTargetConstant(1, dl, MVT::i8)),
6347                    0),
6348            N->getOperand(1), SDValue(LoadLow, 1)});
6349     }
6350 
6351     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6352     transferMemOperands(N, LoadHigh);
6353 
6354     SDNode *Perm =
6355         CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6356                                SDValue(LoadHigh, 0), SDValue(Mask, 0));
6357     CurDAG->SelectNodeTo(N, SplatOp, Type,
6358                          CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6359                          SDValue(Perm, 0));
6360     return;
6361   }
6362   }
6363 
6364   SelectCode(N);
6365 }
6366 
6367 // If the target supports the cmpb instruction, do the idiom recognition here.
6368 // We don't do this as a DAG combine because we don't want to do it as nodes
6369 // are being combined (because we might miss part of the eventual idiom). We
6370 // don't want to do it during instruction selection because we want to reuse
6371 // the logic for lowering the masking operations already part of the
6372 // instruction selector.
6373 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6374   SDLoc dl(N);
6375 
6376   assert(N->getOpcode() == ISD::OR &&
6377          "Only OR nodes are supported for CMPB");
6378 
6379   SDValue Res;
6380   if (!Subtarget->hasCMPB())
6381     return Res;
6382 
6383   if (N->getValueType(0) != MVT::i32 &&
6384       N->getValueType(0) != MVT::i64)
6385     return Res;
6386 
6387   EVT VT = N->getValueType(0);
6388 
6389   SDValue RHS, LHS;
6390   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6391   uint64_t Mask = 0, Alt = 0;
6392 
6393   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6394                                uint64_t &Mask, uint64_t &Alt,
6395                                SDValue &LHS, SDValue &RHS) {
6396     if (O.getOpcode() != ISD::SELECT_CC)
6397       return false;
6398     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6399 
6400     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6401         !isa<ConstantSDNode>(O.getOperand(3)))
6402       return false;
6403 
6404     uint64_t PM = O.getConstantOperandVal(2);
6405     uint64_t PAlt = O.getConstantOperandVal(3);
6406     for (b = 0; b < 8; ++b) {
6407       uint64_t Mask = UINT64_C(0xFF) << (8*b);
6408       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6409         break;
6410     }
6411 
6412     if (b == 8)
6413       return false;
6414     Mask |= PM;
6415     Alt  |= PAlt;
6416 
6417     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6418         O.getConstantOperandVal(1) != 0) {
6419       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6420       if (Op0.getOpcode() == ISD::TRUNCATE)
6421         Op0 = Op0.getOperand(0);
6422       if (Op1.getOpcode() == ISD::TRUNCATE)
6423         Op1 = Op1.getOperand(0);
6424 
6425       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6426           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6427           isa<ConstantSDNode>(Op0.getOperand(1))) {
6428 
6429         unsigned Bits = Op0.getValueSizeInBits();
6430         if (b != Bits/8-1)
6431           return false;
6432         if (Op0.getConstantOperandVal(1) != Bits-8)
6433           return false;
6434 
6435         LHS = Op0.getOperand(0);
6436         RHS = Op1.getOperand(0);
6437         return true;
6438       }
6439 
6440       // When we have small integers (i16 to be specific), the form present
6441       // post-legalization uses SETULT in the SELECT_CC for the
6442       // higher-order byte, depending on the fact that the
6443       // even-higher-order bytes are known to all be zero, for example:
6444       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6445       // (so when the second byte is the same, because all higher-order
6446       // bits from bytes 3 and 4 are known to be zero, the result of the
6447       // xor can be at most 255)
6448       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6449           isa<ConstantSDNode>(O.getOperand(1))) {
6450 
6451         uint64_t ULim = O.getConstantOperandVal(1);
6452         if (ULim != (UINT64_C(1) << b*8))
6453           return false;
6454 
6455         // Now we need to make sure that the upper bytes are known to be
6456         // zero.
6457         unsigned Bits = Op0.getValueSizeInBits();
6458         if (!CurDAG->MaskedValueIsZero(
6459                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6460           return false;
6461 
6462         LHS = Op0.getOperand(0);
6463         RHS = Op0.getOperand(1);
6464         return true;
6465       }
6466 
6467       return false;
6468     }
6469 
6470     if (CC != ISD::SETEQ)
6471       return false;
6472 
6473     SDValue Op = O.getOperand(0);
6474     if (Op.getOpcode() == ISD::AND) {
6475       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6476         return false;
6477       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6478         return false;
6479 
6480       SDValue XOR = Op.getOperand(0);
6481       if (XOR.getOpcode() == ISD::TRUNCATE)
6482         XOR = XOR.getOperand(0);
6483       if (XOR.getOpcode() != ISD::XOR)
6484         return false;
6485 
6486       LHS = XOR.getOperand(0);
6487       RHS = XOR.getOperand(1);
6488       return true;
6489     } else if (Op.getOpcode() == ISD::SRL) {
6490       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6491         return false;
6492       unsigned Bits = Op.getValueSizeInBits();
6493       if (b != Bits/8-1)
6494         return false;
6495       if (Op.getConstantOperandVal(1) != Bits-8)
6496         return false;
6497 
6498       SDValue XOR = Op.getOperand(0);
6499       if (XOR.getOpcode() == ISD::TRUNCATE)
6500         XOR = XOR.getOperand(0);
6501       if (XOR.getOpcode() != ISD::XOR)
6502         return false;
6503 
6504       LHS = XOR.getOperand(0);
6505       RHS = XOR.getOperand(1);
6506       return true;
6507     }
6508 
6509     return false;
6510   };
6511 
6512   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6513   while (!Queue.empty()) {
6514     SDValue V = Queue.pop_back_val();
6515 
6516     for (const SDValue &O : V.getNode()->ops()) {
6517       unsigned b = 0;
6518       uint64_t M = 0, A = 0;
6519       SDValue OLHS, ORHS;
6520       if (O.getOpcode() == ISD::OR) {
6521         Queue.push_back(O);
6522       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6523         if (!LHS) {
6524           LHS = OLHS;
6525           RHS = ORHS;
6526           BytesFound[b] = true;
6527           Mask |= M;
6528           Alt  |= A;
6529         } else if ((LHS == ORHS && RHS == OLHS) ||
6530                    (RHS == ORHS && LHS == OLHS)) {
6531           BytesFound[b] = true;
6532           Mask |= M;
6533           Alt  |= A;
6534         } else {
6535           return Res;
6536         }
6537       } else {
6538         return Res;
6539       }
6540     }
6541   }
6542 
6543   unsigned LastB = 0, BCnt = 0;
6544   for (unsigned i = 0; i < 8; ++i)
6545     if (BytesFound[LastB]) {
6546       ++BCnt;
6547       LastB = i;
6548     }
6549 
6550   if (!LastB || BCnt < 2)
6551     return Res;
6552 
6553   // Because we'll be zero-extending the output anyway if don't have a specific
6554   // value for each input byte (via the Mask), we can 'anyext' the inputs.
