xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/APSInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/MachineValueType.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/IntrinsicsPowerPC.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CodeGen.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <new>
67 #include <tuple>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "ppc-isel"
73 #define PASS_NAME "PowerPC DAG->DAG Pattern Instruction Selection"
74 
75 STATISTIC(NumSextSetcc,
76           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
77 STATISTIC(NumZextSetcc,
78           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
79 STATISTIC(SignExtensionsAdded,
80           "Number of sign extensions for compare inputs added.");
81 STATISTIC(ZeroExtensionsAdded,
82           "Number of zero extensions for compare inputs added.");
83 STATISTIC(NumLogicOpsOnComparison,
84           "Number of logical ops on i1 values calculated in GPR.");
85 STATISTIC(OmittedForNonExtendUses,
86           "Number of compares not eliminated as they have non-extending uses.");
87 STATISTIC(NumP9Setb,
88           "Number of compares lowered to setb.");
89 
90 // FIXME: Remove this once the bug has been fixed!
91 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
92 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
93 
94 static cl::opt<bool>
95     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
96                        cl::desc("use aggressive ppc isel for bit permutations"),
97                        cl::Hidden);
98 static cl::opt<bool> BPermRewriterNoMasking(
99     "ppc-bit-perm-rewriter-stress-rotates",
100     cl::desc("stress rotate selection in aggressive ppc isel for "
101              "bit permutations"),
102     cl::Hidden);
103 
104 static cl::opt<bool> EnableBranchHint(
105   "ppc-use-branch-hint", cl::init(true),
106     cl::desc("Enable static hinting of branches on ppc"),
107     cl::Hidden);
108 
109 static cl::opt<bool> EnableTLSOpt(
110   "ppc-tls-opt", cl::init(true),
111     cl::desc("Enable tls optimization peephole"),
112     cl::Hidden);
113 
114 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
115   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
116   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
117 
118 static cl::opt<ICmpInGPRType> CmpInGPR(
119   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
120   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
121   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
122              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
123              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
124              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
125              clEnumValN(ICGPR_NonExtIn, "nonextin",
126                         "Only comparisons where inputs don't need [sz]ext."),
127              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
128              clEnumValN(ICGPR_ZextI32, "zexti32",
129                         "Only i32 comparisons with zext result."),
130              clEnumValN(ICGPR_ZextI64, "zexti64",
131                         "Only i64 comparisons with zext result."),
132              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
133              clEnumValN(ICGPR_SextI32, "sexti32",
134                         "Only i32 comparisons with sext result."),
135              clEnumValN(ICGPR_SextI64, "sexti64",
136                         "Only i64 comparisons with sext result.")));
137 namespace {
138 
139   //===--------------------------------------------------------------------===//
140   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
141   /// instructions for SelectionDAG operations.
142   ///
143   class PPCDAGToDAGISel : public SelectionDAGISel {
144     const PPCTargetMachine &TM;
145     const PPCSubtarget *Subtarget = nullptr;
146     const PPCTargetLowering *PPCLowering = nullptr;
147     unsigned GlobalBaseReg = 0;
148 
149   public:
150     static char ID;
151 
152     PPCDAGToDAGISel() = delete;
153 
154     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOptLevel OptLevel)
155         : SelectionDAGISel(ID, tm, OptLevel), TM(tm) {}
156 
157     bool runOnMachineFunction(MachineFunction &MF) override {
158       // Make sure we re-emit a set of the global base reg if necessary
159       GlobalBaseReg = 0;
160       Subtarget = &MF.getSubtarget<PPCSubtarget>();
161       PPCLowering = Subtarget->getTargetLowering();
162       if (Subtarget->hasROPProtect()) {
163         // Create a place on the stack for the ROP Protection Hash.
164         // The ROP Protection Hash will always be 8 bytes and aligned to 8
165         // bytes.
166         MachineFrameInfo &MFI = MF.getFrameInfo();
167         PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
168         const int Result = MFI.CreateStackObject(8, Align(8), false);
169         FI->setROPProtectionHashSaveIndex(Result);
170       }
171       SelectionDAGISel::runOnMachineFunction(MF);
172 
173       return true;
174     }
175 
176     void PreprocessISelDAG() override;
177     void PostprocessISelDAG() override;
178 
179     /// getI16Imm - Return a target constant with the specified value, of type
180     /// i16.
181     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
182       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
183     }
184 
185     /// getI32Imm - Return a target constant with the specified value, of type
186     /// i32.
187     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
188       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
189     }
190 
191     /// getI64Imm - Return a target constant with the specified value, of type
192     /// i64.
193     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
194       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
195     }
196 
197     /// getSmallIPtrImm - Return a target constant of pointer type.
198     inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
199       return CurDAG->getTargetConstant(
200           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
201     }
202 
203     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
204     /// rotate and mask opcode and mask operation.
205     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
206                                 unsigned &SH, unsigned &MB, unsigned &ME);
207 
208     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
209     /// base register.  Return the virtual register that holds this value.
210     SDNode *getGlobalBaseReg();
211 
212     void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
213 
214     // Select - Convert the specified operand from a target-independent to a
215     // target-specific node if it hasn't already been changed.
216     void Select(SDNode *N) override;
217 
218     bool tryBitfieldInsert(SDNode *N);
219     bool tryBitPermutation(SDNode *N);
220     bool tryIntCompareInGPR(SDNode *N);
221 
222     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
223     // an X-Form load instruction with the offset being a relocation coming from
224     // the PPCISD::ADD_TLS.
225     bool tryTLSXFormLoad(LoadSDNode *N);
226     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
227     // an X-Form store instruction with the offset being a relocation coming from
228     // the PPCISD::ADD_TLS.
229     bool tryTLSXFormStore(StoreSDNode *N);
230     /// SelectCC - Select a comparison of the specified values with the
231     /// specified condition code, returning the CR# of the expression.
232     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
233                      const SDLoc &dl, SDValue Chain = SDValue());
234 
235     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
236     /// immediate field.  Note that the operand at this point is already the
237     /// result of a prior SelectAddressRegImm call.
238     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
239       if (N.getOpcode() == ISD::TargetConstant ||
240           N.getOpcode() == ISD::TargetGlobalAddress) {
241         Out = N;
242         return true;
243       }
244 
245       return false;
246     }
247 
248     /// SelectDSForm - Returns true if address N can be represented by the
249     /// addressing mode of DSForm instructions (a base register, plus a signed
250     /// 16-bit displacement that is a multiple of 4.
251     bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
252       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
253                                                 Align(4)) == PPC::AM_DSForm;
254     }
255 
256     /// SelectDQForm - Returns true if address N can be represented by the
257     /// addressing mode of DQForm instructions (a base register, plus a signed
258     /// 16-bit displacement that is a multiple of 16.
259     bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
260       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
261                                                 Align(16)) == PPC::AM_DQForm;
262     }
263 
264     /// SelectDForm - Returns true if address N can be represented by
265     /// the addressing mode of DForm instructions (a base register, plus a
266     /// signed 16-bit immediate.
267     bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
268       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
269                                                 std::nullopt) == PPC::AM_DForm;
270     }
271 
272     /// SelectPCRelForm - Returns true if address N can be represented by
273     /// PC-Relative addressing mode.
274     bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
275                          SDValue &Base) {
276       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
277                                                 std::nullopt) == PPC::AM_PCRel;
278     }
279 
280     /// SelectPDForm - Returns true if address N can be represented by Prefixed
281     /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
282     bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
283       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
284                                                 std::nullopt) ==
285              PPC::AM_PrefixDForm;
286     }
287 
288     /// SelectXForm - Returns true if address N can be represented by the
289     /// addressing mode of XForm instructions (an indexed [r+r] operation).
290     bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
291       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
292                                                 std::nullopt) == PPC::AM_XForm;
293     }
294 
295     /// SelectForceXForm - Given the specified address, force it to be
296     /// represented as an indexed [r+r] operation (an XForm instruction).
297     bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
298                           SDValue &Base) {
299       return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
300              PPC::AM_XForm;
301     }
302 
303     /// SelectAddrIdx - Given the specified address, check to see if it can be
304     /// represented as an indexed [r+r] operation.
305     /// This is for xform instructions whose associated displacement form is D.
306     /// The last parameter \p 0 means associated D form has no requirment for 16
307     /// bit signed displacement.
308     /// Returns false if it can be represented by [r+imm], which are preferred.
309     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
310       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
311                                               std::nullopt);
312     }
313 
314     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
315     /// represented as an indexed [r+r] operation.
316     /// This is for xform instructions whose associated displacement form is DS.
317     /// The last parameter \p 4 means associated DS form 16 bit signed
318     /// displacement must be a multiple of 4.
319     /// Returns false if it can be represented by [r+imm], which are preferred.
320     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
321       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
322                                               Align(4));
323     }
324 
325     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
326     /// represented as an indexed [r+r] operation.
327     /// This is for xform instructions whose associated displacement form is DQ.
328     /// The last parameter \p 16 means associated DQ form 16 bit signed
329     /// displacement must be a multiple of 16.
330     /// Returns false if it can be represented by [r+imm], which are preferred.
331     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
332       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
333                                               Align(16));
334     }
335 
336     /// SelectAddrIdxOnly - Given the specified address, force it to be
337     /// represented as an indexed [r+r] operation.
338     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
339       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
340     }
341 
342     /// SelectAddrImm - Returns true if the address N can be represented by
343     /// a base register plus a signed 16-bit displacement [r+imm].
344     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
345     /// displacement.
346     bool SelectAddrImm(SDValue N, SDValue &Disp,
347                        SDValue &Base) {
348       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
349                                               std::nullopt);
350     }
351 
352     /// SelectAddrImmX4 - Returns true if the address N can be represented by
353     /// a base register plus a signed 16-bit displacement that is a multiple of
354     /// 4 (last parameter). Suitable for use by STD and friends.
355     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
356       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
357     }
358 
359     /// SelectAddrImmX16 - Returns true if the address N can be represented by
360     /// a base register plus a signed 16-bit displacement that is a multiple of
361     /// 16(last parameter). Suitable for use by STXV and friends.
362     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
363       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
364                                               Align(16));
365     }
366 
367     /// SelectAddrImmX34 - Returns true if the address N can be represented by
368     /// a base register plus a signed 34-bit displacement. Suitable for use by
369     /// PSTXVP and friends.
370     bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
371       return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
372     }
373 
374     // Select an address into a single register.
375     bool SelectAddr(SDValue N, SDValue &Base) {
376       Base = N;
377       return true;
378     }
379 
380     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
381       return PPCLowering->SelectAddressPCRel(N, Base);
382     }
383 
384     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
385     /// inline asm expressions.  It is always correct to compute the value into
386     /// a register.  The case of adding a (possibly relocatable) constant to a
387     /// register can be improved, but it is wrong to substitute Reg+Reg for
388     /// Reg in an asm, because the load or store opcode would have to change.
389     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
390                                       InlineAsm::ConstraintCode ConstraintID,
391                                       std::vector<SDValue> &OutOps) override {
392       switch(ConstraintID) {
393       default:
394         errs() << "ConstraintID: "
395                << InlineAsm::getMemConstraintName(ConstraintID) << "\n";
396         llvm_unreachable("Unexpected asm memory constraint");
397       case InlineAsm::ConstraintCode::es:
398       case InlineAsm::ConstraintCode::m:
399       case InlineAsm::ConstraintCode::o:
400       case InlineAsm::ConstraintCode::Q:
401       case InlineAsm::ConstraintCode::Z:
402       case InlineAsm::ConstraintCode::Zy:
403         // We need to make sure that this one operand does not end up in r0
404         // (because we might end up lowering this as 0(%op)).
405         const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
406         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
407         SDLoc dl(Op);
408         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
409         SDValue NewOp =
410           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
411                                          dl, Op.getValueType(),
412                                          Op, RC), 0);
413 
414         OutOps.push_back(NewOp);
415         return false;
416       }
417       return true;
418     }
419 
420 // Include the pieces autogenerated from the target description.
421 #include "PPCGenDAGISel.inc"
422 
423 private:
424     bool trySETCC(SDNode *N);
425     bool tryFoldSWTestBRCC(SDNode *N);
426     bool trySelectLoopCountIntrinsic(SDNode *N);
427     bool tryAsSingleRLDICL(SDNode *N);
428     bool tryAsSingleRLDCL(SDNode *N);
429     bool tryAsSingleRLDICR(SDNode *N);
430     bool tryAsSingleRLWINM(SDNode *N);
431     bool tryAsSingleRLWINM8(SDNode *N);
432     bool tryAsSingleRLWIMI(SDNode *N);
433     bool tryAsPairOfRLDICL(SDNode *N);
434     bool tryAsSingleRLDIMI(SDNode *N);
435 
436     void PeepholePPC64();
437     void PeepholePPC64ZExt();
438     void PeepholeCROps();
439 
440     SDValue combineToCMPB(SDNode *N);
441     void foldBoolExts(SDValue &Res, SDNode *&N);
442 
443     bool AllUsersSelectZero(SDNode *N);
444     void SwapAllSelectUsers(SDNode *N);
445 
446     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
447     void transferMemOperands(SDNode *N, SDNode *Result);
448   };
449 
450 } // end anonymous namespace
451 
452 char PPCDAGToDAGISel::ID = 0;
453 
454 INITIALIZE_PASS(PPCDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
455 
456 /// getGlobalBaseReg - Output the instructions required to put the
457 /// base address to use for accessing globals into a register.
