1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pattern matching instruction selector for PowerPC, 10 // converting from a legalized dag to a PPC dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCISelLowering.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/APSInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/ISDOpcodes.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGISel.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/IntrinsicsPowerPC.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CodeGen.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <new> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "ppc-isel" 73 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection" 74 75 STATISTIC(NumSextSetcc, 76 "Number of (sext(setcc)) nodes expanded into GPR sequence."); 77 STATISTIC(NumZextSetcc, 78 "Number of (zext(setcc)) nodes expanded into GPR sequence."); 79 STATISTIC(SignExtensionsAdded, 80 "Number of sign extensions for compare inputs added."); 81 STATISTIC(ZeroExtensionsAdded, 82 "Number of zero extensions for compare inputs added."); 83 STATISTIC(NumLogicOpsOnComparison, 84 "Number of logical ops on i1 values calculated in GPR."); 85 STATISTIC(OmittedForNonExtendUses, 86 "Number of compares not eliminated as they have non-extending uses."); 87 STATISTIC(NumP9Setb, 88 "Number of compares lowered to setb."); 89 90 // FIXME: Remove this once the bug has been fixed! 91 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 92 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 93 94 static cl::opt<bool> 95 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 96 cl::desc("use aggressive ppc isel for bit permutations"), 97 cl::Hidden); 98 static cl::opt<bool> BPermRewriterNoMasking( 99 "ppc-bit-perm-rewriter-stress-rotates", 100 cl::desc("stress rotate selection in aggressive ppc isel for " 101 "bit permutations"), 102 cl::Hidden); 103 104 static cl::opt<bool> EnableBranchHint( 105 "ppc-use-branch-hint", cl::init(true), 106 cl::desc("Enable static hinting of branches on ppc"), 107 cl::Hidden); 108 109 static cl::opt<bool> EnableTLSOpt( 110 "ppc-tls-opt", cl::init(true), 111 cl::desc("Enable tls optimization peephole"), 112 cl::Hidden); 113 114 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, 115 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, 116 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; 117 118 static cl::opt<ICmpInGPRType> CmpInGPR( 119 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), 120 cl::desc("Specify the types of comparisons to emit GPR-only code for."), 121 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), 122 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), 123 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), 124 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), 125 clEnumValN(ICGPR_NonExtIn, "nonextin", 126 "Only comparisons where inputs don't need [sz]ext."), 127 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), 128 clEnumValN(ICGPR_ZextI32, "zexti32", 129 "Only i32 comparisons with zext result."), 130 clEnumValN(ICGPR_ZextI64, "zexti64", 131 "Only i64 comparisons with zext result."), 132 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), 133 clEnumValN(ICGPR_SextI32, "sexti32", 134 "Only i32 comparisons with sext result."), 135 clEnumValN(ICGPR_SextI64, "sexti64", 136 "Only i64 comparisons with sext result."))); 137 namespace { 138 139 //===--------------------------------------------------------------------===// 140 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 141 /// instructions for SelectionDAG operations. 142 /// 143 class PPCDAGToDAGISel : public SelectionDAGISel { 144 const PPCTargetMachine &TM; 145 const PPCSubtarget *Subtarget = nullptr; 146 const PPCTargetLowering *PPCLowering = nullptr; 147 unsigned GlobalBaseReg = 0; 148 149 public: 150 static char ID; 151 152 PPCDAGToDAGISel() = delete; 153 154 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) 155 : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {} 156 157 bool runOnMachineFunction(MachineFunction &MF) override { 158 // Make sure we re-emit a set of the global base reg if necessary 159 GlobalBaseReg = 0; 160 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 161 PPCLowering = Subtarget->getTargetLowering(); 162 if (Subtarget->hasROPProtect()) { 163 // Create a place on the stack for the ROP Protection Hash. 164 // The ROP Protection Hash will always be 8 bytes and aligned to 8 165 // bytes. 166 MachineFrameInfo &MFI = MF.getFrameInfo(); 167 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 168 const int Result = MFI.CreateStackObject(8, Align(8), false); 169 FI->setROPProtectionHashSaveIndex(Result); 170 } 171 SelectionDAGISel::runOnMachineFunction(MF); 172 173 return true; 174 } 175 176 void PreprocessISelDAG() override; 177 void PostprocessISelDAG() override; 178 179 /// getI16Imm - Return a target constant with the specified value, of type 180 /// i16. 181 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { 182 return CurDAG->getTargetConstant(Imm, dl, MVT::i16); 183 } 184 185 /// getI32Imm - Return a target constant with the specified value, of type 186 /// i32. 187 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 188 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 189 } 190 191 /// getI64Imm - Return a target constant with the specified value, of type 192 /// i64. 193 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 194 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 195 } 196 197 /// getSmallIPtrImm - Return a target constant of pointer type. 198 inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) { 199 return CurDAG->getTargetConstant( 200 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 201 } 202 203 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 204 /// rotate and mask opcode and mask operation. 205 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 206 unsigned &SH, unsigned &MB, unsigned &ME); 207 208 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 209 /// base register. Return the virtual register that holds this value. 210 SDNode *getGlobalBaseReg(); 211 212 void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0); 213 214 // Select - Convert the specified operand from a target-independent to a 215 // target-specific node if it hasn't already been changed. 216 void Select(SDNode *N) override; 217 218 bool tryBitfieldInsert(SDNode *N); 219 bool tryBitPermutation(SDNode *N); 220 bool tryIntCompareInGPR(SDNode *N); 221 222 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into 223 // an X-Form load instruction with the offset being a relocation coming from 224 // the PPCISD::ADD_TLS. 225 bool tryTLSXFormLoad(LoadSDNode *N); 226 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into 227 // an X-Form store instruction with the offset being a relocation coming from 228 // the PPCISD::ADD_TLS. 229 bool tryTLSXFormStore(StoreSDNode *N); 230 /// SelectCC - Select a comparison of the specified values with the 231 /// specified condition code, returning the CR# of the expression. 232 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 233 const SDLoc &dl, SDValue Chain = SDValue()); 234 235 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 236 /// immediate field. Note that the operand at this point is already the 237 /// result of a prior SelectAddressRegImm call. 238 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 239 if (N.getOpcode() == ISD::TargetConstant || 240 N.getOpcode() == ISD::TargetGlobalAddress) { 241 Out = N; 242 return true; 243 } 244 245 return false; 246 } 247 248 /// SelectDSForm - Returns true if address N can be represented by the 249 /// addressing mode of DSForm instructions (a base register, plus a signed 250 /// 16-bit displacement that is a multiple of 4. 251 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 252 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 253 Align(4)) == PPC::AM_DSForm; 254 } 255 256 /// SelectDQForm - Returns true if address N can be represented by the 257 /// addressing mode of DQForm instructions (a base register, plus a signed 258 /// 16-bit displacement that is a multiple of 16. 259 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 260 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 261 Align(16)) == PPC::AM_DQForm; 262 } 263 264 /// SelectDForm - Returns true if address N can be represented by 265 /// the addressing mode of DForm instructions (a base register, plus a 266 /// signed 16-bit immediate. 267 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 268 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 269 std::nullopt) == PPC::AM_DForm; 270 } 271 272 /// SelectPCRelForm - Returns true if address N can be represented by 273 /// PC-Relative addressing mode. 274 bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp, 275 SDValue &Base) { 276 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 277 std::nullopt) == PPC::AM_PCRel; 278 } 279 280 /// SelectPDForm - Returns true if address N can be represented by Prefixed 281 /// DForm addressing mode (a base register, plus a signed 34-bit immediate. 282 bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 283 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 284 std::nullopt) == 285 PPC::AM_PrefixDForm; 286 } 287 288 /// SelectXForm - Returns true if address N can be represented by the 289 /// addressing mode of XForm instructions (an indexed [r+r] operation). 290 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 291 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 292 std::nullopt) == PPC::AM_XForm; 293 } 294 295 /// SelectForceXForm - Given the specified address, force it to be 296 /// represented as an indexed [r+r] operation (an XForm instruction). 297 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp, 298 SDValue &Base) { 299 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) == 300 PPC::AM_XForm; 301 } 302 303 /// SelectAddrIdx - Given the specified address, check to see if it can be 304 /// represented as an indexed [r+r] operation. 305 /// This is for xform instructions whose associated displacement form is D. 306 /// The last parameter \p 0 means associated D form has no requirment for 16 307 /// bit signed displacement. 308 /// Returns false if it can be represented by [r+imm], which are preferred. 309 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 310 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 311 std::nullopt); 312 } 313 314 /// SelectAddrIdx4 - Given the specified address, check to see if it can be 315 /// represented as an indexed [r+r] operation. 316 /// This is for xform instructions whose associated displacement form is DS. 317 /// The last parameter \p 4 means associated DS form 16 bit signed 318 /// displacement must be a multiple of 4. 319 /// Returns false if it can be represented by [r+imm], which are preferred. 320 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { 321 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 322 Align(4)); 323 } 324 325 /// SelectAddrIdx16 - Given the specified address, check to see if it can be 326 /// represented as an indexed [r+r] operation. 327 /// This is for xform instructions whose associated displacement form is DQ. 328 /// The last parameter \p 16 means associated DQ form 16 bit signed 329 /// displacement must be a multiple of 16. 330 /// Returns false if it can be represented by [r+imm], which are preferred. 331 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { 332 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 333 Align(16)); 334 } 335 336 /// SelectAddrIdxOnly - Given the specified address, force it to be 337 /// represented as an indexed [r+r] operation. 338 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 339 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 340 } 341 342 /// SelectAddrImm - Returns true if the address N can be represented by 343 /// a base register plus a signed 16-bit displacement [r+imm]. 344 /// The last parameter \p 0 means D form has no requirment for 16 bit signed 345 /// displacement. 346 bool SelectAddrImm(SDValue N, SDValue &Disp, 347 SDValue &Base) { 348 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 349 std::nullopt); 350 } 351 352 /// SelectAddrImmX4 - Returns true if the address N can be represented by 353 /// a base register plus a signed 16-bit displacement that is a multiple of 354 /// 4 (last parameter). Suitable for use by STD and friends. 355 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 356 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); 357 } 358 359 /// SelectAddrImmX16 - Returns true if the address N can be represented by 360 /// a base register plus a signed 16-bit displacement that is a multiple of 361 /// 16(last parameter). Suitable for use by STXV and friends. 362 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { 363 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 364 Align(16)); 365 } 366 367 /// SelectAddrImmX34 - Returns true if the address N can be represented by 368 /// a base register plus a signed 34-bit displacement. Suitable for use by 369 /// PSTXVP and friends. 370 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) { 371 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG); 372 } 373 374 // Select an address into a single register. 375 bool SelectAddr(SDValue N, SDValue &Base) { 376 Base = N; 377 return true; 378 } 379 380 bool SelectAddrPCRel(SDValue N, SDValue &Base) { 381 return PPCLowering->SelectAddressPCRel(N, Base); 382 } 383 384 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 385 /// inline asm expressions. It is always correct to compute the value into 386 /// a register. The case of adding a (possibly relocatable) constant to a 387 /// register can be improved, but it is wrong to substitute Reg+Reg for 388 /// Reg in an asm, because the load or store opcode would have to change. 389 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 390 unsigned ConstraintID, 391 std::vector<SDValue> &OutOps) override { 392 switch(ConstraintID) { 393 default: 394 errs() << "ConstraintID: " << ConstraintID << "\n"; 395 llvm_unreachable("Unexpected asm memory constraint"); 396 case InlineAsm::Constraint_es: 397 case InlineAsm::Constraint_m: 398 case InlineAsm::Constraint_o: 399 case InlineAsm::Constraint_Q: 400 case InlineAsm::Constraint_Z: 401 case InlineAsm::Constraint_Zy: 402 // We need to make sure that this one operand does not end up in r0 403 // (because we might end up lowering this as 0(%op)). 404 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 405 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 406 SDLoc dl(Op); 407 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 408 SDValue NewOp = 409 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 410 dl, Op.getValueType(), 411 Op, RC), 0); 412 413 OutOps.push_back(NewOp); 414 return false; 415 } 416 return true; 417 } 418 419 // Include the pieces autogenerated from the target description. 420 #include "PPCGenDAGISel.inc" 421 422 private: 423 bool trySETCC(SDNode *N); 424 bool tryFoldSWTestBRCC(SDNode *N); 425 bool trySelectLoopCountIntrinsic(SDNode *N); 426 bool tryAsSingleRLDICL(SDNode *N); 427 bool tryAsSingleRLDICR(SDNode *N); 428 bool tryAsSingleRLWINM(SDNode *N); 429 bool tryAsSingleRLWINM8(SDNode *N); 430 bool tryAsSingleRLWIMI(SDNode *N); 431 bool tryAsPairOfRLDICL(SDNode *N); 432 bool tryAsSingleRLDIMI(SDNode *N); 433 434 void PeepholePPC64(); 435 void PeepholePPC64ZExt(); 436 void PeepholeCROps(); 437 438 SDValue combineToCMPB(SDNode *N); 439 void foldBoolExts(SDValue &Res, SDNode *&N); 440 441 bool AllUsersSelectZero(SDNode *N); 442 void SwapAllSelectUsers(SDNode *N); 443 444 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; 445 void transferMemOperands(SDNode *N, SDNode *Result); 446 }; 447 448 } // end anonymous namespace 449 450 char PPCDAGToDAGISel::ID = 0; 451 452 INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false) 453 454 /// getGlobalBaseReg - Output the instructions required to put the 455 /// base address to use for accessing globals into a register. 456 /// 457 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 458 if (!GlobalBaseReg) { 459 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 460 // Insert the set of GlobalBaseReg into the first MBB of the function 461 MachineBasicBlock &FirstMBB = MF->front(); 462 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 463 const Module *M = MF->getFunction().getParent(); 464 DebugLoc dl; 465 466 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 467 if (Subtarget->isTargetELF()) { 468 GlobalBaseReg = PPC::R30; 469 if (!Subtarget->isSecurePlt() && 470 M->getPICLevel() == PICLevel::SmallPIC) { 471 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 472 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 473 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 474 } else { 475 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 476 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 477 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 478 BuildMI(FirstMBB, MBBI, dl, 479 TII.get(PPC::UpdateGBR), GlobalBaseReg) 480 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 481 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 482 } 483 } else { 484 GlobalBaseReg = 485 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); 486 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 487 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 488 } 489 } else { 490 // We must ensure that this sequence is dominated by the prologue. 491 // FIXME: This is a bit of a big hammer since we don't get the benefits 492 // of shrink-wrapping whenever we emit this instruction. Considering 493 // this is used in any function where we emit a jump table, this may be 494 // a significant limitation. We should consider inserting this in the 495 // block where it is used and then commoning this sequence up if it 496 // appears in multiple places. 497 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of 498 // MovePCtoLR8. 499 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); 500 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 501 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 502 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 503 } 504 } 505 return CurDAG->getRegister(GlobalBaseReg, 506 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 507 .getNode(); 508 } 509 510 // Check if a SDValue has the toc-data attribute. 511 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) { 512 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val); 513 if (!GA) 514 return false; 515 516 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal()); 517 if (!GV) 518 return false; 519 520 if (!GV->hasAttribute("toc-data")) 521 return false; 522 523 // TODO: These asserts should be updated as more support for the toc data 524 // transformation is added (struct support, etc.). 525 526 assert( 527 PointerSize >= GV->getAlign().valueOrOne().value() && 528 "GlobalVariables with an alignment requirement stricter than TOC entry " 529 "size not supported by the toc data transformation."); 530 531 Type *GVType = GV->getValueType(); 532 533 assert(GVType->isSized() && "A GlobalVariable's size must be known to be " 534 "supported by the toc data transformation."); 535 536 if (GVType->isVectorTy()) 537 report_fatal_error("A GlobalVariable of Vector type is not currently " 538 "supported by the toc data transformation."); 539 540 if (GVType->isArrayTy()) 541 report_fatal_error("A GlobalVariable of Array type is not currently " 542 "supported by the toc data transformation."); 543 544 if (GVType->isStructTy()) 545 report_fatal_error("A GlobalVariable of Struct type is not currently " 546 "supported by the toc data transformation."); 547 548 assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && 549 "A GlobalVariable with size larger than a TOC entry is not currently " 550 "supported by the toc data transformation."); 551 552 if (GV->hasLocalLinkage() || GV->hasPrivateLinkage()) 553 report_fatal_error("A GlobalVariable with private or local linkage is not " 554 "currently supported by the toc data transformation."); 555 556 assert(!GV->hasCommonLinkage() && 557 "Tentative definitions cannot have the mapping class XMC_TD."); 558 559 return true; 560 } 561 562 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 563 /// operand. If so Imm will receive the 32-bit value. 564 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 565 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 566 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 567 return true; 568 } 569 return false; 570 } 571 572 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 573 /// operand. If so Imm will receive the 64-bit value. 574 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 575 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 576 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 577 return true; 578 } 579 return false; 580 } 581 582 // isInt32Immediate - This method tests to see if a constant operand. 583 // If so Imm will receive the 32 bit value. 584 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 585 return isInt32Immediate(N.getNode(), Imm); 586 } 587 588 /// isInt64Immediate - This method tests to see if the value is a 64-bit 589 /// constant operand. If so Imm will receive the 64-bit value. 590 static bool isInt64Immediate(SDValue N, uint64_t &Imm) { 591 return isInt64Immediate(N.getNode(), Imm); 592 } 593 594 static unsigned getBranchHint(unsigned PCC, 595 const FunctionLoweringInfo &FuncInfo, 596 const SDValue &DestMBB) { 597 assert(isa<BasicBlockSDNode>(DestMBB)); 598 599 if (!FuncInfo.BPI) return PPC::BR_NO_HINT; 600 601 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); 602 const Instruction *BBTerm = BB->getTerminator(); 603 604 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 605 606 const BasicBlock *TBB = BBTerm->getSuccessor(0); 607 const BasicBlock *FBB = BBTerm->getSuccessor(1); 608 609 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); 610 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); 611 612 // We only want to handle cases which are easy to predict at static time, e.g. 613 // C++ throw statement, that is very likely not taken, or calling never 614 // returned function, e.g. stdlib exit(). So we set Threshold to filter 615 // unwanted cases. 616 // 617 // Below is LLVM branch weight table, we only want to handle case 1, 2 618 // 619 // Case Taken:Nontaken Example 620 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 621 // 2. Invoke-terminating 1:1048575 622 // 3. Coldblock 4:64 __builtin_expect 623 // 4. Loop Branch 124:4 For loop 624 // 5. PH/ZH/FPH 20:12 625 const uint32_t Threshold = 10000; 626 627 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 628 return PPC::BR_NO_HINT; 629 630 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() 631 << "::" << BB->getName() << "'\n" 632 << " -> " << TBB->getName() << ": " << TProb << "\n" 633 << " -> " << FBB->getName() << ": " << FProb << "\n"); 634 635 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 636 637 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 638 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 639 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 640 std::swap(TProb, FProb); 641 642 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 643 } 644 645 // isOpcWithIntImmediate - This method tests to see if the node is a specific 646 // opcode and that it has a immediate integer right operand. 647 // If so Imm will receive the 32 bit value. 648 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 649 return N->getOpcode() == Opc 650 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 651 } 652 653 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) { 654 SDLoc dl(SN); 655 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 656 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 657 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 658 if (SN->hasOneUse()) 659 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 660 getSmallIPtrImm(Offset, dl)); 661 else 662 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 663 getSmallIPtrImm(Offset, dl))); 664 } 665 666 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 667 bool isShiftMask, unsigned &SH, 668 unsigned &MB, unsigned &ME) { 669 // Don't even go down this path for i64, since different logic will be 670 // necessary for rldicl/rldicr/rldimi. 671 if (N->getValueType(0) != MVT::i32) 672 return false; 673 674 unsigned Shift = 32; 675 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 676 unsigned Opcode = N->getOpcode(); 677 if (N->getNumOperands() != 2 || 678 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 679 return false; 680 681 if (Opcode == ISD::SHL) { 682 // apply shift left to mask if it comes first 683 if (isShiftMask) Mask = Mask << Shift; 684 // determine which bits are made indeterminant by shift 685 Indeterminant = ~(0xFFFFFFFFu << Shift); 686 } else if (Opcode == ISD::SRL) { 687 // apply shift right to mask if it comes first 688 if (isShiftMask) Mask = Mask >> Shift; 689 // determine which bits are made indeterminant by shift 690 Indeterminant = ~(0xFFFFFFFFu >> Shift); 691 // adjust for the left rotate 692 Shift = 32 - Shift; 693 } else if (Opcode == ISD::ROTL) { 694 Indeterminant = 0; 695 } else { 696 return false; 697 } 698 699 // if the mask doesn't intersect any Indeterminant bits 700 if (Mask && !(Mask & Indeterminant)) { 701 SH = Shift & 31; 702 // make sure the mask is still a mask (wrap arounds may not be) 703 return isRunOfOnes(Mask, MB, ME); 704 } 705 return false; 706 } 707 708 // isThreadPointerAcquisitionNode - Check if the operands of an ADD_TLS 709 // instruction use the thread pointer. 710 static bool isThreadPointerAcquisitionNode(SDValue Base, SelectionDAG *CurDAG) { 711 assert( 712 Base.getOpcode() == PPCISD::ADD_TLS && 713 "Only expecting the ADD_TLS instruction to acquire the thread pointer!"); 714 const PPCSubtarget &Subtarget = 715 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 716 SDValue ADDTLSOp1 = Base.getOperand(0); 717 unsigned ADDTLSOp1Opcode = ADDTLSOp1.getOpcode(); 718 719 // Account for when ADD_TLS is used for the initial-exec TLS model on Linux. 720 // 721 // Although ADD_TLS does not explicitly use the thread pointer 722 // register when LD_GOT_TPREL_L is one of it's operands, the LD_GOT_TPREL_L 723 // instruction will have a relocation specifier, @got@tprel, that is used to 724 // generate a GOT entry. The linker replaces this entry with an offset for a 725 // for a thread local variable, which will be relative to the thread pointer. 726 if (ADDTLSOp1Opcode == PPCISD::LD_GOT_TPREL_L) 727 return true; 728 // When using PC-Relative instructions for initial-exec, a MAT_PCREL_ADDR 729 // node is produced instead to represent the aforementioned situation. 730 LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSOp1); 731 if (LD && LD->getBasePtr().getOpcode() == PPCISD::MAT_PCREL_ADDR) 732 return true; 733 734 // A GET_TPOINTER PPCISD node (only produced on AIX 32-bit mode) as an operand 735 // to ADD_TLS represents a call to .__get_tpointer to get the thread pointer, 736 // later returning it into R3. 737 if (ADDTLSOp1Opcode == PPCISD::GET_TPOINTER) 738 return true; 739 740 // The ADD_TLS note is explicitly acquiring the thread pointer (X13/R13). 741 RegisterSDNode *AddFirstOpReg = 742 dyn_cast_or_null<RegisterSDNode>(ADDTLSOp1.getNode()); 743 if (AddFirstOpReg && 744 AddFirstOpReg->getReg() == Subtarget.getThreadPointerRegister()) 745 return true; 746 747 return false; 748 } 749 750 // canOptimizeTLSDFormToXForm - Optimize TLS accesses when an ADD_TLS 751 // instruction is present. An ADD_TLS instruction, followed by a D-Form memory 752 // operation, can be optimized to use an X-Form load or store, allowing the 753 // ADD_TLS node to be removed completely. 754 static bool canOptimizeTLSDFormToXForm(SelectionDAG *CurDAG, SDValue Base) { 755 756 // Do not do this transformation at -O0. 757 if (CurDAG->getTarget().getOptLevel() == CodeGenOpt::None) 758 return false; 759 760 // In order to perform this optimization inside tryTLSXForm[Load|Store], 761 // Base is expected to be an ADD_TLS node. 762 if (Base.getOpcode() != PPCISD::ADD_TLS) 763 return false; 764 for (auto *ADDTLSUse : Base.getNode()->uses()) { 765 // The optimization to convert the D-Form load/store into its X-Form 766 // counterpart should only occur if the source value offset of the load/ 767 // store is 0. This also means that The offset should always be undefined. 768 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSUse)) { 769 if (LD->getSrcValueOffset() != 0 || !LD->getOffset().isUndef()) 770 return false; 771 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(ADDTLSUse)) { 772 if (ST->getSrcValueOffset() != 0 || !ST->getOffset().isUndef()) 773 return false; 774 } else // Don't optimize if there are ADD_TLS users that aren't load/stores. 775 return false; 776 } 777 778 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) 779 return false; 780 781 // Does the ADD_TLS node of the load/store use the thread pointer? 782 // If the thread pointer is not used as one of the operands of ADD_TLS, 783 // then this optimization is not valid. 784 return isThreadPointerAcquisitionNode(Base, CurDAG); 785 } 786 787 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { 788 SDValue Base = ST->getBasePtr(); 789 if (!canOptimizeTLSDFormToXForm(CurDAG, Base)) 790 return false; 791 792 SDLoc dl(ST); 793 EVT MemVT = ST->getMemoryVT(); 794 EVT RegVT = ST->getValue().getValueType(); 795 796 unsigned Opcode; 797 switch (MemVT.getSimpleVT().SimpleTy) { 798 default: 799 return false; 800 case MVT::i8: { 801 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; 802 break; 803 } 804 case MVT::i16: { 805 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; 806 break; 807 } 808 case MVT::i32: { 809 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; 810 break; 811 } 812 case MVT::i64: { 813 Opcode = PPC::STDXTLS; 814 break; 815 } 816 case MVT::f32: { 817 Opcode = PPC::STFSXTLS; 818 break; 819 } 820 case MVT::f64: { 821 Opcode = PPC::STFDXTLS; 822 break; 823 } 824 } 825 SDValue Chain = ST->getChain(); 826 SDVTList VTs = ST->getVTList(); 827 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), 828 Chain}; 829 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 830 transferMemOperands(ST, MN); 831 ReplaceNode(ST, MN); 832 return true; 833 } 834 835 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { 836 SDValue Base = LD->getBasePtr(); 837 if (!canOptimizeTLSDFormToXForm(CurDAG, Base)) 838 return false; 839 840 SDLoc dl(LD); 841 EVT MemVT = LD->getMemoryVT(); 842 EVT RegVT = LD->getValueType(0); 843 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 844 unsigned Opcode; 845 switch (MemVT.getSimpleVT().SimpleTy) { 846 default: 847 return false; 848 case MVT::i8: { 849 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; 850 break; 851 } 852 case MVT::i16: { 853 if (RegVT == MVT::i32) 854 Opcode = isSExt ? PPC::LHAXTLS_32 : PPC::LHZXTLS_32; 855 else 856 Opcode = isSExt ? PPC::LHAXTLS : PPC::LHZXTLS; 857 break; 858 } 859 case MVT::i32: { 860 if (RegVT == MVT::i32) 861 Opcode = isSExt ? PPC::LWAXTLS_32 : PPC::LWZXTLS_32; 862 else 863 Opcode = isSExt ? PPC::LWAXTLS : PPC::LWZXTLS; 864 break; 865 } 866 case MVT::i64: { 867 Opcode = PPC::LDXTLS; 868 break; 869 } 870 case MVT::f32: { 871 Opcode = PPC::LFSXTLS; 872 break; 873 } 874 case MVT::f64: { 875 Opcode = PPC::LFDXTLS; 876 break; 877 } 878 } 879 SDValue Chain = LD->getChain(); 880 SDVTList VTs = LD->getVTList(); 881 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; 882 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 883 transferMemOperands(LD, MN); 884 ReplaceNode(LD, MN); 885 return true; 886 } 887 888 /// Turn an or of two masked values into the rotate left word immediate then 889 /// mask insert (rlwimi) instruction. 890 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 891 SDValue Op0 = N->getOperand(0); 892 SDValue Op1 = N->getOperand(1); 893 SDLoc dl(N); 894 895 KnownBits LKnown = CurDAG->computeKnownBits(Op0); 896 KnownBits RKnown = CurDAG->computeKnownBits(Op1); 897 898 unsigned TargetMask = LKnown.Zero.getZExtValue(); 899 unsigned InsertMask = RKnown.Zero.getZExtValue(); 900 901 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 902 unsigned Op0Opc = Op0.getOpcode(); 903 unsigned Op1Opc = Op1.getOpcode(); 904 unsigned Value, SH = 0; 905 TargetMask = ~TargetMask; 906 InsertMask = ~InsertMask; 907 908 // If the LHS has a foldable shift and the RHS does not, then swap it to the 909 // RHS so that we can fold the shift into the insert. 910 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 911 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 912 Op0.getOperand(0).getOpcode() == ISD::SRL) { 913 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 914 Op1.getOperand(0).getOpcode() != ISD::SRL) { 915 std::swap(Op0, Op1); 916 std::swap(Op0Opc, Op1Opc); 917 std::swap(TargetMask, InsertMask); 918 } 919 } 920 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 921 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 922 Op1.getOperand(0).getOpcode() != ISD::SRL) { 923 std::swap(Op0, Op1); 924 std::swap(Op0Opc, Op1Opc); 925 std::swap(TargetMask, InsertMask); 926 } 927 } 928 929 unsigned MB, ME; 930 if (isRunOfOnes(InsertMask, MB, ME)) { 931 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 932 isInt32Immediate(Op1.getOperand(1), Value)) { 933 Op1 = Op1.getOperand(0); 934 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 935 } 936 if (Op1Opc == ISD::AND) { 937 // The AND mask might not be a constant, and we need to make sure that 938 // if we're going to fold the masking with the insert, all bits not 939 // know to be zero in the mask are known to be one. 940 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); 941 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); 942 943 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 944 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 945 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 946 // Note that Value must be in range here (less than 32) because 947 // otherwise there would not be any bits set in InsertMask. 