xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGISel.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/KnownBits.h"
54 #include "llvm/Support/MachineValueType.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <memory>
63 #include <new>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "ppc-codegen"
70 
71 STATISTIC(NumSextSetcc,
72           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
73 STATISTIC(NumZextSetcc,
74           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
75 STATISTIC(SignExtensionsAdded,
76           "Number of sign extensions for compare inputs added.");
77 STATISTIC(ZeroExtensionsAdded,
78           "Number of zero extensions for compare inputs added.");
79 STATISTIC(NumLogicOpsOnComparison,
80           "Number of logical ops on i1 values calculated in GPR.");
81 STATISTIC(OmittedForNonExtendUses,
82           "Number of compares not eliminated as they have non-extending uses.");
83 STATISTIC(NumP9Setb,
84           "Number of compares lowered to setb.");
85 
86 // FIXME: Remove this once the bug has been fixed!
87 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
88 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
89 
90 static cl::opt<bool>
91     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
92                        cl::desc("use aggressive ppc isel for bit permutations"),
93                        cl::Hidden);
94 static cl::opt<bool> BPermRewriterNoMasking(
95     "ppc-bit-perm-rewriter-stress-rotates",
96     cl::desc("stress rotate selection in aggressive ppc isel for "
97              "bit permutations"),
98     cl::Hidden);
99 
100 static cl::opt<bool> EnableBranchHint(
101   "ppc-use-branch-hint", cl::init(true),
102     cl::desc("Enable static hinting of branches on ppc"),
103     cl::Hidden);
104 
105 static cl::opt<bool> EnableTLSOpt(
106   "ppc-tls-opt", cl::init(true),
107     cl::desc("Enable tls optimization peephole"),
108     cl::Hidden);
109 
110 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
111   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
112   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
113 
114 static cl::opt<ICmpInGPRType> CmpInGPR(
115   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
116   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
117   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
118              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
119              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
120              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
121              clEnumValN(ICGPR_NonExtIn, "nonextin",
122                         "Only comparisons where inputs don't need [sz]ext."),
123              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
124              clEnumValN(ICGPR_ZextI32, "zexti32",
125                         "Only i32 comparisons with zext result."),
126              clEnumValN(ICGPR_ZextI64, "zexti64",
127                         "Only i64 comparisons with zext result."),
128              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
129              clEnumValN(ICGPR_SextI32, "sexti32",
130                         "Only i32 comparisons with sext result."),
131              clEnumValN(ICGPR_SextI64, "sexti64",
132                         "Only i64 comparisons with sext result.")));
133 namespace {
134 
135   //===--------------------------------------------------------------------===//
136   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
137   /// instructions for SelectionDAG operations.
138   ///
139   class PPCDAGToDAGISel : public SelectionDAGISel {
140     const PPCTargetMachine &TM;
141     const PPCSubtarget *PPCSubTarget = nullptr;
142     const PPCTargetLowering *PPCLowering = nullptr;
143     unsigned GlobalBaseReg = 0;
144 
145   public:
146     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
147         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
148 
149     bool runOnMachineFunction(MachineFunction &MF) override {
150       // Make sure we re-emit a set of the global base reg if necessary
151       GlobalBaseReg = 0;
152       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
153       PPCLowering = PPCSubTarget->getTargetLowering();
154       SelectionDAGISel::runOnMachineFunction(MF);
155 
156       if (!PPCSubTarget->isSVR4ABI())
157         InsertVRSaveCode(MF);
158 
159       return true;
160     }
161 
162     void PreprocessISelDAG() override;
163     void PostprocessISelDAG() override;
164 
165     /// getI16Imm - Return a target constant with the specified value, of type
166     /// i16.
167     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
168       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
169     }
170 
171     /// getI32Imm - Return a target constant with the specified value, of type
172     /// i32.
173     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
174       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
175     }
176 
177     /// getI64Imm - Return a target constant with the specified value, of type
178     /// i64.
179     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
180       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
181     }
182 
183     /// getSmallIPtrImm - Return a target constant of pointer type.
184     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
185       return CurDAG->getTargetConstant(
186           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
187     }
188 
189     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
190     /// rotate and mask opcode and mask operation.
191     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
192                                 unsigned &SH, unsigned &MB, unsigned &ME);
193 
194     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
195     /// base register.  Return the virtual register that holds this value.
196     SDNode *getGlobalBaseReg();
197 
198     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
199 
200     // Select - Convert the specified operand from a target-independent to a
201     // target-specific node if it hasn't already been changed.
202     void Select(SDNode *N) override;
203 
204     bool tryBitfieldInsert(SDNode *N);
205     bool tryBitPermutation(SDNode *N);
206     bool tryIntCompareInGPR(SDNode *N);
207     bool tryAndWithMask(SDNode *N);
208 
209     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
210     // an X-Form load instruction with the offset being a relocation coming from
211     // the PPCISD::ADD_TLS.
212     bool tryTLSXFormLoad(LoadSDNode *N);
213     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
214     // an X-Form store instruction with the offset being a relocation coming from
215     // the PPCISD::ADD_TLS.
216     bool tryTLSXFormStore(StoreSDNode *N);
217     /// SelectCC - Select a comparison of the specified values with the
218     /// specified condition code, returning the CR# of the expression.
219     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
220                      const SDLoc &dl);
221 
222     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
223     /// immediate field.  Note that the operand at this point is already the
224     /// result of a prior SelectAddressRegImm call.
225     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
226       if (N.getOpcode() == ISD::TargetConstant ||
227           N.getOpcode() == ISD::TargetGlobalAddress) {
228         Out = N;
229         return true;
230       }
231 
232       return false;
233     }
234 
235     /// SelectAddrIdx - Given the specified address, check to see if it can be
236     /// represented as an indexed [r+r] operation.
237     /// This is for xform instructions whose associated displacement form is D.
238     /// The last parameter \p 0 means associated D form has no requirment for 16
239     /// bit signed displacement.
240     /// Returns false if it can be represented by [r+imm], which are preferred.
241     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
242       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0);
243     }
244 
245     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
246     /// represented as an indexed [r+r] operation.
247     /// This is for xform instructions whose associated displacement form is DS.
248     /// The last parameter \p 4 means associated DS form 16 bit signed
249     /// displacement must be a multiple of 4.
250     /// Returns false if it can be represented by [r+imm], which are preferred.
251     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
252       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4);
253     }
254 
255     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
256     /// represented as an indexed [r+r] operation.
257     /// This is for xform instructions whose associated displacement form is DQ.
258     /// The last parameter \p 16 means associated DQ form 16 bit signed
259     /// displacement must be a multiple of 16.
260     /// Returns false if it can be represented by [r+imm], which are preferred.
261     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
262       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16);
263     }
264 
265     /// SelectAddrIdxOnly - Given the specified address, force it to be
266     /// represented as an indexed [r+r] operation.
267     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
268       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
269     }
270 
271     /// SelectAddrImm - Returns true if the address N can be represented by
272     /// a base register plus a signed 16-bit displacement [r+imm].
273     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
274     /// displacement.
275     bool SelectAddrImm(SDValue N, SDValue &Disp,
276                        SDValue &Base) {
277       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
278     }
279 
280     /// SelectAddrImmX4 - Returns true if the address N can be represented by
281     /// a base register plus a signed 16-bit displacement that is a multiple of
282     /// 4 (last parameter). Suitable for use by STD and friends.
283     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
284       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
285     }
286 
287     /// SelectAddrImmX16 - Returns true if the address N can be represented by
288     /// a base register plus a signed 16-bit displacement that is a multiple of
289     /// 16(last parameter). Suitable for use by STXV and friends.
290     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
291       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
292     }
293 
294     // Select an address into a single register.
295     bool SelectAddr(SDValue N, SDValue &Base) {
296       Base = N;
297       return true;
298     }
299 
300     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
301     /// inline asm expressions.  It is always correct to compute the value into
302     /// a register.  The case of adding a (possibly relocatable) constant to a
303     /// register can be improved, but it is wrong to substitute Reg+Reg for
304     /// Reg in an asm, because the load or store opcode would have to change.
305     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
306                                       unsigned ConstraintID,
307                                       std::vector<SDValue> &OutOps) override {
308       switch(ConstraintID) {
309       default:
310         errs() << "ConstraintID: " << ConstraintID << "\n";
311         llvm_unreachable("Unexpected asm memory constraint");
312       case InlineAsm::Constraint_es:
313       case InlineAsm::Constraint_m:
314       case InlineAsm::Constraint_o:
315       case InlineAsm::Constraint_Q:
316       case InlineAsm::Constraint_Z:
317       case InlineAsm::Constraint_Zy:
318         // We need to make sure that this one operand does not end up in r0
319         // (because we might end up lowering this as 0(%op)).
320         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
321         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
322         SDLoc dl(Op);
323         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
324         SDValue NewOp =
325           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
326                                          dl, Op.getValueType(),
327                                          Op, RC), 0);
328 
329         OutOps.push_back(NewOp);
330         return false;
331       }
332       return true;
333     }
334 
335     void InsertVRSaveCode(MachineFunction &MF);
336 
337     StringRef getPassName() const override {
338       return "PowerPC DAG->DAG Pattern Instruction Selection";
339     }
340 
341 // Include the pieces autogenerated from the target description.
342 #include "PPCGenDAGISel.inc"
343 
344 private:
345     bool trySETCC(SDNode *N);
346 
347     void PeepholePPC64();
348     void PeepholePPC64ZExt();
349     void PeepholeCROps();
350 
351     SDValue combineToCMPB(SDNode *N);
352     void foldBoolExts(SDValue &Res, SDNode *&N);
353 
354     bool AllUsersSelectZero(SDNode *N);
355     void SwapAllSelectUsers(SDNode *N);
356 
357     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
358     void transferMemOperands(SDNode *N, SDNode *Result);
359   };
360 
361 } // end anonymous namespace
362 
363 /// InsertVRSaveCode - Once the entire function has been instruction selected,
364 /// all virtual registers are created and all machine instructions are built,
365 /// check to see if we need to save/restore VRSAVE.  If so, do it.
366 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
367   // Check to see if this function uses vector registers, which means we have to
368   // save and restore the VRSAVE register and update it with the regs we use.
369   //
370   // In this case, there will be virtual registers of vector type created
371   // by the scheduler.  Detect them now.
372   bool HasVectorVReg = false;
373   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
374     unsigned Reg = Register::index2VirtReg(i);
375     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
376       HasVectorVReg = true;
377       break;
378     }
379   }
380   if (!HasVectorVReg) return;  // nothing to do.
381 
382   // If we have a vector register, we want to emit code into the entry and exit
383   // blocks to save and restore the VRSAVE register.  We do this here (instead
384   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
385   //
386   // 1. This (trivially) reduces the load on the register allocator, by not
387   //    having to represent the live range of the VRSAVE register.
388   // 2. This (more significantly) allows us to create a temporary virtual
389   //    register to hold the saved VRSAVE value, allowing this temporary to be
390   //    register allocated, instead of forcing it to be spilled to the stack.
391 
392   // Create two vregs - one to hold the VRSAVE register that is live-in to the
393   // function and one for the value after having bits or'd into it.
394   Register InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
395   Register UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
396 
397   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
398   MachineBasicBlock &EntryBB = *Fn.begin();
399   DebugLoc dl;
400   // Emit the following code into the entry block:
401   // InVRSAVE = MFVRSAVE
402   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
403   // MTVRSAVE UpdatedVRSAVE
404   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
405   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
406   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
407           UpdatedVRSAVE).addReg(InVRSAVE);
408   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
409 
410   // Find all return blocks, outputting a restore in each epilog.
411   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
412     if (BB->isReturnBlock()) {
413       IP = BB->end(); --IP;
414 
415       // Skip over all terminator instructions, which are part of the return
416       // sequence.
417       MachineBasicBlock::iterator I2 = IP;
418       while (I2 != BB->begin() && (--I2)->isTerminator())
419         IP = I2;
420 
421       // Emit: MTVRSAVE InVRSave
422       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
423     }
424   }
425 }
426 
427 /// getGlobalBaseReg - Output the instructions required to put the
428 /// base address to use for accessing globals into a register.
429 ///
430 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
431   if (!GlobalBaseReg) {
432     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
433     // Insert the set of GlobalBaseReg into the first MBB of the function
434     MachineBasicBlock &FirstMBB = MF->front();
435     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
436     const Module *M = MF->getFunction().getParent();
437     DebugLoc dl;
438 
439     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
440       if (PPCSubTarget->isTargetELF()) {
441         GlobalBaseReg = PPC::R30;
442         if (!PPCSubTarget->isSecurePlt() &&
443             M->getPICLevel() == PICLevel::SmallPIC) {
444           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
445           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
446           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
447         } else {
448           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
449           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
450           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
451           BuildMI(FirstMBB, MBBI, dl,
452                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
453                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
454           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
455         }
456       } else {
457         GlobalBaseReg =
458           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
459         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
460         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
461       }
462     } else {
463       // We must ensure that this sequence is dominated by the prologue.
464       // FIXME: This is a bit of a big hammer since we don't get the benefits
465       // of shrink-wrapping whenever we emit this instruction. Considering
466       // this is used in any function where we emit a jump table, this may be
467       // a significant limitation. We should consider inserting this in the
468       // block where it is used and then commoning this sequence up if it
469       // appears in multiple places.
470       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
471       // MovePCtoLR8.
472       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
473       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
474       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
475       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
476     }
477   }
478   return CurDAG->getRegister(GlobalBaseReg,
479                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
480       .getNode();
481 }
482 
483 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
484 /// operand. If so Imm will receive the 32-bit value.
485 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
486   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
487     Imm = cast<ConstantSDNode>(N)->getZExtValue();
488     return true;
489   }
490   return false;
491 }
492 
493 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
494 /// operand.  If so Imm will receive the 64-bit value.
495 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
496   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
497     Imm = cast<ConstantSDNode>(N)->getZExtValue();
498     return true;
499   }
500   return false;
501 }
502 
503 // isInt32Immediate - This method tests to see if a constant operand.
504 // If so Imm will receive the 32 bit value.
505 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
506   return isInt32Immediate(N.getNode(), Imm);
507 }
508 
509 /// isInt64Immediate - This method tests to see if the value is a 64-bit
510 /// constant operand. If so Imm will receive the 64-bit value.
511 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
512   return isInt64Immediate(N.getNode(), Imm);
513 }
514 
515 static unsigned getBranchHint(unsigned PCC,
516                               const FunctionLoweringInfo &FuncInfo,
517                               const SDValue &DestMBB) {
518   assert(isa<BasicBlockSDNode>(DestMBB));
519 
520   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
521 
522   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
523   const Instruction *BBTerm = BB->getTerminator();
524 
525   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
526 
527   const BasicBlock *TBB = BBTerm->getSuccessor(0);
528   const BasicBlock *FBB = BBTerm->getSuccessor(1);
529 
530   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
531   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
532 
533   // We only want to handle cases which are easy to predict at static time, e.g.
534   // C++ throw statement, that is very likely not taken, or calling never
535   // returned function, e.g. stdlib exit(). So we set Threshold to filter
536   // unwanted cases.
537   //
538   // Below is LLVM branch weight table, we only want to handle case 1, 2
539   //
540   // Case                  Taken:Nontaken  Example
541   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
542   // 2. Invoke-terminating 1:1048575
543   // 3. Coldblock          4:64            __builtin_expect
544   // 4. Loop Branch        124:4           For loop
545   // 5. PH/ZH/FPH          20:12
546   const uint32_t Threshold = 10000;
547 
548   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
549     return PPC::BR_NO_HINT;
550 
551   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
552                     << "::" << BB->getName() << "'\n"
553                     << " -> " << TBB->getName() << ": " << TProb << "\n"
554                     << " -> " << FBB->getName() << ": " << FProb << "\n");
555 
556   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
557 
558   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
559   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
560   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
561     std::swap(TProb, FProb);
562 
563   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
564 }
565 
566 // isOpcWithIntImmediate - This method tests to see if the node is a specific
567 // opcode and that it has a immediate integer right operand.
568 // If so Imm will receive the 32 bit value.
569 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
570   return N->getOpcode() == Opc
571          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
572 }
573 
574 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
575   SDLoc dl(SN);
576   int FI = cast<FrameIndexSDNode>(N)->getIndex();
577   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
578   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
579   if (SN->hasOneUse())
580     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
581                          getSmallIPtrImm(Offset, dl));
582   else
583     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
584                                            getSmallIPtrImm(Offset, dl)));
585 }
586 
587 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
588                                       bool isShiftMask, unsigned &SH,
589                                       unsigned &MB, unsigned &ME) {
590   // Don't even go down this path for i64, since different logic will be
591   // necessary for rldicl/rldicr/rldimi.
592   if (N->getValueType(0) != MVT::i32)
593     return false;
594 
595   unsigned Shift  = 32;
596   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
597   unsigned Opcode = N->getOpcode();
598   if (N->getNumOperands() != 2 ||
599       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
600     return false;
601 
602   if (Opcode == ISD::SHL) {
603     // apply shift left to mask if it comes first
604     if (isShiftMask) Mask = Mask << Shift;
605     // determine which bits are made indeterminant by shift
606     Indeterminant = ~(0xFFFFFFFFu << Shift);
607   } else if (Opcode == ISD::SRL) {
608     // apply shift right to mask if it comes first
609     if (isShiftMask) Mask = Mask >> Shift;
610     // determine which bits are made indeterminant by shift
611     Indeterminant = ~(0xFFFFFFFFu >> Shift);
612     // adjust for the left rotate
613     Shift = 32 - Shift;
614   } else if (Opcode == ISD::ROTL) {
615     Indeterminant = 0;
616   } else {
617     return false;
618   }
619 
620   // if the mask doesn't intersect any Indeterminant bits
621   if (Mask && !(Mask & Indeterminant)) {
622     SH = Shift & 31;
623     // make sure the mask is still a mask (wrap arounds may not be)
624     return isRunOfOnes(Mask, MB, ME);
625   }
626   return false;
627 }
628 
629 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
630   SDValue Base = ST->getBasePtr();
631   if (Base.getOpcode() != PPCISD::ADD_TLS)
632     return false;
633   SDValue Offset = ST->getOffset();
634   if (!Offset.isUndef())
635     return false;
636 
637   SDLoc dl(ST);
638   EVT MemVT = ST->getMemoryVT();
639   EVT RegVT = ST->getValue().getValueType();
640 
641   unsigned Opcode;
642   switch (MemVT.getSimpleVT().SimpleTy) {
643     default:
644       return false;
645     case MVT::i8: {
646       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
647       break;
648     }
649     case MVT::i16: {
650       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
651       break;
652     }
653     case MVT::i32: {
654       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
655       break;
656     }
657     case MVT::i64: {
658       Opcode = PPC::STDXTLS;
659       break;
660     }
661   }
662   SDValue Chain = ST->getChain();
663   SDVTList VTs = ST->getVTList();
664   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
665                    Chain};
666   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
667   transferMemOperands(ST, MN);
668   ReplaceNode(ST, MN);
669   return true;
670 }
671 
672 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
673   SDValue Base = LD->getBasePtr();
674   if (Base.getOpcode() != PPCISD::ADD_TLS)
675     return false;
676   SDValue Offset = LD->getOffset();
677   if (!Offset.isUndef())
678     return false;
679 
680   SDLoc dl(LD);
681   EVT MemVT = LD->getMemoryVT();
682   EVT RegVT = LD->getValueType(0);
683   unsigned Opcode;
684   switch (MemVT.getSimpleVT().SimpleTy) {
685     default:
686       return false;
687     case MVT::i8: {
688       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
689       break;
690     }
691     case MVT::i16: {
692       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
693       break;
694     }
695     case MVT::i32: {
696       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
697       break;
698     }
699     case MVT::i64: {
700       Opcode = PPC::LDXTLS;
701       break;
702     }
703   }
704   SDValue Chain = LD->getChain();
705   SDVTList VTs = LD->getVTList();
706   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
707   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
708   transferMemOperands(LD, MN);
709   ReplaceNode(LD, MN);
710   return true;
711 }
712 
713 /// Turn an or of two masked values into the rotate left word immediate then
714 /// mask insert (rlwimi) instruction.
715 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
716   SDValue Op0 = N->getOperand(0);
717   SDValue Op1 = N->getOperand(1);
718   SDLoc dl(N);
719 
720   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
721   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
722 
723   unsigned TargetMask = LKnown.Zero.getZExtValue();
724   unsigned InsertMask = RKnown.Zero.getZExtValue();
725 
726   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
727     unsigned Op0Opc = Op0.getOpcode();
728     unsigned Op1Opc = Op1.getOpcode();
729     unsigned Value, SH = 0;
730     TargetMask = ~TargetMask;
731     InsertMask = ~InsertMask;
732 
733     // If the LHS has a foldable shift and the RHS does not, then swap it to the
734     // RHS so that we can fold the shift into the insert.
735     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
736       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
737           Op0.getOperand(0).getOpcode() == ISD::SRL) {
738         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
739             Op1.getOperand(0).getOpcode() != ISD::SRL) {
740           std::swap(Op0, Op1);
741           std::swap(Op0Opc, Op1Opc);
742           std::swap(TargetMask, InsertMask);
743         }
744       }
745     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
746       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
747           Op1.getOperand(0).getOpcode() != ISD::SRL) {
748         std::swap(Op0, Op1);
749         std::swap(Op0Opc, Op1Opc);
750         std::swap(TargetMask, InsertMask);
751       }
752     }
753 
754     unsigned MB, ME;
755     if (isRunOfOnes(InsertMask, MB, ME)) {
756       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
757           isInt32Immediate(Op1.getOperand(1), Value)) {
758         Op1 = Op1.getOperand(0);
759         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
760       }
761       if (Op1Opc == ISD::AND) {
762        // The AND mask might not be a constant, and we need to make sure that
763        // if we're going to fold the masking with the insert, all bits not
764        // know to be zero in the mask are known to be one.
765         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
766         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
767 
768         unsigned SHOpc = Op1.getOperand(0).getOpcode();
769         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
770             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
771           // Note that Value must be in range here (less than 32) because
772           // otherwise there would not be any bits set in InsertMask.
773           Op1 = Op1.getOperand(0).getOperand(0);
774           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
775         }
776       }
777 
778       SH &= 31;
779       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
780                           getI32Imm(ME, dl) };
781       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
782       return true;
783     }
784   }
785   return false;
786 }
787 
788 // Predict the number of instructions that would be generated by calling
789 // selectI64Imm(N).
790 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
791   // Assume no remaining bits.
792   unsigned Remainder = 0;
793   // Assume no shift required.
794   unsigned Shift = 0;
795 
796   // If it can't be represented as a 32 bit value.
797   if (!isInt<32>(Imm)) {
798     Shift = countTrailingZeros<uint64_t>(Imm);
799     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
800 
801     // If the shifted value fits 32 bits.
802     if (isInt<32>(ImmSh)) {
803       // Go with the shifted value.
804       Imm = ImmSh;
805     } else {
806       // Still stuck with a 64 bit value.
807       Remainder = Imm;
808       Shift = 32;
809       Imm >>= 32;
810     }
811   }
812 
813   // Intermediate operand.
814   unsigned Result = 0;
815 
816   // Handle first 32 bits.
817   unsigned Lo = Imm & 0xFFFF;
818 
819   // Simple value.
820   if (isInt<16>(Imm)) {
821     // Just the Lo bits.
822     ++Result;
823   } else if (Lo) {
824     // Handle the Hi bits and Lo bits.
825     Result += 2;
826   } else {
827     // Just the Hi bits.
828     ++Result;
829   }
830 
831   // If no shift, we're done.
832   if (!Shift) return Result;
833 
834   // If Hi word == Lo word,
835   // we can use rldimi to insert the Lo word into Hi word.
836   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
837     ++Result;
838     return Result;
839   }
840 
841   // Shift for next step if the upper 32-bits were not zero.
842   if (Imm)
843     ++Result;
844 
845   // Add in the last bits as required.
846   if ((Remainder >> 16) & 0xFFFF)
847     ++Result;
848   if (Remainder & 0xFFFF)
849     ++Result;
850 
851   return Result;
852 }
853 
854 static uint64_t Rot64(uint64_t Imm, unsigned R) {
855   return (Imm << R) | (Imm >> (64 - R));
856 }
857 
858 static unsigned selectI64ImmInstrCount(int64_t Imm) {
859   unsigned Count = selectI64ImmInstrCountDirect(Imm);
860 
861   // If the instruction count is 1 or 2, we do not need further analysis
862   // since rotate + load constant requires at least 2 instructions.
863   if (Count <= 2)
864     return Count;
865 
866   for (unsigned r = 1; r < 63; ++r) {
867     uint64_t RImm = Rot64(Imm, r);
868     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
869     Count = std::min(Count, RCount);
870 
871     // See comments in selectI64Imm for an explanation of the logic below.
872     unsigned LS = findLastSet(RImm);
873     if (LS != r-1)
874       continue;
875 
876     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
877     uint64_t RImmWithOnes = RImm | OnesMask;
878 
879     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
880     Count = std::min(Count, RCount);
881   }
882 
883   return Count;
884 }
885 
886 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
887 // (above) needs to be kept in sync with this function.
888 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
889                                   int64_t Imm) {
890   // Assume no remaining bits.
891   unsigned Remainder = 0;
892   // Assume no shift required.
893   unsigned Shift = 0;
894 
895   // If it can't be represented as a 32 bit value.
896   if (!isInt<32>(Imm)) {
897     Shift = countTrailingZeros<uint64_t>(Imm);
898     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
899 
900     // If the shifted value fits 32 bits.
901     if (isInt<32>(ImmSh)) {
902       // Go with the shifted value.
903       Imm = ImmSh;
904     } else {
905       // Still stuck with a 64 bit value.
906       Remainder = Imm;
907       Shift = 32;
908       Imm >>= 32;
909     }
910   }
911 
912   // Intermediate operand.
913   SDNode *Result;
914 
915   // Handle first 32 bits.
916   unsigned Lo = Imm & 0xFFFF;
917   unsigned Hi = (Imm >> 16) & 0xFFFF;
918 
919   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
920       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
921   };
922 
923   // Simple value.
924   if (isInt<16>(Imm)) {
925     uint64_t SextImm = SignExtend64(Lo, 16);
926     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
927     // Just the Lo bits.
928     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
929   } else if (Lo) {
930     // Handle the Hi bits.
931     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
932     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
933     // And Lo bits.
934     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
935                                     SDValue(Result, 0), getI32Imm(Lo));
936   } else {
937     // Just the Hi bits.
938     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
939   }
940 
941   // If no shift, we're done.