6555   if (LHS.getValueType() != VT) {
6556     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6557     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6558   }
6559 
6560   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6561 
6562   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6563   if (NonTrivialMask && !Alt) {
6564     // Res = Mask & CMPB
6565     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6566                           CurDAG->getConstant(Mask, dl, VT));
6567   } else if (Alt) {
6568     // Res = (CMPB & Mask) | (~CMPB & Alt)
6569     // Which, as suggested here:
6570     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6571     // can be written as:
6572     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6573     // useful because the (Alt ^ Mask) can be pre-computed.
6574     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6575                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
6576     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6577                           CurDAG->getConstant(Alt, dl, VT));
6578   }
6579 
6580   return Res;
6581 }
6582 
6583 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6584 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6585 // involves constant materialization of a 0 or a 1 or both. If the result of
6586 // the extension is then operated upon by some operator that can be constant
6587 // folded with a constant 0 or 1, and that constant can be materialized using
6588 // only one instruction (like a zero or one), then we should fold in those
6589 // operations with the select.
6590 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6591   if (!Subtarget->useCRBits())
6592     return;
6593 
6594   if (N->getOpcode() != ISD::ZERO_EXTEND &&
6595       N->getOpcode() != ISD::SIGN_EXTEND &&
6596       N->getOpcode() != ISD::ANY_EXTEND)
6597     return;
6598 
6599   if (N->getOperand(0).getValueType() != MVT::i1)
6600     return;
6601 
6602   if (!N->hasOneUse())
6603     return;
6604 
6605   SDLoc dl(N);
6606   EVT VT = N->getValueType(0);
6607   SDValue Cond = N->getOperand(0);
6608   SDValue ConstTrue =
6609     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6610   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6611 
6612   do {
6613     SDNode *User = *N->use_begin();
6614     if (User->getNumOperands() != 2)
6615       break;
6616 
6617     auto TryFold = [this, N, User, dl](SDValue Val) {
6618       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6619       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6620       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6621 
6622       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6623                                             User->getValueType(0), {O0, O1});
6624     };
6625 
6626     // FIXME: When the semantics of the interaction between select and undef
6627     // are clearly defined, it may turn out to be unnecessary to break here.
6628     SDValue TrueRes = TryFold(ConstTrue);
6629     if (!TrueRes || TrueRes.isUndef())
6630       break;
6631     SDValue FalseRes = TryFold(ConstFalse);
6632     if (!FalseRes || FalseRes.isUndef())
6633       break;
6634 
6635     // For us to materialize these using one instruction, we must be able to
6636     // represent them as signed 16-bit integers.
6637     uint64_t True = TrueRes->getAsZExtVal(), False = FalseRes->getAsZExtVal();
6638     if (!isInt<16>(True) || !isInt<16>(False))
6639       break;
6640 
6641     // We can replace User with a new SELECT node, and try again to see if we
6642     // can fold the select with its user.
6643     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6644     N = User;
6645     ConstTrue = TrueRes;
6646     ConstFalse = FalseRes;
6647   } while (N->hasOneUse());
6648 }
6649 
6650 void PPCDAGToDAGISel::PreprocessISelDAG() {
6651   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6652 
6653   bool MadeChange = false;
6654   while (Position != CurDAG->allnodes_begin()) {
6655     SDNode *N = &*--Position;
6656     if (N->use_empty())
6657       continue;
6658 
6659     SDValue Res;
6660     switch (N->getOpcode()) {
6661     default: break;
6662     case ISD::OR:
6663       Res = combineToCMPB(N);
6664       break;
6665     }
6666 
6667     if (!Res)
6668       foldBoolExts(Res, N);
6669 
6670     if (Res) {
6671       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
6672       LLVM_DEBUG(N->dump(CurDAG));
6673       LLVM_DEBUG(dbgs() << "\nNew: ");
6674       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6675       LLVM_DEBUG(dbgs() << "\n");
6676 
6677       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6678       MadeChange = true;
6679     }
6680   }
6681 
6682   if (MadeChange)
6683     CurDAG->RemoveDeadNodes();
6684 }
6685 
6686 /// PostprocessISelDAG - Perform some late peephole optimizations
6687 /// on the DAG representation.
6688 void PPCDAGToDAGISel::PostprocessISelDAG() {
6689   // Skip peepholes at -O0.
6690   if (TM.getOptLevel() == CodeGenOptLevel::None)
6691     return;
6692 
6693   PeepholePPC64();
6694   PeepholeCROps();
6695   PeepholePPC64ZExt();
6696 }
6697 
6698 // Check if all users of this node will become isel where the second operand
6699 // is the constant zero. If this is so, and if we can negate the condition,
6700 // then we can flip the true and false operands. This will allow the zero to
6701 // be folded with the isel so that we don't need to materialize a register
6702 // containing zero.
6703 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6704   for (const SDNode *User : N->uses()) {
6705     if (!User->isMachineOpcode())
6706       return false;
6707     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6708         User->getMachineOpcode() != PPC::SELECT_I8)
6709       return false;
6710 
6711     SDNode *Op1 = User->getOperand(1).getNode();
6712     SDNode *Op2 = User->getOperand(2).getNode();
6713     // If we have a degenerate select with two equal operands, swapping will
6714     // not do anything, and we may run into an infinite loop.