948 Op1 = Op1.getOperand(0).getOperand(0); 949 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 950 } 951 } 952 953 SH &= 31; 954 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 955 getI32Imm(ME, dl) }; 956 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 957 return true; 958 } 959 } 960 return false; 961 } 962 963 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { 964 unsigned MaxTruncation = 0; 965 // Cannot use range-based for loop here as we need the actual use (i.e. we 966 // need the operand number corresponding to the use). A range-based for 967 // will unbox the use and provide an SDNode*. 968 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); 969 Use != UseEnd; ++Use) { 970 unsigned Opc = 971 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); 972 switch (Opc) { 973 default: return 0; 974 case ISD::TRUNCATE: 975 if (Use->isMachineOpcode()) 976 return 0; 977 MaxTruncation = 978 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); 979 continue; 980 case ISD::STORE: { 981 if (Use->isMachineOpcode()) 982 return 0; 983 StoreSDNode *STN = cast<StoreSDNode>(*Use); 984 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); 985 if (MemVTSize == 64 || Use.getOperandNo() != 0) 986 return 0; 987 MaxTruncation = std::max(MaxTruncation, MemVTSize); 988 continue; 989 } 990 case PPC::STW8: 991 case PPC::STWX8: 992 case PPC::STWU8: 993 case PPC::STWUX8: 994 if (Use.getOperandNo() != 0) 995 return 0; 996 MaxTruncation = std::max(MaxTruncation, 32u); 997 continue; 998 case PPC::STH8: 999 case PPC::STHX8: 1000 case PPC::STHU8: 1001 case PPC::STHUX8: 1002 if (Use.getOperandNo() != 0) 1003 return 0; 1004 MaxTruncation = std::max(MaxTruncation, 16u); 1005 continue; 1006 case PPC::STB8: 1007 case PPC::STBX8: 1008 case PPC::STBU8: 1009 case PPC::STBUX8: 1010 if (Use.getOperandNo() != 0) 1011 return 0; 1012 MaxTruncation = std::max(MaxTruncation, 8u); 1013 continue; 1014 } 1015 } 1016 return MaxTruncation; 1017 } 1018 1019 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive 1020 // zeros and return the number of bits by the left of these consecutive zeros. 1021 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) { 1022 unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm)); 1023 unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm)); 1024 if ((HiTZ + LoLZ) >= Num) 1025 return (32 + HiTZ); 1026 return 0; 1027 } 1028 1029 // Direct materialization of 64-bit constants by enumerated patterns. 1030 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, 1031 uint64_t Imm, unsigned &InstCnt) { 1032 unsigned TZ = llvm::countr_zero<uint64_t>(Imm); 1033 unsigned LZ = llvm::countl_zero<uint64_t>(Imm); 1034 unsigned TO = llvm::countr_one<uint64_t>(Imm); 1035 unsigned LO = llvm::countl_one<uint64_t>(Imm); 1036 unsigned Hi32 = Hi_32(Imm); 1037 unsigned Lo32 = Lo_32(Imm); 1038 SDNode *Result = nullptr; 1039 unsigned Shift = 0; 1040 1041 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1042 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1043 }; 1044 1045 // Following patterns use 1 instructions to materialize the Imm. 1046 InstCnt = 1; 1047 // 1-1) Patterns : {zeros}{15-bit valve} 1048 // {ones}{15-bit valve} 1049 if (isInt<16>(Imm)) { 1050 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1051 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1052 } 1053 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros} 1054 // {ones}{15-bit valve}{16 zeros} 1055 if (TZ > 15 && (LZ > 32 || LO > 32)) 1056 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1057 getI32Imm((Imm >> 16) & 0xffff)); 1058 1059 // Following patterns use 2 instructions to materialize the Imm. 1060 InstCnt = 2; 1061 assert(LZ < 64 && "Unexpected leading zeros here."); 1062 // Count of ones follwing the leading zeros. 1063 unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ); 1064 // 2-1) Patterns : {zeros}{31-bit value} 1065 // {ones}{31-bit value} 1066 if (isInt<32>(Imm)) { 1067 uint64_t ImmHi16 = (Imm >> 16) & 0xffff; 1068 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1069 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1070 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1071 getI32Imm(Imm & 0xffff)); 1072 } 1073 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros} 1074 // {zeros}{15-bit value}{zeros} 1075 // {zeros}{ones}{15-bit value} 1076 // {ones}{15-bit value}{zeros} 1077 // We can take advantage of LI's sign-extension semantics to generate leading 1078 // ones, and then use RLDIC to mask off the ones in both sides after rotation. 1079 if ((LZ + FO + TZ) > 48) { 1080 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1081 getI32Imm((Imm >> TZ) & 0xffff)); 1082 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1083 getI32Imm(TZ), getI32Imm(LZ)); 1084 } 1085 // 2-3) Pattern : {zeros}{15-bit value}{ones} 1086 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value, 1087 // therefore we can take advantage of LI's sign-extension semantics, and then 1088 // mask them off after rotation. 1089 // 1090 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+ 1091 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1092 // +------------------------+ +------------------------+ 1093 // 63 0 63 0 1094 // Imm (Imm >> (48 - LZ) & 0xffff) 1095 // +----sext-----|--16-bit--+ +clear-|-----------------+ 1096 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1097 // +------------------------+ +------------------------+ 1098 // 63 0 63 0 1099 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ 1100 if ((LZ + TO) > 48) { 1101 // Since the immediates with (LZ > 32) have been handled by previous 1102 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1103 // the Imm by a negative value. 1104 assert(LZ <= 32 && "Unexpected shift value."); 1105 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1106 getI32Imm((Imm >> (48 - LZ) & 0xffff))); 1107 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1108 getI32Imm(48 - LZ), getI32Imm(LZ)); 1109 } 1110 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones} 1111 // {ones}{15-bit value}{ones} 1112 // We can take advantage of LI's sign-extension semantics to generate leading 1113 // ones, and then use RLDICL to mask off the ones in left sides (if required) 1114 // after rotation. 1115 // 1116 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+ 1117 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb| 1118 // +------------------------+ +------------------------+ 1119 // 63 0 63 0 1120 // Imm (Imm >> TO) & 0xffff 1121 // +----sext-----|--16-bit--+ +LZ|---------------------+ 1122 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111| 1123 // +------------------------+ +------------------------+ 1124 // 63 0 63 0 1125 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ 1126 if ((LZ + FO + TO) > 48) { 1127 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1128 getI32Imm((Imm >> TO) & 0xffff)); 1129 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1130 getI32Imm(TO), getI32Imm(LZ)); 1131 } 1132 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value} 1133 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit 1134 // value, we can use LI for Lo16 without generating leading ones then add the 1135 // Hi16(in Lo32). 1136 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) { 1137 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1138 getI32Imm(Lo32 & 0xffff)); 1139 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), 1140 getI32Imm(Lo32 >> 16)); 1141 } 1142 // 2-6) Patterns : {******}{49 zeros}{******} 1143 // {******}{49 ones}{******} 1144 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15 1145 // bits remain on both sides. Rotate right the Imm to construct an int<16> 1146 // value, use LI for int<16> value and then use RLDICL without mask to rotate 1147 // it back. 1148 // 1149 // 1) findContiguousZerosAtLeast(Imm, 49) 1150 // +------|--zeros-|------+ +---ones--||---15 bit--+ 1151 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb| 1152 // +----------------------+ +----------------------+ 1153 // 63 0 63 0 1154 // 1155 // 2) findContiguousZerosAtLeast(~Imm, 49) 1156 // +------|--ones--|------+ +---ones--||---15 bit--+ 1157 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1158 // +----------------------+ +----------------------+ 1159 // 63 0 63 0 1160 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) || 1161 (Shift = findContiguousZerosAtLeast(~Imm, 49))) { 1162 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1163 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1164 getI32Imm(RotImm & 0xffff)); 1165 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1166 getI32Imm(Shift), getI32Imm(0)); 1167 } 1168 1169 // Following patterns use 3 instructions to materialize the Imm. 1170 InstCnt = 3; 1171 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros} 1172 // {zeros}{31-bit value}{zeros} 1173 // {zeros}{ones}{31-bit value} 1174 // {ones}{31-bit value}{zeros} 1175 // We can take advantage of LIS's sign-extension semantics to generate leading 1176 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the 1177 // ones in both sides after rotation. 1178 if ((LZ + FO + TZ) > 32) { 1179 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff; 1180 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1181 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1182 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1183 getI32Imm((Imm >> TZ) & 0xffff)); 1184 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1185 getI32Imm(TZ), getI32Imm(LZ)); 1186 } 1187 // 3-2) Pattern : {zeros}{31-bit value}{ones} 1188 // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits 1189 // value, therefore we can take advantage of LIS's sign-extension semantics, 1190 // add the remaining bits with ORI, and then mask them off after rotation. 1191 // This is similar to Pattern 2-3, please refer to the diagram there. 1192 if ((LZ + TO) > 32) { 1193 // Since the immediates with (LZ > 32) have been handled by previous 1194 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1195 // the Imm by a negative value. 1196 assert(LZ <= 32 && "Unexpected shift value."); 1197 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1198 getI32Imm((Imm >> (48 - LZ)) & 0xffff)); 1199 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1200 getI32Imm((Imm >> (32 - LZ)) & 0xffff)); 1201 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1202 getI32Imm(32 - LZ), getI32Imm(LZ)); 1203 } 1204 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones} 1205 // {ones}{31-bit value}{ones} 1206 // We can take advantage of LIS's sign-extension semantics to generate leading 1207 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the 1208 // ones in left sides (if required) after rotation. 1209 // This is similar to Pattern 2-4, please refer to the diagram there. 1210 if ((LZ + FO + TO) > 32) { 1211 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1212 getI32Imm((Imm >> (TO + 16)) & 0xffff)); 1213 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1214 getI32Imm((Imm >> TO) & 0xffff)); 1215 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1216 getI32Imm(TO), getI32Imm(LZ)); 1217 } 1218 // 3-4) Patterns : High word == Low word 1219 if (Hi32 == Lo32) { 1220 // Handle the first 32 bits. 1221 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff; 1222 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1223 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1224 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1225 getI32Imm(Lo32 & 0xffff)); 1226 // Use rldimi to insert the Low word into High word. 1227 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1228 getI32Imm(0)}; 1229 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1230 } 1231 // 3-5) Patterns : {******}{33 zeros}{******} 1232 // {******}{33 ones}{******} 1233 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31 1234 // bits remain on both sides. Rotate right the Imm to construct an int<32> 1235 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to 1236 // rotate it back. 1237 // This is similar to Pattern 2-6, please refer to the diagram there. 1238 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) || 1239 (Shift = findContiguousZerosAtLeast(~Imm, 33))) { 1240 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1241 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff; 1242 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1243 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1244 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1245 getI32Imm(RotImm & 0xffff)); 1246 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1247 getI32Imm(Shift), getI32Imm(0)); 1248 } 1249 1250 InstCnt = 0; 1251 return nullptr; 1252 } 1253 1254 // Try to select instructions to generate a 64 bit immediate using prefix as 1255 // well as non prefix instructions. The function will return the SDNode 1256 // to materialize that constant or it will return nullptr if it does not 1257 // find one. The variable InstCnt is set to the number of instructions that 1258 // were selected. 1259 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl, 1260 uint64_t Imm, unsigned &InstCnt) { 1261 unsigned TZ = llvm::countr_zero<uint64_t>(Imm); 1262 unsigned LZ = llvm::countl_zero<uint64_t>(Imm); 1263 unsigned TO = llvm::countr_one<uint64_t>(Imm); 1264 unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ)); 1265 unsigned Hi32 = Hi_32(Imm); 1266 unsigned Lo32 = Lo_32(Imm); 1267 1268 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1269 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1270 }; 1271 1272 auto getI64Imm = [CurDAG, dl](uint64_t Imm) { 1273 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1274 }; 1275 1276 // Following patterns use 1 instruction to materialize Imm. 1277 InstCnt = 1; 1278 1279 // The pli instruction can materialize up to 34 bits directly. 1280 // If a constant fits within 34-bits, emit the pli instruction here directly. 1281 if (isInt<34>(Imm)) 1282 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1283 CurDAG->getTargetConstant(Imm, dl, MVT::i64)); 1284 1285 // Require at least two instructions. 1286 InstCnt = 2; 1287 SDNode *Result = nullptr; 1288 // Patterns : {zeros}{ones}{33-bit value}{zeros} 1289 // {zeros}{33-bit value}{zeros} 1290 // {zeros}{ones}{33-bit value} 1291 // {ones}{33-bit value}{zeros} 1292 // We can take advantage of PLI's sign-extension semantics to generate leading 1293 // ones, and then use RLDIC to mask off the ones on both sides after rotation. 1294 if ((LZ + FO + TZ) > 30) { 1295 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff); 1296 APInt Extended = SignedInt34.sext(64); 1297 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1298 getI64Imm(*Extended.getRawData())); 1299 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1300 getI32Imm(TZ), getI32Imm(LZ)); 1301 } 1302 // Pattern : {zeros}{33-bit value}{ones} 1303 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value, 1304 // therefore we can take advantage of PLI's sign-extension semantics, and then 1305 // mask them off after rotation. 1306 // 1307 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+ 1308 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1309 // +------------------------+ +------------------------+ 1310 // 63 0 63 0 1311 // 1312 // +----sext-----|--34-bit--+ +clear-|-----------------+ 1313 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1314 // +------------------------+ +------------------------+ 1315 // 63 0 63 0 1316 if ((LZ + TO) > 30) { 1317 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff); 1318 APInt Extended = SignedInt34.sext(64); 1319 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1320 getI64Imm(*Extended.getRawData())); 1321 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1322 getI32Imm(30 - LZ), getI32Imm(LZ)); 1323 } 1324 // Patterns : {zeros}{ones}{33-bit value}{ones} 1325 // {ones}{33-bit value}{ones} 1326 // Similar to LI we can take advantage of PLI's sign-extension semantics to 1327 // generate leading ones, and then use RLDICL to mask off the ones in left 1328 // sides (if required) after rotation. 1329 if ((LZ + FO + TO) > 30) { 1330 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff); 1331 APInt Extended = SignedInt34.sext(64); 1332 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1333 getI64Imm(*Extended.getRawData())); 1334 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1335 getI32Imm(TO), getI32Imm(LZ)); 1336 } 1337 // Patterns : {******}{31 zeros}{******} 1338 // : {******}{31 ones}{******} 1339 // If Imm contains 31 consecutive zeros/ones then the remaining bit count 1340 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI 1341 // for the int<33> value and then use RLDICL without a mask to rotate it back. 1342 // 1343 // +------|--ones--|------+ +---ones--||---33 bit--+ 1344 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1345 // +----------------------+ +----------------------+ 1346 // 63 0 63 0 1347 for (unsigned Shift = 0; Shift < 63; ++Shift) { 1348 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1349 if (isInt<34>(RotImm)) { 1350 Result = 1351 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm)); 1352 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 1353 SDValue(Result, 0), getI32Imm(Shift), 1354 getI32Imm(0)); 1355 } 1356 } 1357 1358 // Patterns : High word == Low word 1359 // This is basically a splat of a 32 bit immediate. 1360 if (Hi32 == Lo32) { 1361 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1362 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1363 getI32Imm(0)}; 1364 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1365 } 1366 1367 InstCnt = 3; 1368 // Catch-all 1369 // This pattern can form any 64 bit immediate in 3 instructions. 1370 SDNode *ResultHi = 1371 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1372 SDNode *ResultLo = 1373 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32)); 1374 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32), 1375 getI32Imm(0)}; 1376 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1377 } 1378 1379 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm, 1380 unsigned *InstCnt = nullptr) { 1381 unsigned InstCntDirect = 0; 1382 // No more than 3 instructions are used if we can select the i64 immediate 1383 // directly. 1384 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect); 1385 1386 const PPCSubtarget &Subtarget = 1387 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 1388 1389 // If we have prefixed instructions and there is a chance we can 1390 // materialize the constant with fewer prefixed instructions than 1391 // non-prefixed, try that. 1392 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) { 1393 unsigned InstCntDirectP = 0; 1394 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP); 1395 // Use the prefix case in either of two cases: 1396 // 1) We have no result from the non-prefix case to use. 1397 // 2) The non-prefix case uses more instructions than the prefix case. 1398 // If the prefix and non-prefix cases use the same number of instructions 1399 // we will prefer the non-prefix case. 1400 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) { 1401 if (InstCnt) 1402 *InstCnt = InstCntDirectP; 1403 return ResultP; 1404 } 1405 } 1406 1407 if (Result) { 1408 if (InstCnt) 1409 *InstCnt = InstCntDirect; 1410 return Result; 1411 } 1412 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1413 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1414 }; 1415 1416 uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff; 1417 uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff; 1418 1419 // Try to use 4 instructions to materialize the immediate which is "almost" a 1420 // splat of a 32 bit immediate. 1421 if (Hi16OfLo32 && Lo16OfLo32) { 1422 uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff; 1423 uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff; 1424 bool IsSelected = false; 1425 1426 auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) { 1427 SDNode *Result = 1428 CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16)); 1429 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 1430 SDValue(Result, 0), getI32Imm(Lo16)); 1431 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1432 getI32Imm(0)}; 1433 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1434 }; 1435 1436 if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) { 1437 IsSelected = true; 1438 Result = getSplat(Hi16OfLo32, Lo16OfLo32); 1439 // Modify Hi16OfHi32. 1440 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48), 1441 getI32Imm(0)}; 1442 Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1443 } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { 1444 IsSelected = true; 1445 Result = getSplat(Hi16OfHi32, Lo16OfHi32); 1446 // Modify Lo16OfLo32. 1447 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), 1448 getI32Imm(16), getI32Imm(31)}; 1449 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); 1450 } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) { 1451 IsSelected = true; 1452 Result = getSplat(Hi16OfHi32, Lo16OfHi32); 1453 // Modify Hi16OfLo32. 1454 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16), 1455 getI32Imm(0), getI32Imm(15)}; 1456 Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops); 1457 } 1458 if (IsSelected == true) { 1459 if (InstCnt) 1460 *InstCnt = 4; 1461 return Result; 1462 } 1463 } 1464 1465 // Handle the upper 32 bit value. 1466 Result = 1467 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect); 1468 // Add in the last bits as required. 1469 if (Hi16OfLo32) { 1470 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 1471 SDValue(Result, 0), getI32Imm(Hi16OfLo32)); 1472 ++InstCntDirect; 1473 } 1474 if (Lo16OfLo32) { 1475 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1476 getI32Imm(Lo16OfLo32)); 1477 ++InstCntDirect; 1478 } 1479 if (InstCnt) 1480 *InstCnt = InstCntDirect; 1481 return Result; 1482 } 1483 1484 // Select a 64-bit constant. 1485 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { 1486 SDLoc dl(N); 1487 1488 // Get 64 bit value. 1489 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 1490 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { 1491 uint64_t SextImm = SignExtend64(Imm, MinSize); 1492 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 1493 if (isInt<16>(SextImm)) 1494 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1495 } 1496 return selectI64Imm(CurDAG, dl, Imm); 1497 } 1498 1499 namespace { 1500 1501 class BitPermutationSelector { 1502 struct ValueBit { 1503 SDValue V; 1504 1505 // The bit number in the value, using a convention where bit 0 is the 1506 // lowest-order bit. 1507 unsigned Idx; 1508 1509 // ConstZero means a bit we need to mask off. 1510 // Variable is a bit comes from an input variable. 1511 // VariableKnownToBeZero is also a bit comes from an input variable, 1512 // but it is known to be already zero. So we do not need to mask them. 1513 enum Kind { 1514 ConstZero, 1515 Variable, 1516 VariableKnownToBeZero 1517 } K; 1518 1519 ValueBit(SDValue V, unsigned I, Kind K = Variable) 1520 : V(V), Idx(I), K(K) {} 1521 ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {} 1522 1523 bool isZero() const { 1524 return K == ConstZero || K == VariableKnownToBeZero; 1525 } 1526 1527 bool hasValue() const { 1528 return K == Variable || K == VariableKnownToBeZero; 1529 } 1530 1531 SDValue getValue() const { 1532 assert(hasValue() && "Cannot get the value of a constant bit"); 1533 return V; 1534 } 1535 1536 unsigned getValueBitIndex() const { 1537 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 1538 return Idx; 1539 } 1540 }; 1541 1542 // A bit group has the same underlying value and the same rotate factor. 1543 struct BitGroup { 1544 SDValue V; 1545 unsigned RLAmt; 1546 unsigned StartIdx, EndIdx; 1547 1548 // This rotation amount assumes that the lower 32 bits of the quantity are 1549 // replicated in the high 32 bits by the rotation operator (which is done 1550 // by rlwinm and friends in 64-bit mode). 1551 bool Repl32; 1552 // Did converting to Repl32 == true change the rotation factor? If it did, 1553 // it decreased it by 32. 1554 bool Repl32CR; 1555 // Was this group coalesced after setting Repl32 to true? 1556 bool Repl32Coalesced; 1557 1558 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 1559 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 1560 Repl32Coalesced(false) { 1561 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R 1562 << " [" << S << ", " << E << "]\n"); 1563 } 1564 }; 1565 1566 // Information on each (Value, RLAmt) pair (like the number of groups 1567 // associated with each) used to choose the lowering method. 1568 struct ValueRotInfo { 1569 SDValue V; 1570 unsigned RLAmt = std::numeric_limits<unsigned>::max(); 1571 unsigned NumGroups = 0; 1572 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); 1573 bool Repl32 = false; 1574 1575 ValueRotInfo() = default; 1576 1577 // For sorting (in reverse order) by NumGroups, and then by 1578 // FirstGroupStartIdx. 1579 bool operator < (const ValueRotInfo &Other) const { 1580 // We need to sort so that the non-Repl32 come first because, when we're 1581 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 1582 // masking operation. 1583 if (Repl32 < Other.Repl32) 1584 return true; 1585 else if (Repl32 > Other.Repl32) 1586 return false; 1587 else if (NumGroups > Other.NumGroups) 1588 return true; 1589 else if (NumGroups < Other.NumGroups) 1590 return false; 1591 else if (RLAmt == 0 && Other.RLAmt != 0) 1592 return true; 1593 else if (RLAmt != 0 && Other.RLAmt == 0) 1594 return false; 1595 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 1596 return true; 1597 return false; 1598 } 1599 }; 1600 1601 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 1602 using ValueBitsMemoizer = 1603 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 1604 ValueBitsMemoizer Memoizer; 1605 1606 // Return a pair of bool and a SmallVector pointer to a memoization entry. 1607 // The bool is true if something interesting was deduced, otherwise if we're 1608 // providing only a generic representation of V (or something else likewise 1609 // uninteresting for instruction selection) through the SmallVector. 1610 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 1611 unsigned NumBits) { 1612 auto &ValueEntry = Memoizer[V]; 1613 if (ValueEntry) 1614 return std::make_pair(ValueEntry->first, &ValueEntry->second); 1615 ValueEntry.reset(new ValueBitsMemoizedValue()); 1616 bool &Interesting = ValueEntry->first; 1617 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 1618 Bits.resize(NumBits); 1619 1620 switch (V.getOpcode()) { 1621 default: break; 1622 case ISD::ROTL: 1623 if (isa<ConstantSDNode>(V.getOperand(1))) { 1624 unsigned RotAmt = V.getConstantOperandVal(1); 1625 1626 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1627 1628 for (unsigned i = 0; i < NumBits; ++i) 1629 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 1630 1631 return std::make_pair(Interesting = true, &Bits); 1632 } 1633 break; 1634 case ISD::SHL: 1635 case PPCISD::SHL: 1636 if (isa<ConstantSDNode>(V.getOperand(1))) { 1637 unsigned ShiftAmt = V.getConstantOperandVal(1); 1638 1639 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1640 1641 for (unsigned i = ShiftAmt; i < NumBits; ++i) 1642 Bits[i] = LHSBits[i - ShiftAmt]; 1643 1644 for (unsigned i = 0; i < ShiftAmt; ++i) 1645 Bits[i] = ValueBit(ValueBit::ConstZero); 1646 1647 return std::make_pair(Interesting = true, &Bits); 1648 } 1649 break; 1650 case ISD::SRL: 1651 case PPCISD::SRL: 1652 if (isa<ConstantSDNode>(V.getOperand(1))) { 1653 unsigned ShiftAmt = V.getConstantOperandVal(1); 1654 1655 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1656 1657 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 1658 Bits[i] = LHSBits[i + ShiftAmt]; 1659 1660 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 1661 Bits[i] = ValueBit(ValueBit::ConstZero); 1662 1663 return std::make_pair(Interesting = true, &Bits); 1664 } 1665 break; 1666 case ISD::AND: 1667 if (isa<ConstantSDNode>(V.getOperand(1))) { 1668 uint64_t Mask = V.getConstantOperandVal(1); 1669 1670 const SmallVector<ValueBit, 64> *LHSBits; 1671 // Mark this as interesting, only if the LHS was also interesting. This 1672 // prevents the overall procedure from matching a single immediate 'and' 1673 // (which is non-optimal because such an and might be folded with other 1674 // things if we don't select it here). 1675 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 1676 1677 for (unsigned i = 0; i < NumBits; ++i) 1678 if (((Mask >> i) & 1) == 1) 1679 Bits[i] = (*LHSBits)[i]; 1680 else { 1681 // AND instruction masks this bit. If the input is already zero, 1682 // we have nothing to do here. Otherwise, make the bit ConstZero. 1683 if ((*LHSBits)[i].isZero()) 1684 Bits[i] = (*LHSBits)[i]; 1685 else 1686 Bits[i] = ValueBit(ValueBit::ConstZero); 1687 } 1688 1689 return std::make_pair(Interesting, &Bits); 1690 } 1691 break; 1692 case ISD::OR: { 1693 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1694 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1695 1696 bool AllDisjoint = true; 1697 SDValue LastVal = SDValue(); 1698 unsigned LastIdx = 0; 1699 for (unsigned i = 0; i < NumBits; ++i) { 1700 if (LHSBits[i].isZero() && RHSBits[i].isZero()) { 1701 // If both inputs are known to be zero and one is ConstZero and 1702 // another is VariableKnownToBeZero, we can select whichever 1703 // we like. To minimize the number of bit groups, we select 1704 // VariableKnownToBeZero if this bit is the next bit of the same 1705 // input variable from the previous bit. Otherwise, we select 1706 // ConstZero. 1707 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && 1708 LHSBits[i].getValueBitIndex() == LastIdx + 1) 1709 Bits[i] = LHSBits[i]; 1710 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && 1711 RHSBits[i].getValueBitIndex() == LastIdx + 1) 1712 Bits[i] = RHSBits[i]; 1713 else 1714 Bits[i] = ValueBit(ValueBit::ConstZero); 1715 } 1716 else if (LHSBits[i].isZero()) 1717 Bits[i] = RHSBits[i]; 1718 else if (RHSBits[i].isZero()) 1719 Bits[i] = LHSBits[i]; 1720 else { 1721 AllDisjoint = false; 1722 break; 1723 } 1724 // We remember the value and bit index of this bit. 1725 if (Bits[i].hasValue()) { 1726 LastVal = Bits[i].getValue(); 1727 LastIdx = Bits[i].getValueBitIndex(); 1728 } 1729 else { 1730 if (LastVal) LastVal = SDValue(); 1731 LastIdx = 0; 1732 } 1733 } 1734 1735 if (!AllDisjoint) 1736 break; 1737 1738 return std::make_pair(Interesting = true, &Bits); 1739 } 1740 case ISD::ZERO_EXTEND: { 1741 // We support only the case with zero extension from i32 to i64 so far. 1742 if (V.getValueType() != MVT::i64 || 1743 V.getOperand(0).getValueType() != MVT::i32) 1744 break; 1745 1746 const SmallVector<ValueBit, 64> *LHSBits; 1747 const unsigned NumOperandBits = 32; 1748 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1749 NumOperandBits); 1750 1751 for (unsigned i = 0; i < NumOperandBits; ++i) 1752 Bits[i] = (*LHSBits)[i]; 1753 1754 for (unsigned i = NumOperandBits; i < NumBits; ++i) 1755 Bits[i] = ValueBit(ValueBit::ConstZero); 1756 1757 return std::make_pair(Interesting, &Bits); 1758 } 1759 case ISD::TRUNCATE: { 1760 EVT FromType = V.getOperand(0).getValueType(); 1761 EVT ToType = V.getValueType(); 1762 // We support only the case with truncate from i64 to i32. 1763 if (FromType != MVT::i64 || ToType != MVT::i32) 1764 break; 1765 const unsigned NumAllBits = FromType.getSizeInBits(); 1766 SmallVector<ValueBit, 64> *InBits; 1767 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), 1768 NumAllBits); 1769 const unsigned NumValidBits = ToType.getSizeInBits(); 1770 1771 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. 1772 // So, we cannot include this truncate. 1773 bool UseUpper32bit = false; 1774 for (unsigned i = 0; i < NumValidBits; ++i) 1775 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { 1776 UseUpper32bit = true; 1777 break; 1778 } 1779 if (UseUpper32bit) 1780 break; 1781 1782 for (unsigned i = 0; i < NumValidBits; ++i) 1783 Bits[i] = (*InBits)[i]; 1784 1785 return std::make_pair(Interesting, &Bits); 1786 } 1787 case ISD::AssertZext: { 1788 // For AssertZext, we look through the operand and 1789 // mark the bits known to be zero. 1790 const SmallVector<ValueBit, 64> *LHSBits; 1791 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1792 NumBits); 1793 1794 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); 1795 const unsigned NumValidBits = FromType.getSizeInBits(); 1796 for (unsigned i = 0; i < NumValidBits; ++i) 1797 Bits[i] = (*LHSBits)[i]; 1798 1799 // These bits are known to be zero but the AssertZext may be from a value 1800 // that already has some constant zero bits (i.e. from a masking and). 1801 for (unsigned i = NumValidBits; i < NumBits; ++i) 1802 Bits[i] = (*LHSBits)[i].hasValue() 1803 ? ValueBit((*LHSBits)[i].getValue(), 1804 (*LHSBits)[i].getValueBitIndex(), 1805 ValueBit::VariableKnownToBeZero) 1806 : ValueBit(ValueBit::ConstZero); 1807 1808 return std::make_pair(Interesting, &Bits); 1809 } 1810 case ISD::LOAD: 1811 LoadSDNode *LD = cast<LoadSDNode>(V); 1812 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { 1813 EVT VT = LD->getMemoryVT(); 1814 const unsigned NumValidBits = VT.getSizeInBits(); 1815 1816 for (unsigned i = 0; i < NumValidBits; ++i) 1817 Bits[i] = ValueBit(V, i); 1818 1819 // These bits are known to be zero. 1820 for (unsigned i = NumValidBits; i < NumBits; ++i) 1821 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); 1822 1823 // Zero-extending load itself cannot be optimized. So, it is not 1824 // interesting by itself though it gives useful information. 1825 return std::make_pair(Interesting = false, &Bits); 1826 } 1827 break; 1828 } 1829 1830 for (unsigned i = 0; i < NumBits; ++i) 1831 Bits[i] = ValueBit(V, i); 1832 1833 return std::make_pair(Interesting = false, &Bits); 1834 } 1835 1836 // For each value (except the constant ones), compute the left-rotate amount 1837 // to get it from its original to final position. 1838 void computeRotationAmounts() { 1839 NeedMask = false; 1840 RLAmt.resize(Bits.size()); 1841 for (unsigned i = 0; i < Bits.size(); ++i) 1842 if (Bits[i].hasValue()) { 1843 unsigned VBI = Bits[i].getValueBitIndex(); 1844 if (i >= VBI) 1845 RLAmt[i] = i - VBI; 1846 else 1847 RLAmt[i] = Bits.size() - (VBI - i); 1848 } else if (Bits[i].isZero()) { 1849 NeedMask = true; 1850 RLAmt[i] = UINT32_MAX; 1851 } else { 1852 llvm_unreachable("Unknown value bit type"); 1853 } 1854 } 1855 1856 // Collect groups of consecutive bits with the same underlying value and 1857 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1858 // they break up groups. 