1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pattern matching instruction selector for PowerPC, 10 // converting from a legalized dag to a PPC dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCISelLowering.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGISel.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CodeGen.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/KnownBits.h" 54 #include "llvm/Support/MachineValueType.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <new> 64 #include <tuple> 65 #include <utility> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "ppc-codegen" 70 71 STATISTIC(NumSextSetcc, 72 "Number of (sext(setcc)) nodes expanded into GPR sequence."); 73 STATISTIC(NumZextSetcc, 74 "Number of (zext(setcc)) nodes expanded into GPR sequence."); 75 STATISTIC(SignExtensionsAdded, 76 "Number of sign extensions for compare inputs added."); 77 STATISTIC(ZeroExtensionsAdded, 78 "Number of zero extensions for compare inputs added."); 79 STATISTIC(NumLogicOpsOnComparison, 80 "Number of logical ops on i1 values calculated in GPR."); 81 STATISTIC(OmittedForNonExtendUses, 82 "Number of compares not eliminated as they have non-extending uses."); 83 STATISTIC(NumP9Setb, 84 "Number of compares lowered to setb."); 85 86 // FIXME: Remove this once the bug has been fixed! 87 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 88 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 89 90 static cl::opt<bool> 91 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 92 cl::desc("use aggressive ppc isel for bit permutations"), 93 cl::Hidden); 94 static cl::opt<bool> BPermRewriterNoMasking( 95 "ppc-bit-perm-rewriter-stress-rotates", 96 cl::desc("stress rotate selection in aggressive ppc isel for " 97 "bit permutations"), 98 cl::Hidden); 99 100 static cl::opt<bool> EnableBranchHint( 101 "ppc-use-branch-hint", cl::init(true), 102 cl::desc("Enable static hinting of branches on ppc"), 103 cl::Hidden); 104 105 static cl::opt<bool> EnableTLSOpt( 106 "ppc-tls-opt", cl::init(true), 107 cl::desc("Enable tls optimization peephole"), 108 cl::Hidden); 109 110 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, 111 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, 112 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; 113 114 static cl::opt<ICmpInGPRType> CmpInGPR( 115 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), 116 cl::desc("Specify the types of comparisons to emit GPR-only code for."), 117 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), 118 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), 119 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), 120 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), 121 clEnumValN(ICGPR_NonExtIn, "nonextin", 122 "Only comparisons where inputs don't need [sz]ext."), 123 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), 124 clEnumValN(ICGPR_ZextI32, "zexti32", 125 "Only i32 comparisons with zext result."), 126 clEnumValN(ICGPR_ZextI64, "zexti64", 127 "Only i64 comparisons with zext result."), 128 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), 129 clEnumValN(ICGPR_SextI32, "sexti32", 130 "Only i32 comparisons with sext result."), 131 clEnumValN(ICGPR_SextI64, "sexti64", 132 "Only i64 comparisons with sext result."))); 133 namespace { 134 135 //===--------------------------------------------------------------------===// 136 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 137 /// instructions for SelectionDAG operations. 138 /// 139 class PPCDAGToDAGISel : public SelectionDAGISel { 140 const PPCTargetMachine &TM; 141 const PPCSubtarget *PPCSubTarget = nullptr; 142 const PPCTargetLowering *PPCLowering = nullptr; 143 unsigned GlobalBaseReg = 0; 144 145 public: 146 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) 147 : SelectionDAGISel(tm, OptLevel), TM(tm) {} 148 149 bool runOnMachineFunction(MachineFunction &MF) override { 150 // Make sure we re-emit a set of the global base reg if necessary 151 GlobalBaseReg = 0; 152 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); 153 PPCLowering = PPCSubTarget->getTargetLowering(); 154 SelectionDAGISel::runOnMachineFunction(MF); 155 156 if (!PPCSubTarget->isSVR4ABI()) 157 InsertVRSaveCode(MF); 158 159 return true; 160 } 161 162 void PreprocessISelDAG() override; 163 void PostprocessISelDAG() override; 164 165 /// getI16Imm - Return a target constant with the specified value, of type 166 /// i16. 167 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { 168 return CurDAG->getTargetConstant(Imm, dl, MVT::i16); 169 } 170 171 /// getI32Imm - Return a target constant with the specified value, of type 172 /// i32. 173 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 174 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 175 } 176 177 /// getI64Imm - Return a target constant with the specified value, of type 178 /// i64. 179 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 180 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 181 } 182 183 /// getSmallIPtrImm - Return a target constant of pointer type. 184 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { 185 return CurDAG->getTargetConstant( 186 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 187 } 188 189 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 190 /// rotate and mask opcode and mask operation. 191 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 192 unsigned &SH, unsigned &MB, unsigned &ME); 193 194 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 195 /// base register. Return the virtual register that holds this value. 196 SDNode *getGlobalBaseReg(); 197 198 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); 199 200 // Select - Convert the specified operand from a target-independent to a 201 // target-specific node if it hasn't already been changed. 202 void Select(SDNode *N) override; 203 204 bool tryBitfieldInsert(SDNode *N); 205 bool tryBitPermutation(SDNode *N); 206 bool tryIntCompareInGPR(SDNode *N); 207 bool tryAndWithMask(SDNode *N); 208 209 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into 210 // an X-Form load instruction with the offset being a relocation coming from 211 // the PPCISD::ADD_TLS. 212 bool tryTLSXFormLoad(LoadSDNode *N); 213 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into 214 // an X-Form store instruction with the offset being a relocation coming from 215 // the PPCISD::ADD_TLS. 216 bool tryTLSXFormStore(StoreSDNode *N); 217 /// SelectCC - Select a comparison of the specified values with the 218 /// specified condition code, returning the CR# of the expression. 219 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 220 const SDLoc &dl); 221 222 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 223 /// immediate field. Note that the operand at this point is already the 224 /// result of a prior SelectAddressRegImm call. 225 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 226 if (N.getOpcode() == ISD::TargetConstant || 227 N.getOpcode() == ISD::TargetGlobalAddress) { 228 Out = N; 229 return true; 230 } 231 232 return false; 233 } 234 235 /// SelectAddrIdx - Given the specified address, check to see if it can be 236 /// represented as an indexed [r+r] operation. 237 /// This is for xform instructions whose associated displacement form is D. 238 /// The last parameter \p 0 means associated D form has no requirment for 16 239 /// bit signed displacement. 240 /// Returns false if it can be represented by [r+imm], which are preferred. 241 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 242 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0); 243 } 244 245 /// SelectAddrIdx4 - Given the specified address, check to see if it can be 246 /// represented as an indexed [r+r] operation. 247 /// This is for xform instructions whose associated displacement form is DS. 248 /// The last parameter \p 4 means associated DS form 16 bit signed 249 /// displacement must be a multiple of 4. 250 /// Returns false if it can be represented by [r+imm], which are preferred. 251 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { 252 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4); 253 } 254 255 /// SelectAddrIdx16 - Given the specified address, check to see if it can be 256 /// represented as an indexed [r+r] operation. 257 /// This is for xform instructions whose associated displacement form is DQ. 258 /// The last parameter \p 16 means associated DQ form 16 bit signed 259 /// displacement must be a multiple of 16. 260 /// Returns false if it can be represented by [r+imm], which are preferred. 261 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { 262 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16); 263 } 264 265 /// SelectAddrIdxOnly - Given the specified address, force it to be 266 /// represented as an indexed [r+r] operation. 267 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 268 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 269 } 270 271 /// SelectAddrImm - Returns true if the address N can be represented by 272 /// a base register plus a signed 16-bit displacement [r+imm]. 273 /// The last parameter \p 0 means D form has no requirment for 16 bit signed 274 /// displacement. 275 bool SelectAddrImm(SDValue N, SDValue &Disp, 276 SDValue &Base) { 277 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0); 278 } 279 280 /// SelectAddrImmX4 - Returns true if the address N can be represented by 281 /// a base register plus a signed 16-bit displacement that is a multiple of 282 /// 4 (last parameter). Suitable for use by STD and friends. 283 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 284 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4); 285 } 286 287 /// SelectAddrImmX16 - Returns true if the address N can be represented by 288 /// a base register plus a signed 16-bit displacement that is a multiple of 289 /// 16(last parameter). Suitable for use by STXV and friends. 290 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { 291 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16); 292 } 293 294 // Select an address into a single register. 295 bool SelectAddr(SDValue N, SDValue &Base) { 296 Base = N; 297 return true; 298 } 299 300 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 301 /// inline asm expressions. It is always correct to compute the value into 302 /// a register. The case of adding a (possibly relocatable) constant to a 303 /// register can be improved, but it is wrong to substitute Reg+Reg for 304 /// Reg in an asm, because the load or store opcode would have to change. 305 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 306 unsigned ConstraintID, 307 std::vector<SDValue> &OutOps) override { 308 switch(ConstraintID) { 309 default: 310 errs() << "ConstraintID: " << ConstraintID << "\n"; 311 llvm_unreachable("Unexpected asm memory constraint"); 312 case InlineAsm::Constraint_es: 313 case InlineAsm::Constraint_m: 314 case InlineAsm::Constraint_o: 315 case InlineAsm::Constraint_Q: 316 case InlineAsm::Constraint_Z: 317 case InlineAsm::Constraint_Zy: 318 // We need to make sure that this one operand does not end up in r0 319 // (because we might end up lowering this as 0(%op)). 320 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); 321 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 322 SDLoc dl(Op); 323 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 324 SDValue NewOp = 325 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 326 dl, Op.getValueType(), 327 Op, RC), 0); 328 329 OutOps.push_back(NewOp); 330 return false; 331 } 332 return true; 333 } 334 335 void InsertVRSaveCode(MachineFunction &MF); 336 337 StringRef getPassName() const override { 338 return "PowerPC DAG->DAG Pattern Instruction Selection"; 339 } 340 341 // Include the pieces autogenerated from the target description. 342 #include "PPCGenDAGISel.inc" 343 344 private: 345 bool trySETCC(SDNode *N); 346 347 void PeepholePPC64(); 348 void PeepholePPC64ZExt(); 349 void PeepholeCROps(); 350 351 SDValue combineToCMPB(SDNode *N); 352 void foldBoolExts(SDValue &Res, SDNode *&N); 353 354 bool AllUsersSelectZero(SDNode *N); 355 void SwapAllSelectUsers(SDNode *N); 356 357 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; 358 void transferMemOperands(SDNode *N, SDNode *Result); 359 }; 360 361 } // end anonymous namespace 362 363 /// InsertVRSaveCode - Once the entire function has been instruction selected, 364 /// all virtual registers are created and all machine instructions are built, 365 /// check to see if we need to save/restore VRSAVE. If so, do it. 366 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 367 // Check to see if this function uses vector registers, which means we have to 368 // save and restore the VRSAVE register and update it with the regs we use. 369 // 370 // In this case, there will be virtual registers of vector type created 371 // by the scheduler. Detect them now. 372 bool HasVectorVReg = false; 373 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 374 unsigned Reg = Register::index2VirtReg(i); 375 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 376 HasVectorVReg = true; 377 break; 378 } 379 } 380 if (!HasVectorVReg) return; // nothing to do. 381 382 // If we have a vector register, we want to emit code into the entry and exit 383 // blocks to save and restore the VRSAVE register. We do this here (instead 384 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 385 // 386 // 1. This (trivially) reduces the load on the register allocator, by not 387 // having to represent the live range of the VRSAVE register. 388 // 2. This (more significantly) allows us to create a temporary virtual 389 // register to hold the saved VRSAVE value, allowing this temporary to be 390 // register allocated, instead of forcing it to be spilled to the stack. 391 392 // Create two vregs - one to hold the VRSAVE register that is live-in to the 393 // function and one for the value after having bits or'd into it. 394 Register InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 395 Register UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 396 397 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 398 MachineBasicBlock &EntryBB = *Fn.begin(); 399 DebugLoc dl; 400 // Emit the following code into the entry block: 401 // InVRSAVE = MFVRSAVE 402 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 403 // MTVRSAVE UpdatedVRSAVE 404 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 405 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 406 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 407 UpdatedVRSAVE).addReg(InVRSAVE); 408 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 409 410 // Find all return blocks, outputting a restore in each epilog. 411 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 412 if (BB->isReturnBlock()) { 413 IP = BB->end(); --IP; 414 415 // Skip over all terminator instructions, which are part of the return 416 // sequence. 417 MachineBasicBlock::iterator I2 = IP; 418 while (I2 != BB->begin() && (--I2)->isTerminator()) 419 IP = I2; 420 421 // Emit: MTVRSAVE InVRSave 422 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 423 } 424 } 425 } 426 427 /// getGlobalBaseReg - Output the instructions required to put the 428 /// base address to use for accessing globals into a register. 429 /// 430 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 431 if (!GlobalBaseReg) { 432 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 433 // Insert the set of GlobalBaseReg into the first MBB of the function 434 MachineBasicBlock &FirstMBB = MF->front(); 435 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 436 const Module *M = MF->getFunction().getParent(); 437 DebugLoc dl; 438 439 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 440 if (PPCSubTarget->isTargetELF()) { 441 GlobalBaseReg = PPC::R30; 442 if (!PPCSubTarget->isSecurePlt() && 443 M->getPICLevel() == PICLevel::SmallPIC) { 444 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 445 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 446 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 447 } else { 448 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 449 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 450 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 451 BuildMI(FirstMBB, MBBI, dl, 452 TII.get(PPC::UpdateGBR), GlobalBaseReg) 453 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 454 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 455 } 456 } else { 457 GlobalBaseReg = 458 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); 459 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 460 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 461 } 462 } else { 463 // We must ensure that this sequence is dominated by the prologue. 464 // FIXME: This is a bit of a big hammer since we don't get the benefits 465 // of shrink-wrapping whenever we emit this instruction. Considering 466 // this is used in any function where we emit a jump table, this may be 467 // a significant limitation. We should consider inserting this in the 468 // block where it is used and then commoning this sequence up if it 469 // appears in multiple places. 470 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of 471 // MovePCtoLR8. 472 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); 473 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 474 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 475 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 476 } 477 } 478 return CurDAG->getRegister(GlobalBaseReg, 479 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 480 .getNode(); 481 } 482 483 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 484 /// operand. If so Imm will receive the 32-bit value. 485 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 486 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 487 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 488 return true; 489 } 490 return false; 491 } 492 493 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 494 /// operand. If so Imm will receive the 64-bit value. 495 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 496 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 497 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 498 return true; 499 } 500 return false; 501 } 502 503 // isInt32Immediate - This method tests to see if a constant operand. 504 // If so Imm will receive the 32 bit value. 505 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 506 return isInt32Immediate(N.getNode(), Imm); 507 } 508 509 /// isInt64Immediate - This method tests to see if the value is a 64-bit 510 /// constant operand. If so Imm will receive the 64-bit value. 511 static bool isInt64Immediate(SDValue N, uint64_t &Imm) { 512 return isInt64Immediate(N.getNode(), Imm); 513 } 514 515 static unsigned getBranchHint(unsigned PCC, 516 const FunctionLoweringInfo &FuncInfo, 517 const SDValue &DestMBB) { 518 assert(isa<BasicBlockSDNode>(DestMBB)); 519 520 if (!FuncInfo.BPI) return PPC::BR_NO_HINT; 521 522 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); 523 const Instruction *BBTerm = BB->getTerminator(); 524 525 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 526 527 const BasicBlock *TBB = BBTerm->getSuccessor(0); 528 const BasicBlock *FBB = BBTerm->getSuccessor(1); 529 530 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); 531 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); 532 533 // We only want to handle cases which are easy to predict at static time, e.g. 534 // C++ throw statement, that is very likely not taken, or calling never 535 // returned function, e.g. stdlib exit(). So we set Threshold to filter 536 // unwanted cases. 537 // 538 // Below is LLVM branch weight table, we only want to handle case 1, 2 539 // 540 // Case Taken:Nontaken Example 541 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 542 // 2. Invoke-terminating 1:1048575 543 // 3. Coldblock 4:64 __builtin_expect 544 // 4. Loop Branch 124:4 For loop 545 // 5. PH/ZH/FPH 20:12 546 const uint32_t Threshold = 10000; 547 548 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 549 return PPC::BR_NO_HINT; 550 551 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() 552 << "::" << BB->getName() << "'\n" 553 << " -> " << TBB->getName() << ": " << TProb << "\n" 554 << " -> " << FBB->getName() << ": " << FProb << "\n"); 555 556 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 557 558 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 559 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 560 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 561 std::swap(TProb, FProb); 562 563 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 564 } 565 566 // isOpcWithIntImmediate - This method tests to see if the node is a specific 567 // opcode and that it has a immediate integer right operand. 568 // If so Imm will receive the 32 bit value. 569 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 570 return N->getOpcode() == Opc 571 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 572 } 573 574 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { 575 SDLoc dl(SN); 576 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 577 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 578 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 579 if (SN->hasOneUse()) 580 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 581 getSmallIPtrImm(Offset, dl)); 582 else 583 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 584 getSmallIPtrImm(Offset, dl))); 585 } 586 587 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 588 bool isShiftMask, unsigned &SH, 589 unsigned &MB, unsigned &ME) { 590 // Don't even go down this path for i64, since different logic will be 591 // necessary for rldicl/rldicr/rldimi. 592 if (N->getValueType(0) != MVT::i32) 593 return false; 594 595 unsigned Shift = 32; 596 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 597 unsigned Opcode = N->getOpcode(); 598 if (N->getNumOperands() != 2 || 599 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 600 return false; 601 602 if (Opcode == ISD::SHL) { 603 // apply shift left to mask if it comes first 604 if (isShiftMask) Mask = Mask << Shift; 605 // determine which bits are made indeterminant by shift 606 Indeterminant = ~(0xFFFFFFFFu << Shift); 607 } else if (Opcode == ISD::SRL) { 608 // apply shift right to mask if it comes first 609 if (isShiftMask) Mask = Mask >> Shift; 610 // determine which bits are made indeterminant by shift 611 Indeterminant = ~(0xFFFFFFFFu >> Shift); 612 // adjust for the left rotate 613 Shift = 32 - Shift; 614 } else if (Opcode == ISD::ROTL) { 615 Indeterminant = 0; 616 } else { 617 return false; 618 } 619 620 // if the mask doesn't intersect any Indeterminant bits 621 if (Mask && !(Mask & Indeterminant)) { 622 SH = Shift & 31; 623 // make sure the mask is still a mask (wrap arounds may not be) 624 return isRunOfOnes(Mask, MB, ME); 625 } 626 return false; 627 } 628 629 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { 630 SDValue Base = ST->getBasePtr(); 631 if (Base.getOpcode() != PPCISD::ADD_TLS) 632 return false; 633 SDValue Offset = ST->getOffset(); 634 if (!Offset.isUndef()) 635 return false; 636 637 SDLoc dl(ST); 638 EVT MemVT = ST->getMemoryVT(); 639 EVT RegVT = ST->getValue().getValueType(); 640 641 unsigned Opcode; 642 switch (MemVT.getSimpleVT().SimpleTy) { 643 default: 644 return false; 645 case MVT::i8: { 646 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; 647 break; 648 } 649 case MVT::i16: { 650 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; 651 break; 652 } 653 case MVT::i32: { 654 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; 655 break; 656 } 657 case MVT::i64: { 658 Opcode = PPC::STDXTLS; 659 break; 660 } 661 } 662 SDValue Chain = ST->getChain(); 663 SDVTList VTs = ST->getVTList(); 664 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), 665 Chain}; 666 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 667 transferMemOperands(ST, MN); 668 ReplaceNode(ST, MN); 669 return true; 670 } 671 672 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { 673 SDValue Base = LD->getBasePtr(); 674 if (Base.getOpcode() != PPCISD::ADD_TLS) 675 return false; 676 SDValue Offset = LD->getOffset(); 677 if (!Offset.isUndef()) 678 return false; 679 680 SDLoc dl(LD); 681 EVT MemVT = LD->getMemoryVT(); 682 EVT RegVT = LD->getValueType(0); 683 unsigned Opcode; 684 switch (MemVT.getSimpleVT().SimpleTy) { 685 default: 686 return false; 687 case MVT::i8: { 688 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; 689 break; 690 } 691 case MVT::i16: { 692 Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; 693 break; 694 } 695 case MVT::i32: { 696 Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; 697 break; 698 } 699 case MVT::i64: { 700 Opcode = PPC::LDXTLS; 701 break; 702 } 703 } 704 SDValue Chain = LD->getChain(); 705 SDVTList VTs = LD->getVTList(); 706 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; 707 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 708 transferMemOperands(LD, MN); 709 ReplaceNode(LD, MN); 710 return true; 711 } 712 713 /// Turn an or of two masked values into the rotate left word immediate then 714 /// mask insert (rlwimi) instruction. 715 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 716 SDValue Op0 = N->getOperand(0); 717 SDValue Op1 = N->getOperand(1); 718 SDLoc dl(N); 719 720 KnownBits LKnown = CurDAG->computeKnownBits(Op0); 721 KnownBits RKnown = CurDAG->computeKnownBits(Op1); 722 723 unsigned TargetMask = LKnown.Zero.getZExtValue(); 724 unsigned InsertMask = RKnown.Zero.getZExtValue(); 725 726 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 727 unsigned Op0Opc = Op0.getOpcode(); 728 unsigned Op1Opc = Op1.getOpcode(); 729 unsigned Value, SH = 0; 730 TargetMask = ~TargetMask; 731 InsertMask = ~InsertMask; 732 733 // If the LHS has a foldable shift and the RHS does not, then swap it to the 734 // RHS so that we can fold the shift into the insert. 735 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 736 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 737 Op0.getOperand(0).getOpcode() == ISD::SRL) { 738 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 739 Op1.getOperand(0).getOpcode() != ISD::SRL) { 740 std::swap(Op0, Op1); 741 std::swap(Op0Opc, Op1Opc); 742 std::swap(TargetMask, InsertMask); 743 } 744 } 745 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 746 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 747 Op1.getOperand(0).getOpcode() != ISD::SRL) { 748 std::swap(Op0, Op1); 749 std::swap(Op0Opc, Op1Opc); 750 std::swap(TargetMask, InsertMask); 751 } 752 } 753 754 unsigned MB, ME; 755 if (isRunOfOnes(InsertMask, MB, ME)) { 756 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 757 isInt32Immediate(Op1.getOperand(1), Value)) { 758 Op1 = Op1.getOperand(0); 759 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 760 } 761 if (Op1Opc == ISD::AND) { 762 // The AND mask might not be a constant, and we need to make sure that 763 // if we're going to fold the masking with the insert, all bits not 764 // know to be zero in the mask are known to be one. 765 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); 766 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); 767 768 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 769 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 770 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 771 // Note that Value must be in range here (less than 32) because 772 // otherwise there would not be any bits set in InsertMask. 773 Op1 = Op1.getOperand(0).getOperand(0); 774 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 775 } 776 } 777 778 SH &= 31; 779 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 780 getI32Imm(ME, dl) }; 781 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 782 return true; 783 } 784 } 785 return false; 786 } 787 788 // Predict the number of instructions that would be generated by calling 789 // selectI64Imm(N). 790 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) { 791 // Assume no remaining bits. 792 unsigned Remainder = 0; 793 // Assume no shift required. 794 unsigned Shift = 0; 795 796 // If it can't be represented as a 32 bit value. 797 if (!isInt<32>(Imm)) { 798 Shift = countTrailingZeros<uint64_t>(Imm); 799 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 800 801 // If the shifted value fits 32 bits. 802 if (isInt<32>(ImmSh)) { 803 // Go with the shifted value. 804 Imm = ImmSh; 805 } else { 806 // Still stuck with a 64 bit value. 807 Remainder = Imm; 808 Shift = 32; 809 Imm >>= 32; 810 } 811 } 812 813 // Intermediate operand. 814 unsigned Result = 0; 815 816 // Handle first 32 bits. 817 unsigned Lo = Imm & 0xFFFF; 818 819 // Simple value. 820 if (isInt<16>(Imm)) { 821 // Just the Lo bits. 822 ++Result; 823 } else if (Lo) { 824 // Handle the Hi bits and Lo bits. 825 Result += 2; 826 } else { 827 // Just the Hi bits. 828 ++Result; 829 } 830 831 // If no shift, we're done. 832 if (!Shift) return Result; 833 834 // If Hi word == Lo word, 835 // we can use rldimi to insert the Lo word into Hi word. 836 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { 837 ++Result; 838 return Result; 839 } 840 841 // Shift for next step if the upper 32-bits were not zero. 842 if (Imm) 843 ++Result; 844 845 // Add in the last bits as required. 