6715     if (Op1 == Op2)
6716       return false;
6717 
6718     if (!Op2->isMachineOpcode())
6719       return false;
6720 
6721     if (Op2->getMachineOpcode() != PPC::LI &&
6722         Op2->getMachineOpcode() != PPC::LI8)
6723       return false;
6724 
6725     if (!isNullConstant(Op2->getOperand(0)))
6726       return false;
6727   }
6728 
6729   return true;
6730 }
6731 
6732 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6733   SmallVector<SDNode *, 4> ToReplace;
6734   for (SDNode *User : N->uses()) {
6735     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6736             User->getMachineOpcode() == PPC::SELECT_I8) &&
6737            "Must have all select users");
6738     ToReplace.push_back(User);
6739   }
6740 
6741   for (SDNode *User : ToReplace) {
6742     SDNode *ResNode =
6743       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6744                              User->getValueType(0), User->getOperand(0),
6745                              User->getOperand(2),
6746                              User->getOperand(1));
6747 
6748     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6749     LLVM_DEBUG(User->dump(CurDAG));
6750     LLVM_DEBUG(dbgs() << "\nNew: ");
6751     LLVM_DEBUG(ResNode->dump(CurDAG));
6752     LLVM_DEBUG(dbgs() << "\n");
6753 
6754     ReplaceUses(User, ResNode);
6755   }
6756 }
6757 
6758 void PPCDAGToDAGISel::PeepholeCROps() {
6759   bool IsModified;
6760   do {
6761     IsModified = false;
6762     for (SDNode &Node : CurDAG->allnodes()) {
6763       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6764       if (!MachineNode || MachineNode->use_empty())
6765         continue;
6766       SDNode *ResNode = MachineNode;
6767 
6768       bool Op1Set   = false, Op1Unset = false,
6769            Op1Not   = false,
6770            Op2Set   = false, Op2Unset = false,
6771            Op2Not   = false;
6772 
6773       unsigned Opcode = MachineNode->getMachineOpcode();
6774       switch (Opcode) {
6775       default: break;
6776       case PPC::CRAND:
6777       case PPC::CRNAND:
6778       case PPC::CROR:
6779       case PPC::CRXOR:
6780       case PPC::CRNOR:
6781       case PPC::CREQV:
6782       case PPC::CRANDC:
6783       case PPC::CRORC: {
6784         SDValue Op = MachineNode->getOperand(1);
6785         if (Op.isMachineOpcode()) {
6786           if (Op.getMachineOpcode() == PPC::CRSET)
6787             Op2Set = true;
6788           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6789             Op2Unset = true;
6790           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6791                     Op.getOperand(0) == Op.getOperand(1)) ||
6792                    Op.getMachineOpcode() == PPC::CRNOT)
6793             Op2Not = true;
6794         }
6795         [[fallthrough]];
6796       }
6797       case PPC::BC:
6798       case PPC::BCn:
6799       case PPC::SELECT_I4:
6800       case PPC::SELECT_I8:
6801       case PPC::SELECT_F4:
6802       case PPC::SELECT_F8:
6803       case PPC::SELECT_SPE:
6804       case PPC::SELECT_SPE4:
6805       case PPC::SELECT_VRRC:
6806       case PPC::SELECT_VSFRC:
6807       case PPC::SELECT_VSSRC:
6808       case PPC::SELECT_VSRC: {
6809         SDValue Op = MachineNode->getOperand(0);
6810         if (Op.isMachineOpcode()) {
6811           if (Op.getMachineOpcode() == PPC::CRSET)
6812             Op1Set = true;
6813           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6814             Op1Unset = true;
6815           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6816                     Op.getOperand(0) == Op.getOperand(1)) ||
6817                    Op.getMachineOpcode() == PPC::CRNOT)
6818             Op1Not = true;
6819         }
6820         }
6821         break;
6822       }
6823 
6824       bool SelectSwap = false;
6825       switch (Opcode) {
6826       default: break;
6827       case PPC::CRAND:
6828         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6829           // x & x = x
6830           ResNode = MachineNode->getOperand(0).getNode();
6831         else if (Op1Set)
6832           // 1 & y = y
6833           ResNode = MachineNode->getOperand(1).getNode();
6834         else if (Op2Set)
6835           // x & 1 = x
6836           ResNode = MachineNode->getOperand(0).getNode();
6837         else if (Op1Unset || Op2Unset)
6838           // x & 0 = 0 & y = 0
6839           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6840                                            MVT::i1);
6841         else if (Op1Not)
6842           // ~x & y = andc(y, x)
6843           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6844                                            MVT::i1, MachineNode->getOperand(1),
6845                                            MachineNode->getOperand(0).
6846                                              getOperand(0));
6847         else if (Op2Not)
6848           // x & ~y = andc(x, y)
6849           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6850                                            MVT::i1, MachineNode->getOperand(0),
6851                                            MachineNode->getOperand(1).
6852                                              getOperand(0));
6853         else if (AllUsersSelectZero(MachineNode)) {
6854           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6855                                            MVT::i1, MachineNode->getOperand(0),
6856                                            MachineNode->getOperand(1));
6857           SelectSwap = true;
6858         }
6859         break;
6860       case PPC::CRNAND:
6861         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6862           // nand(x, x) -> nor(x, x)
6863           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6864                                            MVT::i1, MachineNode->getOperand(0),
6865                                            MachineNode->getOperand(0));
6866         else if (Op1Set)
6867           // nand(1, y) -> nor(y, y)
6868           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6869                                            MVT::i1, MachineNode->getOperand(1),
6870                                            MachineNode->getOperand(1));
6871         else if (Op2Set)
6872           // nand(x, 1) -> nor(x, x)
6873           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6874                                            MVT::i1, MachineNode->getOperand(0),
6875                                            MachineNode->getOperand(0));
6876         else if (Op1Unset || Op2Unset)
6877           // nand(x, 0) = nand(0, y) = 1
6878           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6879                                            MVT::i1);
6880         else if (Op1Not)
6881           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6882           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6883                                            MVT::i1, MachineNode->getOperand(0).
6884                                                       getOperand(0),
6885                                            MachineNode->getOperand(1));
6886         else if (Op2Not)
6887           // nand(x, ~y) = ~x | y = orc(y, x)
6888           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6889                                            MVT::i1, MachineNode->getOperand(1).
6890                                                       getOperand(0),
6891                                            MachineNode->getOperand(0));
6892         else if (AllUsersSelectZero(MachineNode)) {
6893           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6894                                            MVT::i1, MachineNode->getOperand(0),
6895                                            MachineNode->getOperand(1));
6896           SelectSwap = true;
6897         }
6898         break;
6899       case PPC::CROR:
6900         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6901           // x | x = x
6902           ResNode = MachineNode->getOperand(0).getNode();
6903         else if (Op1Set || Op2Set)
6904           // x | 1 = 1 | y = 1
6905           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6906                                            MVT::i1);
6907         else if (Op1Unset)
6908           // 0 | y = y
6909           ResNode = MachineNode->getOperand(1).getNode();
6910         else if (Op2Unset)
6911           // x | 0 = x
6912           ResNode = MachineNode->getOperand(0).getNode();
6913         else if (Op1Not)
6914           // ~x | y = orc(y, x)
6915           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6916                                            MVT::i1, MachineNode->getOperand(1),
6917                                            MachineNode->getOperand(0).
6918                                              getOperand(0));
6919         else if (Op2Not)
6920           // x | ~y = orc(x, y)
6921           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6922                                            MVT::i1, MachineNode->getOperand(0),
6923                                            MachineNode->getOperand(1).
6924                                              getOperand(0));
6925         else if (AllUsersSelectZero(MachineNode)) {
6926           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6927                                            MVT::i1, MachineNode->getOperand(0),
6928                                            MachineNode->getOperand(1));
6929           SelectSwap = true;
6930         }
6931         break;
6932       case PPC::CRXOR:
6933         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6934           // xor(x, x) = 0
6935           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6936                                            MVT::i1);
6937         else if (Op1Set)
6938           // xor(1, y) -> nor(y, y)
6939           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6940                                            MVT::i1, MachineNode->getOperand(1),
6941                                            MachineNode->getOperand(1));
6942         else if (Op2Set)
6943           // xor(x, 1) -> nor(x, x)
6944           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6945                                            MVT::i1, MachineNode->getOperand(0),
6946                                            MachineNode->getOperand(0));
6947         else if (Op1Unset)
6948           // xor(0, y) = y
6949           ResNode = MachineNode->getOperand(1).getNode();
6950         else if (Op2Unset)
6951           // xor(x, 0) = x
6952           ResNode = MachineNode->getOperand(0).getNode();
6953         else if (Op1Not)
6954           // xor(~x, y) = eqv(x, y)
6955           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6956                                            MVT::i1, MachineNode->getOperand(0).