1859 void collectBitGroups(bool LateMask) { 1860 BitGroups.clear(); 1861 1862 unsigned LastRLAmt = RLAmt[0]; 1863 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1864 unsigned LastGroupStartIdx = 0; 1865 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1866 for (unsigned i = 1; i < Bits.size(); ++i) { 1867 unsigned ThisRLAmt = RLAmt[i]; 1868 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1869 if (LateMask && !ThisValue) { 1870 ThisValue = LastValue; 1871 ThisRLAmt = LastRLAmt; 1872 // If we're doing late masking, then the first bit group always starts 1873 // at zero (even if the first bits were zero). 1874 if (BitGroups.empty()) 1875 LastGroupStartIdx = 0; 1876 } 1877 1878 // If this bit is known to be zero and the current group is a bit group 1879 // of zeros, we do not need to terminate the current bit group even the 1880 // Value or RLAmt does not match here. Instead, we terminate this group 1881 // when the first non-zero bit appears later. 1882 if (IsGroupOfZeros && Bits[i].isZero()) 1883 continue; 1884 1885 // If this bit has the same underlying value and the same rotate factor as 1886 // the last one, then they're part of the same group. 1887 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1888 // We cannot continue the current group if this bits is not known to 1889 // be zero in a bit group of zeros. 1890 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) 1891 continue; 1892 1893 if (LastValue.getNode()) 1894 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1895 i-1)); 1896 LastRLAmt = ThisRLAmt; 1897 LastValue = ThisValue; 1898 LastGroupStartIdx = i; 1899 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1900 } 1901 if (LastValue.getNode()) 1902 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1903 Bits.size()-1)); 1904 1905 if (BitGroups.empty()) 1906 return; 1907 1908 // We might be able to combine the first and last groups. 1909 if (BitGroups.size() > 1) { 1910 // If the first and last groups are the same, then remove the first group 1911 // in favor of the last group, making the ending index of the last group 1912 // equal to the ending index of the to-be-removed first group. 1913 if (BitGroups[0].StartIdx == 0 && 1914 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1915 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1916 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1917 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1918 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1919 BitGroups.erase(BitGroups.begin()); 1920 } 1921 } 1922 } 1923 1924 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1925 // associated with each. If the number of groups are same, we prefer a group 1926 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate 1927 // instruction. If there is a degeneracy, pick the one that occurs 1928 // first (in the final value). 1929 void collectValueRotInfo() { 1930 ValueRots.clear(); 1931 1932 for (auto &BG : BitGroups) { 1933 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1934 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1935 VRI.V = BG.V; 1936 VRI.RLAmt = BG.RLAmt; 1937 VRI.Repl32 = BG.Repl32; 1938 VRI.NumGroups += 1; 1939 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1940 } 1941 1942 // Now that we've collected the various ValueRotInfo instances, we need to 1943 // sort them. 1944 ValueRotsVec.clear(); 1945 for (auto &I : ValueRots) { 1946 ValueRotsVec.push_back(I.second); 1947 } 1948 llvm::sort(ValueRotsVec); 1949 } 1950 1951 // In 64-bit mode, rlwinm and friends have a rotation operator that 1952 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1953 // indices of these instructions can only be in the lower 32 bits, so they 1954 // can only represent some 64-bit bit groups. However, when they can be used, 1955 // the 32-bit replication can be used to represent, as a single bit group, 1956 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1957 // groups when possible. Returns true if any of the bit groups were 1958 // converted. 1959 void assignRepl32BitGroups() { 1960 // If we have bits like this: 1961 // 1962 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1963 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1964 // Groups: | RLAmt = 8 | RLAmt = 40 | 1965 // 1966 // But, making use of a 32-bit operation that replicates the low-order 32 1967 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1968 // of 8. 1969 1970 auto IsAllLow32 = [this](BitGroup & BG) { 1971 if (BG.StartIdx <= BG.EndIdx) { 1972 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1973 if (!Bits[i].hasValue()) 1974 continue; 1975 if (Bits[i].getValueBitIndex() >= 32) 1976 return false; 1977 } 1978 } else { 1979 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1980 if (!Bits[i].hasValue()) 1981 continue; 1982 if (Bits[i].getValueBitIndex() >= 32) 1983 return false; 1984 } 1985 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1986 if (!Bits[i].hasValue()) 1987 continue; 1988 if (Bits[i].getValueBitIndex() >= 32) 1989 return false; 1990 } 1991 } 1992 1993 return true; 1994 }; 1995 1996 for (auto &BG : BitGroups) { 1997 // If this bit group has RLAmt of 0 and will not be merged with 1998 // another bit group, we don't benefit from Repl32. We don't mark 1999 // such group to give more freedom for later instruction selection. 2000 if (BG.RLAmt == 0) { 2001 auto PotentiallyMerged = [this](BitGroup & BG) { 2002 for (auto &BG2 : BitGroups) 2003 if (&BG != &BG2 && BG.V == BG2.V && 2004 (BG2.RLAmt == 0 || BG2.RLAmt == 32)) 2005 return true; 2006 return false; 2007 }; 2008 if (!PotentiallyMerged(BG)) 2009 continue; 2010 } 2011 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 2012 if (IsAllLow32(BG)) { 2013 if (BG.RLAmt >= 32) { 2014 BG.RLAmt -= 32; 2015 BG.Repl32CR = true; 2016 } 2017 2018 BG.Repl32 = true; 2019 2020 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " 2021 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" 2022 << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 2023 } 2024 } 2025 } 2026 2027 // Now walk through the bit groups, consolidating where possible. 2028 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 2029 // We might want to remove this bit group by merging it with the previous 2030 // group (which might be the ending group). 2031 auto IP = (I == BitGroups.begin()) ? 2032 std::prev(BitGroups.end()) : std::prev(I); 2033 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 2034 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 2035 2036 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " 2037 << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" 2038 << I->StartIdx << ", " << I->EndIdx 2039 << "] with group with range [" << IP->StartIdx << ", " 2040 << IP->EndIdx << "]\n"); 2041 2042 IP->EndIdx = I->EndIdx; 2043 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 2044 IP->Repl32Coalesced = true; 2045 I = BitGroups.erase(I); 2046 continue; 2047 } else { 2048 // There is a special case worth handling: If there is a single group 2049 // covering the entire upper 32 bits, and it can be merged with both 2050 // the next and previous groups (which might be the same group), then 2051 // do so. If it is the same group (so there will be only one group in 2052 // total), then we need to reverse the order of the range so that it 2053 // covers the entire 64 bits. 2054 if (I->StartIdx == 32 && I->EndIdx == 63) { 2055 assert(std::next(I) == BitGroups.end() && 2056 "bit group ends at index 63 but there is another?"); 2057 auto IN = BitGroups.begin(); 2058 2059 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 2060 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 2061 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 2062 IsAllLow32(*I)) { 2063 2064 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() 2065 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx 2066 << ", " << I->EndIdx 2067 << "] with 32-bit replicated groups with ranges [" 2068 << IP->StartIdx << ", " << IP->EndIdx << "] and [" 2069 << IN->StartIdx << ", " << IN->EndIdx << "]\n"); 2070 2071 if (IP == IN) { 2072 // There is only one other group; change it to cover the whole 2073 // range (backward, so that it can still be Repl32 but cover the 2074 // whole 64-bit range). 2075 IP->StartIdx = 31; 2076 IP->EndIdx = 30; 2077 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 2078 IP->Repl32Coalesced = true; 2079 I = BitGroups.erase(I); 2080 } else { 2081 // There are two separate groups, one before this group and one 2082 // after us (at the beginning). We're going to remove this group, 2083 // but also the group at the very beginning. 2084 IP->EndIdx = IN->EndIdx; 2085 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 2086 IP->Repl32Coalesced = true; 2087 I = BitGroups.erase(I); 2088 BitGroups.erase(BitGroups.begin()); 2089 } 2090 2091 // This must be the last group in the vector (and we might have 2092 // just invalidated the iterator above), so break here. 2093 break; 2094 } 2095 } 2096 } 2097 2098 ++I; 2099 } 2100 } 2101 2102 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 2103 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 2104 } 2105 2106 uint64_t getZerosMask() { 2107 uint64_t Mask = 0; 2108 for (unsigned i = 0; i < Bits.size(); ++i) { 2109 if (Bits[i].hasValue()) 2110 continue; 2111 Mask |= (UINT64_C(1) << i); 2112 } 2113 2114 return ~Mask; 2115 } 2116 2117 // This method extends an input value to 64 bit if input is 32-bit integer. 2118 // While selecting instructions in BitPermutationSelector in 64-bit mode, 2119 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. 2120 // In such case, we extend it to 64 bit to be consistent with other values. 2121 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { 2122 if (V.getValueSizeInBits() == 64) 2123 return V; 2124 2125 assert(V.getValueSizeInBits() == 32); 2126 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2127 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 2128 MVT::i64), 0); 2129 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 2130 MVT::i64, ImDef, V, 2131 SubRegIdx), 0); 2132 return ExtVal; 2133 } 2134 2135 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { 2136 if (V.getValueSizeInBits() == 32) 2137 return V; 2138 2139 assert(V.getValueSizeInBits() == 64); 2140 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2141 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, 2142 MVT::i32, V, SubRegIdx), 0); 2143 return SubVal; 2144 } 2145 2146 // Depending on the number of groups for a particular value, it might be 2147 // better to rotate, mask explicitly (using andi/andis), and then or the 2148 // result. Select this part of the result first. 2149 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2150 if (BPermRewriterNoMasking) 2151 return; 2152 2153 for (ValueRotInfo &VRI : ValueRotsVec) { 2154 unsigned Mask = 0; 2155 for (unsigned i = 0; i < Bits.size(); ++i) { 2156 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 2157 continue; 2158 if (RLAmt[i] != VRI.RLAmt) 2159 continue; 2160 Mask |= (1u << i); 2161 } 2162 2163 // Compute the masks for andi/andis that would be necessary. 2164 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2165 assert((ANDIMask != 0 || ANDISMask != 0) && 2166 "No set bits in mask for value bit groups"); 2167 bool NeedsRotate = VRI.RLAmt != 0; 2168 2169 // We're trying to minimize the number of instructions. If we have one 2170 // group, using one of andi/andis can break even. If we have three 2171 // groups, we can use both andi and andis and break even (to use both 2172 // andi and andis we also need to or the results together). We need four 2173 // groups if we also need to rotate. To use andi/andis we need to do more 2174 // than break even because rotate-and-mask instructions tend to be easier 2175 // to schedule. 2176 2177 // FIXME: We've biased here against using andi/andis, which is right for 2178 // POWER cores, but not optimal everywhere. For example, on the A2, 2179 // andi/andis have single-cycle latency whereas the rotate-and-mask 2180 // instructions take two cycles, and it would be better to bias toward 2181 // andi/andis in break-even cases. 2182 2183 unsigned NumAndInsts = (unsigned) NeedsRotate + 2184 (unsigned) (ANDIMask != 0) + 2185 (unsigned) (ANDISMask != 0) + 2186 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 2187 (unsigned) (bool) Res; 2188 2189 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2190 << " RL: " << VRI.RLAmt << ":" 2191 << "\n\t\t\tisel using masking: " << NumAndInsts 2192 << " using rotates: " << VRI.NumGroups << "\n"); 2193 2194 if (NumAndInsts >= VRI.NumGroups) 2195 continue; 2196 2197 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2198 2199 if (InstCnt) *InstCnt += NumAndInsts; 2200 2201 SDValue VRot; 2202 if (VRI.RLAmt) { 2203 SDValue Ops[] = 2204 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2205 getI32Imm(0, dl), getI32Imm(31, dl) }; 2206 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2207 Ops), 0); 2208 } else { 2209 VRot = TruncateToInt32(VRI.V, dl); 2210 } 2211 2212 SDValue ANDIVal, ANDISVal; 2213 if (ANDIMask != 0) 2214 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2215 VRot, getI32Imm(ANDIMask, dl)), 2216 0); 2217 if (ANDISMask != 0) 2218 ANDISVal = 2219 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, 2220 getI32Imm(ANDISMask, dl)), 2221 0); 2222 2223 SDValue TotalVal; 2224 if (!ANDIVal) 2225 TotalVal = ANDISVal; 2226 else if (!ANDISVal) 2227 TotalVal = ANDIVal; 2228 else 2229 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2230 ANDIVal, ANDISVal), 0); 2231 2232 if (!Res) 2233 Res = TotalVal; 2234 else 2235 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2236 Res, TotalVal), 0); 2237 2238 // Now, remove all groups with this underlying value and rotation 2239 // factor. 2240 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2241 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2242 }); 2243 } 2244 } 2245 2246 // Instruction selection for the 32-bit case. 2247 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 2248 SDLoc dl(N); 2249 SDValue Res; 2250 2251 if (InstCnt) *InstCnt = 0; 2252 2253 // Take care of cases that should use andi/andis first. 2254 SelectAndParts32(dl, Res, InstCnt); 2255 2256 // If we've not yet selected a 'starting' instruction, and we have no zeros 2257 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2258 // number of groups), and start with this rotated value. 2259 if ((!NeedMask || LateMask) && !Res) { 2260 ValueRotInfo &VRI = ValueRotsVec[0]; 2261 if (VRI.RLAmt) { 2262 if (InstCnt) *InstCnt += 1; 2263 SDValue Ops[] = 2264 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2265 getI32Imm(0, dl), getI32Imm(31, dl) }; 2266 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 2267 0); 2268 } else { 2269 Res = TruncateToInt32(VRI.V, dl); 2270 } 2271 2272 // Now, remove all groups with this underlying value and rotation factor. 2273 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2274 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2275 }); 2276 } 2277 2278 if (InstCnt) *InstCnt += BitGroups.size(); 2279 2280 // Insert the other groups (one at a time). 2281 for (auto &BG : BitGroups) { 2282 if (!Res) { 2283 SDValue Ops[] = 2284 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2285 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2286 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2287 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2288 } else { 2289 SDValue Ops[] = 2290 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2291 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2292 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2293 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 2294 } 2295 } 2296 2297 if (LateMask) { 2298 unsigned Mask = (unsigned) getZerosMask(); 2299 2300 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2301 assert((ANDIMask != 0 || ANDISMask != 0) && 2302 "No set bits in zeros mask?"); 2303 2304 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2305 (unsigned) (ANDISMask != 0) + 2306 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2307 2308 SDValue ANDIVal, ANDISVal; 2309 if (ANDIMask != 0) 2310 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2311 Res, getI32Imm(ANDIMask, dl)), 2312 0); 2313 if (ANDISMask != 0) 2314 ANDISVal = 2315 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, 2316 getI32Imm(ANDISMask, dl)), 2317 0); 2318 2319 if (!ANDIVal) 2320 Res = ANDISVal; 2321 else if (!ANDISVal) 2322 Res = ANDIVal; 2323 else 2324 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2325 ANDIVal, ANDISVal), 0); 2326 } 2327 2328 return Res.getNode(); 2329 } 2330 2331 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 2332 unsigned MaskStart, unsigned MaskEnd, 2333 bool IsIns) { 2334 // In the notation used by the instructions, 'start' and 'end' are reversed 2335 // because bits are counted from high to low order. 2336 unsigned InstMaskStart = 64 - MaskEnd - 1, 2337 InstMaskEnd = 64 - MaskStart - 1; 2338 2339 if (Repl32) 2340 return 1; 2341 2342 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 2343 InstMaskEnd == 63 - RLAmt) 2344 return 1; 2345 2346 return 2; 2347 } 2348 2349 // For 64-bit values, not all combinations of rotates and masks are 2350 // available. Produce one if it is available. 2351 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 2352 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 2353 unsigned *InstCnt = nullptr) { 2354 // In the notation used by the instructions, 'start' and 'end' are reversed 2355 // because bits are counted from high to low order. 2356 unsigned InstMaskStart = 64 - MaskEnd - 1, 2357 InstMaskEnd = 64 - MaskStart - 1; 2358 2359 if (InstCnt) *InstCnt += 1; 2360 2361 if (Repl32) { 2362 // This rotation amount assumes that the lower 32 bits of the quantity 2363 // are replicated in the high 32 bits by the rotation operator (which is 2364 // done by rlwinm and friends). 2365 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2366 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2367 SDValue Ops[] = 2368 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2369 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2370 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 2371 Ops), 0); 2372 } 2373 2374 if (InstMaskEnd == 63) { 2375 SDValue Ops[] = 2376 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2377 getI32Imm(InstMaskStart, dl) }; 2378 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 2379 } 2380 2381 if (InstMaskStart == 0) { 2382 SDValue Ops[] = 2383 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2384 getI32Imm(InstMaskEnd, dl) }; 2385 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 2386 } 2387 2388 if (InstMaskEnd == 63 - RLAmt) { 2389 SDValue Ops[] = 2390 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2391 getI32Imm(InstMaskStart, dl) }; 2392 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 2393 } 2394 2395 // We cannot do this with a single instruction, so we'll use two. The 2396 // problem is that we're not free to choose both a rotation amount and mask 2397 // start and end independently. We can choose an arbitrary mask start and 2398 // end, but then the rotation amount is fixed. Rotation, however, can be 2399 // inverted, and so by applying an "inverse" rotation first, we can get the 2400 // desired result. 2401 if (InstCnt) *InstCnt += 1; 2402 2403 // The rotation mask for the second instruction must be MaskStart. 2404 unsigned RLAmt2 = MaskStart; 2405 // The first instruction must rotate V so that the overall rotation amount 2406 // is RLAmt. 2407 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2408 if (RLAmt1) 2409 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2410 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 2411 } 2412 2413 // For 64-bit values, not all combinations of rotates and masks are 2414 // available. Produce a rotate-mask-and-insert if one is available. 2415 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 2416 unsigned RLAmt, bool Repl32, unsigned MaskStart, 2417 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 2418 // In the notation used by the instructions, 'start' and 'end' are reversed 2419 // because bits are counted from high to low order. 2420 unsigned InstMaskStart = 64 - MaskEnd - 1, 2421 InstMaskEnd = 64 - MaskStart - 1; 2422 2423 if (InstCnt) *InstCnt += 1; 2424 2425 if (Repl32) { 2426 // This rotation amount assumes that the lower 32 bits of the quantity 2427 // are replicated in the high 32 bits by the rotation operator (which is 2428 // done by rlwinm and friends). 2429 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2430 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2431 SDValue Ops[] = 2432 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2433 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2434 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 2435 Ops), 0); 2436 } 2437 2438 if (InstMaskEnd == 63 - RLAmt) { 2439 SDValue Ops[] = 2440 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2441 getI32Imm(InstMaskStart, dl) }; 2442 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 2443 } 2444 2445 // We cannot do this with a single instruction, so we'll use two. The 2446 // problem is that we're not free to choose both a rotation amount and mask 2447 // start and end independently. We can choose an arbitrary mask start and 2448 // end, but then the rotation amount is fixed. Rotation, however, can be 2449 // inverted, and so by applying an "inverse" rotation first, we can get the 2450 // desired result. 2451 if (InstCnt) *InstCnt += 1; 2452 2453 // The rotation mask for the second instruction must be MaskStart. 2454 unsigned RLAmt2 = MaskStart; 2455 // The first instruction must rotate V so that the overall rotation amount 2456 // is RLAmt. 2457 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2458 if (RLAmt1) 2459 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2460 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 2461 } 2462 2463 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2464 if (BPermRewriterNoMasking) 2465 return; 2466 2467 // The idea here is the same as in the 32-bit version, but with additional 2468 // complications from the fact that Repl32 might be true. Because we 2469 // aggressively convert bit groups to Repl32 form (which, for small 2470 // rotation factors, involves no other change), and then coalesce, it might 2471 // be the case that a single 64-bit masking operation could handle both 2472 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 2473 // form allowed coalescing, then we must use a 32-bit rotaton in order to 2474 // completely capture the new combined bit group. 2475 2476 for (ValueRotInfo &VRI : ValueRotsVec) { 2477 uint64_t Mask = 0; 2478 2479 // We need to add to the mask all bits from the associated bit groups. 2480 // If Repl32 is false, we need to add bits from bit groups that have 2481 // Repl32 true, but are trivially convertable to Repl32 false. Such a 2482 // group is trivially convertable if it overlaps only with the lower 32 2483 // bits, and the group has not been coalesced. 2484 auto MatchingBG = [VRI](const BitGroup &BG) { 2485 if (VRI.V != BG.V) 2486 return false; 2487 2488 unsigned EffRLAmt = BG.RLAmt; 2489 if (!VRI.Repl32 && BG.Repl32) { 2490 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 2491 !BG.Repl32Coalesced) { 2492 if (BG.Repl32CR) 2493 EffRLAmt += 32; 2494 } else { 2495 return false; 2496 } 2497 } else if (VRI.Repl32 != BG.Repl32) { 2498 return false; 2499 } 2500 2501 return VRI.RLAmt == EffRLAmt; 2502 }; 2503 2504 for (auto &BG : BitGroups) { 2505 if (!MatchingBG(BG)) 2506 continue; 2507 2508 if (BG.StartIdx <= BG.EndIdx) { 2509 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 2510 Mask |= (UINT64_C(1) << i); 2511 } else { 2512 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 2513 Mask |= (UINT64_C(1) << i); 2514 for (unsigned i = 0; i <= BG.EndIdx; ++i) 2515 Mask |= (UINT64_C(1) << i); 2516 } 2517 } 2518 2519 // We can use the 32-bit andi/andis technique if the mask does not 2520 // require any higher-order bits. This can save an instruction compared 2521 // to always using the general 64-bit technique. 2522 bool Use32BitInsts = isUInt<32>(Mask); 2523 // Compute the masks for andi/andis that would be necessary. 2524 unsigned ANDIMask = (Mask & UINT16_MAX), 2525 ANDISMask = (Mask >> 16) & UINT16_MAX; 2526 2527 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 2528 2529 unsigned NumAndInsts = (unsigned) NeedsRotate + 2530 (unsigned) (bool) Res; 2531 unsigned NumOfSelectInsts = 0; 2532 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts); 2533 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant."); 2534 if (Use32BitInsts) 2535 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 2536 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2537 else 2538 NumAndInsts += NumOfSelectInsts + /* and */ 1; 2539 2540 unsigned NumRLInsts = 0; 2541 bool FirstBG = true; 2542 bool MoreBG = false; 2543 for (auto &BG : BitGroups) { 2544 if (!MatchingBG(BG)) { 2545 MoreBG = true; 2546 continue; 2547 } 2548 NumRLInsts += 2549 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 2550 !FirstBG); 2551 FirstBG = false; 2552 } 2553 2554 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2555 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") 2556 << "\n\t\t\tisel using masking: " << NumAndInsts 2557 << " using rotates: " << NumRLInsts << "\n"); 2558 2559 // When we'd use andi/andis, we bias toward using the rotates (andi only 2560 // has a record form, and is cracked on POWER cores). However, when using 2561 // general 64-bit constant formation, bias toward the constant form, 2562 // because that exposes more opportunities for CSE. 2563 if (NumAndInsts > NumRLInsts) 2564 continue; 2565 // When merging multiple bit groups, instruction or is used. 2566 // But when rotate is used, rldimi can inert the rotated value into any 2567 // register, so instruction or can be avoided. 2568 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) 2569 continue; 2570 2571 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2572 2573 if (InstCnt) *InstCnt += NumAndInsts; 2574 2575 SDValue VRot; 2576 // We actually need to generate a rotation if we have a non-zero rotation 2577 // factor or, in the Repl32 case, if we care about any of the 2578 // higher-order replicated bits. In the latter case, we generate a mask 2579 // backward so that it actually includes the entire 64 bits. 2580 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 2581 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2582 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 2583 else 2584 VRot = VRI.V; 2585 2586 SDValue TotalVal; 2587 if (Use32BitInsts) { 2588 assert((ANDIMask != 0 || ANDISMask != 0) && 2589 "No set bits in mask when using 32-bit ands for 64-bit value"); 2590 2591 SDValue ANDIVal, ANDISVal; 2592 if (ANDIMask != 0) 2593 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2594 ExtendToInt64(VRot, dl), 2595 getI32Imm(ANDIMask, dl)), 2596 0); 2597 if (ANDISMask != 0) 2598 ANDISVal = 2599 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2600 ExtendToInt64(VRot, dl), 2601 getI32Imm(ANDISMask, dl)), 2602 0); 2603 2604 if (!ANDIVal) 2605 TotalVal = ANDISVal; 2606 else if (!ANDISVal) 2607 TotalVal = ANDIVal; 2608 else 2609 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2610 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2611 } else { 2612 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2613 TotalVal = 2614 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2615 ExtendToInt64(VRot, dl), TotalVal), 2616 0); 2617 } 2618 2619 if (!Res) 2620 Res = TotalVal; 2621 else 2622 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2623 ExtendToInt64(Res, dl), TotalVal), 2624 0); 2625 2626 // Now, remove all groups with this underlying value and rotation 2627 // factor. 2628 eraseMatchingBitGroups(MatchingBG); 2629 } 2630 } 2631 2632 // Instruction selection for the 64-bit case. 2633 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 2634 SDLoc dl(N); 2635 SDValue Res; 2636 2637 if (InstCnt) *InstCnt = 0; 2638 2639 // Take care of cases that should use andi/andis first. 2640 SelectAndParts64(dl, Res, InstCnt); 2641 2642 // If we've not yet selected a 'starting' instruction, and we have no zeros 2643 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2644 // number of groups), and start with this rotated value. 2645 if ((!NeedMask || LateMask) && !Res) { 2646 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 2647 // groups will come first, and so the VRI representing the largest number 2648 // of groups might not be first (it might be the first Repl32 groups). 2649 unsigned MaxGroupsIdx = 0; 2650 if (!ValueRotsVec[0].Repl32) { 2651 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 2652 if (ValueRotsVec[i].Repl32) { 2653 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 2654 MaxGroupsIdx = i; 2655 break; 2656 } 2657 } 2658 2659 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 2660 bool NeedsRotate = false; 2661 if (VRI.RLAmt) { 2662 NeedsRotate = true; 2663 } else if (VRI.Repl32) { 2664 for (auto &BG : BitGroups) { 2665 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 2666 BG.Repl32 != VRI.Repl32) 2667 continue; 2668 2669 // We don't need a rotate if the bit group is confined to the lower 2670 // 32 bits. 2671 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 2672 continue; 2673 2674 NeedsRotate = true; 2675 break; 2676 } 2677 } 2678 2679 if (NeedsRotate) 2680 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2681 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 2682 InstCnt); 2683 else 2684 Res = VRI.V; 2685 2686 // Now, remove all groups with this underlying value and rotation factor. 2687 if (Res) 2688 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2689 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 2690 BG.Repl32 == VRI.Repl32; 2691 }); 2692 } 2693 2694 // Because 64-bit rotates are more flexible than inserts, we might have a 2695 // preference regarding which one we do first (to save one instruction). 2696 if (!Res) 2697 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 2698 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2699 false) < 2700 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2701 true)) { 2702 if (I != BitGroups.begin()) { 2703 BitGroup BG = *I; 2704 BitGroups.erase(I); 2705 BitGroups.insert(BitGroups.begin(), BG); 2706 } 2707 2708 break; 2709 } 2710 } 2711 2712 // Insert the other groups (one at a time). 2713 for (auto &BG : BitGroups) { 2714 if (!Res) 2715 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 2716 BG.EndIdx, InstCnt); 2717 else 2718 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 2719 BG.StartIdx, BG.EndIdx, InstCnt); 2720 } 2721 2722 if (LateMask) { 2723 uint64_t Mask = getZerosMask(); 2724 2725 // We can use the 32-bit andi/andis technique if the mask does not 2726 // require any higher-order bits. This can save an instruction compared 2727 // to always using the general 64-bit technique. 2728 bool Use32BitInsts = isUInt<32>(Mask); 2729 // Compute the masks for andi/andis that would be necessary. 2730 unsigned ANDIMask = (Mask & UINT16_MAX), 2731 ANDISMask = (Mask >> 16) & UINT16_MAX; 2732 2733 if (Use32BitInsts) { 2734 assert((ANDIMask != 0 || ANDISMask != 0) && 2735 "No set bits in mask when using 32-bit ands for 64-bit value"); 2736 2737 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2738 (unsigned) (ANDISMask != 0) + 2739 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2740 2741 SDValue ANDIVal, ANDISVal; 2742 if (ANDIMask != 0) 2743 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2744 ExtendToInt64(Res, dl), 2745 getI32Imm(ANDIMask, dl)), 2746 0); 2747 if (ANDISMask != 0) 2748 ANDISVal = 2749 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2750 ExtendToInt64(Res, dl), 2751 getI32Imm(ANDISMask, dl)), 2752 0); 2753 2754 if (!ANDIVal) 2755 Res = ANDISVal; 2756 else if (!ANDISVal) 2757 Res = ANDIVal; 2758 else 2759 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2760 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2761 } else { 2762 unsigned NumOfSelectInsts = 0; 2763 SDValue MaskVal = 2764 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0); 2765 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2766 ExtendToInt64(Res, dl), MaskVal), 2767 0); 2768 if (InstCnt) 2769 *InstCnt += NumOfSelectInsts + /* and */ 1; 2770 } 2771 } 2772 2773 return Res.getNode(); 2774 } 2775 2776 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 2777 // Fill in BitGroups. 2778 collectBitGroups(LateMask); 2779 if (BitGroups.empty()) 2780 return nullptr; 2781 2782 // For 64-bit values, figure out when we can use 32-bit instructions. 2783 if (Bits.size() == 64) 2784 assignRepl32BitGroups(); 2785 2786 // Fill in ValueRotsVec. 2787 collectValueRotInfo(); 2788 2789 if (Bits.size() == 32) { 2790 return Select32(N, LateMask, InstCnt); 2791 } else { 2792 assert(Bits.size() == 64 && "Not 64 bits here?"); 2793 return Select64(N, LateMask, InstCnt); 2794 } 2795 2796 return nullptr; 2797 } 2798 2799 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 2800 erase_if(BitGroups, F); 2801 } 2802 2803 SmallVector<ValueBit, 64> Bits; 2804 2805 bool NeedMask = false; 2806 SmallVector<unsigned, 64> RLAmt; 2807 2808 SmallVector<BitGroup, 16> BitGroups; 2809 2810 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 2811 SmallVector<ValueRotInfo, 16> ValueRotsVec; 2812 2813 SelectionDAG *CurDAG = nullptr; 2814 2815 public: 2816 BitPermutationSelector(SelectionDAG *DAG) 2817 : CurDAG(DAG) {} 2818 2819 // Here we try to match complex bit permutations into a set of 2820 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 2821 // known to produce optimal code for common cases (like i32 byte swapping). 2822 SDNode *Select(SDNode *N) { 2823 Memoizer.clear(); 2824 auto Result = 2825 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 2826 if (!Result.first) 2827 return nullptr; 2828 Bits = std::move(*Result.second); 2829 2830 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" 2831 " selection for: "); 2832 LLVM_DEBUG(N->dump(CurDAG)); 2833 2834 // Fill it RLAmt and set NeedMask. 