846 if ((Remainder >> 16) & 0xFFFF) 847 ++Result; 848 if (Remainder & 0xFFFF) 849 ++Result; 850 851 return Result; 852 } 853 854 static uint64_t Rot64(uint64_t Imm, unsigned R) { 855 return (Imm << R) | (Imm >> (64 - R)); 856 } 857 858 static unsigned selectI64ImmInstrCount(int64_t Imm) { 859 unsigned Count = selectI64ImmInstrCountDirect(Imm); 860 861 // If the instruction count is 1 or 2, we do not need further analysis 862 // since rotate + load constant requires at least 2 instructions. 863 if (Count <= 2) 864 return Count; 865 866 for (unsigned r = 1; r < 63; ++r) { 867 uint64_t RImm = Rot64(Imm, r); 868 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; 869 Count = std::min(Count, RCount); 870 871 // See comments in selectI64Imm for an explanation of the logic below. 872 unsigned LS = findLastSet(RImm); 873 if (LS != r-1) 874 continue; 875 876 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 877 uint64_t RImmWithOnes = RImm | OnesMask; 878 879 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; 880 Count = std::min(Count, RCount); 881 } 882 883 return Count; 884 } 885 886 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount 887 // (above) needs to be kept in sync with this function. 888 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, 889 int64_t Imm) { 890 // Assume no remaining bits. 891 unsigned Remainder = 0; 892 // Assume no shift required. 893 unsigned Shift = 0; 894 895 // If it can't be represented as a 32 bit value. 896 if (!isInt<32>(Imm)) { 897 Shift = countTrailingZeros<uint64_t>(Imm); 898 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 899 900 // If the shifted value fits 32 bits. 901 if (isInt<32>(ImmSh)) { 902 // Go with the shifted value. 903 Imm = ImmSh; 904 } else { 905 // Still stuck with a 64 bit value. 906 Remainder = Imm; 907 Shift = 32; 908 Imm >>= 32; 909 } 910 } 911 912 // Intermediate operand. 913 SDNode *Result; 914 915 // Handle first 32 bits. 916 unsigned Lo = Imm & 0xFFFF; 917 unsigned Hi = (Imm >> 16) & 0xFFFF; 918 919 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 920 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 921 }; 922 923 // Simple value. 924 if (isInt<16>(Imm)) { 925 uint64_t SextImm = SignExtend64(Lo, 16); 926 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 927 // Just the Lo bits. 928 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 929 } else if (Lo) { 930 // Handle the Hi bits. 931 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 932 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 933 // And Lo bits. 934 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 935 SDValue(Result, 0), getI32Imm(Lo)); 936 } else { 937 // Just the Hi bits. 938 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 939 } 940 941 // If no shift, we're done. 942 if (!Shift) return Result; 943 944 // If Hi word == Lo word, 945 // we can use rldimi to insert the Lo word into Hi word. 946 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { 947 SDValue Ops[] = 948 { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)}; 949 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 950 } 951 952 // Shift for next step if the upper 32-bits were not zero. 953 if (Imm) { 954 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 955 SDValue(Result, 0), 956 getI32Imm(Shift), 957 getI32Imm(63 - Shift)); 958 } 959 960 // Add in the last bits as required. 961 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 962 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 963 SDValue(Result, 0), getI32Imm(Hi)); 964 } 965 if ((Lo = Remainder & 0xFFFF)) { 966 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 967 SDValue(Result, 0), getI32Imm(Lo)); 968 } 969 970 return Result; 971 } 972 973 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, 974 int64_t Imm) { 975 unsigned Count = selectI64ImmInstrCountDirect(Imm); 976 977 // If the instruction count is 1 or 2, we do not need further analysis 978 // since rotate + load constant requires at least 2 instructions. 979 if (Count <= 2) 980 return selectI64ImmDirect(CurDAG, dl, Imm); 981 982 unsigned RMin = 0; 983 984 int64_t MatImm; 985 unsigned MaskEnd; 986 987 for (unsigned r = 1; r < 63; ++r) { 988 uint64_t RImm = Rot64(Imm, r); 989 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; 990 if (RCount < Count) { 991 Count = RCount; 992 RMin = r; 993 MatImm = RImm; 994 MaskEnd = 63; 995 } 996 997 // If the immediate to generate has many trailing zeros, it might be 998 // worthwhile to generate a rotated value with too many leading ones 999 // (because that's free with li/lis's sign-extension semantics), and then 1000 // mask them off after rotation. 1001 1002 unsigned LS = findLastSet(RImm); 1003 // We're adding (63-LS) higher-order ones, and we expect to mask them off 1004 // after performing the inverse rotation by (64-r). So we need that: 1005 // 63-LS == 64-r => LS == r-1 1006 if (LS != r-1) 1007 continue; 1008 1009 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 1010 uint64_t RImmWithOnes = RImm | OnesMask; 1011 1012 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; 1013 if (RCount < Count) { 1014 Count = RCount; 1015 RMin = r; 1016 MatImm = RImmWithOnes; 1017 MaskEnd = LS; 1018 } 1019 } 1020 1021 if (!RMin) 1022 return selectI64ImmDirect(CurDAG, dl, Imm); 1023 1024 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1025 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1026 }; 1027 1028 SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0); 1029 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, 1030 getI32Imm(64 - RMin), getI32Imm(MaskEnd)); 1031 } 1032 1033 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { 1034 unsigned MaxTruncation = 0; 1035 // Cannot use range-based for loop here as we need the actual use (i.e. we 1036 // need the operand number corresponding to the use). A range-based for 1037 // will unbox the use and provide an SDNode*. 1038 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); 1039 Use != UseEnd; ++Use) { 1040 unsigned Opc = 1041 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); 1042 switch (Opc) { 1043 default: return 0; 1044 case ISD::TRUNCATE: 1045 if (Use->isMachineOpcode()) 1046 return 0; 1047 MaxTruncation = 1048 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); 1049 continue; 1050 case ISD::STORE: { 1051 if (Use->isMachineOpcode()) 1052 return 0; 1053 StoreSDNode *STN = cast<StoreSDNode>(*Use); 1054 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); 1055 if (MemVTSize == 64 || Use.getOperandNo() != 0) 1056 return 0; 1057 MaxTruncation = std::max(MaxTruncation, MemVTSize); 1058 continue; 1059 } 1060 case PPC::STW8: 1061 case PPC::STWX8: 1062 case PPC::STWU8: 1063 case PPC::STWUX8: 1064 if (Use.getOperandNo() != 0) 1065 return 0; 1066 MaxTruncation = std::max(MaxTruncation, 32u); 1067 continue; 1068 case PPC::STH8: 1069 case PPC::STHX8: 1070 case PPC::STHU8: 1071 case PPC::STHUX8: 1072 if (Use.getOperandNo() != 0) 1073 return 0; 1074 MaxTruncation = std::max(MaxTruncation, 16u); 1075 continue; 1076 case PPC::STB8: 1077 case PPC::STBX8: 1078 case PPC::STBU8: 1079 case PPC::STBUX8: 1080 if (Use.getOperandNo() != 0) 1081 return 0; 1082 MaxTruncation = std::max(MaxTruncation, 8u); 1083 continue; 1084 } 1085 } 1086 return MaxTruncation; 1087 } 1088 1089 // Select a 64-bit constant. 1090 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { 1091 SDLoc dl(N); 1092 1093 // Get 64 bit value. 1094 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 1095 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { 1096 uint64_t SextImm = SignExtend64(Imm, MinSize); 1097 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 1098 if (isInt<16>(SextImm)) 1099 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1100 } 1101 return selectI64Imm(CurDAG, dl, Imm); 1102 } 1103 1104 namespace { 1105 1106 class BitPermutationSelector { 1107 struct ValueBit { 1108 SDValue V; 1109 1110 // The bit number in the value, using a convention where bit 0 is the 1111 // lowest-order bit. 1112 unsigned Idx; 1113 1114 // ConstZero means a bit we need to mask off. 1115 // Variable is a bit comes from an input variable. 1116 // VariableKnownToBeZero is also a bit comes from an input variable, 1117 // but it is known to be already zero. So we do not need to mask them. 1118 enum Kind { 1119 ConstZero, 1120 Variable, 1121 VariableKnownToBeZero 1122 } K; 1123 1124 ValueBit(SDValue V, unsigned I, Kind K = Variable) 1125 : V(V), Idx(I), K(K) {} 1126 ValueBit(Kind K = Variable) 1127 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} 1128 1129 bool isZero() const { 1130 return K == ConstZero || K == VariableKnownToBeZero; 1131 } 1132 1133 bool hasValue() const { 1134 return K == Variable || K == VariableKnownToBeZero; 1135 } 1136 1137 SDValue getValue() const { 1138 assert(hasValue() && "Cannot get the value of a constant bit"); 1139 return V; 1140 } 1141 1142 unsigned getValueBitIndex() const { 1143 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 1144 return Idx; 1145 } 1146 }; 1147 1148 // A bit group has the same underlying value and the same rotate factor. 1149 struct BitGroup { 1150 SDValue V; 1151 unsigned RLAmt; 1152 unsigned StartIdx, EndIdx; 1153 1154 // This rotation amount assumes that the lower 32 bits of the quantity are 1155 // replicated in the high 32 bits by the rotation operator (which is done 1156 // by rlwinm and friends in 64-bit mode). 1157 bool Repl32; 1158 // Did converting to Repl32 == true change the rotation factor? If it did, 1159 // it decreased it by 32. 1160 bool Repl32CR; 1161 // Was this group coalesced after setting Repl32 to true? 1162 bool Repl32Coalesced; 1163 1164 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 1165 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 1166 Repl32Coalesced(false) { 1167 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R 1168 << " [" << S << ", " << E << "]\n"); 1169 } 1170 }; 1171 1172 // Information on each (Value, RLAmt) pair (like the number of groups 1173 // associated with each) used to choose the lowering method. 1174 struct ValueRotInfo { 1175 SDValue V; 1176 unsigned RLAmt = std::numeric_limits<unsigned>::max(); 1177 unsigned NumGroups = 0; 1178 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); 1179 bool Repl32 = false; 1180 1181 ValueRotInfo() = default; 1182 1183 // For sorting (in reverse order) by NumGroups, and then by 1184 // FirstGroupStartIdx. 1185 bool operator < (const ValueRotInfo &Other) const { 1186 // We need to sort so that the non-Repl32 come first because, when we're 1187 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 1188 // masking operation. 1189 if (Repl32 < Other.Repl32) 1190 return true; 1191 else if (Repl32 > Other.Repl32) 1192 return false; 1193 else if (NumGroups > Other.NumGroups) 1194 return true; 1195 else if (NumGroups < Other.NumGroups) 1196 return false; 1197 else if (RLAmt == 0 && Other.RLAmt != 0) 1198 return true; 1199 else if (RLAmt != 0 && Other.RLAmt == 0) 1200 return false; 1201 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 1202 return true; 1203 return false; 1204 } 1205 }; 1206 1207 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 1208 using ValueBitsMemoizer = 1209 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 1210 ValueBitsMemoizer Memoizer; 1211 1212 // Return a pair of bool and a SmallVector pointer to a memoization entry. 1213 // The bool is true if something interesting was deduced, otherwise if we're 1214 // providing only a generic representation of V (or something else likewise 1215 // uninteresting for instruction selection) through the SmallVector. 1216 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 1217 unsigned NumBits) { 1218 auto &ValueEntry = Memoizer[V]; 1219 if (ValueEntry) 1220 return std::make_pair(ValueEntry->first, &ValueEntry->second); 1221 ValueEntry.reset(new ValueBitsMemoizedValue()); 1222 bool &Interesting = ValueEntry->first; 1223 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 1224 Bits.resize(NumBits); 1225 1226 switch (V.getOpcode()) { 1227 default: break; 1228 case ISD::ROTL: 1229 if (isa<ConstantSDNode>(V.getOperand(1))) { 1230 unsigned RotAmt = V.getConstantOperandVal(1); 1231 1232 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1233 1234 for (unsigned i = 0; i < NumBits; ++i) 1235 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 1236 1237 return std::make_pair(Interesting = true, &Bits); 1238 } 1239 break; 1240 case ISD::SHL: 1241 if (isa<ConstantSDNode>(V.getOperand(1))) { 1242 unsigned ShiftAmt = V.getConstantOperandVal(1); 1243 1244 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1245 1246 for (unsigned i = ShiftAmt; i < NumBits; ++i) 1247 Bits[i] = LHSBits[i - ShiftAmt]; 1248 1249 for (unsigned i = 0; i < ShiftAmt; ++i) 1250 Bits[i] = ValueBit(ValueBit::ConstZero); 1251 1252 return std::make_pair(Interesting = true, &Bits); 1253 } 1254 break; 1255 case ISD::SRL: 1256 if (isa<ConstantSDNode>(V.getOperand(1))) { 1257 unsigned ShiftAmt = V.getConstantOperandVal(1); 1258 1259 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1260 1261 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 1262 Bits[i] = LHSBits[i + ShiftAmt]; 1263 1264 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 1265 Bits[i] = ValueBit(ValueBit::ConstZero); 1266 1267 return std::make_pair(Interesting = true, &Bits); 1268 } 1269 break; 1270 case ISD::AND: 1271 if (isa<ConstantSDNode>(V.getOperand(1))) { 1272 uint64_t Mask = V.getConstantOperandVal(1); 1273 1274 const SmallVector<ValueBit, 64> *LHSBits; 1275 // Mark this as interesting, only if the LHS was also interesting. This 1276 // prevents the overall procedure from matching a single immediate 'and' 1277 // (which is non-optimal because such an and might be folded with other 1278 // things if we don't select it here). 1279 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 1280 1281 for (unsigned i = 0; i < NumBits; ++i) 1282 if (((Mask >> i) & 1) == 1) 1283 Bits[i] = (*LHSBits)[i]; 1284 else { 1285 // AND instruction masks this bit. If the input is already zero, 1286 // we have nothing to do here. Otherwise, make the bit ConstZero. 1287 if ((*LHSBits)[i].isZero()) 1288 Bits[i] = (*LHSBits)[i]; 1289 else 1290 Bits[i] = ValueBit(ValueBit::ConstZero); 1291 } 1292 1293 return std::make_pair(Interesting, &Bits); 1294 } 1295 break; 1296 case ISD::OR: { 1297 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1298 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1299 1300 bool AllDisjoint = true; 1301 SDValue LastVal = SDValue(); 1302 unsigned LastIdx = 0; 1303 for (unsigned i = 0; i < NumBits; ++i) { 1304 if (LHSBits[i].isZero() && RHSBits[i].isZero()) { 1305 // If both inputs are known to be zero and one is ConstZero and 1306 // another is VariableKnownToBeZero, we can select whichever 1307 // we like. To minimize the number of bit groups, we select 1308 // VariableKnownToBeZero if this bit is the next bit of the same 1309 // input variable from the previous bit. Otherwise, we select 1310 // ConstZero. 1311 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && 1312 LHSBits[i].getValueBitIndex() == LastIdx + 1) 1313 Bits[i] = LHSBits[i]; 1314 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && 1315 RHSBits[i].getValueBitIndex() == LastIdx + 1) 1316 Bits[i] = RHSBits[i]; 1317 else 1318 Bits[i] = ValueBit(ValueBit::ConstZero); 1319 } 1320 else if (LHSBits[i].isZero()) 1321 Bits[i] = RHSBits[i]; 1322 else if (RHSBits[i].isZero()) 1323 Bits[i] = LHSBits[i]; 1324 else { 1325 AllDisjoint = false; 1326 break; 1327 } 1328 // We remember the value and bit index of this bit. 1329 if (Bits[i].hasValue()) { 1330 LastVal = Bits[i].getValue(); 1331 LastIdx = Bits[i].getValueBitIndex(); 1332 } 1333 else { 1334 if (LastVal) LastVal = SDValue(); 1335 LastIdx = 0; 1336 } 1337 } 1338 1339 if (!AllDisjoint) 1340 break; 1341 1342 return std::make_pair(Interesting = true, &Bits); 1343 } 1344 case ISD::ZERO_EXTEND: { 1345 // We support only the case with zero extension from i32 to i64 so far. 1346 if (V.getValueType() != MVT::i64 || 1347 V.getOperand(0).getValueType() != MVT::i32) 1348 break; 1349 1350 const SmallVector<ValueBit, 64> *LHSBits; 1351 const unsigned NumOperandBits = 32; 1352 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1353 NumOperandBits); 1354 1355 for (unsigned i = 0; i < NumOperandBits; ++i) 1356 Bits[i] = (*LHSBits)[i]; 1357 1358 for (unsigned i = NumOperandBits; i < NumBits; ++i) 1359 Bits[i] = ValueBit(ValueBit::ConstZero); 1360 1361 return std::make_pair(Interesting, &Bits); 1362 } 1363 case ISD::TRUNCATE: { 1364 EVT FromType = V.getOperand(0).getValueType(); 1365 EVT ToType = V.getValueType(); 1366 // We support only the case with truncate from i64 to i32. 1367 if (FromType != MVT::i64 || ToType != MVT::i32) 1368 break; 1369 const unsigned NumAllBits = FromType.getSizeInBits(); 1370 SmallVector<ValueBit, 64> *InBits; 1371 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), 1372 NumAllBits); 1373 const unsigned NumValidBits = ToType.getSizeInBits(); 1374 1375 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. 1376 // So, we cannot include this truncate. 1377 bool UseUpper32bit = false; 1378 for (unsigned i = 0; i < NumValidBits; ++i) 1379 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { 1380 UseUpper32bit = true; 1381 break; 1382 } 1383 if (UseUpper32bit) 1384 break; 1385 1386 for (unsigned i = 0; i < NumValidBits; ++i) 1387 Bits[i] = (*InBits)[i]; 1388 1389 return std::make_pair(Interesting, &Bits); 1390 } 1391 case ISD::AssertZext: { 1392 // For AssertZext, we look through the operand and 1393 // mark the bits known to be zero. 1394 const SmallVector<ValueBit, 64> *LHSBits; 1395 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1396 NumBits); 1397 1398 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); 1399 const unsigned NumValidBits = FromType.getSizeInBits(); 1400 for (unsigned i = 0; i < NumValidBits; ++i) 1401 Bits[i] = (*LHSBits)[i]; 1402 1403 // These bits are known to be zero but the AssertZext may be from a value 1404 // that already has some constant zero bits (i.e. from a masking and). 1405 for (unsigned i = NumValidBits; i < NumBits; ++i) 1406 Bits[i] = (*LHSBits)[i].hasValue() 1407 ? ValueBit((*LHSBits)[i].getValue(), 1408 (*LHSBits)[i].getValueBitIndex(), 1409 ValueBit::VariableKnownToBeZero) 1410 : ValueBit(ValueBit::ConstZero); 1411 1412 return std::make_pair(Interesting, &Bits); 1413 } 1414 case ISD::LOAD: 1415 LoadSDNode *LD = cast<LoadSDNode>(V); 1416 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { 1417 EVT VT = LD->getMemoryVT(); 1418 const unsigned NumValidBits = VT.getSizeInBits(); 1419 1420 for (unsigned i = 0; i < NumValidBits; ++i) 1421 Bits[i] = ValueBit(V, i); 1422 1423 // These bits are known to be zero. 1424 for (unsigned i = NumValidBits; i < NumBits; ++i) 1425 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); 1426 1427 // Zero-extending load itself cannot be optimized. So, it is not 1428 // interesting by itself though it gives useful information. 1429 return std::make_pair(Interesting = false, &Bits); 1430 } 1431 break; 1432 } 1433 1434 for (unsigned i = 0; i < NumBits; ++i) 1435 Bits[i] = ValueBit(V, i); 1436 1437 return std::make_pair(Interesting = false, &Bits); 1438 } 1439 1440 // For each value (except the constant ones), compute the left-rotate amount 1441 // to get it from its original to final position. 1442 void computeRotationAmounts() { 1443 NeedMask = false; 1444 RLAmt.resize(Bits.size()); 1445 for (unsigned i = 0; i < Bits.size(); ++i) 1446 if (Bits[i].hasValue()) { 1447 unsigned VBI = Bits[i].getValueBitIndex(); 1448 if (i >= VBI) 1449 RLAmt[i] = i - VBI; 1450 else 1451 RLAmt[i] = Bits.size() - (VBI - i); 1452 } else if (Bits[i].isZero()) { 1453 NeedMask = true; 1454 RLAmt[i] = UINT32_MAX; 1455 } else { 1456 llvm_unreachable("Unknown value bit type"); 1457 } 1458 } 1459 1460 // Collect groups of consecutive bits with the same underlying value and 1461 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1462 // they break up groups. 1463 void collectBitGroups(bool LateMask) { 1464 BitGroups.clear(); 1465 1466 unsigned LastRLAmt = RLAmt[0]; 1467 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1468 unsigned LastGroupStartIdx = 0; 1469 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1470 for (unsigned i = 1; i < Bits.size(); ++i) { 1471 unsigned ThisRLAmt = RLAmt[i]; 1472 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1473 if (LateMask && !ThisValue) { 1474 ThisValue = LastValue; 1475 ThisRLAmt = LastRLAmt; 1476 // If we're doing late masking, then the first bit group always starts 1477 // at zero (even if the first bits were zero). 1478 if (BitGroups.empty()) 1479 LastGroupStartIdx = 0; 1480 } 1481 1482 // If this bit is known to be zero and the current group is a bit group 1483 // of zeros, we do not need to terminate the current bit group even the 1484 // Value or RLAmt does not match here. Instead, we terminate this group 1485 // when the first non-zero bit appears later. 1486 if (IsGroupOfZeros && Bits[i].isZero()) 1487 continue; 1488 1489 // If this bit has the same underlying value and the same rotate factor as 1490 // the last one, then they're part of the same group. 1491 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1492 // We cannot continue the current group if this bits is not known to 1493 // be zero in a bit group of zeros. 1494 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) 1495 continue; 1496 1497 if (LastValue.getNode()) 1498 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1499 i-1)); 1500 LastRLAmt = ThisRLAmt; 1501 LastValue = ThisValue; 1502 LastGroupStartIdx = i; 1503 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1504 } 1505 if (LastValue.getNode()) 1506 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1507 Bits.size()-1)); 1508 1509 if (BitGroups.empty()) 1510 return; 1511 1512 // We might be able to combine the first and last groups. 1513 if (BitGroups.size() > 1) { 1514 // If the first and last groups are the same, then remove the first group 1515 // in favor of the last group, making the ending index of the last group 1516 // equal to the ending index of the to-be-removed first group. 1517 if (BitGroups[0].StartIdx == 0 && 1518 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1519 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1520 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1521 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1522 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1523 BitGroups.erase(BitGroups.begin()); 1524 } 1525 } 1526 } 1527 1528 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1529 // associated with each. If the number of groups are same, we prefer a group 1530 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate 1531 // instruction. If there is a degeneracy, pick the one that occurs 1532 // first (in the final value). 1533 void collectValueRotInfo() { 1534 ValueRots.clear(); 1535 1536 for (auto &BG : BitGroups) { 1537 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1538 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1539 VRI.V = BG.V; 1540 VRI.RLAmt = BG.RLAmt; 1541 VRI.Repl32 = BG.Repl32; 1542 VRI.NumGroups += 1; 1543 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1544 } 1545 1546 // Now that we've collected the various ValueRotInfo instances, we need to 1547 // sort them. 1548 ValueRotsVec.clear(); 1549 for (auto &I : ValueRots) { 1550 ValueRotsVec.push_back(I.second); 1551 } 1552 llvm::sort(ValueRotsVec); 1553 } 1554 1555 // In 64-bit mode, rlwinm and friends have a rotation operator that 1556 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1557 // indices of these instructions can only be in the lower 32 bits, so they 1558 // can only represent some 64-bit bit groups. However, when they can be used, 1559 // the 32-bit replication can be used to represent, as a single bit group, 1560 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1561 // groups when possible. Returns true if any of the bit groups were 1562 // converted. 1563 void assignRepl32BitGroups() { 1564 // If we have bits like this: 1565 // 1566 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1567 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1568 // Groups: | RLAmt = 8 | RLAmt = 40 | 1569 // 1570 // But, making use of a 32-bit operation that replicates the low-order 32 1571 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1572 // of 8. 1573 1574 auto IsAllLow32 = [this](BitGroup & BG) { 1575 if (BG.StartIdx <= BG.EndIdx) { 1576 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1577 if (!Bits[i].hasValue()) 1578 continue; 1579 if (Bits[i].getValueBitIndex() >= 32) 1580 return false; 1581 } 1582 } else { 1583 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1584 if (!Bits[i].hasValue()) 1585 continue; 1586 if (Bits[i].getValueBitIndex() >= 32) 1587 return false; 1588 } 1589 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1590 if (!Bits[i].hasValue()) 1591 continue; 1592 if (Bits[i].getValueBitIndex() >= 32) 1593 return false; 1594 } 1595 } 1596 1597 return true; 1598 }; 1599 1600 for (auto &BG : BitGroups) { 1601 // If this bit group has RLAmt of 0 and will not be merged with 1602 // another bit group, we don't benefit from Repl32. We don't mark 1603 // such group to give more freedom for later instruction selection. 1604 if (BG.RLAmt == 0) { 1605 auto PotentiallyMerged = [this](BitGroup & BG) { 1606 for (auto &BG2 : BitGroups) 1607 if (&BG != &BG2 && BG.V == BG2.V && 1608 (BG2.RLAmt == 0 || BG2.RLAmt == 32)) 1609 return true; 1610 return false; 1611 }; 1612 if (!PotentiallyMerged(BG)) 1613 continue; 1614 } 1615 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 1616 if (IsAllLow32(BG)) { 1617 if (BG.RLAmt >= 32) { 1618 BG.RLAmt -= 32; 1619 BG.Repl32CR = true; 1620 } 1621 1622 BG.Repl32 = true; 1623 1624 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " 1625 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" 1626 << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 1627 } 1628 } 1629 } 1630 1631 // Now walk through the bit groups, consolidating where possible. 1632 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1633 // We might want to remove this bit group by merging it with the previous 1634 // group (which might be the ending group). 1635 auto IP = (I == BitGroups.begin()) ? 1636 std::prev(BitGroups.end()) : std::prev(I); 1637 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 1638 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 1639 1640 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " 1641 << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" 1642 << I->StartIdx << ", " << I->EndIdx 1643 << "] with group with range [" << IP->StartIdx << ", " 1644 << IP->EndIdx << "]\n"); 1645 1646 IP->EndIdx = I->EndIdx; 1647 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 1648 IP->Repl32Coalesced = true; 1649 I = BitGroups.erase(I); 1650 continue; 1651 } else { 1652 // There is a special case worth handling: If there is a single group 1653 // covering the entire upper 32 bits, and it can be merged with both 1654 // the next and previous groups (which might be the same group), then 1655 // do so. If it is the same group (so there will be only one group in 1656 // total), then we need to reverse the order of the range so that it 1657 // covers the entire 64 bits. 1658 if (I->StartIdx == 32 && I->EndIdx == 63) { 1659 assert(std::next(I) == BitGroups.end() && 1660 "bit group ends at index 63 but there is another?"); 1661 auto IN = BitGroups.begin(); 1662 1663 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 1664 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 1665 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 1666 IsAllLow32(*I)) { 1667 1668 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() 1669 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx 1670 << ", " << I->EndIdx 1671 << "] with 32-bit replicated groups with ranges [" 1672 << IP->StartIdx << ", " << IP->EndIdx << "] and [" 1673 << IN->StartIdx << ", " << IN->EndIdx << "]\n"); 1674 1675 if (IP == IN) { 1676 // There is only one other group; change it to cover the whole 1677 // range (backward, so that it can still be Repl32 but cover the 1678 // whole 64-bit range). 1679 IP->StartIdx = 31; 1680 IP->EndIdx = 30; 1681 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 1682 IP->Repl32Coalesced = true; 1683 I = BitGroups.erase(I); 1684 } else { 1685 // There are two separate groups, one before this group and one 1686 // after us (at the beginning). We're going to remove this group, 1687 // but also the group at the very beginning. 