6957                                                       getOperand(0),
6958                                            MachineNode->getOperand(1));
6959         else if (Op2Not)
6960           // xor(x, ~y) = eqv(x, y)
6961           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6962                                            MVT::i1, MachineNode->getOperand(0),
6963                                            MachineNode->getOperand(1).
6964                                              getOperand(0));
6965         else if (AllUsersSelectZero(MachineNode)) {
6966           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6967                                            MVT::i1, MachineNode->getOperand(0),
6968                                            MachineNode->getOperand(1));
6969           SelectSwap = true;
6970         }
6971         break;
6972       case PPC::CRNOR:
6973         if (Op1Set || Op2Set)
6974           // nor(1, y) -> 0
6975           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6976                                            MVT::i1);
6977         else if (Op1Unset)
6978           // nor(0, y) = ~y -> nor(y, y)
6979           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6980                                            MVT::i1, MachineNode->getOperand(1),
6981                                            MachineNode->getOperand(1));
6982         else if (Op2Unset)
6983           // nor(x, 0) = ~x
6984           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6985                                            MVT::i1, MachineNode->getOperand(0),
6986                                            MachineNode->getOperand(0));
6987         else if (Op1Not)
6988           // nor(~x, y) = andc(x, y)
6989           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6990                                            MVT::i1, MachineNode->getOperand(0).
6991                                                       getOperand(0),
6992                                            MachineNode->getOperand(1));
6993         else if (Op2Not)
6994           // nor(x, ~y) = andc(y, x)
6995           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6996                                            MVT::i1, MachineNode->getOperand(1).
6997                                                       getOperand(0),
6998                                            MachineNode->getOperand(0));
6999         else if (AllUsersSelectZero(MachineNode)) {
7000           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
7001                                            MVT::i1, MachineNode->getOperand(0),
7002                                            MachineNode->getOperand(1));
7003           SelectSwap = true;
7004         }
7005         break;
7006       case PPC::CREQV:
7007         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7008           // eqv(x, x) = 1
7009           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7010                                            MVT::i1);
7011         else if (Op1Set)
7012           // eqv(1, y) = y
7013           ResNode = MachineNode->getOperand(1).getNode();
7014         else if (Op2Set)
7015           // eqv(x, 1) = x
7016           ResNode = MachineNode->getOperand(0).getNode();
7017         else if (Op1Unset)
7018           // eqv(0, y) = ~y -> nor(y, y)
7019           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7020                                            MVT::i1, MachineNode->getOperand(1),
7021                                            MachineNode->getOperand(1));
7022         else if (Op2Unset)
7023           // eqv(x, 0) = ~x
7024           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7025                                            MVT::i1, MachineNode->getOperand(0),
7026                                            MachineNode->getOperand(0));
7027         else if (Op1Not)
7028           // eqv(~x, y) = xor(x, y)
7029           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7030                                            MVT::i1, MachineNode->getOperand(0).
7031                                                       getOperand(0),
7032                                            MachineNode->getOperand(1));
7033         else if (Op2Not)
7034           // eqv(x, ~y) = xor(x, y)
7035           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7036                                            MVT::i1, MachineNode->getOperand(0),
7037                                            MachineNode->getOperand(1).
7038                                              getOperand(0));
7039         else if (AllUsersSelectZero(MachineNode)) {
7040           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7041                                            MVT::i1, MachineNode->getOperand(0),
7042                                            MachineNode->getOperand(1));
7043           SelectSwap = true;
7044         }
7045         break;
7046       case PPC::CRANDC:
7047         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7048           // andc(x, x) = 0
7049           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
7050                                            MVT::i1);
7051         else if (Op1Set)
7052           // andc(1, y) = ~y
7053           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7054                                            MVT::i1, MachineNode->getOperand(1),
7055                                            MachineNode->getOperand(1));
7056         else if (Op1Unset || Op2Set)
7057           // andc(0, y) = andc(x, 1) = 0
7058           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
7059                                            MVT::i1);
7060         else if (Op2Unset)
7061           // andc(x, 0) = x
7062           ResNode = MachineNode->getOperand(0).getNode();
7063         else if (Op1Not)
7064           // andc(~x, y) = ~(x | y) = nor(x, y)
7065           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7066                                            MVT::i1, MachineNode->getOperand(0).
7067                                                       getOperand(0),
7068                                            MachineNode->getOperand(1));
7069         else if (Op2Not)
7070           // andc(x, ~y) = x & y
7071           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
7072                                            MVT::i1, MachineNode->getOperand(0),
7073                                            MachineNode->getOperand(1).
7074                                              getOperand(0));
7075         else if (AllUsersSelectZero(MachineNode)) {
7076           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
7077                                            MVT::i1, MachineNode->getOperand(1),
7078                                            MachineNode->getOperand(0));
7079           SelectSwap = true;
7080         }
7081         break;
7082       case PPC::CRORC:
7083         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7084           // orc(x, x) = 1
7085           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7086                                            MVT::i1);
7087         else if (Op1Set || Op2Unset)
7088           // orc(1, y) = orc(x, 0) = 1
7089           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7090                                            MVT::i1);
7091         else if (Op2Set)
7092           // orc(x, 1) = x
7093           ResNode = MachineNode->getOperand(0).getNode();
7094         else if (Op1Unset)
7095           // orc(0, y) = ~y
7096           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7097                                            MVT::i1, MachineNode->getOperand(1),
7098                                            MachineNode->getOperand(1));
7099         else if (Op1Not)
7100           // orc(~x, y) = ~(x & y) = nand(x, y)
7101           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
7102                                            MVT::i1, MachineNode->getOperand(0).
7103                                                       getOperand(0),
7104                                            MachineNode->getOperand(1));
7105         else if (Op2Not)
7106           // orc(x, ~y) = x | y
7107           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
7108                                            MVT::i1, MachineNode->getOperand(0),
7109                                            MachineNode->getOperand(1).
7110                                              getOperand(0));
7111         else if (AllUsersSelectZero(MachineNode)) {
7112           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
7113                                            MVT::i1, MachineNode->getOperand(1),
7114                                            MachineNode->getOperand(0));
7115           SelectSwap = true;
7116         }
7117         break;
7118       case PPC::SELECT_I4:
7119       case PPC::SELECT_I8:
7120       case PPC::SELECT_F4:
7121       case PPC::SELECT_F8:
7122       case PPC::SELECT_SPE:
7123       case PPC::SELECT_SPE4:
7124       case PPC::SELECT_VRRC:
7125       case PPC::SELECT_VSFRC:
7126       case PPC::SELECT_VSSRC:
7127       case PPC::SELECT_VSRC:
7128         if (Op1Set)
7129           ResNode = MachineNode->getOperand(1).getNode();
7130         else if (Op1Unset)
7131           ResNode = MachineNode->getOperand(2).getNode();
7132         else if (Op1Not)
7133           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
7134                                            SDLoc(MachineNode),
7135                                            MachineNode->getValueType(0),
7136                                            MachineNode->getOperand(0).
7137                                              getOperand(0),
7138                                            MachineNode->getOperand(2),
7139                                            MachineNode->getOperand(1));
7140         break;
7141       case PPC::BC:
7142       case PPC::BCn:
7143         if (Op1Not)
7144           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
7145                                                                PPC::BC,
7146                                            SDLoc(MachineNode),
7147                                            MVT::Other,
7148                                            MachineNode->getOperand(0).
7149                                              getOperand(0),
7150                                            MachineNode->getOperand(1),
7151                                            MachineNode->getOperand(2));
7152         // FIXME: Handle Op1Set, Op1Unset here too.