942   if (!Shift) return Result;
943 
944   // If Hi word == Lo word,
945   // we can use rldimi to insert the Lo word into Hi word.
946   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
947     SDValue Ops[] =
948       { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
949     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
950   }
951 
952   // Shift for next step if the upper 32-bits were not zero.
953   if (Imm) {
954     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
955                                     SDValue(Result, 0),
956                                     getI32Imm(Shift),
957                                     getI32Imm(63 - Shift));
958   }
959 
960   // Add in the last bits as required.
961   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
962     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
963                                     SDValue(Result, 0), getI32Imm(Hi));
964   }
965   if ((Lo = Remainder & 0xFFFF)) {
966     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
967                                     SDValue(Result, 0), getI32Imm(Lo));
968   }
969 
970   return Result;
971 }
972 
973 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
974                             int64_t Imm) {
975   unsigned Count = selectI64ImmInstrCountDirect(Imm);
976 
977   // If the instruction count is 1 or 2, we do not need further analysis
978   // since rotate + load constant requires at least 2 instructions.
979   if (Count <= 2)
980     return selectI64ImmDirect(CurDAG, dl, Imm);
981 
982   unsigned RMin = 0;
983 
984   int64_t MatImm;
985   unsigned MaskEnd;
986 
987   for (unsigned r = 1; r < 63; ++r) {
988     uint64_t RImm = Rot64(Imm, r);
989     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
990     if (RCount < Count) {
991       Count = RCount;
992       RMin = r;
993       MatImm = RImm;
994       MaskEnd = 63;
995     }
996 
997     // If the immediate to generate has many trailing zeros, it might be
998     // worthwhile to generate a rotated value with too many leading ones
999     // (because that's free with li/lis's sign-extension semantics), and then
1000     // mask them off after rotation.
1001 
1002     unsigned LS = findLastSet(RImm);
1003     // We're adding (63-LS) higher-order ones, and we expect to mask them off
1004     // after performing the inverse rotation by (64-r). So we need that:
1005     //   63-LS == 64-r => LS == r-1
1006     if (LS != r-1)
1007       continue;
1008 
1009     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
1010     uint64_t RImmWithOnes = RImm | OnesMask;
1011 
1012     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
1013     if (RCount < Count) {
1014       Count = RCount;
1015       RMin = r;
1016       MatImm = RImmWithOnes;
1017       MaskEnd = LS;
1018     }
1019   }
1020 
1021   if (!RMin)
1022     return selectI64ImmDirect(CurDAG, dl, Imm);
1023 
1024   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1025       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1026   };
1027 
1028   SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
1029   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
1030                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
1031 }
1032 
1033 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
1034   unsigned MaxTruncation = 0;
1035   // Cannot use range-based for loop here as we need the actual use (i.e. we
1036   // need the operand number corresponding to the use). A range-based for
1037   // will unbox the use and provide an SDNode*.
1038   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
1039        Use != UseEnd; ++Use) {
1040     unsigned Opc =
1041       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
1042     switch (Opc) {
1043     default: return 0;
1044     case ISD::TRUNCATE:
1045       if (Use->isMachineOpcode())
1046         return 0;
1047       MaxTruncation =
1048         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
1049       continue;
1050     case ISD::STORE: {
1051       if (Use->isMachineOpcode())
1052         return 0;
1053       StoreSDNode *STN = cast<StoreSDNode>(*Use);
1054       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
1055       if (MemVTSize == 64 || Use.getOperandNo() != 0)
1056         return 0;
1057       MaxTruncation = std::max(MaxTruncation, MemVTSize);
1058       continue;
1059     }
1060     case PPC::STW8:
1061     case PPC::STWX8:
1062     case PPC::STWU8:
1063     case PPC::STWUX8:
1064       if (Use.getOperandNo() != 0)
1065         return 0;
1066       MaxTruncation = std::max(MaxTruncation, 32u);
1067       continue;
1068     case PPC::STH8:
1069     case PPC::STHX8:
1070     case PPC::STHU8:
1071     case PPC::STHUX8:
1072       if (Use.getOperandNo() != 0)
1073         return 0;
1074       MaxTruncation = std::max(MaxTruncation, 16u);
1075       continue;
1076     case PPC::STB8:
1077     case PPC::STBX8:
1078     case PPC::STBU8:
1079     case PPC::STBUX8:
1080       if (Use.getOperandNo() != 0)
1081         return 0;
1082       MaxTruncation = std::max(MaxTruncation, 8u);
1083       continue;
1084     }
1085   }
1086   return MaxTruncation;
1087 }
1088 
1089 // Select a 64-bit constant.
1090 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1091   SDLoc dl(N);
1092 
1093   // Get 64 bit value.
1094   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1095   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1096     uint64_t SextImm = SignExtend64(Imm, MinSize);
1097     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1098     if (isInt<16>(SextImm))
1099       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1100   }
1101   return selectI64Imm(CurDAG, dl, Imm);
1102 }
1103 
1104 namespace {
1105 
1106 class BitPermutationSelector {
1107   struct ValueBit {
1108     SDValue V;
1109 
1110     // The bit number in the value, using a convention where bit 0 is the
1111     // lowest-order bit.
1112     unsigned Idx;
1113 
1114     // ConstZero means a bit we need to mask off.
1115     // Variable is a bit comes from an input variable.
1116     // VariableKnownToBeZero is also a bit comes from an input variable,
1117     // but it is known to be already zero. So we do not need to mask them.
1118     enum Kind {
1119       ConstZero,
1120       Variable,
1121       VariableKnownToBeZero
1122     } K;
1123 
1124     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1125       : V(V), Idx(I), K(K) {}
1126     ValueBit(Kind K = Variable)
1127       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
1128 
1129     bool isZero() const {
1130       return K == ConstZero || K == VariableKnownToBeZero;
1131     }
1132 
1133     bool hasValue() const {
1134       return K == Variable || K == VariableKnownToBeZero;
1135     }
1136 
1137     SDValue getValue() const {
1138       assert(hasValue() && "Cannot get the value of a constant bit");
1139       return V;
1140     }
1141 
1142     unsigned getValueBitIndex() const {
1143       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1144       return Idx;
1145     }
1146   };
1147 
1148   // A bit group has the same underlying value and the same rotate factor.
1149   struct BitGroup {
1150     SDValue V;
1151     unsigned RLAmt;
1152     unsigned StartIdx, EndIdx;
1153 
1154     // This rotation amount assumes that the lower 32 bits of the quantity are
1155     // replicated in the high 32 bits by the rotation operator (which is done
1156     // by rlwinm and friends in 64-bit mode).
1157     bool Repl32;
1158     // Did converting to Repl32 == true change the rotation factor? If it did,
1159     // it decreased it by 32.
1160     bool Repl32CR;
1161     // Was this group coalesced after setting Repl32 to true?
1162     bool Repl32Coalesced;
1163 
1164     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1165       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1166         Repl32Coalesced(false) {
1167       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1168                         << " [" << S << ", " << E << "]\n");
1169     }
1170   };
1171 
1172   // Information on each (Value, RLAmt) pair (like the number of groups
1173   // associated with each) used to choose the lowering method.
1174   struct ValueRotInfo {
1175     SDValue V;
1176     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1177     unsigned NumGroups = 0;
1178     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1179     bool Repl32 = false;
1180 
1181     ValueRotInfo() = default;
1182 
1183     // For sorting (in reverse order) by NumGroups, and then by
1184     // FirstGroupStartIdx.
1185     bool operator < (const ValueRotInfo &Other) const {
1186       // We need to sort so that the non-Repl32 come first because, when we're
1187       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1188       // masking operation.
1189       if (Repl32 < Other.Repl32)
1190         return true;
1191       else if (Repl32 > Other.Repl32)
1192         return false;
1193       else if (NumGroups > Other.NumGroups)
1194         return true;
1195       else if (NumGroups < Other.NumGroups)
1196         return false;
1197       else if (RLAmt == 0 && Other.RLAmt != 0)
1198         return true;
1199       else if (RLAmt != 0 && Other.RLAmt == 0)
1200         return false;
1201       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1202         return true;
1203       return false;
1204     }
1205   };
1206 
1207   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1208   using ValueBitsMemoizer =
1209       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1210   ValueBitsMemoizer Memoizer;
1211 
1212   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1213   // The bool is true if something interesting was deduced, otherwise if we're
1214   // providing only a generic representation of V (or something else likewise
1215   // uninteresting for instruction selection) through the SmallVector.
1216   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1217                                                             unsigned NumBits) {
1218     auto &ValueEntry = Memoizer[V];
1219     if (ValueEntry)
1220       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1221     ValueEntry.reset(new ValueBitsMemoizedValue());
1222     bool &Interesting = ValueEntry->first;
1223     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1224     Bits.resize(NumBits);
1225 
1226     switch (V.getOpcode()) {
1227     default: break;
1228     case ISD::ROTL:
1229       if (isa<ConstantSDNode>(V.getOperand(1))) {
1230         unsigned RotAmt = V.getConstantOperandVal(1);
1231 
1232         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1233 
1234         for (unsigned i = 0; i < NumBits; ++i)
1235           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1236 
1237         return std::make_pair(Interesting = true, &Bits);
1238       }
1239       break;
1240     case ISD::SHL:
1241       if (isa<ConstantSDNode>(V.getOperand(1))) {
1242         unsigned ShiftAmt = V.getConstantOperandVal(1);
1243 
1244         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1245 
1246         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1247           Bits[i] = LHSBits[i - ShiftAmt];
1248 
1249         for (unsigned i = 0; i < ShiftAmt; ++i)
1250           Bits[i] = ValueBit(ValueBit::ConstZero);
1251 
1252         return std::make_pair(Interesting = true, &Bits);
1253       }
1254       break;
1255     case ISD::SRL:
1256       if (isa<ConstantSDNode>(V.getOperand(1))) {
1257         unsigned ShiftAmt = V.getConstantOperandVal(1);
1258 
1259         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1260 
1261         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1262           Bits[i] = LHSBits[i + ShiftAmt];
1263 
1264         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1265           Bits[i] = ValueBit(ValueBit::ConstZero);
1266 
1267         return std::make_pair(Interesting = true, &Bits);
1268       }
1269       break;
1270     case ISD::AND:
1271       if (isa<ConstantSDNode>(V.getOperand(1))) {
1272         uint64_t Mask = V.getConstantOperandVal(1);
1273 
1274         const SmallVector<ValueBit, 64> *LHSBits;
1275         // Mark this as interesting, only if the LHS was also interesting. This
1276         // prevents the overall procedure from matching a single immediate 'and'
1277         // (which is non-optimal because such an and might be folded with other
1278         // things if we don't select it here).
1279         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1280 
1281         for (unsigned i = 0; i < NumBits; ++i)
1282           if (((Mask >> i) & 1) == 1)
1283             Bits[i] = (*LHSBits)[i];
1284           else {
1285             // AND instruction masks this bit. If the input is already zero,
1286             // we have nothing to do here. Otherwise, make the bit ConstZero.
1287             if ((*LHSBits)[i].isZero())
1288               Bits[i] = (*LHSBits)[i];
1289             else
1290               Bits[i] = ValueBit(ValueBit::ConstZero);
1291           }
1292 
1293         return std::make_pair(Interesting, &Bits);
1294       }
1295       break;
1296     case ISD::OR: {
1297       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1298       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1299 
1300       bool AllDisjoint = true;
1301       SDValue LastVal = SDValue();
1302       unsigned LastIdx = 0;
1303       for (unsigned i = 0; i < NumBits; ++i) {
1304         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1305           // If both inputs are known to be zero and one is ConstZero and
1306           // another is VariableKnownToBeZero, we can select whichever
1307           // we like. To minimize the number of bit groups, we select
1308           // VariableKnownToBeZero if this bit is the next bit of the same
1309           // input variable from the previous bit. Otherwise, we select
1310           // ConstZero.
1311           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1312               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1313             Bits[i] = LHSBits[i];
1314           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1315                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1316             Bits[i] = RHSBits[i];
1317           else
1318             Bits[i] = ValueBit(ValueBit::ConstZero);
1319         }
1320         else if (LHSBits[i].isZero())
1321           Bits[i] = RHSBits[i];
1322         else if (RHSBits[i].isZero())
1323           Bits[i] = LHSBits[i];
1324         else {
1325           AllDisjoint = false;
1326           break;
1327         }
1328         // We remember the value and bit index of this bit.
1329         if (Bits[i].hasValue()) {
1330           LastVal = Bits[i].getValue();
1331           LastIdx = Bits[i].getValueBitIndex();
1332         }
1333         else {
1334           if (LastVal) LastVal = SDValue();
1335           LastIdx = 0;
1336         }
1337       }
1338 
1339       if (!AllDisjoint)
1340         break;
1341 
1342       return std::make_pair(Interesting = true, &Bits);
1343     }
1344     case ISD::ZERO_EXTEND: {
1345       // We support only the case with zero extension from i32 to i64 so far.
1346       if (V.getValueType() != MVT::i64 ||
1347           V.getOperand(0).getValueType() != MVT::i32)
1348         break;
1349 
1350       const SmallVector<ValueBit, 64> *LHSBits;
1351       const unsigned NumOperandBits = 32;
1352       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1353                                                     NumOperandBits);
1354 
1355       for (unsigned i = 0; i < NumOperandBits; ++i)
1356         Bits[i] = (*LHSBits)[i];
1357 
1358       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1359         Bits[i] = ValueBit(ValueBit::ConstZero);
1360 
1361       return std::make_pair(Interesting, &Bits);
1362     }
1363     case ISD::TRUNCATE: {
1364       EVT FromType = V.getOperand(0).getValueType();
1365       EVT ToType = V.getValueType();
1366       // We support only the case with truncate from i64 to i32.
1367       if (FromType != MVT::i64 || ToType != MVT::i32)
1368         break;
1369       const unsigned NumAllBits = FromType.getSizeInBits();
1370       SmallVector<ValueBit, 64> *InBits;
1371       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1372                                                     NumAllBits);
1373       const unsigned NumValidBits = ToType.getSizeInBits();
1374 
1375       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1376       // So, we cannot include this truncate.
1377       bool UseUpper32bit = false;
1378       for (unsigned i = 0; i < NumValidBits; ++i)
1379         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1380           UseUpper32bit = true;
1381           break;
1382         }
1383       if (UseUpper32bit)
1384         break;
1385 
1386       for (unsigned i = 0; i < NumValidBits; ++i)
1387         Bits[i] = (*InBits)[i];
1388 
1389       return std::make_pair(Interesting, &Bits);
1390     }
1391     case ISD::AssertZext: {
1392       // For AssertZext, we look through the operand and
1393       // mark the bits known to be zero.
1394       const SmallVector<ValueBit, 64> *LHSBits;
1395       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1396                                                     NumBits);
1397 
1398       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1399       const unsigned NumValidBits = FromType.getSizeInBits();
1400       for (unsigned i = 0; i < NumValidBits; ++i)
1401         Bits[i] = (*LHSBits)[i];
1402 
1403       // These bits are known to be zero but the AssertZext may be from a value
1404       // that already has some constant zero bits (i.e. from a masking and).
1405       for (unsigned i = NumValidBits; i < NumBits; ++i)
1406         Bits[i] = (*LHSBits)[i].hasValue()
1407                       ? ValueBit((*LHSBits)[i].getValue(),
1408                                  (*LHSBits)[i].getValueBitIndex(),
1409                                  ValueBit::VariableKnownToBeZero)
1410                       : ValueBit(ValueBit::ConstZero);
1411 
1412       return std::make_pair(Interesting, &Bits);
1413     }
1414     case ISD::LOAD:
1415       LoadSDNode *LD = cast<LoadSDNode>(V);
1416       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1417         EVT VT = LD->getMemoryVT();
1418         const unsigned NumValidBits = VT.getSizeInBits();
1419 
1420         for (unsigned i = 0; i < NumValidBits; ++i)
1421           Bits[i] = ValueBit(V, i);
1422 
1423         // These bits are known to be zero.
1424         for (unsigned i = NumValidBits; i < NumBits; ++i)
1425           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1426 
1427         // Zero-extending load itself cannot be optimized. So, it is not
1428         // interesting by itself though it gives useful information.
1429         return std::make_pair(Interesting = false, &Bits);
1430       }
1431       break;
1432     }
1433 
1434     for (unsigned i = 0; i < NumBits; ++i)
1435       Bits[i] = ValueBit(V, i);
1436 
1437     return std::make_pair(Interesting = false, &Bits);
1438   }
1439 
1440   // For each value (except the constant ones), compute the left-rotate amount
1441   // to get it from its original to final position.
1442   void computeRotationAmounts() {
1443     NeedMask = false;
1444     RLAmt.resize(Bits.size());
1445     for (unsigned i = 0; i < Bits.size(); ++i)
1446       if (Bits[i].hasValue()) {
1447         unsigned VBI = Bits[i].getValueBitIndex();
1448         if (i >= VBI)
1449           RLAmt[i] = i - VBI;
1450         else
1451           RLAmt[i] = Bits.size() - (VBI - i);
1452       } else if (Bits[i].isZero()) {
1453         NeedMask = true;
1454         RLAmt[i] = UINT32_MAX;
1455       } else {
1456         llvm_unreachable("Unknown value bit type");
1457       }
1458   }
1459 
1460   // Collect groups of consecutive bits with the same underlying value and
1461   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1462   // they break up groups.
1463   void collectBitGroups(bool LateMask) {
1464     BitGroups.clear();
1465 
1466     unsigned LastRLAmt = RLAmt[0];
1467     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1468     unsigned LastGroupStartIdx = 0;
1469     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1470     for (unsigned i = 1; i < Bits.size(); ++i) {
1471       unsigned ThisRLAmt = RLAmt[i];
1472       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1473       if (LateMask && !ThisValue) {
1474         ThisValue = LastValue;
1475         ThisRLAmt = LastRLAmt;
1476         // If we're doing late masking, then the first bit group always starts
1477         // at zero (even if the first bits were zero).
1478         if (BitGroups.empty())
1479           LastGroupStartIdx = 0;
1480       }
1481 
1482       // If this bit is known to be zero and the current group is a bit group
1483       // of zeros, we do not need to terminate the current bit group even the
1484       // Value or RLAmt does not match here. Instead, we terminate this group
1485       // when the first non-zero bit appears later.
1486       if (IsGroupOfZeros && Bits[i].isZero())
1487         continue;
1488 
1489       // If this bit has the same underlying value and the same rotate factor as
1490       // the last one, then they're part of the same group.
1491       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1492         // We cannot continue the current group if this bits is not known to
1493         // be zero in a bit group of zeros.
1494         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1495           continue;
1496 
1497       if (LastValue.getNode())
1498         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1499                                      i-1));
1500       LastRLAmt = ThisRLAmt;
1501       LastValue = ThisValue;
1502       LastGroupStartIdx = i;
1503       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1504     }
1505     if (LastValue.getNode())
1506       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1507                                    Bits.size()-1));
1508 
1509     if (BitGroups.empty())
1510       return;
1511 
1512     // We might be able to combine the first and last groups.
1513     if (BitGroups.size() > 1) {
1514       // If the first and last groups are the same, then remove the first group
1515       // in favor of the last group, making the ending index of the last group
1516       // equal to the ending index of the to-be-removed first group.
1517       if (BitGroups[0].StartIdx == 0 &&
1518           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1519           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1520           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1521         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1522         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1523         BitGroups.erase(BitGroups.begin());
1524       }
1525     }
1526   }
1527 
1528   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1529   // associated with each. If the number of groups are same, we prefer a group
1530   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1531   // instruction. If there is a degeneracy, pick the one that occurs
1532   // first (in the final value).
1533   void collectValueRotInfo() {
1534     ValueRots.clear();
1535 
1536     for (auto &BG : BitGroups) {
1537       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1538       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1539       VRI.V = BG.V;
1540       VRI.RLAmt = BG.RLAmt;
1541       VRI.Repl32 = BG.Repl32;
1542       VRI.NumGroups += 1;
1543       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1544     }
1545 
1546     // Now that we've collected the various ValueRotInfo instances, we need to
1547     // sort them.
1548     ValueRotsVec.clear();
1549     for (auto &I : ValueRots) {
1550       ValueRotsVec.push_back(I.second);
1551     }
1552     llvm::sort(ValueRotsVec);
1553   }
1554 
1555   // In 64-bit mode, rlwinm and friends have a rotation operator that
1556   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1557   // indices of these instructions can only be in the lower 32 bits, so they
1558   // can only represent some 64-bit bit groups. However, when they can be used,
1559   // the 32-bit replication can be used to represent, as a single bit group,
1560   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1561   // groups when possible. Returns true if any of the bit groups were
1562   // converted.
1563   void assignRepl32BitGroups() {
1564     // If we have bits like this:
1565     //
1566     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1567     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1568     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1569     //
1570     // But, making use of a 32-bit operation that replicates the low-order 32
1571     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1572     // of 8.
1573 
1574     auto IsAllLow32 = [this](BitGroup & BG) {
1575       if (BG.StartIdx <= BG.EndIdx) {
1576         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1577           if (!Bits[i].hasValue())
1578             continue;
1579           if (Bits[i].getValueBitIndex() >= 32)
1580             return false;
1581         }
1582       } else {
1583         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1584           if (!Bits[i].hasValue())
1585             continue;
1586           if (Bits[i].getValueBitIndex() >= 32)
1587             return false;
1588         }
1589         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1590           if (!Bits[i].hasValue())
1591             continue;
1592           if (Bits[i].getValueBitIndex() >= 32)
1593             return false;
1594         }
1595       }
1596 
1597       return true;
1598     };
1599 
1600     for (auto &BG : BitGroups) {
1601       // If this bit group has RLAmt of 0 and will not be merged with
1602       // another bit group, we don't benefit from Repl32. We don't mark
1603       // such group to give more freedom for later instruction selection.
1604       if (BG.RLAmt == 0) {
1605         auto PotentiallyMerged = [this](BitGroup & BG) {
1606           for (auto &BG2 : BitGroups)
1607             if (&BG != &BG2 && BG.V == BG2.V &&
1608                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1609               return true;
1610           return false;
1611         };
1612         if (!PotentiallyMerged(BG))
1613           continue;
1614       }
1615       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1616         if (IsAllLow32(BG)) {
1617           if (BG.RLAmt >= 32) {
1618             BG.RLAmt -= 32;
1619             BG.Repl32CR = true;
1620           }
1621 
1622           BG.Repl32 = true;
1623 
1624           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1625                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1626                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1627         }
1628       }
1629     }
1630 
1631     // Now walk through the bit groups, consolidating where possible.
1632     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1633       // We might want to remove this bit group by merging it with the previous
1634       // group (which might be the ending group).
1635       auto IP = (I == BitGroups.begin()) ?
1636                 std::prev(BitGroups.end()) : std::prev(I);
1637       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1638           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1639 
1640         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1641                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1642                           << I->StartIdx << ", " << I->EndIdx
1643                           << "] with group with range [" << IP->StartIdx << ", "
1644                           << IP->EndIdx << "]\n");
1645 
1646         IP->EndIdx = I->EndIdx;
1647         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1648         IP->Repl32Coalesced = true;
1649         I = BitGroups.erase(I);
1650         continue;
1651       } else {
1652         // There is a special case worth handling: If there is a single group
1653         // covering the entire upper 32 bits, and it can be merged with both
1654         // the next and previous groups (which might be the same group), then
1655         // do so. If it is the same group (so there will be only one group in
1656         // total), then we need to reverse the order of the range so that it
1657         // covers the entire 64 bits.
1658         if (I->StartIdx == 32 && I->EndIdx == 63) {
1659           assert(std::next(I) == BitGroups.end() &&
1660                  "bit group ends at index 63 but there is another?");
1661           auto IN = BitGroups.begin();
1662 
1663           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1664               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1665               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1666               IsAllLow32(*I)) {
1667 
1668             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1669                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1670                               << ", " << I->EndIdx
1671                               << "] with 32-bit replicated groups with ranges ["
1672                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1673                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1674 
1675             if (IP == IN) {
1676               // There is only one other group; change it to cover the whole
1677               // range (backward, so that it can still be Repl32 but cover the
1678               // whole 64-bit range).
1679               IP->StartIdx = 31;
1680               IP->EndIdx = 30;
1681               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1682               IP->Repl32Coalesced = true;
1683               I = BitGroups.erase(I);
1684             } else {
1685               // There are two separate groups, one before this group and one
1686               // after us (at the beginning). We're going to remove this group,
1687               // but also the group at the very beginning.
1688               IP->EndIdx = IN->EndIdx;
1689               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1690               IP->Repl32Coalesced = true;
1691               I = BitGroups.erase(I);
1692               BitGroups.erase(BitGroups.begin());
1693             }
1694 
1695             // This must be the last group in the vector (and we might have
1696             // just invalidated the iterator above), so break here.
1697             break;
1698           }
1699         }
1700       }
1701 
1702       ++I;
1703     }
1704   }
1705 
1706   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1707     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1708   }
1709 
1710   uint64_t getZerosMask() {
1711     uint64_t Mask = 0;
1712     for (unsigned i = 0; i < Bits.size(); ++i) {
1713       if (Bits[i].hasValue())
1714         continue;
1715       Mask |= (UINT64_C(1) << i);
1716     }
1717 
1718     return ~Mask;
1719   }
1720 
1721   // This method extends an input value to 64 bit if input is 32-bit integer.
1722   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1723   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1724   // In such case, we extend it to 64 bit to be consistent with other values.
1725   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1726     if (V.getValueSizeInBits() == 64)
1727       return V;
1728 
1729     assert(V.getValueSizeInBits() == 32);
1730     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1731     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1732                                                    MVT::i64), 0);
1733     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1734                                                     MVT::i64, ImDef, V,
1735                                                     SubRegIdx), 0);
1736     return ExtVal;
1737   }
1738 
1739   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1740     if (V.getValueSizeInBits() == 32)
1741       return V;
1742 
1743     assert(V.getValueSizeInBits() == 64);
1744     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1745     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1746                                                     MVT::i32, V, SubRegIdx), 0);
1747     return SubVal;
1748   }
1749 
1750   // Depending on the number of groups for a particular value, it might be
1751   // better to rotate, mask explicitly (using andi/andis), and then or the
1752   // result. Select this part of the result first.
1753   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1754     if (BPermRewriterNoMasking)
1755       return;
1756 
1757     for (ValueRotInfo &VRI : ValueRotsVec) {
1758       unsigned Mask = 0;
1759       for (unsigned i = 0; i < Bits.size(); ++i) {
1760         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1761           continue;
1762         if (RLAmt[i] != VRI.RLAmt)
1763           continue;
1764         Mask |= (1u << i);
1765       }
1766 
1767       // Compute the masks for andi/andis that would be necessary.