2835 computeRotationAmounts(); 2836 2837 if (!NeedMask) 2838 return Select(N, false); 2839 2840 // We currently have two techniques for handling results with zeros: early 2841 // masking (the default) and late masking. Late masking is sometimes more 2842 // efficient, but because the structure of the bit groups is different, it 2843 // is hard to tell without generating both and comparing the results. With 2844 // late masking, we ignore zeros in the resulting value when inserting each 2845 // set of bit groups, and then mask in the zeros at the end. With early 2846 // masking, we only insert the non-zero parts of the result at every step. 2847 2848 unsigned InstCnt = 0, InstCntLateMask = 0; 2849 LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); 2850 SDNode *RN = Select(N, false, &InstCnt); 2851 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 2852 2853 LLVM_DEBUG(dbgs() << "\tLate masking:\n"); 2854 SDNode *RNLM = Select(N, true, &InstCntLateMask); 2855 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask 2856 << " instructions\n"); 2857 2858 if (InstCnt <= InstCntLateMask) { 2859 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 2860 return RN; 2861 } 2862 2863 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 2864 return RNLM; 2865 } 2866 }; 2867 2868 class IntegerCompareEliminator { 2869 SelectionDAG *CurDAG; 2870 PPCDAGToDAGISel *S; 2871 // Conversion type for interpreting results of a 32-bit instruction as 2872 // a 64-bit value or vice versa. 2873 enum ExtOrTruncConversion { Ext, Trunc }; 2874 2875 // Modifiers to guide how an ISD::SETCC node's result is to be computed 2876 // in a GPR. 2877 // ZExtOrig - use the original condition code, zero-extend value 2878 // ZExtInvert - invert the condition code, zero-extend value 2879 // SExtOrig - use the original condition code, sign-extend value 2880 // SExtInvert - invert the condition code, sign-extend value 2881 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; 2882 2883 // Comparisons against zero to emit GPR code sequences for. Each of these 2884 // sequences may need to be emitted for two or more equivalent patterns. 2885 // For example (a >= 0) == (a > -1). The direction of the comparison (</>) 2886 // matters as well as the extension type: sext (-1/0), zext (1/0). 2887 // GEZExt - (zext (LHS >= 0)) 2888 // GESExt - (sext (LHS >= 0)) 2889 // LEZExt - (zext (LHS <= 0)) 2890 // LESExt - (sext (LHS <= 0)) 2891 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; 2892 2893 SDNode *tryEXTEND(SDNode *N); 2894 SDNode *tryLogicOpOfCompares(SDNode *N); 2895 SDValue computeLogicOpInGPR(SDValue LogicOp); 2896 SDValue signExtendInputIfNeeded(SDValue Input); 2897 SDValue zeroExtendInputIfNeeded(SDValue Input); 2898 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); 2899 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2900 ZeroCompare CmpTy); 2901 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2902 int64_t RHSValue, SDLoc dl); 2903 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2904 int64_t RHSValue, SDLoc dl); 2905 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2906 int64_t RHSValue, SDLoc dl); 2907 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2908 int64_t RHSValue, SDLoc dl); 2909 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); 2910 2911 public: 2912 IntegerCompareEliminator(SelectionDAG *DAG, 2913 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { 2914 assert(CurDAG->getTargetLoweringInfo() 2915 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && 2916 "Only expecting to use this on 64 bit targets."); 2917 } 2918 SDNode *Select(SDNode *N) { 2919 if (CmpInGPR == ICGPR_None) 2920 return nullptr; 2921 switch (N->getOpcode()) { 2922 default: break; 2923 case ISD::ZERO_EXTEND: 2924 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || 2925 CmpInGPR == ICGPR_SextI64) 2926 return nullptr; 2927 [[fallthrough]]; 2928 case ISD::SIGN_EXTEND: 2929 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || 2930 CmpInGPR == ICGPR_ZextI64) 2931 return nullptr; 2932 return tryEXTEND(N); 2933 case ISD::AND: 2934 case ISD::OR: 2935 case ISD::XOR: 2936 return tryLogicOpOfCompares(N); 2937 } 2938 return nullptr; 2939 } 2940 }; 2941 2942 // The obvious case for wanting to keep the value in a GPR. Namely, the 2943 // result of the comparison is actually needed in a GPR. 2944 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { 2945 assert((N->getOpcode() == ISD::ZERO_EXTEND || 2946 N->getOpcode() == ISD::SIGN_EXTEND) && 2947 "Expecting a zero/sign extend node!"); 2948 SDValue WideRes; 2949 // If we are zero-extending the result of a logical operation on i1 2950 // values, we can keep the values in GPRs. 2951 if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) && 2952 N->getOperand(0).getValueType() == MVT::i1 && 2953 N->getOpcode() == ISD::ZERO_EXTEND) 2954 WideRes = computeLogicOpInGPR(N->getOperand(0)); 2955 else if (N->getOperand(0).getOpcode() != ISD::SETCC) 2956 return nullptr; 2957 else 2958 WideRes = 2959 getSETCCInGPR(N->getOperand(0), 2960 N->getOpcode() == ISD::SIGN_EXTEND ? 2961 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); 2962 2963 if (!WideRes) 2964 return nullptr; 2965 2966 SDLoc dl(N); 2967 bool Input32Bit = WideRes.getValueType() == MVT::i32; 2968 bool Output32Bit = N->getValueType(0) == MVT::i32; 2969 2970 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; 2971 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; 2972 2973 SDValue ConvOp = WideRes; 2974 if (Input32Bit != Output32Bit) 2975 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : 2976 ExtOrTruncConversion::Trunc); 2977 return ConvOp.getNode(); 2978 } 2979 2980 // Attempt to perform logical operations on the results of comparisons while 2981 // keeping the values in GPRs. Without doing so, these would end up being 2982 // lowered to CR-logical operations which suffer from significant latency and 2983 // low ILP. 2984 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { 2985 if (N->getValueType(0) != MVT::i1) 2986 return nullptr; 2987 assert(ISD::isBitwiseLogicOp(N->getOpcode()) && 2988 "Expected a logic operation on setcc results."); 2989 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); 2990 if (!LoweredLogical) 2991 return nullptr; 2992 2993 SDLoc dl(N); 2994 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; 2995 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; 2996 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2997 SDValue LHS = LoweredLogical.getOperand(0); 2998 SDValue RHS = LoweredLogical.getOperand(1); 2999 SDValue WideOp; 3000 SDValue OpToConvToRecForm; 3001 3002 // Look through any 32-bit to 64-bit implicit extend nodes to find the 3003 // opcode that is input to the XORI. 3004 if (IsBitwiseNegate && 3005 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) 3006 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); 3007 else if (IsBitwiseNegate) 3008 // If the input to the XORI isn't an extension, that's what we're after. 3009 OpToConvToRecForm = LoweredLogical.getOperand(0); 3010 else 3011 // If this is not an XORI, it is a reg-reg logical op and we can convert 3012 // it to record-form. 3013 OpToConvToRecForm = LoweredLogical; 3014 3015 // Get the record-form version of the node we're looking to use to get the 3016 // CR result from. 3017 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); 3018 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); 3019 3020 // Convert the right node to record-form. This is either the logical we're 3021 // looking at or it is the input node to the negation (if we're looking at 3022 // a bitwise negation). 3023 if (NewOpc != -1 && IsBitwiseNegate) { 3024 // The input to the XORI has a record-form. Use it. 3025 assert(LoweredLogical.getConstantOperandVal(1) == 1 && 3026 "Expected a PPC::XORI8 only for bitwise negation."); 3027 // Emit the record-form instruction. 3028 std::vector<SDValue> Ops; 3029 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) 3030 Ops.push_back(OpToConvToRecForm.getOperand(i)); 3031 3032 WideOp = 3033 SDValue(CurDAG->getMachineNode(NewOpc, dl, 3034 OpToConvToRecForm.getValueType(), 3035 MVT::Glue, Ops), 0); 3036 } else { 3037 assert((NewOpc != -1 || !IsBitwiseNegate) && 3038 "No record form available for AND8/OR8/XOR8?"); 3039 WideOp = 3040 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, 3041 dl, MVT::i64, MVT::Glue, LHS, RHS), 3042 0); 3043 } 3044 3045 // Select this node to a single bit from CR0 set by the record-form node 3046 // just created. For bitwise negation, use the EQ bit which is the equivalent 3047 // of negating the result (i.e. it is a bit set when the result of the 3048 // operation is zero). 3049 SDValue SRIdxVal = 3050 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); 3051 SDValue CRBit = 3052 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 3053 MVT::i1, CR0Reg, SRIdxVal, 3054 WideOp.getValue(1)), 0); 3055 return CRBit.getNode(); 3056 } 3057 3058 // Lower a logical operation on i1 values into a GPR sequence if possible. 3059 // The result can be kept in a GPR if requested. 3060 // Three types of inputs can be handled: 3061 // - SETCC 3062 // - TRUNCATE 3063 // - Logical operation (AND/OR/XOR) 3064 // There is also a special case that is handled (namely a complement operation 3065 // achieved with xor %a, -1). 3066 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { 3067 assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) && 3068 "Can only handle logic operations here."); 3069 assert(LogicOp.getValueType() == MVT::i1 && 3070 "Can only handle logic operations on i1 values here."); 3071 SDLoc dl(LogicOp); 3072 SDValue LHS, RHS; 3073 3074 // Special case: xor %a, -1 3075 bool IsBitwiseNegation = isBitwiseNot(LogicOp); 3076 3077 // Produces a GPR sequence for each operand of the binary logic operation. 3078 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates 3079 // the value in a GPR and for logic operations, it will recursively produce 3080 // a GPR sequence for the operation. 3081 auto getLogicOperand = [&] (SDValue Operand) -> SDValue { 3082 unsigned OperandOpcode = Operand.getOpcode(); 3083 if (OperandOpcode == ISD::SETCC) 3084 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); 3085 else if (OperandOpcode == ISD::TRUNCATE) { 3086 SDValue InputOp = Operand.getOperand(0); 3087 EVT InVT = InputOp.getValueType(); 3088 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : 3089 PPC::RLDICL, dl, InVT, InputOp, 3090 S->getI64Imm(0, dl), 3091 S->getI64Imm(63, dl)), 0); 3092 } else if (ISD::isBitwiseLogicOp(OperandOpcode)) 3093 return computeLogicOpInGPR(Operand); 3094 return SDValue(); 3095 }; 3096 LHS = getLogicOperand(LogicOp.getOperand(0)); 3097 RHS = getLogicOperand(LogicOp.getOperand(1)); 3098 3099 // If a GPR sequence can't be produced for the LHS we can't proceed. 3100 // Not producing a GPR sequence for the RHS is only a problem if this isn't 3101 // a bitwise negation operation. 3102 if (!LHS || (!RHS && !IsBitwiseNegation)) 3103 return SDValue(); 3104 3105 NumLogicOpsOnComparison++; 3106 3107 // We will use the inputs as 64-bit values. 3108 if (LHS.getValueType() == MVT::i32) 3109 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); 3110 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) 3111 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); 3112 3113 unsigned NewOpc; 3114 switch (LogicOp.getOpcode()) { 3115 default: llvm_unreachable("Unknown logic operation."); 3116 case ISD::AND: NewOpc = PPC::AND8; break; 3117 case ISD::OR: NewOpc = PPC::OR8; break; 3118 case ISD::XOR: NewOpc = PPC::XOR8; break; 3119 } 3120 3121 if (IsBitwiseNegation) { 3122 RHS = S->getI64Imm(1, dl); 3123 NewOpc = PPC::XORI8; 3124 } 3125 3126 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); 3127 3128 } 3129 3130 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. 3131 /// Otherwise just reinterpret it as a 64-bit value. 3132 /// Useful when emitting comparison code for 32-bit values without using 3133 /// the compare instruction (which only considers the lower 32-bits). 3134 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { 3135 assert(Input.getValueType() == MVT::i32 && 3136 "Can only sign-extend 32-bit values here."); 3137 unsigned Opc = Input.getOpcode(); 3138 3139 // The value was sign extended and then truncated to 32-bits. No need to 3140 // sign extend it again. 3141 if (Opc == ISD::TRUNCATE && 3142 (Input.getOperand(0).getOpcode() == ISD::AssertSext || 3143 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) 3144 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3145 3146 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3147 // The input is a sign-extending load. All ppc sign-extending loads 3148 // sign-extend to the full 64-bits. 3149 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) 3150 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3151 3152 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3153 // We don't sign-extend constants. 3154 if (InputConst) 3155 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3156 3157 SDLoc dl(Input); 3158 SignExtensionsAdded++; 3159 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, 3160 MVT::i64, Input), 0); 3161 } 3162 3163 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. 3164 /// Otherwise just reinterpret it as a 64-bit value. 3165 /// Useful when emitting comparison code for 32-bit values without using 3166 /// the compare instruction (which only considers the lower 32-bits). 3167 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { 3168 assert(Input.getValueType() == MVT::i32 && 3169 "Can only zero-extend 32-bit values here."); 3170 unsigned Opc = Input.getOpcode(); 3171 3172 // The only condition under which we can omit the actual extend instruction: 3173 // - The value is a positive constant 3174 // - The value comes from a load that isn't a sign-extending load 3175 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. 3176 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && 3177 (Input.getOperand(0).getOpcode() == ISD::AssertZext || 3178 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); 3179 if (IsTruncateOfZExt) 3180 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3181 3182 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3183 if (InputConst && InputConst->getSExtValue() >= 0) 3184 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3185 3186 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3187 // The input is a load that doesn't sign-extend (it will be zero-extended). 3188 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) 3189 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3190 3191 // None of the above, need to zero-extend. 3192 SDLoc dl(Input); 3193 ZeroExtensionsAdded++; 3194 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, 3195 S->getI64Imm(0, dl), 3196 S->getI64Imm(32, dl)), 0); 3197 } 3198 3199 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of 3200 // course not actual zero/sign extensions that will generate machine code, 3201 // they're just a way to reinterpret a 32 bit value in a register as a 3202 // 64 bit value and vice-versa. 3203 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, 3204 ExtOrTruncConversion Conv) { 3205 SDLoc dl(NatWidthRes); 3206 3207 // For reinterpreting 32-bit values as 64 bit values, we generate 3208 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> 3209 if (Conv == ExtOrTruncConversion::Ext) { 3210 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); 3211 SDValue SubRegIdx = 3212 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3213 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, 3214 ImDef, NatWidthRes, SubRegIdx), 0); 3215 } 3216 3217 assert(Conv == ExtOrTruncConversion::Trunc && 3218 "Unknown convertion between 32 and 64 bit values."); 3219 // For reinterpreting 64-bit values as 32-bit values, we just need to 3220 // EXTRACT_SUBREG (i.e. extract the low word). 3221 SDValue SubRegIdx = 3222 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3223 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, 3224 NatWidthRes, SubRegIdx), 0); 3225 } 3226 3227 // Produce a GPR sequence for compound comparisons (<=, >=) against zero. 3228 // Handle both zero-extensions and sign-extensions. 3229 SDValue 3230 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 3231 ZeroCompare CmpTy) { 3232 EVT InVT = LHS.getValueType(); 3233 bool Is32Bit = InVT == MVT::i32; 3234 SDValue ToExtend; 3235 3236 // Produce the value that needs to be either zero or sign extended. 3237 switch (CmpTy) { 3238 case ZeroCompare::GEZExt: 3239 case ZeroCompare::GESExt: 3240 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, 3241 dl, InVT, LHS, LHS), 0); 3242 break; 3243 case ZeroCompare::LEZExt: 3244 case ZeroCompare::LESExt: { 3245 if (Is32Bit) { 3246 // Upper 32 bits cannot be undefined for this sequence. 3247 LHS = signExtendInputIfNeeded(LHS); 3248 SDValue Neg = 3249 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3250 ToExtend = 3251 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3252 Neg, S->getI64Imm(1, dl), 3253 S->getI64Imm(63, dl)), 0); 3254 } else { 3255 SDValue Addi = 3256 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3257 S->getI64Imm(~0ULL, dl)), 0); 3258 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 3259 Addi, LHS), 0); 3260 } 3261 break; 3262 } 3263 } 3264 3265 // For 64-bit sequences, the extensions are the same for the GE/LE cases. 3266 if (!Is32Bit && 3267 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) 3268 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3269 ToExtend, S->getI64Imm(1, dl), 3270 S->getI64Imm(63, dl)), 0); 3271 if (!Is32Bit && 3272 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) 3273 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, 3274 S->getI64Imm(63, dl)), 0); 3275 3276 assert(Is32Bit && "Should have handled the 32-bit sequences above."); 3277 // For 32-bit sequences, the extensions differ between GE/LE cases. 3278 switch (CmpTy) { 3279 case ZeroCompare::GEZExt: { 3280 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3281 S->getI32Imm(31, dl) }; 3282 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3283 ShiftOps), 0); 3284 } 3285 case ZeroCompare::GESExt: 3286 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, 3287 S->getI32Imm(31, dl)), 0); 3288 case ZeroCompare::LEZExt: 3289 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, 3290 S->getI32Imm(1, dl)), 0); 3291 case ZeroCompare::LESExt: 3292 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, 3293 S->getI32Imm(-1, dl)), 0); 3294 } 3295 3296 // The above case covers all the enumerators so it can't have a default clause 3297 // to avoid compiler warnings. 3298 llvm_unreachable("Unknown zero-comparison type."); 3299 } 3300 3301 /// Produces a zero-extended result of comparing two 32-bit values according to 3302 /// the passed condition code. 3303 SDValue 3304 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, 3305 ISD::CondCode CC, 3306 int64_t RHSValue, SDLoc dl) { 3307 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3308 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) 3309 return SDValue(); 3310 bool IsRHSZero = RHSValue == 0; 3311 bool IsRHSOne = RHSValue == 1; 3312 bool IsRHSNegOne = RHSValue == -1LL; 3313 switch (CC) { 3314 default: return SDValue(); 3315 case ISD::SETEQ: { 3316 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) 3317 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) 3318 SDValue Xor = IsRHSZero ? LHS : 3319 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3320 SDValue Clz = 3321 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3322 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3323 S->getI32Imm(31, dl) }; 3324 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3325 ShiftOps), 0); 3326 } 3327 case ISD::SETNE: { 3328 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) 3329 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) 3330 SDValue Xor = IsRHSZero ? LHS : 3331 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3332 SDValue Clz = 3333 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3334 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3335 S->getI32Imm(31, dl) }; 3336 SDValue Shift = 3337 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3338 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3339 S->getI32Imm(1, dl)), 0); 3340 } 3341 case ISD::SETGE: { 3342 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) 3343 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) 3344 if(IsRHSZero) 3345 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3346 3347 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3348 // by swapping inputs and falling through. 3349 std::swap(LHS, RHS); 3350 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3351 IsRHSZero = RHSConst && RHSConst->isZero(); 3352 [[fallthrough]]; 3353 } 3354 case ISD::SETLE: { 3355 if (CmpInGPR == ICGPR_NonExtIn) 3356 return SDValue(); 3357 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) 3358 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) 3359 if(IsRHSZero) { 3360 if (CmpInGPR == ICGPR_NonExtIn) 3361 return SDValue(); 3362 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3363 } 3364 3365 // The upper 32-bits of the register can't be undefined for this sequence. 3366 LHS = signExtendInputIfNeeded(LHS); 3367 RHS = signExtendInputIfNeeded(RHS); 3368 SDValue Sub = 3369 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3370 SDValue Shift = 3371 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, 3372 S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 3373 0); 3374 return 3375 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, 3376 MVT::i64, Shift, S->getI32Imm(1, dl)), 0); 3377 } 3378 case ISD::SETGT: { 3379 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) 3380 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) 3381 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) 3382 // Handle SETLT -1 (which is equivalent to SETGE 0). 3383 if (IsRHSNegOne) 3384 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3385 3386 if (IsRHSZero) { 3387 if (CmpInGPR == ICGPR_NonExtIn) 3388 return SDValue(); 3389 // The upper 32-bits of the register can't be undefined for this sequence. 3390 LHS = signExtendInputIfNeeded(LHS); 3391 RHS = signExtendInputIfNeeded(RHS); 3392 SDValue Neg = 3393 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3394 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3395 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); 3396 } 3397 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3398 // (%b < %a) by swapping inputs and falling through. 3399 std::swap(LHS, RHS); 3400 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3401 IsRHSZero = RHSConst && RHSConst->isZero(); 3402 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3403 [[fallthrough]]; 3404 } 3405 case ISD::SETLT: { 3406 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) 3407 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) 3408 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) 3409 // Handle SETLT 1 (which is equivalent to SETLE 0). 3410 if (IsRHSOne) { 3411 if (CmpInGPR == ICGPR_NonExtIn) 3412 return SDValue(); 3413 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3414 } 3415 3416 if (IsRHSZero) { 3417 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3418 S->getI32Imm(31, dl) }; 3419 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3420 ShiftOps), 0); 3421 } 3422 3423 if (CmpInGPR == ICGPR_NonExtIn) 3424 return SDValue(); 3425 // The upper 32-bits of the register can't be undefined for this sequence. 3426 LHS = signExtendInputIfNeeded(LHS); 3427 RHS = signExtendInputIfNeeded(RHS); 3428 SDValue SUBFNode = 3429 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3430 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3431 SUBFNode, S->getI64Imm(1, dl), 3432 S->getI64Imm(63, dl)), 0); 3433 } 3434 case ISD::SETUGE: 3435 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) 3436 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) 3437 std::swap(LHS, RHS); 3438 [[fallthrough]]; 3439 case ISD::SETULE: { 3440 if (CmpInGPR == ICGPR_NonExtIn) 3441 return SDValue(); 3442 // The upper 32-bits of the register can't be undefined for this sequence. 3443 LHS = zeroExtendInputIfNeeded(LHS); 3444 RHS = zeroExtendInputIfNeeded(RHS); 3445 SDValue Subtract = 3446 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3447 SDValue SrdiNode = 3448 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3449 Subtract, S->getI64Imm(1, dl), 3450 S->getI64Imm(63, dl)), 0); 3451 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, 3452 S->getI32Imm(1, dl)), 0); 3453 } 3454 case ISD::SETUGT: 3455 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) 3456 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) 3457 std::swap(LHS, RHS); 3458 [[fallthrough]]; 3459 case ISD::SETULT: { 3460 if (CmpInGPR == ICGPR_NonExtIn) 3461 return SDValue(); 3462 // The upper 32-bits of the register can't be undefined for this sequence. 3463 LHS = zeroExtendInputIfNeeded(LHS); 3464 RHS = zeroExtendInputIfNeeded(RHS); 3465 SDValue Subtract = 3466 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3467 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3468 Subtract, S->getI64Imm(1, dl), 3469 S->getI64Imm(63, dl)), 0); 3470 } 3471 } 3472 } 3473 3474 /// Produces a sign-extended result of comparing two 32-bit values according to 3475 /// the passed condition code. 3476 SDValue 3477 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, 3478 ISD::CondCode CC, 3479 int64_t RHSValue, SDLoc dl) { 3480 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3481 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) 3482 return SDValue(); 3483 bool IsRHSZero = RHSValue == 0; 3484 bool IsRHSOne = RHSValue == 1; 3485 bool IsRHSNegOne = RHSValue == -1LL; 3486 3487 switch (CC) { 3488 default: return SDValue(); 3489 case ISD::SETEQ: { 3490 // (sext (setcc %a, %b, seteq)) -> 3491 // (ashr (shl (ctlz (xor %a, %b)), 58), 63) 3492 // (sext (setcc %a, 0, seteq)) -> 3493 // (ashr (shl (ctlz %a), 58), 63) 3494 SDValue CountInput = IsRHSZero ? LHS : 3495 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3496 SDValue Cntlzw = 3497 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); 3498 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), 3499 S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3500 SDValue Slwi = 3501 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); 3502 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); 3503 } 3504 case ISD::SETNE: { 3505 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and 3506 // flip the bit, finally take 2's complement. 3507 // (sext (setcc %a, %b, setne)) -> 3508 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) 3509 // Same as above, but the first xor is not needed. 3510 // (sext (setcc %a, 0, setne)) -> 3511 // (neg (xor (lshr (ctlz %a), 5), 1)) 3512 SDValue Xor = IsRHSZero ? LHS : 3513 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3514 SDValue Clz = 3515 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3516 SDValue ShiftOps[] = 3517 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3518 SDValue Shift = 3519 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3520 SDValue Xori = 3521 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3522 S->getI32Imm(1, dl)), 0); 3523 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); 3524 } 3525 case ISD::SETGE: { 3526 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) 3527 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) 3528 if (IsRHSZero) 3529 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3530 3531 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3532 // by swapping inputs and falling through. 3533 std::swap(LHS, RHS); 3534 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3535 IsRHSZero = RHSConst && RHSConst->isZero(); 3536 [[fallthrough]]; 3537 } 3538 case ISD::SETLE: { 3539 if (CmpInGPR == ICGPR_NonExtIn) 3540 return SDValue(); 3541 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) 3542 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) 3543 if (IsRHSZero) 3544 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3545 3546 // The upper 32-bits of the register can't be undefined for this sequence. 3547 LHS = signExtendInputIfNeeded(LHS); 3548 RHS = signExtendInputIfNeeded(RHS); 3549 SDValue SUBFNode = 3550 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, 3551 LHS, RHS), 0); 3552 SDValue Srdi = 3553 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3554 SUBFNode, S->getI64Imm(1, dl), 3555 S->getI64Imm(63, dl)), 0); 3556 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, 3557 S->getI32Imm(-1, dl)), 0); 3558 } 3559 case ISD::SETGT: { 3560 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) 3561 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) 3562 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) 3563 if (IsRHSNegOne) 3564 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3565 if (IsRHSZero) { 3566 if (CmpInGPR == ICGPR_NonExtIn) 3567 return SDValue(); 3568 // The upper 32-bits of the register can't be undefined for this sequence. 3569 LHS = signExtendInputIfNeeded(LHS); 3570 RHS = signExtendInputIfNeeded(RHS); 3571 SDValue Neg = 3572 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3573 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, 3574 S->getI64Imm(63, dl)), 0); 3575 } 3576 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3577 // (%b < %a) by swapping inputs and falling through. 3578 std::swap(LHS, RHS); 3579 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3580 IsRHSZero = RHSConst && RHSConst->isZero(); 3581 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3582 [[fallthrough]]; 3583 } 3584 case ISD::SETLT: { 3585 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) 3586 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) 3587 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) 3588 if (IsRHSOne) { 3589 if (CmpInGPR == ICGPR_NonExtIn) 3590 return SDValue(); 3591 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3592 } 3593 if (IsRHSZero) 3594 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, 3595 S->getI32Imm(31, dl)), 0); 3596 3597 if (CmpInGPR == ICGPR_NonExtIn) 3598 return SDValue(); 3599 // The upper 32-bits of the register can't be undefined for this sequence. 3600 LHS = signExtendInputIfNeeded(LHS); 3601 RHS = signExtendInputIfNeeded(RHS); 3602 SDValue SUBFNode = 3603 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3604 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3605 SUBFNode, S->getI64Imm(63, dl)), 0); 3606 } 3607 case ISD::SETUGE: 3608 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) 3609 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) 3610 std::swap(LHS, RHS); 3611 [[fallthrough]]; 3612 case ISD::SETULE: { 3613 if (CmpInGPR == ICGPR_NonExtIn) 3614 return SDValue(); 3615 // The upper 32-bits of the register can't be undefined for this sequence. 3616 LHS = zeroExtendInputIfNeeded(LHS); 3617 RHS = zeroExtendInputIfNeeded(RHS); 3618 SDValue Subtract = 3619 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3620 SDValue Shift = 3621 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, 3622 S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 3623 0); 3624 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, 3625 S->getI32Imm(-1, dl)), 0); 3626 } 3627 case ISD::SETUGT: 3628 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) 3629 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) 3630 std::swap(LHS, RHS); 3631 [[fallthrough]]; 3632 case ISD::SETULT: { 3633 if (CmpInGPR == ICGPR_NonExtIn) 3634 return SDValue(); 3635 // The upper 32-bits of the register can't be undefined for this sequence. 