1688 IP->EndIdx = IN->EndIdx; 1689 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 1690 IP->Repl32Coalesced = true; 1691 I = BitGroups.erase(I); 1692 BitGroups.erase(BitGroups.begin()); 1693 } 1694 1695 // This must be the last group in the vector (and we might have 1696 // just invalidated the iterator above), so break here. 1697 break; 1698 } 1699 } 1700 } 1701 1702 ++I; 1703 } 1704 } 1705 1706 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 1707 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1708 } 1709 1710 uint64_t getZerosMask() { 1711 uint64_t Mask = 0; 1712 for (unsigned i = 0; i < Bits.size(); ++i) { 1713 if (Bits[i].hasValue()) 1714 continue; 1715 Mask |= (UINT64_C(1) << i); 1716 } 1717 1718 return ~Mask; 1719 } 1720 1721 // This method extends an input value to 64 bit if input is 32-bit integer. 1722 // While selecting instructions in BitPermutationSelector in 64-bit mode, 1723 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. 1724 // In such case, we extend it to 64 bit to be consistent with other values. 1725 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { 1726 if (V.getValueSizeInBits() == 64) 1727 return V; 1728 1729 assert(V.getValueSizeInBits() == 32); 1730 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1731 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 1732 MVT::i64), 0); 1733 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 1734 MVT::i64, ImDef, V, 1735 SubRegIdx), 0); 1736 return ExtVal; 1737 } 1738 1739 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { 1740 if (V.getValueSizeInBits() == 32) 1741 return V; 1742 1743 assert(V.getValueSizeInBits() == 64); 1744 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1745 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, 1746 MVT::i32, V, SubRegIdx), 0); 1747 return SubVal; 1748 } 1749 1750 // Depending on the number of groups for a particular value, it might be 1751 // better to rotate, mask explicitly (using andi/andis), and then or the 1752 // result. Select this part of the result first. 1753 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 1754 if (BPermRewriterNoMasking) 1755 return; 1756 1757 for (ValueRotInfo &VRI : ValueRotsVec) { 1758 unsigned Mask = 0; 1759 for (unsigned i = 0; i < Bits.size(); ++i) { 1760 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 1761 continue; 1762 if (RLAmt[i] != VRI.RLAmt) 1763 continue; 1764 Mask |= (1u << i); 1765 } 1766 1767 // Compute the masks for andi/andis that would be necessary. 1768 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1769 assert((ANDIMask != 0 || ANDISMask != 0) && 1770 "No set bits in mask for value bit groups"); 1771 bool NeedsRotate = VRI.RLAmt != 0; 1772 1773 // We're trying to minimize the number of instructions. If we have one 1774 // group, using one of andi/andis can break even. If we have three 1775 // groups, we can use both andi and andis and break even (to use both 1776 // andi and andis we also need to or the results together). We need four 1777 // groups if we also need to rotate. To use andi/andis we need to do more 1778 // than break even because rotate-and-mask instructions tend to be easier 1779 // to schedule. 1780 1781 // FIXME: We've biased here against using andi/andis, which is right for 1782 // POWER cores, but not optimal everywhere. For example, on the A2, 1783 // andi/andis have single-cycle latency whereas the rotate-and-mask 1784 // instructions take two cycles, and it would be better to bias toward 1785 // andi/andis in break-even cases. 1786 1787 unsigned NumAndInsts = (unsigned) NeedsRotate + 1788 (unsigned) (ANDIMask != 0) + 1789 (unsigned) (ANDISMask != 0) + 1790 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 1791 (unsigned) (bool) Res; 1792 1793 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 1794 << " RL: " << VRI.RLAmt << ":" 1795 << "\n\t\t\tisel using masking: " << NumAndInsts 1796 << " using rotates: " << VRI.NumGroups << "\n"); 1797 1798 if (NumAndInsts >= VRI.NumGroups) 1799 continue; 1800 1801 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1802 1803 if (InstCnt) *InstCnt += NumAndInsts; 1804 1805 SDValue VRot; 1806 if (VRI.RLAmt) { 1807 SDValue Ops[] = 1808 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 1809 getI32Imm(0, dl), getI32Imm(31, dl) }; 1810 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 1811 Ops), 0); 1812 } else { 1813 VRot = TruncateToInt32(VRI.V, dl); 1814 } 1815 1816 SDValue ANDIVal, ANDISVal; 1817 if (ANDIMask != 0) 1818 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 1819 VRot, getI32Imm(ANDIMask, dl)), 1820 0); 1821 if (ANDISMask != 0) 1822 ANDISVal = 1823 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, 1824 getI32Imm(ANDISMask, dl)), 1825 0); 1826 1827 SDValue TotalVal; 1828 if (!ANDIVal) 1829 TotalVal = ANDISVal; 1830 else if (!ANDISVal) 1831 TotalVal = ANDIVal; 1832 else 1833 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1834 ANDIVal, ANDISVal), 0); 1835 1836 if (!Res) 1837 Res = TotalVal; 1838 else 1839 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1840 Res, TotalVal), 0); 1841 1842 // Now, remove all groups with this underlying value and rotation 1843 // factor. 1844 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1845 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1846 }); 1847 } 1848 } 1849 1850 // Instruction selection for the 32-bit case. 1851 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 1852 SDLoc dl(N); 1853 SDValue Res; 1854 1855 if (InstCnt) *InstCnt = 0; 1856 1857 // Take care of cases that should use andi/andis first. 1858 SelectAndParts32(dl, Res, InstCnt); 1859 1860 // If we've not yet selected a 'starting' instruction, and we have no zeros 1861 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1862 // number of groups), and start with this rotated value. 1863 if ((!NeedMask || LateMask) && !Res) { 1864 ValueRotInfo &VRI = ValueRotsVec[0]; 1865 if (VRI.RLAmt) { 1866 if (InstCnt) *InstCnt += 1; 1867 SDValue Ops[] = 1868 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 1869 getI32Imm(0, dl), getI32Imm(31, dl) }; 1870 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 1871 0); 1872 } else { 1873 Res = TruncateToInt32(VRI.V, dl); 1874 } 1875 1876 // Now, remove all groups with this underlying value and rotation factor. 1877 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1878 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1879 }); 1880 } 1881 1882 if (InstCnt) *InstCnt += BitGroups.size(); 1883 1884 // Insert the other groups (one at a time). 1885 for (auto &BG : BitGroups) { 1886 if (!Res) { 1887 SDValue Ops[] = 1888 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 1889 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1890 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1891 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 1892 } else { 1893 SDValue Ops[] = 1894 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 1895 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1896 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1897 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 1898 } 1899 } 1900 1901 if (LateMask) { 1902 unsigned Mask = (unsigned) getZerosMask(); 1903 1904 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1905 assert((ANDIMask != 0 || ANDISMask != 0) && 1906 "No set bits in zeros mask?"); 1907 1908 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1909 (unsigned) (ANDISMask != 0) + 1910 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1911 1912 SDValue ANDIVal, ANDISVal; 1913 if (ANDIMask != 0) 1914 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 1915 Res, getI32Imm(ANDIMask, dl)), 1916 0); 1917 if (ANDISMask != 0) 1918 ANDISVal = 1919 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, 1920 getI32Imm(ANDISMask, dl)), 1921 0); 1922 1923 if (!ANDIVal) 1924 Res = ANDISVal; 1925 else if (!ANDISVal) 1926 Res = ANDIVal; 1927 else 1928 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1929 ANDIVal, ANDISVal), 0); 1930 } 1931 1932 return Res.getNode(); 1933 } 1934 1935 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 1936 unsigned MaskStart, unsigned MaskEnd, 1937 bool IsIns) { 1938 // In the notation used by the instructions, 'start' and 'end' are reversed 1939 // because bits are counted from high to low order. 1940 unsigned InstMaskStart = 64 - MaskEnd - 1, 1941 InstMaskEnd = 64 - MaskStart - 1; 1942 1943 if (Repl32) 1944 return 1; 1945 1946 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 1947 InstMaskEnd == 63 - RLAmt) 1948 return 1; 1949 1950 return 2; 1951 } 1952 1953 // For 64-bit values, not all combinations of rotates and masks are 1954 // available. Produce one if it is available. 1955 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 1956 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 1957 unsigned *InstCnt = nullptr) { 1958 // In the notation used by the instructions, 'start' and 'end' are reversed 1959 // because bits are counted from high to low order. 1960 unsigned InstMaskStart = 64 - MaskEnd - 1, 1961 InstMaskEnd = 64 - MaskStart - 1; 1962 1963 if (InstCnt) *InstCnt += 1; 1964 1965 if (Repl32) { 1966 // This rotation amount assumes that the lower 32 bits of the quantity 1967 // are replicated in the high 32 bits by the rotation operator (which is 1968 // done by rlwinm and friends). 1969 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1970 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1971 SDValue Ops[] = 1972 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1973 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 1974 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 1975 Ops), 0); 1976 } 1977 1978 if (InstMaskEnd == 63) { 1979 SDValue Ops[] = 1980 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1981 getI32Imm(InstMaskStart, dl) }; 1982 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 1983 } 1984 1985 if (InstMaskStart == 0) { 1986 SDValue Ops[] = 1987 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1988 getI32Imm(InstMaskEnd, dl) }; 1989 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 1990 } 1991 1992 if (InstMaskEnd == 63 - RLAmt) { 1993 SDValue Ops[] = 1994 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1995 getI32Imm(InstMaskStart, dl) }; 1996 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 1997 } 1998 1999 // We cannot do this with a single instruction, so we'll use two. The 2000 // problem is that we're not free to choose both a rotation amount and mask 2001 // start and end independently. We can choose an arbitrary mask start and 2002 // end, but then the rotation amount is fixed. Rotation, however, can be 2003 // inverted, and so by applying an "inverse" rotation first, we can get the 2004 // desired result. 2005 if (InstCnt) *InstCnt += 1; 2006 2007 // The rotation mask for the second instruction must be MaskStart. 2008 unsigned RLAmt2 = MaskStart; 2009 // The first instruction must rotate V so that the overall rotation amount 2010 // is RLAmt. 2011 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2012 if (RLAmt1) 2013 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2014 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 2015 } 2016 2017 // For 64-bit values, not all combinations of rotates and masks are 2018 // available. Produce a rotate-mask-and-insert if one is available. 2019 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 2020 unsigned RLAmt, bool Repl32, unsigned MaskStart, 2021 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 2022 // In the notation used by the instructions, 'start' and 'end' are reversed 2023 // because bits are counted from high to low order. 2024 unsigned InstMaskStart = 64 - MaskEnd - 1, 2025 InstMaskEnd = 64 - MaskStart - 1; 2026 2027 if (InstCnt) *InstCnt += 1; 2028 2029 if (Repl32) { 2030 // This rotation amount assumes that the lower 32 bits of the quantity 2031 // are replicated in the high 32 bits by the rotation operator (which is 2032 // done by rlwinm and friends). 2033 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2034 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2035 SDValue Ops[] = 2036 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2037 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2038 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 2039 Ops), 0); 2040 } 2041 2042 if (InstMaskEnd == 63 - RLAmt) { 2043 SDValue Ops[] = 2044 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2045 getI32Imm(InstMaskStart, dl) }; 2046 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 2047 } 2048 2049 // We cannot do this with a single instruction, so we'll use two. The 2050 // problem is that we're not free to choose both a rotation amount and mask 2051 // start and end independently. We can choose an arbitrary mask start and 2052 // end, but then the rotation amount is fixed. Rotation, however, can be 2053 // inverted, and so by applying an "inverse" rotation first, we can get the 2054 // desired result. 2055 if (InstCnt) *InstCnt += 1; 2056 2057 // The rotation mask for the second instruction must be MaskStart. 2058 unsigned RLAmt2 = MaskStart; 2059 // The first instruction must rotate V so that the overall rotation amount 2060 // is RLAmt. 2061 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2062 if (RLAmt1) 2063 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2064 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 2065 } 2066 2067 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2068 if (BPermRewriterNoMasking) 2069 return; 2070 2071 // The idea here is the same as in the 32-bit version, but with additional 2072 // complications from the fact that Repl32 might be true. Because we 2073 // aggressively convert bit groups to Repl32 form (which, for small 2074 // rotation factors, involves no other change), and then coalesce, it might 2075 // be the case that a single 64-bit masking operation could handle both 2076 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 2077 // form allowed coalescing, then we must use a 32-bit rotaton in order to 2078 // completely capture the new combined bit group. 2079 2080 for (ValueRotInfo &VRI : ValueRotsVec) { 2081 uint64_t Mask = 0; 2082 2083 // We need to add to the mask all bits from the associated bit groups. 2084 // If Repl32 is false, we need to add bits from bit groups that have 2085 // Repl32 true, but are trivially convertable to Repl32 false. Such a 2086 // group is trivially convertable if it overlaps only with the lower 32 2087 // bits, and the group has not been coalesced. 2088 auto MatchingBG = [VRI](const BitGroup &BG) { 2089 if (VRI.V != BG.V) 2090 return false; 2091 2092 unsigned EffRLAmt = BG.RLAmt; 2093 if (!VRI.Repl32 && BG.Repl32) { 2094 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 2095 !BG.Repl32Coalesced) { 2096 if (BG.Repl32CR) 2097 EffRLAmt += 32; 2098 } else { 2099 return false; 2100 } 2101 } else if (VRI.Repl32 != BG.Repl32) { 2102 return false; 2103 } 2104 2105 return VRI.RLAmt == EffRLAmt; 2106 }; 2107 2108 for (auto &BG : BitGroups) { 2109 if (!MatchingBG(BG)) 2110 continue; 2111 2112 if (BG.StartIdx <= BG.EndIdx) { 2113 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 2114 Mask |= (UINT64_C(1) << i); 2115 } else { 2116 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 2117 Mask |= (UINT64_C(1) << i); 2118 for (unsigned i = 0; i <= BG.EndIdx; ++i) 2119 Mask |= (UINT64_C(1) << i); 2120 } 2121 } 2122 2123 // We can use the 32-bit andi/andis technique if the mask does not 2124 // require any higher-order bits. This can save an instruction compared 2125 // to always using the general 64-bit technique. 2126 bool Use32BitInsts = isUInt<32>(Mask); 2127 // Compute the masks for andi/andis that would be necessary. 2128 unsigned ANDIMask = (Mask & UINT16_MAX), 2129 ANDISMask = (Mask >> 16) & UINT16_MAX; 2130 2131 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 2132 2133 unsigned NumAndInsts = (unsigned) NeedsRotate + 2134 (unsigned) (bool) Res; 2135 if (Use32BitInsts) 2136 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 2137 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2138 else 2139 NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1; 2140 2141 unsigned NumRLInsts = 0; 2142 bool FirstBG = true; 2143 bool MoreBG = false; 2144 for (auto &BG : BitGroups) { 2145 if (!MatchingBG(BG)) { 2146 MoreBG = true; 2147 continue; 2148 } 2149 NumRLInsts += 2150 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 2151 !FirstBG); 2152 FirstBG = false; 2153 } 2154 2155 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2156 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") 2157 << "\n\t\t\tisel using masking: " << NumAndInsts 2158 << " using rotates: " << NumRLInsts << "\n"); 2159 2160 // When we'd use andi/andis, we bias toward using the rotates (andi only 2161 // has a record form, and is cracked on POWER cores). However, when using 2162 // general 64-bit constant formation, bias toward the constant form, 2163 // because that exposes more opportunities for CSE. 2164 if (NumAndInsts > NumRLInsts) 2165 continue; 2166 // When merging multiple bit groups, instruction or is used. 2167 // But when rotate is used, rldimi can inert the rotated value into any 2168 // register, so instruction or can be avoided. 2169 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) 2170 continue; 2171 2172 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2173 2174 if (InstCnt) *InstCnt += NumAndInsts; 2175 2176 SDValue VRot; 2177 // We actually need to generate a rotation if we have a non-zero rotation 2178 // factor or, in the Repl32 case, if we care about any of the 2179 // higher-order replicated bits. In the latter case, we generate a mask 2180 // backward so that it actually includes the entire 64 bits. 2181 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 2182 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2183 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 2184 else 2185 VRot = VRI.V; 2186 2187 SDValue TotalVal; 2188 if (Use32BitInsts) { 2189 assert((ANDIMask != 0 || ANDISMask != 0) && 2190 "No set bits in mask when using 32-bit ands for 64-bit value"); 2191 2192 SDValue ANDIVal, ANDISVal; 2193 if (ANDIMask != 0) 2194 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2195 ExtendToInt64(VRot, dl), 2196 getI32Imm(ANDIMask, dl)), 2197 0); 2198 if (ANDISMask != 0) 2199 ANDISVal = 2200 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2201 ExtendToInt64(VRot, dl), 2202 getI32Imm(ANDISMask, dl)), 2203 0); 2204 2205 if (!ANDIVal) 2206 TotalVal = ANDISVal; 2207 else if (!ANDISVal) 2208 TotalVal = ANDIVal; 2209 else 2210 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2211 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2212 } else { 2213 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2214 TotalVal = 2215 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2216 ExtendToInt64(VRot, dl), TotalVal), 2217 0); 2218 } 2219 2220 if (!Res) 2221 Res = TotalVal; 2222 else 2223 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2224 ExtendToInt64(Res, dl), TotalVal), 2225 0); 2226 2227 // Now, remove all groups with this underlying value and rotation 2228 // factor. 2229 eraseMatchingBitGroups(MatchingBG); 2230 } 2231 } 2232 2233 // Instruction selection for the 64-bit case. 2234 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 2235 SDLoc dl(N); 2236 SDValue Res; 2237 2238 if (InstCnt) *InstCnt = 0; 2239 2240 // Take care of cases that should use andi/andis first. 2241 SelectAndParts64(dl, Res, InstCnt); 2242 2243 // If we've not yet selected a 'starting' instruction, and we have no zeros 2244 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2245 // number of groups), and start with this rotated value. 2246 if ((!NeedMask || LateMask) && !Res) { 2247 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 2248 // groups will come first, and so the VRI representing the largest number 2249 // of groups might not be first (it might be the first Repl32 groups). 2250 unsigned MaxGroupsIdx = 0; 2251 if (!ValueRotsVec[0].Repl32) { 2252 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 2253 if (ValueRotsVec[i].Repl32) { 2254 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 2255 MaxGroupsIdx = i; 2256 break; 2257 } 2258 } 2259 2260 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 2261 bool NeedsRotate = false; 2262 if (VRI.RLAmt) { 2263 NeedsRotate = true; 2264 } else if (VRI.Repl32) { 2265 for (auto &BG : BitGroups) { 2266 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 2267 BG.Repl32 != VRI.Repl32) 2268 continue; 2269 2270 // We don't need a rotate if the bit group is confined to the lower 2271 // 32 bits. 2272 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 2273 continue; 2274 2275 NeedsRotate = true; 2276 break; 2277 } 2278 } 2279 2280 if (NeedsRotate) 2281 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2282 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 2283 InstCnt); 2284 else 2285 Res = VRI.V; 2286 2287 // Now, remove all groups with this underlying value and rotation factor. 2288 if (Res) 2289 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2290 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 2291 BG.Repl32 == VRI.Repl32; 2292 }); 2293 } 2294 2295 // Because 64-bit rotates are more flexible than inserts, we might have a 2296 // preference regarding which one we do first (to save one instruction). 2297 if (!Res) 2298 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 2299 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2300 false) < 2301 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2302 true)) { 2303 if (I != BitGroups.begin()) { 2304 BitGroup BG = *I; 2305 BitGroups.erase(I); 2306 BitGroups.insert(BitGroups.begin(), BG); 2307 } 2308 2309 break; 2310 } 2311 } 2312 2313 // Insert the other groups (one at a time). 2314 for (auto &BG : BitGroups) { 2315 if (!Res) 2316 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 2317 BG.EndIdx, InstCnt); 2318 else 2319 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 2320 BG.StartIdx, BG.EndIdx, InstCnt); 2321 } 2322 2323 if (LateMask) { 2324 uint64_t Mask = getZerosMask(); 2325 2326 // We can use the 32-bit andi/andis technique if the mask does not 2327 // require any higher-order bits. This can save an instruction compared 2328 // to always using the general 64-bit technique. 2329 bool Use32BitInsts = isUInt<32>(Mask); 2330 // Compute the masks for andi/andis that would be necessary. 2331 unsigned ANDIMask = (Mask & UINT16_MAX), 2332 ANDISMask = (Mask >> 16) & UINT16_MAX; 2333 2334 if (Use32BitInsts) { 2335 assert((ANDIMask != 0 || ANDISMask != 0) && 2336 "No set bits in mask when using 32-bit ands for 64-bit value"); 2337 2338 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2339 (unsigned) (ANDISMask != 0) + 2340 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2341 2342 SDValue ANDIVal, ANDISVal; 2343 if (ANDIMask != 0) 2344 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2345 ExtendToInt64(Res, dl), 2346 getI32Imm(ANDIMask, dl)), 2347 0); 2348 if (ANDISMask != 0) 2349 ANDISVal = 2350 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2351 ExtendToInt64(Res, dl), 2352 getI32Imm(ANDISMask, dl)), 2353 0); 2354 2355 if (!ANDIVal) 2356 Res = ANDISVal; 2357 else if (!ANDISVal) 2358 Res = ANDIVal; 2359 else 2360 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2361 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2362 } else { 2363 if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1; 2364 2365 SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2366 Res = 2367 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2368 ExtendToInt64(Res, dl), MaskVal), 0); 2369 } 2370 } 2371 2372 return Res.getNode(); 2373 } 2374 2375 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 2376 // Fill in BitGroups. 2377 collectBitGroups(LateMask); 2378 if (BitGroups.empty()) 2379 return nullptr; 2380 2381 // For 64-bit values, figure out when we can use 32-bit instructions. 2382 if (Bits.size() == 64) 2383 assignRepl32BitGroups(); 2384 2385 // Fill in ValueRotsVec. 2386 collectValueRotInfo(); 2387 2388 if (Bits.size() == 32) { 2389 return Select32(N, LateMask, InstCnt); 2390 } else { 2391 assert(Bits.size() == 64 && "Not 64 bits here?"); 2392 return Select64(N, LateMask, InstCnt); 2393 } 2394 2395 return nullptr; 2396 } 2397 2398 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 2399 BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); 2400 } 2401 2402 SmallVector<ValueBit, 64> Bits; 2403 2404 bool NeedMask = false; 2405 SmallVector<unsigned, 64> RLAmt; 2406 2407 SmallVector<BitGroup, 16> BitGroups; 2408 2409 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 2410 SmallVector<ValueRotInfo, 16> ValueRotsVec; 2411 2412 SelectionDAG *CurDAG = nullptr; 2413 2414 public: 2415 BitPermutationSelector(SelectionDAG *DAG) 2416 : CurDAG(DAG) {} 2417 2418 // Here we try to match complex bit permutations into a set of 2419 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 2420 // known to produce optimal code for common cases (like i32 byte swapping). 2421 SDNode *Select(SDNode *N) { 2422 Memoizer.clear(); 2423 auto Result = 2424 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 2425 if (!Result.first) 2426 return nullptr; 2427 Bits = std::move(*Result.second); 2428 2429 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" 2430 " selection for: "); 2431 LLVM_DEBUG(N->dump(CurDAG)); 2432 2433 // Fill it RLAmt and set NeedMask. 2434 computeRotationAmounts(); 2435 2436 if (!NeedMask) 2437 return Select(N, false); 2438 2439 // We currently have two techniques for handling results with zeros: early 2440 // masking (the default) and late masking. Late masking is sometimes more 2441 // efficient, but because the structure of the bit groups is different, it 2442 // is hard to tell without generating both and comparing the results. With 2443 // late masking, we ignore zeros in the resulting value when inserting each 2444 // set of bit groups, and then mask in the zeros at the end. With early 2445 // masking, we only insert the non-zero parts of the result at every step. 2446 2447 unsigned InstCnt = 0, InstCntLateMask = 0; 2448 LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); 2449 SDNode *RN = Select(N, false, &InstCnt); 2450 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 2451 2452 LLVM_DEBUG(dbgs() << "\tLate masking:\n"); 2453 SDNode *RNLM = Select(N, true, &InstCntLateMask); 2454 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask 2455 << " instructions\n"); 2456 2457 if (InstCnt <= InstCntLateMask) { 2458 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 2459 return RN; 2460 } 2461 2462 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 2463 return RNLM; 2464 } 2465 }; 2466 2467 class IntegerCompareEliminator { 2468 SelectionDAG *CurDAG; 2469 PPCDAGToDAGISel *S; 2470 // Conversion type for interpreting results of a 32-bit instruction as 2471 // a 64-bit value or vice versa. 2472 enum ExtOrTruncConversion { Ext, Trunc }; 2473 2474 // Modifiers to guide how an ISD::SETCC node's result is to be computed 2475 // in a GPR. 2476 // ZExtOrig - use the original condition code, zero-extend value 2477 // ZExtInvert - invert the condition code, zero-extend value 2478 // SExtOrig - use the original condition code, sign-extend value 2479 // SExtInvert - invert the condition code, sign-extend value 2480 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; 2481 2482 // Comparisons against zero to emit GPR code sequences for. Each of these 2483 // sequences may need to be emitted for two or more equivalent patterns. 2484 // For example (a >= 0) == (a > -1). The direction of the comparison (</>) 2485 // matters as well as the extension type: sext (-1/0), zext (1/0). 2486 // GEZExt - (zext (LHS >= 0)) 2487 // GESExt - (sext (LHS >= 0)) 2488 // LEZExt - (zext (LHS <= 0)) 2489 // LESExt - (sext (LHS <= 0)) 2490 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; 2491 2492 SDNode *tryEXTEND(SDNode *N); 2493 SDNode *tryLogicOpOfCompares(SDNode *N); 2494 SDValue computeLogicOpInGPR(SDValue LogicOp); 2495 SDValue signExtendInputIfNeeded(SDValue Input); 2496 SDValue zeroExtendInputIfNeeded(SDValue Input); 2497 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); 2498 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2499 ZeroCompare CmpTy); 2500 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2501 int64_t RHSValue, SDLoc dl); 2502 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2503 int64_t RHSValue, SDLoc dl); 2504 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2505 int64_t RHSValue, SDLoc dl); 2506 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2507 int64_t RHSValue, SDLoc dl); 2508 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); 2509 2510 public: 2511 IntegerCompareEliminator(SelectionDAG *DAG, 2512 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { 2513 assert(CurDAG->getTargetLoweringInfo() 2514 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && 2515 "Only expecting to use this on 64 bit targets."); 2516 } 2517 SDNode *Select(SDNode *N) { 2518 if (CmpInGPR == ICGPR_None) 2519 return nullptr; 2520 switch (N->getOpcode()) { 2521 default: break; 2522 case ISD::ZERO_EXTEND: 2523 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || 2524 CmpInGPR == ICGPR_SextI64) 2525 return nullptr; 2526 LLVM_FALLTHROUGH; 2527 case ISD::SIGN_EXTEND: 2528 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || 2529 CmpInGPR == ICGPR_ZextI64) 2530 return nullptr; 2531 return tryEXTEND(N); 2532 case ISD::AND: 2533 case ISD::OR: 2534 case ISD::XOR: 2535 return tryLogicOpOfCompares(N); 2536 } 2537 return nullptr; 2538 } 2539 }; 2540 2541 static bool isLogicOp(unsigned Opc) { 2542 return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; 2543 } 2544 // The obvious case for wanting to keep the value in a GPR. Namely, the 2545 // result of the comparison is actually needed in a GPR. 2546 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { 2547 assert((N->getOpcode() == ISD::ZERO_EXTEND || 2548 N->getOpcode() == ISD::SIGN_EXTEND) && 2549 "Expecting a zero/sign extend node!"); 2550 SDValue WideRes; 2551 // If we are zero-extending the result of a logical operation on i1 2552 // values, we can keep the values in GPRs. 2553 if (isLogicOp(N->getOperand(0).getOpcode()) && 2554 N->getOperand(0).getValueType() == MVT::i1 && 2555 N->getOpcode() == ISD::ZERO_EXTEND) 2556 WideRes = computeLogicOpInGPR(N->getOperand(0)); 2557 else if (N->getOperand(0).getOpcode() != ISD::SETCC) 2558 return nullptr; 2559 else 2560 WideRes = 2561 getSETCCInGPR(N->getOperand(0), 2562 N->getOpcode() == ISD::SIGN_EXTEND ? 