7153         break;
7154       }
7155 
7156       // If we're inverting this node because it is used only by selects that
7157       // we'd like to swap, then swap the selects before the node replacement.
7158       if (SelectSwap)
7159         SwapAllSelectUsers(MachineNode);
7160 
7161       if (ResNode != MachineNode) {
7162         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
7163         LLVM_DEBUG(MachineNode->dump(CurDAG));
7164         LLVM_DEBUG(dbgs() << "\nNew: ");
7165         LLVM_DEBUG(ResNode->dump(CurDAG));
7166         LLVM_DEBUG(dbgs() << "\n");
7167 
7168         ReplaceUses(MachineNode, ResNode);
7169         IsModified = true;
7170       }
7171     }
7172     if (IsModified)
7173       CurDAG->RemoveDeadNodes();
7174   } while (IsModified);
7175 }
7176 
7177 // Gather the set of 32-bit operations that are known to have their
7178 // higher-order 32 bits zero, where ToPromote contains all such operations.
7179 static bool PeepholePPC64ZExtGather(SDValue Op32,
7180                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
7181   if (!Op32.isMachineOpcode())
7182     return false;
7183 
7184   // First, check for the "frontier" instructions (those that will clear the
7185   // higher-order 32 bits.
7186 
7187   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
7188   // around. If it does not, then these instructions will clear the
7189   // higher-order bits.
7190   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
7191        Op32.getMachineOpcode() == PPC::RLWNM) &&
7192       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
7193     ToPromote.insert(Op32.getNode());
7194     return true;
7195   }
7196 
7197   // SLW and SRW always clear the higher-order bits.
7198   if (Op32.getMachineOpcode() == PPC::SLW ||
7199       Op32.getMachineOpcode() == PPC::SRW) {
7200     ToPromote.insert(Op32.getNode());
7201     return true;
7202   }
7203 
7204   // For LI and LIS, we need the immediate to be positive (so that it is not
7205   // sign extended).
7206   if (Op32.getMachineOpcode() == PPC::LI ||
7207       Op32.getMachineOpcode() == PPC::LIS) {
7208     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
7209       return false;
7210 
7211     ToPromote.insert(Op32.getNode());
7212     return true;
7213   }
7214 
7215   // LHBRX and LWBRX always clear the higher-order bits.
7216   if (Op32.getMachineOpcode() == PPC::LHBRX ||
7217       Op32.getMachineOpcode() == PPC::LWBRX) {
7218     ToPromote.insert(Op32.getNode());
7219     return true;
7220   }
7221 
7222   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
7223   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
7224       Op32.getMachineOpcode() == PPC::CNTTZW) {
7225     ToPromote.insert(Op32.getNode());
7226     return true;
7227   }
7228 
7229   // Next, check for those instructions we can look through.
7230 
7231   // Assuming the mask does not wrap around, then the higher-order bits are
7232   // taken directly from the first operand.
7233   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
7234       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
7235     SmallPtrSet<SDNode *, 16> ToPromote1;
7236     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7237       return false;
7238 
7239     ToPromote.insert(Op32.getNode());
7240     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7241     return true;
7242   }
7243 
7244   // For OR, the higher-order bits are zero if that is true for both operands.
7245   // For SELECT_I4, the same is true (but the relevant operand numbers are
7246   // shifted by 1).
7247   if (Op32.getMachineOpcode() == PPC::OR ||
7248       Op32.getMachineOpcode() == PPC::SELECT_I4) {
7249     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
7250     SmallPtrSet<SDNode *, 16> ToPromote1;
7251     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
7252       return false;
7253     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
7254       return false;
7255 
7256     ToPromote.insert(Op32.getNode());
7257     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7258     return true;
7259   }
7260 
7261   // For ORI and ORIS, we need the higher-order bits of the first operand to be
7262   // zero, and also for the constant to be positive (so that it is not sign
7263   // extended).
7264   if (Op32.getMachineOpcode() == PPC::ORI ||
7265       Op32.getMachineOpcode() == PPC::ORIS) {
7266     SmallPtrSet<SDNode *, 16> ToPromote1;
7267     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7268       return false;
7269     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
7270       return false;
7271 
7272     ToPromote.insert(Op32.getNode());
7273     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7274     return true;
7275   }
7276 
7277   // The higher-order bits of AND are zero if that is true for at least one of
7278   // the operands.
7279   if (Op32.getMachineOpcode() == PPC::AND) {
7280     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
7281     bool Op0OK =
7282       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7283     bool Op1OK =
7284       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
7285     if (!Op0OK && !Op1OK)
7286       return false;
7287 
7288     ToPromote.insert(Op32.getNode());
7289 
7290     if (Op0OK)
7291       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7292 
7293     if (Op1OK)
7294       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
7295 
7296     return true;
7297   }
7298 
7299   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
7300   // of the first operand, or if the second operand is positive (so that it is
7301   // not sign extended).
7302   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
7303       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
7304     SmallPtrSet<SDNode *, 16> ToPromote1;
7305     bool Op0OK =
7306       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7307     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
7308     if (!Op0OK && !Op1OK)
7309       return false;
7310 
7311     ToPromote.insert(Op32.getNode());
7312 
7313     if (Op0OK)
7314       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7315 
7316     return true;
7317   }
7318 
7319   return false;
7320 }
7321 
7322 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7323   if (!Subtarget->isPPC64())
7324     return;
7325 
7326   // When we zero-extend from i32 to i64, we use a pattern like this:
7327   // def : Pat<(i64 (zext i32:$in)),
7328   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7329   //                   0, 32)>;
7330   // There are several 32-bit shift/rotate instructions, however, that will
7331   // clear the higher-order bits of their output, rendering the RLDICL
7332   // unnecessary. When that happens, we remove it here, and redefine the
7333   // relevant 32-bit operation to be a 64-bit operation.
7334 
7335   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7336 
7337   bool MadeChange = false;
7338   while (Position != CurDAG->allnodes_begin()) {
7339     SDNode *N = &*--Position;
7340     // Skip dead nodes and any non-machine opcodes.
7341     if (N->use_empty() || !N->isMachineOpcode())
7342       continue;
7343 
7344     if (N->getMachineOpcode() != PPC::RLDICL)
7345       continue;
7346 
7347     if (N->getConstantOperandVal(1) != 0 ||
7348         N->getConstantOperandVal(2) != 32)
7349       continue;
7350 
7351     SDValue ISR = N->getOperand(0);
7352     if (!ISR.isMachineOpcode() ||
7353         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7354       continue;
7355 
7356     if (!ISR.hasOneUse())
7357       continue;
7358 
7359     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7360       continue;
7361 
7362     SDValue IDef = ISR.getOperand(0);
7363     if (!IDef.isMachineOpcode() ||
7364         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7365       continue;
7366 
7367     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7368     // can get rid of it.