458 ///
459 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
460   if (!GlobalBaseReg) {
461     const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
462     // Insert the set of GlobalBaseReg into the first MBB of the function
463     MachineBasicBlock &FirstMBB = MF->front();
464     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
465     const Module *M = MF->getFunction().getParent();
466     DebugLoc dl;
467 
468     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
469       if (Subtarget->isTargetELF()) {
470         GlobalBaseReg = PPC::R30;
471         if (!Subtarget->isSecurePlt() &&
472             M->getPICLevel() == PICLevel::SmallPIC) {
473           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
474           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
475           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
476         } else {
477           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
478           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
479           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
480           BuildMI(FirstMBB, MBBI, dl,
481                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
482                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
483           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
484         }
485       } else {
486         GlobalBaseReg =
487           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
488         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
489         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
490       }
491     } else {
492       // We must ensure that this sequence is dominated by the prologue.
493       // FIXME: This is a bit of a big hammer since we don't get the benefits
494       // of shrink-wrapping whenever we emit this instruction. Considering
495       // this is used in any function where we emit a jump table, this may be
496       // a significant limitation. We should consider inserting this in the
497       // block where it is used and then commoning this sequence up if it
498       // appears in multiple places.
499       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
500       // MovePCtoLR8.
501       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
502       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
503       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
504       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
505     }
506   }
507   return CurDAG->getRegister(GlobalBaseReg,
508                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
509       .getNode();
510 }
511 
512 // Check if a SDValue has the toc-data attribute.
513 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
514   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
515   if (!GA)
516     return false;
517 
518   const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
519   if (!GV)
520     return false;
521 
522   if (!GV->hasAttribute("toc-data"))
523     return false;
524 
525   // TODO: These asserts should be updated as more support for the toc data
526   // transformation is added (struct support, etc.).
527 
528   assert(
529       PointerSize >= GV->getAlign().valueOrOne().value() &&
530       "GlobalVariables with an alignment requirement stricter than TOC entry "
531       "size not supported by the toc data transformation.");
532 
533   Type *GVType = GV->getValueType();
534 
535   assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
536                               "supported by the toc data transformation.");
537 
538   if (GVType->isVectorTy())
539     report_fatal_error("A GlobalVariable of Vector type is not currently "
540                        "supported by the toc data transformation.");
541 
542   if (GVType->isArrayTy())
543     report_fatal_error("A GlobalVariable of Array type is not currently "
544                        "supported by the toc data transformation.");
545 
546   if (GVType->isStructTy())
547     report_fatal_error("A GlobalVariable of Struct type is not currently "
548                        "supported by the toc data transformation.");
549 
550   assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
551          "A GlobalVariable with size larger than a TOC entry is not currently "
552          "supported by the toc data transformation.");
553 
554   if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
555     report_fatal_error("A GlobalVariable with private or local linkage is not "
556                        "currently supported by the toc data transformation.");
557 
558   assert(!GV->hasCommonLinkage() &&
559          "Tentative definitions cannot have the mapping class XMC_TD.");
560 
561   return true;
562 }
563 
564 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
565 /// operand. If so Imm will receive the 32-bit value.
566 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
567   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
568     Imm = N->getAsZExtVal();
569     return true;
570   }
571   return false;
572 }
573 
574 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
575 /// operand.  If so Imm will receive the 64-bit value.
576 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
577   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
578     Imm = N->getAsZExtVal();
579     return true;
580   }
581   return false;
582 }
583 
584 // isInt32Immediate - This method tests to see if a constant operand.
585 // If so Imm will receive the 32 bit value.
586 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
587   return isInt32Immediate(N.getNode(), Imm);
588 }
589 
590 /// isInt64Immediate - This method tests to see if the value is a 64-bit
591 /// constant operand. If so Imm will receive the 64-bit value.
592 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
593   return isInt64Immediate(N.getNode(), Imm);
594 }
595 
596 static unsigned getBranchHint(unsigned PCC,
597                               const FunctionLoweringInfo &FuncInfo,
598                               const SDValue &DestMBB) {
599   assert(isa<BasicBlockSDNode>(DestMBB));
600 
601   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
602 
603   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
604   const Instruction *BBTerm = BB->getTerminator();
605 
606   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
607 
608   const BasicBlock *TBB = BBTerm->getSuccessor(0);
609   const BasicBlock *FBB = BBTerm->getSuccessor(1);
610 
611   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
612   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
613 
614   // We only want to handle cases which are easy to predict at static time, e.g.
615   // C++ throw statement, that is very likely not taken, or calling never
616   // returned function, e.g. stdlib exit(). So we set Threshold to filter
617   // unwanted cases.
618   //
619   // Below is LLVM branch weight table, we only want to handle case 1, 2
620   //
621   // Case                  Taken:Nontaken  Example
622   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
623   // 2. Invoke-terminating 1:1048575
624   // 3. Coldblock          4:64            __builtin_expect
625   // 4. Loop Branch        124:4           For loop
626   // 5. PH/ZH/FPH          20:12
627   const uint32_t Threshold = 10000;
628 
629   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
630     return PPC::BR_NO_HINT;
631 
632   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
633                     << "::" << BB->getName() << "'\n"
634                     << " -> " << TBB->getName() << ": " << TProb << "\n"
635                     << " -> " << FBB->getName() << ": " << FProb << "\n");
636 
637   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
638 
639   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
640   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
641   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
642     std::swap(TProb, FProb);
643 
644   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
645 }
646 
647 // isOpcWithIntImmediate - This method tests to see if the node is a specific
648 // opcode and that it has a immediate integer right operand.
649 // If so Imm will receive the 32 bit value.
650 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
651   return N->getOpcode() == Opc
652          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
653 }
654 
655 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
656   SDLoc dl(SN);
657   int FI = cast<FrameIndexSDNode>(N)->getIndex();
658   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
659   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
660   if (SN->hasOneUse())
661     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
662                          getSmallIPtrImm(Offset, dl));
663   else
664     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
665                                            getSmallIPtrImm(Offset, dl)));
666 }
667 
668 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
669                                       bool isShiftMask, unsigned &SH,
670                                       unsigned &MB, unsigned &ME) {
671   // Don't even go down this path for i64, since different logic will be
672   // necessary for rldicl/rldicr/rldimi.
673   if (N->getValueType(0) != MVT::i32)
674     return false;
675 
676   unsigned Shift  = 32;
677   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
678   unsigned Opcode = N->getOpcode();
679   if (N->getNumOperands() != 2 ||
680       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
681     return false;
682 
683   if (Opcode == ISD::SHL) {
684     // apply shift left to mask if it comes first
685     if (isShiftMask) Mask = Mask << Shift;
686     // determine which bits are made indeterminant by shift
687     Indeterminant = ~(0xFFFFFFFFu << Shift);
688   } else if (Opcode == ISD::SRL) {
689     // apply shift right to mask if it comes first
690     if (isShiftMask) Mask = Mask >> Shift;
691     // determine which bits are made indeterminant by shift
692     Indeterminant = ~(0xFFFFFFFFu >> Shift);
693     // adjust for the left rotate
694     Shift = 32 - Shift;
695   } else if (Opcode == ISD::ROTL) {
696     Indeterminant = 0;
697   } else {
698     return false;
699   }
700 
701   // if the mask doesn't intersect any Indeterminant bits
702   if (Mask && !(Mask & Indeterminant)) {
703     SH = Shift & 31;
704     // make sure the mask is still a mask (wrap arounds may not be)
705     return isRunOfOnes(Mask, MB, ME);
706   }
707   return false;
708 }
709 
710 // isThreadPointerAcquisitionNode - Check if the operands of an ADD_TLS
711 // instruction use the thread pointer.
712 static bool isThreadPointerAcquisitionNode(SDValue Base, SelectionDAG *CurDAG) {
713   assert(
714       Base.getOpcode() == PPCISD::ADD_TLS &&
715       "Only expecting the ADD_TLS instruction to acquire the thread pointer!");
716   const PPCSubtarget &Subtarget =
717       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
718   SDValue ADDTLSOp1 = Base.getOperand(0);
719   unsigned ADDTLSOp1Opcode = ADDTLSOp1.getOpcode();
720 
721   // Account for when ADD_TLS is used for the initial-exec TLS model on Linux.
722   //
723   // Although ADD_TLS does not explicitly use the thread pointer
724   // register when LD_GOT_TPREL_L is one of it's operands, the LD_GOT_TPREL_L
725   // instruction will have a relocation specifier, @got@tprel, that is used to
726   // generate a GOT entry. The linker replaces this entry with an offset for a
727   // for a thread local variable, which will be relative to the thread pointer.
728   if (ADDTLSOp1Opcode == PPCISD::LD_GOT_TPREL_L)
729     return true;
730   // When using PC-Relative instructions for initial-exec, a MAT_PCREL_ADDR
731   // node is produced instead to represent the aforementioned situation.
732   LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSOp1);
733   if (LD && LD->getBasePtr().getOpcode() == PPCISD::MAT_PCREL_ADDR)
734     return true;
735 
736   // A GET_TPOINTER PPCISD node (only produced on AIX 32-bit mode) as an operand
737   // to ADD_TLS represents a call to .__get_tpointer to get the thread pointer,
738   // later returning it into R3.
739   if (ADDTLSOp1Opcode == PPCISD::GET_TPOINTER)
740     return true;
741 
742   // The ADD_TLS note is explicitly acquiring the thread pointer (X13/R13).
743   RegisterSDNode *AddFirstOpReg =
744       dyn_cast_or_null<RegisterSDNode>(ADDTLSOp1.getNode());
745   if (AddFirstOpReg &&
746       AddFirstOpReg->getReg() == Subtarget.getThreadPointerRegister())
747       return true;
748 
749   return false;
750 }
751 
752 // canOptimizeTLSDFormToXForm - Optimize TLS accesses when an ADD_TLS
753 // instruction is present. An ADD_TLS instruction, followed by a D-Form memory
754 // operation, can be optimized to use an X-Form load or store, allowing the
755 // ADD_TLS node to be removed completely.
756 static bool canOptimizeTLSDFormToXForm(SelectionDAG *CurDAG, SDValue Base) {
757 
758   // Do not do this transformation at -O0.
759   if (CurDAG->getTarget().getOptLevel() == CodeGenOptLevel::None)
760       return false;
761 
762   // In order to perform this optimization inside tryTLSXForm[Load|Store],
763   // Base is expected to be an ADD_TLS node.
764   if (Base.getOpcode() != PPCISD::ADD_TLS)
765     return false;
766   for (auto *ADDTLSUse : Base.getNode()->uses()) {
767     // The optimization to convert the D-Form load/store into its X-Form
768     // counterpart should only occur if the source value offset of the load/
769     // store is 0. This also means that The offset should always be undefined.
770     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ADDTLSUse)) {
771       if (LD->getSrcValueOffset() != 0 || !LD->getOffset().isUndef())
772         return false;
773     } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(ADDTLSUse)) {
774       if (ST->getSrcValueOffset() != 0 || !ST->getOffset().isUndef())
775         return false;
776     } else // Don't optimize if there are ADD_TLS users that aren't load/stores.
777       return false;
778   }
779 
780   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
781     return false;
782 
783   // Does the ADD_TLS node of the load/store use the thread pointer?
784   // If the thread pointer is not used as one of the operands of ADD_TLS,
785   // then this optimization is not valid.
786   return isThreadPointerAcquisitionNode(Base, CurDAG);
787 }
788 
789 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
790   SDValue Base = ST->getBasePtr();
791   if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
792     return false;
793 
794   SDLoc dl(ST);
795   EVT MemVT = ST->getMemoryVT();
796   EVT RegVT = ST->getValue().getValueType();
797 
798   unsigned Opcode;
799   switch (MemVT.getSimpleVT().SimpleTy) {
800     default:
801       return false;
802     case MVT::i8: {
803       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
804       break;
805     }
806     case MVT::i16: {
807       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
808       break;
809     }
810     case MVT::i32: {
811       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
812       break;
813     }
814     case MVT::i64: {
815       Opcode = PPC::STDXTLS;
816       break;
817     }
818     case MVT::f32: {
819       Opcode = PPC::STFSXTLS;
820       break;
821     }
822     case MVT::f64: {
823       Opcode = PPC::STFDXTLS;
824       break;
825     }
826   }
827   SDValue Chain = ST->getChain();
828   SDVTList VTs = ST->getVTList();
829   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
830                    Chain};
831   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
832   transferMemOperands(ST, MN);
833   ReplaceNode(ST, MN);
834   return true;
835 }
836 
837 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
838   SDValue Base = LD->getBasePtr();
839   if (!canOptimizeTLSDFormToXForm(CurDAG, Base))
840     return false;
841 
842   SDLoc dl(LD);
843   EVT MemVT = LD->getMemoryVT();
844   EVT RegVT = LD->getValueType(0);
845   bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
846   unsigned Opcode;
847   switch (MemVT.getSimpleVT().SimpleTy) {
848     default:
849       return false;
850     case MVT::i8: {
851       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
852       break;
853     }
854     case MVT::i16: {
855       if (RegVT == MVT::i32)
856         Opcode = isSExt ? PPC::LHAXTLS_32 : PPC::LHZXTLS_32;
857       else
858         Opcode = isSExt ? PPC::LHAXTLS : PPC::LHZXTLS;
859       break;
860     }
861     case MVT::i32: {
862       if (RegVT == MVT::i32)
863         Opcode = isSExt ? PPC::LWAXTLS_32 : PPC::LWZXTLS_32;
864       else
865         Opcode = isSExt ? PPC::LWAXTLS : PPC::LWZXTLS;
866       break;
867     }
868     case MVT::i64: {
869       Opcode = PPC::LDXTLS;
870       break;
871     }
872     case MVT::f32: {
873       Opcode = PPC::LFSXTLS;
874       break;
875     }
876     case MVT::f64: {
877       Opcode = PPC::LFDXTLS;
878       break;
879     }
880   }
881   SDValue Chain = LD->getChain();
882   SDVTList VTs = LD->getVTList();
883   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
884   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
885   transferMemOperands(LD, MN);
886   ReplaceNode(LD, MN);
887   return true;
888 }
889 
890 /// Turn an or of two masked values into the rotate left word immediate then
891 /// mask insert (rlwimi) instruction.