2563 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); 2564 2565 if (!WideRes) 2566 return nullptr; 2567 2568 SDLoc dl(N); 2569 bool Input32Bit = WideRes.getValueType() == MVT::i32; 2570 bool Output32Bit = N->getValueType(0) == MVT::i32; 2571 2572 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; 2573 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; 2574 2575 SDValue ConvOp = WideRes; 2576 if (Input32Bit != Output32Bit) 2577 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : 2578 ExtOrTruncConversion::Trunc); 2579 return ConvOp.getNode(); 2580 } 2581 2582 // Attempt to perform logical operations on the results of comparisons while 2583 // keeping the values in GPRs. Without doing so, these would end up being 2584 // lowered to CR-logical operations which suffer from significant latency and 2585 // low ILP. 2586 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { 2587 if (N->getValueType(0) != MVT::i1) 2588 return nullptr; 2589 assert(isLogicOp(N->getOpcode()) && 2590 "Expected a logic operation on setcc results."); 2591 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); 2592 if (!LoweredLogical) 2593 return nullptr; 2594 2595 SDLoc dl(N); 2596 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; 2597 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; 2598 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2599 SDValue LHS = LoweredLogical.getOperand(0); 2600 SDValue RHS = LoweredLogical.getOperand(1); 2601 SDValue WideOp; 2602 SDValue OpToConvToRecForm; 2603 2604 // Look through any 32-bit to 64-bit implicit extend nodes to find the 2605 // opcode that is input to the XORI. 2606 if (IsBitwiseNegate && 2607 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) 2608 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); 2609 else if (IsBitwiseNegate) 2610 // If the input to the XORI isn't an extension, that's what we're after. 2611 OpToConvToRecForm = LoweredLogical.getOperand(0); 2612 else 2613 // If this is not an XORI, it is a reg-reg logical op and we can convert 2614 // it to record-form. 2615 OpToConvToRecForm = LoweredLogical; 2616 2617 // Get the record-form version of the node we're looking to use to get the 2618 // CR result from. 2619 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); 2620 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); 2621 2622 // Convert the right node to record-form. This is either the logical we're 2623 // looking at or it is the input node to the negation (if we're looking at 2624 // a bitwise negation). 2625 if (NewOpc != -1 && IsBitwiseNegate) { 2626 // The input to the XORI has a record-form. Use it. 2627 assert(LoweredLogical.getConstantOperandVal(1) == 1 && 2628 "Expected a PPC::XORI8 only for bitwise negation."); 2629 // Emit the record-form instruction. 2630 std::vector<SDValue> Ops; 2631 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) 2632 Ops.push_back(OpToConvToRecForm.getOperand(i)); 2633 2634 WideOp = 2635 SDValue(CurDAG->getMachineNode(NewOpc, dl, 2636 OpToConvToRecForm.getValueType(), 2637 MVT::Glue, Ops), 0); 2638 } else { 2639 assert((NewOpc != -1 || !IsBitwiseNegate) && 2640 "No record form available for AND8/OR8/XOR8?"); 2641 WideOp = 2642 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, 2643 dl, MVT::i64, MVT::Glue, LHS, RHS), 2644 0); 2645 } 2646 2647 // Select this node to a single bit from CR0 set by the record-form node 2648 // just created. For bitwise negation, use the EQ bit which is the equivalent 2649 // of negating the result (i.e. it is a bit set when the result of the 2650 // operation is zero). 2651 SDValue SRIdxVal = 2652 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); 2653 SDValue CRBit = 2654 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 2655 MVT::i1, CR0Reg, SRIdxVal, 2656 WideOp.getValue(1)), 0); 2657 return CRBit.getNode(); 2658 } 2659 2660 // Lower a logical operation on i1 values into a GPR sequence if possible. 2661 // The result can be kept in a GPR if requested. 2662 // Three types of inputs can be handled: 2663 // - SETCC 2664 // - TRUNCATE 2665 // - Logical operation (AND/OR/XOR) 2666 // There is also a special case that is handled (namely a complement operation 2667 // achieved with xor %a, -1). 2668 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { 2669 assert(isLogicOp(LogicOp.getOpcode()) && 2670 "Can only handle logic operations here."); 2671 assert(LogicOp.getValueType() == MVT::i1 && 2672 "Can only handle logic operations on i1 values here."); 2673 SDLoc dl(LogicOp); 2674 SDValue LHS, RHS; 2675 2676 // Special case: xor %a, -1 2677 bool IsBitwiseNegation = isBitwiseNot(LogicOp); 2678 2679 // Produces a GPR sequence for each operand of the binary logic operation. 2680 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates 2681 // the value in a GPR and for logic operations, it will recursively produce 2682 // a GPR sequence for the operation. 2683 auto getLogicOperand = [&] (SDValue Operand) -> SDValue { 2684 unsigned OperandOpcode = Operand.getOpcode(); 2685 if (OperandOpcode == ISD::SETCC) 2686 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); 2687 else if (OperandOpcode == ISD::TRUNCATE) { 2688 SDValue InputOp = Operand.getOperand(0); 2689 EVT InVT = InputOp.getValueType(); 2690 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : 2691 PPC::RLDICL, dl, InVT, InputOp, 2692 S->getI64Imm(0, dl), 2693 S->getI64Imm(63, dl)), 0); 2694 } else if (isLogicOp(OperandOpcode)) 2695 return computeLogicOpInGPR(Operand); 2696 return SDValue(); 2697 }; 2698 LHS = getLogicOperand(LogicOp.getOperand(0)); 2699 RHS = getLogicOperand(LogicOp.getOperand(1)); 2700 2701 // If a GPR sequence can't be produced for the LHS we can't proceed. 2702 // Not producing a GPR sequence for the RHS is only a problem if this isn't 2703 // a bitwise negation operation. 2704 if (!LHS || (!RHS && !IsBitwiseNegation)) 2705 return SDValue(); 2706 2707 NumLogicOpsOnComparison++; 2708 2709 // We will use the inputs as 64-bit values. 2710 if (LHS.getValueType() == MVT::i32) 2711 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); 2712 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) 2713 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); 2714 2715 unsigned NewOpc; 2716 switch (LogicOp.getOpcode()) { 2717 default: llvm_unreachable("Unknown logic operation."); 2718 case ISD::AND: NewOpc = PPC::AND8; break; 2719 case ISD::OR: NewOpc = PPC::OR8; break; 2720 case ISD::XOR: NewOpc = PPC::XOR8; break; 2721 } 2722 2723 if (IsBitwiseNegation) { 2724 RHS = S->getI64Imm(1, dl); 2725 NewOpc = PPC::XORI8; 2726 } 2727 2728 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); 2729 2730 } 2731 2732 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. 2733 /// Otherwise just reinterpret it as a 64-bit value. 2734 /// Useful when emitting comparison code for 32-bit values without using 2735 /// the compare instruction (which only considers the lower 32-bits). 2736 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { 2737 assert(Input.getValueType() == MVT::i32 && 2738 "Can only sign-extend 32-bit values here."); 2739 unsigned Opc = Input.getOpcode(); 2740 2741 // The value was sign extended and then truncated to 32-bits. No need to 2742 // sign extend it again. 2743 if (Opc == ISD::TRUNCATE && 2744 (Input.getOperand(0).getOpcode() == ISD::AssertSext || 2745 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) 2746 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2747 2748 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 2749 // The input is a sign-extending load. All ppc sign-extending loads 2750 // sign-extend to the full 64-bits. 2751 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) 2752 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2753 2754 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 2755 // We don't sign-extend constants. 2756 if (InputConst) 2757 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2758 2759 SDLoc dl(Input); 2760 SignExtensionsAdded++; 2761 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, 2762 MVT::i64, Input), 0); 2763 } 2764 2765 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. 2766 /// Otherwise just reinterpret it as a 64-bit value. 2767 /// Useful when emitting comparison code for 32-bit values without using 2768 /// the compare instruction (which only considers the lower 32-bits). 2769 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { 2770 assert(Input.getValueType() == MVT::i32 && 2771 "Can only zero-extend 32-bit values here."); 2772 unsigned Opc = Input.getOpcode(); 2773 2774 // The only condition under which we can omit the actual extend instruction: 2775 // - The value is a positive constant 2776 // - The value comes from a load that isn't a sign-extending load 2777 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. 2778 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && 2779 (Input.getOperand(0).getOpcode() == ISD::AssertZext || 2780 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); 2781 if (IsTruncateOfZExt) 2782 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2783 2784 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 2785 if (InputConst && InputConst->getSExtValue() >= 0) 2786 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2787 2788 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 2789 // The input is a load that doesn't sign-extend (it will be zero-extended). 2790 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) 2791 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2792 2793 // None of the above, need to zero-extend. 2794 SDLoc dl(Input); 2795 ZeroExtensionsAdded++; 2796 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, 2797 S->getI64Imm(0, dl), 2798 S->getI64Imm(32, dl)), 0); 2799 } 2800 2801 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of 2802 // course not actual zero/sign extensions that will generate machine code, 2803 // they're just a way to reinterpret a 32 bit value in a register as a 2804 // 64 bit value and vice-versa. 2805 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, 2806 ExtOrTruncConversion Conv) { 2807 SDLoc dl(NatWidthRes); 2808 2809 // For reinterpreting 32-bit values as 64 bit values, we generate 2810 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> 2811 if (Conv == ExtOrTruncConversion::Ext) { 2812 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); 2813 SDValue SubRegIdx = 2814 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2815 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, 2816 ImDef, NatWidthRes, SubRegIdx), 0); 2817 } 2818 2819 assert(Conv == ExtOrTruncConversion::Trunc && 2820 "Unknown convertion between 32 and 64 bit values."); 2821 // For reinterpreting 64-bit values as 32-bit values, we just need to 2822 // EXTRACT_SUBREG (i.e. extract the low word). 2823 SDValue SubRegIdx = 2824 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2825 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, 2826 NatWidthRes, SubRegIdx), 0); 2827 } 2828 2829 // Produce a GPR sequence for compound comparisons (<=, >=) against zero. 2830 // Handle both zero-extensions and sign-extensions. 2831 SDValue 2832 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2833 ZeroCompare CmpTy) { 2834 EVT InVT = LHS.getValueType(); 2835 bool Is32Bit = InVT == MVT::i32; 2836 SDValue ToExtend; 2837 2838 // Produce the value that needs to be either zero or sign extended. 2839 switch (CmpTy) { 2840 case ZeroCompare::GEZExt: 2841 case ZeroCompare::GESExt: 2842 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, 2843 dl, InVT, LHS, LHS), 0); 2844 break; 2845 case ZeroCompare::LEZExt: 2846 case ZeroCompare::LESExt: { 2847 if (Is32Bit) { 2848 // Upper 32 bits cannot be undefined for this sequence. 2849 LHS = signExtendInputIfNeeded(LHS); 2850 SDValue Neg = 2851 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 2852 ToExtend = 2853 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 2854 Neg, S->getI64Imm(1, dl), 2855 S->getI64Imm(63, dl)), 0); 2856 } else { 2857 SDValue Addi = 2858 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 2859 S->getI64Imm(~0ULL, dl)), 0); 2860 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2861 Addi, LHS), 0); 2862 } 2863 break; 2864 } 2865 } 2866 2867 // For 64-bit sequences, the extensions are the same for the GE/LE cases. 2868 if (!Is32Bit && 2869 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) 2870 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 2871 ToExtend, S->getI64Imm(1, dl), 2872 S->getI64Imm(63, dl)), 0); 2873 if (!Is32Bit && 2874 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) 2875 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, 2876 S->getI64Imm(63, dl)), 0); 2877 2878 assert(Is32Bit && "Should have handled the 32-bit sequences above."); 2879 // For 32-bit sequences, the extensions differ between GE/LE cases. 2880 switch (CmpTy) { 2881 case ZeroCompare::GEZExt: { 2882 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 2883 S->getI32Imm(31, dl) }; 2884 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2885 ShiftOps), 0); 2886 } 2887 case ZeroCompare::GESExt: 2888 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, 2889 S->getI32Imm(31, dl)), 0); 2890 case ZeroCompare::LEZExt: 2891 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, 2892 S->getI32Imm(1, dl)), 0); 2893 case ZeroCompare::LESExt: 2894 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, 2895 S->getI32Imm(-1, dl)), 0); 2896 } 2897 2898 // The above case covers all the enumerators so it can't have a default clause 2899 // to avoid compiler warnings. 2900 llvm_unreachable("Unknown zero-comparison type."); 2901 } 2902 2903 /// Produces a zero-extended result of comparing two 32-bit values according to 2904 /// the passed condition code. 2905 SDValue 2906 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, 2907 ISD::CondCode CC, 2908 int64_t RHSValue, SDLoc dl) { 2909 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 2910 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) 2911 return SDValue(); 2912 bool IsRHSZero = RHSValue == 0; 2913 bool IsRHSOne = RHSValue == 1; 2914 bool IsRHSNegOne = RHSValue == -1LL; 2915 switch (CC) { 2916 default: return SDValue(); 2917 case ISD::SETEQ: { 2918 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) 2919 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) 2920 SDValue Xor = IsRHSZero ? LHS : 2921 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 2922 SDValue Clz = 2923 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 2924 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 2925 S->getI32Imm(31, dl) }; 2926 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2927 ShiftOps), 0); 2928 } 2929 case ISD::SETNE: { 2930 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) 2931 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) 2932 SDValue Xor = IsRHSZero ? LHS : 2933 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 2934 SDValue Clz = 2935 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 2936 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 2937 S->getI32Imm(31, dl) }; 2938 SDValue Shift = 2939 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 2940 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 2941 S->getI32Imm(1, dl)), 0); 2942 } 2943 case ISD::SETGE: { 2944 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) 2945 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) 2946 if(IsRHSZero) 2947 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 2948 2949 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 2950 // by swapping inputs and falling through. 2951 std::swap(LHS, RHS); 2952 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 2953 IsRHSZero = RHSConst && RHSConst->isNullValue(); 2954 LLVM_FALLTHROUGH; 2955 } 2956 case ISD::SETLE: { 2957 if (CmpInGPR == ICGPR_NonExtIn) 2958 return SDValue(); 2959 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) 2960 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) 2961 if(IsRHSZero) { 2962 if (CmpInGPR == ICGPR_NonExtIn) 2963 return SDValue(); 2964 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 2965 } 2966 2967 // The upper 32-bits of the register can't be undefined for this sequence. 2968 LHS = signExtendInputIfNeeded(LHS); 2969 RHS = signExtendInputIfNeeded(RHS); 2970 SDValue Sub = 2971 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 2972 SDValue Shift = 2973 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, 2974 S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 2975 0); 2976 return 2977 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, 2978 MVT::i64, Shift, S->getI32Imm(1, dl)), 0); 2979 } 2980 case ISD::SETGT: { 2981 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) 2982 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) 2983 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) 2984 // Handle SETLT -1 (which is equivalent to SETGE 0). 2985 if (IsRHSNegOne) 2986 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 2987 2988 if (IsRHSZero) { 2989 if (CmpInGPR == ICGPR_NonExtIn) 2990 return SDValue(); 2991 // The upper 32-bits of the register can't be undefined for this sequence. 2992 LHS = signExtendInputIfNeeded(LHS); 2993 RHS = signExtendInputIfNeeded(RHS); 2994 SDValue Neg = 2995 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 2996 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 2997 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); 2998 } 2999 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3000 // (%b < %a) by swapping inputs and falling through. 3001 std::swap(LHS, RHS); 3002 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3003 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3004 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3005 LLVM_FALLTHROUGH; 3006 } 3007 case ISD::SETLT: { 3008 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) 3009 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) 3010 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) 3011 // Handle SETLT 1 (which is equivalent to SETLE 0). 3012 if (IsRHSOne) { 3013 if (CmpInGPR == ICGPR_NonExtIn) 3014 return SDValue(); 3015 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3016 } 3017 3018 if (IsRHSZero) { 3019 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3020 S->getI32Imm(31, dl) }; 3021 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3022 ShiftOps), 0); 3023 } 3024 3025 if (CmpInGPR == ICGPR_NonExtIn) 3026 return SDValue(); 3027 // The upper 32-bits of the register can't be undefined for this sequence. 3028 LHS = signExtendInputIfNeeded(LHS); 3029 RHS = signExtendInputIfNeeded(RHS); 3030 SDValue SUBFNode = 3031 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3032 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3033 SUBFNode, S->getI64Imm(1, dl), 3034 S->getI64Imm(63, dl)), 0); 3035 } 3036 case ISD::SETUGE: 3037 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) 3038 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) 3039 std::swap(LHS, RHS); 3040 LLVM_FALLTHROUGH; 3041 case ISD::SETULE: { 3042 if (CmpInGPR == ICGPR_NonExtIn) 3043 return SDValue(); 3044 // The upper 32-bits of the register can't be undefined for this sequence. 3045 LHS = zeroExtendInputIfNeeded(LHS); 3046 RHS = zeroExtendInputIfNeeded(RHS); 3047 SDValue Subtract = 3048 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3049 SDValue SrdiNode = 3050 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3051 Subtract, S->getI64Imm(1, dl), 3052 S->getI64Imm(63, dl)), 0); 3053 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, 3054 S->getI32Imm(1, dl)), 0); 3055 } 3056 case ISD::SETUGT: 3057 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) 3058 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) 3059 std::swap(LHS, RHS); 3060 LLVM_FALLTHROUGH; 3061 case ISD::SETULT: { 3062 if (CmpInGPR == ICGPR_NonExtIn) 3063 return SDValue(); 3064 // The upper 32-bits of the register can't be undefined for this sequence. 3065 LHS = zeroExtendInputIfNeeded(LHS); 3066 RHS = zeroExtendInputIfNeeded(RHS); 3067 SDValue Subtract = 3068 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3069 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3070 Subtract, S->getI64Imm(1, dl), 3071 S->getI64Imm(63, dl)), 0); 3072 } 3073 } 3074 } 3075 3076 /// Produces a sign-extended result of comparing two 32-bit values according to 3077 /// the passed condition code. 3078 SDValue 3079 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, 3080 ISD::CondCode CC, 3081 int64_t RHSValue, SDLoc dl) { 3082 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3083 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) 3084 return SDValue(); 3085 bool IsRHSZero = RHSValue == 0; 3086 bool IsRHSOne = RHSValue == 1; 3087 bool IsRHSNegOne = RHSValue == -1LL; 3088 3089 switch (CC) { 3090 default: return SDValue(); 3091 case ISD::SETEQ: { 3092 // (sext (setcc %a, %b, seteq)) -> 3093 // (ashr (shl (ctlz (xor %a, %b)), 58), 63) 3094 // (sext (setcc %a, 0, seteq)) -> 3095 // (ashr (shl (ctlz %a), 58), 63) 3096 SDValue CountInput = IsRHSZero ? LHS : 3097 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3098 SDValue Cntlzw = 3099 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); 3100 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), 3101 S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3102 SDValue Slwi = 3103 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); 3104 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); 3105 } 3106 case ISD::SETNE: { 3107 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and 3108 // flip the bit, finally take 2's complement. 3109 // (sext (setcc %a, %b, setne)) -> 3110 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) 3111 // Same as above, but the first xor is not needed. 3112 // (sext (setcc %a, 0, setne)) -> 3113 // (neg (xor (lshr (ctlz %a), 5), 1)) 3114 SDValue Xor = IsRHSZero ? LHS : 3115 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3116 SDValue Clz = 3117 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3118 SDValue ShiftOps[] = 3119 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3120 SDValue Shift = 3121 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3122 SDValue Xori = 3123 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3124 S->getI32Imm(1, dl)), 0); 3125 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); 3126 } 3127 case ISD::SETGE: { 3128 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) 3129 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) 3130 if (IsRHSZero) 3131 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3132 3133 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3134 // by swapping inputs and falling through. 3135 std::swap(LHS, RHS); 3136 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3137 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3138 LLVM_FALLTHROUGH; 3139 } 3140 case ISD::SETLE: { 3141 if (CmpInGPR == ICGPR_NonExtIn) 3142 return SDValue(); 3143 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) 3144 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) 3145 if (IsRHSZero) 3146 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3147 3148 // The upper 32-bits of the register can't be undefined for this sequence. 3149 LHS = signExtendInputIfNeeded(LHS); 3150 RHS = signExtendInputIfNeeded(RHS); 3151 SDValue SUBFNode = 3152 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, 3153 LHS, RHS), 0); 3154 SDValue Srdi = 3155 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3156 SUBFNode, S->getI64Imm(1, dl), 3157 S->getI64Imm(63, dl)), 0); 3158 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, 3159 S->getI32Imm(-1, dl)), 0); 3160 } 3161 case ISD::SETGT: { 3162 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) 3163 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) 3164 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) 3165 if (IsRHSNegOne) 3166 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3167 if (IsRHSZero) { 3168 if (CmpInGPR == ICGPR_NonExtIn) 3169 return SDValue(); 3170 // The upper 32-bits of the register can't be undefined for this sequence. 3171 LHS = signExtendInputIfNeeded(LHS); 3172 RHS = signExtendInputIfNeeded(RHS); 3173 SDValue Neg = 3174 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3175 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, 3176 S->getI64Imm(63, dl)), 0); 3177 } 3178 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3179 // (%b < %a) by swapping inputs and falling through. 3180 std::swap(LHS, RHS); 3181 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3182 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3183 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3184 LLVM_FALLTHROUGH; 3185 } 3186 case ISD::SETLT: { 3187 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) 3188 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) 3189 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) 3190 if (IsRHSOne) { 3191 if (CmpInGPR == ICGPR_NonExtIn) 3192 return SDValue(); 3193 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3194 } 3195 if (IsRHSZero) 3196 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, 3197 S->getI32Imm(31, dl)), 0); 3198 3199 if (CmpInGPR == ICGPR_NonExtIn) 3200 return SDValue(); 3201 // The upper 32-bits of the register can't be undefined for this sequence. 3202 LHS = signExtendInputIfNeeded(LHS); 3203 RHS = signExtendInputIfNeeded(RHS); 3204 SDValue SUBFNode = 3205 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3206 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3207 SUBFNode, S->getI64Imm(63, dl)), 0); 3208 } 3209 case ISD::SETUGE: 3210 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) 3211 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) 3212 std::swap(LHS, RHS); 3213 LLVM_FALLTHROUGH; 3214 case ISD::SETULE: { 3215 if (CmpInGPR == ICGPR_NonExtIn) 3216 return SDValue(); 3217 // The upper 32-bits of the register can't be undefined for this sequence. 3218 LHS = zeroExtendInputIfNeeded(LHS); 3219 RHS = zeroExtendInputIfNeeded(RHS); 3220 SDValue Subtract = 3221 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3222 SDValue Shift = 3223 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, 3224 S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 3225 0); 3226 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, 3227 S->getI32Imm(-1, dl)), 0); 3228 } 3229 case ISD::SETUGT: 3230 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) 3231 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) 3232 std::swap(LHS, RHS); 3233 LLVM_FALLTHROUGH; 3234 case ISD::SETULT: { 3235 if (CmpInGPR == ICGPR_NonExtIn) 3236 return SDValue(); 3237 // The upper 32-bits of the register can't be undefined for this sequence. 