7369 
7370     SDValue Op32 = ISR->getOperand(1);
7371     if (!Op32.isMachineOpcode())
7372       continue;
7373 
7374     // There are some 32-bit instructions that always clear the high-order 32
7375     // bits, there are also some instructions (like AND) that we can look
7376     // through.
7377     SmallPtrSet<SDNode *, 16> ToPromote;
7378     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7379       continue;
7380 
7381     // If the ToPromote set contains nodes that have uses outside of the set
7382     // (except for the original INSERT_SUBREG), then abort the transformation.
7383     bool OutsideUse = false;
7384     for (SDNode *PN : ToPromote) {
7385       for (SDNode *UN : PN->uses()) {
7386         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7387           OutsideUse = true;
7388           break;
7389         }
7390       }
7391 
7392       if (OutsideUse)
7393         break;
7394     }
7395     if (OutsideUse)
7396       continue;
7397 
7398     MadeChange = true;
7399 
7400     // We now know that this zero extension can be removed by promoting to
7401     // nodes in ToPromote to 64-bit operations, where for operations in the
7402     // frontier of the set, we need to insert INSERT_SUBREGs for their
7403     // operands.
7404     for (SDNode *PN : ToPromote) {
7405       unsigned NewOpcode;
7406       switch (PN->getMachineOpcode()) {
7407       default:
7408         llvm_unreachable("Don't know the 64-bit variant of this instruction");
7409       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
7410       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
7411       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
7412       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
7413       case PPC::LI:        NewOpcode = PPC::LI8; break;
7414       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
7415       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
7416       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
7417       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
7418       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
7419       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
7420       case PPC::OR:        NewOpcode = PPC::OR8; break;
7421       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7422       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
7423       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
7424       case PPC::AND:       NewOpcode = PPC::AND8; break;
7425       case PPC::ANDI_rec:
7426         NewOpcode = PPC::ANDI8_rec;
7427         break;
7428       case PPC::ANDIS_rec:
7429         NewOpcode = PPC::ANDIS8_rec;
7430         break;
7431       }
7432 
7433       // Note: During the replacement process, the nodes will be in an
7434       // inconsistent state (some instructions will have operands with values
7435       // of the wrong type). Once done, however, everything should be right
7436       // again.
7437 
7438       SmallVector<SDValue, 4> Ops;
7439       for (const SDValue &V : PN->ops()) {
7440         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7441             !isa<ConstantSDNode>(V)) {
7442           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7443           SDNode *ReplOp =
7444             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7445                                    ISR.getNode()->getVTList(), ReplOpOps);
7446           Ops.push_back(SDValue(ReplOp, 0));
7447         } else {
7448           Ops.push_back(V);
7449         }
7450       }
7451 
7452       // Because all to-be-promoted nodes only have users that are other
7453       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7454       // the i32 result value type with i64.
7455 
7456       SmallVector<EVT, 2> NewVTs;
7457       SDVTList VTs = PN->getVTList();
7458       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7459         if (VTs.VTs[i] == MVT::i32)
7460           NewVTs.push_back(MVT::i64);
7461         else
7462           NewVTs.push_back(VTs.VTs[i]);
7463 
7464       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
7465       LLVM_DEBUG(PN->dump(CurDAG));
7466 
7467       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7468 
7469       LLVM_DEBUG(dbgs() << "\nNew: ");
7470       LLVM_DEBUG(PN->dump(CurDAG));
7471       LLVM_DEBUG(dbgs() << "\n");
7472     }
7473 
7474     // Now we replace the original zero extend and its associated INSERT_SUBREG
7475     // with the value feeding the INSERT_SUBREG (which has now been promoted to
7476     // return an i64).
7477 
7478     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
7479     LLVM_DEBUG(N->dump(CurDAG));
7480     LLVM_DEBUG(dbgs() << "\nNew: ");
7481     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7482     LLVM_DEBUG(dbgs() << "\n");
7483 
7484     ReplaceUses(N, Op32.getNode());
7485   }
7486 
7487   if (MadeChange)
7488     CurDAG->RemoveDeadNodes();
7489 }
7490 
7491 static bool isVSXSwap(SDValue N) {
7492   if (!N->isMachineOpcode())
7493     return false;
7494   unsigned Opc = N->getMachineOpcode();
7495 
7496   // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7497   // operand is 2.
7498   if (Opc == PPC::XXPERMDIs) {
7499     return isa<ConstantSDNode>(N->getOperand(1)) &&
7500            N->getConstantOperandVal(1) == 2;
7501   } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7502     return N->getOperand(0) == N->getOperand(1) &&
7503            isa<ConstantSDNode>(N->getOperand(2)) &&
7504            N->getConstantOperandVal(2) == 2;
7505   }
7506 
7507   return false;
7508 }
7509 
7510 // TODO: Make this complete and replace with a table-gen bit.
7511 static bool isLaneInsensitive(SDValue N) {
7512   if (!N->isMachineOpcode())
7513     return false;
7514   unsigned Opc = N->getMachineOpcode();
7515 
7516   switch (Opc) {
7517   default:
7518     return false;
7519   case PPC::VAVGSB:
7520   case PPC::VAVGUB:
7521   case PPC::VAVGSH:
7522   case PPC::VAVGUH:
7523   case PPC::VAVGSW:
7524   case PPC::VAVGUW:
7525   case PPC::VMAXFP:
7526   case PPC::VMAXSB:
7527   case PPC::VMAXUB:
7528   case PPC::VMAXSH:
7529   case PPC::VMAXUH:
7530   case PPC::VMAXSW:
7531   case PPC::VMAXUW:
7532   case PPC::VMINFP:
7533   case PPC::VMINSB:
7534   case PPC::VMINUB:
7535   case PPC::VMINSH:
7536   case PPC::VMINUH:
7537   case PPC::VMINSW:
7538   case PPC::VMINUW:
7539   case PPC::VADDFP:
7540   case PPC::VADDUBM:
7541   case PPC::VADDUHM:
7542   case PPC::VADDUWM:
7543   case PPC::VSUBFP:
7544   case PPC::VSUBUBM:
7545   case PPC::VSUBUHM:
7546   case PPC::VSUBUWM:
7547   case PPC::VAND:
7548   case PPC::VANDC:
7549   case PPC::VOR:
7550   case PPC::VORC:
7551   case PPC::VXOR:
7552   case PPC::VNOR:
7553   case PPC::VMULUWM:
7554     return true;
7555   }
7556 }
7557 
7558 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7559 // lane-insensitive.
7560 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7561   // Our desired xxswap might be source of COPY_TO_REGCLASS.
7562   // TODO: Can we put this a common method for DAG?
7563   auto SkipRCCopy = [](SDValue V) {
7564     while (V->isMachineOpcode() &&
7565            V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7566       // All values in the chain should have single use.
7567       if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7568         return SDValue();
7569       V = V->getOperand(0);
7570     }
7571     return V.hasOneUse() ? V : SDValue();
7572   };
7573 
7574   SDValue VecOp = SkipRCCopy(N->getOperand(0));
7575   if (!VecOp || !isLaneInsensitive(VecOp))
7576     return;
7577 
7578   SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7579           RHS = SkipRCCopy(VecOp.getOperand(1));
7580   if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7581     return;
7582 
7583   // These swaps may still have chain-uses here, count on dead code elimination
7584   // in following passes to remove them.