892 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
893   SDValue Op0 = N->getOperand(0);
894   SDValue Op1 = N->getOperand(1);
895   SDLoc dl(N);
896 
897   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
898   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
899 
900   unsigned TargetMask = LKnown.Zero.getZExtValue();
901   unsigned InsertMask = RKnown.Zero.getZExtValue();
902 
903   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
904     unsigned Op0Opc = Op0.getOpcode();
905     unsigned Op1Opc = Op1.getOpcode();
906     unsigned Value, SH = 0;
907     TargetMask = ~TargetMask;
908     InsertMask = ~InsertMask;
909 
910     // If the LHS has a foldable shift and the RHS does not, then swap it to the
911     // RHS so that we can fold the shift into the insert.
912     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
913       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
914           Op0.getOperand(0).getOpcode() == ISD::SRL) {
915         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
916             Op1.getOperand(0).getOpcode() != ISD::SRL) {
917           std::swap(Op0, Op1);
918           std::swap(Op0Opc, Op1Opc);
919           std::swap(TargetMask, InsertMask);
920         }
921       }
922     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
923       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
924           Op1.getOperand(0).getOpcode() != ISD::SRL) {
925         std::swap(Op0, Op1);
926         std::swap(Op0Opc, Op1Opc);
927         std::swap(TargetMask, InsertMask);
928       }
929     }
930 
931     unsigned MB, ME;
932     if (isRunOfOnes(InsertMask, MB, ME)) {
933       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
934           isInt32Immediate(Op1.getOperand(1), Value)) {
935         Op1 = Op1.getOperand(0);
936         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
937       }
938       if (Op1Opc == ISD::AND) {
939        // The AND mask might not be a constant, and we need to make sure that
940        // if we're going to fold the masking with the insert, all bits not
941        // know to be zero in the mask are known to be one.
942         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
943         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
944 
945         unsigned SHOpc = Op1.getOperand(0).getOpcode();
946         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
947             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
948           // Note that Value must be in range here (less than 32) because
949           // otherwise there would not be any bits set in InsertMask.
950           Op1 = Op1.getOperand(0).getOperand(0);
951           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
952         }
953       }
954 
955       SH &= 31;
956       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
957                           getI32Imm(ME, dl) };
958       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
959       return true;
960     }
961   }
962   return false;
963 }
964 
965 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
966   unsigned MaxTruncation = 0;
967   // Cannot use range-based for loop here as we need the actual use (i.e. we
968   // need the operand number corresponding to the use). A range-based for
969   // will unbox the use and provide an SDNode*.
970   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
971        Use != UseEnd; ++Use) {
972     unsigned Opc =
973       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
974     switch (Opc) {
975     default: return 0;
976     case ISD::TRUNCATE:
977       if (Use->isMachineOpcode())
978         return 0;
979       MaxTruncation =
980         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
981       continue;
982     case ISD::STORE: {
983       if (Use->isMachineOpcode())
984         return 0;
985       StoreSDNode *STN = cast<StoreSDNode>(*Use);
986       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
987       if (MemVTSize == 64 || Use.getOperandNo() != 0)
988         return 0;
989       MaxTruncation = std::max(MaxTruncation, MemVTSize);
990       continue;
991     }
992     case PPC::STW8:
993     case PPC::STWX8:
994     case PPC::STWU8:
995     case PPC::STWUX8:
996       if (Use.getOperandNo() != 0)
997         return 0;
998       MaxTruncation = std::max(MaxTruncation, 32u);
999       continue;
1000     case PPC::STH8:
1001     case PPC::STHX8:
1002     case PPC::STHU8:
1003     case PPC::STHUX8:
1004       if (Use.getOperandNo() != 0)
1005         return 0;
1006       MaxTruncation = std::max(MaxTruncation, 16u);
1007       continue;
1008     case PPC::STB8:
1009     case PPC::STBX8:
1010     case PPC::STBU8:
1011     case PPC::STBUX8:
1012       if (Use.getOperandNo() != 0)
1013         return 0;
1014       MaxTruncation = std::max(MaxTruncation, 8u);
1015       continue;
1016     }
1017   }
1018   return MaxTruncation;
1019 }
1020 
1021 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
1022 // zeros and return the number of bits by the left of these consecutive zeros.
1023 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
1024   unsigned HiTZ = llvm::countr_zero<uint32_t>(Hi_32(Imm));
1025   unsigned LoLZ = llvm::countl_zero<uint32_t>(Lo_32(Imm));
1026   if ((HiTZ + LoLZ) >= Num)
1027     return (32 + HiTZ);
1028   return 0;
1029 }
1030 
1031 // Direct materialization of 64-bit constants by enumerated patterns.
1032 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
1033                                   uint64_t Imm, unsigned &InstCnt) {
1034   unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1035   unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1036   unsigned TO = llvm::countr_one<uint64_t>(Imm);
1037   unsigned LO = llvm::countl_one<uint64_t>(Imm);
1038   unsigned Hi32 = Hi_32(Imm);
1039   unsigned Lo32 = Lo_32(Imm);
1040   SDNode *Result = nullptr;
1041   unsigned Shift = 0;
1042 
1043   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1044     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1045   };
1046 
1047   // Following patterns use 1 instructions to materialize the Imm.
1048   InstCnt = 1;
1049   // 1-1) Patterns : {zeros}{15-bit valve}
1050   //                 {ones}{15-bit valve}
1051   if (isInt<16>(Imm)) {
1052     SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1053     return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1054   }
1055   // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
1056   //                 {ones}{15-bit valve}{16 zeros}
1057   if (TZ > 15 && (LZ > 32 || LO > 32))
1058     return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1059                                   getI32Imm((Imm >> 16) & 0xffff));
1060 
1061   // Following patterns use 2 instructions to materialize the Imm.
1062   InstCnt = 2;
1063   assert(LZ < 64 && "Unexpected leading zeros here.");
1064   // Count of ones follwing the leading zeros.
1065   unsigned FO = llvm::countl_one<uint64_t>(Imm << LZ);
1066   // 2-1) Patterns : {zeros}{31-bit value}
1067   //                 {ones}{31-bit value}
1068   if (isInt<32>(Imm)) {
1069     uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
1070     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1071     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1072     return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1073                                   getI32Imm(Imm & 0xffff));
1074   }
1075   // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
1076   //                 {zeros}{15-bit value}{zeros}
1077   //                 {zeros}{ones}{15-bit value}
1078   //                 {ones}{15-bit value}{zeros}
1079   // We can take advantage of LI's sign-extension semantics to generate leading
1080   // ones, and then use RLDIC to mask off the ones in both sides after rotation.
1081   if ((LZ + FO + TZ) > 48) {
1082     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1083                                     getI32Imm((Imm >> TZ) & 0xffff));
1084     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1085                                   getI32Imm(TZ), getI32Imm(LZ));
1086   }
1087   // 2-3) Pattern : {zeros}{15-bit value}{ones}
1088   // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
1089   // therefore we can take advantage of LI's sign-extension semantics, and then
1090   // mask them off after rotation.
1091   //
1092   // +--LZ--||-15-bit-||--TO--+     +-------------|--16-bit--+
1093   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1094   // +------------------------+     +------------------------+
1095   // 63                      0      63                      0
1096   //          Imm                   (Imm >> (48 - LZ) & 0xffff)
1097   // +----sext-----|--16-bit--+     +clear-|-----------------+
1098   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1099   // +------------------------+     +------------------------+
1100   // 63                      0      63                      0
1101   // LI8: sext many leading zeros   RLDICL: rotate left (48 - LZ), clear left LZ
1102   if ((LZ + TO) > 48) {
1103     // Since the immediates with (LZ > 32) have been handled by previous
1104     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1105     // the Imm by a negative value.
1106     assert(LZ <= 32 && "Unexpected shift value.");
1107     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1108                                     getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1109     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1110                                   getI32Imm(48 - LZ), getI32Imm(LZ));
1111   }
1112   // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1113   //                 {ones}{15-bit value}{ones}
1114   // We can take advantage of LI's sign-extension semantics to generate leading
1115   // ones, and then use RLDICL to mask off the ones in left sides (if required)
1116   // after rotation.
1117   //
1118   // +-LZ-FO||-15-bit-||--TO--+     +-------------|--16-bit--+
1119   // |00011110bbbbbbbbb1111111| ->  |000000000011110bbbbbbbbb|
1120   // +------------------------+     +------------------------+
1121   // 63                      0      63                      0
1122   //            Imm                    (Imm >> TO) & 0xffff
1123   // +----sext-----|--16-bit--+     +LZ|---------------------+
1124   // |111111111111110bbbbbbbbb| ->  |00011110bbbbbbbbb1111111|
1125   // +------------------------+     +------------------------+
1126   // 63                      0      63                      0
1127   // LI8: sext many leading zeros   RLDICL: rotate left TO, clear left LZ
1128   if ((LZ + FO + TO) > 48) {
1129     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1130                                     getI32Imm((Imm >> TO) & 0xffff));
1131     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1132                                   getI32Imm(TO), getI32Imm(LZ));
1133   }
1134   // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1135   // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1136   // value, we can use LI for Lo16 without generating leading ones then add the
1137   // Hi16(in Lo32).
1138   if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1139     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1140                                     getI32Imm(Lo32 & 0xffff));
1141     return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1142                                   getI32Imm(Lo32 >> 16));
1143   }
1144   // 2-6) Patterns : {******}{49 zeros}{******}
1145   //                 {******}{49 ones}{******}
1146   // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1147   // bits remain on both sides. Rotate right the Imm to construct an int<16>
1148   // value, use LI for int<16> value and then use RLDICL without mask to rotate
1149   // it back.
1150   //
1151   // 1) findContiguousZerosAtLeast(Imm, 49)
1152   // +------|--zeros-|------+     +---ones--||---15 bit--+
1153   // |bbbbbb0000000000aaaaaa| ->  |0000000000aaaaaabbbbbb|
1154   // +----------------------+     +----------------------+
1155   // 63                    0      63                    0
1156   //
1157   // 2) findContiguousZerosAtLeast(~Imm, 49)
1158   // +------|--ones--|------+     +---ones--||---15 bit--+
1159   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1160   // +----------------------+     +----------------------+
1161   // 63                    0      63                    0
1162   if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1163       (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1164     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1165     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1166                                     getI32Imm(RotImm & 0xffff));
1167     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1168                                   getI32Imm(Shift), getI32Imm(0));
1169   }
1170   // 2-7) Patterns : High word == Low word
1171   // This may require 2 to 3 instructions, depending on whether Lo32 can be
1172   // materialized in 1 instruction.
1173   if (Hi32 == Lo32) {
1174     // Handle the first 32 bits.
1175     uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1176     uint64_t ImmLo16 = Lo32 & 0xffff;
1177     if (isInt<16>(Lo32))
1178       Result =
1179           CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(ImmLo16));
1180     else if (!ImmLo16)
1181       Result =
1182           CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16));
1183     else {
1184       InstCnt = 3;
1185       Result =
1186           CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(ImmHi16));
1187       Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1188                                       SDValue(Result, 0), getI32Imm(ImmLo16));
1189     }
1190     // Use rldimi to insert the Low word into High word.
1191     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1192                      getI32Imm(0)};
1193     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1194   }
1195 
1196   // Following patterns use 3 instructions to materialize the Imm.
1197   InstCnt = 3;
1198   // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1199   //                 {zeros}{31-bit value}{zeros}
1200   //                 {zeros}{ones}{31-bit value}
1201   //                 {ones}{31-bit value}{zeros}
1202   // We can take advantage of LIS's sign-extension semantics to generate leading
1203   // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1204   // ones in both sides after rotation.
1205   if ((LZ + FO + TZ) > 32) {
1206     uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1207     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1208     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1209     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1210                                     getI32Imm((Imm >> TZ) & 0xffff));
1211     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1212                                   getI32Imm(TZ), getI32Imm(LZ));
1213   }
1214   // 3-2) Pattern : {zeros}{31-bit value}{ones}
1215   // Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
1216   // value, therefore we can take advantage of LIS's sign-extension semantics,
1217   // add the remaining bits with ORI, and then mask them off after rotation.
1218   // This is similar to Pattern 2-3, please refer to the diagram there.