1768       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1769       assert((ANDIMask != 0 || ANDISMask != 0) &&
1770              "No set bits in mask for value bit groups");
1771       bool NeedsRotate = VRI.RLAmt != 0;
1772 
1773       // We're trying to minimize the number of instructions. If we have one
1774       // group, using one of andi/andis can break even.  If we have three
1775       // groups, we can use both andi and andis and break even (to use both
1776       // andi and andis we also need to or the results together). We need four
1777       // groups if we also need to rotate. To use andi/andis we need to do more
1778       // than break even because rotate-and-mask instructions tend to be easier
1779       // to schedule.
1780 
1781       // FIXME: We've biased here against using andi/andis, which is right for
1782       // POWER cores, but not optimal everywhere. For example, on the A2,
1783       // andi/andis have single-cycle latency whereas the rotate-and-mask
1784       // instructions take two cycles, and it would be better to bias toward
1785       // andi/andis in break-even cases.
1786 
1787       unsigned NumAndInsts = (unsigned) NeedsRotate +
1788                              (unsigned) (ANDIMask != 0) +
1789                              (unsigned) (ANDISMask != 0) +
1790                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1791                              (unsigned) (bool) Res;
1792 
1793       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
1794                         << " RL: " << VRI.RLAmt << ":"
1795                         << "\n\t\t\tisel using masking: " << NumAndInsts
1796                         << " using rotates: " << VRI.NumGroups << "\n");
1797 
1798       if (NumAndInsts >= VRI.NumGroups)
1799         continue;
1800 
1801       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1802 
1803       if (InstCnt) *InstCnt += NumAndInsts;
1804 
1805       SDValue VRot;
1806       if (VRI.RLAmt) {
1807         SDValue Ops[] =
1808           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
1809             getI32Imm(0, dl), getI32Imm(31, dl) };
1810         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1811                                               Ops), 0);
1812       } else {
1813         VRot = TruncateToInt32(VRI.V, dl);
1814       }
1815 
1816       SDValue ANDIVal, ANDISVal;
1817       if (ANDIMask != 0)
1818         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
1819                                                  VRot, getI32Imm(ANDIMask, dl)),
1820                           0);
1821       if (ANDISMask != 0)
1822         ANDISVal =
1823             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
1824                                            getI32Imm(ANDISMask, dl)),
1825                     0);
1826 
1827       SDValue TotalVal;
1828       if (!ANDIVal)
1829         TotalVal = ANDISVal;
1830       else if (!ANDISVal)
1831         TotalVal = ANDIVal;
1832       else
1833         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1834                              ANDIVal, ANDISVal), 0);
1835 
1836       if (!Res)
1837         Res = TotalVal;
1838       else
1839         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1840                         Res, TotalVal), 0);
1841 
1842       // Now, remove all groups with this underlying value and rotation
1843       // factor.
1844       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1845         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1846       });
1847     }
1848   }
1849 
1850   // Instruction selection for the 32-bit case.
1851   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1852     SDLoc dl(N);
1853     SDValue Res;
1854 
1855     if (InstCnt) *InstCnt = 0;
1856 
1857     // Take care of cases that should use andi/andis first.
1858     SelectAndParts32(dl, Res, InstCnt);
1859 
1860     // If we've not yet selected a 'starting' instruction, and we have no zeros
1861     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1862     // number of groups), and start with this rotated value.
1863     if ((!NeedMask || LateMask) && !Res) {
1864       ValueRotInfo &VRI = ValueRotsVec[0];
1865       if (VRI.RLAmt) {
1866         if (InstCnt) *InstCnt += 1;
1867         SDValue Ops[] =
1868           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
1869             getI32Imm(0, dl), getI32Imm(31, dl) };
1870         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1871                       0);
1872       } else {
1873         Res = TruncateToInt32(VRI.V, dl);
1874       }
1875 
1876       // Now, remove all groups with this underlying value and rotation factor.
1877       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1878         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1879       });
1880     }
1881 
1882     if (InstCnt) *InstCnt += BitGroups.size();
1883 
1884     // Insert the other groups (one at a time).
1885     for (auto &BG : BitGroups) {
1886       if (!Res) {
1887         SDValue Ops[] =
1888           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
1889             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1890             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1891         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1892       } else {
1893         SDValue Ops[] =
1894           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
1895               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1896             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1897         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1898       }
1899     }
1900 
1901     if (LateMask) {
1902       unsigned Mask = (unsigned) getZerosMask();
1903 
1904       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1905       assert((ANDIMask != 0 || ANDISMask != 0) &&
1906              "No set bits in zeros mask?");
1907 
1908       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1909                                (unsigned) (ANDISMask != 0) +
1910                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1911 
1912       SDValue ANDIVal, ANDISVal;
1913       if (ANDIMask != 0)
1914         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
1915                                                  Res, getI32Imm(ANDIMask, dl)),
1916                           0);
1917       if (ANDISMask != 0)
1918         ANDISVal =
1919             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
1920                                            getI32Imm(ANDISMask, dl)),
1921                     0);
1922 
1923       if (!ANDIVal)
1924         Res = ANDISVal;
1925       else if (!ANDISVal)
1926         Res = ANDIVal;
1927       else
1928         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1929                         ANDIVal, ANDISVal), 0);
1930     }
1931 
1932     return Res.getNode();
1933   }
1934 
1935   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1936                                 unsigned MaskStart, unsigned MaskEnd,
1937                                 bool IsIns) {
1938     // In the notation used by the instructions, 'start' and 'end' are reversed
1939     // because bits are counted from high to low order.
1940     unsigned InstMaskStart = 64 - MaskEnd - 1,
1941              InstMaskEnd   = 64 - MaskStart - 1;
1942 
1943     if (Repl32)
1944       return 1;
1945 
1946     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1947         InstMaskEnd == 63 - RLAmt)
1948       return 1;
1949 
1950     return 2;
1951   }
1952 
1953   // For 64-bit values, not all combinations of rotates and masks are
1954   // available. Produce one if it is available.
1955   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1956                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1957                           unsigned *InstCnt = nullptr) {
1958     // In the notation used by the instructions, 'start' and 'end' are reversed
1959     // because bits are counted from high to low order.
1960     unsigned InstMaskStart = 64 - MaskEnd - 1,
1961              InstMaskEnd   = 64 - MaskStart - 1;
1962 
1963     if (InstCnt) *InstCnt += 1;
1964 
1965     if (Repl32) {
1966       // This rotation amount assumes that the lower 32 bits of the quantity
1967       // are replicated in the high 32 bits by the rotation operator (which is
1968       // done by rlwinm and friends).
1969       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1970       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1971       SDValue Ops[] =
1972         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1973           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
1974       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1975                                             Ops), 0);
1976     }
1977 
1978     if (InstMaskEnd == 63) {
1979       SDValue Ops[] =
1980         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1981           getI32Imm(InstMaskStart, dl) };
1982       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1983     }
1984 
1985     if (InstMaskStart == 0) {
1986       SDValue Ops[] =
1987         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1988           getI32Imm(InstMaskEnd, dl) };
1989       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1990     }
1991 
1992     if (InstMaskEnd == 63 - RLAmt) {
1993       SDValue Ops[] =
1994         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1995           getI32Imm(InstMaskStart, dl) };
1996       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1997     }
1998 
1999     // We cannot do this with a single instruction, so we'll use two. The
2000     // problem is that we're not free to choose both a rotation amount and mask
2001     // start and end independently. We can choose an arbitrary mask start and
2002     // end, but then the rotation amount is fixed. Rotation, however, can be
2003     // inverted, and so by applying an "inverse" rotation first, we can get the
2004     // desired result.
2005     if (InstCnt) *InstCnt += 1;
2006 
2007     // The rotation mask for the second instruction must be MaskStart.
2008     unsigned RLAmt2 = MaskStart;
2009     // The first instruction must rotate V so that the overall rotation amount
2010     // is RLAmt.
2011     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2012     if (RLAmt1)
2013       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2014     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2015   }
2016 
2017   // For 64-bit values, not all combinations of rotates and masks are
2018   // available. Produce a rotate-mask-and-insert if one is available.
2019   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2020                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2021                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2022     // In the notation used by the instructions, 'start' and 'end' are reversed
2023     // because bits are counted from high to low order.
2024     unsigned InstMaskStart = 64 - MaskEnd - 1,
2025              InstMaskEnd   = 64 - MaskStart - 1;
2026 
2027     if (InstCnt) *InstCnt += 1;
2028 
2029     if (Repl32) {
2030       // This rotation amount assumes that the lower 32 bits of the quantity
2031       // are replicated in the high 32 bits by the rotation operator (which is
2032       // done by rlwinm and friends).
2033       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2034       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2035       SDValue Ops[] =
2036         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2037           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2038       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2039                                             Ops), 0);
2040     }
2041 
2042     if (InstMaskEnd == 63 - RLAmt) {
2043       SDValue Ops[] =
2044         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2045           getI32Imm(InstMaskStart, dl) };
2046       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2047     }
2048 
2049     // We cannot do this with a single instruction, so we'll use two. The
2050     // problem is that we're not free to choose both a rotation amount and mask
2051     // start and end independently. We can choose an arbitrary mask start and
2052     // end, but then the rotation amount is fixed. Rotation, however, can be
2053     // inverted, and so by applying an "inverse" rotation first, we can get the
2054     // desired result.
2055     if (InstCnt) *InstCnt += 1;
2056 
2057     // The rotation mask for the second instruction must be MaskStart.
2058     unsigned RLAmt2 = MaskStart;
2059     // The first instruction must rotate V so that the overall rotation amount
2060     // is RLAmt.
2061     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2062     if (RLAmt1)
2063       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2064     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2065   }
2066 
2067   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2068     if (BPermRewriterNoMasking)
2069       return;
2070 
2071     // The idea here is the same as in the 32-bit version, but with additional
2072     // complications from the fact that Repl32 might be true. Because we
2073     // aggressively convert bit groups to Repl32 form (which, for small
2074     // rotation factors, involves no other change), and then coalesce, it might
2075     // be the case that a single 64-bit masking operation could handle both
2076     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2077     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2078     // completely capture the new combined bit group.
2079 
2080     for (ValueRotInfo &VRI : ValueRotsVec) {
2081       uint64_t Mask = 0;
2082 
2083       // We need to add to the mask all bits from the associated bit groups.
2084       // If Repl32 is false, we need to add bits from bit groups that have
2085       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2086       // group is trivially convertable if it overlaps only with the lower 32
2087       // bits, and the group has not been coalesced.
2088       auto MatchingBG = [VRI](const BitGroup &BG) {
2089         if (VRI.V != BG.V)
2090           return false;
2091 
2092         unsigned EffRLAmt = BG.RLAmt;
2093         if (!VRI.Repl32 && BG.Repl32) {
2094           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2095               !BG.Repl32Coalesced) {
2096             if (BG.Repl32CR)
2097               EffRLAmt += 32;
2098           } else {
2099             return false;
2100           }
2101         } else if (VRI.Repl32 != BG.Repl32) {
2102           return false;
2103         }
2104 
2105         return VRI.RLAmt == EffRLAmt;
2106       };
2107 
2108       for (auto &BG : BitGroups) {
2109         if (!MatchingBG(BG))
2110           continue;
2111 
2112         if (BG.StartIdx <= BG.EndIdx) {
2113           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2114             Mask |= (UINT64_C(1) << i);
2115         } else {
2116           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2117             Mask |= (UINT64_C(1) << i);
2118           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2119             Mask |= (UINT64_C(1) << i);
2120         }
2121       }
2122 
2123       // We can use the 32-bit andi/andis technique if the mask does not
2124       // require any higher-order bits. This can save an instruction compared
2125       // to always using the general 64-bit technique.
2126       bool Use32BitInsts = isUInt<32>(Mask);
2127       // Compute the masks for andi/andis that would be necessary.
2128       unsigned ANDIMask = (Mask & UINT16_MAX),
2129                ANDISMask = (Mask >> 16) & UINT16_MAX;
2130 
2131       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2132 
2133       unsigned NumAndInsts = (unsigned) NeedsRotate +
2134                              (unsigned) (bool) Res;
2135       if (Use32BitInsts)
2136         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2137                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2138       else
2139         NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
2140 
2141       unsigned NumRLInsts = 0;
2142       bool FirstBG = true;
2143       bool MoreBG = false;
2144       for (auto &BG : BitGroups) {
2145         if (!MatchingBG(BG)) {
2146           MoreBG = true;
2147           continue;
2148         }
2149         NumRLInsts +=
2150           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2151                                !FirstBG);
2152         FirstBG = false;
2153       }
2154 
2155       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2156                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2157                         << "\n\t\t\tisel using masking: " << NumAndInsts
2158                         << " using rotates: " << NumRLInsts << "\n");
2159 
2160       // When we'd use andi/andis, we bias toward using the rotates (andi only
2161       // has a record form, and is cracked on POWER cores). However, when using
2162       // general 64-bit constant formation, bias toward the constant form,
2163       // because that exposes more opportunities for CSE.
2164       if (NumAndInsts > NumRLInsts)
2165         continue;
2166       // When merging multiple bit groups, instruction or is used.
2167       // But when rotate is used, rldimi can inert the rotated value into any
2168       // register, so instruction or can be avoided.
2169       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2170         continue;
2171 
2172       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2173 
2174       if (InstCnt) *InstCnt += NumAndInsts;
2175 
2176       SDValue VRot;
2177       // We actually need to generate a rotation if we have a non-zero rotation
2178       // factor or, in the Repl32 case, if we care about any of the
2179       // higher-order replicated bits. In the latter case, we generate a mask
2180       // backward so that it actually includes the entire 64 bits.
2181       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2182         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2183                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2184       else
2185         VRot = VRI.V;
2186 
2187       SDValue TotalVal;
2188       if (Use32BitInsts) {
2189         assert((ANDIMask != 0 || ANDISMask != 0) &&
2190                "No set bits in mask when using 32-bit ands for 64-bit value");
2191 
2192         SDValue ANDIVal, ANDISVal;
2193         if (ANDIMask != 0)
2194           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2195                                                    ExtendToInt64(VRot, dl),
2196                                                    getI32Imm(ANDIMask, dl)),
2197                             0);
2198         if (ANDISMask != 0)
2199           ANDISVal =
2200               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2201                                              ExtendToInt64(VRot, dl),
2202                                              getI32Imm(ANDISMask, dl)),
2203                       0);
2204 
2205         if (!ANDIVal)
2206           TotalVal = ANDISVal;
2207         else if (!ANDISVal)
2208           TotalVal = ANDIVal;
2209         else
2210           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2211                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2212       } else {
2213         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2214         TotalVal =
2215           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2216                                          ExtendToInt64(VRot, dl), TotalVal),
2217                   0);
2218      }
2219 
2220       if (!Res)
2221         Res = TotalVal;
2222       else
2223         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2224                                              ExtendToInt64(Res, dl), TotalVal),
2225                       0);
2226 
2227       // Now, remove all groups with this underlying value and rotation
2228       // factor.
2229       eraseMatchingBitGroups(MatchingBG);
2230     }
2231   }
2232 
2233   // Instruction selection for the 64-bit case.
2234   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2235     SDLoc dl(N);
2236     SDValue Res;
2237 
2238     if (InstCnt) *InstCnt = 0;
2239 
2240     // Take care of cases that should use andi/andis first.
2241     SelectAndParts64(dl, Res, InstCnt);
2242 
2243     // If we've not yet selected a 'starting' instruction, and we have no zeros
2244     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2245     // number of groups), and start with this rotated value.
2246     if ((!NeedMask || LateMask) && !Res) {
2247       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2248       // groups will come first, and so the VRI representing the largest number
2249       // of groups might not be first (it might be the first Repl32 groups).
2250       unsigned MaxGroupsIdx = 0;
2251       if (!ValueRotsVec[0].Repl32) {
2252         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2253           if (ValueRotsVec[i].Repl32) {
2254             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2255               MaxGroupsIdx = i;
2256             break;
2257           }
2258       }
2259 
2260       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2261       bool NeedsRotate = false;
2262       if (VRI.RLAmt) {
2263         NeedsRotate = true;
2264       } else if (VRI.Repl32) {
2265         for (auto &BG : BitGroups) {
2266           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2267               BG.Repl32 != VRI.Repl32)
2268             continue;
2269 
2270           // We don't need a rotate if the bit group is confined to the lower
2271           // 32 bits.
2272           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2273             continue;
2274 
2275           NeedsRotate = true;
2276           break;
2277         }
2278       }
2279 
2280       if (NeedsRotate)
2281         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2282                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2283                               InstCnt);
2284       else
2285         Res = VRI.V;
2286 
2287       // Now, remove all groups with this underlying value and rotation factor.
2288       if (Res)
2289         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2290           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2291                  BG.Repl32 == VRI.Repl32;
2292         });
2293     }
2294 
2295     // Because 64-bit rotates are more flexible than inserts, we might have a
2296     // preference regarding which one we do first (to save one instruction).
2297     if (!Res)
2298       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2299         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2300                                 false) <
2301             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2302                                 true)) {
2303           if (I != BitGroups.begin()) {
2304             BitGroup BG = *I;
2305             BitGroups.erase(I);
2306             BitGroups.insert(BitGroups.begin(), BG);
2307           }
2308 
2309           break;
2310         }
2311       }
2312 
2313     // Insert the other groups (one at a time).
2314     for (auto &BG : BitGroups) {
2315       if (!Res)
2316         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2317                               BG.EndIdx, InstCnt);
2318       else
2319         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2320                                  BG.StartIdx, BG.EndIdx, InstCnt);
2321     }
2322 
2323     if (LateMask) {
2324       uint64_t Mask = getZerosMask();
2325 
2326       // We can use the 32-bit andi/andis technique if the mask does not
2327       // require any higher-order bits. This can save an instruction compared
2328       // to always using the general 64-bit technique.
2329       bool Use32BitInsts = isUInt<32>(Mask);
2330       // Compute the masks for andi/andis that would be necessary.
2331       unsigned ANDIMask = (Mask & UINT16_MAX),
2332                ANDISMask = (Mask >> 16) & UINT16_MAX;
2333 
2334       if (Use32BitInsts) {
2335         assert((ANDIMask != 0 || ANDISMask != 0) &&
2336                "No set bits in mask when using 32-bit ands for 64-bit value");
2337 
2338         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2339                                  (unsigned) (ANDISMask != 0) +
2340                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2341 
2342         SDValue ANDIVal, ANDISVal;
2343         if (ANDIMask != 0)
2344           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2345                                                    ExtendToInt64(Res, dl),
2346                                                    getI32Imm(ANDIMask, dl)),
2347                             0);
2348         if (ANDISMask != 0)
2349           ANDISVal =
2350               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2351                                              ExtendToInt64(Res, dl),
2352                                              getI32Imm(ANDISMask, dl)),
2353                       0);
2354 
2355         if (!ANDIVal)
2356           Res = ANDISVal;
2357         else if (!ANDISVal)
2358           Res = ANDIVal;
2359         else
2360           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2361                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2362       } else {
2363         if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
2364 
2365         SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2366         Res =
2367           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2368                                          ExtendToInt64(Res, dl), MaskVal), 0);
2369       }
2370     }
2371 
2372     return Res.getNode();
2373   }
2374 
2375   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2376     // Fill in BitGroups.
2377     collectBitGroups(LateMask);
2378     if (BitGroups.empty())
2379       return nullptr;
2380 
2381     // For 64-bit values, figure out when we can use 32-bit instructions.
2382     if (Bits.size() == 64)
2383       assignRepl32BitGroups();
2384 
2385     // Fill in ValueRotsVec.
2386     collectValueRotInfo();
2387 
2388     if (Bits.size() == 32) {
2389       return Select32(N, LateMask, InstCnt);
2390     } else {
2391       assert(Bits.size() == 64 && "Not 64 bits here?");
2392       return Select64(N, LateMask, InstCnt);
2393     }
2394 
2395     return nullptr;
2396   }
2397 
2398   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2399     BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
2400   }
2401 
2402   SmallVector<ValueBit, 64> Bits;
2403 
2404   bool NeedMask = false;
2405   SmallVector<unsigned, 64> RLAmt;
2406 
2407   SmallVector<BitGroup, 16> BitGroups;
2408 
2409   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2410   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2411 
2412   SelectionDAG *CurDAG = nullptr;
2413 
2414 public:
2415   BitPermutationSelector(SelectionDAG *DAG)
2416     : CurDAG(DAG) {}
2417 
2418   // Here we try to match complex bit permutations into a set of
2419   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2420   // known to produce optimal code for common cases (like i32 byte swapping).
2421   SDNode *Select(SDNode *N) {
2422     Memoizer.clear();
2423     auto Result =
2424         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2425     if (!Result.first)
2426       return nullptr;
2427     Bits = std::move(*Result.second);
2428 
2429     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2430                          " selection for:    ");
2431     LLVM_DEBUG(N->dump(CurDAG));
2432 
2433     // Fill it RLAmt and set NeedMask.
2434     computeRotationAmounts();
2435 
2436     if (!NeedMask)
2437       return Select(N, false);
2438 
2439     // We currently have two techniques for handling results with zeros: early
2440     // masking (the default) and late masking. Late masking is sometimes more
2441     // efficient, but because the structure of the bit groups is different, it
2442     // is hard to tell without generating both and comparing the results. With
2443     // late masking, we ignore zeros in the resulting value when inserting each
2444     // set of bit groups, and then mask in the zeros at the end. With early
2445     // masking, we only insert the non-zero parts of the result at every step.
2446 
2447     unsigned InstCnt = 0, InstCntLateMask = 0;
2448     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2449     SDNode *RN = Select(N, false, &InstCnt);
2450     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2451 
2452     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2453     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2454     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2455                       << " instructions\n");
2456 
2457     if (InstCnt <= InstCntLateMask) {
2458       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2459       return RN;
2460     }
2461 
2462     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2463     return RNLM;
2464   }
2465 };
2466 
2467 class IntegerCompareEliminator {
2468   SelectionDAG *CurDAG;
2469   PPCDAGToDAGISel *S;
2470   // Conversion type for interpreting results of a 32-bit instruction as
2471   // a 64-bit value or vice versa.
2472   enum ExtOrTruncConversion { Ext, Trunc };
2473 
2474   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2475   // in a GPR.
2476   // ZExtOrig - use the original condition code, zero-extend value
2477   // ZExtInvert - invert the condition code, zero-extend value
2478   // SExtOrig - use the original condition code, sign-extend value
2479   // SExtInvert - invert the condition code, sign-extend value
2480   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2481 
2482   // Comparisons against zero to emit GPR code sequences for. Each of these
2483   // sequences may need to be emitted for two or more equivalent patterns.
2484   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2485   // matters as well as the extension type: sext (-1/0), zext (1/0).
2486   // GEZExt - (zext (LHS >= 0))
2487   // GESExt - (sext (LHS >= 0))
2488   // LEZExt - (zext (LHS <= 0))
2489   // LESExt - (sext (LHS <= 0))
2490   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2491 
2492   SDNode *tryEXTEND(SDNode *N);
2493   SDNode *tryLogicOpOfCompares(SDNode *N);
2494   SDValue computeLogicOpInGPR(SDValue LogicOp);
2495   SDValue signExtendInputIfNeeded(SDValue Input);
2496   SDValue zeroExtendInputIfNeeded(SDValue Input);
2497   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2498   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2499                                         ZeroCompare CmpTy);
2500   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2501                               int64_t RHSValue, SDLoc dl);
2502  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2503                               int64_t RHSValue, SDLoc dl);
2504   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2505                               int64_t RHSValue, SDLoc dl);
2506   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2507                               int64_t RHSValue, SDLoc dl);
2508   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2509 
2510 public:
2511   IntegerCompareEliminator(SelectionDAG *DAG,
2512                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2513     assert(CurDAG->getTargetLoweringInfo()
2514            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2515            "Only expecting to use this on 64 bit targets.");
2516   }
2517   SDNode *Select(SDNode *N) {
2518     if (CmpInGPR == ICGPR_None)
2519       return nullptr;
2520     switch (N->getOpcode()) {
2521     default: break;
2522     case ISD::ZERO_EXTEND:
2523       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2524           CmpInGPR == ICGPR_SextI64)
2525         return nullptr;
2526       LLVM_FALLTHROUGH;
2527     case ISD::SIGN_EXTEND:
2528       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2529           CmpInGPR == ICGPR_ZextI64)
2530         return nullptr;
2531       return tryEXTEND(N);
2532     case ISD::AND:
2533     case ISD::OR:
2534     case ISD::XOR:
2535       return tryLogicOpOfCompares(N);
2536     }
2537     return nullptr;
2538   }
2539 };
2540 
2541 static bool isLogicOp(unsigned Opc) {
2542   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2543 }
2544 // The obvious case for wanting to keep the value in a GPR. Namely, the
2545 // result of the comparison is actually needed in a GPR.
2546 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2547   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2548           N->getOpcode() == ISD::SIGN_EXTEND) &&
2549          "Expecting a zero/sign extend node!");
2550   SDValue WideRes;
2551   // If we are zero-extending the result of a logical operation on i1
2552   // values, we can keep the values in GPRs.
2553   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2554       N->getOperand(0).getValueType() == MVT::i1 &&
2555       N->getOpcode() == ISD::ZERO_EXTEND)
2556     WideRes = computeLogicOpInGPR(N->getOperand(0));
2557   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2558     return nullptr;
2559   else
2560     WideRes =
2561       getSETCCInGPR(N->getOperand(0),
2562                     N->getOpcode() == ISD::SIGN_EXTEND ?
2563                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2564 
2565   if (!WideRes)
2566     return nullptr;
2567 
2568   SDLoc dl(N);
2569   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2570   bool Output32Bit = N->getValueType(0) == MVT::i32;
2571 
2572   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2573   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2574 
2575   SDValue ConvOp = WideRes;
2576   if (Input32Bit != Output32Bit)
2577     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2578                            ExtOrTruncConversion::Trunc);
2579   return ConvOp.getNode();
2580 }
2581 
2582 // Attempt to perform logical operations on the results of comparisons while
2583 // keeping the values in GPRs. Without doing so, these would end up being
2584 // lowered to CR-logical operations which suffer from significant latency and
2585 // low ILP.