7585   DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7586   DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7587   DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7588 }
7589 
7590 // Check if an SDValue has the 'aix-small-tls' global variable attribute.
7591 static bool hasAIXSmallTLSAttr(SDValue Val) {
7592   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val))
7593     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal()))
7594       if (GV->hasAttribute("aix-small-tls"))
7595         return true;
7596 
7597   return false;
7598 }
7599 
7600 // Is an ADDI eligible for folding for non-TOC-based local-[exec|dynamic]
7601 // accesses?
7602 static bool isEligibleToFoldADDIForFasterLocalAccesses(SelectionDAG *DAG,
7603                                                        SDValue ADDIToFold) {
7604   // Check if ADDIToFold (the ADDI that we want to fold into local-exec
7605   // accesses), is truly an ADDI.
7606   if (!ADDIToFold.isMachineOpcode() ||
7607       (ADDIToFold.getMachineOpcode() != PPC::ADDI8))
7608     return false;
7609 
7610   // Folding is only allowed for the AIX small-local-[exec|dynamic] TLS target
7611   // attribute or when the 'aix-small-tls' global variable attribute is present.
7612   const PPCSubtarget &Subtarget =
7613       DAG->getMachineFunction().getSubtarget<PPCSubtarget>();
7614   SDValue TLSVarNode = ADDIToFold.getOperand(1);
7615   if (!(Subtarget.hasAIXSmallLocalDynamicTLS() ||
7616         Subtarget.hasAIXSmallLocalExecTLS() || hasAIXSmallTLSAttr(TLSVarNode)))
7617     return false;
7618 
7619   // The second operand of the ADDIToFold should be the global TLS address
7620   // (the local-exec TLS variable). We only perform the folding if the TLS
7621   // variable is the second operand.
7622   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(TLSVarNode);
7623   if (!GA)
7624     return false;
7625 
7626   if (DAG->getTarget().getTLSModel(GA->getGlobal()) == TLSModel::LocalExec) {
7627     // The first operand of the ADDIToFold should be the thread pointer.
7628     // This transformation is only performed if the first operand of the
7629     // addi is the thread pointer.
7630     SDValue TPRegNode = ADDIToFold.getOperand(0);
7631     RegisterSDNode *TPReg = dyn_cast<RegisterSDNode>(TPRegNode.getNode());
7632     if (!TPReg || (TPReg->getReg() != Subtarget.getThreadPointerRegister()))
7633       return false;
7634   }
7635 
7636   // The local-[exec|dynamic] TLS variable should only have the
7637   // [MO_TPREL_FLAG|MO_TLSLD_FLAG] target flags, so this optimization is not
7638   // performed otherwise if the flag is not set.
7639   unsigned TargetFlags = GA->getTargetFlags();
7640   if (!(TargetFlags == PPCII::MO_TPREL_FLAG ||
7641         TargetFlags == PPCII::MO_TLSLD_FLAG))
7642     return false;
7643 
7644   // If all conditions are satisfied, the ADDI is valid for folding.
7645   return true;
7646 }
7647 
7648 // For non-TOC-based local-[exec|dynamic] access where an addi is feeding into
7649 // another addi, fold this sequence into a single addi if possible. Before this
7650 // optimization, the sequence appears as:
7651 //    addi rN, r13, sym@[le|ld]
7652 //    addi rM, rN, imm
7653 // After this optimization, we can fold the two addi into a single one:
7654 //    addi rM, r13, sym@[le|ld] + imm
7655 static void foldADDIForFasterLocalAccesses(SDNode *N, SelectionDAG *DAG) {
7656   if (N->getMachineOpcode() != PPC::ADDI8)
7657     return;
7658 
7659   // InitialADDI is the addi feeding into N (also an addi), and the addi that
7660   // we want optimized out.
7661   SDValue InitialADDI = N->getOperand(0);
7662 
7663   if (!isEligibleToFoldADDIForFasterLocalAccesses(DAG, InitialADDI))
7664     return;
7665 
7666   // The second operand of the InitialADDI should be the global TLS address
7667   // (the local-[exec|dynamic] TLS variable), with the
7668   // [MO_TPREL_FLAG|MO_TLSLD_FLAG] target flag. This has been checked in
7669   // isEligibleToFoldADDIForFasterLocalAccesses().
7670   SDValue TLSVarNode = InitialADDI.getOperand(1);
7671   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(TLSVarNode);
7672   assert(GA && "Expecting a valid GlobalAddressSDNode when folding addi into "
7673                "local-[exec|dynamic] accesses!");
7674   unsigned TargetFlags = GA->getTargetFlags();
7675 
7676   // The second operand of the addi that we want to preserve will be an
7677   // immediate. We add this immediate, together with the address of the TLS
7678   // variable found in InitialADDI, in order to preserve the correct TLS address
7679   // information during assembly printing. The offset is likely to be non-zero
7680   // when we end up in this case.
7681   int Offset = N->getConstantOperandVal(1);
7682   TLSVarNode = DAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), MVT::i64,
7683                                            Offset, TargetFlags);
7684 
7685   (void)DAG->UpdateNodeOperands(N, InitialADDI.getOperand(0), TLSVarNode);
7686   if (InitialADDI.getNode()->use_empty())
7687     DAG->RemoveDeadNode(InitialADDI.getNode());
7688 }
7689 
7690 void PPCDAGToDAGISel::PeepholePPC64() {
7691   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7692 
7693   while (Position != CurDAG->allnodes_begin()) {
7694     SDNode *N = &*--Position;
7695     // Skip dead nodes and any non-machine opcodes.
7696     if (N->use_empty() || !N->isMachineOpcode())
7697       continue;
7698 
7699     if (isVSXSwap(SDValue(N, 0)))
7700       reduceVSXSwap(N, CurDAG);
7701 
7702     // This optimization is performed for non-TOC-based local-[exec|dynamic]
7703     // accesses.
7704     foldADDIForFasterLocalAccesses(N, CurDAG);
7705 
7706     unsigned FirstOp;
7707     unsigned StorageOpcode = N->getMachineOpcode();
7708     bool RequiresMod4Offset = false;
7709 
7710     switch (StorageOpcode) {
7711     default: continue;
7712 
7713     case PPC::LWA:
7714     case PPC::LD:
7715     case PPC::DFLOADf64:
7716     case PPC::DFLOADf32:
7717       RequiresMod4Offset = true;
7718       [[fallthrough]];
7719     case PPC::LBZ:
7720     case PPC::LBZ8:
7721     case PPC::LFD:
7722     case PPC::LFS:
7723     case PPC::LHA:
7724     case PPC::LHA8:
7725     case PPC::LHZ:
7726     case PPC::LHZ8:
7727     case PPC::LWZ:
7728     case PPC::LWZ8:
7729       FirstOp = 0;
7730       break;
7731 
7732     case PPC::STD:
7733     case PPC::DFSTOREf64:
7734     case PPC::DFSTOREf32:
7735       RequiresMod4Offset = true;
7736       [[fallthrough]];
7737     case PPC::STB:
7738     case PPC::STB8:
7739     case PPC::STFD:
7740     case PPC::STFS:
7741     case PPC::STH:
7742     case PPC::STH8:
7743     case PPC::STW:
7744     case PPC::STW8:
7745       FirstOp = 1;
7746       break;
7747     }
7748 
7749     // If this is a load or store with a zero offset, or within the alignment,
7750     // we may be able to fold an add-immediate into the memory operation.