1219   if ((LZ + TO) > 32) {
1220     // Since the immediates with (LZ > 32) have been handled by previous
1221     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1222     // the Imm by a negative value.
1223     assert(LZ <= 32 && "Unexpected shift value.");
1224     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1225                                     getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1226     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1227                                     getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1228     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1229                                   getI32Imm(32 - LZ), getI32Imm(LZ));
1230   }
1231   // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1232   //                 {ones}{31-bit value}{ones}
1233   // We can take advantage of LIS's sign-extension semantics to generate leading
1234   // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1235   // ones in left sides (if required) after rotation.
1236   // This is similar to Pattern 2-4, please refer to the diagram there.
1237   if ((LZ + FO + TO) > 32) {
1238     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1239                                     getI32Imm((Imm >> (TO + 16)) & 0xffff));
1240     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1241                                     getI32Imm((Imm >> TO) & 0xffff));
1242     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1243                                   getI32Imm(TO), getI32Imm(LZ));
1244   }
1245   // 3-4) Patterns : {******}{33 zeros}{******}
1246   //                 {******}{33 ones}{******}
1247   // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1248   // bits remain on both sides. Rotate right the Imm to construct an int<32>
1249   // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1250   // rotate it back.
1251   // This is similar to Pattern 2-6, please refer to the diagram there.
1252   if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1253       (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1254     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1255     uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1256     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1257     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1258     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1259                                     getI32Imm(RotImm & 0xffff));
1260     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1261                                   getI32Imm(Shift), getI32Imm(0));
1262   }
1263 
1264   InstCnt = 0;
1265   return nullptr;
1266 }
1267 
1268 // Try to select instructions to generate a 64 bit immediate using prefix as
1269 // well as non prefix instructions. The function will return the SDNode
1270 // to materialize that constant or it will return nullptr if it does not
1271 // find one. The variable InstCnt is set to the number of instructions that
1272 // were selected.
1273 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1274                                         uint64_t Imm, unsigned &InstCnt) {
1275   unsigned TZ = llvm::countr_zero<uint64_t>(Imm);
1276   unsigned LZ = llvm::countl_zero<uint64_t>(Imm);
1277   unsigned TO = llvm::countr_one<uint64_t>(Imm);
1278   unsigned FO = llvm::countl_one<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1279   unsigned Hi32 = Hi_32(Imm);
1280   unsigned Lo32 = Lo_32(Imm);
1281 
1282   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1283     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1284   };
1285 
1286   auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1287     return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1288   };
1289 
1290   // Following patterns use 1 instruction to materialize Imm.
1291   InstCnt = 1;
1292 
1293   // The pli instruction can materialize up to 34 bits directly.
1294   // If a constant fits within 34-bits, emit the pli instruction here directly.
1295   if (isInt<34>(Imm))
1296     return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1297                                   CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1298 
1299   // Require at least two instructions.
1300   InstCnt = 2;
1301   SDNode *Result = nullptr;
1302   // Patterns : {zeros}{ones}{33-bit value}{zeros}
1303   //            {zeros}{33-bit value}{zeros}
1304   //            {zeros}{ones}{33-bit value}
1305   //            {ones}{33-bit value}{zeros}
1306   // We can take advantage of PLI's sign-extension semantics to generate leading
1307   // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1308   if ((LZ + FO + TZ) > 30) {
1309     APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1310     APInt Extended = SignedInt34.sext(64);
1311     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1312                                     getI64Imm(*Extended.getRawData()));
1313     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1314                                   getI32Imm(TZ), getI32Imm(LZ));
1315   }
1316   // Pattern : {zeros}{33-bit value}{ones}
1317   // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1318   // therefore we can take advantage of PLI's sign-extension semantics, and then
1319   // mask them off after rotation.
1320   //
1321   // +--LZ--||-33-bit-||--TO--+     +-------------|--34-bit--+
1322   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1323   // +------------------------+     +------------------------+
1324   // 63                      0      63                      0
1325   //
1326   // +----sext-----|--34-bit--+     +clear-|-----------------+
1327   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1328   // +------------------------+     +------------------------+
1329   // 63                      0      63                      0
1330   if ((LZ + TO) > 30) {
1331     APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1332     APInt Extended = SignedInt34.sext(64);
1333     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1334                                     getI64Imm(*Extended.getRawData()));
1335     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1336                                   getI32Imm(30 - LZ), getI32Imm(LZ));
1337   }
1338   // Patterns : {zeros}{ones}{33-bit value}{ones}
1339   //            {ones}{33-bit value}{ones}
1340   // Similar to LI we can take advantage of PLI's sign-extension semantics to
1341   // generate leading ones, and then use RLDICL to mask off the ones in left
1342   // sides (if required) after rotation.
1343   if ((LZ + FO + TO) > 30) {
1344     APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1345     APInt Extended = SignedInt34.sext(64);
1346     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1347                                     getI64Imm(*Extended.getRawData()));
1348     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1349                                   getI32Imm(TO), getI32Imm(LZ));
1350   }
1351   // Patterns : {******}{31 zeros}{******}
1352   //          : {******}{31 ones}{******}
1353   // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1354   // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1355   // for the int<33> value and then use RLDICL without a mask to rotate it back.
1356   //
1357   // +------|--ones--|------+     +---ones--||---33 bit--+
1358   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1359   // +----------------------+     +----------------------+
1360   // 63                    0      63                    0
1361   for (unsigned Shift = 0; Shift < 63; ++Shift) {
1362     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1363     if (isInt<34>(RotImm)) {
1364       Result =
1365           CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1366       return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1367                                     SDValue(Result, 0), getI32Imm(Shift),
1368                                     getI32Imm(0));
1369     }
1370   }
1371 
1372   // Patterns : High word == Low word
1373   // This is basically a splat of a 32 bit immediate.
1374   if (Hi32 == Lo32) {
1375     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1376     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1377                      getI32Imm(0)};
1378     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1379   }
1380 
1381   InstCnt = 3;
1382   // Catch-all
1383   // This pattern can form any 64 bit immediate in 3 instructions.
1384   SDNode *ResultHi =
1385       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1386   SDNode *ResultLo =
1387       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1388   SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1389                    getI32Imm(0)};
1390   return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1391 }
1392 
1393 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1394                             unsigned *InstCnt = nullptr) {
1395   unsigned InstCntDirect = 0;
1396   // No more than 3 instructions are used if we can select the i64 immediate
1397   // directly.
1398   SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1399 
1400   const PPCSubtarget &Subtarget =
1401       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1402 
1403   // If we have prefixed instructions and there is a chance we can
1404   // materialize the constant with fewer prefixed instructions than
1405   // non-prefixed, try that.
1406   if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1407     unsigned InstCntDirectP = 0;
1408     SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1409     // Use the prefix case in either of two cases:
1410     // 1) We have no result from the non-prefix case to use.
1411     // 2) The non-prefix case uses more instructions than the prefix case.
1412     // If the prefix and non-prefix cases use the same number of instructions
1413     // we will prefer the non-prefix case.
1414     if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1415       if (InstCnt)
1416         *InstCnt = InstCntDirectP;
1417       return ResultP;
1418     }
1419   }
1420 
1421   if (Result) {
1422     if (InstCnt)
1423       *InstCnt = InstCntDirect;
1424     return Result;
1425   }
1426   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1427     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1428   };
1429 
1430   uint32_t Hi16OfLo32 = (Lo_32(Imm) >> 16) & 0xffff;
1431   uint32_t Lo16OfLo32 = Lo_32(Imm) & 0xffff;
1432 
1433   // Try to use 4 instructions to materialize the immediate which is "almost" a
1434   // splat of a 32 bit immediate.
1435   if (Hi16OfLo32 && Lo16OfLo32) {
1436     uint32_t Hi16OfHi32 = (Hi_32(Imm) >> 16) & 0xffff;
1437     uint32_t Lo16OfHi32 = Hi_32(Imm) & 0xffff;
1438     bool IsSelected = false;
1439 
1440     auto getSplat = [CurDAG, dl, getI32Imm](uint32_t Hi16, uint32_t Lo16) {
1441       SDNode *Result =
1442           CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi16));
1443       Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
1444                                       SDValue(Result, 0), getI32Imm(Lo16));
1445       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1446                        getI32Imm(0)};
1447       return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1448     };
1449 
1450     if (Hi16OfHi32 == Lo16OfHi32 && Lo16OfHi32 == Lo16OfLo32) {
1451       IsSelected = true;
1452       Result = getSplat(Hi16OfLo32, Lo16OfLo32);
1453       // Modify Hi16OfHi32.
1454       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(48),
1455                        getI32Imm(0)};
1456       Result = CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1457     } else if (Hi16OfHi32 == Hi16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1458       IsSelected = true;
1459       Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1460       // Modify Lo16OfLo32.
1461       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1462                        getI32Imm(16), getI32Imm(31)};
1463       Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1464     } else if (Lo16OfHi32 == Lo16OfLo32 && Hi16OfLo32 == Lo16OfLo32) {
1465       IsSelected = true;
1466       Result = getSplat(Hi16OfHi32, Lo16OfHi32);
1467       // Modify Hi16OfLo32.
1468       SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(16),
1469                        getI32Imm(0), getI32Imm(15)};
1470       Result = CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops);
1471     }
1472     if (IsSelected == true) {
1473       if (InstCnt)
1474         *InstCnt = 4;
1475       return Result;
1476     }
1477   }
1478 
1479   // Handle the upper 32 bit value.
1480   Result =
1481       selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1482   // Add in the last bits as required.
1483   if (Hi16OfLo32) {
1484     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1485                                     SDValue(Result, 0), getI32Imm(Hi16OfLo32));
1486     ++InstCntDirect;
1487   }
1488   if (Lo16OfLo32) {
1489     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1490                                     getI32Imm(Lo16OfLo32));
1491     ++InstCntDirect;
1492   }
1493   if (InstCnt)
1494     *InstCnt = InstCntDirect;
1495   return Result;
1496 }
1497 
1498 // Select a 64-bit constant.
1499 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1500   SDLoc dl(N);
1501 
1502   // Get 64 bit value.
1503   int64_t Imm = N->getAsZExtVal();
1504   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1505     uint64_t SextImm = SignExtend64(Imm, MinSize);
1506     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1507     if (isInt<16>(SextImm))
1508       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1509   }
1510   return selectI64Imm(CurDAG, dl, Imm);
1511 }
1512 
1513 namespace {
1514 
1515 class BitPermutationSelector {
1516   struct ValueBit {
1517     SDValue V;
1518 
1519     // The bit number in the value, using a convention where bit 0 is the
1520     // lowest-order bit.
1521     unsigned Idx;
1522 
1523     // ConstZero means a bit we need to mask off.
1524     // Variable is a bit comes from an input variable.
1525     // VariableKnownToBeZero is also a bit comes from an input variable,
1526     // but it is known to be already zero. So we do not need to mask them.
1527     enum Kind {
1528       ConstZero,
1529       Variable,
1530       VariableKnownToBeZero
1531     } K;
1532 
1533     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1534       : V(V), Idx(I), K(K) {}
1535     ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1536 
1537     bool isZero() const {
1538       return K == ConstZero || K == VariableKnownToBeZero;
1539     }
1540 
1541     bool hasValue() const {
1542       return K == Variable || K == VariableKnownToBeZero;
1543     }
1544 
1545     SDValue getValue() const {
1546       assert(hasValue() && "Cannot get the value of a constant bit");
1547       return V;
1548     }
1549 
1550     unsigned getValueBitIndex() const {
1551       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1552       return Idx;
1553     }
1554   };
1555 
1556   // A bit group has the same underlying value and the same rotate factor.
1557   struct BitGroup {
1558     SDValue V;
1559     unsigned RLAmt;
1560     unsigned StartIdx, EndIdx;
1561 
1562     // This rotation amount assumes that the lower 32 bits of the quantity are
1563     // replicated in the high 32 bits by the rotation operator (which is done
1564     // by rlwinm and friends in 64-bit mode).
1565     bool Repl32;
1566     // Did converting to Repl32 == true change the rotation factor? If it did,
1567     // it decreased it by 32.
1568     bool Repl32CR;
1569     // Was this group coalesced after setting Repl32 to true?
1570     bool Repl32Coalesced;
1571 
1572     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1573       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1574         Repl32Coalesced(false) {
1575       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1576                         << " [" << S << ", " << E << "]\n");
1577     }
1578   };
1579 
1580   // Information on each (Value, RLAmt) pair (like the number of groups
1581   // associated with each) used to choose the lowering method.
1582   struct ValueRotInfo {
1583     SDValue V;
1584     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1585     unsigned NumGroups = 0;
1586     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1587     bool Repl32 = false;
1588 
1589     ValueRotInfo() = default;
1590 
1591     // For sorting (in reverse order) by NumGroups, and then by
1592     // FirstGroupStartIdx.
1593     bool operator < (const ValueRotInfo &Other) const {
1594       // We need to sort so that the non-Repl32 come first because, when we're
1595       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1596       // masking operation.