3238 LHS = zeroExtendInputIfNeeded(LHS); 3239 RHS = zeroExtendInputIfNeeded(RHS); 3240 SDValue Subtract = 3241 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3242 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3243 Subtract, S->getI64Imm(63, dl)), 0); 3244 } 3245 } 3246 } 3247 3248 /// Produces a zero-extended result of comparing two 64-bit values according to 3249 /// the passed condition code. 3250 SDValue 3251 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, 3252 ISD::CondCode CC, 3253 int64_t RHSValue, SDLoc dl) { 3254 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3255 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) 3256 return SDValue(); 3257 bool IsRHSZero = RHSValue == 0; 3258 bool IsRHSOne = RHSValue == 1; 3259 bool IsRHSNegOne = RHSValue == -1LL; 3260 switch (CC) { 3261 default: return SDValue(); 3262 case ISD::SETEQ: { 3263 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) 3264 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) 3265 SDValue Xor = IsRHSZero ? LHS : 3266 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3267 SDValue Clz = 3268 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); 3269 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, 3270 S->getI64Imm(58, dl), 3271 S->getI64Imm(63, dl)), 0); 3272 } 3273 case ISD::SETNE: { 3274 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3275 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) 3276 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3277 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3278 SDValue Xor = IsRHSZero ? LHS : 3279 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3280 SDValue AC = 3281 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3282 Xor, S->getI32Imm(~0U, dl)), 0); 3283 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, 3284 Xor, AC.getValue(1)), 0); 3285 } 3286 case ISD::SETGE: { 3287 // {subc.reg, subc.CA} = (subcarry %a, %b) 3288 // (zext (setcc %a, %b, setge)) -> 3289 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) 3290 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) 3291 if (IsRHSZero) 3292 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3293 std::swap(LHS, RHS); 3294 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3295 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3296 LLVM_FALLTHROUGH; 3297 } 3298 case ISD::SETLE: { 3299 // {subc.reg, subc.CA} = (subcarry %b, %a) 3300 // (zext (setcc %a, %b, setge)) -> 3301 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) 3302 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) 3303 if (IsRHSZero) 3304 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3305 SDValue ShiftL = 3306 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3307 S->getI64Imm(1, dl), 3308 S->getI64Imm(63, dl)), 0); 3309 SDValue ShiftR = 3310 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3311 S->getI64Imm(63, dl)), 0); 3312 SDValue SubtractCarry = 3313 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3314 LHS, RHS), 1); 3315 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3316 ShiftR, ShiftL, SubtractCarry), 0); 3317 } 3318 case ISD::SETGT: { 3319 // {subc.reg, subc.CA} = (subcarry %b, %a) 3320 // (zext (setcc %a, %b, setgt)) -> 3321 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3322 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) 3323 if (IsRHSNegOne) 3324 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3325 if (IsRHSZero) { 3326 SDValue Addi = 3327 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3328 S->getI64Imm(~0ULL, dl)), 0); 3329 SDValue Nor = 3330 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); 3331 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, 3332 S->getI64Imm(1, dl), 3333 S->getI64Imm(63, dl)), 0); 3334 } 3335 std::swap(LHS, RHS); 3336 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3337 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3338 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3339 LLVM_FALLTHROUGH; 3340 } 3341 case ISD::SETLT: { 3342 // {subc.reg, subc.CA} = (subcarry %a, %b) 3343 // (zext (setcc %a, %b, setlt)) -> 3344 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3345 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) 3346 if (IsRHSOne) 3347 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3348 if (IsRHSZero) 3349 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3350 S->getI64Imm(1, dl), 3351 S->getI64Imm(63, dl)), 0); 3352 SDValue SRADINode = 3353 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3354 LHS, S->getI64Imm(63, dl)), 0); 3355 SDValue SRDINode = 3356 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3357 RHS, S->getI64Imm(1, dl), 3358 S->getI64Imm(63, dl)), 0); 3359 SDValue SUBFC8Carry = 3360 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3361 RHS, LHS), 1); 3362 SDValue ADDE8Node = 3363 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3364 SRDINode, SRADINode, SUBFC8Carry), 0); 3365 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3366 ADDE8Node, S->getI64Imm(1, dl)), 0); 3367 } 3368 case ISD::SETUGE: 3369 // {subc.reg, subc.CA} = (subcarry %a, %b) 3370 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) 3371 std::swap(LHS, RHS); 3372 LLVM_FALLTHROUGH; 3373 case ISD::SETULE: { 3374 // {subc.reg, subc.CA} = (subcarry %b, %a) 3375 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) 3376 SDValue SUBFC8Carry = 3377 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3378 LHS, RHS), 1); 3379 SDValue SUBFE8Node = 3380 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, 3381 LHS, LHS, SUBFC8Carry), 0); 3382 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, 3383 SUBFE8Node, S->getI64Imm(1, dl)), 0); 3384 } 3385 case ISD::SETUGT: 3386 // {subc.reg, subc.CA} = (subcarry %b, %a) 3387 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) 3388 std::swap(LHS, RHS); 3389 LLVM_FALLTHROUGH; 3390 case ISD::SETULT: { 3391 // {subc.reg, subc.CA} = (subcarry %a, %b) 3392 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) 3393 SDValue SubtractCarry = 3394 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3395 RHS, LHS), 1); 3396 SDValue ExtSub = 3397 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3398 LHS, LHS, SubtractCarry), 0); 3399 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3400 ExtSub), 0); 3401 } 3402 } 3403 } 3404 3405 /// Produces a sign-extended result of comparing two 64-bit values according to 3406 /// the passed condition code. 3407 SDValue 3408 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, 3409 ISD::CondCode CC, 3410 int64_t RHSValue, SDLoc dl) { 3411 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3412 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) 3413 return SDValue(); 3414 bool IsRHSZero = RHSValue == 0; 3415 bool IsRHSOne = RHSValue == 1; 3416 bool IsRHSNegOne = RHSValue == -1LL; 3417 switch (CC) { 3418 default: return SDValue(); 3419 case ISD::SETEQ: { 3420 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3421 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) 3422 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3423 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3424 SDValue AddInput = IsRHSZero ? LHS : 3425 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3426 SDValue Addic = 3427 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3428 AddInput, S->getI32Imm(~0U, dl)), 0); 3429 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, 3430 Addic, Addic.getValue(1)), 0); 3431 } 3432 case ISD::SETNE: { 3433 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) 3434 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) 3435 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) 3436 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) 3437 SDValue Xor = IsRHSZero ? LHS : 3438 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3439 SDValue SC = 3440 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, 3441 Xor, S->getI32Imm(0, dl)), 0); 3442 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, 3443 SC, SC.getValue(1)), 0); 3444 } 3445 case ISD::SETGE: { 3446 // {subc.reg, subc.CA} = (subcarry %a, %b) 3447 // (zext (setcc %a, %b, setge)) -> 3448 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) 3449 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) 3450 if (IsRHSZero) 3451 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3452 std::swap(LHS, RHS); 3453 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3454 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3455 LLVM_FALLTHROUGH; 3456 } 3457 case ISD::SETLE: { 3458 // {subc.reg, subc.CA} = (subcarry %b, %a) 3459 // (zext (setcc %a, %b, setge)) -> 3460 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) 3461 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) 3462 if (IsRHSZero) 3463 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3464 SDValue ShiftR = 3465 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3466 S->getI64Imm(63, dl)), 0); 3467 SDValue ShiftL = 3468 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3469 S->getI64Imm(1, dl), 3470 S->getI64Imm(63, dl)), 0); 3471 SDValue SubtractCarry = 3472 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3473 LHS, RHS), 1); 3474 SDValue Adde = 3475 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3476 ShiftR, ShiftL, SubtractCarry), 0); 3477 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); 3478 } 3479 case ISD::SETGT: { 3480 // {subc.reg, subc.CA} = (subcarry %b, %a) 3481 // (zext (setcc %a, %b, setgt)) -> 3482 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3483 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) 3484 if (IsRHSNegOne) 3485 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3486 if (IsRHSZero) { 3487 SDValue Add = 3488 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3489 S->getI64Imm(-1, dl)), 0); 3490 SDValue Nor = 3491 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); 3492 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, 3493 S->getI64Imm(63, dl)), 0); 3494 } 3495 std::swap(LHS, RHS); 3496 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3497 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3498 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3499 LLVM_FALLTHROUGH; 3500 } 3501 case ISD::SETLT: { 3502 // {subc.reg, subc.CA} = (subcarry %a, %b) 3503 // (zext (setcc %a, %b, setlt)) -> 3504 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3505 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) 3506 if (IsRHSOne) 3507 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3508 if (IsRHSZero) { 3509 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, 3510 S->getI64Imm(63, dl)), 0); 3511 } 3512 SDValue SRADINode = 3513 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3514 LHS, S->getI64Imm(63, dl)), 0); 3515 SDValue SRDINode = 3516 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3517 RHS, S->getI64Imm(1, dl), 3518 S->getI64Imm(63, dl)), 0); 3519 SDValue SUBFC8Carry = 3520 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3521 RHS, LHS), 1); 3522 SDValue ADDE8Node = 3523 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, 3524 SRDINode, SRADINode, SUBFC8Carry), 0); 3525 SDValue XORI8Node = 3526 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3527 ADDE8Node, S->getI64Imm(1, dl)), 0); 3528 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3529 XORI8Node), 0); 3530 } 3531 case ISD::SETUGE: 3532 // {subc.reg, subc.CA} = (subcarry %a, %b) 3533 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) 3534 std::swap(LHS, RHS); 3535 LLVM_FALLTHROUGH; 3536 case ISD::SETULE: { 3537 // {subc.reg, subc.CA} = (subcarry %b, %a) 3538 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) 3539 SDValue SubtractCarry = 3540 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3541 LHS, RHS), 1); 3542 SDValue ExtSub = 3543 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, 3544 LHS, SubtractCarry), 0); 3545 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, 3546 ExtSub, ExtSub), 0); 3547 } 3548 case ISD::SETUGT: 3549 // {subc.reg, subc.CA} = (subcarry %b, %a) 3550 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) 3551 std::swap(LHS, RHS); 3552 LLVM_FALLTHROUGH; 3553 case ISD::SETULT: { 3554 // {subc.reg, subc.CA} = (subcarry %a, %b) 3555 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) 3556 SDValue SubCarry = 3557 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3558 RHS, LHS), 1); 3559 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3560 LHS, LHS, SubCarry), 0); 3561 } 3562 } 3563 } 3564 3565 /// Do all uses of this SDValue need the result in a GPR? 3566 /// This is meant to be used on values that have type i1 since 3567 /// it is somewhat meaningless to ask if values of other types 3568 /// should be kept in GPR's. 3569 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { 3570 assert(Compare.getOpcode() == ISD::SETCC && 3571 "An ISD::SETCC node required here."); 3572 3573 // For values that have a single use, the caller should obviously already have 3574 // checked if that use is an extending use. We check the other uses here. 3575 if (Compare.hasOneUse()) 3576 return true; 3577 // We want the value in a GPR if it is being extended, used for a select, or 3578 // used in logical operations. 3579 for (auto CompareUse : Compare.getNode()->uses()) 3580 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && 3581 CompareUse->getOpcode() != ISD::ZERO_EXTEND && 3582 CompareUse->getOpcode() != ISD::SELECT && 3583 !isLogicOp(CompareUse->getOpcode())) { 3584 OmittedForNonExtendUses++; 3585 return false; 3586 } 3587 return true; 3588 } 3589 3590 /// Returns an equivalent of a SETCC node but with the result the same width as 3591 /// the inputs. This can also be used for SELECT_CC if either the true or false 3592 /// values is a power of two while the other is zero. 3593 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, 3594 SetccInGPROpts ConvOpts) { 3595 assert((Compare.getOpcode() == ISD::SETCC || 3596 Compare.getOpcode() == ISD::SELECT_CC) && 3597 "An ISD::SETCC node required here."); 3598 3599 // Don't convert this comparison to a GPR sequence because there are uses 3600 // of the i1 result (i.e. uses that require the result in the CR). 3601 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) 3602 return SDValue(); 3603 3604 SDValue LHS = Compare.getOperand(0); 3605 SDValue RHS = Compare.getOperand(1); 3606 3607 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. 3608 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; 3609 ISD::CondCode CC = 3610 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); 3611 EVT InputVT = LHS.getValueType(); 3612 if (InputVT != MVT::i32 && InputVT != MVT::i64) 3613 return SDValue(); 3614 3615 if (ConvOpts == SetccInGPROpts::ZExtInvert || 3616 ConvOpts == SetccInGPROpts::SExtInvert) 3617 CC = ISD::getSetCCInverse(CC, InputVT); 3618 3619 bool Inputs32Bit = InputVT == MVT::i32; 3620 3621 SDLoc dl(Compare); 3622 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3623 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; 3624 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || 3625 ConvOpts == SetccInGPROpts::SExtInvert; 3626 3627 if (IsSext && Inputs32Bit) 3628 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3629 else if (Inputs32Bit) 3630 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3631 else if (IsSext) 3632 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3633 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3634 } 3635 3636 } // end anonymous namespace 3637 3638 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { 3639 if (N->getValueType(0) != MVT::i32 && 3640 N->getValueType(0) != MVT::i64) 3641 return false; 3642 3643 // This optimization will emit code that assumes 64-bit registers 3644 // so we don't want to run it in 32-bit mode. Also don't run it 3645 // on functions that are not to be optimized. 3646 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) 3647 return false; 3648 3649 switch (N->getOpcode()) { 3650 default: break; 3651 case ISD::ZERO_EXTEND: 3652 case ISD::SIGN_EXTEND: 3653 case ISD::AND: 3654 case ISD::OR: 3655 case ISD::XOR: { 3656 IntegerCompareEliminator ICmpElim(CurDAG, this); 3657 if (SDNode *New = ICmpElim.Select(N)) { 3658 ReplaceNode(N, New); 3659 return true; 3660 } 3661 } 3662 } 3663 return false; 3664 } 3665 3666 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 3667 if (N->getValueType(0) != MVT::i32 && 3668 N->getValueType(0) != MVT::i64) 3669 return false; 3670 3671 if (!UseBitPermRewriter) 3672 return false; 3673 3674 switch (N->getOpcode()) { 3675 default: break; 3676 case ISD::ROTL: 3677 case ISD::SHL: 3678 case ISD::SRL: 3679 case ISD::AND: 3680 case ISD::OR: { 3681 BitPermutationSelector BPS(CurDAG); 3682 if (SDNode *New = BPS.Select(N)) { 3683 ReplaceNode(N, New); 3684 return true; 3685 } 3686 return false; 3687 } 3688 } 3689 3690 return false; 3691 } 3692 3693 /// SelectCC - Select a comparison of the specified values with the specified 3694 /// condition code, returning the CR# of the expression. 3695 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 3696 const SDLoc &dl) { 3697 // Always select the LHS. 3698 unsigned Opc; 3699 3700 if (LHS.getValueType() == MVT::i32) { 3701 unsigned Imm; 3702 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3703 if (isInt32Immediate(RHS, Imm)) { 3704 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 3705 if (isUInt<16>(Imm)) 3706 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3707 getI32Imm(Imm & 0xFFFF, dl)), 3708 0); 3709 // If this is a 16-bit signed immediate, fold it. 3710 if (isInt<16>((int)Imm)) 3711 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3712 getI32Imm(Imm & 0xFFFF, dl)), 3713 0); 3714 3715 // For non-equality comparisons, the default code would materialize the 3716 // constant, then compare against it, like this: 3717 // lis r2, 4660 3718 // ori r2, r2, 22136 3719 // cmpw cr0, r3, r2 3720 // Since we are just comparing for equality, we can emit this instead: 3721 // xoris r0,r3,0x1234 3722 // cmplwi cr0,r0,0x5678 3723 // beq cr0,L6 3724 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 3725 getI32Imm(Imm >> 16, dl)), 0); 3726 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 3727 getI32Imm(Imm & 0xFFFF, dl)), 0); 3728 } 3729 Opc = PPC::CMPLW; 3730 } else if (ISD::isUnsignedIntSetCC(CC)) { 3731 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 3732 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3733 getI32Imm(Imm & 0xFFFF, dl)), 0); 3734 Opc = PPC::CMPLW; 3735 } else { 3736 int16_t SImm; 3737 if (isIntS16Immediate(RHS, SImm)) 3738 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3739 getI32Imm((int)SImm & 0xFFFF, 3740 dl)), 3741 0); 3742 Opc = PPC::CMPW; 3743 } 3744 } else if (LHS.getValueType() == MVT::i64) { 3745 uint64_t Imm; 3746 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3747 if (isInt64Immediate(RHS.getNode(), Imm)) { 3748 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 3749 if (isUInt<16>(Imm)) 3750 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 3751 getI32Imm(Imm & 0xFFFF, dl)), 3752 0); 3753 // If this is a 16-bit signed immediate, fold it. 3754 if (isInt<16>(Imm)) 3755 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 3756 getI32Imm(Imm & 0xFFFF, dl)), 3757 0); 3758 3759 // For non-equality comparisons, the default code would materialize the 3760 // constant, then compare against it, like this: 3761 // lis r2, 4660 3762 // ori r2, r2, 22136 3763 // cmpd cr0, r3, r2 3764 // Since we are just comparing for equality, we can emit this instead: 3765 // xoris r0,r3,0x1234 3766 // cmpldi cr0,r0,0x5678 3767 // beq cr0,L6 3768 if (isUInt<32>(Imm)) { 3769 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 3770 getI64Imm(Imm >> 16, dl)), 0); 3771 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 3772 getI64Imm(Imm & 0xFFFF, dl)), 3773 0); 3774 } 3775 } 3776 Opc = PPC::CMPLD; 3777 } else if (ISD::isUnsignedIntSetCC(CC)) { 3778 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 3779 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 3780 getI64Imm(Imm & 0xFFFF, dl)), 0); 3781 Opc = PPC::CMPLD; 3782 } else { 3783 int16_t SImm; 3784 if (isIntS16Immediate(RHS, SImm)) 3785 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 3786 getI64Imm(SImm & 0xFFFF, dl)), 3787 0); 3788 Opc = PPC::CMPD; 3789 } 3790 } else if (LHS.getValueType() == MVT::f32) { 3791 if (PPCSubTarget->hasSPE()) { 3792 switch (CC) { 3793 default: 3794 case ISD::SETEQ: 3795 case ISD::SETNE: 3796 Opc = PPC::EFSCMPEQ; 3797 break; 3798 case ISD::SETLT: 3799 case ISD::SETGE: 3800 case ISD::SETOLT: 3801 case ISD::SETOGE: 3802 case ISD::SETULT: 3803 case ISD::SETUGE: 3804 Opc = PPC::EFSCMPLT; 3805 break; 3806 case ISD::SETGT: 3807 case ISD::SETLE: 3808 case ISD::SETOGT: 3809 case ISD::SETOLE: 3810 case ISD::SETUGT: 3811 case ISD::SETULE: 3812 Opc = PPC::EFSCMPGT; 3813 break; 3814 } 3815 } else 3816 Opc = PPC::FCMPUS; 3817 } else if (LHS.getValueType() == MVT::f64) { 3818 if (PPCSubTarget->hasSPE()) { 3819 switch (CC) { 3820 default: 3821 case ISD::SETEQ: 3822 case ISD::SETNE: 3823 Opc = PPC::EFDCMPEQ; 3824 break; 3825 case ISD::SETLT: 3826 case ISD::SETGE: 3827 case ISD::SETOLT: 3828 case ISD::SETOGE: 3829 case ISD::SETULT: 3830 case ISD::SETUGE: 3831 Opc = PPC::EFDCMPLT; 3832 break; 3833 case ISD::SETGT: 3834 case ISD::SETLE: 3835 case ISD::SETOGT: 3836 case ISD::SETOLE: 3837 case ISD::SETUGT: 3838 case ISD::SETULE: 3839 Opc = PPC::EFDCMPGT; 3840 break; 3841 } 3842 } else 3843 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 3844 } else { 3845 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); 3846 assert(PPCSubTarget->hasVSX() && "__float128 requires VSX"); 3847 Opc = PPC::XSCMPUQP; 3848 } 3849 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 3850 } 3851 3852 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, 3853 const PPCSubtarget *Subtarget) { 3854 // For SPE instructions, the result is in GT bit of the CR 3855 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); 3856 3857 switch (CC) { 3858 case ISD::SETUEQ: 3859 case ISD::SETONE: 3860 case ISD::SETOLE: 3861 case ISD::SETOGE: 3862 llvm_unreachable("Should be lowered by legalize!"); 3863 default: llvm_unreachable("Unknown condition!"); 3864 case ISD::SETOEQ: 3865 case ISD::SETEQ: 3866 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; 3867 case ISD::SETUNE: 3868 case ISD::SETNE: 3869 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; 3870 case ISD::SETOLT: 3871 case ISD::SETLT: 3872 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; 3873 case ISD::SETULE: 3874 case ISD::SETLE: 3875 return UseSPE ? PPC::PRED_LE : PPC::PRED_LE; 3876 case ISD::SETOGT: 3877 case ISD::SETGT: 3878 return UseSPE ? PPC::PRED_GT : PPC::PRED_GT; 3879 case ISD::SETUGE: 3880 case ISD::SETGE: 3881 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; 3882 case ISD::SETO: return PPC::PRED_NU; 3883 case ISD::SETUO: return PPC::PRED_UN; 3884 // These two are invalid for floating point. Assume we have int. 3885 case ISD::SETULT: return PPC::PRED_LT; 3886 case ISD::SETUGT: return PPC::PRED_GT; 3887 } 3888 } 3889 3890 /// getCRIdxForSetCC - Return the index of the condition register field 3891 /// associated with the SetCC condition, and whether or not the field is 3892 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 3893 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 3894 Invert = false; 3895 switch (CC) { 3896 default: llvm_unreachable("Unknown condition!"); 3897 case ISD::SETOLT: 3898 case ISD::SETLT: return 0; // Bit #0 = SETOLT 3899 case ISD::SETOGT: 3900 case ISD::SETGT: return 1; // Bit #1 = SETOGT 3901 case ISD::SETOEQ: 3902 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 3903 case ISD::SETUO: return 3; // Bit #3 = SETUO 3904 case ISD::SETUGE: 3905 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 3906 case ISD::SETULE: 3907 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 3908 case ISD::SETUNE: 3909 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 3910 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 3911 case ISD::SETUEQ: 3912 case ISD::SETOGE: 3913 case ISD::SETOLE: 3914 case ISD::SETONE: 3915 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 3916 // These are invalid for floating point. Assume integer. 3917 case ISD::SETULT: return 0; 3918 case ISD::SETUGT: return 1; 3919 } 3920 } 3921 3922 // getVCmpInst: return the vector compare instruction for the specified 3923 // vector type and condition code. Since this is for altivec specific code, 3924 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). 3925 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 3926 bool HasVSX, bool &Swap, bool &Negate) { 3927 Swap = false; 3928 Negate = false; 3929 3930 if (VecVT.isFloatingPoint()) { 3931 /* Handle some cases by swapping input operands. */ 3932 switch (CC) { 3933 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 3934 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 3935 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 3936 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 3937 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 3938 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 3939 default: break; 3940 } 3941 /* Handle some cases by negating the result. */ 3942 switch (CC) { 3943 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 3944 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 3945 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 3946 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 3947 default: break; 3948 } 3949 /* We have instructions implementing the remaining cases. */ 3950 switch (CC) { 3951 case ISD::SETEQ: 3952 case ISD::SETOEQ: 3953 if (VecVT == MVT::v4f32) 3954 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 3955 else if (VecVT == MVT::v2f64) 3956 return PPC::XVCMPEQDP; 3957 break; 3958 case ISD::SETGT: 3959 case ISD::SETOGT: 3960 if (VecVT == MVT::v4f32) 3961 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 3962 else if (VecVT == MVT::v2f64) 3963 return PPC::XVCMPGTDP; 3964 break; 3965 case ISD::SETGE: 3966 case ISD::SETOGE: 3967 if (VecVT == MVT::v4f32) 3968 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 3969 else if (VecVT == MVT::v2f64) 3970 return PPC::XVCMPGEDP; 3971 break; 3972 default: 3973 break; 3974 } 3975 llvm_unreachable("Invalid floating-point vector compare condition"); 3976 } else { 3977 /* Handle some cases by swapping input operands. */ 3978 switch (CC) { 3979 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 3980 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 3981 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 3982 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 3983 default: break; 3984 } 3985 /* Handle some cases by negating the result. */ 3986 switch (CC) { 3987 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 3988 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 3989 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 3990 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 3991 default: break; 3992 } 3993 /* We have instructions implementing the remaining cases. */ 3994 switch (CC) { 3995 case ISD::SETEQ: 3996 case ISD::SETUEQ: 3997 if (VecVT == MVT::v16i8) 3998 return PPC::VCMPEQUB; 3999 else if (VecVT == MVT::v8i16) 4000 return PPC::VCMPEQUH; 4001 else if (VecVT == MVT::v4i32) 4002 return PPC::VCMPEQUW; 4003 else if (VecVT == MVT::v2i64) 4004 return PPC::VCMPEQUD; 4005 break; 4006 case ISD::SETGT: 4007 if (VecVT == MVT::v16i8) 4008 return PPC::VCMPGTSB; 4009 else if (VecVT == MVT::v8i16) 4010 return PPC::VCMPGTSH; 4011 else if (VecVT == MVT::v4i32) 4012 return PPC::VCMPGTSW; 4013 else if (VecVT == MVT::v2i64) 4014 return PPC::VCMPGTSD; 4015 break; 4016 case ISD::SETUGT: 4017 if (VecVT == MVT::v16i8) 4018 return PPC::VCMPGTUB; 4019 else if (VecVT == MVT::v8i16) 4020 return PPC::VCMPGTUH; 4021 else if (VecVT == MVT::v4i32) 4022 return PPC::VCMPGTUW; 4023 else if (VecVT == MVT::v2i64) 4024 return PPC::VCMPGTUD; 4025 break; 4026 default: 4027 break; 4028 } 4029 llvm_unreachable("Invalid integer vector compare condition"); 4030 } 4031 } 4032 4033 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 4034 SDLoc dl(N); 4035 unsigned Imm; 4036 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 4037 EVT PtrVT = 4038 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4039 bool isPPC64 = (PtrVT == MVT::i64); 4040 4041 if (!PPCSubTarget->useCRBits() && 4042 isInt32Immediate(N->getOperand(1), Imm)) { 4043 // We can codegen setcc op, imm very efficiently compared to a brcond. 4044 // Check for those cases here. 4045 // setcc op, 0 4046 if (Imm == 0) { 4047 SDValue Op = N->getOperand(0); 4048 switch (CC) { 4049 default: break; 4050 case ISD::SETEQ: { 4051 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 4052 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 4053 getI32Imm(31, dl) }; 4054 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4055 return true; 4056 } 4057 case ISD::SETNE: { 4058 if (isPPC64) break; 4059 SDValue AD = 4060 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4061 Op, getI32Imm(~0U, dl)), 0); 4062 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 4063 return true; 4064 } 4065 case ISD::SETLT: { 4066 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4067 getI32Imm(31, dl) }; 4068 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4069 return true; 4070 } 4071 case ISD::SETGT: { 4072 SDValue T = 4073 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 4074 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 4075 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 4076 getI32Imm(31, dl) }; 4077 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4078 return true; 4079 } 4080 } 4081 } else if (Imm == ~0U) { // setcc op, -1 4082 SDValue Op = N->getOperand(0); 4083 switch (CC) { 4084 default: break; 4085 case ISD::SETEQ: 4086 if (isPPC64) break; 4087 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4088 Op, getI32Imm(1, dl)), 0); 4089 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 4090 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 4091 MVT::i32, 4092 getI32Imm(0, dl)), 4093 0), Op.getValue(1)); 4094 return true; 4095 case ISD::SETNE: { 4096 if (isPPC64) break; 4097 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 4098 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4099 Op, getI32Imm(~0U, dl)); 4100 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 4101 SDValue(AD, 1)); 4102 return true; 4103 } 4104 case ISD::SETLT: { 4105 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 4106 getI32Imm(1, dl)), 0); 4107 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 4108 Op), 0); 4109 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 4110 getI32Imm(31, dl) }; 4111 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4112 return true; 4113 } 4114 case ISD::SETGT: { 4115 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4116 getI32Imm(31, dl) }; 4117 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4118 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 4119 return true; 4120 } 4121 } 4122 } 4123 } 4124 4125 SDValue LHS = N->getOperand(0); 4126 SDValue RHS = N->getOperand(1); 4127 4128 // Altivec Vector compare instructions do not set any CR register by default and 4129 // vector compare operations return the same type as the operands. 