2586 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2587   if (N->getValueType(0) != MVT::i1)
2588     return nullptr;
2589   assert(isLogicOp(N->getOpcode()) &&
2590          "Expected a logic operation on setcc results.");
2591   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2592   if (!LoweredLogical)
2593     return nullptr;
2594 
2595   SDLoc dl(N);
2596   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2597   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2598   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2599   SDValue LHS = LoweredLogical.getOperand(0);
2600   SDValue RHS = LoweredLogical.getOperand(1);
2601   SDValue WideOp;
2602   SDValue OpToConvToRecForm;
2603 
2604   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2605   // opcode that is input to the XORI.
2606   if (IsBitwiseNegate &&
2607       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2608     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2609   else if (IsBitwiseNegate)
2610     // If the input to the XORI isn't an extension, that's what we're after.
2611     OpToConvToRecForm = LoweredLogical.getOperand(0);
2612   else
2613     // If this is not an XORI, it is a reg-reg logical op and we can convert
2614     // it to record-form.
2615     OpToConvToRecForm = LoweredLogical;
2616 
2617   // Get the record-form version of the node we're looking to use to get the
2618   // CR result from.
2619   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2620   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2621 
2622   // Convert the right node to record-form. This is either the logical we're
2623   // looking at or it is the input node to the negation (if we're looking at
2624   // a bitwise negation).
2625   if (NewOpc != -1 && IsBitwiseNegate) {
2626     // The input to the XORI has a record-form. Use it.
2627     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2628            "Expected a PPC::XORI8 only for bitwise negation.");
2629     // Emit the record-form instruction.
2630     std::vector<SDValue> Ops;
2631     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2632       Ops.push_back(OpToConvToRecForm.getOperand(i));
2633 
2634     WideOp =
2635       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2636                                      OpToConvToRecForm.getValueType(),
2637                                      MVT::Glue, Ops), 0);
2638   } else {
2639     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2640            "No record form available for AND8/OR8/XOR8?");
2641     WideOp =
2642         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2643                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
2644                 0);
2645   }
2646 
2647   // Select this node to a single bit from CR0 set by the record-form node
2648   // just created. For bitwise negation, use the EQ bit which is the equivalent
2649   // of negating the result (i.e. it is a bit set when the result of the
2650   // operation is zero).
2651   SDValue SRIdxVal =
2652     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2653   SDValue CRBit =
2654     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2655                                    MVT::i1, CR0Reg, SRIdxVal,
2656                                    WideOp.getValue(1)), 0);
2657   return CRBit.getNode();
2658 }
2659 
2660 // Lower a logical operation on i1 values into a GPR sequence if possible.
2661 // The result can be kept in a GPR if requested.
2662 // Three types of inputs can be handled:
2663 // - SETCC
2664 // - TRUNCATE
2665 // - Logical operation (AND/OR/XOR)
2666 // There is also a special case that is handled (namely a complement operation
2667 // achieved with xor %a, -1).
2668 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2669   assert(isLogicOp(LogicOp.getOpcode()) &&
2670         "Can only handle logic operations here.");
2671   assert(LogicOp.getValueType() == MVT::i1 &&
2672          "Can only handle logic operations on i1 values here.");
2673   SDLoc dl(LogicOp);
2674   SDValue LHS, RHS;
2675 
2676  // Special case: xor %a, -1
2677   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2678 
2679   // Produces a GPR sequence for each operand of the binary logic operation.
2680   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2681   // the value in a GPR and for logic operations, it will recursively produce
2682   // a GPR sequence for the operation.
2683  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2684     unsigned OperandOpcode = Operand.getOpcode();
2685     if (OperandOpcode == ISD::SETCC)
2686       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2687     else if (OperandOpcode == ISD::TRUNCATE) {
2688       SDValue InputOp = Operand.getOperand(0);
2689      EVT InVT = InputOp.getValueType();
2690       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2691                                             PPC::RLDICL, dl, InVT, InputOp,
2692                                             S->getI64Imm(0, dl),
2693                                             S->getI64Imm(63, dl)), 0);
2694     } else if (isLogicOp(OperandOpcode))
2695       return computeLogicOpInGPR(Operand);
2696     return SDValue();
2697   };
2698   LHS = getLogicOperand(LogicOp.getOperand(0));
2699   RHS = getLogicOperand(LogicOp.getOperand(1));
2700 
2701   // If a GPR sequence can't be produced for the LHS we can't proceed.
2702   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2703   // a bitwise negation operation.
2704   if (!LHS || (!RHS && !IsBitwiseNegation))
2705     return SDValue();
2706 
2707   NumLogicOpsOnComparison++;
2708 
2709   // We will use the inputs as 64-bit values.
2710   if (LHS.getValueType() == MVT::i32)
2711     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2712   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2713     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2714 
2715   unsigned NewOpc;
2716   switch (LogicOp.getOpcode()) {
2717   default: llvm_unreachable("Unknown logic operation.");
2718   case ISD::AND: NewOpc = PPC::AND8; break;
2719   case ISD::OR:  NewOpc = PPC::OR8;  break;
2720   case ISD::XOR: NewOpc = PPC::XOR8; break;
2721   }
2722 
2723   if (IsBitwiseNegation) {
2724     RHS = S->getI64Imm(1, dl);
2725     NewOpc = PPC::XORI8;
2726   }
2727 
2728   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2729 
2730 }
2731 
2732 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2733 /// Otherwise just reinterpret it as a 64-bit value.
2734 /// Useful when emitting comparison code for 32-bit values without using
2735 /// the compare instruction (which only considers the lower 32-bits).
2736 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2737   assert(Input.getValueType() == MVT::i32 &&
2738          "Can only sign-extend 32-bit values here.");
2739   unsigned Opc = Input.getOpcode();
2740 
2741   // The value was sign extended and then truncated to 32-bits. No need to
2742   // sign extend it again.
2743   if (Opc == ISD::TRUNCATE &&
2744       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2745        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2746     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2747 
2748   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2749   // The input is a sign-extending load. All ppc sign-extending loads
2750   // sign-extend to the full 64-bits.
2751   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
2752     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2753 
2754   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2755   // We don't sign-extend constants.
2756   if (InputConst)
2757     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2758 
2759   SDLoc dl(Input);
2760   SignExtensionsAdded++;
2761   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
2762                                         MVT::i64, Input), 0);
2763 }
2764 
2765 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
2766 /// Otherwise just reinterpret it as a 64-bit value.
2767 /// Useful when emitting comparison code for 32-bit values without using
2768 /// the compare instruction (which only considers the lower 32-bits).
2769 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
2770   assert(Input.getValueType() == MVT::i32 &&
2771          "Can only zero-extend 32-bit values here.");
2772   unsigned Opc = Input.getOpcode();
2773 
2774   // The only condition under which we can omit the actual extend instruction:
2775   // - The value is a positive constant
2776   // - The value comes from a load that isn't a sign-extending load
2777   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
2778   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
2779     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
2780      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
2781   if (IsTruncateOfZExt)
2782     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2783 
2784   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2785   if (InputConst && InputConst->getSExtValue() >= 0)
2786     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2787 
2788   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2789   // The input is a load that doesn't sign-extend (it will be zero-extended).
2790   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
2791     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2792 
2793   // None of the above, need to zero-extend.
2794   SDLoc dl(Input);
2795   ZeroExtensionsAdded++;
2796   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
2797                                         S->getI64Imm(0, dl),
2798                                         S->getI64Imm(32, dl)), 0);
2799 }
2800 
2801 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
2802 // course not actual zero/sign extensions that will generate machine code,
2803 // they're just a way to reinterpret a 32 bit value in a register as a
2804 // 64 bit value and vice-versa.
2805 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
2806                                                 ExtOrTruncConversion Conv) {
2807   SDLoc dl(NatWidthRes);
2808 
2809   // For reinterpreting 32-bit values as 64 bit values, we generate
2810   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
2811   if (Conv == ExtOrTruncConversion::Ext) {
2812     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
2813     SDValue SubRegIdx =
2814       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2815     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
2816                                           ImDef, NatWidthRes, SubRegIdx), 0);
2817   }
2818 
2819   assert(Conv == ExtOrTruncConversion::Trunc &&
2820          "Unknown convertion between 32 and 64 bit values.");
2821   // For reinterpreting 64-bit values as 32-bit values, we just need to
2822   // EXTRACT_SUBREG (i.e. extract the low word).
2823   SDValue SubRegIdx =
2824     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2825   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
2826                                         NatWidthRes, SubRegIdx), 0);
2827 }
2828 
2829 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
2830 // Handle both zero-extensions and sign-extensions.
2831 SDValue
2832 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2833                                                          ZeroCompare CmpTy) {
2834   EVT InVT = LHS.getValueType();
2835   bool Is32Bit = InVT == MVT::i32;
2836   SDValue ToExtend;
2837 
2838   // Produce the value that needs to be either zero or sign extended.
2839   switch (CmpTy) {
2840   case ZeroCompare::GEZExt:
2841   case ZeroCompare::GESExt:
2842     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
2843                                               dl, InVT, LHS, LHS), 0);
2844     break;
2845   case ZeroCompare::LEZExt:
2846   case ZeroCompare::LESExt: {
2847     if (Is32Bit) {
2848       // Upper 32 bits cannot be undefined for this sequence.
2849       LHS = signExtendInputIfNeeded(LHS);
2850       SDValue Neg =
2851         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2852       ToExtend =
2853         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2854                                        Neg, S->getI64Imm(1, dl),
2855                                        S->getI64Imm(63, dl)), 0);
2856     } else {
2857       SDValue Addi =
2858         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
2859                                        S->getI64Imm(~0ULL, dl)), 0);
2860       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2861                                                 Addi, LHS), 0);
2862     }
2863     break;
2864   }
2865   }
2866 
2867   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
2868   if (!Is32Bit &&
2869       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
2870     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2871                                           ToExtend, S->getI64Imm(1, dl),
2872                                           S->getI64Imm(63, dl)), 0);
2873   if (!Is32Bit &&
2874       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
2875     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
2876                                           S->getI64Imm(63, dl)), 0);
2877 
2878   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
2879   // For 32-bit sequences, the extensions differ between GE/LE cases.
2880   switch (CmpTy) {
2881   case ZeroCompare::GEZExt: {
2882     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
2883                            S->getI32Imm(31, dl) };
2884     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2885                                           ShiftOps), 0);
2886   }
2887   case ZeroCompare::GESExt:
2888     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
2889                                           S->getI32Imm(31, dl)), 0);
2890   case ZeroCompare::LEZExt:
2891     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
2892                                           S->getI32Imm(1, dl)), 0);
2893   case ZeroCompare::LESExt:
2894     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
2895                                           S->getI32Imm(-1, dl)), 0);
2896   }
2897 
2898   // The above case covers all the enumerators so it can't have a default clause
2899   // to avoid compiler warnings.
2900   llvm_unreachable("Unknown zero-comparison type.");
2901 }
2902 
2903 /// Produces a zero-extended result of comparing two 32-bit values according to
2904 /// the passed condition code.
2905 SDValue
2906 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
2907                                               ISD::CondCode CC,
2908                                               int64_t RHSValue, SDLoc dl) {
2909   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
2910       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
2911     return SDValue();
2912   bool IsRHSZero = RHSValue == 0;
2913   bool IsRHSOne = RHSValue == 1;
2914   bool IsRHSNegOne = RHSValue == -1LL;
2915   switch (CC) {
2916   default: return SDValue();
2917   case ISD::SETEQ: {
2918     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
2919     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
2920     SDValue Xor = IsRHSZero ? LHS :
2921       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2922     SDValue Clz =
2923       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2924     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2925       S->getI32Imm(31, dl) };
2926     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2927                                           ShiftOps), 0);
2928   }
2929   case ISD::SETNE: {
2930     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
2931     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
2932     SDValue Xor = IsRHSZero ? LHS :
2933       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2934     SDValue Clz =
2935       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2936     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2937       S->getI32Imm(31, dl) };
2938     SDValue Shift =
2939       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2940     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2941                                           S->getI32Imm(1, dl)), 0);
2942   }
2943   case ISD::SETGE: {
2944     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
2945     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
2946     if(IsRHSZero)
2947       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2948 
2949     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2950     // by swapping inputs and falling through.
2951     std::swap(LHS, RHS);
2952     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2953     IsRHSZero = RHSConst && RHSConst->isNullValue();
2954     LLVM_FALLTHROUGH;
2955   }
2956   case ISD::SETLE: {
2957     if (CmpInGPR == ICGPR_NonExtIn)
2958       return SDValue();
2959     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
2960     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
2961     if(IsRHSZero) {
2962       if (CmpInGPR == ICGPR_NonExtIn)
2963         return SDValue();
2964       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2965     }
2966 
2967     // The upper 32-bits of the register can't be undefined for this sequence.
2968     LHS = signExtendInputIfNeeded(LHS);
2969     RHS = signExtendInputIfNeeded(RHS);
2970     SDValue Sub =
2971       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2972     SDValue Shift =
2973       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
2974                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
2975               0);
2976     return
2977       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
2978                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
2979   }
2980   case ISD::SETGT: {
2981     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
2982     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
2983     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
2984     // Handle SETLT -1 (which is equivalent to SETGE 0).
2985     if (IsRHSNegOne)
2986       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2987 
2988     if (IsRHSZero) {
2989       if (CmpInGPR == ICGPR_NonExtIn)
2990         return SDValue();
2991       // The upper 32-bits of the register can't be undefined for this sequence.
2992       LHS = signExtendInputIfNeeded(LHS);
2993       RHS = signExtendInputIfNeeded(RHS);
2994       SDValue Neg =
2995         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2996       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2997                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
2998     }
2999     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3000     // (%b < %a) by swapping inputs and falling through.
3001     std::swap(LHS, RHS);
3002     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3003     IsRHSZero = RHSConst && RHSConst->isNullValue();
3004     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3005     LLVM_FALLTHROUGH;
3006   }
3007   case ISD::SETLT: {
3008     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3009     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3010     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3011     // Handle SETLT 1 (which is equivalent to SETLE 0).
3012     if (IsRHSOne) {
3013       if (CmpInGPR == ICGPR_NonExtIn)
3014         return SDValue();
3015       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3016     }
3017 
3018     if (IsRHSZero) {
3019       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3020                              S->getI32Imm(31, dl) };
3021       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3022                                             ShiftOps), 0);
3023     }
3024 
3025     if (CmpInGPR == ICGPR_NonExtIn)
3026       return SDValue();
3027     // The upper 32-bits of the register can't be undefined for this sequence.
3028     LHS = signExtendInputIfNeeded(LHS);
3029     RHS = signExtendInputIfNeeded(RHS);
3030     SDValue SUBFNode =
3031       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3032     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3033                                     SUBFNode, S->getI64Imm(1, dl),
3034                                     S->getI64Imm(63, dl)), 0);
3035   }
3036   case ISD::SETUGE:
3037     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3038     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3039     std::swap(LHS, RHS);
3040     LLVM_FALLTHROUGH;
3041   case ISD::SETULE: {
3042     if (CmpInGPR == ICGPR_NonExtIn)
3043       return SDValue();
3044     // The upper 32-bits of the register can't be undefined for this sequence.
3045     LHS = zeroExtendInputIfNeeded(LHS);
3046     RHS = zeroExtendInputIfNeeded(RHS);
3047     SDValue Subtract =
3048       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3049     SDValue SrdiNode =
3050       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3051                                           Subtract, S->getI64Imm(1, dl),
3052                                           S->getI64Imm(63, dl)), 0);
3053     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3054                                             S->getI32Imm(1, dl)), 0);
3055   }
3056   case ISD::SETUGT:
3057     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3058     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3059     std::swap(LHS, RHS);
3060     LLVM_FALLTHROUGH;
3061   case ISD::SETULT: {
3062     if (CmpInGPR == ICGPR_NonExtIn)
3063       return SDValue();
3064     // The upper 32-bits of the register can't be undefined for this sequence.
3065     LHS = zeroExtendInputIfNeeded(LHS);
3066     RHS = zeroExtendInputIfNeeded(RHS);
3067     SDValue Subtract =
3068       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3069     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3070                                           Subtract, S->getI64Imm(1, dl),
3071                                           S->getI64Imm(63, dl)), 0);
3072   }
3073   }
3074 }
3075 
3076 /// Produces a sign-extended result of comparing two 32-bit values according to
3077 /// the passed condition code.
3078 SDValue
3079 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3080                                               ISD::CondCode CC,
3081                                               int64_t RHSValue, SDLoc dl) {
3082   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3083       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3084     return SDValue();
3085   bool IsRHSZero = RHSValue == 0;
3086   bool IsRHSOne = RHSValue == 1;
3087   bool IsRHSNegOne = RHSValue == -1LL;
3088 
3089   switch (CC) {
3090   default: return SDValue();
3091   case ISD::SETEQ: {
3092     // (sext (setcc %a, %b, seteq)) ->
3093     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3094     // (sext (setcc %a, 0, seteq)) ->
3095     //   (ashr (shl (ctlz %a), 58), 63)
3096     SDValue CountInput = IsRHSZero ? LHS :
3097       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3098     SDValue Cntlzw =
3099       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3100     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3101                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3102     SDValue Slwi =
3103       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3104     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3105   }
3106   case ISD::SETNE: {
3107     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3108     // flip the bit, finally take 2's complement.
3109     // (sext (setcc %a, %b, setne)) ->
3110     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3111     // Same as above, but the first xor is not needed.
3112     // (sext (setcc %a, 0, setne)) ->
3113     //   (neg (xor (lshr (ctlz %a), 5), 1))
3114     SDValue Xor = IsRHSZero ? LHS :
3115       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3116     SDValue Clz =
3117       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3118     SDValue ShiftOps[] =
3119       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3120     SDValue Shift =
3121       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3122     SDValue Xori =
3123       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3124                                      S->getI32Imm(1, dl)), 0);
3125     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3126   }
3127   case ISD::SETGE: {
3128     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3129     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3130     if (IsRHSZero)
3131       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3132 
3133     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3134     // by swapping inputs and falling through.
3135     std::swap(LHS, RHS);
3136     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3137     IsRHSZero = RHSConst && RHSConst->isNullValue();
3138     LLVM_FALLTHROUGH;
3139   }
3140   case ISD::SETLE: {
3141     if (CmpInGPR == ICGPR_NonExtIn)
3142       return SDValue();
3143     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3144     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3145     if (IsRHSZero)
3146       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3147 
3148     // The upper 32-bits of the register can't be undefined for this sequence.
3149     LHS = signExtendInputIfNeeded(LHS);
3150     RHS = signExtendInputIfNeeded(RHS);
3151     SDValue SUBFNode =
3152       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3153                                      LHS, RHS), 0);
3154     SDValue Srdi =
3155       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3156                                      SUBFNode, S->getI64Imm(1, dl),
3157                                      S->getI64Imm(63, dl)), 0);
3158     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3159                                           S->getI32Imm(-1, dl)), 0);
3160   }
3161   case ISD::SETGT: {
3162     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3163     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3164     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3165     if (IsRHSNegOne)
3166       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3167     if (IsRHSZero) {
3168       if (CmpInGPR == ICGPR_NonExtIn)
3169         return SDValue();
3170       // The upper 32-bits of the register can't be undefined for this sequence.
3171       LHS = signExtendInputIfNeeded(LHS);
3172       RHS = signExtendInputIfNeeded(RHS);
3173       SDValue Neg =
3174         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3175         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3176                                               S->getI64Imm(63, dl)), 0);
3177     }
3178     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3179     // (%b < %a) by swapping inputs and falling through.
3180     std::swap(LHS, RHS);
3181     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3182     IsRHSZero = RHSConst && RHSConst->isNullValue();
3183     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3184     LLVM_FALLTHROUGH;
3185   }
3186   case ISD::SETLT: {
3187     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3188     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3189     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3190     if (IsRHSOne) {
3191       if (CmpInGPR == ICGPR_NonExtIn)
3192         return SDValue();
3193       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3194     }
3195     if (IsRHSZero)
3196       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3197                                             S->getI32Imm(31, dl)), 0);
3198 
3199     if (CmpInGPR == ICGPR_NonExtIn)
3200       return SDValue();
3201     // The upper 32-bits of the register can't be undefined for this sequence.
3202     LHS = signExtendInputIfNeeded(LHS);
3203     RHS = signExtendInputIfNeeded(RHS);
3204     SDValue SUBFNode =
3205       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3206     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3207                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3208   }
3209   case ISD::SETUGE:
3210     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3211     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3212     std::swap(LHS, RHS);
3213     LLVM_FALLTHROUGH;
3214   case ISD::SETULE: {
3215     if (CmpInGPR == ICGPR_NonExtIn)
3216       return SDValue();
3217     // The upper 32-bits of the register can't be undefined for this sequence.
3218     LHS = zeroExtendInputIfNeeded(LHS);
3219     RHS = zeroExtendInputIfNeeded(RHS);
3220     SDValue Subtract =
3221       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3222     SDValue Shift =
3223       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3224                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3225               0);
3226     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3227                                           S->getI32Imm(-1, dl)), 0);
3228   }
3229   case ISD::SETUGT:
3230     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3231     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3232     std::swap(LHS, RHS);
3233     LLVM_FALLTHROUGH;
3234   case ISD::SETULT: {
3235     if (CmpInGPR == ICGPR_NonExtIn)
3236       return SDValue();
3237     // The upper 32-bits of the register can't be undefined for this sequence.
3238     LHS = zeroExtendInputIfNeeded(LHS);
3239     RHS = zeroExtendInputIfNeeded(RHS);
3240     SDValue Subtract =
3241       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3242     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3243                                           Subtract, S->getI64Imm(63, dl)), 0);
3244   }
3245   }
3246 }
3247 
3248 /// Produces a zero-extended result of comparing two 64-bit values according to
3249 /// the passed condition code.
3250 SDValue
3251 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3252                                               ISD::CondCode CC,
3253                                               int64_t RHSValue, SDLoc dl) {
3254   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3255       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3256     return SDValue();
3257   bool IsRHSZero = RHSValue == 0;
3258   bool IsRHSOne = RHSValue == 1;
3259   bool IsRHSNegOne = RHSValue == -1LL;
3260   switch (CC) {
3261   default: return SDValue();
3262   case ISD::SETEQ: {
3263     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3264     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3265     SDValue Xor = IsRHSZero ? LHS :
3266       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3267     SDValue Clz =
3268       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3269     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3270                                           S->getI64Imm(58, dl),
3271                                           S->getI64Imm(63, dl)), 0);
3272   }
3273   case ISD::SETNE: {
3274     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3275     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3276     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3277     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3278     SDValue Xor = IsRHSZero ? LHS :
3279       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3280     SDValue AC =
3281       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3282                                      Xor, S->getI32Imm(~0U, dl)), 0);
3283     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3284                                           Xor, AC.getValue(1)), 0);
3285   }
3286   case ISD::SETGE: {
3287     // {subc.reg, subc.CA} = (subcarry %a, %b)
3288     // (zext (setcc %a, %b, setge)) ->
3289     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3290     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3291     if (IsRHSZero)
3292       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3293     std::swap(LHS, RHS);
3294     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3295     IsRHSZero = RHSConst && RHSConst->isNullValue();
3296     LLVM_FALLTHROUGH;
3297   }
3298   case ISD::SETLE: {
3299     // {subc.reg, subc.CA} = (subcarry %b, %a)
3300     // (zext (setcc %a, %b, setge)) ->
3301     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3302     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3303     if (IsRHSZero)
3304       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3305     SDValue ShiftL =
3306       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3307                                      S->getI64Imm(1, dl),
3308                                      S->getI64Imm(63, dl)), 0);
3309     SDValue ShiftR =
3310       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3311                                      S->getI64Imm(63, dl)), 0);
3312     SDValue SubtractCarry =
3313       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3314                                      LHS, RHS), 1);
3315     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3316                                           ShiftR, ShiftL, SubtractCarry), 0);
3317   }
3318   case ISD::SETGT: {
3319     // {subc.reg, subc.CA} = (subcarry %b, %a)
3320     // (zext (setcc %a, %b, setgt)) ->
3321     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3322     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3323     if (IsRHSNegOne)
3324       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3325     if (IsRHSZero) {
3326       SDValue Addi =
3327         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3328                                        S->getI64Imm(~0ULL, dl)), 0);
3329       SDValue Nor =
3330         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3331       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3332                                             S->getI64Imm(1, dl),
3333                                             S->getI64Imm(63, dl)), 0);
3334     }
3335     std::swap(LHS, RHS);
3336     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3337     IsRHSZero = RHSConst && RHSConst->isNullValue();
3338     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3339     LLVM_FALLTHROUGH;
3340   }
3341   case ISD::SETLT: {
3342     // {subc.reg, subc.CA} = (subcarry %a, %b)
3343     // (zext (setcc %a, %b, setlt)) ->
3344     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3345     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3346     if (IsRHSOne)
3347       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3348     if (IsRHSZero)
3349       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3350                                             S->getI64Imm(1, dl),
3351                                             S->getI64Imm(63, dl)), 0);
3352     SDValue SRADINode =
3353       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3354                                      LHS, S->getI64Imm(63, dl)), 0);
3355     SDValue SRDINode =
3356       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3357                                      RHS, S->getI64Imm(1, dl),
3358                                      S->getI64Imm(63, dl)), 0);
3359     SDValue SUBFC8Carry =
3360       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3361                                      RHS, LHS), 1);
3362     SDValue ADDE8Node =
3363       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3364                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3365     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3366                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3367   }
3368   case ISD::SETUGE:
3369     // {subc.reg, subc.CA} = (subcarry %a, %b)
3370     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3371     std::swap(LHS, RHS);
3372     LLVM_FALLTHROUGH;
3373   case ISD::SETULE: {
3374     // {subc.reg, subc.CA} = (subcarry %b, %a)
3375     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3376     SDValue SUBFC8Carry =
3377       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3378                                      LHS, RHS), 1);
3379     SDValue SUBFE8Node =
3380       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3381                                      LHS, LHS, SUBFC8Carry), 0);
3382     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3383                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3384   }
3385   case ISD::SETUGT:
3386     // {subc.reg, subc.CA} = (subcarry %b, %a)
3387     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3388     std::swap(LHS, RHS);
3389     LLVM_FALLTHROUGH;
3390   case ISD::SETULT: {
3391     // {subc.reg, subc.CA} = (subcarry %a, %b)
3392     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3393     SDValue SubtractCarry =
3394       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3395                                      RHS, LHS), 1);
3396     SDValue ExtSub =
3397       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3398                                      LHS, LHS, SubtractCarry), 0);
3399     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3400                                           ExtSub), 0);
3401   }
3402   }
3403 }
3404 
3405 /// Produces a sign-extended result of comparing two 64-bit values according to
3406 /// the passed condition code.