3636 LHS = zeroExtendInputIfNeeded(LHS); 3637 RHS = zeroExtendInputIfNeeded(RHS); 3638 SDValue Subtract = 3639 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3640 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3641 Subtract, S->getI64Imm(63, dl)), 0); 3642 } 3643 } 3644 } 3645 3646 /// Produces a zero-extended result of comparing two 64-bit values according to 3647 /// the passed condition code. 3648 SDValue 3649 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, 3650 ISD::CondCode CC, 3651 int64_t RHSValue, SDLoc dl) { 3652 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3653 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) 3654 return SDValue(); 3655 bool IsRHSZero = RHSValue == 0; 3656 bool IsRHSOne = RHSValue == 1; 3657 bool IsRHSNegOne = RHSValue == -1LL; 3658 switch (CC) { 3659 default: return SDValue(); 3660 case ISD::SETEQ: { 3661 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) 3662 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) 3663 SDValue Xor = IsRHSZero ? LHS : 3664 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3665 SDValue Clz = 3666 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); 3667 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, 3668 S->getI64Imm(58, dl), 3669 S->getI64Imm(63, dl)), 0); 3670 } 3671 case ISD::SETNE: { 3672 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3673 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) 3674 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3675 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3676 SDValue Xor = IsRHSZero ? LHS : 3677 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3678 SDValue AC = 3679 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3680 Xor, S->getI32Imm(~0U, dl)), 0); 3681 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, 3682 Xor, AC.getValue(1)), 0); 3683 } 3684 case ISD::SETGE: { 3685 // {subc.reg, subc.CA} = (subcarry %a, %b) 3686 // (zext (setcc %a, %b, setge)) -> 3687 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) 3688 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) 3689 if (IsRHSZero) 3690 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3691 std::swap(LHS, RHS); 3692 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3693 IsRHSZero = RHSConst && RHSConst->isZero(); 3694 [[fallthrough]]; 3695 } 3696 case ISD::SETLE: { 3697 // {subc.reg, subc.CA} = (subcarry %b, %a) 3698 // (zext (setcc %a, %b, setge)) -> 3699 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) 3700 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) 3701 if (IsRHSZero) 3702 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3703 SDValue ShiftL = 3704 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3705 S->getI64Imm(1, dl), 3706 S->getI64Imm(63, dl)), 0); 3707 SDValue ShiftR = 3708 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3709 S->getI64Imm(63, dl)), 0); 3710 SDValue SubtractCarry = 3711 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3712 LHS, RHS), 1); 3713 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3714 ShiftR, ShiftL, SubtractCarry), 0); 3715 } 3716 case ISD::SETGT: { 3717 // {subc.reg, subc.CA} = (subcarry %b, %a) 3718 // (zext (setcc %a, %b, setgt)) -> 3719 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3720 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) 3721 if (IsRHSNegOne) 3722 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3723 if (IsRHSZero) { 3724 SDValue Addi = 3725 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3726 S->getI64Imm(~0ULL, dl)), 0); 3727 SDValue Nor = 3728 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); 3729 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, 3730 S->getI64Imm(1, dl), 3731 S->getI64Imm(63, dl)), 0); 3732 } 3733 std::swap(LHS, RHS); 3734 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3735 IsRHSZero = RHSConst && RHSConst->isZero(); 3736 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3737 [[fallthrough]]; 3738 } 3739 case ISD::SETLT: { 3740 // {subc.reg, subc.CA} = (subcarry %a, %b) 3741 // (zext (setcc %a, %b, setlt)) -> 3742 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3743 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) 3744 if (IsRHSOne) 3745 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3746 if (IsRHSZero) 3747 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3748 S->getI64Imm(1, dl), 3749 S->getI64Imm(63, dl)), 0); 3750 SDValue SRADINode = 3751 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3752 LHS, S->getI64Imm(63, dl)), 0); 3753 SDValue SRDINode = 3754 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3755 RHS, S->getI64Imm(1, dl), 3756 S->getI64Imm(63, dl)), 0); 3757 SDValue SUBFC8Carry = 3758 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3759 RHS, LHS), 1); 3760 SDValue ADDE8Node = 3761 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3762 SRDINode, SRADINode, SUBFC8Carry), 0); 3763 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3764 ADDE8Node, S->getI64Imm(1, dl)), 0); 3765 } 3766 case ISD::SETUGE: 3767 // {subc.reg, subc.CA} = (subcarry %a, %b) 3768 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) 3769 std::swap(LHS, RHS); 3770 [[fallthrough]]; 3771 case ISD::SETULE: { 3772 // {subc.reg, subc.CA} = (subcarry %b, %a) 3773 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) 3774 SDValue SUBFC8Carry = 3775 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3776 LHS, RHS), 1); 3777 SDValue SUBFE8Node = 3778 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, 3779 LHS, LHS, SUBFC8Carry), 0); 3780 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, 3781 SUBFE8Node, S->getI64Imm(1, dl)), 0); 3782 } 3783 case ISD::SETUGT: 3784 // {subc.reg, subc.CA} = (subcarry %b, %a) 3785 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) 3786 std::swap(LHS, RHS); 3787 [[fallthrough]]; 3788 case ISD::SETULT: { 3789 // {subc.reg, subc.CA} = (subcarry %a, %b) 3790 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) 3791 SDValue SubtractCarry = 3792 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3793 RHS, LHS), 1); 3794 SDValue ExtSub = 3795 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3796 LHS, LHS, SubtractCarry), 0); 3797 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3798 ExtSub), 0); 3799 } 3800 } 3801 } 3802 3803 /// Produces a sign-extended result of comparing two 64-bit values according to 3804 /// the passed condition code. 3805 SDValue 3806 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, 3807 ISD::CondCode CC, 3808 int64_t RHSValue, SDLoc dl) { 3809 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3810 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) 3811 return SDValue(); 3812 bool IsRHSZero = RHSValue == 0; 3813 bool IsRHSOne = RHSValue == 1; 3814 bool IsRHSNegOne = RHSValue == -1LL; 3815 switch (CC) { 3816 default: return SDValue(); 3817 case ISD::SETEQ: { 3818 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3819 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) 3820 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3821 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3822 SDValue AddInput = IsRHSZero ? LHS : 3823 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3824 SDValue Addic = 3825 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3826 AddInput, S->getI32Imm(~0U, dl)), 0); 3827 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, 3828 Addic, Addic.getValue(1)), 0); 3829 } 3830 case ISD::SETNE: { 3831 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) 3832 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) 3833 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) 3834 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) 3835 SDValue Xor = IsRHSZero ? LHS : 3836 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3837 SDValue SC = 3838 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, 3839 Xor, S->getI32Imm(0, dl)), 0); 3840 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, 3841 SC, SC.getValue(1)), 0); 3842 } 3843 case ISD::SETGE: { 3844 // {subc.reg, subc.CA} = (subcarry %a, %b) 3845 // (zext (setcc %a, %b, setge)) -> 3846 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) 3847 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) 3848 if (IsRHSZero) 3849 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3850 std::swap(LHS, RHS); 3851 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3852 IsRHSZero = RHSConst && RHSConst->isZero(); 3853 [[fallthrough]]; 3854 } 3855 case ISD::SETLE: { 3856 // {subc.reg, subc.CA} = (subcarry %b, %a) 3857 // (zext (setcc %a, %b, setge)) -> 3858 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) 3859 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) 3860 if (IsRHSZero) 3861 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3862 SDValue ShiftR = 3863 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3864 S->getI64Imm(63, dl)), 0); 3865 SDValue ShiftL = 3866 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3867 S->getI64Imm(1, dl), 3868 S->getI64Imm(63, dl)), 0); 3869 SDValue SubtractCarry = 3870 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3871 LHS, RHS), 1); 3872 SDValue Adde = 3873 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3874 ShiftR, ShiftL, SubtractCarry), 0); 3875 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); 3876 } 3877 case ISD::SETGT: { 3878 // {subc.reg, subc.CA} = (subcarry %b, %a) 3879 // (zext (setcc %a, %b, setgt)) -> 3880 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3881 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) 3882 if (IsRHSNegOne) 3883 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3884 if (IsRHSZero) { 3885 SDValue Add = 3886 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3887 S->getI64Imm(-1, dl)), 0); 3888 SDValue Nor = 3889 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); 3890 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, 3891 S->getI64Imm(63, dl)), 0); 3892 } 3893 std::swap(LHS, RHS); 3894 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3895 IsRHSZero = RHSConst && RHSConst->isZero(); 3896 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3897 [[fallthrough]]; 3898 } 3899 case ISD::SETLT: { 3900 // {subc.reg, subc.CA} = (subcarry %a, %b) 3901 // (zext (setcc %a, %b, setlt)) -> 3902 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3903 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) 3904 if (IsRHSOne) 3905 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3906 if (IsRHSZero) { 3907 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, 3908 S->getI64Imm(63, dl)), 0); 3909 } 3910 SDValue SRADINode = 3911 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3912 LHS, S->getI64Imm(63, dl)), 0); 3913 SDValue SRDINode = 3914 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3915 RHS, S->getI64Imm(1, dl), 3916 S->getI64Imm(63, dl)), 0); 3917 SDValue SUBFC8Carry = 3918 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3919 RHS, LHS), 1); 3920 SDValue ADDE8Node = 3921 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, 3922 SRDINode, SRADINode, SUBFC8Carry), 0); 3923 SDValue XORI8Node = 3924 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3925 ADDE8Node, S->getI64Imm(1, dl)), 0); 3926 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3927 XORI8Node), 0); 3928 } 3929 case ISD::SETUGE: 3930 // {subc.reg, subc.CA} = (subcarry %a, %b) 3931 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) 3932 std::swap(LHS, RHS); 3933 [[fallthrough]]; 3934 case ISD::SETULE: { 3935 // {subc.reg, subc.CA} = (subcarry %b, %a) 3936 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) 3937 SDValue SubtractCarry = 3938 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3939 LHS, RHS), 1); 3940 SDValue ExtSub = 3941 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, 3942 LHS, SubtractCarry), 0); 3943 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, 3944 ExtSub, ExtSub), 0); 3945 } 3946 case ISD::SETUGT: 3947 // {subc.reg, subc.CA} = (subcarry %b, %a) 3948 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) 3949 std::swap(LHS, RHS); 3950 [[fallthrough]]; 3951 case ISD::SETULT: { 3952 // {subc.reg, subc.CA} = (subcarry %a, %b) 3953 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) 3954 SDValue SubCarry = 3955 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3956 RHS, LHS), 1); 3957 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3958 LHS, LHS, SubCarry), 0); 3959 } 3960 } 3961 } 3962 3963 /// Do all uses of this SDValue need the result in a GPR? 3964 /// This is meant to be used on values that have type i1 since 3965 /// it is somewhat meaningless to ask if values of other types 3966 /// should be kept in GPR's. 3967 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { 3968 assert(Compare.getOpcode() == ISD::SETCC && 3969 "An ISD::SETCC node required here."); 3970 3971 // For values that have a single use, the caller should obviously already have 3972 // checked if that use is an extending use. We check the other uses here. 3973 if (Compare.hasOneUse()) 3974 return true; 3975 // We want the value in a GPR if it is being extended, used for a select, or 3976 // used in logical operations. 3977 for (auto *CompareUse : Compare.getNode()->uses()) 3978 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && 3979 CompareUse->getOpcode() != ISD::ZERO_EXTEND && 3980 CompareUse->getOpcode() != ISD::SELECT && 3981 !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) { 3982 OmittedForNonExtendUses++; 3983 return false; 3984 } 3985 return true; 3986 } 3987 3988 /// Returns an equivalent of a SETCC node but with the result the same width as 3989 /// the inputs. This can also be used for SELECT_CC if either the true or false 3990 /// values is a power of two while the other is zero. 3991 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, 3992 SetccInGPROpts ConvOpts) { 3993 assert((Compare.getOpcode() == ISD::SETCC || 3994 Compare.getOpcode() == ISD::SELECT_CC) && 3995 "An ISD::SETCC node required here."); 3996 3997 // Don't convert this comparison to a GPR sequence because there are uses 3998 // of the i1 result (i.e. uses that require the result in the CR). 3999 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) 4000 return SDValue(); 4001 4002 SDValue LHS = Compare.getOperand(0); 4003 SDValue RHS = Compare.getOperand(1); 4004 4005 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. 4006 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; 4007 ISD::CondCode CC = 4008 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); 4009 EVT InputVT = LHS.getValueType(); 4010 if (InputVT != MVT::i32 && InputVT != MVT::i64) 4011 return SDValue(); 4012 4013 if (ConvOpts == SetccInGPROpts::ZExtInvert || 4014 ConvOpts == SetccInGPROpts::SExtInvert) 4015 CC = ISD::getSetCCInverse(CC, InputVT); 4016 4017 bool Inputs32Bit = InputVT == MVT::i32; 4018 4019 SDLoc dl(Compare); 4020 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 4021 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; 4022 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || 4023 ConvOpts == SetccInGPROpts::SExtInvert; 4024 4025 if (IsSext && Inputs32Bit) 4026 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 4027 else if (Inputs32Bit) 4028 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 4029 else if (IsSext) 4030 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 4031 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 4032 } 4033 4034 } // end anonymous namespace 4035 4036 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { 4037 if (N->getValueType(0) != MVT::i32 && 4038 N->getValueType(0) != MVT::i64) 4039 return false; 4040 4041 // This optimization will emit code that assumes 64-bit registers 4042 // so we don't want to run it in 32-bit mode. Also don't run it 4043 // on functions that are not to be optimized. 4044 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) 4045 return false; 4046 4047 // For POWER10, it is more profitable to use the set boolean extension 4048 // instructions rather than the integer compare elimination codegen. 4049 // Users can override this via the command line option, `--ppc-gpr-icmps`. 4050 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1()) 4051 return false; 4052 4053 switch (N->getOpcode()) { 4054 default: break; 4055 case ISD::ZERO_EXTEND: 4056 case ISD::SIGN_EXTEND: 4057 case ISD::AND: 4058 case ISD::OR: 4059 case ISD::XOR: { 4060 IntegerCompareEliminator ICmpElim(CurDAG, this); 4061 if (SDNode *New = ICmpElim.Select(N)) { 4062 ReplaceNode(N, New); 4063 return true; 4064 } 4065 } 4066 } 4067 return false; 4068 } 4069 4070 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 4071 if (N->getValueType(0) != MVT::i32 && 4072 N->getValueType(0) != MVT::i64) 4073 return false; 4074 4075 if (!UseBitPermRewriter) 4076 return false; 4077 4078 switch (N->getOpcode()) { 4079 default: break; 4080 case ISD::SRL: 4081 // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that 4082 // uses the BRH instruction. 4083 if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 && 4084 N->getOperand(0).getOpcode() == ISD::BSWAP) { 4085 auto &OpRight = N->getOperand(1); 4086 ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight); 4087 if (SRLConst && SRLConst->getSExtValue() == 16) 4088 return false; 4089 } 4090 [[fallthrough]]; 4091 case ISD::ROTL: 4092 case ISD::SHL: 4093 case ISD::AND: 4094 case ISD::OR: { 4095 BitPermutationSelector BPS(CurDAG); 4096 if (SDNode *New = BPS.Select(N)) { 4097 ReplaceNode(N, New); 4098 return true; 4099 } 4100 return false; 4101 } 4102 } 4103 4104 return false; 4105 } 4106 4107 /// SelectCC - Select a comparison of the specified values with the specified 4108 /// condition code, returning the CR# of the expression. 4109 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 4110 const SDLoc &dl, SDValue Chain) { 4111 // Always select the LHS. 4112 unsigned Opc; 4113 4114 if (LHS.getValueType() == MVT::i32) { 4115 unsigned Imm; 4116 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 4117 if (isInt32Immediate(RHS, Imm)) { 4118 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 4119 if (isUInt<16>(Imm)) 4120 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 4121 getI32Imm(Imm & 0xFFFF, dl)), 4122 0); 4123 // If this is a 16-bit signed immediate, fold it. 4124 if (isInt<16>((int)Imm)) 4125 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 4126 getI32Imm(Imm & 0xFFFF, dl)), 4127 0); 4128 4129 // For non-equality comparisons, the default code would materialize the 4130 // constant, then compare against it, like this: 4131 // lis r2, 4660 4132 // ori r2, r2, 22136 4133 // cmpw cr0, r3, r2 4134 // Since we are just comparing for equality, we can emit this instead: 4135 // xoris r0,r3,0x1234 4136 // cmplwi cr0,r0,0x5678 4137 // beq cr0,L6 4138 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 4139 getI32Imm(Imm >> 16, dl)), 0); 4140 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 4141 getI32Imm(Imm & 0xFFFF, dl)), 0); 4142 } 4143 Opc = PPC::CMPLW; 4144 } else if (ISD::isUnsignedIntSetCC(CC)) { 4145 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 4146 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 4147 getI32Imm(Imm & 0xFFFF, dl)), 0); 4148 Opc = PPC::CMPLW; 4149 } else { 4150 int16_t SImm; 4151 if (isIntS16Immediate(RHS, SImm)) 4152 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 4153 getI32Imm((int)SImm & 0xFFFF, 4154 dl)), 4155 0); 4156 Opc = PPC::CMPW; 4157 } 4158 } else if (LHS.getValueType() == MVT::i64) { 4159 uint64_t Imm; 4160 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 4161 if (isInt64Immediate(RHS.getNode(), Imm)) { 4162 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 4163 if (isUInt<16>(Imm)) 4164 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4165 getI32Imm(Imm & 0xFFFF, dl)), 4166 0); 4167 // If this is a 16-bit signed immediate, fold it. 4168 if (isInt<16>(Imm)) 4169 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4170 getI32Imm(Imm & 0xFFFF, dl)), 4171 0); 4172 4173 // For non-equality comparisons, the default code would materialize the 4174 // constant, then compare against it, like this: 4175 // lis r2, 4660 4176 // ori r2, r2, 22136 4177 // cmpd cr0, r3, r2 4178 // Since we are just comparing for equality, we can emit this instead: 4179 // xoris r0,r3,0x1234 4180 // cmpldi cr0,r0,0x5678 4181 // beq cr0,L6 4182 if (isUInt<32>(Imm)) { 4183 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 4184 getI64Imm(Imm >> 16, dl)), 0); 4185 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 4186 getI64Imm(Imm & 0xFFFF, dl)), 4187 0); 4188 } 4189 } 4190 Opc = PPC::CMPLD; 4191 } else if (ISD::isUnsignedIntSetCC(CC)) { 4192 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 4193 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4194 getI64Imm(Imm & 0xFFFF, dl)), 0); 4195 Opc = PPC::CMPLD; 4196 } else { 4197 int16_t SImm; 4198 if (isIntS16Immediate(RHS, SImm)) 4199 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4200 getI64Imm(SImm & 0xFFFF, dl)), 4201 0); 4202 Opc = PPC::CMPD; 4203 } 4204 } else if (LHS.getValueType() == MVT::f32) { 4205 if (Subtarget->hasSPE()) { 4206 switch (CC) { 4207 default: 4208 case ISD::SETEQ: 4209 case ISD::SETNE: 4210 Opc = PPC::EFSCMPEQ; 4211 break; 4212 case ISD::SETLT: 4213 case ISD::SETGE: 4214 case ISD::SETOLT: 4215 case ISD::SETOGE: 4216 case ISD::SETULT: 4217 case ISD::SETUGE: 4218 Opc = PPC::EFSCMPLT; 4219 break; 4220 case ISD::SETGT: 4221 case ISD::SETLE: 4222 case ISD::SETOGT: 4223 case ISD::SETOLE: 4224 case ISD::SETUGT: 4225 case ISD::SETULE: 4226 Opc = PPC::EFSCMPGT; 4227 break; 4228 } 4229 } else 4230 Opc = PPC::FCMPUS; 4231 } else if (LHS.getValueType() == MVT::f64) { 4232 if (Subtarget->hasSPE()) { 4233 switch (CC) { 4234 default: 4235 case ISD::SETEQ: 4236 case ISD::SETNE: 4237 Opc = PPC::EFDCMPEQ; 4238 break; 4239 case ISD::SETLT: 4240 case ISD::SETGE: 4241 case ISD::SETOLT: 4242 case ISD::SETOGE: 4243 case ISD::SETULT: 4244 case ISD::SETUGE: 4245 Opc = PPC::EFDCMPLT; 4246 break; 4247 case ISD::SETGT: 4248 case ISD::SETLE: 4249 case ISD::SETOGT: 4250 case ISD::SETOLE: 4251 case ISD::SETUGT: 4252 case ISD::SETULE: 4253 Opc = PPC::EFDCMPGT; 4254 break; 4255 } 4256 } else 4257 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 4258 } else { 4259 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); 4260 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector"); 4261 Opc = PPC::XSCMPUQP; 4262 } 4263 if (Chain) 4264 return SDValue( 4265 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain), 4266 0); 4267 else 4268 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 4269 } 4270 4271 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, 4272 const PPCSubtarget *Subtarget) { 4273 // For SPE instructions, the result is in GT bit of the CR 4274 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); 4275 4276 switch (CC) { 4277 case ISD::SETUEQ: 4278 case ISD::SETONE: 4279 case ISD::SETOLE: 4280 case ISD::SETOGE: 4281 llvm_unreachable("Should be lowered by legalize!"); 4282 default: llvm_unreachable("Unknown condition!"); 4283 case ISD::SETOEQ: 4284 case ISD::SETEQ: 4285 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; 4286 case ISD::SETUNE: 4287 case ISD::SETNE: 4288 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; 4289 case ISD::SETOLT: 4290 case ISD::SETLT: 4291 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; 4292 case ISD::SETULE: 4293 case ISD::SETLE: 4294 return PPC::PRED_LE; 4295 case ISD::SETOGT: 4296 case ISD::SETGT: 4297 return PPC::PRED_GT; 4298 case ISD::SETUGE: 4299 case ISD::SETGE: 4300 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; 4301 case ISD::SETO: return PPC::PRED_NU; 4302 case ISD::SETUO: return PPC::PRED_UN; 4303 // These two are invalid for floating point. Assume we have int. 4304 case ISD::SETULT: return PPC::PRED_LT; 4305 case ISD::SETUGT: return PPC::PRED_GT; 4306 } 4307 } 4308 4309 /// getCRIdxForSetCC - Return the index of the condition register field 4310 /// associated with the SetCC condition, and whether or not the field is 4311 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 4312 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 4313 Invert = false; 4314 switch (CC) { 4315 default: llvm_unreachable("Unknown condition!"); 4316 case ISD::SETOLT: 4317 case ISD::SETLT: return 0; // Bit #0 = SETOLT 4318 case ISD::SETOGT: 4319 case ISD::SETGT: return 1; // Bit #1 = SETOGT 4320 case ISD::SETOEQ: 4321 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 4322 case ISD::SETUO: return 3; // Bit #3 = SETUO 4323 case ISD::SETUGE: 4324 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 4325 case ISD::SETULE: 4326 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 4327 case ISD::SETUNE: 4328 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 4329 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 4330 case ISD::SETUEQ: 4331 case ISD::SETOGE: 4332 case ISD::SETOLE: 4333 case ISD::SETONE: 4334 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 4335 // These are invalid for floating point. Assume integer. 4336 case ISD::SETULT: return 0; 4337 case ISD::SETUGT: return 1; 4338 } 4339 } 4340 4341 // getVCmpInst: return the vector compare instruction for the specified 4342 // vector type and condition code. Since this is for altivec specific code, 4343 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128, 4344 // and v4f32). 4345 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 4346 bool HasVSX, bool &Swap, bool &Negate) { 4347 Swap = false; 4348 Negate = false; 4349 4350 if (VecVT.isFloatingPoint()) { 4351 /* Handle some cases by swapping input operands. */ 4352 switch (CC) { 4353 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 4354 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4355 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 4356 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 4357 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4358 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 4359 default: break; 4360 } 4361 /* Handle some cases by negating the result. */ 4362 switch (CC) { 4363 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4364 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 4365 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 4366 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 4367 default: break; 4368 } 4369 /* We have instructions implementing the remaining cases. */ 4370 switch (CC) { 4371 case ISD::SETEQ: 4372 case ISD::SETOEQ: 4373 if (VecVT == MVT::v4f32) 4374 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 4375 else if (VecVT == MVT::v2f64) 4376 return PPC::XVCMPEQDP; 4377 break; 4378 case ISD::SETGT: 4379 case ISD::SETOGT: 4380 if (VecVT == MVT::v4f32) 4381 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 4382 else if (VecVT == MVT::v2f64) 4383 return PPC::XVCMPGTDP; 4384 break; 4385 case ISD::SETGE: 4386 case ISD::SETOGE: 4387 if (VecVT == MVT::v4f32) 4388 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 4389 else if (VecVT == MVT::v2f64) 4390 return PPC::XVCMPGEDP; 4391 break; 4392 default: 4393 break; 4394 } 4395 llvm_unreachable("Invalid floating-point vector compare condition"); 4396 } else { 4397 /* Handle some cases by swapping input operands. */ 4398 switch (CC) { 4399 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 4400 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4401 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4402 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 4403 default: break; 4404 } 4405 /* Handle some cases by negating the result. */ 4406 switch (CC) { 4407 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4408 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 4409 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 4410 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 4411 default: break; 4412 } 4413 /* We have instructions implementing the remaining cases. */ 4414 switch (CC) { 4415 case ISD::SETEQ: 4416 case ISD::SETUEQ: 4417 if (VecVT == MVT::v16i8) 4418 return PPC::VCMPEQUB; 4419 else if (VecVT == MVT::v8i16) 4420 return PPC::VCMPEQUH; 4421 else if (VecVT == MVT::v4i32) 4422 return PPC::VCMPEQUW; 4423 else if (VecVT == MVT::v2i64) 4424 return PPC::VCMPEQUD; 4425 else if (VecVT == MVT::v1i128) 4426 return PPC::VCMPEQUQ; 4427 break; 4428 case ISD::SETGT: 4429 if (VecVT == MVT::v16i8) 4430 return PPC::VCMPGTSB; 4431 else if (VecVT == MVT::v8i16) 4432 return PPC::VCMPGTSH; 4433 else if (VecVT == MVT::v4i32) 4434 return PPC::VCMPGTSW; 4435 else if (VecVT == MVT::v2i64) 4436 return PPC::VCMPGTSD; 4437 else if (VecVT == MVT::v1i128) 4438 return PPC::VCMPGTSQ; 4439 break; 4440 case ISD::SETUGT: 4441 if (VecVT == MVT::v16i8) 4442 return PPC::VCMPGTUB; 4443 else if (VecVT == MVT::v8i16) 4444 return PPC::VCMPGTUH; 4445 else if (VecVT == MVT::v4i32) 4446 return PPC::VCMPGTUW; 4447 else if (VecVT == MVT::v2i64) 4448 return PPC::VCMPGTUD; 4449 else if (VecVT == MVT::v1i128) 4450 return PPC::VCMPGTUQ; 4451 break; 4452 default: 4453 break; 4454 } 4455 llvm_unreachable("Invalid integer vector compare condition"); 4456 } 4457 } 4458 4459 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 4460 SDLoc dl(N); 4461 unsigned Imm; 4462 bool IsStrict = N->isStrictFPOpcode(); 4463 ISD::CondCode CC = 4464 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get(); 4465 EVT PtrVT = 4466 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4467 bool isPPC64 = (PtrVT == MVT::i64); 4468 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4469 4470 SDValue LHS = N->getOperand(IsStrict ? 1 : 0); 4471 SDValue RHS = N->getOperand(IsStrict ? 2 : 1); 4472 4473 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) { 4474 // We can codegen setcc op, imm very efficiently compared to a brcond. 4475 // Check for those cases here. 4476 // setcc op, 0 4477 if (Imm == 0) { 4478 SDValue Op = LHS; 4479 switch (CC) { 4480 default: break; 4481 case ISD::SETEQ: { 4482 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 4483 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 4484 getI32Imm(31, dl) }; 4485 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4486 return true; 4487 } 4488 case ISD::SETNE: { 4489 if (isPPC64) break; 4490 SDValue AD = 4491 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4492 Op, getI32Imm(~0U, dl)), 0); 4493 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 4494 return true; 4495 } 4496 case ISD::SETLT: { 4497 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4498 getI32Imm(31, dl) }; 4499 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4500 return true; 4501 } 4502 case ISD::SETGT: { 4503 SDValue T = 4504 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 4505 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 4506 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 4507 getI32Imm(31, dl) }; 4508 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4509 return true; 4510 } 4511 } 4512 } else if (Imm == ~0U) { // setcc op, -1 4513 SDValue Op = LHS; 4514 switch (CC) { 4515 default: break; 4516 case ISD::SETEQ: 4517 if (isPPC64) break; 4518 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4519 Op, getI32Imm(1, dl)), 0); 4520 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 4521 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 4522 MVT::i32, 4523 getI32Imm(0, dl)), 4524 0), Op.getValue(1)); 4525 return true; 4526 case ISD::SETNE: { 4527 if (isPPC64) break; 4528 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 4529 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4530 Op, getI32Imm(~0U, dl)); 4531 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 4532 SDValue(AD, 1)); 4533 return true; 4534 } 4535 case ISD::SETLT: { 4536 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 4537 getI32Imm(1, dl)), 0); 4538 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 4539 Op), 0); 4540 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 4541 getI32Imm(31, dl) }; 4542 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4543 return true; 4544 } 4545 case ISD::SETGT: { 4546 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4547 getI32Imm(31, dl) }; 4548 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4549 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 4550 return true; 4551 } 4552 } 4553 } 4554 } 4555 4556 // Altivec Vector compare instructions do not set any CR register by default and 4557 // vector compare operations return the same type as the operands. 4558 if (!IsStrict && LHS.getValueType().isVector()) { 4559 if (Subtarget->hasSPE()) 4560 return false; 4561 4562 EVT VecVT = LHS.getValueType(); 4563 bool Swap, Negate; 4564 unsigned int VCmpInst = 4565 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); 4566 if (Swap) 4567 std::swap(LHS, RHS); 4568 4569 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 4570 if (Negate) { 4571 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 4572 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 4573 ResVT, VCmp, VCmp); 4574 return true; 4575 } 4576 4577 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 4578 return true; 4579 } 4580 4581 if (Subtarget->useCRBits()) 4582 return false; 4583 4584 bool Inv; 4585 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4586 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain); 4587 if (IsStrict) 4588 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1)); 4589 SDValue IntCR; 4590 4591 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that 4592 // The correct compare instruction is already set by SelectCC() 4593 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { 4594 Idx = 1; 4595 } 4596 4597 // Force the ccreg into CR7. 4598 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 4599 4600 SDValue InGlue; // Null incoming flag value. 4601 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 4602 InGlue).getValue(1); 4603 4604 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 4605 CCReg), 0); 4606 4607 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 4608 getI32Imm(31, dl), getI32Imm(31, dl) }; 4609 if (!Inv) { 4610 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4611 return true; 4612 } 4613 4614 // Get the specified bit. 4615 SDValue Tmp = 4616 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4617 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 4618 return true; 4619 } 4620 4621 /// Does this node represent a load/store node whose address can be represented 4622 /// with a register plus an immediate that's a multiple of \p Val: 4623 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { 4624 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); 4625 StoreSDNode *STN = dyn_cast<StoreSDNode>(N); 4626 MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N); 4627 SDValue AddrOp; 4628 if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT)) 4629 AddrOp = N->getOperand(1); 4630 else if (STN) 4631 AddrOp = STN->getOperand(2); 4632 4633 // If the address points a frame object or a frame object with an offset, 4634 // we need to check the object alignment. 4635 short Imm = 0; 4636 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( 4637 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : 4638 AddrOp)) { 4639 // If op0 is a frame index that is under aligned, we can't do it either, 4640 // because it is translated to r31 or r1 + slot + offset. We won't know the 4641 // slot number until the stack frame is finalized. 4642 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); 4643 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); 4644 if ((SlotAlign % Val) != 0) 4645 return false; 4646 4647 // If we have an offset, we need further check on the offset. 4648 if (AddrOp.getOpcode() != ISD::ADD) 4649 return true; 4650 } 4651 4652 if (AddrOp.getOpcode() == ISD::ADD) 4653 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); 4654 4655 // If the address comes from the outside, the offset will be zero. 4656 return AddrOp.getOpcode() == ISD::CopyFromReg; 4657 } 4658 4659 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 4660 // Transfer memoperands. 4661 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4662 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 4663 } 4664 4665 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, 4666 bool &NeedSwapOps, bool &IsUnCmp) { 4667 4668 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); 4669 4670 SDValue LHS = N->getOperand(0); 4671 SDValue RHS = N->getOperand(1); 4672 SDValue TrueRes = N->getOperand(2); 4673 SDValue FalseRes = N->getOperand(3); 4674 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); 4675 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && 4676 N->getSimpleValueType(0) != MVT::i32)) 4677 return false; 4678 4679 // We are looking for any of: 4680 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4681 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4682 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) 4683 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) 4684 int64_t TrueResVal = TrueConst->getSExtValue(); 4685 if ((TrueResVal < -1 || TrueResVal > 1) || 4686 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || 4687 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || 4688 (TrueResVal == 0 && 4689 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) 4690 return false; 4691 4692 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC 4693 ? FalseRes 4694 : FalseRes.getOperand(0); 4695 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC; 4696 if (SetOrSelCC.getOpcode() != ISD::SETCC && 4697 SetOrSelCC.getOpcode() != ISD::SELECT_CC) 4698 return false; 4699 4700 // Without this setb optimization, the outer SELECT_CC will be manually 4701 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass 4702 // transforms pseudo instruction to isel instruction. When there are more than 4703 // one use for result like zext/sext, with current optimization we only see 4704 // isel is replaced by setb but can't see any significant gain. Since 4705 // setb has longer latency than original isel, we should avoid this. Another 4706 // point is that setb requires comparison always kept, it can break the 4707 // opportunity to get the comparison away if we have in future. 