7751     // The check against alignment is below, as it can't occur until we check
7752     // the arguments to N
7753     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7754       continue;
7755 
7756     SDValue Base = N->getOperand(FirstOp + 1);
7757     if (!Base.isMachineOpcode())
7758       continue;
7759 
7760     unsigned Flags = 0;
7761     bool ReplaceFlags = true;
7762 
7763     // When the feeding operation is an add-immediate of some sort,
7764     // determine whether we need to add relocation information to the
7765     // target flags on the immediate operand when we fold it into the
7766     // load instruction.
7767     //
7768     // For something like ADDItocL8, the relocation information is
7769     // inferred from the opcode; when we process it in the AsmPrinter,
7770     // we add the necessary relocation there.  A load, though, can receive
7771     // relocation from various flavors of ADDIxxx, so we need to carry
7772     // the relocation information in the target flags.
7773     switch (Base.getMachineOpcode()) {
7774     default: continue;
7775 
7776     case PPC::ADDI8:
7777     case PPC::ADDI:
7778       // In some cases (such as TLS) the relocation information
7779       // is already in place on the operand, so copying the operand
7780       // is sufficient.
7781       ReplaceFlags = false;
7782       break;
7783     case PPC::ADDIdtprelL:
7784       Flags = PPCII::MO_DTPREL_LO;
7785       break;
7786     case PPC::ADDItlsldL:
7787       Flags = PPCII::MO_TLSLD_LO;
7788       break;
7789     case PPC::ADDItocL8:
7790       // Skip the following peephole optimizations for ADDItocL8 on AIX which
7791       // is used for toc-data access.
7792       if (Subtarget->isAIXABI())
7793         continue;
7794       Flags = PPCII::MO_TOC_LO;
7795       break;
7796     }
7797 
7798     SDValue ImmOpnd = Base.getOperand(1);
7799 
7800     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7801     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7802     // we might have needed different @ha relocation values for the offset
7803     // pointers).
7804     int MaxDisplacement = 7;
7805     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7806       const GlobalValue *GV = GA->getGlobal();
7807       Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7808       MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7809     }
7810 
7811     bool UpdateHBase = false;
7812     SDValue HBase = Base.getOperand(0);
7813 
7814     int Offset = N->getConstantOperandVal(FirstOp);
7815     if (ReplaceFlags) {
7816       if (Offset < 0 || Offset > MaxDisplacement) {
7817         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7818         // one use, then we can do this for any offset, we just need to also
7819         // update the offset (i.e. the symbol addend) on the addis also.
7820         if (Base.getMachineOpcode() != PPC::ADDItocL8)
7821           continue;
7822 
7823         if (!HBase.isMachineOpcode() ||
7824             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7825           continue;
7826 
7827         if (!Base.hasOneUse() || !HBase.hasOneUse())
7828           continue;
7829 
7830         SDValue HImmOpnd = HBase.getOperand(1);
7831         if (HImmOpnd != ImmOpnd)
7832           continue;
7833 
7834         UpdateHBase = true;
7835       }
7836     } else {
7837       // Global addresses can be folded, but only if they are sufficiently
7838       // aligned.
7839       if (RequiresMod4Offset) {
7840         if (GlobalAddressSDNode *GA =
7841                 dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7842           const GlobalValue *GV = GA->getGlobal();
7843           Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7844           if (Alignment < 4)
7845             continue;
7846         }
7847       }
7848 
7849       // If we're directly folding the addend from an addi instruction, then:
7850       //  1. In general, the offset on the memory access must be zero.
7851       //  2. If the addend is a constant, then it can be combined with a
7852       //     non-zero offset, but only if the result meets the encoding
7853       //     requirements.
7854       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7855         Offset += C->getSExtValue();
7856 
7857         if (RequiresMod4Offset && (Offset % 4) != 0)
7858           continue;
7859 
7860         if (!isInt<16>(Offset))
7861           continue;
7862 
7863         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7864                                             ImmOpnd.getValueType());
7865       } else if (Offset != 0) {
7866         // This optimization is performed for non-TOC-based local-[exec|dynamic]
7867         // accesses.
7868         if (isEligibleToFoldADDIForFasterLocalAccesses(CurDAG, Base)) {
7869           // Add the non-zero offset information into the load or store
7870           // instruction to be used for non-TOC-based local-[exec|dynamic]
7871           // accesses.
7872           GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd);
7873           assert(GA && "Expecting a valid GlobalAddressSDNode when folding "
7874                        "addi into local-[exec|dynamic] accesses!");
7875           ImmOpnd = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA),
7876                                                    MVT::i64, Offset,
7877                                                    GA->getTargetFlags());
7878         } else
7879           continue;
7880       }
7881     }
7882 
7883     // We found an opportunity.  Reverse the operands from the add
7884     // immediate and substitute them into the load or store.  If
7885     // needed, update the target flags for the immediate operand to
7886     // reflect the necessary relocation information.
7887     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
7888     LLVM_DEBUG(Base->dump(CurDAG));
7889     LLVM_DEBUG(dbgs() << "\nN: ");
7890     LLVM_DEBUG(N->dump(CurDAG));
7891     LLVM_DEBUG(dbgs() << "\n");
7892 
7893     // If the relocation information isn't already present on the
7894     // immediate operand, add it now.
7895     if (ReplaceFlags) {
7896       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7897         SDLoc dl(GA);
7898         const GlobalValue *GV = GA->getGlobal();
7899         Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7900         // We can't perform this optimization for data whose alignment
7901         // is insufficient for the instruction encoding.
7902         if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7903           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7904           continue;
7905         }
7906         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7907       } else if (ConstantPoolSDNode *CP =
7908                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7909         const Constant *C = CP->getConstVal();
7910         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7911                                                 Offset, Flags);
7912       }
7913     }
7914 
7915     if (FirstOp == 1) // Store
7916       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7917                                        Base.getOperand(0), N->getOperand(3));
7918     else // Load
7919       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7920                                        N->getOperand(2));
7921 
7922     if (UpdateHBase)
7923       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7924                                        ImmOpnd);
7925 
7926     // The add-immediate may now be dead, in which case remove it.
7927     if (Base.getNode()->use_empty())
7928       CurDAG->RemoveDeadNode(Base.getNode());
7929   }
7930 }
7931 
7932 /// createPPCISelDag - This pass converts a legalized DAG into a
7933 /// PowerPC-specific DAG, ready for instruction scheduling.
7934 ///
7935 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7936                                      CodeGenOptLevel OptLevel) {
7937   return new PPCDAGToDAGISelLegacy(TM, OptLevel);
7938 }
7939