3407 SDValue
3408 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3409                                               ISD::CondCode CC,
3410                                               int64_t RHSValue, SDLoc dl) {
3411   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3412       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3413     return SDValue();
3414   bool IsRHSZero = RHSValue == 0;
3415   bool IsRHSOne = RHSValue == 1;
3416   bool IsRHSNegOne = RHSValue == -1LL;
3417   switch (CC) {
3418   default: return SDValue();
3419   case ISD::SETEQ: {
3420     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3421     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3422     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3423     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3424     SDValue AddInput = IsRHSZero ? LHS :
3425       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3426     SDValue Addic =
3427       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3428                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3429     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3430                                           Addic, Addic.getValue(1)), 0);
3431   }
3432   case ISD::SETNE: {
3433     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3434     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3435     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3436     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3437     SDValue Xor = IsRHSZero ? LHS :
3438       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3439     SDValue SC =
3440       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3441                                      Xor, S->getI32Imm(0, dl)), 0);
3442     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3443                                           SC, SC.getValue(1)), 0);
3444   }
3445   case ISD::SETGE: {
3446     // {subc.reg, subc.CA} = (subcarry %a, %b)
3447     // (zext (setcc %a, %b, setge)) ->
3448     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3449     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3450     if (IsRHSZero)
3451       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3452     std::swap(LHS, RHS);
3453     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3454     IsRHSZero = RHSConst && RHSConst->isNullValue();
3455     LLVM_FALLTHROUGH;
3456   }
3457   case ISD::SETLE: {
3458     // {subc.reg, subc.CA} = (subcarry %b, %a)
3459     // (zext (setcc %a, %b, setge)) ->
3460     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3461     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3462     if (IsRHSZero)
3463       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3464     SDValue ShiftR =
3465       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3466                                      S->getI64Imm(63, dl)), 0);
3467     SDValue ShiftL =
3468       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3469                                      S->getI64Imm(1, dl),
3470                                      S->getI64Imm(63, dl)), 0);
3471     SDValue SubtractCarry =
3472       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3473                                      LHS, RHS), 1);
3474     SDValue Adde =
3475       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3476                                      ShiftR, ShiftL, SubtractCarry), 0);
3477     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3478   }
3479   case ISD::SETGT: {
3480     // {subc.reg, subc.CA} = (subcarry %b, %a)
3481     // (zext (setcc %a, %b, setgt)) ->
3482     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3483     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3484     if (IsRHSNegOne)
3485       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3486     if (IsRHSZero) {
3487       SDValue Add =
3488         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3489                                        S->getI64Imm(-1, dl)), 0);
3490       SDValue Nor =
3491         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3492       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3493                                             S->getI64Imm(63, dl)), 0);
3494     }
3495     std::swap(LHS, RHS);
3496     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3497     IsRHSZero = RHSConst && RHSConst->isNullValue();
3498     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3499     LLVM_FALLTHROUGH;
3500   }
3501   case ISD::SETLT: {
3502     // {subc.reg, subc.CA} = (subcarry %a, %b)
3503     // (zext (setcc %a, %b, setlt)) ->
3504     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3505     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3506     if (IsRHSOne)
3507       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3508     if (IsRHSZero) {
3509       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3510                                             S->getI64Imm(63, dl)), 0);
3511     }
3512     SDValue SRADINode =
3513       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3514                                      LHS, S->getI64Imm(63, dl)), 0);
3515     SDValue SRDINode =
3516       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3517                                      RHS, S->getI64Imm(1, dl),
3518                                      S->getI64Imm(63, dl)), 0);
3519     SDValue SUBFC8Carry =
3520       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3521                                      RHS, LHS), 1);
3522     SDValue ADDE8Node =
3523       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3524                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3525     SDValue XORI8Node =
3526       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3527                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3528     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3529                                           XORI8Node), 0);
3530   }
3531   case ISD::SETUGE:
3532     // {subc.reg, subc.CA} = (subcarry %a, %b)
3533     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3534     std::swap(LHS, RHS);
3535     LLVM_FALLTHROUGH;
3536   case ISD::SETULE: {
3537     // {subc.reg, subc.CA} = (subcarry %b, %a)
3538     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3539     SDValue SubtractCarry =
3540       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3541                                      LHS, RHS), 1);
3542     SDValue ExtSub =
3543       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3544                                      LHS, SubtractCarry), 0);
3545     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3546                                           ExtSub, ExtSub), 0);
3547   }
3548   case ISD::SETUGT:
3549     // {subc.reg, subc.CA} = (subcarry %b, %a)
3550     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3551     std::swap(LHS, RHS);
3552     LLVM_FALLTHROUGH;
3553   case ISD::SETULT: {
3554     // {subc.reg, subc.CA} = (subcarry %a, %b)
3555     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3556     SDValue SubCarry =
3557       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3558                                      RHS, LHS), 1);
3559     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3560                                      LHS, LHS, SubCarry), 0);
3561   }
3562   }
3563 }
3564 
3565 /// Do all uses of this SDValue need the result in a GPR?
3566 /// This is meant to be used on values that have type i1 since
3567 /// it is somewhat meaningless to ask if values of other types
3568 /// should be kept in GPR's.
3569 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3570   assert(Compare.getOpcode() == ISD::SETCC &&
3571          "An ISD::SETCC node required here.");
3572 
3573   // For values that have a single use, the caller should obviously already have
3574   // checked if that use is an extending use. We check the other uses here.
3575   if (Compare.hasOneUse())
3576     return true;
3577   // We want the value in a GPR if it is being extended, used for a select, or
3578   // used in logical operations.
3579   for (auto CompareUse : Compare.getNode()->uses())
3580     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3581         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3582         CompareUse->getOpcode() != ISD::SELECT &&
3583         !isLogicOp(CompareUse->getOpcode())) {
3584       OmittedForNonExtendUses++;
3585       return false;
3586     }
3587   return true;
3588 }
3589 
3590 /// Returns an equivalent of a SETCC node but with the result the same width as
3591 /// the inputs. This can also be used for SELECT_CC if either the true or false
3592 /// values is a power of two while the other is zero.
3593 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3594                                                 SetccInGPROpts ConvOpts) {
3595   assert((Compare.getOpcode() == ISD::SETCC ||
3596           Compare.getOpcode() == ISD::SELECT_CC) &&
3597          "An ISD::SETCC node required here.");
3598 
3599   // Don't convert this comparison to a GPR sequence because there are uses
3600   // of the i1 result (i.e. uses that require the result in the CR).
3601   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3602     return SDValue();
3603 
3604   SDValue LHS = Compare.getOperand(0);
3605   SDValue RHS = Compare.getOperand(1);
3606 
3607   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3608   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3609   ISD::CondCode CC =
3610     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3611   EVT InputVT = LHS.getValueType();
3612   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3613     return SDValue();
3614 
3615   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3616       ConvOpts == SetccInGPROpts::SExtInvert)
3617     CC = ISD::getSetCCInverse(CC, InputVT);
3618 
3619   bool Inputs32Bit = InputVT == MVT::i32;
3620 
3621   SDLoc dl(Compare);
3622   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3623   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3624   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3625     ConvOpts == SetccInGPROpts::SExtInvert;
3626 
3627   if (IsSext && Inputs32Bit)
3628     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3629   else if (Inputs32Bit)
3630     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3631   else if (IsSext)
3632     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3633   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3634 }
3635 
3636 } // end anonymous namespace
3637 
3638 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3639   if (N->getValueType(0) != MVT::i32 &&
3640       N->getValueType(0) != MVT::i64)
3641     return false;
3642 
3643   // This optimization will emit code that assumes 64-bit registers
3644   // so we don't want to run it in 32-bit mode. Also don't run it
3645   // on functions that are not to be optimized.
3646   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3647     return false;
3648 
3649   switch (N->getOpcode()) {
3650   default: break;
3651   case ISD::ZERO_EXTEND:
3652   case ISD::SIGN_EXTEND:
3653   case ISD::AND:
3654   case ISD::OR:
3655   case ISD::XOR: {
3656     IntegerCompareEliminator ICmpElim(CurDAG, this);
3657     if (SDNode *New = ICmpElim.Select(N)) {
3658       ReplaceNode(N, New);
3659       return true;
3660     }
3661   }
3662   }
3663   return false;
3664 }
3665 
3666 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3667   if (N->getValueType(0) != MVT::i32 &&
3668       N->getValueType(0) != MVT::i64)
3669     return false;
3670 
3671   if (!UseBitPermRewriter)
3672     return false;
3673 
3674   switch (N->getOpcode()) {
3675   default: break;
3676   case ISD::ROTL:
3677   case ISD::SHL:
3678   case ISD::SRL:
3679   case ISD::AND:
3680   case ISD::OR: {
3681     BitPermutationSelector BPS(CurDAG);
3682     if (SDNode *New = BPS.Select(N)) {
3683       ReplaceNode(N, New);
3684       return true;
3685     }
3686     return false;
3687   }
3688   }
3689 
3690   return false;
3691 }
3692 
3693 /// SelectCC - Select a comparison of the specified values with the specified
3694 /// condition code, returning the CR# of the expression.
3695 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3696                                   const SDLoc &dl) {
3697   // Always select the LHS.
3698   unsigned Opc;
3699 
3700   if (LHS.getValueType() == MVT::i32) {
3701     unsigned Imm;
3702     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3703       if (isInt32Immediate(RHS, Imm)) {
3704         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3705         if (isUInt<16>(Imm))
3706           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3707                                                 getI32Imm(Imm & 0xFFFF, dl)),
3708                          0);
3709         // If this is a 16-bit signed immediate, fold it.
3710         if (isInt<16>((int)Imm))
3711           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3712                                                 getI32Imm(Imm & 0xFFFF, dl)),
3713                          0);
3714 
3715         // For non-equality comparisons, the default code would materialize the
3716         // constant, then compare against it, like this:
3717         //   lis r2, 4660
3718         //   ori r2, r2, 22136
3719         //   cmpw cr0, r3, r2
3720         // Since we are just comparing for equality, we can emit this instead:
3721         //   xoris r0,r3,0x1234
3722         //   cmplwi cr0,r0,0x5678
3723         //   beq cr0,L6
3724         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3725                                            getI32Imm(Imm >> 16, dl)), 0);
3726         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3727                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3728       }
3729       Opc = PPC::CMPLW;
3730     } else if (ISD::isUnsignedIntSetCC(CC)) {
3731       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3732         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3733                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3734       Opc = PPC::CMPLW;
3735     } else {
3736       int16_t SImm;
3737       if (isIntS16Immediate(RHS, SImm))
3738         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3739                                               getI32Imm((int)SImm & 0xFFFF,
3740                                                         dl)),
3741                          0);
3742       Opc = PPC::CMPW;
3743     }
3744   } else if (LHS.getValueType() == MVT::i64) {
3745     uint64_t Imm;
3746     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3747       if (isInt64Immediate(RHS.getNode(), Imm)) {
3748         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3749         if (isUInt<16>(Imm))
3750           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3751                                                 getI32Imm(Imm & 0xFFFF, dl)),
3752                          0);
3753         // If this is a 16-bit signed immediate, fold it.
3754         if (isInt<16>(Imm))
3755           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3756                                                 getI32Imm(Imm & 0xFFFF, dl)),
3757                          0);
3758 
3759         // For non-equality comparisons, the default code would materialize the
3760         // constant, then compare against it, like this:
3761         //   lis r2, 4660
3762         //   ori r2, r2, 22136
3763         //   cmpd cr0, r3, r2
3764         // Since we are just comparing for equality, we can emit this instead:
3765         //   xoris r0,r3,0x1234
3766         //   cmpldi cr0,r0,0x5678
3767         //   beq cr0,L6
3768         if (isUInt<32>(Imm)) {
3769           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
3770                                              getI64Imm(Imm >> 16, dl)), 0);
3771           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
3772                                                 getI64Imm(Imm & 0xFFFF, dl)),
3773                          0);
3774         }
3775       }
3776       Opc = PPC::CMPLD;
3777     } else if (ISD::isUnsignedIntSetCC(CC)) {
3778       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
3779         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3780                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
3781       Opc = PPC::CMPLD;
3782     } else {
3783       int16_t SImm;
3784       if (isIntS16Immediate(RHS, SImm))
3785         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3786                                               getI64Imm(SImm & 0xFFFF, dl)),
3787                          0);
3788       Opc = PPC::CMPD;
3789     }
3790   } else if (LHS.getValueType() == MVT::f32) {
3791     if (PPCSubTarget->hasSPE()) {
3792       switch (CC) {
3793         default:
3794         case ISD::SETEQ:
3795         case ISD::SETNE:
3796           Opc = PPC::EFSCMPEQ;
3797           break;
3798         case ISD::SETLT:
3799         case ISD::SETGE:
3800         case ISD::SETOLT:
3801         case ISD::SETOGE:
3802         case ISD::SETULT:
3803         case ISD::SETUGE:
3804           Opc = PPC::EFSCMPLT;
3805           break;
3806         case ISD::SETGT:
3807         case ISD::SETLE:
3808         case ISD::SETOGT:
3809         case ISD::SETOLE:
3810         case ISD::SETUGT:
3811         case ISD::SETULE:
3812           Opc = PPC::EFSCMPGT;
3813           break;
3814       }
3815     } else
3816       Opc = PPC::FCMPUS;
3817   } else if (LHS.getValueType() == MVT::f64) {
3818     if (PPCSubTarget->hasSPE()) {
3819       switch (CC) {
3820         default:
3821         case ISD::SETEQ:
3822         case ISD::SETNE:
3823           Opc = PPC::EFDCMPEQ;
3824           break;
3825         case ISD::SETLT:
3826         case ISD::SETGE:
3827         case ISD::SETOLT:
3828         case ISD::SETOGE:
3829         case ISD::SETULT:
3830         case ISD::SETUGE:
3831           Opc = PPC::EFDCMPLT;
3832           break;
3833         case ISD::SETGT:
3834         case ISD::SETLE:
3835         case ISD::SETOGT:
3836         case ISD::SETOLE:
3837         case ISD::SETUGT:
3838         case ISD::SETULE:
3839           Opc = PPC::EFDCMPGT;
3840           break;
3841       }
3842     } else
3843       Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
3844   } else {
3845     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
3846     assert(PPCSubTarget->hasVSX() && "__float128 requires VSX");
3847     Opc = PPC::XSCMPUQP;
3848   }
3849   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
3850 }
3851 
3852 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
3853                                            const PPCSubtarget *Subtarget) {
3854   // For SPE instructions, the result is in GT bit of the CR
3855   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
3856 
3857   switch (CC) {
3858   case ISD::SETUEQ:
3859   case ISD::SETONE:
3860   case ISD::SETOLE:
3861   case ISD::SETOGE:
3862     llvm_unreachable("Should be lowered by legalize!");
3863   default: llvm_unreachable("Unknown condition!");
3864   case ISD::SETOEQ:
3865   case ISD::SETEQ:
3866     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
3867   case ISD::SETUNE:
3868   case ISD::SETNE:
3869     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
3870   case ISD::SETOLT:
3871   case ISD::SETLT:
3872     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
3873   case ISD::SETULE:
3874   case ISD::SETLE:
3875     return UseSPE ? PPC::PRED_LE : PPC::PRED_LE;
3876   case ISD::SETOGT:
3877   case ISD::SETGT:
3878     return UseSPE ? PPC::PRED_GT : PPC::PRED_GT;
3879   case ISD::SETUGE:
3880   case ISD::SETGE:
3881     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
3882   case ISD::SETO:   return PPC::PRED_NU;
3883   case ISD::SETUO:  return PPC::PRED_UN;
3884     // These two are invalid for floating point.  Assume we have int.
3885   case ISD::SETULT: return PPC::PRED_LT;
3886   case ISD::SETUGT: return PPC::PRED_GT;
3887   }
3888 }
3889 
3890 /// getCRIdxForSetCC - Return the index of the condition register field
3891 /// associated with the SetCC condition, and whether or not the field is
3892 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
3893 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
3894   Invert = false;
3895   switch (CC) {
3896   default: llvm_unreachable("Unknown condition!");
3897   case ISD::SETOLT:
3898   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
3899   case ISD::SETOGT:
3900   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
3901   case ISD::SETOEQ:
3902   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
3903   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
3904   case ISD::SETUGE:
3905   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
3906   case ISD::SETULE:
3907   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
3908   case ISD::SETUNE:
3909   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
3910   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
3911   case ISD::SETUEQ:
3912   case ISD::SETOGE:
3913   case ISD::SETOLE:
3914   case ISD::SETONE:
3915     llvm_unreachable("Invalid branch code: should be expanded by legalize");
3916   // These are invalid for floating point.  Assume integer.
3917   case ISD::SETULT: return 0;
3918   case ISD::SETUGT: return 1;
3919   }
3920 }
3921 
3922 // getVCmpInst: return the vector compare instruction for the specified
3923 // vector type and condition code. Since this is for altivec specific code,
3924 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
3925 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
3926                                 bool HasVSX, bool &Swap, bool &Negate) {
3927   Swap = false;
3928   Negate = false;
3929 
3930   if (VecVT.isFloatingPoint()) {
3931     /* Handle some cases by swapping input operands.  */
3932     switch (CC) {
3933       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
3934       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3935       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
3936       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
3937       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3938       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
3939       default: break;
3940     }
3941     /* Handle some cases by negating the result.  */
3942     switch (CC) {
3943       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3944       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
3945       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
3946       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
3947       default: break;
3948     }
3949     /* We have instructions implementing the remaining cases.  */
3950     switch (CC) {
3951       case ISD::SETEQ:
3952       case ISD::SETOEQ:
3953         if (VecVT == MVT::v4f32)
3954           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
3955         else if (VecVT == MVT::v2f64)
3956           return PPC::XVCMPEQDP;
3957         break;
3958       case ISD::SETGT:
3959       case ISD::SETOGT:
3960         if (VecVT == MVT::v4f32)
3961           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
3962         else if (VecVT == MVT::v2f64)
3963           return PPC::XVCMPGTDP;
3964         break;
3965       case ISD::SETGE:
3966       case ISD::SETOGE:
3967         if (VecVT == MVT::v4f32)
3968           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
3969         else if (VecVT == MVT::v2f64)
3970           return PPC::XVCMPGEDP;
3971         break;
3972       default:
3973         break;
3974     }
3975     llvm_unreachable("Invalid floating-point vector compare condition");
3976   } else {
3977     /* Handle some cases by swapping input operands.  */
3978     switch (CC) {
3979       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
3980       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3981       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3982       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
3983       default: break;
3984     }
3985     /* Handle some cases by negating the result.  */
3986     switch (CC) {
3987       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3988       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
3989       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
3990       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
3991       default: break;
3992     }
3993     /* We have instructions implementing the remaining cases.  */
3994     switch (CC) {
3995       case ISD::SETEQ:
3996       case ISD::SETUEQ:
3997         if (VecVT == MVT::v16i8)
3998           return PPC::VCMPEQUB;
3999         else if (VecVT == MVT::v8i16)
4000           return PPC::VCMPEQUH;
4001         else if (VecVT == MVT::v4i32)
4002           return PPC::VCMPEQUW;
4003         else if (VecVT == MVT::v2i64)
4004           return PPC::VCMPEQUD;
4005         break;
4006       case ISD::SETGT:
4007         if (VecVT == MVT::v16i8)
4008           return PPC::VCMPGTSB;
4009         else if (VecVT == MVT::v8i16)
4010           return PPC::VCMPGTSH;
4011         else if (VecVT == MVT::v4i32)
4012           return PPC::VCMPGTSW;
4013         else if (VecVT == MVT::v2i64)
4014           return PPC::VCMPGTSD;
4015         break;
4016       case ISD::SETUGT:
4017         if (VecVT == MVT::v16i8)
4018           return PPC::VCMPGTUB;
4019         else if (VecVT == MVT::v8i16)
4020           return PPC::VCMPGTUH;
4021         else if (VecVT == MVT::v4i32)
4022           return PPC::VCMPGTUW;
4023         else if (VecVT == MVT::v2i64)
4024           return PPC::VCMPGTUD;
4025         break;
4026       default:
4027         break;
4028     }
4029     llvm_unreachable("Invalid integer vector compare condition");
4030   }
4031 }
4032 
4033 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4034   SDLoc dl(N);
4035   unsigned Imm;
4036   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
4037   EVT PtrVT =
4038       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4039   bool isPPC64 = (PtrVT == MVT::i64);
4040 
4041   if (!PPCSubTarget->useCRBits() &&
4042       isInt32Immediate(N->getOperand(1), Imm)) {
4043     // We can codegen setcc op, imm very efficiently compared to a brcond.
4044     // Check for those cases here.
4045     // setcc op, 0
4046     if (Imm == 0) {
4047       SDValue Op = N->getOperand(0);
4048       switch (CC) {
4049       default: break;
4050       case ISD::SETEQ: {
4051         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4052         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4053                           getI32Imm(31, dl) };
4054         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4055         return true;
4056       }
4057       case ISD::SETNE: {
4058         if (isPPC64) break;
4059         SDValue AD =
4060           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4061                                          Op, getI32Imm(~0U, dl)), 0);
4062         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4063         return true;
4064       }
4065       case ISD::SETLT: {
4066         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4067                           getI32Imm(31, dl) };
4068         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4069         return true;
4070       }
4071       case ISD::SETGT: {
4072         SDValue T =
4073           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4074         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4075         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4076                           getI32Imm(31, dl) };
4077         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4078         return true;
4079       }
4080       }
4081     } else if (Imm == ~0U) {        // setcc op, -1
4082       SDValue Op = N->getOperand(0);
4083       switch (CC) {
4084       default: break;
4085       case ISD::SETEQ:
4086         if (isPPC64) break;
4087         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4088                                             Op, getI32Imm(1, dl)), 0);
4089         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4090                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4091                                                             MVT::i32,
4092                                                             getI32Imm(0, dl)),
4093                                      0), Op.getValue(1));
4094         return true;
4095       case ISD::SETNE: {
4096         if (isPPC64) break;
4097         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4098         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4099                                             Op, getI32Imm(~0U, dl));
4100         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4101                              SDValue(AD, 1));
4102         return true;
4103       }
4104       case ISD::SETLT: {
4105         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4106                                                     getI32Imm(1, dl)), 0);
4107         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4108                                                     Op), 0);
4109         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4110                           getI32Imm(31, dl) };
4111         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4112         return true;
4113       }
4114       case ISD::SETGT: {
4115         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4116                           getI32Imm(31, dl) };
4117         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4118         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4119         return true;
4120       }
4121       }
4122     }
4123   }
4124 
4125   SDValue LHS = N->getOperand(0);
4126   SDValue RHS = N->getOperand(1);
4127 
4128   // Altivec Vector compare instructions do not set any CR register by default and
4129   // vector compare operations return the same type as the operands.
4130   if (LHS.getValueType().isVector()) {
4131     if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE())
4132       return false;
4133 
4134     EVT VecVT = LHS.getValueType();
4135     bool Swap, Negate;
4136     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
4137                                         PPCSubTarget->hasVSX(), Swap, Negate);
4138     if (Swap)
4139       std::swap(LHS, RHS);
4140 
4141     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4142     if (Negate) {
4143       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4144       CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4145                            ResVT, VCmp, VCmp);
4146       return true;
4147     }
4148 
4149     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4150     return true;
4151   }
4152 
4153   if (PPCSubTarget->useCRBits())
4154     return false;
4155 
4156   bool Inv;
4157   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4158   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
4159   SDValue IntCR;
4160 
4161   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4162   // The correct compare instruction is already set by SelectCC()
4163   if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4164     Idx = 1;
4165   }
4166 
4167   // Force the ccreg into CR7.
4168   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4169 
4170   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
4171   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4172                                InFlag).getValue(1);
4173 
4174   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4175                                          CCReg), 0);
4176 
4177   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4178                       getI32Imm(31, dl), getI32Imm(31, dl) };
4179   if (!Inv) {
4180     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4181     return true;
4182   }
4183 
4184   // Get the specified bit.
4185   SDValue Tmp =
4186     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4187   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4188   return true;
4189 }
4190 
4191 /// Does this node represent a load/store node whose address can be represented
4192 /// with a register plus an immediate that's a multiple of \p Val:
4193 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4194   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4195   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4196   SDValue AddrOp;
4197   if (LDN)
4198     AddrOp = LDN->getOperand(1);
4199   else if (STN)
4200     AddrOp = STN->getOperand(2);
4201 
4202   // If the address points a frame object or a frame object with an offset,
4203   // we need to check the object alignment.
4204   short Imm = 0;
4205   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4206           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4207                                            AddrOp)) {
4208     // If op0 is a frame index that is under aligned, we can't do it either,
4209     // because it is translated to r31 or r1 + slot + offset. We won't know the
4210     // slot number until the stack frame is finalized.
4211     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4212     unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
4213     if ((SlotAlign % Val) != 0)
4214       return false;
4215 
4216     // If we have an offset, we need further check on the offset.
4217     if (AddrOp.getOpcode() != ISD::ADD)
4218       return true;
4219   }
4220 
4221   if (AddrOp.getOpcode() == ISD::ADD)
4222     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4223 
4224   // If the address comes from the outside, the offset will be zero.
4225   return AddrOp.getOpcode() == ISD::CopyFromReg;
4226 }
4227 
4228 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4229   // Transfer memoperands.
4230   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4231   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4232 }
4233 
4234 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4235                          bool &NeedSwapOps, bool &IsUnCmp) {
4236 
4237   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4238 
4239   SDValue LHS = N->getOperand(0);
4240   SDValue RHS = N->getOperand(1);
4241   SDValue TrueRes = N->getOperand(2);
4242   SDValue FalseRes = N->getOperand(3);
4243   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4244   if (!TrueConst)
4245     return false;
4246 
4247   assert((N->getSimpleValueType(0) == MVT::i64 ||
4248           N->getSimpleValueType(0) == MVT::i32) &&
4249          "Expecting either i64 or i32 here.");
4250 
4251   // We are looking for any of:
4252   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4253   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4254   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4255   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4256   int64_t TrueResVal = TrueConst->getSExtValue();
4257   if ((TrueResVal < -1 || TrueResVal > 1) ||
4258       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4259       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4260       (TrueResVal == 0 &&
4261        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4262     return false;
4263 
4264   bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC;
4265   SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0);
4266   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4267       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4268     return false;
4269 
4270   // Without this setb optimization, the outer SELECT_CC will be manually
4271   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4272   // transforms pseudo instruction to isel instruction. When there are more than
4273   // one use for result like zext/sext, with current optimization we only see
4274   // isel is replaced by setb but can't see any significant gain. Since
4275   // setb has longer latency than original isel, we should avoid this. Another
4276   // point is that setb requires comparison always kept, it can break the
4277   // opportunity to get the comparison away if we have in future.