4130 if (LHS.getValueType().isVector()) { 4131 if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE()) 4132 return false; 4133 4134 EVT VecVT = LHS.getValueType(); 4135 bool Swap, Negate; 4136 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, 4137 PPCSubTarget->hasVSX(), Swap, Negate); 4138 if (Swap) 4139 std::swap(LHS, RHS); 4140 4141 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 4142 if (Negate) { 4143 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 4144 CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 4145 ResVT, VCmp, VCmp); 4146 return true; 4147 } 4148 4149 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 4150 return true; 4151 } 4152 4153 if (PPCSubTarget->useCRBits()) 4154 return false; 4155 4156 bool Inv; 4157 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4158 SDValue CCReg = SelectCC(LHS, RHS, CC, dl); 4159 SDValue IntCR; 4160 4161 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that 4162 // The correct compare instruction is already set by SelectCC() 4163 if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { 4164 Idx = 1; 4165 } 4166 4167 // Force the ccreg into CR7. 4168 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 4169 4170 SDValue InFlag(nullptr, 0); // Null incoming flag value. 4171 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 4172 InFlag).getValue(1); 4173 4174 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 4175 CCReg), 0); 4176 4177 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 4178 getI32Imm(31, dl), getI32Imm(31, dl) }; 4179 if (!Inv) { 4180 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4181 return true; 4182 } 4183 4184 // Get the specified bit. 4185 SDValue Tmp = 4186 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4187 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 4188 return true; 4189 } 4190 4191 /// Does this node represent a load/store node whose address can be represented 4192 /// with a register plus an immediate that's a multiple of \p Val: 4193 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { 4194 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); 4195 StoreSDNode *STN = dyn_cast<StoreSDNode>(N); 4196 SDValue AddrOp; 4197 if (LDN) 4198 AddrOp = LDN->getOperand(1); 4199 else if (STN) 4200 AddrOp = STN->getOperand(2); 4201 4202 // If the address points a frame object or a frame object with an offset, 4203 // we need to check the object alignment. 4204 short Imm = 0; 4205 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( 4206 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : 4207 AddrOp)) { 4208 // If op0 is a frame index that is under aligned, we can't do it either, 4209 // because it is translated to r31 or r1 + slot + offset. We won't know the 4210 // slot number until the stack frame is finalized. 4211 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); 4212 unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex()); 4213 if ((SlotAlign % Val) != 0) 4214 return false; 4215 4216 // If we have an offset, we need further check on the offset. 4217 if (AddrOp.getOpcode() != ISD::ADD) 4218 return true; 4219 } 4220 4221 if (AddrOp.getOpcode() == ISD::ADD) 4222 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); 4223 4224 // If the address comes from the outside, the offset will be zero. 4225 return AddrOp.getOpcode() == ISD::CopyFromReg; 4226 } 4227 4228 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 4229 // Transfer memoperands. 4230 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4231 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 4232 } 4233 4234 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, 4235 bool &NeedSwapOps, bool &IsUnCmp) { 4236 4237 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); 4238 4239 SDValue LHS = N->getOperand(0); 4240 SDValue RHS = N->getOperand(1); 4241 SDValue TrueRes = N->getOperand(2); 4242 SDValue FalseRes = N->getOperand(3); 4243 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); 4244 if (!TrueConst) 4245 return false; 4246 4247 assert((N->getSimpleValueType(0) == MVT::i64 || 4248 N->getSimpleValueType(0) == MVT::i32) && 4249 "Expecting either i64 or i32 here."); 4250 4251 // We are looking for any of: 4252 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4253 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4254 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) 4255 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) 4256 int64_t TrueResVal = TrueConst->getSExtValue(); 4257 if ((TrueResVal < -1 || TrueResVal > 1) || 4258 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || 4259 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || 4260 (TrueResVal == 0 && 4261 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) 4262 return false; 4263 4264 bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC; 4265 SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0); 4266 if (SetOrSelCC.getOpcode() != ISD::SETCC && 4267 SetOrSelCC.getOpcode() != ISD::SELECT_CC) 4268 return false; 4269 4270 // Without this setb optimization, the outer SELECT_CC will be manually 4271 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass 4272 // transforms pseudo instruction to isel instruction. When there are more than 4273 // one use for result like zext/sext, with current optimization we only see 4274 // isel is replaced by setb but can't see any significant gain. Since 4275 // setb has longer latency than original isel, we should avoid this. Another 4276 // point is that setb requires comparison always kept, it can break the 4277 // opportunity to get the comparison away if we have in future. 4278 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) 4279 return false; 4280 4281 SDValue InnerLHS = SetOrSelCC.getOperand(0); 4282 SDValue InnerRHS = SetOrSelCC.getOperand(1); 4283 ISD::CondCode InnerCC = 4284 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); 4285 // If the inner comparison is a select_cc, make sure the true/false values are 4286 // 1/-1 and canonicalize it if needed. 4287 if (InnerIsSel) { 4288 ConstantSDNode *SelCCTrueConst = 4289 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); 4290 ConstantSDNode *SelCCFalseConst = 4291 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); 4292 if (!SelCCTrueConst || !SelCCFalseConst) 4293 return false; 4294 int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); 4295 int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); 4296 // The values must be -1/1 (requiring a swap) or 1/-1. 4297 if (SelCCTVal == -1 && SelCCFVal == 1) { 4298 std::swap(InnerLHS, InnerRHS); 4299 } else if (SelCCTVal != 1 || SelCCFVal != -1) 4300 return false; 4301 } 4302 4303 // Canonicalize unsigned case 4304 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { 4305 IsUnCmp = true; 4306 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; 4307 } 4308 4309 bool InnerSwapped = false; 4310 if (LHS == InnerRHS && RHS == InnerLHS) 4311 InnerSwapped = true; 4312 else if (LHS != InnerLHS || RHS != InnerRHS) 4313 return false; 4314 4315 switch (CC) { 4316 // (select_cc lhs, rhs, 0, \ 4317 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) 4318 case ISD::SETEQ: 4319 if (!InnerIsSel) 4320 return false; 4321 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) 4322 return false; 4323 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; 4324 break; 4325 4326 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4327 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) 4328 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) 4329 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4330 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) 4331 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) 4332 case ISD::SETULT: 4333 if (!IsUnCmp && InnerCC != ISD::SETNE) 4334 return false; 4335 IsUnCmp = true; 4336 LLVM_FALLTHROUGH; 4337 case ISD::SETLT: 4338 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || 4339 (InnerCC == ISD::SETLT && InnerSwapped)) 4340 NeedSwapOps = (TrueResVal == 1); 4341 else 4342 return false; 4343 break; 4344 4345 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4346 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) 4347 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) 4348 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4349 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) 4350 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) 4351 case ISD::SETUGT: 4352 if (!IsUnCmp && InnerCC != ISD::SETNE) 4353 return false; 4354 IsUnCmp = true; 4355 LLVM_FALLTHROUGH; 4356 case ISD::SETGT: 4357 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || 4358 (InnerCC == ISD::SETGT && InnerSwapped)) 4359 NeedSwapOps = (TrueResVal == -1); 4360 else 4361 return false; 4362 break; 4363 4364 default: 4365 return false; 4366 } 4367 4368 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); 4369 LLVM_DEBUG(N->dump()); 4370 4371 return true; 4372 } 4373 4374 bool PPCDAGToDAGISel::tryAndWithMask(SDNode *N) { 4375 if (N->getOpcode() != ISD::AND) 4376 return false; 4377 4378 SDLoc dl(N); 4379 SDValue Val = N->getOperand(0); 4380 unsigned Imm, Imm2, SH, MB, ME; 4381 uint64_t Imm64; 4382 4383 // If this is an and of a value rotated between 0 and 31 bits and then and'd 4384 // with a mask, emit rlwinm 4385 if (isInt32Immediate(N->getOperand(1), Imm) && 4386 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 4387 SDValue Val = N->getOperand(0).getOperand(0); 4388 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 4389 getI32Imm(ME, dl) }; 4390 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4391 return true; 4392 } 4393 4394 // If this is just a masked value where the input is not handled, and 4395 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 4396 if (isInt32Immediate(N->getOperand(1), Imm)) { 4397 if (isRunOfOnes(Imm, MB, ME) && 4398 N->getOperand(0).getOpcode() != ISD::ROTL) { 4399 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), 4400 getI32Imm(ME, dl) }; 4401 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4402 return true; 4403 } 4404 // AND X, 0 -> 0, not "rlwinm 32". 4405 if (Imm == 0) { 4406 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 4407 return true; 4408 } 4409 4410 // ISD::OR doesn't get all the bitfield insertion fun. 4411 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 4412 // bitfield insert. 4413 if (N->getOperand(0).getOpcode() == ISD::OR && 4414 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 4415 // The idea here is to check whether this is equivalent to: 4416 // (c1 & m) | (x & ~m) 4417 // where m is a run-of-ones mask. The logic here is that, for each bit in 4418 // c1 and c2: 4419 // - if both are 1, then the output will be 1. 4420 // - if both are 0, then the output will be 0. 4421 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 4422 // come from x. 4423 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 4424 // be 0. 4425 // If that last condition is never the case, then we can form m from the 4426 // bits that are the same between c1 and c2. 4427 unsigned MB, ME; 4428 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { 4429 SDValue Ops[] = { N->getOperand(0).getOperand(0), 4430 N->getOperand(0).getOperand(1), 4431 getI32Imm(0, dl), getI32Imm(MB, dl), 4432 getI32Imm(ME, dl) }; 4433 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 4434 return true; 4435 } 4436 } 4437 } else if (isInt64Immediate(N->getOperand(1).getNode(), Imm64)) { 4438 // If this is a 64-bit zero-extension mask, emit rldicl. 4439 if (isMask_64(Imm64)) { 4440 MB = 64 - countTrailingOnes(Imm64); 4441 SH = 0; 4442 4443 if (Val.getOpcode() == ISD::ANY_EXTEND) { 4444 auto Op0 = Val.getOperand(0); 4445 if ( Op0.getOpcode() == ISD::SRL && 4446 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { 4447 4448 auto ResultType = Val.getNode()->getValueType(0); 4449 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 4450 ResultType); 4451 SDValue IDVal (ImDef, 0); 4452 4453 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 4454 ResultType, IDVal, Op0.getOperand(0), 4455 getI32Imm(1, dl)), 0); 4456 SH = 64 - Imm; 4457 } 4458 } 4459 4460 // If the operand is a logical right shift, we can fold it into this 4461 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 4462 // for n <= mb. The right shift is really a left rotate followed by a 4463 // mask, and this mask is a more-restrictive sub-mask of the mask implied 4464 // by the shift. 4465 if (Val.getOpcode() == ISD::SRL && 4466 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 4467 assert(Imm < 64 && "Illegal shift amount"); 4468 Val = Val.getOperand(0); 4469 SH = 64 - Imm; 4470 } 4471 4472 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; 4473 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 4474 return true; 4475 } else if (isMask_64(~Imm64)) { 4476 // If this is a negated 64-bit zero-extension mask, 4477 // i.e. the immediate is a sequence of ones from most significant side 4478 // and all zero for reminder, we should use rldicr. 4479 MB = 63 - countTrailingOnes(~Imm64); 4480 SH = 0; 4481 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; 4482 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 4483 return true; 4484 } 4485 4486 // It is not 16-bit imm that means we need two instructions at least if 4487 // using "and" instruction. Try to exploit it with rotate mask instructions. 4488 if (isRunOfOnes64(Imm64, MB, ME)) { 4489 if (MB >= 32 && MB <= ME) { 4490 // MB ME 4491 // +----------------------+ 4492 // |xxxxxxxxxxx00011111000| 4493 // +----------------------+ 4494 // 0 32 64 4495 // We can only do it if the MB is larger than 32 and MB <= ME 4496 // as RLWINM will replace the content of [0 - 32) with [32 - 64) even 4497 // we didn't rotate it. 4498 SDValue Ops[] = { Val, getI64Imm(0, dl), getI64Imm(MB - 32, dl), 4499 getI64Imm(ME - 32, dl) }; 4500 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); 4501 return true; 4502 } 4503 // TODO - handle it with rldicl + rldicl 4504 } 4505 } 4506 4507 return false; 4508 } 4509 4510 // Select - Convert the specified operand from a target-independent to a 4511 // target-specific node if it hasn't already been changed. 4512 void PPCDAGToDAGISel::Select(SDNode *N) { 4513 SDLoc dl(N); 4514 if (N->isMachineOpcode()) { 4515 N->setNodeId(-1); 4516 return; // Already selected. 4517 } 4518 4519 // In case any misguided DAG-level optimizations form an ADD with a 4520 // TargetConstant operand, crash here instead of miscompiling (by selecting 4521 // an r+r add instead of some kind of r+i add). 4522 if (N->getOpcode() == ISD::ADD && 4523 N->getOperand(1).getOpcode() == ISD::TargetConstant) 4524 llvm_unreachable("Invalid ADD with TargetConstant operand"); 4525 4526 // Try matching complex bit permutations before doing anything else. 4527 if (tryBitPermutation(N)) 4528 return; 4529 4530 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). 4531 if (tryIntCompareInGPR(N)) 4532 return; 4533 4534 switch (N->getOpcode()) { 4535 default: break; 4536 4537 case ISD::Constant: 4538 if (N->getValueType(0) == MVT::i64) { 4539 ReplaceNode(N, selectI64Imm(CurDAG, N)); 4540 return; 4541 } 4542 break; 4543 4544 case ISD::SETCC: 4545 if (trySETCC(N)) 4546 return; 4547 break; 4548 // These nodes will be transformed into GETtlsADDR32 node, which 4549 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT 4550 case PPCISD::ADDI_TLSLD_L_ADDR: 4551 case PPCISD::ADDI_TLSGD_L_ADDR: { 4552 const Module *Mod = MF->getFunction().getParent(); 4553 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 4554 !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() || 4555 Mod->getPICLevel() == PICLevel::SmallPIC) 4556 break; 4557 // Attach global base pointer on GETtlsADDR32 node in order to 4558 // generate secure plt code for TLS symbols. 4559 getGlobalBaseReg(); 4560 } break; 4561 case PPCISD::CALL: { 4562 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 4563 !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() || 4564 !PPCSubTarget->isTargetELF()) 4565 break; 4566 4567 SDValue Op = N->getOperand(1); 4568 4569 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4570 if (GA->getTargetFlags() == PPCII::MO_PLT) 4571 getGlobalBaseReg(); 4572 } 4573 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 4574 if (ES->getTargetFlags() == PPCII::MO_PLT) 4575 getGlobalBaseReg(); 4576 } 4577 } 4578 break; 4579 4580 case PPCISD::GlobalBaseReg: 4581 ReplaceNode(N, getGlobalBaseReg()); 4582 return; 4583 4584 case ISD::FrameIndex: 4585 selectFrameIndex(N, N); 4586 return; 4587 4588 case PPCISD::MFOCRF: { 4589 SDValue InFlag = N->getOperand(1); 4590 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 4591 N->getOperand(0), InFlag)); 4592 return; 4593 } 4594 4595 case PPCISD::READ_TIME_BASE: 4596 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 4597 MVT::Other, N->getOperand(0))); 4598 return; 4599 4600 case PPCISD::SRA_ADDZE: { 4601 SDValue N0 = N->getOperand(0); 4602 SDValue ShiftAmt = 4603 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 4604 getConstantIntValue(), dl, 4605 N->getValueType(0)); 4606 if (N->getValueType(0) == MVT::i64) { 4607 SDNode *Op = 4608 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 4609 N0, ShiftAmt); 4610 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 4611 SDValue(Op, 1)); 4612 return; 4613 } else { 4614 assert(N->getValueType(0) == MVT::i32 && 4615 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 4616 SDNode *Op = 4617 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 4618 N0, ShiftAmt); 4619 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 4620 SDValue(Op, 1)); 4621 return; 4622 } 4623 } 4624 4625 case ISD::STORE: { 4626 // Change TLS initial-exec D-form stores to X-form stores. 4627 StoreSDNode *ST = cast<StoreSDNode>(N); 4628 if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() && 4629 ST->getAddressingMode() != ISD::PRE_INC) 4630 if (tryTLSXFormStore(ST)) 4631 return; 4632 break; 4633 } 4634 case ISD::LOAD: { 4635 // Handle preincrement loads. 4636 LoadSDNode *LD = cast<LoadSDNode>(N); 4637 EVT LoadedVT = LD->getMemoryVT(); 4638 4639 // Normal loads are handled by code generated from the .td file. 4640 if (LD->getAddressingMode() != ISD::PRE_INC) { 4641 // Change TLS initial-exec D-form loads to X-form loads. 4642 if (EnableTLSOpt && PPCSubTarget->isELFv2ABI()) 4643 if (tryTLSXFormLoad(LD)) 4644 return; 4645 break; 4646 } 4647 4648 SDValue Offset = LD->getOffset(); 4649 if (Offset.getOpcode() == ISD::TargetConstant || 4650 Offset.getOpcode() == ISD::TargetGlobalAddress) { 4651 4652 unsigned Opcode; 4653 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 4654 if (LD->getValueType(0) != MVT::i64) { 4655 // Handle PPC32 integer and normal FP loads. 4656 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 4657 switch (LoadedVT.getSimpleVT().SimpleTy) { 4658 default: llvm_unreachable("Invalid PPC load type!"); 4659 case MVT::f64: Opcode = PPC::LFDU; break; 4660 case MVT::f32: Opcode = PPC::LFSU; break; 4661 case MVT::i32: Opcode = PPC::LWZU; break; 4662 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 4663 case MVT::i1: 4664 case MVT::i8: Opcode = PPC::LBZU; break; 4665 } 4666 } else { 4667 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 4668 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 4669 switch (LoadedVT.getSimpleVT().SimpleTy) { 4670 default: llvm_unreachable("Invalid PPC load type!"); 4671 case MVT::i64: Opcode = PPC::LDU; break; 4672 case MVT::i32: Opcode = PPC::LWZU8; break; 4673 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 4674 case MVT::i1: 4675 case MVT::i8: Opcode = PPC::LBZU8; break; 4676 } 4677 } 4678 4679 SDValue Chain = LD->getChain(); 4680 SDValue Base = LD->getBasePtr(); 4681 SDValue Ops[] = { Offset, Base, Chain }; 4682 SDNode *MN = CurDAG->getMachineNode( 4683 Opcode, dl, LD->getValueType(0), 4684 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 4685 transferMemOperands(N, MN); 4686 ReplaceNode(N, MN); 4687 return; 4688 } else { 4689 unsigned Opcode; 4690 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 4691 if (LD->getValueType(0) != MVT::i64) { 4692 // Handle PPC32 integer and normal FP loads. 4693 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 4694 switch (LoadedVT.getSimpleVT().SimpleTy) { 4695 default: llvm_unreachable("Invalid PPC load type!"); 4696 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX 4697 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX 4698 case MVT::f64: Opcode = PPC::LFDUX; break; 4699 case MVT::f32: Opcode = PPC::LFSUX; break; 4700 case MVT::i32: Opcode = PPC::LWZUX; break; 4701 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 4702 case MVT::i1: 4703 case MVT::i8: Opcode = PPC::LBZUX; break; 4704 } 4705 } else { 4706 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 4707 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 4708 "Invalid sext update load"); 4709 switch (LoadedVT.getSimpleVT().SimpleTy) { 4710 default: llvm_unreachable("Invalid PPC load type!"); 4711 case MVT::i64: Opcode = PPC::LDUX; break; 4712 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 4713 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 4714 case MVT::i1: 4715 case MVT::i8: Opcode = PPC::LBZUX8; break; 4716 } 4717 } 4718 4719 SDValue Chain = LD->getChain(); 4720 SDValue Base = LD->getBasePtr(); 4721 SDValue Ops[] = { Base, Offset, Chain }; 4722 SDNode *MN = CurDAG->getMachineNode( 4723 Opcode, dl, LD->getValueType(0), 4724 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 4725 transferMemOperands(N, MN); 4726 ReplaceNode(N, MN); 4727 return; 4728 } 4729 } 4730 4731 case ISD::AND: 4732 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr 4733 if (tryAndWithMask(N)) 4734 return; 4735 4736 // Other cases are autogenerated. 4737 break; 4738 case ISD::OR: { 4739 if (N->getValueType(0) == MVT::i32) 4740 if (tryBitfieldInsert(N)) 4741 return; 4742 4743 int16_t Imm; 4744 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 4745 isIntS16Immediate(N->getOperand(1), Imm)) { 4746 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); 4747 4748 // If this is equivalent to an add, then we can fold it with the 4749 // FrameIndex calculation. 4750 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 4751 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 4752 return; 4753 } 4754 } 4755 4756 // OR with a 32-bit immediate can be handled by ori + oris 4757 // without creating an immediate in a GPR. 4758 uint64_t Imm64 = 0; 4759 bool IsPPC64 = PPCSubTarget->isPPC64(); 4760 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 4761 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 4762 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. 4763 uint64_t ImmHi = Imm64 >> 16; 4764 uint64_t ImmLo = Imm64 & 0xFFFF; 4765 if (ImmHi != 0 && ImmLo != 0) { 4766 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 4767 N->getOperand(0), 4768 getI16Imm(ImmLo, dl)); 4769 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 4770 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); 4771 return; 4772 } 4773 } 4774 4775 // Other cases are autogenerated. 4776 break; 4777 } 4778 case ISD::XOR: { 4779 // XOR with a 32-bit immediate can be handled by xori + xoris 4780 // without creating an immediate in a GPR. 4781 uint64_t Imm64 = 0; 4782 bool IsPPC64 = PPCSubTarget->isPPC64(); 4783 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 4784 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 4785 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. 4786 uint64_t ImmHi = Imm64 >> 16; 4787 uint64_t ImmLo = Imm64 & 0xFFFF; 4788 if (ImmHi != 0 && ImmLo != 0) { 4789 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 4790 N->getOperand(0), 4791 getI16Imm(ImmLo, dl)); 4792 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 4793 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); 4794 return; 4795 } 4796 } 4797 4798 break; 4799 } 4800 case ISD::ADD: { 4801 int16_t Imm; 4802 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 4803 isIntS16Immediate(N->getOperand(1), Imm)) { 4804 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 4805 return; 4806 } 4807 4808 break; 4809 } 4810 case ISD::SHL: { 4811 unsigned Imm, SH, MB, ME; 4812 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 4813 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 4814 SDValue Ops[] = { N->getOperand(0).getOperand(0), 4815 getI32Imm(SH, dl), getI32Imm(MB, dl), 4816 getI32Imm(ME, dl) }; 4817 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4818 return; 4819 } 4820 4821 // Other cases are autogenerated. 4822 break; 4823 } 4824 case ISD::SRL: { 4825 unsigned Imm, SH, MB, ME; 4826 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 4827 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 4828 SDValue Ops[] = { N->getOperand(0).getOperand(0), 4829 getI32Imm(SH, dl), getI32Imm(MB, dl), 4830 getI32Imm(ME, dl) }; 4831 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4832 return; 4833 } 4834 4835 // Other cases are autogenerated. 4836 break; 4837 } 4838 // FIXME: Remove this once the ANDI glue bug is fixed: 4839 case PPCISD::ANDI_rec_1_EQ_BIT: 4840 case PPCISD::ANDI_rec_1_GT_BIT: { 4841 if (!ANDIGlueBug) 4842 break; 4843 4844 EVT InVT = N->getOperand(0).getValueType(); 4845 assert((InVT == MVT::i64 || InVT == MVT::i32) && 4846 "Invalid input type for ANDI_rec_1_EQ_BIT"); 4847 4848 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; 4849 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 4850 N->getOperand(0), 4851 CurDAG->getTargetConstant(1, dl, InVT)), 4852 0); 4853 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 4854 SDValue SRIdxVal = CurDAG->getTargetConstant( 4855 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, 4856 dl, MVT::i32); 4857 4858 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 4859 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 4860 return; 4861 } 4862 case ISD::SELECT_CC: { 4863 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 4864 EVT PtrVT = 4865 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4866 bool isPPC64 = (PtrVT == MVT::i64); 4867 4868 // If this is a select of i1 operands, we'll pattern match it. 4869 if (PPCSubTarget->useCRBits() && 4870 N->getOperand(0).getValueType() == MVT::i1) 4871 break; 4872 4873 if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) { 4874 bool NeedSwapOps = false; 4875 bool IsUnCmp = false; 4876 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { 4877 SDValue LHS = N->getOperand(0); 4878 SDValue RHS = N->getOperand(1); 4879 if (NeedSwapOps) 4880 std::swap(LHS, RHS); 4881 4882 // Make use of SelectCC to generate the comparison to set CR bits, for 4883 // equality comparisons having one literal operand, SelectCC probably 4884 // doesn't need to materialize the whole literal and just use xoris to 4885 // check it first, it leads the following comparison result can't 4886 // exactly represent GT/LT relationship. So to avoid this we specify 4887 // SETGT/SETUGT here instead of SETEQ. 4888 SDValue GenCC = 4889 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); 4890 CurDAG->SelectNodeTo( 4891 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, 4892 N->getValueType(0), GenCC); 4893 NumP9Setb++; 4894 return; 4895 } 4896 } 4897 4898 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 4899 if (!isPPC64) 4900 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 4901 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 4902 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 4903 if (N1C->isNullValue() && N3C->isNullValue() && 4904 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 4905 // FIXME: Implement this optzn for PPC64. 