1597       if (Repl32 < Other.Repl32)
1598         return true;
1599       else if (Repl32 > Other.Repl32)
1600         return false;
1601       else if (NumGroups > Other.NumGroups)
1602         return true;
1603       else if (NumGroups < Other.NumGroups)
1604         return false;
1605       else if (RLAmt == 0 && Other.RLAmt != 0)
1606         return true;
1607       else if (RLAmt != 0 && Other.RLAmt == 0)
1608         return false;
1609       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1610         return true;
1611       return false;
1612     }
1613   };
1614 
1615   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1616   using ValueBitsMemoizer =
1617       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1618   ValueBitsMemoizer Memoizer;
1619 
1620   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1621   // The bool is true if something interesting was deduced, otherwise if we're
1622   // providing only a generic representation of V (or something else likewise
1623   // uninteresting for instruction selection) through the SmallVector.
1624   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1625                                                             unsigned NumBits) {
1626     auto &ValueEntry = Memoizer[V];
1627     if (ValueEntry)
1628       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1629     ValueEntry.reset(new ValueBitsMemoizedValue());
1630     bool &Interesting = ValueEntry->first;
1631     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1632     Bits.resize(NumBits);
1633 
1634     switch (V.getOpcode()) {
1635     default: break;
1636     case ISD::ROTL:
1637       if (isa<ConstantSDNode>(V.getOperand(1))) {
1638         assert(isPowerOf2_32(NumBits) && "rotl bits should be power of 2!");
1639         unsigned RotAmt = V.getConstantOperandVal(1) & (NumBits - 1);
1640 
1641         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1642 
1643         for (unsigned i = 0; i < NumBits; ++i)
1644           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1645 
1646         return std::make_pair(Interesting = true, &Bits);
1647       }
1648       break;
1649     case ISD::SHL:
1650     case PPCISD::SHL:
1651       if (isa<ConstantSDNode>(V.getOperand(1))) {
1652         // sld takes 7 bits, slw takes 6.
1653         unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1);
1654 
1655         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1656 
1657         if (ShiftAmt >= NumBits) {
1658           for (unsigned i = 0; i < NumBits; ++i)
1659             Bits[i] = ValueBit(ValueBit::ConstZero);
1660         } else {
1661           for (unsigned i = ShiftAmt; i < NumBits; ++i)
1662             Bits[i] = LHSBits[i - ShiftAmt];
1663           for (unsigned i = 0; i < ShiftAmt; ++i)
1664             Bits[i] = ValueBit(ValueBit::ConstZero);
1665         }
1666 
1667         return std::make_pair(Interesting = true, &Bits);
1668       }
1669       break;
1670     case ISD::SRL:
1671     case PPCISD::SRL:
1672       if (isa<ConstantSDNode>(V.getOperand(1))) {
1673         // srd takes lowest 7 bits, srw takes 6.
1674         unsigned ShiftAmt = V.getConstantOperandVal(1) & ((NumBits << 1) - 1);
1675 
1676         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1677 
1678         if (ShiftAmt >= NumBits) {
1679           for (unsigned i = 0; i < NumBits; ++i)
1680             Bits[i] = ValueBit(ValueBit::ConstZero);
1681         } else {
1682           for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1683             Bits[i] = LHSBits[i + ShiftAmt];
1684           for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1685             Bits[i] = ValueBit(ValueBit::ConstZero);
1686         }
1687 
1688         return std::make_pair(Interesting = true, &Bits);
1689       }
1690       break;
1691     case ISD::AND:
1692       if (isa<ConstantSDNode>(V.getOperand(1))) {
1693         uint64_t Mask = V.getConstantOperandVal(1);
1694 
1695         const SmallVector<ValueBit, 64> *LHSBits;
1696         // Mark this as interesting, only if the LHS was also interesting. This
1697         // prevents the overall procedure from matching a single immediate 'and'
1698         // (which is non-optimal because such an and might be folded with other
1699         // things if we don't select it here).
1700         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1701 
1702         for (unsigned i = 0; i < NumBits; ++i)
1703           if (((Mask >> i) & 1) == 1)
1704             Bits[i] = (*LHSBits)[i];
1705           else {
1706             // AND instruction masks this bit. If the input is already zero,
1707             // we have nothing to do here. Otherwise, make the bit ConstZero.
1708             if ((*LHSBits)[i].isZero())
1709               Bits[i] = (*LHSBits)[i];
1710             else
1711               Bits[i] = ValueBit(ValueBit::ConstZero);
1712           }
1713 
1714         return std::make_pair(Interesting, &Bits);
1715       }
1716       break;
1717     case ISD::OR: {
1718       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1719       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1720 
1721       bool AllDisjoint = true;
1722       SDValue LastVal = SDValue();
1723       unsigned LastIdx = 0;
1724       for (unsigned i = 0; i < NumBits; ++i) {
1725         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1726           // If both inputs are known to be zero and one is ConstZero and
1727           // another is VariableKnownToBeZero, we can select whichever
1728           // we like. To minimize the number of bit groups, we select
1729           // VariableKnownToBeZero if this bit is the next bit of the same
1730           // input variable from the previous bit. Otherwise, we select
1731           // ConstZero.
1732           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1733               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1734             Bits[i] = LHSBits[i];
1735           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1736                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1737             Bits[i] = RHSBits[i];
1738           else
1739             Bits[i] = ValueBit(ValueBit::ConstZero);
1740         }
1741         else if (LHSBits[i].isZero())
1742           Bits[i] = RHSBits[i];
1743         else if (RHSBits[i].isZero())
1744           Bits[i] = LHSBits[i];
1745         else {
1746           AllDisjoint = false;
1747           break;
1748         }
1749         // We remember the value and bit index of this bit.
1750         if (Bits[i].hasValue()) {
1751           LastVal = Bits[i].getValue();
1752           LastIdx = Bits[i].getValueBitIndex();
1753         }
1754         else {
1755           if (LastVal) LastVal = SDValue();
1756           LastIdx = 0;
1757         }
1758       }
1759 
1760       if (!AllDisjoint)
1761         break;
1762 
1763       return std::make_pair(Interesting = true, &Bits);
1764     }
1765     case ISD::ZERO_EXTEND: {
1766       // We support only the case with zero extension from i32 to i64 so far.
1767       if (V.getValueType() != MVT::i64 ||
1768           V.getOperand(0).getValueType() != MVT::i32)
1769         break;
1770 
1771       const SmallVector<ValueBit, 64> *LHSBits;
1772       const unsigned NumOperandBits = 32;
1773       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1774                                                     NumOperandBits);
1775 
1776       for (unsigned i = 0; i < NumOperandBits; ++i)
1777         Bits[i] = (*LHSBits)[i];
1778 
1779       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1780         Bits[i] = ValueBit(ValueBit::ConstZero);
1781 
1782       return std::make_pair(Interesting, &Bits);
1783     }
1784     case ISD::TRUNCATE: {
1785       EVT FromType = V.getOperand(0).getValueType();
1786       EVT ToType = V.getValueType();
1787       // We support only the case with truncate from i64 to i32.
1788       if (FromType != MVT::i64 || ToType != MVT::i32)
1789         break;
1790       const unsigned NumAllBits = FromType.getSizeInBits();
1791       SmallVector<ValueBit, 64> *InBits;
1792       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1793                                                     NumAllBits);
1794       const unsigned NumValidBits = ToType.getSizeInBits();
1795 
1796       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1797       // So, we cannot include this truncate.
1798       bool UseUpper32bit = false;
1799       for (unsigned i = 0; i < NumValidBits; ++i)
1800         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1801           UseUpper32bit = true;
1802           break;
1803         }
1804       if (UseUpper32bit)
1805         break;
1806 
1807       for (unsigned i = 0; i < NumValidBits; ++i)
1808         Bits[i] = (*InBits)[i];
1809 
1810       return std::make_pair(Interesting, &Bits);
1811     }
1812     case ISD::AssertZext: {
1813       // For AssertZext, we look through the operand and
1814       // mark the bits known to be zero.
1815       const SmallVector<ValueBit, 64> *LHSBits;
1816       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1817                                                     NumBits);
1818 
1819       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1820       const unsigned NumValidBits = FromType.getSizeInBits();
1821       for (unsigned i = 0; i < NumValidBits; ++i)
1822         Bits[i] = (*LHSBits)[i];
1823 
1824       // These bits are known to be zero but the AssertZext may be from a value
1825       // that already has some constant zero bits (i.e. from a masking and).
1826       for (unsigned i = NumValidBits; i < NumBits; ++i)
1827         Bits[i] = (*LHSBits)[i].hasValue()
1828                       ? ValueBit((*LHSBits)[i].getValue(),
1829                                  (*LHSBits)[i].getValueBitIndex(),
1830                                  ValueBit::VariableKnownToBeZero)
1831                       : ValueBit(ValueBit::ConstZero);
1832 
1833       return std::make_pair(Interesting, &Bits);
1834     }
1835     case ISD::LOAD:
1836       LoadSDNode *LD = cast<LoadSDNode>(V);
1837       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1838         EVT VT = LD->getMemoryVT();
1839         const unsigned NumValidBits = VT.getSizeInBits();
1840 
1841         for (unsigned i = 0; i < NumValidBits; ++i)
1842           Bits[i] = ValueBit(V, i);
1843 
1844         // These bits are known to be zero.
1845         for (unsigned i = NumValidBits; i < NumBits; ++i)
1846           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1847 
1848         // Zero-extending load itself cannot be optimized. So, it is not
1849         // interesting by itself though it gives useful information.
1850         return std::make_pair(Interesting = false, &Bits);
1851       }
1852       break;
1853     }
1854 
1855     for (unsigned i = 0; i < NumBits; ++i)
1856       Bits[i] = ValueBit(V, i);
1857 
1858     return std::make_pair(Interesting = false, &Bits);
1859   }
1860 
1861   // For each value (except the constant ones), compute the left-rotate amount
1862   // to get it from its original to final position.
1863   void computeRotationAmounts() {
1864     NeedMask = false;
1865     RLAmt.resize(Bits.size());
1866     for (unsigned i = 0; i < Bits.size(); ++i)
1867       if (Bits[i].hasValue()) {
1868         unsigned VBI = Bits[i].getValueBitIndex();
1869         if (i >= VBI)
1870           RLAmt[i] = i - VBI;
1871         else
1872           RLAmt[i] = Bits.size() - (VBI - i);
1873       } else if (Bits[i].isZero()) {
1874         NeedMask = true;
1875         RLAmt[i] = UINT32_MAX;
1876       } else {
1877         llvm_unreachable("Unknown value bit type");
1878       }
1879   }
1880 
1881   // Collect groups of consecutive bits with the same underlying value and
1882   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1883   // they break up groups.
1884   void collectBitGroups(bool LateMask) {
1885     BitGroups.clear();
1886 
1887     unsigned LastRLAmt = RLAmt[0];
1888     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1889     unsigned LastGroupStartIdx = 0;
1890     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1891     for (unsigned i = 1; i < Bits.size(); ++i) {
1892       unsigned ThisRLAmt = RLAmt[i];
1893       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1894       if (LateMask && !ThisValue) {
1895         ThisValue = LastValue;
1896         ThisRLAmt = LastRLAmt;
1897         // If we're doing late masking, then the first bit group always starts
1898         // at zero (even if the first bits were zero).
1899         if (BitGroups.empty())
1900           LastGroupStartIdx = 0;
1901       }
1902 
1903       // If this bit is known to be zero and the current group is a bit group
1904       // of zeros, we do not need to terminate the current bit group even the
1905       // Value or RLAmt does not match here. Instead, we terminate this group
1906       // when the first non-zero bit appears later.
1907       if (IsGroupOfZeros && Bits[i].isZero())
1908         continue;
1909 
1910       // If this bit has the same underlying value and the same rotate factor as
1911       // the last one, then they're part of the same group.
1912       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1913         // We cannot continue the current group if this bits is not known to
1914         // be zero in a bit group of zeros.
1915         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1916           continue;
1917 
1918       if (LastValue.getNode())
1919         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1920                                      i-1));
1921       LastRLAmt = ThisRLAmt;
1922       LastValue = ThisValue;
1923       LastGroupStartIdx = i;
1924       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1925     }
1926     if (LastValue.getNode())
1927       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1928                                    Bits.size()-1));
1929 
1930     if (BitGroups.empty())
1931       return;
1932 
1933     // We might be able to combine the first and last groups.
1934     if (BitGroups.size() > 1) {
1935       // If the first and last groups are the same, then remove the first group
1936       // in favor of the last group, making the ending index of the last group
1937       // equal to the ending index of the to-be-removed first group.
1938       if (BitGroups[0].StartIdx == 0 &&
1939           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1940           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1941           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1942         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1943         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1944         BitGroups.erase(BitGroups.begin());
1945       }
1946     }
1947   }
1948 
1949   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1950   // associated with each. If the number of groups are same, we prefer a group
1951   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1952   // instruction. If there is a degeneracy, pick the one that occurs
1953   // first (in the final value).
1954   void collectValueRotInfo() {
1955     ValueRots.clear();
1956 
1957     for (auto &BG : BitGroups) {
1958       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1959       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1960       VRI.V = BG.V;
1961       VRI.RLAmt = BG.RLAmt;
1962       VRI.Repl32 = BG.Repl32;
1963       VRI.NumGroups += 1;
1964       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1965     }
1966 
1967     // Now that we've collected the various ValueRotInfo instances, we need to
1968     // sort them.