4278   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4279     return false;
4280 
4281   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4282   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4283   ISD::CondCode InnerCC =
4284       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4285   // If the inner comparison is a select_cc, make sure the true/false values are
4286   // 1/-1 and canonicalize it if needed.
4287   if (InnerIsSel) {
4288     ConstantSDNode *SelCCTrueConst =
4289         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4290     ConstantSDNode *SelCCFalseConst =
4291         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4292     if (!SelCCTrueConst || !SelCCFalseConst)
4293       return false;
4294     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4295     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4296     // The values must be -1/1 (requiring a swap) or 1/-1.
4297     if (SelCCTVal == -1 && SelCCFVal == 1) {
4298       std::swap(InnerLHS, InnerRHS);
4299     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4300       return false;
4301   }
4302 
4303   // Canonicalize unsigned case
4304   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4305     IsUnCmp = true;
4306     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4307   }
4308 
4309   bool InnerSwapped = false;
4310   if (LHS == InnerRHS && RHS == InnerLHS)
4311     InnerSwapped = true;
4312   else if (LHS != InnerLHS || RHS != InnerRHS)
4313     return false;
4314 
4315   switch (CC) {
4316   // (select_cc lhs, rhs,  0, \
4317   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4318   case ISD::SETEQ:
4319     if (!InnerIsSel)
4320       return false;
4321     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4322       return false;
4323     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4324     break;
4325 
4326   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4327   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4328   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4329   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4330   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4331   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4332   case ISD::SETULT:
4333     if (!IsUnCmp && InnerCC != ISD::SETNE)
4334       return false;
4335     IsUnCmp = true;
4336     LLVM_FALLTHROUGH;
4337   case ISD::SETLT:
4338     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4339         (InnerCC == ISD::SETLT && InnerSwapped))
4340       NeedSwapOps = (TrueResVal == 1);
4341     else
4342       return false;
4343     break;
4344 
4345   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4346   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4347   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4348   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4349   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4350   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4351   case ISD::SETUGT:
4352     if (!IsUnCmp && InnerCC != ISD::SETNE)
4353       return false;
4354     IsUnCmp = true;
4355     LLVM_FALLTHROUGH;
4356   case ISD::SETGT:
4357     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4358         (InnerCC == ISD::SETGT && InnerSwapped))
4359       NeedSwapOps = (TrueResVal == -1);
4360     else
4361       return false;
4362     break;
4363 
4364   default:
4365     return false;
4366   }
4367 
4368   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4369   LLVM_DEBUG(N->dump());
4370 
4371   return true;
4372 }
4373 
4374 bool PPCDAGToDAGISel::tryAndWithMask(SDNode *N) {
4375   if (N->getOpcode() != ISD::AND)
4376     return false;
4377 
4378   SDLoc dl(N);
4379   SDValue Val = N->getOperand(0);
4380   unsigned Imm, Imm2, SH, MB, ME;
4381   uint64_t Imm64;
4382 
4383   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4384   // with a mask, emit rlwinm
4385   if (isInt32Immediate(N->getOperand(1), Imm) &&
4386       isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
4387     SDValue Val = N->getOperand(0).getOperand(0);
4388     SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4389                       getI32Imm(ME, dl) };
4390     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4391     return true;
4392   }
4393 
4394   // If this is just a masked value where the input is not handled, and
4395   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4396   if (isInt32Immediate(N->getOperand(1), Imm)) {
4397     if (isRunOfOnes(Imm, MB, ME) &&
4398         N->getOperand(0).getOpcode() != ISD::ROTL) {
4399       SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4400                         getI32Imm(ME, dl) };
4401       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4402       return true;
4403     }
4404     // AND X, 0 -> 0, not "rlwinm 32".
4405     if (Imm == 0) {
4406       ReplaceUses(SDValue(N, 0), N->getOperand(1));
4407       return true;
4408     }
4409 
4410     // ISD::OR doesn't get all the bitfield insertion fun.
4411     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4412     // bitfield insert.
4413     if (N->getOperand(0).getOpcode() == ISD::OR &&
4414         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
4415       // The idea here is to check whether this is equivalent to:
4416       //   (c1 & m) | (x & ~m)
4417       // where m is a run-of-ones mask. The logic here is that, for each bit in
4418       // c1 and c2:
4419       //  - if both are 1, then the output will be 1.
4420       //  - if both are 0, then the output will be 0.
4421       //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4422       //    come from x.
4423       //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4424       //    be 0.
4425       //  If that last condition is never the case, then we can form m from the
4426       //  bits that are the same between c1 and c2.
4427       unsigned MB, ME;
4428       if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
4429         SDValue Ops[] = { N->getOperand(0).getOperand(0),
4430                             N->getOperand(0).getOperand(1),
4431                             getI32Imm(0, dl), getI32Imm(MB, dl),
4432                             getI32Imm(ME, dl) };
4433         ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4434         return true;
4435       }
4436     }
4437   } else if (isInt64Immediate(N->getOperand(1).getNode(), Imm64)) {
4438     // If this is a 64-bit zero-extension mask, emit rldicl.
4439     if (isMask_64(Imm64)) {
4440       MB = 64 - countTrailingOnes(Imm64);
4441       SH = 0;
4442 
4443       if (Val.getOpcode() == ISD::ANY_EXTEND) {
4444         auto Op0 = Val.getOperand(0);
4445         if ( Op0.getOpcode() == ISD::SRL &&
4446            isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4447 
4448            auto ResultType = Val.getNode()->getValueType(0);
4449            auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
4450                                                ResultType);
4451            SDValue IDVal (ImDef, 0);
4452 
4453            Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
4454                          ResultType, IDVal, Op0.getOperand(0),
4455                          getI32Imm(1, dl)), 0);
4456            SH = 64 - Imm;
4457         }
4458       }
4459 
4460       // If the operand is a logical right shift, we can fold it into this
4461       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4462       // for n <= mb. The right shift is really a left rotate followed by a
4463       // mask, and this mask is a more-restrictive sub-mask of the mask implied
4464       // by the shift.
4465       if (Val.getOpcode() == ISD::SRL &&
4466           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4467         assert(Imm < 64 && "Illegal shift amount");
4468         Val = Val.getOperand(0);
4469         SH = 64 - Imm;
4470       }
4471 
4472       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4473       CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4474       return true;
4475     } else if (isMask_64(~Imm64)) {
4476       // If this is a negated 64-bit zero-extension mask,
4477       // i.e. the immediate is a sequence of ones from most significant side
4478       // and all zero for reminder, we should use rldicr.
4479       MB = 63 - countTrailingOnes(~Imm64);
4480       SH = 0;
4481       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4482       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4483       return true;
4484     }
4485 
4486     // It is not 16-bit imm that means we need two instructions at least if
4487     // using "and" instruction. Try to exploit it with rotate mask instructions.
4488     if (isRunOfOnes64(Imm64, MB, ME)) {
4489       if (MB >= 32 && MB <= ME) {
4490         //                MB  ME
4491         // +----------------------+
4492         // |xxxxxxxxxxx00011111000|
4493         // +----------------------+
4494         //  0         32         64
4495         // We can only do it if the MB is larger than 32 and MB <= ME
4496         // as RLWINM will replace the content of [0 - 32) with [32 - 64) even
4497         // we didn't rotate it.
4498         SDValue Ops[] = { Val, getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4499                           getI64Imm(ME - 32, dl) };
4500         CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4501         return true;
4502       }
4503       // TODO - handle it with rldicl + rldicl
4504     }
4505   }
4506 
4507   return false;
4508 }
4509 
4510 // Select - Convert the specified operand from a target-independent to a
4511 // target-specific node if it hasn't already been changed.
4512 void PPCDAGToDAGISel::Select(SDNode *N) {
4513   SDLoc dl(N);
4514   if (N->isMachineOpcode()) {
4515     N->setNodeId(-1);
4516     return;   // Already selected.
4517   }
4518 
4519   // In case any misguided DAG-level optimizations form an ADD with a
4520   // TargetConstant operand, crash here instead of miscompiling (by selecting
4521   // an r+r add instead of some kind of r+i add).
4522   if (N->getOpcode() == ISD::ADD &&
4523       N->getOperand(1).getOpcode() == ISD::TargetConstant)
4524     llvm_unreachable("Invalid ADD with TargetConstant operand");
4525 
4526   // Try matching complex bit permutations before doing anything else.
4527   if (tryBitPermutation(N))
4528     return;
4529 
4530   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4531   if (tryIntCompareInGPR(N))
4532     return;
4533 
4534   switch (N->getOpcode()) {
4535   default: break;
4536 
4537   case ISD::Constant:
4538     if (N->getValueType(0) == MVT::i64) {
4539       ReplaceNode(N, selectI64Imm(CurDAG, N));
4540       return;
4541     }
4542     break;
4543 
4544   case ISD::SETCC:
4545     if (trySETCC(N))
4546       return;
4547     break;
4548   // These nodes will be transformed into GETtlsADDR32 node, which
4549   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
4550   case PPCISD::ADDI_TLSLD_L_ADDR:
4551   case PPCISD::ADDI_TLSGD_L_ADDR: {
4552     const Module *Mod = MF->getFunction().getParent();
4553     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4554         !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() ||
4555         Mod->getPICLevel() == PICLevel::SmallPIC)
4556       break;
4557     // Attach global base pointer on GETtlsADDR32 node in order to
4558     // generate secure plt code for TLS symbols.
4559     getGlobalBaseReg();
4560   } break;
4561   case PPCISD::CALL: {
4562     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4563         !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() ||
4564         !PPCSubTarget->isTargetELF())
4565       break;
4566 
4567     SDValue Op = N->getOperand(1);
4568 
4569     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4570       if (GA->getTargetFlags() == PPCII::MO_PLT)
4571         getGlobalBaseReg();
4572     }
4573     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
4574       if (ES->getTargetFlags() == PPCII::MO_PLT)
4575         getGlobalBaseReg();
4576     }
4577   }
4578     break;
4579 
4580   case PPCISD::GlobalBaseReg:
4581     ReplaceNode(N, getGlobalBaseReg());
4582     return;
4583 
4584   case ISD::FrameIndex:
4585     selectFrameIndex(N, N);
4586     return;
4587 
4588   case PPCISD::MFOCRF: {
4589     SDValue InFlag = N->getOperand(1);
4590     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
4591                                           N->getOperand(0), InFlag));
4592     return;
4593   }
4594 
4595   case PPCISD::READ_TIME_BASE:
4596     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
4597                                           MVT::Other, N->getOperand(0)));
4598     return;
4599 
4600   case PPCISD::SRA_ADDZE: {
4601     SDValue N0 = N->getOperand(0);
4602     SDValue ShiftAmt =
4603       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
4604                                   getConstantIntValue(), dl,
4605                                   N->getValueType(0));
4606     if (N->getValueType(0) == MVT::i64) {
4607       SDNode *Op =
4608         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
4609                                N0, ShiftAmt);
4610       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
4611                            SDValue(Op, 1));
4612       return;
4613     } else {
4614       assert(N->getValueType(0) == MVT::i32 &&
4615              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
4616       SDNode *Op =
4617         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
4618                                N0, ShiftAmt);
4619       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
4620                            SDValue(Op, 1));
4621       return;
4622     }
4623   }
4624 
4625   case ISD::STORE: {
4626     // Change TLS initial-exec D-form stores to X-form stores.
4627     StoreSDNode *ST = cast<StoreSDNode>(N);
4628     if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
4629         ST->getAddressingMode() != ISD::PRE_INC)
4630       if (tryTLSXFormStore(ST))
4631         return;
4632     break;
4633   }
4634   case ISD::LOAD: {
4635     // Handle preincrement loads.
4636     LoadSDNode *LD = cast<LoadSDNode>(N);
4637     EVT LoadedVT = LD->getMemoryVT();
4638 
4639     // Normal loads are handled by code generated from the .td file.
4640     if (LD->getAddressingMode() != ISD::PRE_INC) {
4641       // Change TLS initial-exec D-form loads to X-form loads.
4642       if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
4643         if (tryTLSXFormLoad(LD))
4644           return;
4645       break;
4646     }
4647 
4648     SDValue Offset = LD->getOffset();
4649     if (Offset.getOpcode() == ISD::TargetConstant ||
4650         Offset.getOpcode() == ISD::TargetGlobalAddress) {
4651 
4652       unsigned Opcode;
4653       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4654       if (LD->getValueType(0) != MVT::i64) {
4655         // Handle PPC32 integer and normal FP loads.
4656         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4657         switch (LoadedVT.getSimpleVT().SimpleTy) {
4658           default: llvm_unreachable("Invalid PPC load type!");
4659           case MVT::f64: Opcode = PPC::LFDU; break;
4660           case MVT::f32: Opcode = PPC::LFSU; break;
4661           case MVT::i32: Opcode = PPC::LWZU; break;
4662           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
4663           case MVT::i1:
4664           case MVT::i8:  Opcode = PPC::LBZU; break;
4665         }
4666       } else {
4667         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4668         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4669         switch (LoadedVT.getSimpleVT().SimpleTy) {
4670           default: llvm_unreachable("Invalid PPC load type!");
4671           case MVT::i64: Opcode = PPC::LDU; break;
4672           case MVT::i32: Opcode = PPC::LWZU8; break;
4673           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
4674           case MVT::i1:
4675           case MVT::i8:  Opcode = PPC::LBZU8; break;
4676         }
4677       }
4678 
4679       SDValue Chain = LD->getChain();
4680       SDValue Base = LD->getBasePtr();
4681       SDValue Ops[] = { Offset, Base, Chain };
4682       SDNode *MN = CurDAG->getMachineNode(
4683           Opcode, dl, LD->getValueType(0),
4684           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4685       transferMemOperands(N, MN);
4686       ReplaceNode(N, MN);
4687       return;
4688     } else {
4689       unsigned Opcode;
4690       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4691       if (LD->getValueType(0) != MVT::i64) {
4692         // Handle PPC32 integer and normal FP loads.
4693         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4694         switch (LoadedVT.getSimpleVT().SimpleTy) {
4695           default: llvm_unreachable("Invalid PPC load type!");
4696           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
4697           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
4698           case MVT::f64: Opcode = PPC::LFDUX; break;
4699           case MVT::f32: Opcode = PPC::LFSUX; break;
4700           case MVT::i32: Opcode = PPC::LWZUX; break;
4701           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
4702           case MVT::i1:
4703           case MVT::i8:  Opcode = PPC::LBZUX; break;
4704         }
4705       } else {
4706         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4707         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
4708                "Invalid sext update load");
4709         switch (LoadedVT.getSimpleVT().SimpleTy) {
4710           default: llvm_unreachable("Invalid PPC load type!");
4711           case MVT::i64: Opcode = PPC::LDUX; break;
4712           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
4713           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
4714           case MVT::i1:
4715           case MVT::i8:  Opcode = PPC::LBZUX8; break;
4716         }
4717       }
4718 
4719       SDValue Chain = LD->getChain();
4720       SDValue Base = LD->getBasePtr();
4721       SDValue Ops[] = { Base, Offset, Chain };
4722       SDNode *MN = CurDAG->getMachineNode(
4723           Opcode, dl, LD->getValueType(0),
4724           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4725       transferMemOperands(N, MN);
4726       ReplaceNode(N, MN);
4727       return;
4728     }
4729   }
4730 
4731   case ISD::AND:
4732     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
4733     if (tryAndWithMask(N))
4734       return;
4735 
4736     // Other cases are autogenerated.
4737     break;
4738   case ISD::OR: {
4739     if (N->getValueType(0) == MVT::i32)
4740       if (tryBitfieldInsert(N))
4741         return;
4742 
4743     int16_t Imm;
4744     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4745         isIntS16Immediate(N->getOperand(1), Imm)) {
4746       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
4747 
4748       // If this is equivalent to an add, then we can fold it with the
4749       // FrameIndex calculation.
4750       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
4751         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4752         return;
4753       }
4754     }
4755 
4756     // OR with a 32-bit immediate can be handled by ori + oris
4757     // without creating an immediate in a GPR.
4758     uint64_t Imm64 = 0;
4759     bool IsPPC64 = PPCSubTarget->isPPC64();
4760     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4761         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4762       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
4763       uint64_t ImmHi = Imm64 >> 16;
4764       uint64_t ImmLo = Imm64 & 0xFFFF;
4765       if (ImmHi != 0 && ImmLo != 0) {
4766         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
4767                                             N->getOperand(0),
4768                                             getI16Imm(ImmLo, dl));
4769         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4770         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
4771         return;
4772       }
4773     }
4774 
4775     // Other cases are autogenerated.
4776     break;
4777   }
4778   case ISD::XOR: {
4779     // XOR with a 32-bit immediate can be handled by xori + xoris
4780     // without creating an immediate in a GPR.
4781     uint64_t Imm64 = 0;
4782     bool IsPPC64 = PPCSubTarget->isPPC64();
4783     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4784         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4785       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
4786       uint64_t ImmHi = Imm64 >> 16;
4787       uint64_t ImmLo = Imm64 & 0xFFFF;
4788       if (ImmHi != 0 && ImmLo != 0) {
4789         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
4790                                             N->getOperand(0),
4791                                             getI16Imm(ImmLo, dl));
4792         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4793         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
4794         return;
4795       }
4796     }
4797 
4798     break;
4799   }
4800   case ISD::ADD: {
4801     int16_t Imm;
4802     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4803         isIntS16Immediate(N->getOperand(1), Imm)) {
4804       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4805       return;
4806     }
4807 
4808     break;
4809   }
4810   case ISD::SHL: {
4811     unsigned Imm, SH, MB, ME;
4812     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4813         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4814       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4815                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4816                           getI32Imm(ME, dl) };
4817       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4818       return;
4819     }
4820 
4821     // Other cases are autogenerated.
4822     break;
4823   }
4824   case ISD::SRL: {
4825     unsigned Imm, SH, MB, ME;
4826     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4827         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4828       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4829                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4830                           getI32Imm(ME, dl) };
4831       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4832       return;
4833     }
4834 
4835     // Other cases are autogenerated.
4836     break;
4837   }
4838   // FIXME: Remove this once the ANDI glue bug is fixed:
4839   case PPCISD::ANDI_rec_1_EQ_BIT:
4840   case PPCISD::ANDI_rec_1_GT_BIT: {
4841     if (!ANDIGlueBug)
4842       break;
4843 
4844     EVT InVT = N->getOperand(0).getValueType();
4845     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
4846            "Invalid input type for ANDI_rec_1_EQ_BIT");
4847 
4848     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
4849     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
4850                                         N->getOperand(0),
4851                                         CurDAG->getTargetConstant(1, dl, InVT)),
4852                  0);
4853     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
4854     SDValue SRIdxVal = CurDAG->getTargetConstant(
4855         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
4856         dl, MVT::i32);
4857 
4858     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
4859                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
4860     return;
4861   }
4862   case ISD::SELECT_CC: {
4863     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4864     EVT PtrVT =
4865         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4866     bool isPPC64 = (PtrVT == MVT::i64);
4867 
4868     // If this is a select of i1 operands, we'll pattern match it.
4869     if (PPCSubTarget->useCRBits() &&
4870         N->getOperand(0).getValueType() == MVT::i1)
4871       break;
4872 
4873     if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) {
4874       bool NeedSwapOps = false;
4875       bool IsUnCmp = false;
4876       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
4877         SDValue LHS = N->getOperand(0);
4878         SDValue RHS = N->getOperand(1);
4879         if (NeedSwapOps)
4880           std::swap(LHS, RHS);
4881 
4882         // Make use of SelectCC to generate the comparison to set CR bits, for
4883         // equality comparisons having one literal operand, SelectCC probably
4884         // doesn't need to materialize the whole literal and just use xoris to
4885         // check it first, it leads the following comparison result can't
4886         // exactly represent GT/LT relationship. So to avoid this we specify
4887         // SETGT/SETUGT here instead of SETEQ.
4888         SDValue GenCC =
4889             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
4890         CurDAG->SelectNodeTo(
4891             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
4892             N->getValueType(0), GenCC);
4893         NumP9Setb++;
4894         return;
4895       }
4896     }
4897 
4898     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
4899     if (!isPPC64)
4900       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
4901         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
4902           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
4903             if (N1C->isNullValue() && N3C->isNullValue() &&
4904                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
4905                 // FIXME: Implement this optzn for PPC64.
4906                 N->getValueType(0) == MVT::i32) {
4907               SDNode *Tmp =
4908                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4909                                        N->getOperand(0), getI32Imm(~0U, dl));
4910               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
4911                                    N->getOperand(0), SDValue(Tmp, 1));
4912               return;
4913             }
4914 
4915     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
4916 
4917     if (N->getValueType(0) == MVT::i1) {
4918       // An i1 select is: (c & t) | (!c & f).
4919       bool Inv;
4920       unsigned Idx = getCRIdxForSetCC(CC, Inv);
4921 
4922       unsigned SRI;
4923       switch (Idx) {
4924       default: llvm_unreachable("Invalid CC index");
4925       case 0: SRI = PPC::sub_lt; break;
4926       case 1: SRI = PPC::sub_gt; break;
4927       case 2: SRI = PPC::sub_eq; break;
4928       case 3: SRI = PPC::sub_un; break;
4929       }
4930 
4931       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
4932 
4933       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
4934                                               CCBit, CCBit), 0);
4935       SDValue C =    Inv ? NotCCBit : CCBit,
4936               NotC = Inv ? CCBit    : NotCCBit;
4937 
4938       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4939                                            C, N->getOperand(2)), 0);
4940       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4941                                               NotC, N->getOperand(3)), 0);
4942 
4943       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
4944       return;
4945     }
4946 
4947     unsigned BROpc =
4948         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), PPCSubTarget);
4949 
4950     unsigned SelectCCOp;
4951     if (N->getValueType(0) == MVT::i32)
4952       SelectCCOp = PPC::SELECT_CC_I4;
4953     else if (N->getValueType(0) == MVT::i64)
4954       SelectCCOp = PPC::SELECT_CC_I8;
4955     else if (N->getValueType(0) == MVT::f32) {
4956       if (PPCSubTarget->hasP8Vector())
4957         SelectCCOp = PPC::SELECT_CC_VSSRC;
4958       else if (PPCSubTarget->hasSPE())
4959         SelectCCOp = PPC::SELECT_CC_SPE4;
4960       else
4961         SelectCCOp = PPC::SELECT_CC_F4;
4962     } else if (N->getValueType(0) == MVT::f64) {
4963       if (PPCSubTarget->hasVSX())
4964         SelectCCOp = PPC::SELECT_CC_VSFRC;
4965       else if (PPCSubTarget->hasSPE())
4966         SelectCCOp = PPC::SELECT_CC_SPE;
4967       else
4968         SelectCCOp = PPC::SELECT_CC_F8;
4969     } else if (N->getValueType(0) == MVT::f128)
4970       SelectCCOp = PPC::SELECT_CC_F16;
4971     else if (PPCSubTarget->hasSPE())
4972       SelectCCOp = PPC::SELECT_CC_SPE;
4973     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
4974       SelectCCOp = PPC::SELECT_CC_QFRC;
4975     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
4976       SelectCCOp = PPC::SELECT_CC_QSRC;
4977     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
4978       SelectCCOp = PPC::SELECT_CC_QBRC;
4979     else if (N->getValueType(0) == MVT::v2f64 ||
4980              N->getValueType(0) == MVT::v2i64)
4981       SelectCCOp = PPC::SELECT_CC_VSRC;
4982     else
4983       SelectCCOp = PPC::SELECT_CC_VRRC;
4984 
4985     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
4986                         getI32Imm(BROpc, dl) };
4987     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
4988     return;
4989   }
4990   case ISD::VECTOR_SHUFFLE:
4991     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
4992                                   N->getValueType(0) == MVT::v2i64)) {
4993       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4994 
4995       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
4996               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
4997       unsigned DM[2];
4998 
4999       for (int i = 0; i < 2; ++i)
5000         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5001           DM[i] = 0;
5002         else
5003           DM[i] = 1;
5004 
5005       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5006           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5007           isa<LoadSDNode>(Op1.getOperand(0))) {
5008         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5009         SDValue Base, Offset;
5010 
5011         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5012             (LD->getMemoryVT() == MVT::f64 ||
5013              LD->getMemoryVT() == MVT::i64) &&
5014             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5015           SDValue Chain = LD->getChain();
5016           SDValue Ops[] = { Base, Offset, Chain };
5017           MachineMemOperand *MemOp = LD->getMemOperand();
5018           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5019                                               N->getValueType(0), Ops);
5020           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5021           return;
5022         }
5023       }
5024 
5025       // For little endian, we must swap the input operands and adjust
5026       // the mask elements (reverse and invert them).
5027       if (PPCSubTarget->isLittleEndian()) {
5028         std::swap(Op1, Op2);
5029         unsigned tmp = DM[0];
5030         DM[0] = 1 - DM[1];
5031         DM[1] = 1 - tmp;
5032       }
5033 
5034       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5035                                               MVT::i32);
5036       SDValue Ops[] = { Op1, Op2, DMV };
5037       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5038       return;
5039     }
5040 
5041     break;
5042   case PPCISD::BDNZ:
5043   case PPCISD::BDZ: {
5044     bool IsPPC64 = PPCSubTarget->isPPC64();
5045     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5046     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5047                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5048                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5049                          MVT::Other, Ops);
5050     return;
5051   }
5052   case PPCISD::COND_BRANCH: {
5053     // Op #0 is the Chain.
5054     // Op #1 is the PPC::PRED_* number.
5055     // Op #2 is the CR#
5056     // Op #3 is the Dest MBB
5057     // Op #4 is the Flag.
5058     // Prevent PPC::PRED_* from being selected into LI.
5059     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5060     if (EnableBranchHint)
5061       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5062 
5063     SDValue Pred = getI32Imm(PCC, dl);
5064     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5065       N->getOperand(0), N->getOperand(4) };
5066     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5067     return;
5068   }
5069   case ISD::BR_CC: {
5070     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5071     unsigned PCC =
5072         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), PPCSubTarget);
5073 
5074     if (N->getOperand(2).getValueType() == MVT::i1) {
5075       unsigned Opc;
5076       bool Swap;
5077       switch (PCC) {
5078       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5079       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5080       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5081       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5082       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5083       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5084       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
5085       }
5086 
5087       // A signed comparison of i1 values produces the opposite result to an
5088       // unsigned one if the condition code includes less-than or greater-than.