4906 N->getValueType(0) == MVT::i32) { 4907 SDNode *Tmp = 4908 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4909 N->getOperand(0), getI32Imm(~0U, dl)); 4910 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 4911 N->getOperand(0), SDValue(Tmp, 1)); 4912 return; 4913 } 4914 4915 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 4916 4917 if (N->getValueType(0) == MVT::i1) { 4918 // An i1 select is: (c & t) | (!c & f). 4919 bool Inv; 4920 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4921 4922 unsigned SRI; 4923 switch (Idx) { 4924 default: llvm_unreachable("Invalid CC index"); 4925 case 0: SRI = PPC::sub_lt; break; 4926 case 1: SRI = PPC::sub_gt; break; 4927 case 2: SRI = PPC::sub_eq; break; 4928 case 3: SRI = PPC::sub_un; break; 4929 } 4930 4931 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 4932 4933 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 4934 CCBit, CCBit), 0); 4935 SDValue C = Inv ? NotCCBit : CCBit, 4936 NotC = Inv ? CCBit : NotCCBit; 4937 4938 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 4939 C, N->getOperand(2)), 0); 4940 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 4941 NotC, N->getOperand(3)), 0); 4942 4943 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 4944 return; 4945 } 4946 4947 unsigned BROpc = 4948 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), PPCSubTarget); 4949 4950 unsigned SelectCCOp; 4951 if (N->getValueType(0) == MVT::i32) 4952 SelectCCOp = PPC::SELECT_CC_I4; 4953 else if (N->getValueType(0) == MVT::i64) 4954 SelectCCOp = PPC::SELECT_CC_I8; 4955 else if (N->getValueType(0) == MVT::f32) { 4956 if (PPCSubTarget->hasP8Vector()) 4957 SelectCCOp = PPC::SELECT_CC_VSSRC; 4958 else if (PPCSubTarget->hasSPE()) 4959 SelectCCOp = PPC::SELECT_CC_SPE4; 4960 else 4961 SelectCCOp = PPC::SELECT_CC_F4; 4962 } else if (N->getValueType(0) == MVT::f64) { 4963 if (PPCSubTarget->hasVSX()) 4964 SelectCCOp = PPC::SELECT_CC_VSFRC; 4965 else if (PPCSubTarget->hasSPE()) 4966 SelectCCOp = PPC::SELECT_CC_SPE; 4967 else 4968 SelectCCOp = PPC::SELECT_CC_F8; 4969 } else if (N->getValueType(0) == MVT::f128) 4970 SelectCCOp = PPC::SELECT_CC_F16; 4971 else if (PPCSubTarget->hasSPE()) 4972 SelectCCOp = PPC::SELECT_CC_SPE; 4973 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) 4974 SelectCCOp = PPC::SELECT_CC_QFRC; 4975 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) 4976 SelectCCOp = PPC::SELECT_CC_QSRC; 4977 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) 4978 SelectCCOp = PPC::SELECT_CC_QBRC; 4979 else if (N->getValueType(0) == MVT::v2f64 || 4980 N->getValueType(0) == MVT::v2i64) 4981 SelectCCOp = PPC::SELECT_CC_VSRC; 4982 else 4983 SelectCCOp = PPC::SELECT_CC_VRRC; 4984 4985 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 4986 getI32Imm(BROpc, dl) }; 4987 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 4988 return; 4989 } 4990 case ISD::VECTOR_SHUFFLE: 4991 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 4992 N->getValueType(0) == MVT::v2i64)) { 4993 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 4994 4995 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 4996 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 4997 unsigned DM[2]; 4998 4999 for (int i = 0; i < 2; ++i) 5000 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 5001 DM[i] = 0; 5002 else 5003 DM[i] = 1; 5004 5005 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 5006 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 5007 isa<LoadSDNode>(Op1.getOperand(0))) { 5008 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 5009 SDValue Base, Offset; 5010 5011 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 5012 (LD->getMemoryVT() == MVT::f64 || 5013 LD->getMemoryVT() == MVT::i64) && 5014 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 5015 SDValue Chain = LD->getChain(); 5016 SDValue Ops[] = { Base, Offset, Chain }; 5017 MachineMemOperand *MemOp = LD->getMemOperand(); 5018 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, 5019 N->getValueType(0), Ops); 5020 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); 5021 return; 5022 } 5023 } 5024 5025 // For little endian, we must swap the input operands and adjust 5026 // the mask elements (reverse and invert them). 5027 if (PPCSubTarget->isLittleEndian()) { 5028 std::swap(Op1, Op2); 5029 unsigned tmp = DM[0]; 5030 DM[0] = 1 - DM[1]; 5031 DM[1] = 1 - tmp; 5032 } 5033 5034 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 5035 MVT::i32); 5036 SDValue Ops[] = { Op1, Op2, DMV }; 5037 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 5038 return; 5039 } 5040 5041 break; 5042 case PPCISD::BDNZ: 5043 case PPCISD::BDZ: { 5044 bool IsPPC64 = PPCSubTarget->isPPC64(); 5045 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 5046 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 5047 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 5048 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 5049 MVT::Other, Ops); 5050 return; 5051 } 5052 case PPCISD::COND_BRANCH: { 5053 // Op #0 is the Chain. 5054 // Op #1 is the PPC::PRED_* number. 5055 // Op #2 is the CR# 5056 // Op #3 is the Dest MBB 5057 // Op #4 is the Flag. 5058 // Prevent PPC::PRED_* from being selected into LI. 5059 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 5060 if (EnableBranchHint) 5061 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); 5062 5063 SDValue Pred = getI32Imm(PCC, dl); 5064 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 5065 N->getOperand(0), N->getOperand(4) }; 5066 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5067 return; 5068 } 5069 case ISD::BR_CC: { 5070 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5071 unsigned PCC = 5072 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), PPCSubTarget); 5073 5074 if (N->getOperand(2).getValueType() == MVT::i1) { 5075 unsigned Opc; 5076 bool Swap; 5077 switch (PCC) { 5078 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 5079 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 5080 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 5081 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 5082 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 5083 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 5084 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 5085 } 5086 5087 // A signed comparison of i1 values produces the opposite result to an 5088 // unsigned one if the condition code includes less-than or greater-than. 5089 // This is because 1 is the most negative signed i1 number and the most 5090 // positive unsigned i1 number. The CR-logical operations used for such 5091 // comparisons are non-commutative so for signed comparisons vs. unsigned 5092 // ones, the input operands just need to be swapped. 5093 if (ISD::isSignedIntSetCC(CC)) 5094 Swap = !Swap; 5095 5096 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 5097 N->getOperand(Swap ? 3 : 2), 5098 N->getOperand(Swap ? 2 : 3)), 0); 5099 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 5100 N->getOperand(0)); 5101 return; 5102 } 5103 5104 if (EnableBranchHint) 5105 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); 5106 5107 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 5108 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 5109 N->getOperand(4), N->getOperand(0) }; 5110 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5111 return; 5112 } 5113 case ISD::BRIND: { 5114 // FIXME: Should custom lower this. 5115 SDValue Chain = N->getOperand(0); 5116 SDValue Target = N->getOperand(1); 5117 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 5118 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 5119 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 5120 Chain), 0); 5121 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 5122 return; 5123 } 5124 case PPCISD::TOC_ENTRY: { 5125 const bool isPPC64 = PPCSubTarget->isPPC64(); 5126 const bool isELFABI = PPCSubTarget->isSVR4ABI(); 5127 const bool isAIXABI = PPCSubTarget->isAIXABI(); 5128 5129 assert(!PPCSubTarget->isDarwin() && "TOC is an ELF/XCOFF construct"); 5130 5131 // PowerPC only support small, medium and large code model. 5132 const CodeModel::Model CModel = TM.getCodeModel(); 5133 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && 5134 "PowerPC doesn't support tiny or kernel code models."); 5135 5136 if (isAIXABI && CModel == CodeModel::Medium) 5137 report_fatal_error("Medium code model is not supported on AIX."); 5138 5139 // For 64-bit small code model, we allow SelectCodeCommon to handle this, 5140 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. 5141 if (isPPC64 && CModel == CodeModel::Small) 5142 break; 5143 5144 // Handle 32-bit small code model. 5145 if (!isPPC64) { 5146 // Transforms the ISD::TOC_ENTRY node to a PPCISD::LWZtoc. 5147 auto replaceWithLWZtoc = [this, &dl](SDNode *TocEntry) { 5148 SDValue GA = TocEntry->getOperand(0); 5149 SDValue TocBase = TocEntry->getOperand(1); 5150 SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, 5151 TocBase); 5152 transferMemOperands(TocEntry, MN); 5153 ReplaceNode(TocEntry, MN); 5154 }; 5155 5156 if (isELFABI) { 5157 assert(TM.isPositionIndependent() && 5158 "32-bit ELF can only have TOC entries in position independent" 5159 " code."); 5160 // 32-bit ELF always uses a small code model toc access. 5161 replaceWithLWZtoc(N); 5162 return; 5163 } 5164 5165 if (isAIXABI && CModel == CodeModel::Small) { 5166 replaceWithLWZtoc(N); 5167 return; 5168 } 5169 } 5170 5171 assert(CModel != CodeModel::Small && "All small code models handled."); 5172 5173 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" 5174 " ELF/AIX or 32-bit AIX in the following."); 5175 5176 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode 5177 // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We 5178 // generate two instructions as described below. The first source operand 5179 // is a symbol reference. If it must be toc-referenced according to 5180 // PPCSubTarget, we generate: 5181 // [32-bit AIX] 5182 // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) 5183 // [64-bit ELF/AIX] 5184 // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) 5185 // Otherwise we generate: 5186 // ADDItocL(ADDIStocHA8(%x2, @sym), @sym) 5187 SDValue GA = N->getOperand(0); 5188 SDValue TOCbase = N->getOperand(1); 5189 5190 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5191 SDNode *Tmp = CurDAG->getMachineNode( 5192 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); 5193 5194 if (PPCLowering->isAccessedAsGotIndirect(GA)) { 5195 // If it is accessed as got-indirect, we need an extra LWZ/LD to load 5196 // the address. 5197 SDNode *MN = CurDAG->getMachineNode( 5198 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); 5199 5200 transferMemOperands(N, MN); 5201 ReplaceNode(N, MN); 5202 return; 5203 } 5204 5205 // Build the address relative to the TOC-pointer. 5206 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 5207 SDValue(Tmp, 0), GA)); 5208 return; 5209 } 5210 case PPCISD::PPC32_PICGOT: 5211 // Generate a PIC-safe GOT reference. 5212 assert(PPCSubTarget->is32BitELFABI() && 5213 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 5214 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 5215 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 5216 MVT::i32); 5217 return; 5218 5219 case PPCISD::VADD_SPLAT: { 5220 // This expands into one of three sequences, depending on whether 5221 // the first operand is odd or even, positive or negative. 5222 assert(isa<ConstantSDNode>(N->getOperand(0)) && 5223 isa<ConstantSDNode>(N->getOperand(1)) && 5224 "Invalid operand on VADD_SPLAT!"); 5225 5226 int Elt = N->getConstantOperandVal(0); 5227 int EltSize = N->getConstantOperandVal(1); 5228 unsigned Opc1, Opc2, Opc3; 5229 EVT VT; 5230 5231 if (EltSize == 1) { 5232 Opc1 = PPC::VSPLTISB; 5233 Opc2 = PPC::VADDUBM; 5234 Opc3 = PPC::VSUBUBM; 5235 VT = MVT::v16i8; 5236 } else if (EltSize == 2) { 5237 Opc1 = PPC::VSPLTISH; 5238 Opc2 = PPC::VADDUHM; 5239 Opc3 = PPC::VSUBUHM; 5240 VT = MVT::v8i16; 5241 } else { 5242 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 5243 Opc1 = PPC::VSPLTISW; 5244 Opc2 = PPC::VADDUWM; 5245 Opc3 = PPC::VSUBUWM; 5246 VT = MVT::v4i32; 5247 } 5248 5249 if ((Elt & 1) == 0) { 5250 // Elt is even, in the range [-32,-18] + [16,30]. 5251 // 5252 // Convert: VADD_SPLAT elt, size 5253 // Into: tmp = VSPLTIS[BHW] elt 5254 // VADDU[BHW]M tmp, tmp 5255 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 5256 SDValue EltVal = getI32Imm(Elt >> 1, dl); 5257 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5258 SDValue TmpVal = SDValue(Tmp, 0); 5259 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 5260 return; 5261 } else if (Elt > 0) { 5262 // Elt is odd and positive, in the range [17,31]. 5263 // 5264 // Convert: VADD_SPLAT elt, size 5265 // Into: tmp1 = VSPLTIS[BHW] elt-16 5266 // tmp2 = VSPLTIS[BHW] -16 5267 // VSUBU[BHW]M tmp1, tmp2 5268 SDValue EltVal = getI32Imm(Elt - 16, dl); 5269 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5270 EltVal = getI32Imm(-16, dl); 5271 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5272 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 5273 SDValue(Tmp2, 0))); 5274 return; 5275 } else { 5276 // Elt is odd and negative, in the range [-31,-17]. 5277 // 5278 // Convert: VADD_SPLAT elt, size 5279 // Into: tmp1 = VSPLTIS[BHW] elt+16 5280 // tmp2 = VSPLTIS[BHW] -16 5281 // VADDU[BHW]M tmp1, tmp2 5282 SDValue EltVal = getI32Imm(Elt + 16, dl); 5283 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5284 EltVal = getI32Imm(-16, dl); 5285 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5286 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 5287 SDValue(Tmp2, 0))); 5288 return; 5289 } 5290 } 5291 } 5292 5293 SelectCode(N); 5294 } 5295 5296 // If the target supports the cmpb instruction, do the idiom recognition here. 5297 // We don't do this as a DAG combine because we don't want to do it as nodes 5298 // are being combined (because we might miss part of the eventual idiom). We 5299 // don't want to do it during instruction selection because we want to reuse 5300 // the logic for lowering the masking operations already part of the 5301 // instruction selector. 5302 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 5303 SDLoc dl(N); 5304 5305 assert(N->getOpcode() == ISD::OR && 5306 "Only OR nodes are supported for CMPB"); 5307 5308 SDValue Res; 5309 if (!PPCSubTarget->hasCMPB()) 5310 return Res; 5311 5312 if (N->getValueType(0) != MVT::i32 && 5313 N->getValueType(0) != MVT::i64) 5314 return Res; 5315 5316 EVT VT = N->getValueType(0); 5317 5318 SDValue RHS, LHS; 5319 bool BytesFound[8] = {false, false, false, false, false, false, false, false}; 5320 uint64_t Mask = 0, Alt = 0; 5321 5322 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 5323 uint64_t &Mask, uint64_t &Alt, 5324 SDValue &LHS, SDValue &RHS) { 5325 if (O.getOpcode() != ISD::SELECT_CC) 5326 return false; 5327 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 5328 5329 if (!isa<ConstantSDNode>(O.getOperand(2)) || 5330 !isa<ConstantSDNode>(O.getOperand(3))) 5331 return false; 5332 5333 uint64_t PM = O.getConstantOperandVal(2); 5334 uint64_t PAlt = O.getConstantOperandVal(3); 5335 for (b = 0; b < 8; ++b) { 5336 uint64_t Mask = UINT64_C(0xFF) << (8*b); 5337 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 5338 break; 5339 } 5340 5341 if (b == 8) 5342 return false; 5343 Mask |= PM; 5344 Alt |= PAlt; 5345 5346 if (!isa<ConstantSDNode>(O.getOperand(1)) || 5347 O.getConstantOperandVal(1) != 0) { 5348 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 5349 if (Op0.getOpcode() == ISD::TRUNCATE) 5350 Op0 = Op0.getOperand(0); 5351 if (Op1.getOpcode() == ISD::TRUNCATE) 5352 Op1 = Op1.getOperand(0); 5353 5354 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 5355 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 5356 isa<ConstantSDNode>(Op0.getOperand(1))) { 5357 5358 unsigned Bits = Op0.getValueSizeInBits(); 5359 if (b != Bits/8-1) 5360 return false; 5361 if (Op0.getConstantOperandVal(1) != Bits-8) 5362 return false; 5363 5364 LHS = Op0.getOperand(0); 5365 RHS = Op1.getOperand(0); 5366 return true; 5367 } 5368 5369 // When we have small integers (i16 to be specific), the form present 5370 // post-legalization uses SETULT in the SELECT_CC for the 5371 // higher-order byte, depending on the fact that the 5372 // even-higher-order bytes are known to all be zero, for example: 5373 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 5374 // (so when the second byte is the same, because all higher-order 5375 // bits from bytes 3 and 4 are known to be zero, the result of the 5376 // xor can be at most 255) 5377 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 5378 isa<ConstantSDNode>(O.getOperand(1))) { 5379 5380 uint64_t ULim = O.getConstantOperandVal(1); 5381 if (ULim != (UINT64_C(1) << b*8)) 5382 return false; 5383 5384 // Now we need to make sure that the upper bytes are known to be 5385 // zero. 5386 unsigned Bits = Op0.getValueSizeInBits(); 5387 if (!CurDAG->MaskedValueIsZero( 5388 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 5389 return false; 5390 5391 LHS = Op0.getOperand(0); 5392 RHS = Op0.getOperand(1); 5393 return true; 5394 } 5395 5396 return false; 5397 } 5398 5399 if (CC != ISD::SETEQ) 5400 return false; 5401 5402 SDValue Op = O.getOperand(0); 5403 if (Op.getOpcode() == ISD::AND) { 5404 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5405 return false; 5406 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 5407 return false; 5408 5409 SDValue XOR = Op.getOperand(0); 5410 if (XOR.getOpcode() == ISD::TRUNCATE) 5411 XOR = XOR.getOperand(0); 5412 if (XOR.getOpcode() != ISD::XOR) 5413 return false; 5414 5415 LHS = XOR.getOperand(0); 5416 RHS = XOR.getOperand(1); 5417 return true; 5418 } else if (Op.getOpcode() == ISD::SRL) { 5419 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5420 return false; 5421 unsigned Bits = Op.getValueSizeInBits(); 5422 if (b != Bits/8-1) 5423 return false; 5424 if (Op.getConstantOperandVal(1) != Bits-8) 5425 return false; 5426 5427 SDValue XOR = Op.getOperand(0); 5428 if (XOR.getOpcode() == ISD::TRUNCATE) 5429 XOR = XOR.getOperand(0); 5430 if (XOR.getOpcode() != ISD::XOR) 5431 return false; 5432 5433 LHS = XOR.getOperand(0); 5434 RHS = XOR.getOperand(1); 5435 return true; 5436 } 5437 5438 return false; 5439 }; 5440 5441 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 5442 while (!Queue.empty()) { 5443 SDValue V = Queue.pop_back_val(); 5444 5445 for (const SDValue &O : V.getNode()->ops()) { 5446 unsigned b = 0; 5447 uint64_t M = 0, A = 0; 5448 SDValue OLHS, ORHS; 5449 if (O.getOpcode() == ISD::OR) { 5450 Queue.push_back(O); 5451 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 5452 if (!LHS) { 5453 LHS = OLHS; 5454 RHS = ORHS; 5455 BytesFound[b] = true; 5456 Mask |= M; 5457 Alt |= A; 5458 } else if ((LHS == ORHS && RHS == OLHS) || 5459 (RHS == ORHS && LHS == OLHS)) { 5460 BytesFound[b] = true; 5461 Mask |= M; 5462 Alt |= A; 5463 } else { 5464 return Res; 5465 } 5466 } else { 5467 return Res; 5468 } 5469 } 5470 } 5471 5472 unsigned LastB = 0, BCnt = 0; 5473 for (unsigned i = 0; i < 8; ++i) 5474 if (BytesFound[LastB]) { 5475 ++BCnt; 5476 LastB = i; 5477 } 5478 5479 if (!LastB || BCnt < 2) 5480 return Res; 5481 5482 // Because we'll be zero-extending the output anyway if don't have a specific 5483 // value for each input byte (via the Mask), we can 'anyext' the inputs. 5484 if (LHS.getValueType() != VT) { 5485 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 5486 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 5487 } 5488 5489 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 5490 5491 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 5492 if (NonTrivialMask && !Alt) { 5493 // Res = Mask & CMPB 5494 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 5495 CurDAG->getConstant(Mask, dl, VT)); 5496 } else if (Alt) { 5497 // Res = (CMPB & Mask) | (~CMPB & Alt) 5498 // Which, as suggested here: 5499 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 5500 // can be written as: 5501 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 5502 // useful because the (Alt ^ Mask) can be pre-computed. 5503 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 5504 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 5505 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 5506 CurDAG->getConstant(Alt, dl, VT)); 5507 } 5508 5509 return Res; 5510 } 5511 5512 // When CR bit registers are enabled, an extension of an i1 variable to a i32 5513 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 5514 // involves constant materialization of a 0 or a 1 or both. If the result of 5515 // the extension is then operated upon by some operator that can be constant 5516 // folded with a constant 0 or 1, and that constant can be materialized using 5517 // only one instruction (like a zero or one), then we should fold in those 5518 // operations with the select. 5519 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 5520 if (!PPCSubTarget->useCRBits()) 5521 return; 5522 5523 if (N->getOpcode() != ISD::ZERO_EXTEND && 5524 N->getOpcode() != ISD::SIGN_EXTEND && 5525 N->getOpcode() != ISD::ANY_EXTEND) 5526 return; 5527 5528 if (N->getOperand(0).getValueType() != MVT::i1) 5529 return; 5530 5531 if (!N->hasOneUse()) 5532 return; 5533 5534 SDLoc dl(N); 5535 EVT VT = N->getValueType(0); 5536 SDValue Cond = N->getOperand(0); 5537 SDValue ConstTrue = 5538 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 5539 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 5540 5541 do { 5542 SDNode *User = *N->use_begin(); 5543 if (User->getNumOperands() != 2) 5544 break; 5545 5546 auto TryFold = [this, N, User, dl](SDValue Val) { 5547 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 5548 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 5549 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 5550 5551 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 5552 User->getValueType(0), 5553 O0.getNode(), O1.getNode()); 5554 }; 5555 5556 // FIXME: When the semantics of the interaction between select and undef 5557 // are clearly defined, it may turn out to be unnecessary to break here. 5558 SDValue TrueRes = TryFold(ConstTrue); 5559 if (!TrueRes || TrueRes.isUndef()) 5560 break; 5561 SDValue FalseRes = TryFold(ConstFalse); 5562 if (!FalseRes || FalseRes.isUndef()) 5563 break; 5564 5565 // For us to materialize these using one instruction, we must be able to 5566 // represent them as signed 16-bit integers. 5567 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 5568 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 5569 if (!isInt<16>(True) || !isInt<16>(False)) 5570 break; 5571 5572 // We can replace User with a new SELECT node, and try again to see if we 5573 // can fold the select with its user. 5574 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 5575 N = User; 5576 ConstTrue = TrueRes; 5577 ConstFalse = FalseRes; 5578 } while (N->hasOneUse()); 5579 } 5580 5581 void PPCDAGToDAGISel::PreprocessISelDAG() { 5582 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 5583 5584 bool MadeChange = false; 5585 while (Position != CurDAG->allnodes_begin()) { 5586 SDNode *N = &*--Position; 5587 if (N->use_empty()) 5588 continue; 5589 5590 SDValue Res; 5591 switch (N->getOpcode()) { 5592 default: break; 5593 case ISD::OR: 5594 Res = combineToCMPB(N); 5595 break; 5596 } 5597 5598 if (!Res) 5599 foldBoolExts(Res, N); 5600 5601 if (Res) { 5602 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 5603 LLVM_DEBUG(N->dump(CurDAG)); 5604 LLVM_DEBUG(dbgs() << "\nNew: "); 5605 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 5606 LLVM_DEBUG(dbgs() << "\n"); 5607 5608 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 5609 MadeChange = true; 5610 } 5611 } 5612 5613 if (MadeChange) 5614 CurDAG->RemoveDeadNodes(); 5615 } 5616 5617 /// PostprocessISelDAG - Perform some late peephole optimizations 5618 /// on the DAG representation. 5619 void PPCDAGToDAGISel::PostprocessISelDAG() { 5620 // Skip peepholes at -O0. 5621 if (TM.getOptLevel() == CodeGenOpt::None) 5622 return; 5623 5624 PeepholePPC64(); 5625 PeepholeCROps(); 5626 PeepholePPC64ZExt(); 5627 } 5628 5629 // Check if all users of this node will become isel where the second operand 5630 // is the constant zero. If this is so, and if we can negate the condition, 5631 // then we can flip the true and false operands. This will allow the zero to 5632 // be folded with the isel so that we don't need to materialize a register 5633 // containing zero. 5634 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 5635 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5636 UI != UE; ++UI) { 5637 SDNode *User = *UI; 5638 if (!User->isMachineOpcode()) 5639 return false; 5640 if (User->getMachineOpcode() != PPC::SELECT_I4 && 5641 User->getMachineOpcode() != PPC::SELECT_I8) 5642 return false; 5643 5644 SDNode *Op2 = User->getOperand(2).getNode(); 5645 if (!Op2->isMachineOpcode()) 5646 return false; 5647 5648 if (Op2->getMachineOpcode() != PPC::LI && 5649 Op2->getMachineOpcode() != PPC::LI8) 5650 return false; 5651 5652 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 5653 if (!C) 5654 return false; 5655 5656 if (!C->isNullValue()) 5657 return false; 5658 } 5659 5660 return true; 5661 } 5662 5663 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 5664 SmallVector<SDNode *, 4> ToReplace; 5665 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5666 UI != UE; ++UI) { 5667 SDNode *User = *UI; 5668 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 5669 User->getMachineOpcode() == PPC::SELECT_I8) && 5670 "Must have all select users"); 5671 ToReplace.push_back(User); 5672 } 5673 5674 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), 5675 UE = ToReplace.end(); UI != UE; ++UI) { 5676 SDNode *User = *UI; 5677 SDNode *ResNode = 5678 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 5679 User->getValueType(0), User->getOperand(0), 5680 User->getOperand(2), 5681 User->getOperand(1)); 5682 5683 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 5684 LLVM_DEBUG(User->dump(CurDAG)); 5685 LLVM_DEBUG(dbgs() << "\nNew: "); 5686 LLVM_DEBUG(ResNode->dump(CurDAG)); 5687 LLVM_DEBUG(dbgs() << "\n"); 5688 5689 ReplaceUses(User, ResNode); 5690 } 5691 } 5692 5693 void PPCDAGToDAGISel::PeepholeCROps() { 5694 bool IsModified; 5695 do { 5696 IsModified = false; 5697 for (SDNode &Node : CurDAG->allnodes()) { 5698 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 5699 if (!MachineNode || MachineNode->use_empty()) 5700 continue; 5701 SDNode *ResNode = MachineNode; 5702 5703 bool Op1Set = false, Op1Unset = false, 5704 Op1Not = false, 5705 Op2Set = false, Op2Unset = false, 5706 Op2Not = false; 5707 5708 unsigned Opcode = MachineNode->getMachineOpcode(); 5709 switch (Opcode) { 5710 default: break; 5711 case PPC::CRAND: 5712 case PPC::CRNAND: 5713 case PPC::CROR: 5714 case PPC::CRXOR: 5715 case PPC::CRNOR: 5716 case PPC::CREQV: 5717 case PPC::CRANDC: 5718 case PPC::CRORC: { 5719 SDValue Op = MachineNode->getOperand(1); 5720 if (Op.isMachineOpcode()) { 5721 if (Op.getMachineOpcode() == PPC::CRSET) 5722 Op2Set = true; 5723 else if (Op.getMachineOpcode() == PPC::CRUNSET) 5724 Op2Unset = true; 5725 else if (Op.getMachineOpcode() == PPC::CRNOR && 5726 Op.getOperand(0) == Op.getOperand(1)) 5727 Op2Not = true; 5728 } 5729 LLVM_FALLTHROUGH; 5730 } 5731 case PPC::BC: 5732 case PPC::BCn: 5733 case PPC::SELECT_I4: 5734 case PPC::SELECT_I8: 5735 case PPC::SELECT_F4: 5736 case PPC::SELECT_F8: 5737 case PPC::SELECT_QFRC: 5738 case PPC::SELECT_QSRC: 5739 case PPC::SELECT_QBRC: 5740 case PPC::SELECT_SPE: 5741 case PPC::SELECT_SPE4: 5742 case PPC::SELECT_VRRC: 5743 case PPC::SELECT_VSFRC: 5744 case PPC::SELECT_VSSRC: 5745 case PPC::SELECT_VSRC: { 5746 SDValue Op = MachineNode->getOperand(0); 5747 if (Op.isMachineOpcode()) { 5748 if (Op.getMachineOpcode() == PPC::CRSET) 5749 Op1Set = true; 5750 else if (Op.getMachineOpcode() == PPC::CRUNSET) 5751 Op1Unset = true; 5752 else if (Op.getMachineOpcode() == PPC::CRNOR && 5753 Op.getOperand(0) == Op.getOperand(1)) 5754 Op1Not = true; 5755 } 5756 } 5757 break; 5758 } 5759 5760 bool SelectSwap = false; 5761 switch (Opcode) { 5762 default: break; 5763 case PPC::CRAND: 5764 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5765 // x & x = x 5766 ResNode = MachineNode->getOperand(0).getNode(); 5767 else if (Op1Set) 5768 // 1 & y = y 5769 ResNode = MachineNode->getOperand(1).getNode(); 5770 else if (Op2Set) 5771 // x & 1 = x 5772 ResNode = MachineNode->getOperand(0).getNode(); 5773 else if (Op1Unset || Op2Unset) 5774 // x & 0 = 0 & y = 0 5775 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5776 MVT::i1); 5777 else if (Op1Not) 5778 // ~x & y = andc(y, x) 5779 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5780 MVT::i1, MachineNode->getOperand(1), 5781 MachineNode->getOperand(0). 5782 getOperand(0)); 5783 else if (Op2Not) 5784 // x & ~y = andc(x, y) 5785 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5786 MVT::i1, MachineNode->getOperand(0), 5787 MachineNode->getOperand(1). 