1969     ValueRotsVec.clear();
1970     for (auto &I : ValueRots) {
1971       ValueRotsVec.push_back(I.second);
1972     }
1973     llvm::sort(ValueRotsVec);
1974   }
1975 
1976   // In 64-bit mode, rlwinm and friends have a rotation operator that
1977   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1978   // indices of these instructions can only be in the lower 32 bits, so they
1979   // can only represent some 64-bit bit groups. However, when they can be used,
1980   // the 32-bit replication can be used to represent, as a single bit group,
1981   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1982   // groups when possible. Returns true if any of the bit groups were
1983   // converted.
1984   void assignRepl32BitGroups() {
1985     // If we have bits like this:
1986     //
1987     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1988     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1989     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1990     //
1991     // But, making use of a 32-bit operation that replicates the low-order 32
1992     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1993     // of 8.
1994 
1995     auto IsAllLow32 = [this](BitGroup & BG) {
1996       if (BG.StartIdx <= BG.EndIdx) {
1997         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1998           if (!Bits[i].hasValue())
1999             continue;
2000           if (Bits[i].getValueBitIndex() >= 32)
2001             return false;
2002         }
2003       } else {
2004         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
2005           if (!Bits[i].hasValue())
2006             continue;
2007           if (Bits[i].getValueBitIndex() >= 32)
2008             return false;
2009         }
2010         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
2011           if (!Bits[i].hasValue())
2012             continue;
2013           if (Bits[i].getValueBitIndex() >= 32)
2014             return false;
2015         }
2016       }
2017 
2018       return true;
2019     };
2020 
2021     for (auto &BG : BitGroups) {
2022       // If this bit group has RLAmt of 0 and will not be merged with
2023       // another bit group, we don't benefit from Repl32. We don't mark
2024       // such group to give more freedom for later instruction selection.
2025       if (BG.RLAmt == 0) {
2026         auto PotentiallyMerged = [this](BitGroup & BG) {
2027           for (auto &BG2 : BitGroups)
2028             if (&BG != &BG2 && BG.V == BG2.V &&
2029                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
2030               return true;
2031           return false;
2032         };
2033         if (!PotentiallyMerged(BG))
2034           continue;
2035       }
2036       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
2037         if (IsAllLow32(BG)) {
2038           if (BG.RLAmt >= 32) {
2039             BG.RLAmt -= 32;
2040             BG.Repl32CR = true;
2041           }
2042 
2043           BG.Repl32 = true;
2044 
2045           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
2046                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
2047                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
2048         }
2049       }
2050     }
2051 
2052     // Now walk through the bit groups, consolidating where possible.
2053     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
2054       // We might want to remove this bit group by merging it with the previous
2055       // group (which might be the ending group).
2056       auto IP = (I == BitGroups.begin()) ?
2057                 std::prev(BitGroups.end()) : std::prev(I);
2058       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
2059           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
2060 
2061         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
2062                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
2063                           << I->StartIdx << ", " << I->EndIdx
2064                           << "] with group with range [" << IP->StartIdx << ", "
2065                           << IP->EndIdx << "]\n");
2066 
2067         IP->EndIdx = I->EndIdx;
2068         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
2069         IP->Repl32Coalesced = true;
2070         I = BitGroups.erase(I);
2071         continue;
2072       } else {
2073         // There is a special case worth handling: If there is a single group
2074         // covering the entire upper 32 bits, and it can be merged with both
2075         // the next and previous groups (which might be the same group), then
2076         // do so. If it is the same group (so there will be only one group in
2077         // total), then we need to reverse the order of the range so that it
2078         // covers the entire 64 bits.
2079         if (I->StartIdx == 32 && I->EndIdx == 63) {
2080           assert(std::next(I) == BitGroups.end() &&
2081                  "bit group ends at index 63 but there is another?");
2082           auto IN = BitGroups.begin();
2083 
2084           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
2085               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
2086               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
2087               IsAllLow32(*I)) {
2088 
2089             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
2090                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
2091                               << ", " << I->EndIdx
2092                               << "] with 32-bit replicated groups with ranges ["
2093                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
2094                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
2095 
2096             if (IP == IN) {
2097               // There is only one other group; change it to cover the whole
2098               // range (backward, so that it can still be Repl32 but cover the
2099               // whole 64-bit range).
2100               IP->StartIdx = 31;
2101               IP->EndIdx = 30;
2102               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
2103               IP->Repl32Coalesced = true;
2104               I = BitGroups.erase(I);
2105             } else {
2106               // There are two separate groups, one before this group and one
2107               // after us (at the beginning). We're going to remove this group,
2108               // but also the group at the very beginning.
2109               IP->EndIdx = IN->EndIdx;
2110               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
2111               IP->Repl32Coalesced = true;
2112               I = BitGroups.erase(I);
2113               BitGroups.erase(BitGroups.begin());
2114             }
2115 
2116             // This must be the last group in the vector (and we might have
2117             // just invalidated the iterator above), so break here.
2118             break;
2119           }
2120         }
2121       }
2122 
2123       ++I;
2124     }
2125   }
2126 
2127   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
2128     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
2129   }
2130 
2131   uint64_t getZerosMask() {
2132     uint64_t Mask = 0;
2133     for (unsigned i = 0; i < Bits.size(); ++i) {
2134       if (Bits[i].hasValue())
2135         continue;
2136       Mask |= (UINT64_C(1) << i);
2137     }
2138 
2139     return ~Mask;
2140   }
2141 
2142   // This method extends an input value to 64 bit if input is 32-bit integer.
2143   // While selecting instructions in BitPermutationSelector in 64-bit mode,
2144   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
2145   // In such case, we extend it to 64 bit to be consistent with other values.
2146   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
2147     if (V.getValueSizeInBits() == 64)
2148       return V;
2149 
2150     assert(V.getValueSizeInBits() == 32);
2151     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2152     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
2153                                                    MVT::i64), 0);
2154     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
2155                                                     MVT::i64, ImDef, V,
2156                                                     SubRegIdx), 0);
2157     return ExtVal;
2158   }
2159 
2160   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
2161     if (V.getValueSizeInBits() == 32)
2162       return V;
2163 
2164     assert(V.getValueSizeInBits() == 64);
2165     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2166     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
2167                                                     MVT::i32, V, SubRegIdx), 0);
2168     return SubVal;
2169   }
2170 
2171   // Depending on the number of groups for a particular value, it might be
2172   // better to rotate, mask explicitly (using andi/andis), and then or the
2173   // result. Select this part of the result first.
2174   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2175     if (BPermRewriterNoMasking)
2176       return;
2177 
2178     for (ValueRotInfo &VRI : ValueRotsVec) {
2179       unsigned Mask = 0;
2180       for (unsigned i = 0; i < Bits.size(); ++i) {
2181         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2182           continue;
2183         if (RLAmt[i] != VRI.RLAmt)
2184           continue;
2185         Mask |= (1u << i);
2186       }
2187 
2188       // Compute the masks for andi/andis that would be necessary.
2189       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2190       assert((ANDIMask != 0 || ANDISMask != 0) &&
2191              "No set bits in mask for value bit groups");
2192       bool NeedsRotate = VRI.RLAmt != 0;
2193 
2194       // We're trying to minimize the number of instructions. If we have one
2195       // group, using one of andi/andis can break even.  If we have three
2196       // groups, we can use both andi and andis and break even (to use both
2197       // andi and andis we also need to or the results together). We need four
2198       // groups if we also need to rotate. To use andi/andis we need to do more
2199       // than break even because rotate-and-mask instructions tend to be easier
2200       // to schedule.
2201 
2202       // FIXME: We've biased here against using andi/andis, which is right for
2203       // POWER cores, but not optimal everywhere. For example, on the A2,
2204       // andi/andis have single-cycle latency whereas the rotate-and-mask
2205       // instructions take two cycles, and it would be better to bias toward
2206       // andi/andis in break-even cases.
2207 
2208       unsigned NumAndInsts = (unsigned) NeedsRotate +
2209                              (unsigned) (ANDIMask != 0) +
2210                              (unsigned) (ANDISMask != 0) +
2211                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2212                              (unsigned) (bool) Res;
2213 
2214       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2215                         << " RL: " << VRI.RLAmt << ":"
2216                         << "\n\t\t\tisel using masking: " << NumAndInsts
2217                         << " using rotates: " << VRI.NumGroups << "\n");
2218 
2219       if (NumAndInsts >= VRI.NumGroups)
2220         continue;
2221 
2222       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2223 
2224       if (InstCnt) *InstCnt += NumAndInsts;
2225 
2226       SDValue VRot;
2227       if (VRI.RLAmt) {
2228         SDValue Ops[] =
2229           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2230             getI32Imm(0, dl), getI32Imm(31, dl) };
2231         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2232                                               Ops), 0);
2233       } else {
2234         VRot = TruncateToInt32(VRI.V, dl);
2235       }
2236 
2237       SDValue ANDIVal, ANDISVal;
2238       if (ANDIMask != 0)
2239         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2240                                                  VRot, getI32Imm(ANDIMask, dl)),
2241                           0);
2242       if (ANDISMask != 0)
2243         ANDISVal =
2244             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2245                                            getI32Imm(ANDISMask, dl)),
2246                     0);
2247 
2248       SDValue TotalVal;
2249       if (!ANDIVal)
2250         TotalVal = ANDISVal;
2251       else if (!ANDISVal)
2252         TotalVal = ANDIVal;
2253       else
2254         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2255                              ANDIVal, ANDISVal), 0);
2256 
2257       if (!Res)
2258         Res = TotalVal;
2259       else
2260         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2261                         Res, TotalVal), 0);
2262 
2263       // Now, remove all groups with this underlying value and rotation
2264       // factor.
2265       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2266         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2267       });
2268     }
2269   }
2270 
2271   // Instruction selection for the 32-bit case.
2272   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2273     SDLoc dl(N);
2274     SDValue Res;
2275 
2276     if (InstCnt) *InstCnt = 0;
2277 
2278     // Take care of cases that should use andi/andis first.
2279     SelectAndParts32(dl, Res, InstCnt);
2280 
2281     // If we've not yet selected a 'starting' instruction, and we have no zeros
2282     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2283     // number of groups), and start with this rotated value.
2284     if ((!NeedMask || LateMask) && !Res) {
2285       ValueRotInfo &VRI = ValueRotsVec[0];
2286       if (VRI.RLAmt) {
2287         if (InstCnt) *InstCnt += 1;
2288         SDValue Ops[] =
2289           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2290             getI32Imm(0, dl), getI32Imm(31, dl) };
2291         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2292                       0);
2293       } else {
2294         Res = TruncateToInt32(VRI.V, dl);
2295       }
2296 
2297       // Now, remove all groups with this underlying value and rotation factor.
2298       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2299         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2300       });
2301     }
2302 
2303     if (InstCnt) *InstCnt += BitGroups.size();
2304 
2305     // Insert the other groups (one at a time).
2306     for (auto &BG : BitGroups) {
2307       if (!Res) {
2308         SDValue Ops[] =
2309           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2310             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2311             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2312         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2313       } else {
2314         SDValue Ops[] =
2315           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2316               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2317             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2318         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2319       }
2320     }
2321 
2322     if (LateMask) {
2323       unsigned Mask = (unsigned) getZerosMask();
2324 
2325       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2326       assert((ANDIMask != 0 || ANDISMask != 0) &&
2327              "No set bits in zeros mask?");
2328 
2329       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2330                                (unsigned) (ANDISMask != 0) +
2331                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2332 
2333       SDValue ANDIVal, ANDISVal;
2334       if (ANDIMask != 0)
2335         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2336                                                  Res, getI32Imm(ANDIMask, dl)),
2337                           0);
2338       if (ANDISMask != 0)
2339         ANDISVal =
2340             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2341                                            getI32Imm(ANDISMask, dl)),
2342                     0);
2343 
2344       if (!ANDIVal)
2345         Res = ANDISVal;
2346       else if (!ANDISVal)
2347         Res = ANDIVal;
2348       else
2349         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2350                         ANDIVal, ANDISVal), 0);
2351     }
2352 
2353     return Res.getNode();
2354   }
2355 
2356   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2357                                 unsigned MaskStart, unsigned MaskEnd,
2358                                 bool IsIns) {
2359     // In the notation used by the instructions, 'start' and 'end' are reversed
2360     // because bits are counted from high to low order.
2361     unsigned InstMaskStart = 64 - MaskEnd - 1,
2362              InstMaskEnd   = 64 - MaskStart - 1;
2363 
2364     if (Repl32)
2365       return 1;
2366 
2367     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2368         InstMaskEnd == 63 - RLAmt)
2369       return 1;
2370 
2371     return 2;
2372   }
2373 
2374   // For 64-bit values, not all combinations of rotates and masks are
2375   // available. Produce one if it is available.
2376   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2377                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2378                           unsigned *InstCnt = nullptr) {
2379     // In the notation used by the instructions, 'start' and 'end' are reversed
2380     // because bits are counted from high to low order.
2381     unsigned InstMaskStart = 64 - MaskEnd - 1,
2382              InstMaskEnd   = 64 - MaskStart - 1;
2383 
2384     if (InstCnt) *InstCnt += 1;
2385 
2386     if (Repl32) {
2387       // This rotation amount assumes that the lower 32 bits of the quantity
2388       // are replicated in the high 32 bits by the rotation operator (which is
2389       // done by rlwinm and friends).