4708 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) 4709 return false; 4710 4711 SDValue InnerLHS = SetOrSelCC.getOperand(0); 4712 SDValue InnerRHS = SetOrSelCC.getOperand(1); 4713 ISD::CondCode InnerCC = 4714 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); 4715 // If the inner comparison is a select_cc, make sure the true/false values are 4716 // 1/-1 and canonicalize it if needed. 4717 if (InnerIsSel) { 4718 ConstantSDNode *SelCCTrueConst = 4719 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); 4720 ConstantSDNode *SelCCFalseConst = 4721 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); 4722 if (!SelCCTrueConst || !SelCCFalseConst) 4723 return false; 4724 int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); 4725 int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); 4726 // The values must be -1/1 (requiring a swap) or 1/-1. 4727 if (SelCCTVal == -1 && SelCCFVal == 1) { 4728 std::swap(InnerLHS, InnerRHS); 4729 } else if (SelCCTVal != 1 || SelCCFVal != -1) 4730 return false; 4731 } 4732 4733 // Canonicalize unsigned case 4734 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { 4735 IsUnCmp = true; 4736 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; 4737 } 4738 4739 bool InnerSwapped = false; 4740 if (LHS == InnerRHS && RHS == InnerLHS) 4741 InnerSwapped = true; 4742 else if (LHS != InnerLHS || RHS != InnerRHS) 4743 return false; 4744 4745 switch (CC) { 4746 // (select_cc lhs, rhs, 0, \ 4747 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) 4748 case ISD::SETEQ: 4749 if (!InnerIsSel) 4750 return false; 4751 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) 4752 return false; 4753 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; 4754 break; 4755 4756 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4757 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) 4758 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) 4759 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4760 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) 4761 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) 4762 case ISD::SETULT: 4763 if (!IsUnCmp && InnerCC != ISD::SETNE) 4764 return false; 4765 IsUnCmp = true; 4766 [[fallthrough]]; 4767 case ISD::SETLT: 4768 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || 4769 (InnerCC == ISD::SETLT && InnerSwapped)) 4770 NeedSwapOps = (TrueResVal == 1); 4771 else 4772 return false; 4773 break; 4774 4775 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4776 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) 4777 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) 4778 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4779 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) 4780 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) 4781 case ISD::SETUGT: 4782 if (!IsUnCmp && InnerCC != ISD::SETNE) 4783 return false; 4784 IsUnCmp = true; 4785 [[fallthrough]]; 4786 case ISD::SETGT: 4787 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || 4788 (InnerCC == ISD::SETGT && InnerSwapped)) 4789 NeedSwapOps = (TrueResVal == -1); 4790 else 4791 return false; 4792 break; 4793 4794 default: 4795 return false; 4796 } 4797 4798 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); 4799 LLVM_DEBUG(N->dump()); 4800 4801 return true; 4802 } 4803 4804 // Return true if it's a software square-root/divide operand. 4805 static bool isSWTestOp(SDValue N) { 4806 if (N.getOpcode() == PPCISD::FTSQRT) 4807 return true; 4808 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) || 4809 N.getOpcode() != ISD::INTRINSIC_WO_CHAIN) 4810 return false; 4811 switch (N.getConstantOperandVal(0)) { 4812 case Intrinsic::ppc_vsx_xvtdivdp: 4813 case Intrinsic::ppc_vsx_xvtdivsp: 4814 case Intrinsic::ppc_vsx_xvtsqrtdp: 4815 case Intrinsic::ppc_vsx_xvtsqrtsp: 4816 return true; 4817 } 4818 return false; 4819 } 4820 4821 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) { 4822 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected."); 4823 // We are looking for following patterns, where `truncate to i1` actually has 4824 // the same semantic with `and 1`. 4825 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp) 4826 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp) 4827 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp) 4828 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp) 4829 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp) 4830 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp) 4831 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp) 4832 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp) 4833 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4834 if (CC != ISD::SETEQ && CC != ISD::SETNE) 4835 return false; 4836 4837 SDValue CmpRHS = N->getOperand(3); 4838 if (!isa<ConstantSDNode>(CmpRHS) || 4839 cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0) 4840 return false; 4841 4842 SDValue CmpLHS = N->getOperand(2); 4843 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0))) 4844 return false; 4845 4846 unsigned PCC = 0; 4847 bool IsCCNE = CC == ISD::SETNE; 4848 if (CmpLHS.getOpcode() == ISD::AND && 4849 isa<ConstantSDNode>(CmpLHS.getOperand(1))) 4850 switch (CmpLHS.getConstantOperandVal(1)) { 4851 case 1: 4852 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4853 break; 4854 case 2: 4855 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE; 4856 break; 4857 case 4: 4858 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE; 4859 break; 4860 case 8: 4861 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE; 4862 break; 4863 default: 4864 return false; 4865 } 4866 else if (CmpLHS.getOpcode() == ISD::TRUNCATE && 4867 CmpLHS.getValueType() == MVT::i1) 4868 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4869 4870 if (PCC) { 4871 SDLoc dl(N); 4872 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4), 4873 N->getOperand(0)}; 4874 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 4875 return true; 4876 } 4877 return false; 4878 } 4879 4880 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) { 4881 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 4882 // value, for example when crbits is disabled. If so, select the 4883 // loop_decrement intrinsics now. 4884 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4885 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 4886 4887 if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) || 4888 isNullConstant(LHS.getOperand(1))) 4889 return false; 4890 4891 if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN || 4892 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() != 4893 Intrinsic::loop_decrement) 4894 return false; 4895 4896 if (!isa<ConstantSDNode>(RHS)) 4897 return false; 4898 4899 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 4900 "Counter decrement comparison is not EQ or NE"); 4901 4902 SDValue OldDecrement = LHS.getOperand(0); 4903 assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!"); 4904 4905 SDLoc DecrementLoc(OldDecrement); 4906 SDValue ChainInput = OldDecrement.getOperand(0); 4907 SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc) 4908 : getI32Imm(1, DecrementLoc)}; 4909 unsigned DecrementOpcode = 4910 Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop; 4911 SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc, 4912 MVT::i1, DecrementOps); 4913 4914 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 4915 bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val); 4916 unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn; 4917 4918 ReplaceUses(LHS.getValue(0), LHS.getOperand(1)); 4919 CurDAG->RemoveDeadNode(LHS.getNode()); 4920 4921 // Mark the old loop_decrement intrinsic as dead. 4922 ReplaceUses(OldDecrement.getValue(1), ChainInput); 4923 CurDAG->RemoveDeadNode(OldDecrement.getNode()); 4924 4925 SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, 4926 ChainInput, N->getOperand(0)); 4927 4928 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0), 4929 N->getOperand(4), Chain); 4930 return true; 4931 } 4932 4933 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { 4934 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4935 unsigned Imm; 4936 if (!isInt32Immediate(N->getOperand(1), Imm)) 4937 return false; 4938 4939 SDLoc dl(N); 4940 SDValue Val = N->getOperand(0); 4941 unsigned SH, MB, ME; 4942 // If this is an and of a value rotated between 0 and 31 bits and then and'd 4943 // with a mask, emit rlwinm 4944 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { 4945 Val = Val.getOperand(0); 4946 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 4947 getI32Imm(ME, dl)}; 4948 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4949 return true; 4950 } 4951 4952 // If this is just a masked value where the input is not handled, and 4953 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 4954 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { 4955 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), 4956 getI32Imm(ME, dl)}; 4957 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4958 return true; 4959 } 4960 4961 // AND X, 0 -> 0, not "rlwinm 32". 4962 if (Imm == 0) { 4963 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 4964 return true; 4965 } 4966 4967 return false; 4968 } 4969 4970 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { 4971 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4972 uint64_t Imm64; 4973 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 4974 return false; 4975 4976 unsigned MB, ME; 4977 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { 4978 // MB ME 4979 // +----------------------+ 4980 // |xxxxxxxxxxx00011111000| 4981 // +----------------------+ 4982 // 0 32 64 4983 // We can only do it if the MB is larger than 32 and MB <= ME 4984 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even 4985 // we didn't rotate it. 4986 SDLoc dl(N); 4987 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), 4988 getI64Imm(ME - 32, dl)}; 4989 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); 4990 return true; 4991 } 4992 4993 return false; 4994 } 4995 4996 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { 4997 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4998 uint64_t Imm64; 4999 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 5000 return false; 5001 5002 // Do nothing if it is 16-bit imm as the pattern in the .td file handle 5003 // it well with "andi.". 5004 if (isUInt<16>(Imm64)) 5005 return false; 5006 5007 SDLoc Loc(N); 5008 SDValue Val = N->getOperand(0); 5009 5010 // Optimized with two rldicl's as follows: 5011 // Add missing bits on left to the mask and check that the mask is a 5012 // wrapped run of ones, i.e. 5013 // Change pattern |0001111100000011111111| 5014 // to |1111111100000011111111|. 5015 unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64); 5016 if (NumOfLeadingZeros != 0) 5017 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); 5018 5019 unsigned MB, ME; 5020 if (!isRunOfOnes64(Imm64, MB, ME)) 5021 return false; 5022 5023 // ME MB MB-ME+63 5024 // +----------------------+ +----------------------+ 5025 // |1111111100000011111111| -> |0000001111111111111111| 5026 // +----------------------+ +----------------------+ 5027 // 0 63 0 63 5028 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. 5029 unsigned OnesOnLeft = ME + 1; 5030 unsigned ZerosInBetween = (MB - ME + 63) & 63; 5031 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear 5032 // on the left the bits that are already zeros in the mask. 5033 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, 5034 getI64Imm(OnesOnLeft, Loc), 5035 getI64Imm(ZerosInBetween, Loc)), 5036 0); 5037 // MB-ME+63 ME MB 5038 // +----------------------+ +----------------------+ 5039 // |0000001111111111111111| -> |0001111100000011111111| 5040 // +----------------------+ +----------------------+ 5041 // 0 63 0 63 5042 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the 5043 // left the number of ones we previously added. 5044 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), 5045 getI64Imm(NumOfLeadingZeros, Loc)}; 5046 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 5047 return true; 5048 } 5049 5050 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { 5051 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5052 unsigned Imm; 5053 if (!isInt32Immediate(N->getOperand(1), Imm)) 5054 return false; 5055 5056 SDValue Val = N->getOperand(0); 5057 unsigned Imm2; 5058 // ISD::OR doesn't get all the bitfield insertion fun. 5059 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 5060 // bitfield insert. 5061 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) 5062 return false; 5063 5064 // The idea here is to check whether this is equivalent to: 5065 // (c1 & m) | (x & ~m) 5066 // where m is a run-of-ones mask. The logic here is that, for each bit in 5067 // c1 and c2: 5068 // - if both are 1, then the output will be 1. 5069 // - if both are 0, then the output will be 0. 5070 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 5071 // come from x. 5072 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 5073 // be 0. 5074 // If that last condition is never the case, then we can form m from the 5075 // bits that are the same between c1 and c2. 5076 unsigned MB, ME; 5077 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { 5078 SDLoc dl(N); 5079 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), 5080 getI32Imm(MB, dl), getI32Imm(ME, dl)}; 5081 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 5082 return true; 5083 } 5084 5085 return false; 5086 } 5087 5088 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { 5089 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5090 uint64_t Imm64; 5091 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) 5092 return false; 5093 5094 // If this is a 64-bit zero-extension mask, emit rldicl. 5095 unsigned MB = 64 - llvm::countr_one(Imm64); 5096 unsigned SH = 0; 5097 unsigned Imm; 5098 SDValue Val = N->getOperand(0); 5099 SDLoc dl(N); 5100 5101 if (Val.getOpcode() == ISD::ANY_EXTEND) { 5102 auto Op0 = Val.getOperand(0); 5103 if (Op0.getOpcode() == ISD::SRL && 5104 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { 5105 5106 auto ResultType = Val.getNode()->getValueType(0); 5107 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); 5108 SDValue IDVal(ImDef, 0); 5109 5110 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, 5111 IDVal, Op0.getOperand(0), 5112 getI32Imm(1, dl)), 5113 0); 5114 SH = 64 - Imm; 5115 } 5116 } 5117 5118 // If the operand is a logical right shift, we can fold it into this 5119 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 5120 // for n <= mb. The right shift is really a left rotate followed by a 5121 // mask, and this mask is a more-restrictive sub-mask of the mask implied 5122 // by the shift. 5123 if (Val.getOpcode() == ISD::SRL && 5124 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 5125 assert(Imm < 64 && "Illegal shift amount"); 5126 Val = Val.getOperand(0); 5127 SH = 64 - Imm; 5128 } 5129 5130 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; 5131 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 5132 return true; 5133 } 5134 5135 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { 5136 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 5137 uint64_t Imm64; 5138 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 5139 !isMask_64(~Imm64)) 5140 return false; 5141 5142 // If this is a negated 64-bit zero-extension mask, 5143 // i.e. the immediate is a sequence of ones from most significant side 5144 // and all zero for reminder, we should use rldicr. 5145 unsigned MB = 63 - llvm::countr_one(~Imm64); 5146 unsigned SH = 0; 5147 SDLoc dl(N); 5148 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; 5149 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 5150 return true; 5151 } 5152 5153 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { 5154 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected"); 5155 uint64_t Imm64; 5156 unsigned MB, ME; 5157 SDValue N0 = N->getOperand(0); 5158 5159 // We won't get fewer instructions if the imm is 32-bit integer. 5160 // rldimi requires the imm to have consecutive ones with both sides zero. 5161 // Also, make sure the first Op has only one use, otherwise this may increase 5162 // register pressure since rldimi is destructive. 5163 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 5164 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) 5165 return false; 5166 5167 unsigned SH = 63 - ME; 5168 SDLoc Dl(N); 5169 // Use select64Imm for making LI instr instead of directly putting Imm64 5170 SDValue Ops[] = { 5171 N->getOperand(0), 5172 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), 5173 getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; 5174 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); 5175 return true; 5176 } 5177 5178 // Select - Convert the specified operand from a target-independent to a 5179 // target-specific node if it hasn't already been changed. 5180 void PPCDAGToDAGISel::Select(SDNode *N) { 5181 SDLoc dl(N); 5182 if (N->isMachineOpcode()) { 5183 N->setNodeId(-1); 5184 return; // Already selected. 5185 } 5186 5187 // In case any misguided DAG-level optimizations form an ADD with a 5188 // TargetConstant operand, crash here instead of miscompiling (by selecting 5189 // an r+r add instead of some kind of r+i add). 5190 if (N->getOpcode() == ISD::ADD && 5191 N->getOperand(1).getOpcode() == ISD::TargetConstant) 5192 llvm_unreachable("Invalid ADD with TargetConstant operand"); 5193 5194 // Try matching complex bit permutations before doing anything else. 5195 if (tryBitPermutation(N)) 5196 return; 5197 5198 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). 5199 if (tryIntCompareInGPR(N)) 5200 return; 5201 5202 switch (N->getOpcode()) { 5203 default: break; 5204 5205 case ISD::Constant: 5206 if (N->getValueType(0) == MVT::i64) { 5207 ReplaceNode(N, selectI64Imm(CurDAG, N)); 5208 return; 5209 } 5210 break; 5211 5212 case ISD::INTRINSIC_VOID: { 5213 auto IntrinsicID = N->getConstantOperandVal(1); 5214 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && 5215 IntrinsicID != Intrinsic::ppc_trapd && 5216 IntrinsicID != Intrinsic::ppc_trap) 5217 break; 5218 unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw || 5219 IntrinsicID == Intrinsic::ppc_trapd) 5220 ? PPC::TDI 5221 : PPC::TWI; 5222 SmallVector<SDValue, 4> OpsWithMD; 5223 unsigned MDIndex; 5224 if (IntrinsicID == Intrinsic::ppc_tdw || 5225 IntrinsicID == Intrinsic::ppc_tw) { 5226 SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)}; 5227 int16_t SImmOperand2; 5228 int16_t SImmOperand3; 5229 int16_t SImmOperand4; 5230 bool isOperand2IntS16Immediate = 5231 isIntS16Immediate(N->getOperand(2), SImmOperand2); 5232 bool isOperand3IntS16Immediate = 5233 isIntS16Immediate(N->getOperand(3), SImmOperand3); 5234 // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg + 5235 // reg or imm + imm. The imm + imm form will be optimized to either an 5236 // unconditional trap or a nop in a later pass. 5237 if (isOperand2IntS16Immediate == isOperand3IntS16Immediate) 5238 Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW; 5239 else if (isOperand3IntS16Immediate) 5240 // The 2nd and 3rd operands are reg + imm. 5241 Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl); 5242 else { 5243 // The 2nd and 3rd operands are imm + reg. 5244 bool isOperand4IntS16Immediate = 5245 isIntS16Immediate(N->getOperand(4), SImmOperand4); 5246 (void)isOperand4IntS16Immediate; 5247 assert(isOperand4IntS16Immediate && 5248 "The 4th operand is not an Immediate"); 5249 // We need to flip the condition immediate TO. 5250 int16_t TO = int(SImmOperand4) & 0x1F; 5251 // We swap the first and second bit of TO if they are not same. 5252 if ((TO & 0x1) != ((TO & 0x2) >> 1)) 5253 TO = (TO & 0x1) ? TO + 1 : TO - 1; 5254 // We swap the fourth and fifth bit of TO if they are not same. 5255 if ((TO & 0x8) != ((TO & 0x10) >> 1)) 5256 TO = (TO & 0x8) ? TO + 8 : TO - 8; 5257 Ops[0] = getI32Imm(TO, dl); 5258 Ops[1] = N->getOperand(3); 5259 Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl); 5260 } 5261 OpsWithMD = {Ops[0], Ops[1], Ops[2]}; 5262 MDIndex = 5; 5263 } else { 5264 OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)}; 5265 MDIndex = 3; 5266 } 5267 5268 if (N->getNumOperands() > MDIndex) { 5269 SDValue MDV = N->getOperand(MDIndex); 5270 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 5271 assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!"); 5272 assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>( 5273 MD->getOperand(0))->getString().equals("ppc-trap-reason")) 5274 && "Unsupported annotation data type!"); 5275 for (unsigned i = 1; i < MD->getNumOperands(); i++) { 5276 assert(isa<MDString>(MD->getOperand(i)) && 5277 "Invalid data type for annotation ppc-trap-reason!"); 5278 OpsWithMD.push_back( 5279 getI32Imm(std::stoi(cast<MDString>( 5280 MD->getOperand(i))->getString().str()), dl)); 5281 } 5282 } 5283 OpsWithMD.push_back(N->getOperand(0)); // chain 5284 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD); 5285 return; 5286 } 5287 5288 case ISD::INTRINSIC_WO_CHAIN: { 5289 // We emit the PPC::FSELS instruction here because of type conflicts with 5290 // the comparison operand. The FSELS instruction is defined to use an 8-byte 5291 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte 5292 // value for the comparison. When selecting through a .td file, a type 5293 // error is raised. Must check this first so we never break on the 5294 // !Subtarget->isISA3_1() check. 5295 auto IntID = N->getConstantOperandVal(0); 5296 if (IntID == Intrinsic::ppc_fsels) { 5297 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)}; 5298 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops); 5299 return; 5300 } 5301 5302 if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) { 5303 auto Pred = N->getConstantOperandVal(1); 5304 unsigned Opcode = 5305 IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec; 5306 unsigned SubReg = 0; 5307 unsigned ShiftVal = 0; 5308 bool Reverse = false; 5309 switch (Pred) { 5310 case 0: 5311 SubReg = PPC::sub_eq; 5312 ShiftVal = 1; 5313 break; 5314 case 1: 5315 SubReg = PPC::sub_eq; 5316 ShiftVal = 1; 5317 Reverse = true; 5318 break; 5319 case 2: 5320 SubReg = PPC::sub_lt; 5321 ShiftVal = 3; 5322 break; 5323 case 3: 5324 SubReg = PPC::sub_lt; 5325 ShiftVal = 3; 5326 Reverse = true; 5327 break; 5328 case 4: 5329 SubReg = PPC::sub_gt; 5330 ShiftVal = 2; 5331 break; 5332 case 5: 5333 SubReg = PPC::sub_gt; 5334 ShiftVal = 2; 5335 Reverse = true; 5336 break; 5337 case 6: 5338 SubReg = PPC::sub_un; 5339 break; 5340 case 7: 5341 SubReg = PPC::sub_un; 5342 Reverse = true; 5343 break; 5344 } 5345 5346 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5347 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), 5348 CurDAG->getTargetConstant(0, dl, MVT::i32)}; 5349 SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0); 5350 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5351 // On Power10, we can use SETBC[R]. On prior architectures, we have to use 5352 // MFOCRF and shift/negate the value. 5353 if (Subtarget->isISA3_1()) { 5354 SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32); 5355 SDValue CRBit = SDValue( 5356 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5357 CR6Reg, SubRegIdx, BCDOp.getValue(1)), 5358 0); 5359 CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32, 5360 CRBit); 5361 } else { 5362 SDValue Move = 5363 SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg, 5364 BCDOp.getValue(1)), 5365 0); 5366 SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl), 5367 getI32Imm(31, dl), getI32Imm(31, dl)}; 5368 if (!Reverse) 5369 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5370 else { 5371 SDValue Shift = SDValue( 5372 CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 5373 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl)); 5374 } 5375 } 5376 return; 5377 } 5378 5379 if (!Subtarget->isISA3_1()) 5380 break; 5381 unsigned Opcode = 0; 5382 switch (IntID) { 5383 default: 5384 break; 5385 case Intrinsic::ppc_altivec_vstribr_p: 5386 Opcode = PPC::VSTRIBR_rec; 5387 break; 5388 case Intrinsic::ppc_altivec_vstribl_p: 5389 Opcode = PPC::VSTRIBL_rec; 5390 break; 5391 case Intrinsic::ppc_altivec_vstrihr_p: 5392 Opcode = PPC::VSTRIHR_rec; 5393 break; 5394 case Intrinsic::ppc_altivec_vstrihl_p: 5395 Opcode = PPC::VSTRIHL_rec; 5396 break; 5397 } 5398 if (!Opcode) 5399 break; 5400 5401 // Generate the appropriate vector string isolate intrinsic to match. 5402 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5403 SDValue VecStrOp = 5404 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0); 5405 // Vector string isolate instructions update the EQ bit of CR6. 5406 // Generate a SETBC instruction to extract the bit and place it in a GPR. 5407 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32); 5408 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5409 SDValue CRBit = SDValue( 5410 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5411 CR6Reg, SubRegIdx, VecStrOp.getValue(1)), 5412 0); 5413 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit); 5414 return; 5415 } 5416 5417 case ISD::SETCC: 5418 case ISD::STRICT_FSETCC: 5419 case ISD::STRICT_FSETCCS: 5420 if (trySETCC(N)) 5421 return; 5422 break; 5423 // These nodes will be transformed into GETtlsADDR32 node, which 5424 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT 5425 case PPCISD::ADDI_TLSLD_L_ADDR: 5426 case PPCISD::ADDI_TLSGD_L_ADDR: { 5427 const Module *Mod = MF->getFunction().getParent(); 5428 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5429 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || 5430 Mod->getPICLevel() == PICLevel::SmallPIC) 5431 break; 5432 // Attach global base pointer on GETtlsADDR32 node in order to 5433 // generate secure plt code for TLS symbols. 5434 getGlobalBaseReg(); 5435 } break; 5436 case PPCISD::CALL: { 5437 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5438 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || 5439 !Subtarget->isTargetELF()) 5440 break; 5441 5442 SDValue Op = N->getOperand(1); 5443 5444 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5445 if (GA->getTargetFlags() == PPCII::MO_PLT) 5446 getGlobalBaseReg(); 5447 } 5448 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 5449 if (ES->getTargetFlags() == PPCII::MO_PLT) 5450 getGlobalBaseReg(); 5451 } 5452 } 5453 break; 5454 5455 case PPCISD::GlobalBaseReg: 5456 ReplaceNode(N, getGlobalBaseReg()); 5457 return; 5458 5459 case ISD::FrameIndex: 5460 selectFrameIndex(N, N); 5461 return; 5462 5463 case PPCISD::MFOCRF: { 5464 SDValue InGlue = N->getOperand(1); 5465 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 5466 N->getOperand(0), InGlue)); 5467 return; 5468 } 5469 5470 case PPCISD::READ_TIME_BASE: 5471 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 5472 MVT::Other, N->getOperand(0))); 5473 return; 5474 5475 case PPCISD::SRA_ADDZE: { 5476 SDValue N0 = N->getOperand(0); 5477 SDValue ShiftAmt = 5478 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 5479 getConstantIntValue(), dl, 5480 N->getValueType(0)); 5481 if (N->getValueType(0) == MVT::i64) { 5482 SDNode *Op = 5483 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 5484 N0, ShiftAmt); 5485 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 5486 SDValue(Op, 1)); 5487 return; 5488 } else { 5489 assert(N->getValueType(0) == MVT::i32 && 5490 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 5491 SDNode *Op = 5492 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 5493 N0, ShiftAmt); 5494 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 5495 SDValue(Op, 1)); 5496 return; 5497 } 5498 } 5499 5500 case ISD::STORE: { 5501 // Change TLS initial-exec (or TLS local-exec on AIX) D-form stores to 5502 // X-form stores. 5503 StoreSDNode *ST = cast<StoreSDNode>(N); 5504 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()) && 5505 ST->getAddressingMode() != ISD::PRE_INC) 5506 if (tryTLSXFormStore(ST)) 5507 return; 5508 break; 5509 } 5510 case ISD::LOAD: { 5511 // Handle preincrement loads. 5512 LoadSDNode *LD = cast<LoadSDNode>(N); 5513 EVT LoadedVT = LD->getMemoryVT(); 5514 5515 // Normal loads are handled by code generated from the .td file. 5516 if (LD->getAddressingMode() != ISD::PRE_INC) { 5517 // Change TLS initial-exec (or TLS local-exec on AIX) D-form loads to 5518 // X-form loads. 5519 if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI())) 5520 if (tryTLSXFormLoad(LD)) 5521 return; 5522 break; 5523 } 5524 5525 SDValue Offset = LD->getOffset(); 5526 if (Offset.getOpcode() == ISD::TargetConstant || 5527 Offset.getOpcode() == ISD::TargetGlobalAddress) { 5528 5529 unsigned Opcode; 5530 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5531 if (LD->getValueType(0) != MVT::i64) { 5532 // Handle PPC32 integer and normal FP loads. 5533 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5534 switch (LoadedVT.getSimpleVT().SimpleTy) { 5535 default: llvm_unreachable("Invalid PPC load type!"); 5536 case MVT::f64: Opcode = PPC::LFDU; break; 5537 case MVT::f32: Opcode = PPC::LFSU; break; 5538 case MVT::i32: Opcode = PPC::LWZU; break; 5539 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 5540 case MVT::i1: 5541 case MVT::i8: Opcode = PPC::LBZU; break; 5542 } 5543 } else { 5544 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5545 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5546 switch (LoadedVT.getSimpleVT().SimpleTy) { 5547 default: llvm_unreachable("Invalid PPC load type!"); 5548 case MVT::i64: Opcode = PPC::LDU; break; 5549 case MVT::i32: Opcode = PPC::LWZU8; break; 5550 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 5551 case MVT::i1: 5552 case MVT::i8: Opcode = PPC::LBZU8; break; 5553 } 5554 } 5555 5556 SDValue Chain = LD->getChain(); 5557 SDValue Base = LD->getBasePtr(); 5558 SDValue Ops[] = { Offset, Base, Chain }; 5559 SDNode *MN = CurDAG->getMachineNode( 5560 Opcode, dl, LD->getValueType(0), 5561 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5562 transferMemOperands(N, MN); 5563 ReplaceNode(N, MN); 5564 return; 5565 } else { 5566 unsigned Opcode; 5567 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5568 if (LD->getValueType(0) != MVT::i64) { 5569 // Handle PPC32 integer and normal FP loads. 5570 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5571 switch (LoadedVT.getSimpleVT().SimpleTy) { 5572 default: llvm_unreachable("Invalid PPC load type!"); 5573 case MVT::f64: Opcode = PPC::LFDUX; break; 5574 case MVT::f32: Opcode = PPC::LFSUX; break; 5575 case MVT::i32: Opcode = PPC::LWZUX; break; 5576 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 5577 case MVT::i1: 5578 case MVT::i8: Opcode = PPC::LBZUX; break; 5579 } 5580 } else { 5581 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5582 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 5583 "Invalid sext update load"); 5584 switch (LoadedVT.getSimpleVT().SimpleTy) { 5585 default: llvm_unreachable("Invalid PPC load type!"); 5586 case MVT::i64: Opcode = PPC::LDUX; break; 5587 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 5588 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 5589 case MVT::i1: 5590 case MVT::i8: Opcode = PPC::LBZUX8; break; 5591 } 5592 } 5593 5594 SDValue Chain = LD->getChain(); 5595 SDValue Base = LD->getBasePtr(); 5596 SDValue Ops[] = { Base, Offset, Chain }; 5597 SDNode *MN = CurDAG->getMachineNode( 5598 Opcode, dl, LD->getValueType(0), 5599 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5600 transferMemOperands(N, MN); 5601 ReplaceNode(N, MN); 5602 return; 5603 } 5604 } 5605 5606 case ISD::AND: 5607 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr 5608 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) || 5609 tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N)) 5610 return; 5611 5612 // Other cases are autogenerated. 5613 break; 5614 case ISD::OR: { 5615 if (N->getValueType(0) == MVT::i32) 5616 if (tryBitfieldInsert(N)) 5617 return; 5618 5619 int16_t Imm; 5620 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5621 isIntS16Immediate(N->getOperand(1), Imm)) { 5622 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); 5623 5624 // If this is equivalent to an add, then we can fold it with the 5625 // FrameIndex calculation. 5626 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 5627 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); 5628 return; 5629 } 5630 } 5631 5632 // If this is 'or' against an imm with consecutive ones and both sides zero, 5633 // try to emit rldimi 5634 if (tryAsSingleRLDIMI(N)) 5635 return; 5636 5637 // OR with a 32-bit immediate can be handled by ori + oris 5638 // without creating an immediate in a GPR. 5639 uint64_t Imm64 = 0; 5640 bool IsPPC64 = Subtarget->isPPC64(); 5641 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5642 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5643 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. 5644 uint64_t ImmHi = Imm64 >> 16; 5645 uint64_t ImmLo = Imm64 & 0xFFFF; 5646 if (ImmHi != 0 && ImmLo != 0) { 5647 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 5648 N->getOperand(0), 5649 getI16Imm(ImmLo, dl)); 5650 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5651 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); 5652 return; 5653 } 5654 } 5655 5656 // Other cases are autogenerated. 5657 break; 5658 } 5659 case ISD::XOR: { 5660 // XOR with a 32-bit immediate can be handled by xori + xoris 5661 // without creating an immediate in a GPR. 5662 uint64_t Imm64 = 0; 5663 bool IsPPC64 = Subtarget->isPPC64(); 5664 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5665 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5666 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. 5667 uint64_t ImmHi = Imm64 >> 16; 5668 uint64_t ImmLo = Imm64 & 0xFFFF; 5669 if (ImmHi != 0 && ImmLo != 0) { 5670 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 5671 N->getOperand(0), 5672 getI16Imm(ImmLo, dl)); 5673 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5674 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); 5675 return; 5676 } 5677 } 5678 5679 break; 5680 } 5681 case ISD::ADD: { 5682 int16_t Imm; 5683 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5684 isIntS16Immediate(N->getOperand(1), Imm)) { 5685 selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm); 5686 return; 5687 } 5688 5689 break; 5690 } 5691 case ISD::SHL: { 5692 unsigned Imm, SH, MB, ME; 5693 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5694 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5695 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5696 getI32Imm(SH, dl), getI32Imm(MB, dl), 5697 getI32Imm(ME, dl) }; 5698 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5699 return; 5700 } 5701 5702 // Other cases are autogenerated. 