5089       // This is because 1 is the most negative signed i1 number and the most
5090       // positive unsigned i1 number. The CR-logical operations used for such
5091       // comparisons are non-commutative so for signed comparisons vs. unsigned
5092       // ones, the input operands just need to be swapped.
5093       if (ISD::isSignedIntSetCC(CC))
5094         Swap = !Swap;
5095 
5096       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5097                                              N->getOperand(Swap ? 3 : 2),
5098                                              N->getOperand(Swap ? 2 : 3)), 0);
5099       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5100                            N->getOperand(0));
5101       return;
5102     }
5103 
5104     if (EnableBranchHint)
5105       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
5106 
5107     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5108     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5109                         N->getOperand(4), N->getOperand(0) };
5110     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5111     return;
5112   }
5113   case ISD::BRIND: {
5114     // FIXME: Should custom lower this.
5115     SDValue Chain = N->getOperand(0);
5116     SDValue Target = N->getOperand(1);
5117     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5118     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5119     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5120                                            Chain), 0);
5121     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5122     return;
5123   }
5124   case PPCISD::TOC_ENTRY: {
5125     const bool isPPC64 = PPCSubTarget->isPPC64();
5126     const bool isELFABI = PPCSubTarget->isSVR4ABI();
5127     const bool isAIXABI = PPCSubTarget->isAIXABI();
5128 
5129     assert(!PPCSubTarget->isDarwin() && "TOC is an ELF/XCOFF construct");
5130 
5131     // PowerPC only support small, medium and large code model.
5132     const CodeModel::Model CModel = TM.getCodeModel();
5133     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
5134            "PowerPC doesn't support tiny or kernel code models.");
5135 
5136     if (isAIXABI && CModel == CodeModel::Medium)
5137       report_fatal_error("Medium code model is not supported on AIX.");
5138 
5139     // For 64-bit small code model, we allow SelectCodeCommon to handle this,
5140     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
5141     if (isPPC64 && CModel == CodeModel::Small)
5142       break;
5143 
5144     // Handle 32-bit small code model.
5145     if (!isPPC64) {
5146       // Transforms the ISD::TOC_ENTRY node to a PPCISD::LWZtoc.
5147       auto replaceWithLWZtoc = [this, &dl](SDNode *TocEntry) {
5148         SDValue GA = TocEntry->getOperand(0);
5149         SDValue TocBase = TocEntry->getOperand(1);
5150         SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
5151                                             TocBase);
5152         transferMemOperands(TocEntry, MN);
5153         ReplaceNode(TocEntry, MN);
5154       };
5155 
5156       if (isELFABI) {
5157         assert(TM.isPositionIndependent() &&
5158                "32-bit ELF can only have TOC entries in position independent"
5159                " code.");
5160         // 32-bit ELF always uses a small code model toc access.
5161         replaceWithLWZtoc(N);
5162         return;
5163       }
5164 
5165       if (isAIXABI && CModel == CodeModel::Small) {
5166         replaceWithLWZtoc(N);
5167         return;
5168       }
5169     }
5170 
5171     assert(CModel != CodeModel::Small && "All small code models handled.");
5172 
5173     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
5174            " ELF/AIX or 32-bit AIX in the following.");
5175 
5176     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
5177     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
5178     // generate two instructions as described below. The first source operand
5179     // is a symbol reference. If it must be toc-referenced according to
5180     // PPCSubTarget, we generate:
5181     // [32-bit AIX]
5182     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
5183     // [64-bit ELF/AIX]
5184     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
5185     // Otherwise we generate:
5186     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
5187     SDValue GA = N->getOperand(0);
5188     SDValue TOCbase = N->getOperand(1);
5189 
5190     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5191     SDNode *Tmp = CurDAG->getMachineNode(
5192         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
5193 
5194     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5195       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
5196       // the address.
5197       SDNode *MN = CurDAG->getMachineNode(
5198           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
5199 
5200       transferMemOperands(N, MN);
5201       ReplaceNode(N, MN);
5202       return;
5203     }
5204 
5205     // Build the address relative to the TOC-pointer.
5206     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
5207                                           SDValue(Tmp, 0), GA));
5208     return;
5209   }
5210   case PPCISD::PPC32_PICGOT:
5211     // Generate a PIC-safe GOT reference.
5212     assert(PPCSubTarget->is32BitELFABI() &&
5213            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
5214     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
5215                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
5216                          MVT::i32);
5217     return;
5218 
5219   case PPCISD::VADD_SPLAT: {
5220     // This expands into one of three sequences, depending on whether
5221     // the first operand is odd or even, positive or negative.
5222     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
5223            isa<ConstantSDNode>(N->getOperand(1)) &&
5224            "Invalid operand on VADD_SPLAT!");
5225 
5226     int Elt     = N->getConstantOperandVal(0);
5227     int EltSize = N->getConstantOperandVal(1);
5228     unsigned Opc1, Opc2, Opc3;
5229     EVT VT;
5230 
5231     if (EltSize == 1) {
5232       Opc1 = PPC::VSPLTISB;
5233       Opc2 = PPC::VADDUBM;
5234       Opc3 = PPC::VSUBUBM;
5235       VT = MVT::v16i8;
5236     } else if (EltSize == 2) {
5237       Opc1 = PPC::VSPLTISH;
5238       Opc2 = PPC::VADDUHM;
5239       Opc3 = PPC::VSUBUHM;
5240       VT = MVT::v8i16;
5241     } else {
5242       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
5243       Opc1 = PPC::VSPLTISW;
5244       Opc2 = PPC::VADDUWM;
5245       Opc3 = PPC::VSUBUWM;
5246       VT = MVT::v4i32;
5247     }
5248 
5249     if ((Elt & 1) == 0) {
5250       // Elt is even, in the range [-32,-18] + [16,30].
5251       //
5252       // Convert: VADD_SPLAT elt, size
5253       // Into:    tmp = VSPLTIS[BHW] elt
5254       //          VADDU[BHW]M tmp, tmp
5255       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
5256       SDValue EltVal = getI32Imm(Elt >> 1, dl);
5257       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5258       SDValue TmpVal = SDValue(Tmp, 0);
5259       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
5260       return;
5261     } else if (Elt > 0) {
5262       // Elt is odd and positive, in the range [17,31].
5263       //
5264       // Convert: VADD_SPLAT elt, size
5265       // Into:    tmp1 = VSPLTIS[BHW] elt-16
5266       //          tmp2 = VSPLTIS[BHW] -16
5267       //          VSUBU[BHW]M tmp1, tmp2
5268       SDValue EltVal = getI32Imm(Elt - 16, dl);
5269       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5270       EltVal = getI32Imm(-16, dl);
5271       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5272       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
5273                                             SDValue(Tmp2, 0)));
5274       return;
5275     } else {
5276       // Elt is odd and negative, in the range [-31,-17].
5277       //
5278       // Convert: VADD_SPLAT elt, size
5279       // Into:    tmp1 = VSPLTIS[BHW] elt+16
5280       //          tmp2 = VSPLTIS[BHW] -16
5281       //          VADDU[BHW]M tmp1, tmp2
5282       SDValue EltVal = getI32Imm(Elt + 16, dl);
5283       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5284       EltVal = getI32Imm(-16, dl);
5285       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5286       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
5287                                             SDValue(Tmp2, 0)));
5288       return;
5289     }
5290   }
5291   }
5292 
5293   SelectCode(N);
5294 }
5295 
5296 // If the target supports the cmpb instruction, do the idiom recognition here.
5297 // We don't do this as a DAG combine because we don't want to do it as nodes
5298 // are being combined (because we might miss part of the eventual idiom). We
5299 // don't want to do it during instruction selection because we want to reuse
5300 // the logic for lowering the masking operations already part of the
5301 // instruction selector.
5302 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
5303   SDLoc dl(N);
5304 
5305   assert(N->getOpcode() == ISD::OR &&
5306          "Only OR nodes are supported for CMPB");
5307 
5308   SDValue Res;
5309   if (!PPCSubTarget->hasCMPB())
5310     return Res;
5311 
5312   if (N->getValueType(0) != MVT::i32 &&
5313       N->getValueType(0) != MVT::i64)
5314     return Res;
5315 
5316   EVT VT = N->getValueType(0);
5317 
5318   SDValue RHS, LHS;
5319   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
5320   uint64_t Mask = 0, Alt = 0;
5321 
5322   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
5323                                uint64_t &Mask, uint64_t &Alt,
5324                                SDValue &LHS, SDValue &RHS) {
5325     if (O.getOpcode() != ISD::SELECT_CC)
5326       return false;
5327     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
5328 
5329     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
5330         !isa<ConstantSDNode>(O.getOperand(3)))
5331       return false;
5332 
5333     uint64_t PM = O.getConstantOperandVal(2);
5334     uint64_t PAlt = O.getConstantOperandVal(3);
5335     for (b = 0; b < 8; ++b) {
5336       uint64_t Mask = UINT64_C(0xFF) << (8*b);
5337       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
5338         break;
5339     }
5340 
5341     if (b == 8)
5342       return false;
5343     Mask |= PM;
5344     Alt  |= PAlt;
5345 
5346     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
5347         O.getConstantOperandVal(1) != 0) {
5348       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
5349       if (Op0.getOpcode() == ISD::TRUNCATE)
5350         Op0 = Op0.getOperand(0);
5351       if (Op1.getOpcode() == ISD::TRUNCATE)
5352         Op1 = Op1.getOperand(0);
5353 
5354       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
5355           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
5356           isa<ConstantSDNode>(Op0.getOperand(1))) {
5357 
5358         unsigned Bits = Op0.getValueSizeInBits();
5359         if (b != Bits/8-1)
5360           return false;
5361         if (Op0.getConstantOperandVal(1) != Bits-8)
5362           return false;
5363 
5364         LHS = Op0.getOperand(0);
5365         RHS = Op1.getOperand(0);
5366         return true;
5367       }
5368 
5369       // When we have small integers (i16 to be specific), the form present
5370       // post-legalization uses SETULT in the SELECT_CC for the
5371       // higher-order byte, depending on the fact that the
5372       // even-higher-order bytes are known to all be zero, for example:
5373       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
5374       // (so when the second byte is the same, because all higher-order
5375       // bits from bytes 3 and 4 are known to be zero, the result of the
5376       // xor can be at most 255)
5377       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
5378           isa<ConstantSDNode>(O.getOperand(1))) {
5379 
5380         uint64_t ULim = O.getConstantOperandVal(1);
5381         if (ULim != (UINT64_C(1) << b*8))
5382           return false;
5383 
5384         // Now we need to make sure that the upper bytes are known to be
5385         // zero.
5386         unsigned Bits = Op0.getValueSizeInBits();
5387         if (!CurDAG->MaskedValueIsZero(
5388                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
5389           return false;
5390 
5391         LHS = Op0.getOperand(0);
5392         RHS = Op0.getOperand(1);
5393         return true;
5394       }
5395 
5396       return false;
5397     }
5398 
5399     if (CC != ISD::SETEQ)
5400       return false;
5401 
5402     SDValue Op = O.getOperand(0);
5403     if (Op.getOpcode() == ISD::AND) {
5404       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5405         return false;
5406       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
5407         return false;
5408 
5409       SDValue XOR = Op.getOperand(0);
5410       if (XOR.getOpcode() == ISD::TRUNCATE)
5411         XOR = XOR.getOperand(0);
5412       if (XOR.getOpcode() != ISD::XOR)
5413         return false;
5414 
5415       LHS = XOR.getOperand(0);
5416       RHS = XOR.getOperand(1);
5417       return true;
5418     } else if (Op.getOpcode() == ISD::SRL) {
5419       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5420         return false;
5421       unsigned Bits = Op.getValueSizeInBits();
5422       if (b != Bits/8-1)
5423         return false;
5424       if (Op.getConstantOperandVal(1) != Bits-8)
5425         return false;
5426 
5427       SDValue XOR = Op.getOperand(0);
5428       if (XOR.getOpcode() == ISD::TRUNCATE)
5429         XOR = XOR.getOperand(0);
5430       if (XOR.getOpcode() != ISD::XOR)
5431         return false;
5432 
5433       LHS = XOR.getOperand(0);
5434       RHS = XOR.getOperand(1);
5435       return true;
5436     }
5437 
5438     return false;
5439   };
5440 
5441   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
5442   while (!Queue.empty()) {
5443     SDValue V = Queue.pop_back_val();
5444 
5445     for (const SDValue &O : V.getNode()->ops()) {
5446       unsigned b = 0;
5447       uint64_t M = 0, A = 0;
5448       SDValue OLHS, ORHS;
5449       if (O.getOpcode() == ISD::OR) {
5450         Queue.push_back(O);
5451       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
5452         if (!LHS) {
5453           LHS = OLHS;
5454           RHS = ORHS;
5455           BytesFound[b] = true;
5456           Mask |= M;
5457           Alt  |= A;
5458         } else if ((LHS == ORHS && RHS == OLHS) ||
5459                    (RHS == ORHS && LHS == OLHS)) {
5460           BytesFound[b] = true;
5461           Mask |= M;
5462           Alt  |= A;
5463         } else {
5464           return Res;
5465         }
5466       } else {
5467         return Res;
5468       }
5469     }
5470   }
5471 
5472   unsigned LastB = 0, BCnt = 0;
5473   for (unsigned i = 0; i < 8; ++i)
5474     if (BytesFound[LastB]) {
5475       ++BCnt;
5476       LastB = i;
5477     }
5478 
5479   if (!LastB || BCnt < 2)
5480     return Res;
5481 
5482   // Because we'll be zero-extending the output anyway if don't have a specific
5483   // value for each input byte (via the Mask), we can 'anyext' the inputs.
5484   if (LHS.getValueType() != VT) {
5485     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
5486     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
5487   }
5488 
5489   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
5490 
5491   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
5492   if (NonTrivialMask && !Alt) {
5493     // Res = Mask & CMPB
5494     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5495                           CurDAG->getConstant(Mask, dl, VT));
5496   } else if (Alt) {
5497     // Res = (CMPB & Mask) | (~CMPB & Alt)
5498     // Which, as suggested here:
5499     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
5500     // can be written as:
5501     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
5502     // useful because the (Alt ^ Mask) can be pre-computed.
5503     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5504                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
5505     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
5506                           CurDAG->getConstant(Alt, dl, VT));
5507   }
5508 
5509   return Res;
5510 }
5511 
5512 // When CR bit registers are enabled, an extension of an i1 variable to a i32
5513 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
5514 // involves constant materialization of a 0 or a 1 or both. If the result of
5515 // the extension is then operated upon by some operator that can be constant
5516 // folded with a constant 0 or 1, and that constant can be materialized using
5517 // only one instruction (like a zero or one), then we should fold in those
5518 // operations with the select.
5519 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
5520   if (!PPCSubTarget->useCRBits())
5521     return;
5522 
5523   if (N->getOpcode() != ISD::ZERO_EXTEND &&
5524       N->getOpcode() != ISD::SIGN_EXTEND &&
5525       N->getOpcode() != ISD::ANY_EXTEND)
5526     return;
5527 
5528   if (N->getOperand(0).getValueType() != MVT::i1)
5529     return;
5530 
5531   if (!N->hasOneUse())
5532     return;
5533 
5534   SDLoc dl(N);
5535   EVT VT = N->getValueType(0);
5536   SDValue Cond = N->getOperand(0);
5537   SDValue ConstTrue =
5538     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
5539   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
5540 
5541   do {
5542     SDNode *User = *N->use_begin();
5543     if (User->getNumOperands() != 2)
5544       break;
5545 
5546     auto TryFold = [this, N, User, dl](SDValue Val) {
5547       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
5548       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
5549       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
5550 
5551       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
5552                                             User->getValueType(0),
5553                                             O0.getNode(), O1.getNode());
5554     };
5555 
5556     // FIXME: When the semantics of the interaction between select and undef
5557     // are clearly defined, it may turn out to be unnecessary to break here.
5558     SDValue TrueRes = TryFold(ConstTrue);
5559     if (!TrueRes || TrueRes.isUndef())
5560       break;
5561     SDValue FalseRes = TryFold(ConstFalse);
5562     if (!FalseRes || FalseRes.isUndef())
5563       break;
5564 
5565     // For us to materialize these using one instruction, we must be able to
5566     // represent them as signed 16-bit integers.
5567     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
5568              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
5569     if (!isInt<16>(True) || !isInt<16>(False))
5570       break;
5571 
5572     // We can replace User with a new SELECT node, and try again to see if we
5573     // can fold the select with its user.
5574     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
5575     N = User;
5576     ConstTrue = TrueRes;
5577     ConstFalse = FalseRes;
5578   } while (N->hasOneUse());
5579 }
5580 
5581 void PPCDAGToDAGISel::PreprocessISelDAG() {
5582   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
5583 
5584   bool MadeChange = false;
5585   while (Position != CurDAG->allnodes_begin()) {
5586     SDNode *N = &*--Position;
5587     if (N->use_empty())
5588       continue;
5589 
5590     SDValue Res;
5591     switch (N->getOpcode()) {
5592     default: break;
5593     case ISD::OR:
5594       Res = combineToCMPB(N);
5595       break;
5596     }
5597 
5598     if (!Res)
5599       foldBoolExts(Res, N);
5600 
5601     if (Res) {
5602       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
5603       LLVM_DEBUG(N->dump(CurDAG));
5604       LLVM_DEBUG(dbgs() << "\nNew: ");
5605       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
5606       LLVM_DEBUG(dbgs() << "\n");
5607 
5608       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
5609       MadeChange = true;
5610     }
5611   }
5612 
5613   if (MadeChange)
5614     CurDAG->RemoveDeadNodes();
5615 }
5616 
5617 /// PostprocessISelDAG - Perform some late peephole optimizations
5618 /// on the DAG representation.
5619 void PPCDAGToDAGISel::PostprocessISelDAG() {
5620   // Skip peepholes at -O0.
5621   if (TM.getOptLevel() == CodeGenOpt::None)
5622     return;
5623 
5624   PeepholePPC64();
5625   PeepholeCROps();
5626   PeepholePPC64ZExt();
5627 }
5628 
5629 // Check if all users of this node will become isel where the second operand
5630 // is the constant zero. If this is so, and if we can negate the condition,
5631 // then we can flip the true and false operands. This will allow the zero to
5632 // be folded with the isel so that we don't need to materialize a register
5633 // containing zero.
5634 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
5635   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5636        UI != UE; ++UI) {
5637     SDNode *User = *UI;
5638     if (!User->isMachineOpcode())
5639       return false;
5640     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
5641         User->getMachineOpcode() != PPC::SELECT_I8)
5642       return false;
5643 
5644     SDNode *Op2 = User->getOperand(2).getNode();
5645     if (!Op2->isMachineOpcode())
5646       return false;
5647 
5648     if (Op2->getMachineOpcode() != PPC::LI &&
5649         Op2->getMachineOpcode() != PPC::LI8)
5650       return false;
5651 
5652     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
5653     if (!C)
5654       return false;
5655 
5656     if (!C->isNullValue())
5657       return false;
5658   }
5659 
5660   return true;
5661 }
5662 
5663 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
5664   SmallVector<SDNode *, 4> ToReplace;
5665   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5666        UI != UE; ++UI) {
5667     SDNode *User = *UI;
5668     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
5669             User->getMachineOpcode() == PPC::SELECT_I8) &&
5670            "Must have all select users");
5671     ToReplace.push_back(User);
5672   }
5673 
5674   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
5675        UE = ToReplace.end(); UI != UE; ++UI) {
5676     SDNode *User = *UI;
5677     SDNode *ResNode =
5678       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
5679                              User->getValueType(0), User->getOperand(0),
5680                              User->getOperand(2),
5681                              User->getOperand(1));
5682 
5683     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
5684     LLVM_DEBUG(User->dump(CurDAG));
5685     LLVM_DEBUG(dbgs() << "\nNew: ");
5686     LLVM_DEBUG(ResNode->dump(CurDAG));
5687     LLVM_DEBUG(dbgs() << "\n");
5688 
5689     ReplaceUses(User, ResNode);
5690   }
5691 }
5692 
5693 void PPCDAGToDAGISel::PeepholeCROps() {
5694   bool IsModified;
5695   do {
5696     IsModified = false;
5697     for (SDNode &Node : CurDAG->allnodes()) {
5698       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
5699       if (!MachineNode || MachineNode->use_empty())
5700         continue;
5701       SDNode *ResNode = MachineNode;
5702 
5703       bool Op1Set   = false, Op1Unset = false,
5704            Op1Not   = false,
5705            Op2Set   = false, Op2Unset = false,
5706            Op2Not   = false;
5707 
5708       unsigned Opcode = MachineNode->getMachineOpcode();
5709       switch (Opcode) {
5710       default: break;
5711       case PPC::CRAND:
5712       case PPC::CRNAND:
5713       case PPC::CROR:
5714       case PPC::CRXOR:
5715       case PPC::CRNOR:
5716       case PPC::CREQV:
5717       case PPC::CRANDC:
5718       case PPC::CRORC: {
5719         SDValue Op = MachineNode->getOperand(1);
5720         if (Op.isMachineOpcode()) {
5721           if (Op.getMachineOpcode() == PPC::CRSET)
5722             Op2Set = true;
5723           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5724             Op2Unset = true;
5725           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5726                    Op.getOperand(0) == Op.getOperand(1))
5727             Op2Not = true;
5728         }
5729         LLVM_FALLTHROUGH;
5730       }
5731       case PPC::BC:
5732       case PPC::BCn:
5733       case PPC::SELECT_I4:
5734       case PPC::SELECT_I8:
5735       case PPC::SELECT_F4:
5736       case PPC::SELECT_F8:
5737       case PPC::SELECT_QFRC:
5738       case PPC::SELECT_QSRC:
5739       case PPC::SELECT_QBRC:
5740       case PPC::SELECT_SPE:
5741       case PPC::SELECT_SPE4:
5742       case PPC::SELECT_VRRC:
5743       case PPC::SELECT_VSFRC:
5744       case PPC::SELECT_VSSRC:
5745       case PPC::SELECT_VSRC: {
5746         SDValue Op = MachineNode->getOperand(0);
5747         if (Op.isMachineOpcode()) {
5748           if (Op.getMachineOpcode() == PPC::CRSET)
5749             Op1Set = true;
5750           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5751             Op1Unset = true;
5752           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5753                    Op.getOperand(0) == Op.getOperand(1))
5754             Op1Not = true;
5755         }
5756         }
5757         break;
5758       }
5759 
5760       bool SelectSwap = false;
5761       switch (Opcode) {
5762       default: break;
5763       case PPC::CRAND:
5764         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5765           // x & x = x
5766           ResNode = MachineNode->getOperand(0).getNode();
5767         else if (Op1Set)
5768           // 1 & y = y
5769           ResNode = MachineNode->getOperand(1).getNode();
5770         else if (Op2Set)
5771           // x & 1 = x
5772           ResNode = MachineNode->getOperand(0).getNode();
5773         else if (Op1Unset || Op2Unset)
5774           // x & 0 = 0 & y = 0
5775           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5776                                            MVT::i1);
5777         else if (Op1Not)
5778           // ~x & y = andc(y, x)
5779           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5780                                            MVT::i1, MachineNode->getOperand(1),
5781                                            MachineNode->getOperand(0).
5782                                              getOperand(0));
5783         else if (Op2Not)
5784           // x & ~y = andc(x, y)
5785           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5786                                            MVT::i1, MachineNode->getOperand(0),
5787                                            MachineNode->getOperand(1).
5788                                              getOperand(0));
5789         else if (AllUsersSelectZero(MachineNode)) {
5790           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5791                                            MVT::i1, MachineNode->getOperand(0),
5792                                            MachineNode->getOperand(1));
5793           SelectSwap = true;
5794         }
5795         break;
5796       case PPC::CRNAND:
5797         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5798           // nand(x, x) -> nor(x, x)
5799           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5800                                            MVT::i1, MachineNode->getOperand(0),
5801                                            MachineNode->getOperand(0));
5802         else if (Op1Set)
5803           // nand(1, y) -> nor(y, y)
5804           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5805                                            MVT::i1, MachineNode->getOperand(1),
5806                                            MachineNode->getOperand(1));
5807         else if (Op2Set)
5808           // nand(x, 1) -> nor(x, x)
5809           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5810                                            MVT::i1, MachineNode->getOperand(0),
5811                                            MachineNode->getOperand(0));
5812         else if (Op1Unset || Op2Unset)
5813           // nand(x, 0) = nand(0, y) = 1
5814           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5815                                            MVT::i1);
5816         else if (Op1Not)
5817           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
5818           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5819                                            MVT::i1, MachineNode->getOperand(0).
5820                                                       getOperand(0),
5821                                            MachineNode->getOperand(1));
5822         else if (Op2Not)
5823           // nand(x, ~y) = ~x | y = orc(y, x)
5824           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5825                                            MVT::i1, MachineNode->getOperand(1).
5826                                                       getOperand(0),
5827                                            MachineNode->getOperand(0));
5828         else if (AllUsersSelectZero(MachineNode)) {
5829           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5830                                            MVT::i1, MachineNode->getOperand(0),
5831                                            MachineNode->getOperand(1));
5832           SelectSwap = true;
5833         }
5834         break;
5835       case PPC::CROR:
5836         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5837           // x | x = x
5838           ResNode = MachineNode->getOperand(0).getNode();
5839         else if (Op1Set || Op2Set)
5840           // x | 1 = 1 | y = 1
5841           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5842                                            MVT::i1);
5843         else if (Op1Unset)
5844           // 0 | y = y
5845           ResNode = MachineNode->getOperand(1).getNode();
5846         else if (Op2Unset)
5847           // x | 0 = x
5848           ResNode = MachineNode->getOperand(0).getNode();
5849         else if (Op1Not)
5850           // ~x | y = orc(y, x)
5851           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5852                                            MVT::i1, MachineNode->getOperand(1),
5853                                            MachineNode->getOperand(0).
5854                                              getOperand(0));
5855         else if (Op2Not)
5856           // x | ~y = orc(x, y)
5857           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5858                                            MVT::i1, MachineNode->getOperand(0),
5859                                            MachineNode->getOperand(1).
5860                                              getOperand(0));
5861         else if (AllUsersSelectZero(MachineNode)) {
5862           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5863                                            MVT::i1, MachineNode->getOperand(0),
5864                                            MachineNode->getOperand(1));
5865           SelectSwap = true;
5866         }
5867         break;
5868       case PPC::CRXOR:
5869         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5870           // xor(x, x) = 0
5871           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5872                                            MVT::i1);
5873         else if (Op1Set)
5874           // xor(1, y) -> nor(y, y)
5875           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5876                                            MVT::i1, MachineNode->getOperand(1),
5877                                            MachineNode->getOperand(1));
5878         else if (Op2Set)
5879           // xor(x, 1) -> nor(x, x)
5880           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5881                                            MVT::i1, MachineNode->getOperand(0),
5882                                            MachineNode->getOperand(0));
5883         else if (Op1Unset)
5884           // xor(0, y) = y
5885           ResNode = MachineNode->getOperand(1).getNode();
5886         else if (Op2Unset)
5887           // xor(x, 0) = x
5888           ResNode = MachineNode->getOperand(0).getNode();
5889         else if (Op1Not)
5890           // xor(~x, y) = eqv(x, y)
5891           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5892                                            MVT::i1, MachineNode->getOperand(0).