2390       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2391       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2392       SDValue Ops[] =
2393         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2394           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2395       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2396                                             Ops), 0);
2397     }
2398 
2399     if (InstMaskEnd == 63) {
2400       SDValue Ops[] =
2401         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2402           getI32Imm(InstMaskStart, dl) };
2403       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2404     }
2405 
2406     if (InstMaskStart == 0) {
2407       SDValue Ops[] =
2408         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2409           getI32Imm(InstMaskEnd, dl) };
2410       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2411     }
2412 
2413     if (InstMaskEnd == 63 - RLAmt) {
2414       SDValue Ops[] =
2415         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2416           getI32Imm(InstMaskStart, dl) };
2417       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2418     }
2419 
2420     // We cannot do this with a single instruction, so we'll use two. The
2421     // problem is that we're not free to choose both a rotation amount and mask
2422     // start and end independently. We can choose an arbitrary mask start and
2423     // end, but then the rotation amount is fixed. Rotation, however, can be
2424     // inverted, and so by applying an "inverse" rotation first, we can get the
2425     // desired result.
2426     if (InstCnt) *InstCnt += 1;
2427 
2428     // The rotation mask for the second instruction must be MaskStart.
2429     unsigned RLAmt2 = MaskStart;
2430     // The first instruction must rotate V so that the overall rotation amount
2431     // is RLAmt.
2432     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2433     if (RLAmt1)
2434       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2435     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2436   }
2437 
2438   // For 64-bit values, not all combinations of rotates and masks are
2439   // available. Produce a rotate-mask-and-insert if one is available.
2440   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2441                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2442                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2443     // In the notation used by the instructions, 'start' and 'end' are reversed
2444     // because bits are counted from high to low order.
2445     unsigned InstMaskStart = 64 - MaskEnd - 1,
2446              InstMaskEnd   = 64 - MaskStart - 1;
2447 
2448     if (InstCnt) *InstCnt += 1;
2449 
2450     if (Repl32) {
2451       // This rotation amount assumes that the lower 32 bits of the quantity
2452       // are replicated in the high 32 bits by the rotation operator (which is
2453       // done by rlwinm and friends).
2454       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2455       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2456       SDValue Ops[] =
2457         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2458           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2459       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2460                                             Ops), 0);
2461     }
2462 
2463     if (InstMaskEnd == 63 - RLAmt) {
2464       SDValue Ops[] =
2465         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2466           getI32Imm(InstMaskStart, dl) };
2467       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2468     }
2469 
2470     // We cannot do this with a single instruction, so we'll use two. The
2471     // problem is that we're not free to choose both a rotation amount and mask
2472     // start and end independently. We can choose an arbitrary mask start and
2473     // end, but then the rotation amount is fixed. Rotation, however, can be
2474     // inverted, and so by applying an "inverse" rotation first, we can get the
2475     // desired result.
2476     if (InstCnt) *InstCnt += 1;
2477 
2478     // The rotation mask for the second instruction must be MaskStart.
2479     unsigned RLAmt2 = MaskStart;
2480     // The first instruction must rotate V so that the overall rotation amount
2481     // is RLAmt.
2482     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2483     if (RLAmt1)
2484       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2485     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2486   }
2487 
2488   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2489     if (BPermRewriterNoMasking)
2490       return;
2491 
2492     // The idea here is the same as in the 32-bit version, but with additional
2493     // complications from the fact that Repl32 might be true. Because we
2494     // aggressively convert bit groups to Repl32 form (which, for small
2495     // rotation factors, involves no other change), and then coalesce, it might
2496     // be the case that a single 64-bit masking operation could handle both
2497     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2498     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2499     // completely capture the new combined bit group.
2500 
2501     for (ValueRotInfo &VRI : ValueRotsVec) {
2502       uint64_t Mask = 0;
2503 
2504       // We need to add to the mask all bits from the associated bit groups.
2505       // If Repl32 is false, we need to add bits from bit groups that have
2506       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2507       // group is trivially convertable if it overlaps only with the lower 32
2508       // bits, and the group has not been coalesced.
2509       auto MatchingBG = [VRI](const BitGroup &BG) {
2510         if (VRI.V != BG.V)
2511           return false;
2512 
2513         unsigned EffRLAmt = BG.RLAmt;
2514         if (!VRI.Repl32 && BG.Repl32) {
2515           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2516               !BG.Repl32Coalesced) {
2517             if (BG.Repl32CR)
2518               EffRLAmt += 32;
2519           } else {
2520             return false;
2521           }
2522         } else if (VRI.Repl32 != BG.Repl32) {
2523           return false;
2524         }
2525 
2526         return VRI.RLAmt == EffRLAmt;
2527       };
2528 
2529       for (auto &BG : BitGroups) {
2530         if (!MatchingBG(BG))
2531           continue;
2532 
2533         if (BG.StartIdx <= BG.EndIdx) {
2534           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2535             Mask |= (UINT64_C(1) << i);
2536         } else {
2537           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2538             Mask |= (UINT64_C(1) << i);
2539           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2540             Mask |= (UINT64_C(1) << i);
2541         }
2542       }
2543 
2544       // We can use the 32-bit andi/andis technique if the mask does not
2545       // require any higher-order bits. This can save an instruction compared
2546       // to always using the general 64-bit technique.
2547       bool Use32BitInsts = isUInt<32>(Mask);
2548       // Compute the masks for andi/andis that would be necessary.
2549       unsigned ANDIMask = (Mask & UINT16_MAX),
2550                ANDISMask = (Mask >> 16) & UINT16_MAX;
2551 
2552       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2553 
2554       unsigned NumAndInsts = (unsigned) NeedsRotate +
2555                              (unsigned) (bool) Res;
2556       unsigned NumOfSelectInsts = 0;
2557       selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2558       assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2559       if (Use32BitInsts)
2560         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2561                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2562       else
2563         NumAndInsts += NumOfSelectInsts + /* and */ 1;
2564 
2565       unsigned NumRLInsts = 0;
2566       bool FirstBG = true;
2567       bool MoreBG = false;
2568       for (auto &BG : BitGroups) {
2569         if (!MatchingBG(BG)) {
2570           MoreBG = true;
2571           continue;
2572         }
2573         NumRLInsts +=
2574           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2575                                !FirstBG);
2576         FirstBG = false;
2577       }
2578 
2579       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2580                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2581                         << "\n\t\t\tisel using masking: " << NumAndInsts
2582                         << " using rotates: " << NumRLInsts << "\n");
2583 
2584       // When we'd use andi/andis, we bias toward using the rotates (andi only
2585       // has a record form, and is cracked on POWER cores). However, when using
2586       // general 64-bit constant formation, bias toward the constant form,
2587       // because that exposes more opportunities for CSE.
2588       if (NumAndInsts > NumRLInsts)
2589         continue;
2590       // When merging multiple bit groups, instruction or is used.
2591       // But when rotate is used, rldimi can inert the rotated value into any
2592       // register, so instruction or can be avoided.
2593       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2594         continue;
2595 
2596       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2597 
2598       if (InstCnt) *InstCnt += NumAndInsts;
2599 
2600       SDValue VRot;
2601       // We actually need to generate a rotation if we have a non-zero rotation
2602       // factor or, in the Repl32 case, if we care about any of the
2603       // higher-order replicated bits. In the latter case, we generate a mask
2604       // backward so that it actually includes the entire 64 bits.
2605       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2606         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2607                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2608       else
2609         VRot = VRI.V;
2610 
2611       SDValue TotalVal;
2612       if (Use32BitInsts) {
2613         assert((ANDIMask != 0 || ANDISMask != 0) &&
2614                "No set bits in mask when using 32-bit ands for 64-bit value");
2615 
2616         SDValue ANDIVal, ANDISVal;
2617         if (ANDIMask != 0)
2618           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2619                                                    ExtendToInt64(VRot, dl),
2620                                                    getI32Imm(ANDIMask, dl)),
2621                             0);
2622         if (ANDISMask != 0)
2623           ANDISVal =
2624               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2625                                              ExtendToInt64(VRot, dl),
2626                                              getI32Imm(ANDISMask, dl)),
2627                       0);
2628 
2629         if (!ANDIVal)
2630           TotalVal = ANDISVal;
2631         else if (!ANDISVal)
2632           TotalVal = ANDIVal;
2633         else
2634           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2635                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2636       } else {
2637         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2638         TotalVal =
2639           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2640                                          ExtendToInt64(VRot, dl), TotalVal),
2641                   0);
2642      }
2643 
2644       if (!Res)
2645         Res = TotalVal;
2646       else
2647         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2648                                              ExtendToInt64(Res, dl), TotalVal),
2649                       0);
2650 
2651       // Now, remove all groups with this underlying value and rotation
2652       // factor.
2653       eraseMatchingBitGroups(MatchingBG);
2654     }
2655   }
2656 
2657   // Instruction selection for the 64-bit case.
2658   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2659     SDLoc dl(N);
2660     SDValue Res;
2661 
2662     if (InstCnt) *InstCnt = 0;
2663 
2664     // Take care of cases that should use andi/andis first.
2665     SelectAndParts64(dl, Res, InstCnt);
2666 
2667     // If we've not yet selected a 'starting' instruction, and we have no zeros
2668     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2669     // number of groups), and start with this rotated value.
2670     if ((!NeedMask || LateMask) && !Res) {
2671       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2672       // groups will come first, and so the VRI representing the largest number
2673       // of groups might not be first (it might be the first Repl32 groups).
2674       unsigned MaxGroupsIdx = 0;
2675       if (!ValueRotsVec[0].Repl32) {
2676         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2677           if (ValueRotsVec[i].Repl32) {
2678             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2679               MaxGroupsIdx = i;
2680             break;
2681           }
2682       }
2683 
2684       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2685       bool NeedsRotate = false;
2686       if (VRI.RLAmt) {
2687         NeedsRotate = true;
2688       } else if (VRI.Repl32) {
2689         for (auto &BG : BitGroups) {
2690           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2691               BG.Repl32 != VRI.Repl32)
2692             continue;
2693 
2694           // We don't need a rotate if the bit group is confined to the lower
2695           // 32 bits.
2696           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2697             continue;
2698 
2699           NeedsRotate = true;
2700           break;
2701         }
2702       }
2703 
2704       if (NeedsRotate)
2705         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2706                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2707                               InstCnt);
2708       else
2709         Res = VRI.V;
2710 
2711       // Now, remove all groups with this underlying value and rotation factor.
2712       if (Res)
2713         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2714           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2715                  BG.Repl32 == VRI.Repl32;
2716         });
2717     }
2718 
2719     // Because 64-bit rotates are more flexible than inserts, we might have a
2720     // preference regarding which one we do first (to save one instruction).
2721     if (!Res)
2722       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2723         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2724                                 false) <
2725             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2726                                 true)) {
2727           if (I != BitGroups.begin()) {
2728             BitGroup BG = *I;
2729             BitGroups.erase(I);
2730             BitGroups.insert(BitGroups.begin(), BG);
2731           }
2732 
2733           break;
2734         }
2735       }
2736 
2737     // Insert the other groups (one at a time).
2738     for (auto &BG : BitGroups) {
2739       if (!Res)
2740         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2741                               BG.EndIdx, InstCnt);
2742       else
2743         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2744                                  BG.StartIdx, BG.EndIdx, InstCnt);
2745     }
2746 
2747     if (LateMask) {
2748       uint64_t Mask = getZerosMask();
2749 
2750       // We can use the 32-bit andi/andis technique if the mask does not
2751       // require any higher-order bits. This can save an instruction compared
2752       // to always using the general 64-bit technique.
2753       bool Use32BitInsts = isUInt<32>(Mask);
2754       // Compute the masks for andi/andis that would be necessary.
2755       unsigned ANDIMask = (Mask & UINT16_MAX),
2756                ANDISMask = (Mask >> 16) & UINT16_MAX;
2757 
2758       if (Use32BitInsts) {
2759         assert((ANDIMask != 0 || ANDISMask != 0) &&
2760                "No set bits in mask when using 32-bit ands for 64-bit value");
2761 
2762         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2763                                  (unsigned) (ANDISMask != 0) +
2764                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2765 
2766         SDValue ANDIVal, ANDISVal;
2767         if (ANDIMask != 0)
2768           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2769                                                    ExtendToInt64(Res, dl),
2770                                                    getI32Imm(ANDIMask, dl)),
2771                             0);
2772         if (ANDISMask != 0)
2773           ANDISVal =
2774               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2775                                              ExtendToInt64(Res, dl),
2776                                              getI32Imm(ANDISMask, dl)),
2777                       0);
2778 
2779         if (!ANDIVal)
2780           Res = ANDISVal;
2781         else if (!ANDISVal)
2782           Res = ANDIVal;
2783         else
2784           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2785                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2786       } else {
2787         unsigned NumOfSelectInsts = 0;
2788         SDValue MaskVal =
2789             SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2790         Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2791                                              ExtendToInt64(Res, dl), MaskVal),
2792                       0);
2793         if (InstCnt)
2794           *InstCnt += NumOfSelectInsts + /* and */ 1;
2795       }
2796     }
2797 
2798     return Res.getNode();
2799   }
2800 
2801   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2802     // Fill in BitGroups.
2803     collectBitGroups(LateMask);
2804     if (BitGroups.empty())
2805       return nullptr;
2806 
2807     // For 64-bit values, figure out when we can use 32-bit instructions.