5703 break; 5704 } 5705 case ISD::SRL: { 5706 unsigned Imm, SH, MB, ME; 5707 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5708 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5709 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5710 getI32Imm(SH, dl), getI32Imm(MB, dl), 5711 getI32Imm(ME, dl) }; 5712 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5713 return; 5714 } 5715 5716 // Other cases are autogenerated. 5717 break; 5718 } 5719 case ISD::MUL: { 5720 SDValue Op1 = N->getOperand(1); 5721 if (Op1.getOpcode() != ISD::Constant || 5722 (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32)) 5723 break; 5724 5725 // If the multiplier fits int16, we can handle it with mulli. 5726 int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue(); 5727 unsigned Shift = llvm::countr_zero<uint64_t>(Imm); 5728 if (isInt<16>(Imm) || !Shift) 5729 break; 5730 5731 // If the shifted value fits int16, we can do this transformation: 5732 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to 5733 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2). 5734 uint64_t ImmSh = Imm >> Shift; 5735 if (!isInt<16>(ImmSh)) 5736 break; 5737 5738 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16); 5739 if (Op1.getValueType() == MVT::i64) { 5740 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 5741 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64, 5742 N->getOperand(0), SDImm); 5743 5744 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), 5745 getI32Imm(63 - Shift, dl)}; 5746 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 5747 return; 5748 } else { 5749 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32); 5750 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32, 5751 N->getOperand(0), SDImm); 5752 5753 SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl), 5754 getI32Imm(0, dl), getI32Imm(31 - Shift, dl)}; 5755 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5756 return; 5757 } 5758 break; 5759 } 5760 // FIXME: Remove this once the ANDI glue bug is fixed: 5761 case PPCISD::ANDI_rec_1_EQ_BIT: 5762 case PPCISD::ANDI_rec_1_GT_BIT: { 5763 if (!ANDIGlueBug) 5764 break; 5765 5766 EVT InVT = N->getOperand(0).getValueType(); 5767 assert((InVT == MVT::i64 || InVT == MVT::i32) && 5768 "Invalid input type for ANDI_rec_1_EQ_BIT"); 5769 5770 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; 5771 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 5772 N->getOperand(0), 5773 CurDAG->getTargetConstant(1, dl, InVT)), 5774 0); 5775 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 5776 SDValue SRIdxVal = CurDAG->getTargetConstant( 5777 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, 5778 dl, MVT::i32); 5779 5780 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 5781 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 5782 return; 5783 } 5784 case ISD::SELECT_CC: { 5785 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 5786 EVT PtrVT = 5787 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 5788 bool isPPC64 = (PtrVT == MVT::i64); 5789 5790 // If this is a select of i1 operands, we'll pattern match it. 5791 if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) 5792 break; 5793 5794 if (Subtarget->isISA3_0() && Subtarget->isPPC64()) { 5795 bool NeedSwapOps = false; 5796 bool IsUnCmp = false; 5797 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { 5798 SDValue LHS = N->getOperand(0); 5799 SDValue RHS = N->getOperand(1); 5800 if (NeedSwapOps) 5801 std::swap(LHS, RHS); 5802 5803 // Make use of SelectCC to generate the comparison to set CR bits, for 5804 // equality comparisons having one literal operand, SelectCC probably 5805 // doesn't need to materialize the whole literal and just use xoris to 5806 // check it first, it leads the following comparison result can't 5807 // exactly represent GT/LT relationship. So to avoid this we specify 5808 // SETGT/SETUGT here instead of SETEQ. 5809 SDValue GenCC = 5810 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); 5811 CurDAG->SelectNodeTo( 5812 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, 5813 N->getValueType(0), GenCC); 5814 NumP9Setb++; 5815 return; 5816 } 5817 } 5818 5819 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 5820 if (!isPPC64 && isNullConstant(N->getOperand(1)) && 5821 isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) && 5822 CC == ISD::SETNE && 5823 // FIXME: Implement this optzn for PPC64. 5824 N->getValueType(0) == MVT::i32) { 5825 SDNode *Tmp = 5826 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 5827 N->getOperand(0), getI32Imm(~0U, dl)); 5828 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 5829 N->getOperand(0), SDValue(Tmp, 1)); 5830 return; 5831 } 5832 5833 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 5834 5835 if (N->getValueType(0) == MVT::i1) { 5836 // An i1 select is: (c & t) | (!c & f). 5837 bool Inv; 5838 unsigned Idx = getCRIdxForSetCC(CC, Inv); 5839 5840 unsigned SRI; 5841 switch (Idx) { 5842 default: llvm_unreachable("Invalid CC index"); 5843 case 0: SRI = PPC::sub_lt; break; 5844 case 1: SRI = PPC::sub_gt; break; 5845 case 2: SRI = PPC::sub_eq; break; 5846 case 3: SRI = PPC::sub_un; break; 5847 } 5848 5849 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 5850 5851 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 5852 CCBit, CCBit), 0); 5853 SDValue C = Inv ? NotCCBit : CCBit, 5854 NotC = Inv ? CCBit : NotCCBit; 5855 5856 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5857 C, N->getOperand(2)), 0); 5858 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5859 NotC, N->getOperand(3)), 0); 5860 5861 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 5862 return; 5863 } 5864 5865 unsigned BROpc = 5866 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget); 5867 5868 unsigned SelectCCOp; 5869 if (N->getValueType(0) == MVT::i32) 5870 SelectCCOp = PPC::SELECT_CC_I4; 5871 else if (N->getValueType(0) == MVT::i64) 5872 SelectCCOp = PPC::SELECT_CC_I8; 5873 else if (N->getValueType(0) == MVT::f32) { 5874 if (Subtarget->hasP8Vector()) 5875 SelectCCOp = PPC::SELECT_CC_VSSRC; 5876 else if (Subtarget->hasSPE()) 5877 SelectCCOp = PPC::SELECT_CC_SPE4; 5878 else 5879 SelectCCOp = PPC::SELECT_CC_F4; 5880 } else if (N->getValueType(0) == MVT::f64) { 5881 if (Subtarget->hasVSX()) 5882 SelectCCOp = PPC::SELECT_CC_VSFRC; 5883 else if (Subtarget->hasSPE()) 5884 SelectCCOp = PPC::SELECT_CC_SPE; 5885 else 5886 SelectCCOp = PPC::SELECT_CC_F8; 5887 } else if (N->getValueType(0) == MVT::f128) 5888 SelectCCOp = PPC::SELECT_CC_F16; 5889 else if (Subtarget->hasSPE()) 5890 SelectCCOp = PPC::SELECT_CC_SPE; 5891 else if (N->getValueType(0) == MVT::v2f64 || 5892 N->getValueType(0) == MVT::v2i64) 5893 SelectCCOp = PPC::SELECT_CC_VSRC; 5894 else 5895 SelectCCOp = PPC::SELECT_CC_VRRC; 5896 5897 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 5898 getI32Imm(BROpc, dl) }; 5899 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 5900 return; 5901 } 5902 case ISD::VECTOR_SHUFFLE: 5903 if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 5904 N->getValueType(0) == MVT::v2i64)) { 5905 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5906 5907 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 5908 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 5909 unsigned DM[2]; 5910 5911 for (int i = 0; i < 2; ++i) 5912 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 5913 DM[i] = 0; 5914 else 5915 DM[i] = 1; 5916 5917 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 5918 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 5919 isa<LoadSDNode>(Op1.getOperand(0))) { 5920 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 5921 SDValue Base, Offset; 5922 5923 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 5924 (LD->getMemoryVT() == MVT::f64 || 5925 LD->getMemoryVT() == MVT::i64) && 5926 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 5927 SDValue Chain = LD->getChain(); 5928 SDValue Ops[] = { Base, Offset, Chain }; 5929 MachineMemOperand *MemOp = LD->getMemOperand(); 5930 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, 5931 N->getValueType(0), Ops); 5932 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); 5933 return; 5934 } 5935 } 5936 5937 // For little endian, we must swap the input operands and adjust 5938 // the mask elements (reverse and invert them). 5939 if (Subtarget->isLittleEndian()) { 5940 std::swap(Op1, Op2); 5941 unsigned tmp = DM[0]; 5942 DM[0] = 1 - DM[1]; 5943 DM[1] = 1 - tmp; 5944 } 5945 5946 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 5947 MVT::i32); 5948 SDValue Ops[] = { Op1, Op2, DMV }; 5949 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 5950 return; 5951 } 5952 5953 break; 5954 case PPCISD::BDNZ: 5955 case PPCISD::BDZ: { 5956 bool IsPPC64 = Subtarget->isPPC64(); 5957 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 5958 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 5959 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 5960 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 5961 MVT::Other, Ops); 5962 return; 5963 } 5964 case PPCISD::COND_BRANCH: { 5965 // Op #0 is the Chain. 5966 // Op #1 is the PPC::PRED_* number. 5967 // Op #2 is the CR# 5968 // Op #3 is the Dest MBB 5969 // Op #4 is the Flag. 5970 // Prevent PPC::PRED_* from being selected into LI. 5971 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 5972 if (EnableBranchHint) 5973 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); 5974 5975 SDValue Pred = getI32Imm(PCC, dl); 5976 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 5977 N->getOperand(0), N->getOperand(4) }; 5978 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5979 return; 5980 } 5981 case ISD::BR_CC: { 5982 if (tryFoldSWTestBRCC(N)) 5983 return; 5984 if (trySelectLoopCountIntrinsic(N)) 5985 return; 5986 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5987 unsigned PCC = 5988 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget); 5989 5990 if (N->getOperand(2).getValueType() == MVT::i1) { 5991 unsigned Opc; 5992 bool Swap; 5993 switch (PCC) { 5994 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 5995 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 5996 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 5997 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 5998 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 5999 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 6000 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 6001 } 6002 6003 // A signed comparison of i1 values produces the opposite result to an 6004 // unsigned one if the condition code includes less-than or greater-than. 6005 // This is because 1 is the most negative signed i1 number and the most 6006 // positive unsigned i1 number. The CR-logical operations used for such 6007 // comparisons are non-commutative so for signed comparisons vs. unsigned 6008 // ones, the input operands just need to be swapped. 6009 if (ISD::isSignedIntSetCC(CC)) 6010 Swap = !Swap; 6011 6012 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 6013 N->getOperand(Swap ? 3 : 2), 6014 N->getOperand(Swap ? 2 : 3)), 0); 6015 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 6016 N->getOperand(0)); 6017 return; 6018 } 6019 6020 if (EnableBranchHint) 6021 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); 6022 6023 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 6024 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 6025 N->getOperand(4), N->getOperand(0) }; 6026 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 6027 return; 6028 } 6029 case ISD::BRIND: { 6030 // FIXME: Should custom lower this. 6031 SDValue Chain = N->getOperand(0); 6032 SDValue Target = N->getOperand(1); 6033 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 6034 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 6035 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 6036 Chain), 0); 6037 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 6038 return; 6039 } 6040 case PPCISD::TOC_ENTRY: { 6041 const bool isPPC64 = Subtarget->isPPC64(); 6042 const bool isELFABI = Subtarget->isSVR4ABI(); 6043 const bool isAIXABI = Subtarget->isAIXABI(); 6044 6045 // PowerPC only support small, medium and large code model. 6046 const CodeModel::Model CModel = TM.getCodeModel(); 6047 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && 6048 "PowerPC doesn't support tiny or kernel code models."); 6049 6050 if (isAIXABI && CModel == CodeModel::Medium) 6051 report_fatal_error("Medium code model is not supported on AIX."); 6052 6053 // For 64-bit ELF small code model, we allow SelectCodeCommon to handle 6054 // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX 6055 // small code model, we need to check for a toc-data attribute. 6056 if (isPPC64 && !isAIXABI && CModel == CodeModel::Small) 6057 break; 6058 6059 auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry, 6060 EVT OperandTy) { 6061 SDValue GA = TocEntry->getOperand(0); 6062 SDValue TocBase = TocEntry->getOperand(1); 6063 SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase); 6064 transferMemOperands(TocEntry, MN); 6065 ReplaceNode(TocEntry, MN); 6066 }; 6067 6068 // Handle 32-bit small code model. 6069 if (!isPPC64 && CModel == CodeModel::Small) { 6070 // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either 6071 // PPC::ADDItoc, or PPC::LWZtoc 6072 if (isELFABI) { 6073 assert(TM.isPositionIndependent() && 6074 "32-bit ELF can only have TOC entries in position independent" 6075 " code."); 6076 // 32-bit ELF always uses a small code model toc access. 6077 replaceWith(PPC::LWZtoc, N, MVT::i32); 6078 return; 6079 } 6080 6081 assert(isAIXABI && "ELF ABI already handled"); 6082 6083 if (hasTocDataAttr(N->getOperand(0), 6084 CurDAG->getDataLayout().getPointerSize())) { 6085 replaceWith(PPC::ADDItoc, N, MVT::i32); 6086 return; 6087 } 6088 6089 replaceWith(PPC::LWZtoc, N, MVT::i32); 6090 return; 6091 } 6092 6093 if (isPPC64 && CModel == CodeModel::Small) { 6094 assert(isAIXABI && "ELF ABI handled in common SelectCode"); 6095 6096 if (hasTocDataAttr(N->getOperand(0), 6097 CurDAG->getDataLayout().getPointerSize())) { 6098 replaceWith(PPC::ADDItoc8, N, MVT::i64); 6099 return; 6100 } 6101 // Break if it doesn't have toc data attribute. Proceed with common 6102 // SelectCode. 6103 break; 6104 } 6105 6106 assert(CModel != CodeModel::Small && "All small code models handled."); 6107 6108 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" 6109 " ELF/AIX or 32-bit AIX in the following."); 6110 6111 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode 6112 // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We 6113 // generate two instructions as described below. The first source operand 6114 // is a symbol reference. If it must be toc-referenced according to 6115 // Subtarget, we generate: 6116 // [32-bit AIX] 6117 // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) 6118 // [64-bit ELF/AIX] 6119 // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) 6120 // Otherwise we generate: 6121 // ADDItocL(ADDIStocHA8(%x2, @sym), @sym) 6122 SDValue GA = N->getOperand(0); 6123 SDValue TOCbase = N->getOperand(1); 6124 6125 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 6126 SDNode *Tmp = CurDAG->getMachineNode( 6127 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); 6128 6129 if (PPCLowering->isAccessedAsGotIndirect(GA)) { 6130 // If it is accessed as got-indirect, we need an extra LWZ/LD to load 6131 // the address. 6132 SDNode *MN = CurDAG->getMachineNode( 6133 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); 6134 6135 transferMemOperands(N, MN); 6136 ReplaceNode(N, MN); 6137 return; 6138 } 6139 6140 // Build the address relative to the TOC-pointer. 6141 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 6142 SDValue(Tmp, 0), GA)); 6143 return; 6144 } 6145 case PPCISD::PPC32_PICGOT: 6146 // Generate a PIC-safe GOT reference. 6147 assert(Subtarget->is32BitELFABI() && 6148 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 6149 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 6150 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 6151 MVT::i32); 6152 return; 6153 6154 case PPCISD::VADD_SPLAT: { 6155 // This expands into one of three sequences, depending on whether 6156 // the first operand is odd or even, positive or negative. 6157 assert(isa<ConstantSDNode>(N->getOperand(0)) && 6158 isa<ConstantSDNode>(N->getOperand(1)) && 6159 "Invalid operand on VADD_SPLAT!"); 6160 6161 int Elt = N->getConstantOperandVal(0); 6162 int EltSize = N->getConstantOperandVal(1); 6163 unsigned Opc1, Opc2, Opc3; 6164 EVT VT; 6165 6166 if (EltSize == 1) { 6167 Opc1 = PPC::VSPLTISB; 6168 Opc2 = PPC::VADDUBM; 6169 Opc3 = PPC::VSUBUBM; 6170 VT = MVT::v16i8; 6171 } else if (EltSize == 2) { 6172 Opc1 = PPC::VSPLTISH; 6173 Opc2 = PPC::VADDUHM; 6174 Opc3 = PPC::VSUBUHM; 6175 VT = MVT::v8i16; 6176 } else { 6177 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 6178 Opc1 = PPC::VSPLTISW; 6179 Opc2 = PPC::VADDUWM; 6180 Opc3 = PPC::VSUBUWM; 6181 VT = MVT::v4i32; 6182 } 6183 6184 if ((Elt & 1) == 0) { 6185 // Elt is even, in the range [-32,-18] + [16,30]. 6186 // 6187 // Convert: VADD_SPLAT elt, size 6188 // Into: tmp = VSPLTIS[BHW] elt 6189 // VADDU[BHW]M tmp, tmp 6190 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 6191 SDValue EltVal = getI32Imm(Elt >> 1, dl); 6192 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6193 SDValue TmpVal = SDValue(Tmp, 0); 6194 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 6195 return; 6196 } else if (Elt > 0) { 6197 // Elt is odd and positive, in the range [17,31]. 6198 // 6199 // Convert: VADD_SPLAT elt, size 6200 // Into: tmp1 = VSPLTIS[BHW] elt-16 6201 // tmp2 = VSPLTIS[BHW] -16 6202 // VSUBU[BHW]M tmp1, tmp2 6203 SDValue EltVal = getI32Imm(Elt - 16, dl); 6204 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6205 EltVal = getI32Imm(-16, dl); 6206 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6207 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 6208 SDValue(Tmp2, 0))); 6209 return; 6210 } else { 6211 // Elt is odd and negative, in the range [-31,-17]. 6212 // 6213 // Convert: VADD_SPLAT elt, size 6214 // Into: tmp1 = VSPLTIS[BHW] elt+16 6215 // tmp2 = VSPLTIS[BHW] -16 6216 // VADDU[BHW]M tmp1, tmp2 6217 SDValue EltVal = getI32Imm(Elt + 16, dl); 6218 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6219 EltVal = getI32Imm(-16, dl); 6220 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 6221 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 6222 SDValue(Tmp2, 0))); 6223 return; 6224 } 6225 } 6226 case PPCISD::LD_SPLAT: { 6227 // Here we want to handle splat load for type v16i8 and v8i16 when there is 6228 // no direct move, we don't need to use stack for this case. If target has 6229 // direct move, we should be able to get the best selection in the .td file. 6230 if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove()) 6231 break; 6232 6233 EVT Type = N->getValueType(0); 6234 if (Type != MVT::v16i8 && Type != MVT::v8i16) 6235 break; 6236 6237 // If the alignment for the load is 16 or bigger, we don't need the 6238 // permutated mask to get the required value. The value must be the 0 6239 // element in big endian target or 7/15 in little endian target in the 6240 // result vsx register of lvx instruction. 6241 // Select the instruction in the .td file. 6242 if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) && 6243 isOffsetMultipleOf(N, 16)) 6244 break; 6245 6246 SDValue ZeroReg = 6247 CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO, 6248 Subtarget->isPPC64() ? MVT::i64 : MVT::i32); 6249 unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI; 6250 // v16i8 LD_SPLAT addr 6251 // ======> 6252 // Mask = LVSR/LVSL 0, addr 6253 // LoadLow = LVX 0, addr 6254 // Perm = VPERM LoadLow, LoadLow, Mask 6255 // Splat = VSPLTB 15/0, Perm 6256 // 6257 // v8i16 LD_SPLAT addr 6258 // ======> 6259 // Mask = LVSR/LVSL 0, addr 6260 // LoadLow = LVX 0, addr 6261 // LoadHigh = LVX (LI, 1), addr 6262 // Perm = VPERM LoadLow, LoadHigh, Mask 6263 // Splat = VSPLTH 7/0, Perm 6264 unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH; 6265 unsigned SplatElemIndex = 6266 Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0; 6267 6268 SDNode *Mask = CurDAG->getMachineNode( 6269 Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg, 6270 N->getOperand(1)); 6271 6272 SDNode *LoadLow = 6273 CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other, 6274 {ZeroReg, N->getOperand(1), N->getOperand(0)}); 6275 6276 SDNode *LoadHigh = LoadLow; 6277 if (Type == MVT::v8i16) { 6278 LoadHigh = CurDAG->getMachineNode( 6279 PPC::LVX, dl, MVT::v16i8, MVT::Other, 6280 {SDValue(CurDAG->getMachineNode( 6281 LIOpcode, dl, MVT::i32, 6282 CurDAG->getTargetConstant(1, dl, MVT::i8)), 6283 0), 6284 N->getOperand(1), SDValue(LoadLow, 1)}); 6285 } 6286 6287 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1)); 6288 transferMemOperands(N, LoadHigh); 6289 6290 SDNode *Perm = 6291 CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0), 6292 SDValue(LoadHigh, 0), SDValue(Mask, 0)); 6293 CurDAG->SelectNodeTo(N, SplatOp, Type, 6294 CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8), 6295 SDValue(Perm, 0)); 6296 return; 6297 } 6298 } 6299 6300 SelectCode(N); 6301 } 6302 6303 // If the target supports the cmpb instruction, do the idiom recognition here. 6304 // We don't do this as a DAG combine because we don't want to do it as nodes 6305 // are being combined (because we might miss part of the eventual idiom). We 6306 // don't want to do it during instruction selection because we want to reuse 6307 // the logic for lowering the masking operations already part of the 6308 // instruction selector. 6309 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 6310 SDLoc dl(N); 6311 6312 assert(N->getOpcode() == ISD::OR && 6313 "Only OR nodes are supported for CMPB"); 6314 6315 SDValue Res; 6316 if (!Subtarget->hasCMPB()) 6317 return Res; 6318 6319 if (N->getValueType(0) != MVT::i32 && 6320 N->getValueType(0) != MVT::i64) 6321 return Res; 6322 6323 EVT VT = N->getValueType(0); 6324 6325 SDValue RHS, LHS; 6326 bool BytesFound[8] = {false, false, false, false, false, false, false, false}; 6327 uint64_t Mask = 0, Alt = 0; 6328 6329 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 6330 uint64_t &Mask, uint64_t &Alt, 6331 SDValue &LHS, SDValue &RHS) { 6332 if (O.getOpcode() != ISD::SELECT_CC) 6333 return false; 6334 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 6335 6336 if (!isa<ConstantSDNode>(O.getOperand(2)) || 6337 !isa<ConstantSDNode>(O.getOperand(3))) 6338 return false; 6339 6340 uint64_t PM = O.getConstantOperandVal(2); 6341 uint64_t PAlt = O.getConstantOperandVal(3); 6342 for (b = 0; b < 8; ++b) { 6343 uint64_t Mask = UINT64_C(0xFF) << (8*b); 6344 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 6345 break; 6346 } 6347 6348 if (b == 8) 6349 return false; 6350 Mask |= PM; 6351 Alt |= PAlt; 6352 6353 if (!isa<ConstantSDNode>(O.getOperand(1)) || 6354 O.getConstantOperandVal(1) != 0) { 6355 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 6356 if (Op0.getOpcode() == ISD::TRUNCATE) 6357 Op0 = Op0.getOperand(0); 6358 if (Op1.getOpcode() == ISD::TRUNCATE) 6359 Op1 = Op1.getOperand(0); 6360 6361 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 6362 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 6363 isa<ConstantSDNode>(Op0.getOperand(1))) { 6364 6365 unsigned Bits = Op0.getValueSizeInBits(); 6366 if (b != Bits/8-1) 6367 return false; 6368 if (Op0.getConstantOperandVal(1) != Bits-8) 6369 return false; 6370 6371 LHS = Op0.getOperand(0); 6372 RHS = Op1.getOperand(0); 6373 return true; 6374 } 6375 6376 // When we have small integers (i16 to be specific), the form present 6377 // post-legalization uses SETULT in the SELECT_CC for the 6378 // higher-order byte, depending on the fact that the 6379 // even-higher-order bytes are known to all be zero, for example: 6380 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 6381 // (so when the second byte is the same, because all higher-order 6382 // bits from bytes 3 and 4 are known to be zero, the result of the 6383 // xor can be at most 255) 6384 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 6385 isa<ConstantSDNode>(O.getOperand(1))) { 6386 6387 uint64_t ULim = O.getConstantOperandVal(1); 6388 if (ULim != (UINT64_C(1) << b*8)) 6389 return false; 6390 6391 // Now we need to make sure that the upper bytes are known to be 6392 // zero. 6393 unsigned Bits = Op0.getValueSizeInBits(); 6394 if (!CurDAG->MaskedValueIsZero( 6395 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 6396 return false; 6397 6398 LHS = Op0.getOperand(0); 6399 RHS = Op0.getOperand(1); 6400 return true; 6401 } 6402 6403 return false; 6404 } 6405 6406 if (CC != ISD::SETEQ) 6407 return false; 6408 6409 SDValue Op = O.getOperand(0); 6410 if (Op.getOpcode() == ISD::AND) { 6411 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6412 return false; 6413 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 6414 return false; 6415 6416 SDValue XOR = Op.getOperand(0); 6417 if (XOR.getOpcode() == ISD::TRUNCATE) 6418 XOR = XOR.getOperand(0); 6419 if (XOR.getOpcode() != ISD::XOR) 6420 return false; 6421 6422 LHS = XOR.getOperand(0); 6423 RHS = XOR.getOperand(1); 6424 return true; 6425 } else if (Op.getOpcode() == ISD::SRL) { 6426 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6427 return false; 6428 unsigned Bits = Op.getValueSizeInBits(); 6429 if (b != Bits/8-1) 6430 return false; 6431 if (Op.getConstantOperandVal(1) != Bits-8) 6432 return false; 6433 6434 SDValue XOR = Op.getOperand(0); 6435 if (XOR.getOpcode() == ISD::TRUNCATE) 6436 XOR = XOR.getOperand(0); 6437 if (XOR.getOpcode() != ISD::XOR) 6438 return false; 6439 6440 LHS = XOR.getOperand(0); 6441 RHS = XOR.getOperand(1); 6442 return true; 6443 } 6444 6445 return false; 6446 }; 6447 6448 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 6449 while (!Queue.empty()) { 6450 SDValue V = Queue.pop_back_val(); 6451 6452 for (const SDValue &O : V.getNode()->ops()) { 6453 unsigned b = 0; 6454 uint64_t M = 0, A = 0; 6455 SDValue OLHS, ORHS; 6456 if (O.getOpcode() == ISD::OR) { 6457 Queue.push_back(O); 6458 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 6459 if (!LHS) { 6460 LHS = OLHS; 6461 RHS = ORHS; 6462 BytesFound[b] = true; 6463 Mask |= M; 6464 Alt |= A; 6465 } else if ((LHS == ORHS && RHS == OLHS) || 6466 (RHS == ORHS && LHS == OLHS)) { 6467 BytesFound[b] = true; 6468 Mask |= M; 6469 Alt |= A; 6470 } else { 6471 return Res; 6472 } 6473 } else { 6474 return Res; 6475 } 6476 } 6477 } 6478 6479 unsigned LastB = 0, BCnt = 0; 6480 for (unsigned i = 0; i < 8; ++i) 6481 if (BytesFound[LastB]) { 6482 ++BCnt; 6483 LastB = i; 6484 } 6485 6486 if (!LastB || BCnt < 2) 6487 return Res; 6488 6489 // Because we'll be zero-extending the output anyway if don't have a specific 6490 // value for each input byte (via the Mask), we can 'anyext' the inputs. 6491 if (LHS.getValueType() != VT) { 6492 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 6493 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 6494 } 6495 6496 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 6497 6498 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 6499 if (NonTrivialMask && !Alt) { 6500 // Res = Mask & CMPB 6501 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6502 CurDAG->getConstant(Mask, dl, VT)); 6503 } else if (Alt) { 6504 // Res = (CMPB & Mask) | (~CMPB & Alt) 6505 // Which, as suggested here: 6506 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 6507 // can be written as: 6508 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 6509 // useful because the (Alt ^ Mask) can be pre-computed. 6510 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6511 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 6512 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 6513 CurDAG->getConstant(Alt, dl, VT)); 6514 } 6515 6516 return Res; 6517 } 6518 6519 // When CR bit registers are enabled, an extension of an i1 variable to a i32 6520 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 6521 // involves constant materialization of a 0 or a 1 or both. If the result of 6522 // the extension is then operated upon by some operator that can be constant 6523 // folded with a constant 0 or 1, and that constant can be materialized using 6524 // only one instruction (like a zero or one), then we should fold in those 6525 // operations with the select. 6526 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 6527 if (!Subtarget->useCRBits()) 6528 return; 6529 6530 if (N->getOpcode() != ISD::ZERO_EXTEND && 6531 N->getOpcode() != ISD::SIGN_EXTEND && 6532 N->getOpcode() != ISD::ANY_EXTEND) 6533 return; 6534 6535 if (N->getOperand(0).getValueType() != MVT::i1) 6536 return; 6537 6538 if (!N->hasOneUse()) 6539 return; 6540 6541 SDLoc dl(N); 6542 EVT VT = N->getValueType(0); 6543 SDValue Cond = N->getOperand(0); 6544 SDValue ConstTrue = 6545 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 6546 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 6547 6548 do { 6549 SDNode *User = *N->use_begin(); 6550 if (User->getNumOperands() != 2) 6551 break; 6552 6553 auto TryFold = [this, N, User, dl](SDValue Val) { 6554 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 6555 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 6556 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 6557 6558 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 6559 User->getValueType(0), {O0, O1}); 6560 }; 6561 6562 // FIXME: When the semantics of the interaction between select and undef 6563 // are clearly defined, it may turn out to be unnecessary to break here. 6564 SDValue TrueRes = TryFold(ConstTrue); 6565 if (!TrueRes || TrueRes.isUndef()) 6566 break; 6567 SDValue FalseRes = TryFold(ConstFalse); 6568 if (!FalseRes || FalseRes.isUndef()) 6569 break; 6570 6571 // For us to materialize these using one instruction, we must be able to 6572 // represent them as signed 16-bit integers. 6573 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 6574 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 6575 if (!isInt<16>(True) || !isInt<16>(False)) 6576 break; 6577 6578 // We can replace User with a new SELECT node, and try again to see if we 6579 // can fold the select with its user. 6580 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 6581 N = User; 6582 ConstTrue = TrueRes; 6583 ConstFalse = FalseRes; 6584 } while (N->hasOneUse()); 6585 } 6586 6587 void PPCDAGToDAGISel::PreprocessISelDAG() { 6588 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6589 6590 bool MadeChange = false; 6591 while (Position != CurDAG->allnodes_begin()) { 6592 SDNode *N = &*--Position; 6593 if (N->use_empty()) 6594 continue; 6595 6596 SDValue Res; 6597 switch (N->getOpcode()) { 6598 default: break; 6599 case ISD::OR: 6600 Res = combineToCMPB(N); 6601 break; 6602 } 6603 6604 if (!Res) 6605 foldBoolExts(Res, N); 6606 6607 if (Res) { 6608 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 6609 LLVM_DEBUG(N->dump(CurDAG)); 6610 LLVM_DEBUG(dbgs() << "\nNew: "); 6611 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 6612 LLVM_DEBUG(dbgs() << "\n"); 6613 6614 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 6615 MadeChange = true; 6616 } 6617 } 6618 6619 if (MadeChange) 6620 CurDAG->RemoveDeadNodes(); 6621 } 6622 6623 /// PostprocessISelDAG - Perform some late peephole optimizations 6624 /// on the DAG representation. 6625 void PPCDAGToDAGISel::PostprocessISelDAG() { 6626 // Skip peepholes at -O0. 6627 if (TM.getOptLevel() == CodeGenOpt::None) 6628 return; 6629 6630 PeepholePPC64(); 6631 PeepholeCROps(); 6632 PeepholePPC64ZExt(); 6633 } 6634 6635 // Check if all users of this node will become isel where the second operand 6636 // is the constant zero. If this is so, and if we can negate the condition, 6637 // then we can flip the true and false operands. This will allow the zero to 6638 // be folded with the isel so that we don't need to materialize a register 6639 // containing zero. 6640 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 6641 for (const SDNode *User : N->uses()) { 6642 if (!User->isMachineOpcode()) 6643 return false; 6644 if (User->getMachineOpcode() != PPC::SELECT_I4 && 6645 User->getMachineOpcode() != PPC::SELECT_I8) 6646 return false; 6647 6648 SDNode *Op1 = User->getOperand(1).getNode(); 6649 SDNode *Op2 = User->getOperand(2).getNode(); 6650 // If we have a degenerate select with two equal operands, swapping will 6651 // not do anything, and we may run into an infinite loop. 6652 if (Op1 == Op2) 6653 return false; 6654 6655 if (!Op2->isMachineOpcode()) 6656 return false; 6657 6658 if (Op2->getMachineOpcode() != PPC::LI && 6659 Op2->getMachineOpcode() != PPC::LI8) 6660 return false; 6661 6662 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 6663 if (!C) 6664 return false; 6665 6666 if (!C->isZero()) 6667 return false; 6668 } 6669 6670 return true; 6671 } 6672 6673 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 6674 SmallVector<SDNode *, 4> ToReplace; 6675 for (SDNode *User : N->uses()) { 6676 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 6677 User->getMachineOpcode() == PPC::SELECT_I8) && 6678 "Must have all select users"); 6679 ToReplace.push_back(User); 6680 } 6681 6682 for (SDNode *User : ToReplace) { 6683 SDNode *ResNode = 6684 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 6685 User->getValueType(0), User->getOperand(0), 6686 User->getOperand(2), 6687 User->getOperand(1)); 6688 6689 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6690 LLVM_DEBUG(User->dump(CurDAG)); 6691 LLVM_DEBUG(dbgs() << "\nNew: "); 6692 LLVM_DEBUG(ResNode->dump(CurDAG)); 6693 LLVM_DEBUG(dbgs() << "\n"); 6694 6695 ReplaceUses(User, ResNode); 6696 } 6697 } 6698 6699 void PPCDAGToDAGISel::PeepholeCROps() { 6700 bool IsModified; 6701 do { 6702 IsModified = false; 6703 for (SDNode &Node : CurDAG->allnodes()) { 6704 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 6705 if (!MachineNode || MachineNode->use_empty()) 6706 continue; 6707 SDNode *ResNode = MachineNode; 6708 6709 bool Op1Set = false, Op1Unset = false, 6710 Op1Not = false, 6711 Op2Set = false, Op2Unset = false, 6712 Op2Not = false; 6713 6714 unsigned Opcode = MachineNode->getMachineOpcode(); 6715 switch (Opcode) { 6716 default: break; 6717 case PPC::CRAND: 6718 case PPC::CRNAND: 6719 case PPC::CROR: 6720 case PPC::CRXOR: 6721 case PPC::CRNOR: 6722 case PPC::CREQV: 6723 case PPC::CRANDC: 6724 case PPC::CRORC: { 6725 SDValue Op = MachineNode->getOperand(1); 6726 if (Op.isMachineOpcode()) { 6727 if (Op.getMachineOpcode() == PPC::CRSET) 6728 Op2Set = true; 6729 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6730 Op2Unset = true; 6731 else if ((Op.getMachineOpcode() == PPC::CRNOR && 6732 Op.getOperand(0) == Op.getOperand(1)) || 6733 Op.getMachineOpcode() == PPC::CRNOT) 6734 Op2Not = true; 6735 } 6736 [[fallthrough]]; 6737 } 6738 case PPC::BC: 6739 case PPC::BCn: 6740 case PPC::SELECT_I4: 6741 case PPC::SELECT_I8: 6742 case PPC::SELECT_F4: 6743 case PPC::SELECT_F8: 6744 case PPC::SELECT_SPE: 6745 case PPC::SELECT_SPE4: 6746 case PPC::SELECT_VRRC: 6747 case PPC::SELECT_VSFRC: 6748 case PPC::SELECT_VSSRC: 6749 case PPC::SELECT_VSRC: { 6750 SDValue Op = MachineNode->getOperand(0); 6751 if (Op.isMachineOpcode()) { 6752 if (Op.getMachineOpcode() == PPC::CRSET) 6753 Op1Set = true; 6754 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6755 Op1Unset = true; 6756 else if ((Op.getMachineOpcode() == PPC::CRNOR && 6757 Op.getOperand(0) == Op.getOperand(1)) || 6758 Op.getMachineOpcode() == PPC::CRNOT) 6759 Op1Not = true; 6760 } 6761 } 6762 break; 6763 } 6764 6765 bool SelectSwap = false; 6766 switch (Opcode) { 6767 default: break; 6768 case PPC::CRAND: 6769 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6770 // x & x = x 6771 ResNode = MachineNode->getOperand(0).getNode(); 6772 else if (Op1Set) 6773 // 1 & y = y 6774 ResNode = MachineNode->getOperand(1).getNode(); 6775 else if (Op2Set) 6776 // x & 1 = x 6777 ResNode = MachineNode->getOperand(0).getNode(); 6778 else if (Op1Unset || Op2Unset) 6779 // x & 0 = 0 & y = 0 6780 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6781 MVT::i1); 6782 else if (Op1Not) 6783 // ~x & y = andc(y, x) 6784 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6785 MVT::i1, MachineNode->getOperand(1), 6786 MachineNode->getOperand(0). 