5788 getOperand(0)); 5789 else if (AllUsersSelectZero(MachineNode)) { 5790 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 5791 MVT::i1, MachineNode->getOperand(0), 5792 MachineNode->getOperand(1)); 5793 SelectSwap = true; 5794 } 5795 break; 5796 case PPC::CRNAND: 5797 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5798 // nand(x, x) -> nor(x, x) 5799 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5800 MVT::i1, MachineNode->getOperand(0), 5801 MachineNode->getOperand(0)); 5802 else if (Op1Set) 5803 // nand(1, y) -> nor(y, y) 5804 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5805 MVT::i1, MachineNode->getOperand(1), 5806 MachineNode->getOperand(1)); 5807 else if (Op2Set) 5808 // nand(x, 1) -> nor(x, x) 5809 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5810 MVT::i1, MachineNode->getOperand(0), 5811 MachineNode->getOperand(0)); 5812 else if (Op1Unset || Op2Unset) 5813 // nand(x, 0) = nand(0, y) = 1 5814 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5815 MVT::i1); 5816 else if (Op1Not) 5817 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 5818 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5819 MVT::i1, MachineNode->getOperand(0). 5820 getOperand(0), 5821 MachineNode->getOperand(1)); 5822 else if (Op2Not) 5823 // nand(x, ~y) = ~x | y = orc(y, x) 5824 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5825 MVT::i1, MachineNode->getOperand(1). 5826 getOperand(0), 5827 MachineNode->getOperand(0)); 5828 else if (AllUsersSelectZero(MachineNode)) { 5829 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 5830 MVT::i1, MachineNode->getOperand(0), 5831 MachineNode->getOperand(1)); 5832 SelectSwap = true; 5833 } 5834 break; 5835 case PPC::CROR: 5836 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5837 // x | x = x 5838 ResNode = MachineNode->getOperand(0).getNode(); 5839 else if (Op1Set || Op2Set) 5840 // x | 1 = 1 | y = 1 5841 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5842 MVT::i1); 5843 else if (Op1Unset) 5844 // 0 | y = y 5845 ResNode = MachineNode->getOperand(1).getNode(); 5846 else if (Op2Unset) 5847 // x | 0 = x 5848 ResNode = MachineNode->getOperand(0).getNode(); 5849 else if (Op1Not) 5850 // ~x | y = orc(y, x) 5851 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5852 MVT::i1, MachineNode->getOperand(1), 5853 MachineNode->getOperand(0). 5854 getOperand(0)); 5855 else if (Op2Not) 5856 // x | ~y = orc(x, y) 5857 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5858 MVT::i1, MachineNode->getOperand(0), 5859 MachineNode->getOperand(1). 5860 getOperand(0)); 5861 else if (AllUsersSelectZero(MachineNode)) { 5862 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5863 MVT::i1, MachineNode->getOperand(0), 5864 MachineNode->getOperand(1)); 5865 SelectSwap = true; 5866 } 5867 break; 5868 case PPC::CRXOR: 5869 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5870 // xor(x, x) = 0 5871 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5872 MVT::i1); 5873 else if (Op1Set) 5874 // xor(1, y) -> nor(y, y) 5875 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5876 MVT::i1, MachineNode->getOperand(1), 5877 MachineNode->getOperand(1)); 5878 else if (Op2Set) 5879 // xor(x, 1) -> nor(x, x) 5880 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5881 MVT::i1, MachineNode->getOperand(0), 5882 MachineNode->getOperand(0)); 5883 else if (Op1Unset) 5884 // xor(0, y) = y 5885 ResNode = MachineNode->getOperand(1).getNode(); 5886 else if (Op2Unset) 5887 // xor(x, 0) = x 5888 ResNode = MachineNode->getOperand(0).getNode(); 5889 else if (Op1Not) 5890 // xor(~x, y) = eqv(x, y) 5891 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 5892 MVT::i1, MachineNode->getOperand(0). 5893 getOperand(0), 5894 MachineNode->getOperand(1)); 5895 else if (Op2Not) 5896 // xor(x, ~y) = eqv(x, y) 5897 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 5898 MVT::i1, MachineNode->getOperand(0), 5899 MachineNode->getOperand(1). 5900 getOperand(0)); 5901 else if (AllUsersSelectZero(MachineNode)) { 5902 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 5903 MVT::i1, MachineNode->getOperand(0), 5904 MachineNode->getOperand(1)); 5905 SelectSwap = true; 5906 } 5907 break; 5908 case PPC::CRNOR: 5909 if (Op1Set || Op2Set) 5910 // nor(1, y) -> 0 5911 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5912 MVT::i1); 5913 else if (Op1Unset) 5914 // nor(0, y) = ~y -> nor(y, y) 5915 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5916 MVT::i1, MachineNode->getOperand(1), 5917 MachineNode->getOperand(1)); 5918 else if (Op2Unset) 5919 // nor(x, 0) = ~x 5920 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5921 MVT::i1, MachineNode->getOperand(0), 5922 MachineNode->getOperand(0)); 5923 else if (Op1Not) 5924 // nor(~x, y) = andc(x, y) 5925 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5926 MVT::i1, MachineNode->getOperand(0). 5927 getOperand(0), 5928 MachineNode->getOperand(1)); 5929 else if (Op2Not) 5930 // nor(x, ~y) = andc(y, x) 5931 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5932 MVT::i1, MachineNode->getOperand(1). 5933 getOperand(0), 5934 MachineNode->getOperand(0)); 5935 else if (AllUsersSelectZero(MachineNode)) { 5936 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 5937 MVT::i1, MachineNode->getOperand(0), 5938 MachineNode->getOperand(1)); 5939 SelectSwap = true; 5940 } 5941 break; 5942 case PPC::CREQV: 5943 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5944 // eqv(x, x) = 1 5945 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5946 MVT::i1); 5947 else if (Op1Set) 5948 // eqv(1, y) = y 5949 ResNode = MachineNode->getOperand(1).getNode(); 5950 else if (Op2Set) 5951 // eqv(x, 1) = x 5952 ResNode = MachineNode->getOperand(0).getNode(); 5953 else if (Op1Unset) 5954 // eqv(0, y) = ~y -> nor(y, y) 5955 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5956 MVT::i1, MachineNode->getOperand(1), 5957 MachineNode->getOperand(1)); 5958 else if (Op2Unset) 5959 // eqv(x, 0) = ~x 5960 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5961 MVT::i1, MachineNode->getOperand(0), 5962 MachineNode->getOperand(0)); 5963 else if (Op1Not) 5964 // eqv(~x, y) = xor(x, y) 5965 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 5966 MVT::i1, MachineNode->getOperand(0). 5967 getOperand(0), 5968 MachineNode->getOperand(1)); 5969 else if (Op2Not) 5970 // eqv(x, ~y) = xor(x, y) 5971 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 5972 MVT::i1, MachineNode->getOperand(0), 5973 MachineNode->getOperand(1). 5974 getOperand(0)); 5975 else if (AllUsersSelectZero(MachineNode)) { 5976 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 5977 MVT::i1, MachineNode->getOperand(0), 5978 MachineNode->getOperand(1)); 5979 SelectSwap = true; 5980 } 5981 break; 5982 case PPC::CRANDC: 5983 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5984 // andc(x, x) = 0 5985 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5986 MVT::i1); 5987 else if (Op1Set) 5988 // andc(1, y) = ~y 5989 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5990 MVT::i1, MachineNode->getOperand(1), 5991 MachineNode->getOperand(1)); 5992 else if (Op1Unset || Op2Set) 5993 // andc(0, y) = andc(x, 1) = 0 5994 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5995 MVT::i1); 5996 else if (Op2Unset) 5997 // andc(x, 0) = x 5998 ResNode = MachineNode->getOperand(0).getNode(); 5999 else if (Op1Not) 6000 // andc(~x, y) = ~(x | y) = nor(x, y) 6001 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6002 MVT::i1, MachineNode->getOperand(0). 6003 getOperand(0), 6004 MachineNode->getOperand(1)); 6005 else if (Op2Not) 6006 // andc(x, ~y) = x & y 6007 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6008 MVT::i1, MachineNode->getOperand(0), 6009 MachineNode->getOperand(1). 6010 getOperand(0)); 6011 else if (AllUsersSelectZero(MachineNode)) { 6012 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6013 MVT::i1, MachineNode->getOperand(1), 6014 MachineNode->getOperand(0)); 6015 SelectSwap = true; 6016 } 6017 break; 6018 case PPC::CRORC: 6019 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6020 // orc(x, x) = 1 6021 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6022 MVT::i1); 6023 else if (Op1Set || Op2Unset) 6024 // orc(1, y) = orc(x, 0) = 1 6025 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6026 MVT::i1); 6027 else if (Op2Set) 6028 // orc(x, 1) = x 6029 ResNode = MachineNode->getOperand(0).getNode(); 6030 else if (Op1Unset) 6031 // orc(0, y) = ~y 6032 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6033 MVT::i1, MachineNode->getOperand(1), 6034 MachineNode->getOperand(1)); 6035 else if (Op1Not) 6036 // orc(~x, y) = ~(x & y) = nand(x, y) 6037 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6038 MVT::i1, MachineNode->getOperand(0). 6039 getOperand(0), 6040 MachineNode->getOperand(1)); 6041 else if (Op2Not) 6042 // orc(x, ~y) = x | y 6043 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 6044 MVT::i1, MachineNode->getOperand(0), 6045 MachineNode->getOperand(1). 6046 getOperand(0)); 6047 else if (AllUsersSelectZero(MachineNode)) { 6048 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6049 MVT::i1, MachineNode->getOperand(1), 6050 MachineNode->getOperand(0)); 6051 SelectSwap = true; 6052 } 6053 break; 6054 case PPC::SELECT_I4: 6055 case PPC::SELECT_I8: 6056 case PPC::SELECT_F4: 6057 case PPC::SELECT_F8: 6058 case PPC::SELECT_QFRC: 6059 case PPC::SELECT_QSRC: 6060 case PPC::SELECT_QBRC: 6061 case PPC::SELECT_SPE: 6062 case PPC::SELECT_SPE4: 6063 case PPC::SELECT_VRRC: 6064 case PPC::SELECT_VSFRC: 6065 case PPC::SELECT_VSSRC: 6066 case PPC::SELECT_VSRC: 6067 if (Op1Set) 6068 ResNode = MachineNode->getOperand(1).getNode(); 6069 else if (Op1Unset) 6070 ResNode = MachineNode->getOperand(2).getNode(); 6071 else if (Op1Not) 6072 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 6073 SDLoc(MachineNode), 6074 MachineNode->getValueType(0), 6075 MachineNode->getOperand(0). 6076 getOperand(0), 6077 MachineNode->getOperand(2), 6078 MachineNode->getOperand(1)); 6079 break; 6080 case PPC::BC: 6081 case PPC::BCn: 6082 if (Op1Not) 6083 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 6084 PPC::BC, 6085 SDLoc(MachineNode), 6086 MVT::Other, 6087 MachineNode->getOperand(0). 6088 getOperand(0), 6089 MachineNode->getOperand(1), 6090 MachineNode->getOperand(2)); 6091 // FIXME: Handle Op1Set, Op1Unset here too. 6092 break; 6093 } 6094 6095 // If we're inverting this node because it is used only by selects that 6096 // we'd like to swap, then swap the selects before the node replacement. 6097 if (SelectSwap) 6098 SwapAllSelectUsers(MachineNode); 6099 6100 if (ResNode != MachineNode) { 6101 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6102 LLVM_DEBUG(MachineNode->dump(CurDAG)); 6103 LLVM_DEBUG(dbgs() << "\nNew: "); 6104 LLVM_DEBUG(ResNode->dump(CurDAG)); 6105 LLVM_DEBUG(dbgs() << "\n"); 6106 6107 ReplaceUses(MachineNode, ResNode); 6108 IsModified = true; 6109 } 6110 } 6111 if (IsModified) 6112 CurDAG->RemoveDeadNodes(); 6113 } while (IsModified); 6114 } 6115 6116 // Gather the set of 32-bit operations that are known to have their 6117 // higher-order 32 bits zero, where ToPromote contains all such operations. 6118 static bool PeepholePPC64ZExtGather(SDValue Op32, 6119 SmallPtrSetImpl<SDNode *> &ToPromote) { 6120 if (!Op32.isMachineOpcode()) 6121 return false; 6122 6123 // First, check for the "frontier" instructions (those that will clear the 6124 // higher-order 32 bits. 6125 6126 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 6127 // around. If it does not, then these instructions will clear the 6128 // higher-order bits. 6129 if ((Op32.getMachineOpcode() == PPC::RLWINM || 6130 Op32.getMachineOpcode() == PPC::RLWNM) && 6131 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 6132 ToPromote.insert(Op32.getNode()); 6133 return true; 6134 } 6135 6136 // SLW and SRW always clear the higher-order bits. 6137 if (Op32.getMachineOpcode() == PPC::SLW || 6138 Op32.getMachineOpcode() == PPC::SRW) { 6139 ToPromote.insert(Op32.getNode()); 6140 return true; 6141 } 6142 6143 // For LI and LIS, we need the immediate to be positive (so that it is not 6144 // sign extended). 6145 if (Op32.getMachineOpcode() == PPC::LI || 6146 Op32.getMachineOpcode() == PPC::LIS) { 6147 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 6148 return false; 6149 6150 ToPromote.insert(Op32.getNode()); 6151 return true; 6152 } 6153 6154 // LHBRX and LWBRX always clear the higher-order bits. 6155 if (Op32.getMachineOpcode() == PPC::LHBRX || 6156 Op32.getMachineOpcode() == PPC::LWBRX) { 6157 ToPromote.insert(Op32.getNode()); 6158 return true; 6159 } 6160 6161 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. 6162 if (Op32.getMachineOpcode() == PPC::CNTLZW || 6163 Op32.getMachineOpcode() == PPC::CNTTZW) { 6164 ToPromote.insert(Op32.getNode()); 6165 return true; 6166 } 6167 6168 // Next, check for those instructions we can look through. 6169 6170 // Assuming the mask does not wrap around, then the higher-order bits are 6171 // taken directly from the first operand. 6172 if (Op32.getMachineOpcode() == PPC::RLWIMI && 6173 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 6174 SmallPtrSet<SDNode *, 16> ToPromote1; 6175 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6176 return false; 6177 6178 ToPromote.insert(Op32.getNode()); 6179 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6180 return true; 6181 } 6182 6183 // For OR, the higher-order bits are zero if that is true for both operands. 6184 // For SELECT_I4, the same is true (but the relevant operand numbers are 6185 // shifted by 1). 6186 if (Op32.getMachineOpcode() == PPC::OR || 6187 Op32.getMachineOpcode() == PPC::SELECT_I4) { 6188 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 6189 SmallPtrSet<SDNode *, 16> ToPromote1; 6190 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 6191 return false; 6192 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 6193 return false; 6194 6195 ToPromote.insert(Op32.getNode()); 6196 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6197 return true; 6198 } 6199 6200 // For ORI and ORIS, we need the higher-order bits of the first operand to be 6201 // zero, and also for the constant to be positive (so that it is not sign 6202 // extended). 6203 if (Op32.getMachineOpcode() == PPC::ORI || 6204 Op32.getMachineOpcode() == PPC::ORIS) { 6205 SmallPtrSet<SDNode *, 16> ToPromote1; 6206 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6207 return false; 6208 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 6209 return false; 6210 6211 ToPromote.insert(Op32.getNode()); 6212 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6213 return true; 6214 } 6215 6216 // The higher-order bits of AND are zero if that is true for at least one of 6217 // the operands. 6218 if (Op32.getMachineOpcode() == PPC::AND) { 6219 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 6220 bool Op0OK = 6221 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6222 bool Op1OK = 6223 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 6224 if (!Op0OK && !Op1OK) 6225 return false; 6226 6227 ToPromote.insert(Op32.getNode()); 6228 6229 if (Op0OK) 6230 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6231 6232 if (Op1OK) 6233 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 6234 6235 return true; 6236 } 6237 6238 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 6239 // of the first operand, or if the second operand is positive (so that it is 6240 // not sign extended). 6241 if (Op32.getMachineOpcode() == PPC::ANDI_rec || 6242 Op32.getMachineOpcode() == PPC::ANDIS_rec) { 6243 SmallPtrSet<SDNode *, 16> ToPromote1; 6244 bool Op0OK = 6245 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6246 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 6247 if (!Op0OK && !Op1OK) 6248 return false; 6249 6250 ToPromote.insert(Op32.getNode()); 6251 6252 if (Op0OK) 6253 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6254 6255 return true; 6256 } 6257 6258 return false; 6259 } 6260 6261 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 6262 if (!PPCSubTarget->isPPC64()) 6263 return; 6264 6265 // When we zero-extend from i32 to i64, we use a pattern like this: 6266 // def : Pat<(i64 (zext i32:$in)), 6267 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 6268 // 0, 32)>; 6269 // There are several 32-bit shift/rotate instructions, however, that will 6270 // clear the higher-order bits of their output, rendering the RLDICL 6271 // unnecessary. When that happens, we remove it here, and redefine the 6272 // relevant 32-bit operation to be a 64-bit operation. 6273 6274 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6275 6276 bool MadeChange = false; 6277 while (Position != CurDAG->allnodes_begin()) { 6278 SDNode *N = &*--Position; 6279 // Skip dead nodes and any non-machine opcodes. 6280 if (N->use_empty() || !N->isMachineOpcode()) 6281 continue; 6282 6283 if (N->getMachineOpcode() != PPC::RLDICL) 6284 continue; 6285 6286 if (N->getConstantOperandVal(1) != 0 || 6287 N->getConstantOperandVal(2) != 32) 6288 continue; 6289 6290 SDValue ISR = N->getOperand(0); 6291 if (!ISR.isMachineOpcode() || 6292 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 6293 continue; 6294 6295 if (!ISR.hasOneUse()) 6296 continue; 6297 6298 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 6299 continue; 6300 6301 SDValue IDef = ISR.getOperand(0); 6302 if (!IDef.isMachineOpcode() || 6303 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 6304 continue; 6305 6306 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 6307 // can get rid of it. 6308 6309 SDValue Op32 = ISR->getOperand(1); 6310 if (!Op32.isMachineOpcode()) 6311 continue; 6312 6313 // There are some 32-bit instructions that always clear the high-order 32 6314 // bits, there are also some instructions (like AND) that we can look 6315 // through. 6316 SmallPtrSet<SDNode *, 16> ToPromote; 6317 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 6318 continue; 6319 6320 // If the ToPromote set contains nodes that have uses outside of the set 6321 // (except for the original INSERT_SUBREG), then abort the transformation. 6322 bool OutsideUse = false; 6323 for (SDNode *PN : ToPromote) { 6324 for (SDNode *UN : PN->uses()) { 6325 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 6326 OutsideUse = true; 6327 break; 6328 } 6329 } 6330 6331 if (OutsideUse) 6332 break; 6333 } 6334 if (OutsideUse) 6335 continue; 6336 6337 MadeChange = true; 6338 6339 // We now know that this zero extension can be removed by promoting to 6340 // nodes in ToPromote to 64-bit operations, where for operations in the 6341 // frontier of the set, we need to insert INSERT_SUBREGs for their 6342 // operands. 6343 for (SDNode *PN : ToPromote) { 6344 unsigned NewOpcode; 6345 switch (PN->getMachineOpcode()) { 6346 default: 6347 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 6348 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 6349 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 6350 case PPC::SLW: NewOpcode = PPC::SLW8; break; 6351 case PPC::SRW: NewOpcode = PPC::SRW8; break; 6352 case PPC::LI: NewOpcode = PPC::LI8; break; 6353 case PPC::LIS: NewOpcode = PPC::LIS8; break; 6354 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 6355 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 6356 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 6357 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; 6358 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 6359 case PPC::OR: NewOpcode = PPC::OR8; break; 6360 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 6361 case PPC::ORI: NewOpcode = PPC::ORI8; break; 6362 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 6363 case PPC::AND: NewOpcode = PPC::AND8; break; 6364 case PPC::ANDI_rec: 6365 NewOpcode = PPC::ANDI8_rec; 6366 break; 6367 case PPC::ANDIS_rec: 6368 NewOpcode = PPC::ANDIS8_rec; 6369 break; 6370 } 6371 6372 // Note: During the replacement process, the nodes will be in an 6373 // inconsistent state (some instructions will have operands with values 6374 // of the wrong type). Once done, however, everything should be right 6375 // again. 6376 6377 SmallVector<SDValue, 4> Ops; 6378 for (const SDValue &V : PN->ops()) { 6379 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 6380 !isa<ConstantSDNode>(V)) { 6381 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 6382 SDNode *ReplOp = 6383 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 6384 ISR.getNode()->getVTList(), ReplOpOps); 6385 Ops.push_back(SDValue(ReplOp, 0)); 6386 } else { 6387 Ops.push_back(V); 6388 } 6389 } 6390 6391 // Because all to-be-promoted nodes only have users that are other 6392 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 6393 // the i32 result value type with i64. 6394 6395 SmallVector<EVT, 2> NewVTs; 6396 SDVTList VTs = PN->getVTList(); 6397 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 6398 if (VTs.VTs[i] == MVT::i32) 6399 NewVTs.push_back(MVT::i64); 6400 else 6401 NewVTs.push_back(VTs.VTs[i]); 6402 6403 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 6404 LLVM_DEBUG(PN->dump(CurDAG)); 6405 6406 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 6407 6408 LLVM_DEBUG(dbgs() << "\nNew: "); 6409 LLVM_DEBUG(PN->dump(CurDAG)); 6410 LLVM_DEBUG(dbgs() << "\n"); 6411 } 6412 6413 // Now we replace the original zero extend and its associated INSERT_SUBREG 6414 // with the value feeding the INSERT_SUBREG (which has now been promoted to 6415 // return an i64). 6416 6417 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 6418 LLVM_DEBUG(N->dump(CurDAG)); 6419 LLVM_DEBUG(dbgs() << "\nNew: "); 6420 LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); 6421 LLVM_DEBUG(dbgs() << "\n"); 6422 6423 ReplaceUses(N, Op32.getNode()); 6424 } 6425 6426 if (MadeChange) 6427 CurDAG->RemoveDeadNodes(); 6428 } 6429 6430 void PPCDAGToDAGISel::PeepholePPC64() { 6431 // These optimizations are currently supported only for 64-bit SVR4. 6432 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) 6433 return; 6434 6435 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6436 6437 while (Position != CurDAG->allnodes_begin()) { 6438 SDNode *N = &*--Position; 6439 // Skip dead nodes and any non-machine opcodes. 6440 if (N->use_empty() || !N->isMachineOpcode()) 6441 continue; 6442 6443 unsigned FirstOp; 6444 unsigned StorageOpcode = N->getMachineOpcode(); 6445 bool RequiresMod4Offset = false; 6446 6447 switch (StorageOpcode) { 6448 default: continue; 6449 6450 case PPC::LWA: 6451 case PPC::LD: 6452 case PPC::DFLOADf64: 6453 case PPC::DFLOADf32: 6454 RequiresMod4Offset = true; 6455 LLVM_FALLTHROUGH; 6456 case PPC::LBZ: 6457 case PPC::LBZ8: 6458 case PPC::LFD: 6459 case PPC::LFS: 6460 case PPC::LHA: 6461 case PPC::LHA8: 6462 case PPC::LHZ: 6463 case PPC::LHZ8: 6464 case PPC::LWZ: 6465 case PPC::LWZ8: 6466 FirstOp = 0; 6467 break; 6468 6469 case PPC::STD: 6470 case PPC::DFSTOREf64: 6471 case PPC::DFSTOREf32: 6472 RequiresMod4Offset = true; 6473 LLVM_FALLTHROUGH; 6474 case PPC::STB: 6475 case PPC::STB8: 6476 case PPC::STFD: 6477 case PPC::STFS: 6478 case PPC::STH: 6479 case PPC::STH8: 6480 case PPC::STW: 6481 case PPC::STW8: 6482 FirstOp = 1; 6483 break; 6484 } 6485 6486 // If this is a load or store with a zero offset, or within the alignment, 6487 // we may be able to fold an add-immediate into the memory operation. 6488 // The check against alignment is below, as it can't occur until we check 6489 // the arguments to N 6490 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 6491 continue; 6492 6493 SDValue Base = N->getOperand(FirstOp + 1); 6494 if (!Base.isMachineOpcode()) 6495 continue; 6496 6497 unsigned Flags = 0; 6498 bool ReplaceFlags = true; 6499 6500 // When the feeding operation is an add-immediate of some sort, 6501 // determine whether we need to add relocation information to the 6502 // target flags on the immediate operand when we fold it into the 6503 // load instruction. 6504 // 6505 // For something like ADDItocL, the relocation information is 6506 // inferred from the opcode; when we process it in the AsmPrinter, 6507 // we add the necessary relocation there. A load, though, can receive 6508 // relocation from various flavors of ADDIxxx, so we need to carry 6509 // the relocation information in the target flags. 6510 switch (Base.getMachineOpcode()) { 6511 default: continue; 6512 6513 case PPC::ADDI8: 6514 case PPC::ADDI: 6515 // In some cases (such as TLS) the relocation information 6516 // is already in place on the operand, so copying the operand 6517 // is sufficient. 6518 ReplaceFlags = false; 6519 // For these cases, the immediate may not be divisible by 4, in 6520 // which case the fold is illegal for DS-form instructions. (The 6521 // other cases provide aligned addresses and are always safe.) 6522 if (RequiresMod4Offset && 6523 (!isa<ConstantSDNode>(Base.getOperand(1)) || 6524 Base.getConstantOperandVal(1) % 4 != 0)) 6525 continue; 6526 break; 6527 case PPC::ADDIdtprelL: 6528 Flags = PPCII::MO_DTPREL_LO; 6529 break; 6530 case PPC::ADDItlsldL: 6531 Flags = PPCII::MO_TLSLD_LO; 6532 break; 6533 case PPC::ADDItocL: 6534 Flags = PPCII::MO_TOC_LO; 6535 break; 6536 } 6537 6538 SDValue ImmOpnd = Base.getOperand(1); 6539 6540 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 6541 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 6542 // we might have needed different @ha relocation values for the offset 6543 // pointers). 6544 int MaxDisplacement = 7; 6545 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 6546 const GlobalValue *GV = GA->getGlobal(); 6547 MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement); 6548 } 6549 6550 bool UpdateHBase = false; 6551 SDValue HBase = Base.getOperand(0); 6552 6553 int Offset = N->getConstantOperandVal(FirstOp); 6554 if (ReplaceFlags) { 6555 if (Offset < 0 || Offset > MaxDisplacement) { 6556 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 6557 // one use, then we can do this for any offset, we just need to also 6558 // update the offset (i.e. the symbol addend) on the addis also. 6559 if (Base.getMachineOpcode() != PPC::ADDItocL) 6560 continue; 6561 6562 if (!HBase.isMachineOpcode() || 6563 HBase.getMachineOpcode() != PPC::ADDIStocHA8) 6564 continue; 6565 6566 if (!Base.hasOneUse() || !HBase.hasOneUse()) 6567 continue; 6568 6569 SDValue HImmOpnd = HBase.getOperand(1); 6570 if (HImmOpnd != ImmOpnd) 6571 continue; 6572 6573 UpdateHBase = true; 6574 } 6575 } else { 6576 // If we're directly folding the addend from an addi instruction, then: 6577 // 1. In general, the offset on the memory access must be zero. 6578 // 2. If the addend is a constant, then it can be combined with a 6579 // non-zero offset, but only if the result meets the encoding 6580 // requirements. 6581 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 6582 Offset += C->getSExtValue(); 6583 6584 if (RequiresMod4Offset && (Offset % 4) != 0) 6585 continue; 6586 6587 if (!isInt<16>(Offset)) 6588 continue; 6589 6590 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 6591 ImmOpnd.getValueType()); 6592 } else if (Offset != 0) { 6593 continue; 6594 } 6595 } 6596 6597 // We found an opportunity. Reverse the operands from the add 6598 // immediate and substitute them into the load or store. If 6599 // needed, update the target flags for the immediate operand to 6600 // reflect the necessary relocation information. 6601 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 6602 LLVM_DEBUG(Base->dump(CurDAG)); 6603 LLVM_DEBUG(dbgs() << "\nN: "); 6604 LLVM_DEBUG(N->dump(CurDAG)); 6605 LLVM_DEBUG(dbgs() << "\n"); 6606 6607 // If the relocation information isn't already present on the 6608 // immediate operand, add it now. 6609 if (ReplaceFlags) { 6610 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 6611 SDLoc dl(GA); 6612 const GlobalValue *GV = GA->getGlobal(); 6613 // We can't perform this optimization for data whose alignment 6614 // is insufficient for the instruction encoding. 6615 if (GV->getAlignment() < 4 && 6616 (RequiresMod4Offset || (Offset % 4) != 0)) { 6617 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 6618 continue; 6619 } 6620 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 6621 } else if (ConstantPoolSDNode *CP = 6622 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 6623 const Constant *C = CP->getConstVal(); 6624 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, 6625 CP->getAlignment(), 6626 Offset, Flags); 6627 } 6628 } 6629 6630 if (FirstOp == 1) // Store 6631 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 6632 Base.getOperand(0), N->getOperand(3)); 6633 else // Load 6634 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 6635 N->getOperand(2)); 6636 6637 if (UpdateHBase) 6638 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 6639 ImmOpnd); 6640 6641 // The add-immediate may now be dead, in which case remove it. 6642 if (Base.getNode()->use_empty()) 6643 CurDAG->RemoveDeadNode(Base.getNode()); 6644 } 6645 } 6646 6647 /// createPPCISelDag - This pass converts a legalized DAG into a 6648 /// PowerPC-specific DAG, ready for instruction scheduling. 6649 /// 6650 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, 6651 CodeGenOpt::Level OptLevel) { 6652 return new PPCDAGToDAGISel(TM, OptLevel); 6653 } 6654