5893                                                       getOperand(0),
5894                                            MachineNode->getOperand(1));
5895         else if (Op2Not)
5896           // xor(x, ~y) = eqv(x, y)
5897           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5898                                            MVT::i1, MachineNode->getOperand(0),
5899                                            MachineNode->getOperand(1).
5900                                              getOperand(0));
5901         else if (AllUsersSelectZero(MachineNode)) {
5902           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5903                                            MVT::i1, MachineNode->getOperand(0),
5904                                            MachineNode->getOperand(1));
5905           SelectSwap = true;
5906         }
5907         break;
5908       case PPC::CRNOR:
5909         if (Op1Set || Op2Set)
5910           // nor(1, y) -> 0
5911           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5912                                            MVT::i1);
5913         else if (Op1Unset)
5914           // nor(0, y) = ~y -> nor(y, y)
5915           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5916                                            MVT::i1, MachineNode->getOperand(1),
5917                                            MachineNode->getOperand(1));
5918         else if (Op2Unset)
5919           // nor(x, 0) = ~x
5920           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5921                                            MVT::i1, MachineNode->getOperand(0),
5922                                            MachineNode->getOperand(0));
5923         else if (Op1Not)
5924           // nor(~x, y) = andc(x, y)
5925           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5926                                            MVT::i1, MachineNode->getOperand(0).
5927                                                       getOperand(0),
5928                                            MachineNode->getOperand(1));
5929         else if (Op2Not)
5930           // nor(x, ~y) = andc(y, x)
5931           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5932                                            MVT::i1, MachineNode->getOperand(1).
5933                                                       getOperand(0),
5934                                            MachineNode->getOperand(0));
5935         else if (AllUsersSelectZero(MachineNode)) {
5936           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
5937                                            MVT::i1, MachineNode->getOperand(0),
5938                                            MachineNode->getOperand(1));
5939           SelectSwap = true;
5940         }
5941         break;
5942       case PPC::CREQV:
5943         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5944           // eqv(x, x) = 1
5945           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5946                                            MVT::i1);
5947         else if (Op1Set)
5948           // eqv(1, y) = y
5949           ResNode = MachineNode->getOperand(1).getNode();
5950         else if (Op2Set)
5951           // eqv(x, 1) = x
5952           ResNode = MachineNode->getOperand(0).getNode();
5953         else if (Op1Unset)
5954           // eqv(0, y) = ~y -> nor(y, y)
5955           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5956                                            MVT::i1, MachineNode->getOperand(1),
5957                                            MachineNode->getOperand(1));
5958         else if (Op2Unset)
5959           // eqv(x, 0) = ~x
5960           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5961                                            MVT::i1, MachineNode->getOperand(0),
5962                                            MachineNode->getOperand(0));
5963         else if (Op1Not)
5964           // eqv(~x, y) = xor(x, y)
5965           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5966                                            MVT::i1, MachineNode->getOperand(0).
5967                                                       getOperand(0),
5968                                            MachineNode->getOperand(1));
5969         else if (Op2Not)
5970           // eqv(x, ~y) = xor(x, y)
5971           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5972                                            MVT::i1, MachineNode->getOperand(0),
5973                                            MachineNode->getOperand(1).
5974                                              getOperand(0));
5975         else if (AllUsersSelectZero(MachineNode)) {
5976           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5977                                            MVT::i1, MachineNode->getOperand(0),
5978                                            MachineNode->getOperand(1));
5979           SelectSwap = true;
5980         }
5981         break;
5982       case PPC::CRANDC:
5983         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5984           // andc(x, x) = 0
5985           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5986                                            MVT::i1);
5987         else if (Op1Set)
5988           // andc(1, y) = ~y
5989           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5990                                            MVT::i1, MachineNode->getOperand(1),
5991                                            MachineNode->getOperand(1));
5992         else if (Op1Unset || Op2Set)
5993           // andc(0, y) = andc(x, 1) = 0
5994           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5995                                            MVT::i1);
5996         else if (Op2Unset)
5997           // andc(x, 0) = x
5998           ResNode = MachineNode->getOperand(0).getNode();
5999         else if (Op1Not)
6000           // andc(~x, y) = ~(x | y) = nor(x, y)
6001           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6002                                            MVT::i1, MachineNode->getOperand(0).
6003                                                       getOperand(0),
6004                                            MachineNode->getOperand(1));
6005         else if (Op2Not)
6006           // andc(x, ~y) = x & y
6007           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6008                                            MVT::i1, MachineNode->getOperand(0),
6009                                            MachineNode->getOperand(1).
6010                                              getOperand(0));
6011         else if (AllUsersSelectZero(MachineNode)) {
6012           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6013                                            MVT::i1, MachineNode->getOperand(1),
6014                                            MachineNode->getOperand(0));
6015           SelectSwap = true;
6016         }
6017         break;
6018       case PPC::CRORC:
6019         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6020           // orc(x, x) = 1
6021           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6022                                            MVT::i1);
6023         else if (Op1Set || Op2Unset)
6024           // orc(1, y) = orc(x, 0) = 1
6025           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6026                                            MVT::i1);
6027         else if (Op2Set)
6028           // orc(x, 1) = x
6029           ResNode = MachineNode->getOperand(0).getNode();
6030         else if (Op1Unset)
6031           // orc(0, y) = ~y
6032           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6033                                            MVT::i1, MachineNode->getOperand(1),
6034                                            MachineNode->getOperand(1));
6035         else if (Op1Not)
6036           // orc(~x, y) = ~(x & y) = nand(x, y)
6037           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6038                                            MVT::i1, MachineNode->getOperand(0).
6039                                                       getOperand(0),
6040                                            MachineNode->getOperand(1));
6041         else if (Op2Not)
6042           // orc(x, ~y) = x | y
6043           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6044                                            MVT::i1, MachineNode->getOperand(0),
6045                                            MachineNode->getOperand(1).
6046                                              getOperand(0));
6047         else if (AllUsersSelectZero(MachineNode)) {
6048           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6049                                            MVT::i1, MachineNode->getOperand(1),
6050                                            MachineNode->getOperand(0));
6051           SelectSwap = true;
6052         }
6053         break;
6054       case PPC::SELECT_I4:
6055       case PPC::SELECT_I8:
6056       case PPC::SELECT_F4:
6057       case PPC::SELECT_F8:
6058       case PPC::SELECT_QFRC:
6059       case PPC::SELECT_QSRC:
6060       case PPC::SELECT_QBRC:
6061       case PPC::SELECT_SPE:
6062       case PPC::SELECT_SPE4:
6063       case PPC::SELECT_VRRC:
6064       case PPC::SELECT_VSFRC:
6065       case PPC::SELECT_VSSRC:
6066       case PPC::SELECT_VSRC:
6067         if (Op1Set)
6068           ResNode = MachineNode->getOperand(1).getNode();
6069         else if (Op1Unset)
6070           ResNode = MachineNode->getOperand(2).getNode();
6071         else if (Op1Not)
6072           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
6073                                            SDLoc(MachineNode),
6074                                            MachineNode->getValueType(0),
6075                                            MachineNode->getOperand(0).
6076                                              getOperand(0),
6077                                            MachineNode->getOperand(2),
6078                                            MachineNode->getOperand(1));
6079         break;
6080       case PPC::BC:
6081       case PPC::BCn:
6082         if (Op1Not)
6083           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
6084                                                                PPC::BC,
6085                                            SDLoc(MachineNode),
6086                                            MVT::Other,
6087                                            MachineNode->getOperand(0).
6088                                              getOperand(0),
6089                                            MachineNode->getOperand(1),
6090                                            MachineNode->getOperand(2));
6091         // FIXME: Handle Op1Set, Op1Unset here too.
6092         break;
6093       }
6094 
6095       // If we're inverting this node because it is used only by selects that
6096       // we'd like to swap, then swap the selects before the node replacement.
6097       if (SelectSwap)
6098         SwapAllSelectUsers(MachineNode);
6099 
6100       if (ResNode != MachineNode) {
6101         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6102         LLVM_DEBUG(MachineNode->dump(CurDAG));
6103         LLVM_DEBUG(dbgs() << "\nNew: ");
6104         LLVM_DEBUG(ResNode->dump(CurDAG));
6105         LLVM_DEBUG(dbgs() << "\n");
6106 
6107         ReplaceUses(MachineNode, ResNode);
6108         IsModified = true;
6109       }
6110     }
6111     if (IsModified)
6112       CurDAG->RemoveDeadNodes();
6113   } while (IsModified);
6114 }
6115 
6116 // Gather the set of 32-bit operations that are known to have their
6117 // higher-order 32 bits zero, where ToPromote contains all such operations.
6118 static bool PeepholePPC64ZExtGather(SDValue Op32,
6119                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
6120   if (!Op32.isMachineOpcode())
6121     return false;
6122 
6123   // First, check for the "frontier" instructions (those that will clear the
6124   // higher-order 32 bits.
6125 
6126   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6127   // around. If it does not, then these instructions will clear the
6128   // higher-order bits.
6129   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6130        Op32.getMachineOpcode() == PPC::RLWNM) &&
6131       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6132     ToPromote.insert(Op32.getNode());
6133     return true;
6134   }
6135 
6136   // SLW and SRW always clear the higher-order bits.
6137   if (Op32.getMachineOpcode() == PPC::SLW ||
6138       Op32.getMachineOpcode() == PPC::SRW) {
6139     ToPromote.insert(Op32.getNode());
6140     return true;
6141   }
6142 
6143   // For LI and LIS, we need the immediate to be positive (so that it is not
6144   // sign extended).
6145   if (Op32.getMachineOpcode() == PPC::LI ||
6146       Op32.getMachineOpcode() == PPC::LIS) {
6147     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
6148       return false;
6149 
6150     ToPromote.insert(Op32.getNode());
6151     return true;
6152   }
6153 
6154   // LHBRX and LWBRX always clear the higher-order bits.
6155   if (Op32.getMachineOpcode() == PPC::LHBRX ||
6156       Op32.getMachineOpcode() == PPC::LWBRX) {
6157     ToPromote.insert(Op32.getNode());
6158     return true;
6159   }
6160 
6161   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
6162   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
6163       Op32.getMachineOpcode() == PPC::CNTTZW) {
6164     ToPromote.insert(Op32.getNode());
6165     return true;
6166   }
6167 
6168   // Next, check for those instructions we can look through.
6169 
6170   // Assuming the mask does not wrap around, then the higher-order bits are
6171   // taken directly from the first operand.
6172   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
6173       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
6174     SmallPtrSet<SDNode *, 16> ToPromote1;
6175     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6176       return false;
6177 
6178     ToPromote.insert(Op32.getNode());
6179     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6180     return true;
6181   }
6182 
6183   // For OR, the higher-order bits are zero if that is true for both operands.
6184   // For SELECT_I4, the same is true (but the relevant operand numbers are
6185   // shifted by 1).
6186   if (Op32.getMachineOpcode() == PPC::OR ||
6187       Op32.getMachineOpcode() == PPC::SELECT_I4) {
6188     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
6189     SmallPtrSet<SDNode *, 16> ToPromote1;
6190     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
6191       return false;
6192     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
6193       return false;
6194 
6195     ToPromote.insert(Op32.getNode());
6196     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6197     return true;
6198   }
6199 
6200   // For ORI and ORIS, we need the higher-order bits of the first operand to be
6201   // zero, and also for the constant to be positive (so that it is not sign
6202   // extended).
6203   if (Op32.getMachineOpcode() == PPC::ORI ||
6204       Op32.getMachineOpcode() == PPC::ORIS) {
6205     SmallPtrSet<SDNode *, 16> ToPromote1;
6206     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6207       return false;
6208     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
6209       return false;
6210 
6211     ToPromote.insert(Op32.getNode());
6212     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6213     return true;
6214   }
6215 
6216   // The higher-order bits of AND are zero if that is true for at least one of
6217   // the operands.
6218   if (Op32.getMachineOpcode() == PPC::AND) {
6219     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
6220     bool Op0OK =
6221       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6222     bool Op1OK =
6223       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
6224     if (!Op0OK && !Op1OK)
6225       return false;
6226 
6227     ToPromote.insert(Op32.getNode());
6228 
6229     if (Op0OK)
6230       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6231 
6232     if (Op1OK)
6233       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
6234 
6235     return true;
6236   }
6237 
6238   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
6239   // of the first operand, or if the second operand is positive (so that it is
6240   // not sign extended).
6241   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
6242       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
6243     SmallPtrSet<SDNode *, 16> ToPromote1;
6244     bool Op0OK =
6245       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6246     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
6247     if (!Op0OK && !Op1OK)
6248       return false;
6249 
6250     ToPromote.insert(Op32.getNode());
6251 
6252     if (Op0OK)
6253       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6254 
6255     return true;
6256   }
6257 
6258   return false;
6259 }
6260 
6261 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
6262   if (!PPCSubTarget->isPPC64())
6263     return;
6264 
6265   // When we zero-extend from i32 to i64, we use a pattern like this:
6266   // def : Pat<(i64 (zext i32:$in)),
6267   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
6268   //                   0, 32)>;
6269   // There are several 32-bit shift/rotate instructions, however, that will
6270   // clear the higher-order bits of their output, rendering the RLDICL
6271   // unnecessary. When that happens, we remove it here, and redefine the
6272   // relevant 32-bit operation to be a 64-bit operation.
6273 
6274   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6275 
6276   bool MadeChange = false;
6277   while (Position != CurDAG->allnodes_begin()) {
6278     SDNode *N = &*--Position;
6279     // Skip dead nodes and any non-machine opcodes.
6280     if (N->use_empty() || !N->isMachineOpcode())
6281       continue;
6282 
6283     if (N->getMachineOpcode() != PPC::RLDICL)
6284       continue;
6285 
6286     if (N->getConstantOperandVal(1) != 0 ||
6287         N->getConstantOperandVal(2) != 32)
6288       continue;
6289 
6290     SDValue ISR = N->getOperand(0);
6291     if (!ISR.isMachineOpcode() ||
6292         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
6293       continue;
6294 
6295     if (!ISR.hasOneUse())
6296       continue;
6297 
6298     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
6299       continue;
6300 
6301     SDValue IDef = ISR.getOperand(0);
6302     if (!IDef.isMachineOpcode() ||
6303         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
6304       continue;
6305 
6306     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
6307     // can get rid of it.
6308 
6309     SDValue Op32 = ISR->getOperand(1);
6310     if (!Op32.isMachineOpcode())
6311       continue;
6312 
6313     // There are some 32-bit instructions that always clear the high-order 32
6314     // bits, there are also some instructions (like AND) that we can look
6315     // through.
6316     SmallPtrSet<SDNode *, 16> ToPromote;
6317     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
6318       continue;
6319 
6320     // If the ToPromote set contains nodes that have uses outside of the set
6321     // (except for the original INSERT_SUBREG), then abort the transformation.
6322     bool OutsideUse = false;
6323     for (SDNode *PN : ToPromote) {
6324       for (SDNode *UN : PN->uses()) {
6325         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
6326           OutsideUse = true;
6327           break;
6328         }
6329       }
6330 
6331       if (OutsideUse)
6332         break;
6333     }
6334     if (OutsideUse)
6335       continue;
6336 
6337     MadeChange = true;
6338 
6339     // We now know that this zero extension can be removed by promoting to
6340     // nodes in ToPromote to 64-bit operations, where for operations in the
6341     // frontier of the set, we need to insert INSERT_SUBREGs for their
6342     // operands.
6343     for (SDNode *PN : ToPromote) {
6344       unsigned NewOpcode;
6345       switch (PN->getMachineOpcode()) {
6346       default:
6347         llvm_unreachable("Don't know the 64-bit variant of this instruction");
6348       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
6349       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
6350       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
6351       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
6352       case PPC::LI:        NewOpcode = PPC::LI8; break;
6353       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
6354       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
6355       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
6356       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
6357       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
6358       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
6359       case PPC::OR:        NewOpcode = PPC::OR8; break;
6360       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
6361       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
6362       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
6363       case PPC::AND:       NewOpcode = PPC::AND8; break;
6364       case PPC::ANDI_rec:
6365         NewOpcode = PPC::ANDI8_rec;
6366         break;
6367       case PPC::ANDIS_rec:
6368         NewOpcode = PPC::ANDIS8_rec;
6369         break;
6370       }
6371 
6372       // Note: During the replacement process, the nodes will be in an
6373       // inconsistent state (some instructions will have operands with values
6374       // of the wrong type). Once done, however, everything should be right
6375       // again.
6376 
6377       SmallVector<SDValue, 4> Ops;
6378       for (const SDValue &V : PN->ops()) {
6379         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
6380             !isa<ConstantSDNode>(V)) {
6381           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
6382           SDNode *ReplOp =
6383             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
6384                                    ISR.getNode()->getVTList(), ReplOpOps);
6385           Ops.push_back(SDValue(ReplOp, 0));
6386         } else {
6387           Ops.push_back(V);
6388         }
6389       }
6390 
6391       // Because all to-be-promoted nodes only have users that are other
6392       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
6393       // the i32 result value type with i64.
6394 
6395       SmallVector<EVT, 2> NewVTs;
6396       SDVTList VTs = PN->getVTList();
6397       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
6398         if (VTs.VTs[i] == MVT::i32)
6399           NewVTs.push_back(MVT::i64);
6400         else
6401           NewVTs.push_back(VTs.VTs[i]);
6402 
6403       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
6404       LLVM_DEBUG(PN->dump(CurDAG));
6405 
6406       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
6407 
6408       LLVM_DEBUG(dbgs() << "\nNew: ");
6409       LLVM_DEBUG(PN->dump(CurDAG));
6410       LLVM_DEBUG(dbgs() << "\n");
6411     }
6412 
6413     // Now we replace the original zero extend and its associated INSERT_SUBREG
6414     // with the value feeding the INSERT_SUBREG (which has now been promoted to
6415     // return an i64).
6416 
6417     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
6418     LLVM_DEBUG(N->dump(CurDAG));
6419     LLVM_DEBUG(dbgs() << "\nNew: ");
6420     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
6421     LLVM_DEBUG(dbgs() << "\n");
6422 
6423     ReplaceUses(N, Op32.getNode());
6424   }
6425 
6426   if (MadeChange)
6427     CurDAG->RemoveDeadNodes();
6428 }
6429 
6430 void PPCDAGToDAGISel::PeepholePPC64() {
6431   // These optimizations are currently supported only for 64-bit SVR4.
6432   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
6433     return;
6434 
6435   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6436 
6437   while (Position != CurDAG->allnodes_begin()) {
6438     SDNode *N = &*--Position;
6439     // Skip dead nodes and any non-machine opcodes.
6440     if (N->use_empty() || !N->isMachineOpcode())
6441       continue;
6442 
6443     unsigned FirstOp;
6444     unsigned StorageOpcode = N->getMachineOpcode();
6445     bool RequiresMod4Offset = false;
6446 
6447     switch (StorageOpcode) {
6448     default: continue;
6449 
6450     case PPC::LWA:
6451     case PPC::LD:
6452     case PPC::DFLOADf64:
6453     case PPC::DFLOADf32:
6454       RequiresMod4Offset = true;
6455       LLVM_FALLTHROUGH;
6456     case PPC::LBZ:
6457     case PPC::LBZ8:
6458     case PPC::LFD:
6459     case PPC::LFS:
6460     case PPC::LHA:
6461     case PPC::LHA8:
6462     case PPC::LHZ:
6463     case PPC::LHZ8:
6464     case PPC::LWZ:
6465     case PPC::LWZ8:
6466       FirstOp = 0;
6467       break;
6468 
6469     case PPC::STD:
6470     case PPC::DFSTOREf64:
6471     case PPC::DFSTOREf32:
6472       RequiresMod4Offset = true;
6473       LLVM_FALLTHROUGH;
6474     case PPC::STB:
6475     case PPC::STB8:
6476     case PPC::STFD:
6477     case PPC::STFS:
6478     case PPC::STH:
6479     case PPC::STH8:
6480     case PPC::STW:
6481     case PPC::STW8:
6482       FirstOp = 1;
6483       break;
6484     }
6485 
6486     // If this is a load or store with a zero offset, or within the alignment,
6487     // we may be able to fold an add-immediate into the memory operation.
6488     // The check against alignment is below, as it can't occur until we check
6489     // the arguments to N
6490     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
6491       continue;
6492 
6493     SDValue Base = N->getOperand(FirstOp + 1);
6494     if (!Base.isMachineOpcode())
6495       continue;
6496 
6497     unsigned Flags = 0;
6498     bool ReplaceFlags = true;
6499 
6500     // When the feeding operation is an add-immediate of some sort,
6501     // determine whether we need to add relocation information to the
6502     // target flags on the immediate operand when we fold it into the
6503     // load instruction.
6504     //
6505     // For something like ADDItocL, the relocation information is
6506     // inferred from the opcode; when we process it in the AsmPrinter,
6507     // we add the necessary relocation there.  A load, though, can receive
6508     // relocation from various flavors of ADDIxxx, so we need to carry
6509     // the relocation information in the target flags.
6510     switch (Base.getMachineOpcode()) {
6511     default: continue;
6512 
6513     case PPC::ADDI8:
6514     case PPC::ADDI:
6515       // In some cases (such as TLS) the relocation information
6516       // is already in place on the operand, so copying the operand
6517       // is sufficient.
6518       ReplaceFlags = false;
6519       // For these cases, the immediate may not be divisible by 4, in
6520       // which case the fold is illegal for DS-form instructions.  (The
6521       // other cases provide aligned addresses and are always safe.)
6522       if (RequiresMod4Offset &&
6523           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
6524            Base.getConstantOperandVal(1) % 4 != 0))
6525         continue;
6526       break;
6527     case PPC::ADDIdtprelL:
6528       Flags = PPCII::MO_DTPREL_LO;
6529       break;
6530     case PPC::ADDItlsldL:
6531       Flags = PPCII::MO_TLSLD_LO;
6532       break;
6533     case PPC::ADDItocL:
6534       Flags = PPCII::MO_TOC_LO;
6535       break;
6536     }
6537 
6538     SDValue ImmOpnd = Base.getOperand(1);
6539 
6540     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
6541     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
6542     // we might have needed different @ha relocation values for the offset
6543     // pointers).
6544     int MaxDisplacement = 7;
6545     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6546       const GlobalValue *GV = GA->getGlobal();
6547       MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
6548     }
6549 
6550     bool UpdateHBase = false;
6551     SDValue HBase = Base.getOperand(0);
6552 
6553     int Offset = N->getConstantOperandVal(FirstOp);
6554     if (ReplaceFlags) {
6555       if (Offset < 0 || Offset > MaxDisplacement) {
6556         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
6557         // one use, then we can do this for any offset, we just need to also
6558         // update the offset (i.e. the symbol addend) on the addis also.
6559         if (Base.getMachineOpcode() != PPC::ADDItocL)
6560           continue;
6561 
6562         if (!HBase.isMachineOpcode() ||
6563             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
6564           continue;
6565 
6566         if (!Base.hasOneUse() || !HBase.hasOneUse())
6567           continue;
6568 
6569         SDValue HImmOpnd = HBase.getOperand(1);
6570         if (HImmOpnd != ImmOpnd)
6571           continue;
6572 
6573         UpdateHBase = true;
6574       }
6575     } else {
6576       // If we're directly folding the addend from an addi instruction, then:
6577       //  1. In general, the offset on the memory access must be zero.
6578       //  2. If the addend is a constant, then it can be combined with a
6579       //     non-zero offset, but only if the result meets the encoding
6580       //     requirements.
6581       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
6582         Offset += C->getSExtValue();
6583 
6584         if (RequiresMod4Offset && (Offset % 4) != 0)
6585           continue;
6586 
6587         if (!isInt<16>(Offset))
6588           continue;
6589 
6590         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
6591                                             ImmOpnd.getValueType());
6592       } else if (Offset != 0) {
6593         continue;
6594       }
6595     }
6596 
6597     // We found an opportunity.  Reverse the operands from the add
6598     // immediate and substitute them into the load or store.  If
6599     // needed, update the target flags for the immediate operand to
6600     // reflect the necessary relocation information.
6601     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
6602     LLVM_DEBUG(Base->dump(CurDAG));
6603     LLVM_DEBUG(dbgs() << "\nN: ");
6604     LLVM_DEBUG(N->dump(CurDAG));
6605     LLVM_DEBUG(dbgs() << "\n");
6606 
6607     // If the relocation information isn't already present on the
6608     // immediate operand, add it now.
6609     if (ReplaceFlags) {
6610       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6611         SDLoc dl(GA);
6612         const GlobalValue *GV = GA->getGlobal();
6613         // We can't perform this optimization for data whose alignment
6614         // is insufficient for the instruction encoding.
6615         if (GV->getAlignment() < 4 &&
6616             (RequiresMod4Offset || (Offset % 4) != 0)) {
6617           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
6618           continue;
6619         }
6620         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
6621       } else if (ConstantPoolSDNode *CP =
6622                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
6623         const Constant *C = CP->getConstVal();
6624         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
6625                                                 CP->getAlignment(),
6626                                                 Offset, Flags);
6627       }
6628     }
6629 
6630     if (FirstOp == 1) // Store
6631       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
6632                                        Base.getOperand(0), N->getOperand(3));
6633     else // Load
6634       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
6635                                        N->getOperand(2));
6636 
6637     if (UpdateHBase)
6638       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
6639                                        ImmOpnd);
6640 
6641     // The add-immediate may now be dead, in which case remove it.
6642     if (Base.getNode()->use_empty())
6643       CurDAG->RemoveDeadNode(Base.getNode());
6644   }
6645 }
6646 
6647 /// createPPCISelDag - This pass converts a legalized DAG into a
6648 /// PowerPC-specific DAG, ready for instruction scheduling.
6649 ///
6650 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
6651                                      CodeGenOpt::Level OptLevel) {
6652   return new PPCDAGToDAGISel(TM, OptLevel);
6653 }
6654