6787 getOperand(0)); 6788 else if (Op2Not) 6789 // x & ~y = andc(x, y) 6790 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6791 MVT::i1, MachineNode->getOperand(0), 6792 MachineNode->getOperand(1). 6793 getOperand(0)); 6794 else if (AllUsersSelectZero(MachineNode)) { 6795 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6796 MVT::i1, MachineNode->getOperand(0), 6797 MachineNode->getOperand(1)); 6798 SelectSwap = true; 6799 } 6800 break; 6801 case PPC::CRNAND: 6802 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6803 // nand(x, x) -> nor(x, x) 6804 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6805 MVT::i1, MachineNode->getOperand(0), 6806 MachineNode->getOperand(0)); 6807 else if (Op1Set) 6808 // nand(1, y) -> nor(y, y) 6809 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6810 MVT::i1, MachineNode->getOperand(1), 6811 MachineNode->getOperand(1)); 6812 else if (Op2Set) 6813 // nand(x, 1) -> nor(x, x) 6814 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6815 MVT::i1, MachineNode->getOperand(0), 6816 MachineNode->getOperand(0)); 6817 else if (Op1Unset || Op2Unset) 6818 // nand(x, 0) = nand(0, y) = 1 6819 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6820 MVT::i1); 6821 else if (Op1Not) 6822 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 6823 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6824 MVT::i1, MachineNode->getOperand(0). 6825 getOperand(0), 6826 MachineNode->getOperand(1)); 6827 else if (Op2Not) 6828 // nand(x, ~y) = ~x | y = orc(y, x) 6829 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6830 MVT::i1, MachineNode->getOperand(1). 6831 getOperand(0), 6832 MachineNode->getOperand(0)); 6833 else if (AllUsersSelectZero(MachineNode)) { 6834 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6835 MVT::i1, MachineNode->getOperand(0), 6836 MachineNode->getOperand(1)); 6837 SelectSwap = true; 6838 } 6839 break; 6840 case PPC::CROR: 6841 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6842 // x | x = x 6843 ResNode = MachineNode->getOperand(0).getNode(); 6844 else if (Op1Set || Op2Set) 6845 // x | 1 = 1 | y = 1 6846 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6847 MVT::i1); 6848 else if (Op1Unset) 6849 // 0 | y = y 6850 ResNode = MachineNode->getOperand(1).getNode(); 6851 else if (Op2Unset) 6852 // x | 0 = x 6853 ResNode = MachineNode->getOperand(0).getNode(); 6854 else if (Op1Not) 6855 // ~x | y = orc(y, x) 6856 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6857 MVT::i1, MachineNode->getOperand(1), 6858 MachineNode->getOperand(0). 6859 getOperand(0)); 6860 else if (Op2Not) 6861 // x | ~y = orc(x, y) 6862 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6863 MVT::i1, MachineNode->getOperand(0), 6864 MachineNode->getOperand(1). 6865 getOperand(0)); 6866 else if (AllUsersSelectZero(MachineNode)) { 6867 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6868 MVT::i1, MachineNode->getOperand(0), 6869 MachineNode->getOperand(1)); 6870 SelectSwap = true; 6871 } 6872 break; 6873 case PPC::CRXOR: 6874 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6875 // xor(x, x) = 0 6876 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6877 MVT::i1); 6878 else if (Op1Set) 6879 // xor(1, y) -> nor(y, y) 6880 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6881 MVT::i1, MachineNode->getOperand(1), 6882 MachineNode->getOperand(1)); 6883 else if (Op2Set) 6884 // xor(x, 1) -> nor(x, x) 6885 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6886 MVT::i1, MachineNode->getOperand(0), 6887 MachineNode->getOperand(0)); 6888 else if (Op1Unset) 6889 // xor(0, y) = y 6890 ResNode = MachineNode->getOperand(1).getNode(); 6891 else if (Op2Unset) 6892 // xor(x, 0) = x 6893 ResNode = MachineNode->getOperand(0).getNode(); 6894 else if (Op1Not) 6895 // xor(~x, y) = eqv(x, y) 6896 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6897 MVT::i1, MachineNode->getOperand(0). 6898 getOperand(0), 6899 MachineNode->getOperand(1)); 6900 else if (Op2Not) 6901 // xor(x, ~y) = eqv(x, y) 6902 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6903 MVT::i1, MachineNode->getOperand(0), 6904 MachineNode->getOperand(1). 6905 getOperand(0)); 6906 else if (AllUsersSelectZero(MachineNode)) { 6907 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6908 MVT::i1, MachineNode->getOperand(0), 6909 MachineNode->getOperand(1)); 6910 SelectSwap = true; 6911 } 6912 break; 6913 case PPC::CRNOR: 6914 if (Op1Set || Op2Set) 6915 // nor(1, y) -> 0 6916 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6917 MVT::i1); 6918 else if (Op1Unset) 6919 // nor(0, y) = ~y -> nor(y, y) 6920 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6921 MVT::i1, MachineNode->getOperand(1), 6922 MachineNode->getOperand(1)); 6923 else if (Op2Unset) 6924 // nor(x, 0) = ~x 6925 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6926 MVT::i1, MachineNode->getOperand(0), 6927 MachineNode->getOperand(0)); 6928 else if (Op1Not) 6929 // nor(~x, y) = andc(x, y) 6930 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6931 MVT::i1, MachineNode->getOperand(0). 6932 getOperand(0), 6933 MachineNode->getOperand(1)); 6934 else if (Op2Not) 6935 // nor(x, ~y) = andc(y, x) 6936 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6937 MVT::i1, MachineNode->getOperand(1). 6938 getOperand(0), 6939 MachineNode->getOperand(0)); 6940 else if (AllUsersSelectZero(MachineNode)) { 6941 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 6942 MVT::i1, MachineNode->getOperand(0), 6943 MachineNode->getOperand(1)); 6944 SelectSwap = true; 6945 } 6946 break; 6947 case PPC::CREQV: 6948 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6949 // eqv(x, x) = 1 6950 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6951 MVT::i1); 6952 else if (Op1Set) 6953 // eqv(1, y) = y 6954 ResNode = MachineNode->getOperand(1).getNode(); 6955 else if (Op2Set) 6956 // eqv(x, 1) = x 6957 ResNode = MachineNode->getOperand(0).getNode(); 6958 else if (Op1Unset) 6959 // eqv(0, y) = ~y -> nor(y, y) 6960 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6961 MVT::i1, MachineNode->getOperand(1), 6962 MachineNode->getOperand(1)); 6963 else if (Op2Unset) 6964 // eqv(x, 0) = ~x 6965 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6966 MVT::i1, MachineNode->getOperand(0), 6967 MachineNode->getOperand(0)); 6968 else if (Op1Not) 6969 // eqv(~x, y) = xor(x, y) 6970 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6971 MVT::i1, MachineNode->getOperand(0). 6972 getOperand(0), 6973 MachineNode->getOperand(1)); 6974 else if (Op2Not) 6975 // eqv(x, ~y) = xor(x, y) 6976 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6977 MVT::i1, MachineNode->getOperand(0), 6978 MachineNode->getOperand(1). 6979 getOperand(0)); 6980 else if (AllUsersSelectZero(MachineNode)) { 6981 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6982 MVT::i1, MachineNode->getOperand(0), 6983 MachineNode->getOperand(1)); 6984 SelectSwap = true; 6985 } 6986 break; 6987 case PPC::CRANDC: 6988 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6989 // andc(x, x) = 0 6990 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6991 MVT::i1); 6992 else if (Op1Set) 6993 // andc(1, y) = ~y 6994 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6995 MVT::i1, MachineNode->getOperand(1), 6996 MachineNode->getOperand(1)); 6997 else if (Op1Unset || Op2Set) 6998 // andc(0, y) = andc(x, 1) = 0 6999 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 7000 MVT::i1); 7001 else if (Op2Unset) 7002 // andc(x, 0) = x 7003 ResNode = MachineNode->getOperand(0).getNode(); 7004 else if (Op1Not) 7005 // andc(~x, y) = ~(x | y) = nor(x, y) 7006 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7007 MVT::i1, MachineNode->getOperand(0). 7008 getOperand(0), 7009 MachineNode->getOperand(1)); 7010 else if (Op2Not) 7011 // andc(x, ~y) = x & y 7012 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 7013 MVT::i1, MachineNode->getOperand(0), 7014 MachineNode->getOperand(1). 7015 getOperand(0)); 7016 else if (AllUsersSelectZero(MachineNode)) { 7017 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 7018 MVT::i1, MachineNode->getOperand(1), 7019 MachineNode->getOperand(0)); 7020 SelectSwap = true; 7021 } 7022 break; 7023 case PPC::CRORC: 7024 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 7025 // orc(x, x) = 1 7026 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 7027 MVT::i1); 7028 else if (Op1Set || Op2Unset) 7029 // orc(1, y) = orc(x, 0) = 1 7030 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 7031 MVT::i1); 7032 else if (Op2Set) 7033 // orc(x, 1) = x 7034 ResNode = MachineNode->getOperand(0).getNode(); 7035 else if (Op1Unset) 7036 // orc(0, y) = ~y 7037 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 7038 MVT::i1, MachineNode->getOperand(1), 7039 MachineNode->getOperand(1)); 7040 else if (Op1Not) 7041 // orc(~x, y) = ~(x & y) = nand(x, y) 7042 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 7043 MVT::i1, MachineNode->getOperand(0). 7044 getOperand(0), 7045 MachineNode->getOperand(1)); 7046 else if (Op2Not) 7047 // orc(x, ~y) = x | y 7048 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 7049 MVT::i1, MachineNode->getOperand(0), 7050 MachineNode->getOperand(1). 7051 getOperand(0)); 7052 else if (AllUsersSelectZero(MachineNode)) { 7053 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 7054 MVT::i1, MachineNode->getOperand(1), 7055 MachineNode->getOperand(0)); 7056 SelectSwap = true; 7057 } 7058 break; 7059 case PPC::SELECT_I4: 7060 case PPC::SELECT_I8: 7061 case PPC::SELECT_F4: 7062 case PPC::SELECT_F8: 7063 case PPC::SELECT_SPE: 7064 case PPC::SELECT_SPE4: 7065 case PPC::SELECT_VRRC: 7066 case PPC::SELECT_VSFRC: 7067 case PPC::SELECT_VSSRC: 7068 case PPC::SELECT_VSRC: 7069 if (Op1Set) 7070 ResNode = MachineNode->getOperand(1).getNode(); 7071 else if (Op1Unset) 7072 ResNode = MachineNode->getOperand(2).getNode(); 7073 else if (Op1Not) 7074 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 7075 SDLoc(MachineNode), 7076 MachineNode->getValueType(0), 7077 MachineNode->getOperand(0). 7078 getOperand(0), 7079 MachineNode->getOperand(2), 7080 MachineNode->getOperand(1)); 7081 break; 7082 case PPC::BC: 7083 case PPC::BCn: 7084 if (Op1Not) 7085 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 7086 PPC::BC, 7087 SDLoc(MachineNode), 7088 MVT::Other, 7089 MachineNode->getOperand(0). 7090 getOperand(0), 7091 MachineNode->getOperand(1), 7092 MachineNode->getOperand(2)); 7093 // FIXME: Handle Op1Set, Op1Unset here too. 7094 break; 7095 } 7096 7097 // If we're inverting this node because it is used only by selects that 7098 // we'd like to swap, then swap the selects before the node replacement. 7099 if (SelectSwap) 7100 SwapAllSelectUsers(MachineNode); 7101 7102 if (ResNode != MachineNode) { 7103 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 7104 LLVM_DEBUG(MachineNode->dump(CurDAG)); 7105 LLVM_DEBUG(dbgs() << "\nNew: "); 7106 LLVM_DEBUG(ResNode->dump(CurDAG)); 7107 LLVM_DEBUG(dbgs() << "\n"); 7108 7109 ReplaceUses(MachineNode, ResNode); 7110 IsModified = true; 7111 } 7112 } 7113 if (IsModified) 7114 CurDAG->RemoveDeadNodes(); 7115 } while (IsModified); 7116 } 7117 7118 // Gather the set of 32-bit operations that are known to have their 7119 // higher-order 32 bits zero, where ToPromote contains all such operations. 7120 static bool PeepholePPC64ZExtGather(SDValue Op32, 7121 SmallPtrSetImpl<SDNode *> &ToPromote) { 7122 if (!Op32.isMachineOpcode()) 7123 return false; 7124 7125 // First, check for the "frontier" instructions (those that will clear the 7126 // higher-order 32 bits. 7127 7128 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 7129 // around. If it does not, then these instructions will clear the 7130 // higher-order bits. 7131 if ((Op32.getMachineOpcode() == PPC::RLWINM || 7132 Op32.getMachineOpcode() == PPC::RLWNM) && 7133 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 7134 ToPromote.insert(Op32.getNode()); 7135 return true; 7136 } 7137 7138 // SLW and SRW always clear the higher-order bits. 7139 if (Op32.getMachineOpcode() == PPC::SLW || 7140 Op32.getMachineOpcode() == PPC::SRW) { 7141 ToPromote.insert(Op32.getNode()); 7142 return true; 7143 } 7144 7145 // For LI and LIS, we need the immediate to be positive (so that it is not 7146 // sign extended). 7147 if (Op32.getMachineOpcode() == PPC::LI || 7148 Op32.getMachineOpcode() == PPC::LIS) { 7149 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 7150 return false; 7151 7152 ToPromote.insert(Op32.getNode()); 7153 return true; 7154 } 7155 7156 // LHBRX and LWBRX always clear the higher-order bits. 7157 if (Op32.getMachineOpcode() == PPC::LHBRX || 7158 Op32.getMachineOpcode() == PPC::LWBRX) { 7159 ToPromote.insert(Op32.getNode()); 7160 return true; 7161 } 7162 7163 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. 7164 if (Op32.getMachineOpcode() == PPC::CNTLZW || 7165 Op32.getMachineOpcode() == PPC::CNTTZW) { 7166 ToPromote.insert(Op32.getNode()); 7167 return true; 7168 } 7169 7170 // Next, check for those instructions we can look through. 7171 7172 // Assuming the mask does not wrap around, then the higher-order bits are 7173 // taken directly from the first operand. 7174 if (Op32.getMachineOpcode() == PPC::RLWIMI && 7175 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 7176 SmallPtrSet<SDNode *, 16> ToPromote1; 7177 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 7178 return false; 7179 7180 ToPromote.insert(Op32.getNode()); 7181 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7182 return true; 7183 } 7184 7185 // For OR, the higher-order bits are zero if that is true for both operands. 7186 // For SELECT_I4, the same is true (but the relevant operand numbers are 7187 // shifted by 1). 7188 if (Op32.getMachineOpcode() == PPC::OR || 7189 Op32.getMachineOpcode() == PPC::SELECT_I4) { 7190 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 7191 SmallPtrSet<SDNode *, 16> ToPromote1; 7192 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 7193 return false; 7194 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 7195 return false; 7196 7197 ToPromote.insert(Op32.getNode()); 7198 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7199 return true; 7200 } 7201 7202 // For ORI and ORIS, we need the higher-order bits of the first operand to be 7203 // zero, and also for the constant to be positive (so that it is not sign 7204 // extended). 7205 if (Op32.getMachineOpcode() == PPC::ORI || 7206 Op32.getMachineOpcode() == PPC::ORIS) { 7207 SmallPtrSet<SDNode *, 16> ToPromote1; 7208 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 7209 return false; 7210 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 7211 return false; 7212 7213 ToPromote.insert(Op32.getNode()); 7214 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7215 return true; 7216 } 7217 7218 // The higher-order bits of AND are zero if that is true for at least one of 7219 // the operands. 7220 if (Op32.getMachineOpcode() == PPC::AND) { 7221 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 7222 bool Op0OK = 7223 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 7224 bool Op1OK = 7225 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 7226 if (!Op0OK && !Op1OK) 7227 return false; 7228 7229 ToPromote.insert(Op32.getNode()); 7230 7231 if (Op0OK) 7232 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7233 7234 if (Op1OK) 7235 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 7236 7237 return true; 7238 } 7239 7240 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 7241 // of the first operand, or if the second operand is positive (so that it is 7242 // not sign extended). 7243 if (Op32.getMachineOpcode() == PPC::ANDI_rec || 7244 Op32.getMachineOpcode() == PPC::ANDIS_rec) { 7245 SmallPtrSet<SDNode *, 16> ToPromote1; 7246 bool Op0OK = 7247 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 7248 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 7249 if (!Op0OK && !Op1OK) 7250 return false; 7251 7252 ToPromote.insert(Op32.getNode()); 7253 7254 if (Op0OK) 7255 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 7256 7257 return true; 7258 } 7259 7260 return false; 7261 } 7262 7263 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 7264 if (!Subtarget->isPPC64()) 7265 return; 7266 7267 // When we zero-extend from i32 to i64, we use a pattern like this: 7268 // def : Pat<(i64 (zext i32:$in)), 7269 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 7270 // 0, 32)>; 7271 // There are several 32-bit shift/rotate instructions, however, that will 7272 // clear the higher-order bits of their output, rendering the RLDICL 7273 // unnecessary. When that happens, we remove it here, and redefine the 7274 // relevant 32-bit operation to be a 64-bit operation. 7275 7276 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7277 7278 bool MadeChange = false; 7279 while (Position != CurDAG->allnodes_begin()) { 7280 SDNode *N = &*--Position; 7281 // Skip dead nodes and any non-machine opcodes. 7282 if (N->use_empty() || !N->isMachineOpcode()) 7283 continue; 7284 7285 if (N->getMachineOpcode() != PPC::RLDICL) 7286 continue; 7287 7288 if (N->getConstantOperandVal(1) != 0 || 7289 N->getConstantOperandVal(2) != 32) 7290 continue; 7291 7292 SDValue ISR = N->getOperand(0); 7293 if (!ISR.isMachineOpcode() || 7294 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 7295 continue; 7296 7297 if (!ISR.hasOneUse()) 7298 continue; 7299 7300 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 7301 continue; 7302 7303 SDValue IDef = ISR.getOperand(0); 7304 if (!IDef.isMachineOpcode() || 7305 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 7306 continue; 7307 7308 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 7309 // can get rid of it. 7310 7311 SDValue Op32 = ISR->getOperand(1); 7312 if (!Op32.isMachineOpcode()) 7313 continue; 7314 7315 // There are some 32-bit instructions that always clear the high-order 32 7316 // bits, there are also some instructions (like AND) that we can look 7317 // through. 7318 SmallPtrSet<SDNode *, 16> ToPromote; 7319 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 7320 continue; 7321 7322 // If the ToPromote set contains nodes that have uses outside of the set 7323 // (except for the original INSERT_SUBREG), then abort the transformation. 7324 bool OutsideUse = false; 7325 for (SDNode *PN : ToPromote) { 7326 for (SDNode *UN : PN->uses()) { 7327 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 7328 OutsideUse = true; 7329 break; 7330 } 7331 } 7332 7333 if (OutsideUse) 7334 break; 7335 } 7336 if (OutsideUse) 7337 continue; 7338 7339 MadeChange = true; 7340 7341 // We now know that this zero extension can be removed by promoting to 7342 // nodes in ToPromote to 64-bit operations, where for operations in the 7343 // frontier of the set, we need to insert INSERT_SUBREGs for their 7344 // operands. 7345 for (SDNode *PN : ToPromote) { 7346 unsigned NewOpcode; 7347 switch (PN->getMachineOpcode()) { 7348 default: 7349 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 7350 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 7351 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 7352 case PPC::SLW: NewOpcode = PPC::SLW8; break; 7353 case PPC::SRW: NewOpcode = PPC::SRW8; break; 7354 case PPC::LI: NewOpcode = PPC::LI8; break; 7355 case PPC::LIS: NewOpcode = PPC::LIS8; break; 7356 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 7357 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 7358 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 7359 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; 7360 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 7361 case PPC::OR: NewOpcode = PPC::OR8; break; 7362 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 7363 case PPC::ORI: NewOpcode = PPC::ORI8; break; 7364 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 7365 case PPC::AND: NewOpcode = PPC::AND8; break; 7366 case PPC::ANDI_rec: 7367 NewOpcode = PPC::ANDI8_rec; 7368 break; 7369 case PPC::ANDIS_rec: 7370 NewOpcode = PPC::ANDIS8_rec; 7371 break; 7372 } 7373 7374 // Note: During the replacement process, the nodes will be in an 7375 // inconsistent state (some instructions will have operands with values 7376 // of the wrong type). Once done, however, everything should be right 7377 // again. 7378 7379 SmallVector<SDValue, 4> Ops; 7380 for (const SDValue &V : PN->ops()) { 7381 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 7382 !isa<ConstantSDNode>(V)) { 7383 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 7384 SDNode *ReplOp = 7385 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 7386 ISR.getNode()->getVTList(), ReplOpOps); 7387 Ops.push_back(SDValue(ReplOp, 0)); 7388 } else { 7389 Ops.push_back(V); 7390 } 7391 } 7392 7393 // Because all to-be-promoted nodes only have users that are other 7394 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 7395 // the i32 result value type with i64. 7396 7397 SmallVector<EVT, 2> NewVTs; 7398 SDVTList VTs = PN->getVTList(); 7399 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 7400 if (VTs.VTs[i] == MVT::i32) 7401 NewVTs.push_back(MVT::i64); 7402 else 7403 NewVTs.push_back(VTs.VTs[i]); 7404 7405 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 7406 LLVM_DEBUG(PN->dump(CurDAG)); 7407 7408 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 7409 7410 LLVM_DEBUG(dbgs() << "\nNew: "); 7411 LLVM_DEBUG(PN->dump(CurDAG)); 7412 LLVM_DEBUG(dbgs() << "\n"); 7413 } 7414 7415 // Now we replace the original zero extend and its associated INSERT_SUBREG 7416 // with the value feeding the INSERT_SUBREG (which has now been promoted to 7417 // return an i64). 7418 7419 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 7420 LLVM_DEBUG(N->dump(CurDAG)); 7421 LLVM_DEBUG(dbgs() << "\nNew: "); 7422 LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); 7423 LLVM_DEBUG(dbgs() << "\n"); 7424 7425 ReplaceUses(N, Op32.getNode()); 7426 } 7427 7428 if (MadeChange) 7429 CurDAG->RemoveDeadNodes(); 7430 } 7431 7432 static bool isVSXSwap(SDValue N) { 7433 if (!N->isMachineOpcode()) 7434 return false; 7435 unsigned Opc = N->getMachineOpcode(); 7436 7437 // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate 7438 // operand is 2. 7439 if (Opc == PPC::XXPERMDIs) { 7440 return isa<ConstantSDNode>(N->getOperand(1)) && 7441 N->getConstantOperandVal(1) == 2; 7442 } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) { 7443 return N->getOperand(0) == N->getOperand(1) && 7444 isa<ConstantSDNode>(N->getOperand(2)) && 7445 N->getConstantOperandVal(2) == 2; 7446 } 7447 7448 return false; 7449 } 7450 7451 // TODO: Make this complete and replace with a table-gen bit. 7452 static bool isLaneInsensitive(SDValue N) { 7453 if (!N->isMachineOpcode()) 7454 return false; 7455 unsigned Opc = N->getMachineOpcode(); 7456 7457 switch (Opc) { 7458 default: 7459 return false; 7460 case PPC::VAVGSB: 7461 case PPC::VAVGUB: 7462 case PPC::VAVGSH: 7463 case PPC::VAVGUH: 7464 case PPC::VAVGSW: 7465 case PPC::VAVGUW: 7466 case PPC::VMAXFP: 7467 case PPC::VMAXSB: 7468 case PPC::VMAXUB: 7469 case PPC::VMAXSH: 7470 case PPC::VMAXUH: 7471 case PPC::VMAXSW: 7472 case PPC::VMAXUW: 7473 case PPC::VMINFP: 7474 case PPC::VMINSB: 7475 case PPC::VMINUB: 7476 case PPC::VMINSH: 7477 case PPC::VMINUH: 7478 case PPC::VMINSW: 7479 case PPC::VMINUW: 7480 case PPC::VADDFP: 7481 case PPC::VADDUBM: 7482 case PPC::VADDUHM: 7483 case PPC::VADDUWM: 7484 case PPC::VSUBFP: 7485 case PPC::VSUBUBM: 7486 case PPC::VSUBUHM: 7487 case PPC::VSUBUWM: 7488 case PPC::VAND: 7489 case PPC::VANDC: 7490 case PPC::VOR: 7491 case PPC::VORC: 7492 case PPC::VXOR: 7493 case PPC::VNOR: 7494 case PPC::VMULUWM: 7495 return true; 7496 } 7497 } 7498 7499 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is 7500 // lane-insensitive. 7501 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) { 7502 // Our desired xxswap might be source of COPY_TO_REGCLASS. 7503 // TODO: Can we put this a common method for DAG? 7504 auto SkipRCCopy = [](SDValue V) { 7505 while (V->isMachineOpcode() && 7506 V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) { 7507 // All values in the chain should have single use. 7508 if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode())) 7509 return SDValue(); 7510 V = V->getOperand(0); 7511 } 7512 return V.hasOneUse() ? V : SDValue(); 7513 }; 7514 7515 SDValue VecOp = SkipRCCopy(N->getOperand(0)); 7516 if (!VecOp || !isLaneInsensitive(VecOp)) 7517 return; 7518 7519 SDValue LHS = SkipRCCopy(VecOp.getOperand(0)), 7520 RHS = SkipRCCopy(VecOp.getOperand(1)); 7521 if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS)) 7522 return; 7523 7524 // These swaps may still have chain-uses here, count on dead code elimination 7525 // in following passes to remove them. 7526 DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0)); 7527 DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0)); 7528 DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0)); 7529 } 7530 7531 void PPCDAGToDAGISel::PeepholePPC64() { 7532 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7533 7534 while (Position != CurDAG->allnodes_begin()) { 7535 SDNode *N = &*--Position; 7536 // Skip dead nodes and any non-machine opcodes. 7537 if (N->use_empty() || !N->isMachineOpcode()) 7538 continue; 7539 7540 if (isVSXSwap(SDValue(N, 0))) 7541 reduceVSXSwap(N, CurDAG); 7542 7543 unsigned FirstOp; 7544 unsigned StorageOpcode = N->getMachineOpcode(); 7545 bool RequiresMod4Offset = false; 7546 7547 switch (StorageOpcode) { 7548 default: continue; 7549 7550 case PPC::LWA: 7551 case PPC::LD: 7552 case PPC::DFLOADf64: 7553 case PPC::DFLOADf32: 7554 RequiresMod4Offset = true; 7555 [[fallthrough]]; 7556 case PPC::LBZ: 7557 case PPC::LBZ8: 7558 case PPC::LFD: 7559 case PPC::LFS: 7560 case PPC::LHA: 7561 case PPC::LHA8: 7562 case PPC::LHZ: 7563 case PPC::LHZ8: 7564 case PPC::LWZ: 7565 case PPC::LWZ8: 7566 FirstOp = 0; 7567 break; 7568 7569 case PPC::STD: 7570 case PPC::DFSTOREf64: 7571 case PPC::DFSTOREf32: 7572 RequiresMod4Offset = true; 7573 [[fallthrough]]; 7574 case PPC::STB: 7575 case PPC::STB8: 7576 case PPC::STFD: 7577 case PPC::STFS: 7578 case PPC::STH: 7579 case PPC::STH8: 7580 case PPC::STW: 7581 case PPC::STW8: 7582 FirstOp = 1; 7583 break; 7584 } 7585 7586 // If this is a load or store with a zero offset, or within the alignment, 7587 // we may be able to fold an add-immediate into the memory operation. 7588 // The check against alignment is below, as it can't occur until we check 7589 // the arguments to N 7590 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 7591 continue; 7592 7593 SDValue Base = N->getOperand(FirstOp + 1); 7594 if (!Base.isMachineOpcode()) 7595 continue; 7596 7597 unsigned Flags = 0; 7598 bool ReplaceFlags = true; 7599 7600 // When the feeding operation is an add-immediate of some sort, 7601 // determine whether we need to add relocation information to the 7602 // target flags on the immediate operand when we fold it into the 7603 // load instruction. 7604 // 7605 // For something like ADDItocL, the relocation information is 7606 // inferred from the opcode; when we process it in the AsmPrinter, 7607 // we add the necessary relocation there. A load, though, can receive 7608 // relocation from various flavors of ADDIxxx, so we need to carry 7609 // the relocation information in the target flags. 7610 switch (Base.getMachineOpcode()) { 7611 default: continue; 7612 7613 case PPC::ADDI8: 7614 case PPC::ADDI: 7615 // In some cases (such as TLS) the relocation information 7616 // is already in place on the operand, so copying the operand 7617 // is sufficient. 7618 ReplaceFlags = false; 7619 // For these cases, the immediate may not be divisible by 4, in 7620 // which case the fold is illegal for DS-form instructions. (The 7621 // other cases provide aligned addresses and are always safe.) 7622 if (RequiresMod4Offset && 7623 (!isa<ConstantSDNode>(Base.getOperand(1)) || 7624 Base.getConstantOperandVal(1) % 4 != 0)) 7625 continue; 7626 break; 7627 case PPC::ADDIdtprelL: 7628 Flags = PPCII::MO_DTPREL_LO; 7629 break; 7630 case PPC::ADDItlsldL: 7631 Flags = PPCII::MO_TLSLD_LO; 7632 break; 7633 case PPC::ADDItocL: 7634 Flags = PPCII::MO_TOC_LO; 7635 break; 7636 } 7637 7638 SDValue ImmOpnd = Base.getOperand(1); 7639 7640 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 7641 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 7642 // we might have needed different @ha relocation values for the offset 7643 // pointers). 7644 int MaxDisplacement = 7; 7645 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7646 const GlobalValue *GV = GA->getGlobal(); 7647 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7648 MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement); 7649 } 7650 7651 bool UpdateHBase = false; 7652 SDValue HBase = Base.getOperand(0); 7653 7654 int Offset = N->getConstantOperandVal(FirstOp); 7655 if (ReplaceFlags) { 7656 if (Offset < 0 || Offset > MaxDisplacement) { 7657 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 7658 // one use, then we can do this for any offset, we just need to also 7659 // update the offset (i.e. the symbol addend) on the addis also. 7660 if (Base.getMachineOpcode() != PPC::ADDItocL) 7661 continue; 7662 7663 if (!HBase.isMachineOpcode() || 7664 HBase.getMachineOpcode() != PPC::ADDIStocHA8) 7665 continue; 7666 7667 if (!Base.hasOneUse() || !HBase.hasOneUse()) 7668 continue; 7669 7670 SDValue HImmOpnd = HBase.getOperand(1); 7671 if (HImmOpnd != ImmOpnd) 7672 continue; 7673 7674 UpdateHBase = true; 7675 } 7676 } else { 7677 // If we're directly folding the addend from an addi instruction, then: 7678 // 1. In general, the offset on the memory access must be zero. 7679 // 2. If the addend is a constant, then it can be combined with a 7680 // non-zero offset, but only if the result meets the encoding 7681 // requirements. 7682 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 7683 Offset += C->getSExtValue(); 7684 7685 if (RequiresMod4Offset && (Offset % 4) != 0) 7686 continue; 7687 7688 if (!isInt<16>(Offset)) 7689 continue; 7690 7691 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 7692 ImmOpnd.getValueType()); 7693 } else if (Offset != 0) { 7694 continue; 7695 } 7696 } 7697 7698 // We found an opportunity. Reverse the operands from the add 7699 // immediate and substitute them into the load or store. If 7700 // needed, update the target flags for the immediate operand to 7701 // reflect the necessary relocation information. 7702 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 7703 LLVM_DEBUG(Base->dump(CurDAG)); 7704 LLVM_DEBUG(dbgs() << "\nN: "); 7705 LLVM_DEBUG(N->dump(CurDAG)); 7706 LLVM_DEBUG(dbgs() << "\n"); 7707 7708 // If the relocation information isn't already present on the 7709 // immediate operand, add it now. 7710 if (ReplaceFlags) { 7711 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7712 SDLoc dl(GA); 7713 const GlobalValue *GV = GA->getGlobal(); 7714 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7715 // We can't perform this optimization for data whose alignment 7716 // is insufficient for the instruction encoding. 7717 if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { 7718 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 7719 continue; 7720 } 7721 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 7722 } else if (ConstantPoolSDNode *CP = 7723 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 7724 const Constant *C = CP->getConstVal(); 7725 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(), 7726 Offset, Flags); 7727 } 7728 } 7729 7730 if (FirstOp == 1) // Store 7731 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 7732 Base.getOperand(0), N->getOperand(3)); 7733 else // Load 7734 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 7735 N->getOperand(2)); 7736 7737 if (UpdateHBase) 7738 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 7739 ImmOpnd); 7740 7741 // The add-immediate may now be dead, in which case remove it. 7742 if (Base.getNode()->use_empty()) 7743 CurDAG->RemoveDeadNode(Base.getNode()); 7744 } 7745 } 7746 7747 /// createPPCISelDag - This pass converts a legalized DAG into a 7748 /// PowerPC-specific DAG, ready for instruction scheduling. 7749 /// 7750 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, 7751 CodeGenOpt::Level OptLevel) { 7752 return new PPCDAGToDAGISel(TM, OptLevel); 7753 } 7754