2808     if (Bits.size() == 64)
2809       assignRepl32BitGroups();
2810 
2811     // Fill in ValueRotsVec.
2812     collectValueRotInfo();
2813 
2814     if (Bits.size() == 32) {
2815       return Select32(N, LateMask, InstCnt);
2816     } else {
2817       assert(Bits.size() == 64 && "Not 64 bits here?");
2818       return Select64(N, LateMask, InstCnt);
2819     }
2820 
2821     return nullptr;
2822   }
2823 
2824   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2825     erase_if(BitGroups, F);
2826   }
2827 
2828   SmallVector<ValueBit, 64> Bits;
2829 
2830   bool NeedMask = false;
2831   SmallVector<unsigned, 64> RLAmt;
2832 
2833   SmallVector<BitGroup, 16> BitGroups;
2834 
2835   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2836   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2837 
2838   SelectionDAG *CurDAG = nullptr;
2839 
2840 public:
2841   BitPermutationSelector(SelectionDAG *DAG)
2842     : CurDAG(DAG) {}
2843 
2844   // Here we try to match complex bit permutations into a set of
2845   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2846   // known to produce optimal code for common cases (like i32 byte swapping).
2847   SDNode *Select(SDNode *N) {
2848     Memoizer.clear();
2849     auto Result =
2850         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2851     if (!Result.first)
2852       return nullptr;
2853     Bits = std::move(*Result.second);
2854 
2855     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2856                          " selection for:    ");
2857     LLVM_DEBUG(N->dump(CurDAG));
2858 
2859     // Fill it RLAmt and set NeedMask.
2860     computeRotationAmounts();
2861 
2862     if (!NeedMask)
2863       return Select(N, false);
2864 
2865     // We currently have two techniques for handling results with zeros: early
2866     // masking (the default) and late masking. Late masking is sometimes more
2867     // efficient, but because the structure of the bit groups is different, it
2868     // is hard to tell without generating both and comparing the results. With
2869     // late masking, we ignore zeros in the resulting value when inserting each
2870     // set of bit groups, and then mask in the zeros at the end. With early
2871     // masking, we only insert the non-zero parts of the result at every step.
2872 
2873     unsigned InstCnt = 0, InstCntLateMask = 0;
2874     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2875     SDNode *RN = Select(N, false, &InstCnt);
2876     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2877 
2878     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2879     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2880     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2881                       << " instructions\n");
2882 
2883     if (InstCnt <= InstCntLateMask) {
2884       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2885       return RN;
2886     }
2887 
2888     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2889     return RNLM;
2890   }
2891 };
2892 
2893 class IntegerCompareEliminator {
2894   SelectionDAG *CurDAG;
2895   PPCDAGToDAGISel *S;
2896   // Conversion type for interpreting results of a 32-bit instruction as
2897   // a 64-bit value or vice versa.
2898   enum ExtOrTruncConversion { Ext, Trunc };
2899 
2900   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2901   // in a GPR.
2902   // ZExtOrig - use the original condition code, zero-extend value
2903   // ZExtInvert - invert the condition code, zero-extend value
2904   // SExtOrig - use the original condition code, sign-extend value
2905   // SExtInvert - invert the condition code, sign-extend value
2906   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2907 
2908   // Comparisons against zero to emit GPR code sequences for. Each of these
2909   // sequences may need to be emitted for two or more equivalent patterns.
2910   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2911   // matters as well as the extension type: sext (-1/0), zext (1/0).
2912   // GEZExt - (zext (LHS >= 0))
2913   // GESExt - (sext (LHS >= 0))
2914   // LEZExt - (zext (LHS <= 0))
2915   // LESExt - (sext (LHS <= 0))
2916   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2917 
2918   SDNode *tryEXTEND(SDNode *N);
2919   SDNode *tryLogicOpOfCompares(SDNode *N);
2920   SDValue computeLogicOpInGPR(SDValue LogicOp);
2921   SDValue signExtendInputIfNeeded(SDValue Input);
2922   SDValue zeroExtendInputIfNeeded(SDValue Input);
2923   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2924   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2925                                         ZeroCompare CmpTy);
2926   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2927                               int64_t RHSValue, SDLoc dl);
2928  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2929                               int64_t RHSValue, SDLoc dl);
2930   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2931                               int64_t RHSValue, SDLoc dl);
2932   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2933                               int64_t RHSValue, SDLoc dl);
2934   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2935 
2936 public:
2937   IntegerCompareEliminator(SelectionDAG *DAG,
2938                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2939     assert(CurDAG->getTargetLoweringInfo()
2940            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2941            "Only expecting to use this on 64 bit targets.");
2942   }
2943   SDNode *Select(SDNode *N) {
2944     if (CmpInGPR == ICGPR_None)
2945       return nullptr;
2946     switch (N->getOpcode()) {
2947     default: break;
2948     case ISD::ZERO_EXTEND:
2949       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2950           CmpInGPR == ICGPR_SextI64)
2951         return nullptr;
2952       [[fallthrough]];
2953     case ISD::SIGN_EXTEND:
2954       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2955           CmpInGPR == ICGPR_ZextI64)
2956         return nullptr;
2957       return tryEXTEND(N);
2958     case ISD::AND:
2959     case ISD::OR:
2960     case ISD::XOR:
2961       return tryLogicOpOfCompares(N);
2962     }
2963     return nullptr;
2964   }
2965 };
2966 
2967 // The obvious case for wanting to keep the value in a GPR. Namely, the
2968 // result of the comparison is actually needed in a GPR.
2969 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2970   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2971           N->getOpcode() == ISD::SIGN_EXTEND) &&
2972          "Expecting a zero/sign extend node!");
2973   SDValue WideRes;
2974   // If we are zero-extending the result of a logical operation on i1
2975   // values, we can keep the values in GPRs.
2976   if (ISD::isBitwiseLogicOp(N->getOperand(0).getOpcode()) &&
2977       N->getOperand(0).getValueType() == MVT::i1 &&
2978       N->getOpcode() == ISD::ZERO_EXTEND)
2979     WideRes = computeLogicOpInGPR(N->getOperand(0));
2980   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2981     return nullptr;
2982   else
2983     WideRes =
2984       getSETCCInGPR(N->getOperand(0),
2985                     N->getOpcode() == ISD::SIGN_EXTEND ?
2986                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2987 
2988   if (!WideRes)
2989     return nullptr;
2990 
2991   SDLoc dl(N);
2992   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2993   bool Output32Bit = N->getValueType(0) == MVT::i32;
2994 
2995   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2996   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2997 
2998   SDValue ConvOp = WideRes;
2999   if (Input32Bit != Output32Bit)
3000     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
3001                            ExtOrTruncConversion::Trunc);
3002   return ConvOp.getNode();
3003 }
3004 
3005 // Attempt to perform logical operations on the results of comparisons while
3006 // keeping the values in GPRs. Without doing so, these would end up being
3007 // lowered to CR-logical operations which suffer from significant latency and
3008 // low ILP.
3009 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
3010   if (N->getValueType(0) != MVT::i1)
3011     return nullptr;
3012   assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&
3013          "Expected a logic operation on setcc results.");
3014   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
3015   if (!LoweredLogical)
3016     return nullptr;
3017 
3018   SDLoc dl(N);
3019   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
3020   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
3021   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
3022   SDValue LHS = LoweredLogical.getOperand(0);
3023   SDValue RHS = LoweredLogical.getOperand(1);
3024   SDValue WideOp;
3025   SDValue OpToConvToRecForm;
3026 
3027   // Look through any 32-bit to 64-bit implicit extend nodes to find the
3028   // opcode that is input to the XORI.
3029   if (IsBitwiseNegate &&
3030       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
3031     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
3032   else if (IsBitwiseNegate)
3033     // If the input to the XORI isn't an extension, that's what we're after.
3034     OpToConvToRecForm = LoweredLogical.getOperand(0);
3035   else
3036     // If this is not an XORI, it is a reg-reg logical op and we can convert
3037     // it to record-form.
3038     OpToConvToRecForm = LoweredLogical;
3039 
3040   // Get the record-form version of the node we're looking to use to get the
3041   // CR result from.
3042   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
3043   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
3044 
3045   // Convert the right node to record-form. This is either the logical we're
3046   // looking at or it is the input node to the negation (if we're looking at
3047   // a bitwise negation).
3048   if (NewOpc != -1 && IsBitwiseNegate) {
3049     // The input to the XORI has a record-form. Use it.
3050     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
3051            "Expected a PPC::XORI8 only for bitwise negation.");
3052     // Emit the record-form instruction.
3053     std::vector<SDValue> Ops;
3054     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
3055       Ops.push_back(OpToConvToRecForm.getOperand(i));
3056 
3057     WideOp =
3058       SDValue(CurDAG->getMachineNode(NewOpc, dl,
3059                                      OpToConvToRecForm.getValueType(),
3060                                      MVT::Glue, Ops), 0);
3061   } else {
3062     assert((NewOpc != -1 || !IsBitwiseNegate) &&
3063            "No record form available for AND8/OR8/XOR8?");
3064     WideOp =
3065         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
3066                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
3067                 0);
3068   }
3069 
3070   // Select this node to a single bit from CR0 set by the record-form node
3071   // just created. For bitwise negation, use the EQ bit which is the equivalent
3072   // of negating the result (i.e. it is a bit set when the result of the
3073   // operation is zero).
3074   SDValue SRIdxVal =
3075     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
3076   SDValue CRBit =
3077     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
3078                                    MVT::i1, CR0Reg, SRIdxVal,
3079                                    WideOp.getValue(1)), 0);
3080   return CRBit.getNode();
3081 }
3082 
3083 // Lower a logical operation on i1 values into a GPR sequence if possible.
3084 // The result can be kept in a GPR if requested.
3085 // Three types of inputs can be handled:
3086 // - SETCC
3087 // - TRUNCATE
3088 // - Logical operation (AND/OR/XOR)
3089 // There is also a special case that is handled (namely a complement operation
3090 // achieved with xor %a, -1).
3091 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
3092   assert(ISD::isBitwiseLogicOp(LogicOp.getOpcode()) &&
3093         "Can only handle logic operations here.");
3094   assert(LogicOp.getValueType() == MVT::i1 &&
3095          "Can only handle logic operations on i1 values here.");
3096   SDLoc dl(LogicOp);
3097   SDValue LHS, RHS;
3098 
3099  // Special case: xor %a, -1
3100   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
3101 
3102   // Produces a GPR sequence for each operand of the binary logic operation.
3103   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
3104   // the value in a GPR and for logic operations, it will recursively produce
3105   // a GPR sequence for the operation.
3106  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
3107     unsigned OperandOpcode = Operand.getOpcode();
3108     if (OperandOpcode == ISD::SETCC)
3109       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
3110     else if (OperandOpcode == ISD::TRUNCATE) {
3111       SDValue InputOp = Operand.getOperand(0);
3112      EVT InVT = InputOp.getValueType();
3113       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
3114                                             PPC::RLDICL, dl, InVT, InputOp,
3115                                             S->getI64Imm(0, dl),
3116                                             S->getI64Imm(63, dl)), 0);
3117     } else if (ISD::isBitwiseLogicOp(OperandOpcode))
3118       return computeLogicOpInGPR(Operand);
3119     return SDValue();
3120   };
3121   LHS = getLogicOperand(LogicOp.getOperand(0));
3122   RHS = getLogicOperand(LogicOp.getOperand(1));
3123 
3124   // If a GPR sequence can't be produced for the LHS we can't proceed.
3125   // Not producing a GPR sequence for the RHS is only a problem if this isn't
3126   // a bitwise negation operation.
3127   if (!LHS || (!RHS && !IsBitwiseNegation))
3128     return SDValue();
3129 
3130   NumLogicOpsOnComparison++;
3131 
3132   // We will use the inputs as 64-bit values.
3133   if (LHS.getValueType() == MVT::i32)
3134     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
3135   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
3136     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
3137 
3138   unsigned NewOpc;
3139   switch (LogicOp.getOpcode()) {
3140   default: llvm_unreachable("Unknown logic operation.");
3141   case ISD::AND: NewOpc = PPC::AND8; break;
3142   case ISD::OR:  NewOpc = PPC::OR8;  break;
3143   case ISD::XOR: NewOpc = PPC::XOR8; break;
3144   }
3145 
3146   if (IsBitwiseNegation) {
3147     RHS = S->getI64Imm(1, dl);
3148     NewOpc = PPC::XORI8;
3149   }
3150 
3151   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
3152 
3153 }
3154 
3155 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
3156 /// Otherwise just reinterpret it as a 64-bit value.
3157 /// Useful when emitting comparison code for 32-bit values without using
3158 /// the compare instruction (which only considers the lower 32-bits).
3159 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
3160   assert(Input.getValueType() == MVT::i32 &&
3161          "Can only sign-extend 32-bit values here.");
3162   unsigned Opc = Input.getOpcode();
3163 
3164   // The value was sign extended and then truncated to 32-bits. No need to
3165   // sign extend it again.
3166   if (Opc == ISD::TRUNCATE &&
3167       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
3168        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
3169     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3170 
3171   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3172   // The input is a sign-extending load. All ppc sign-extending loads
3173   // sign-extend to the full 64-bits.
3174   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3175     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3176 
3177   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3178   // We don't sign-extend constants.
3179   if (InputConst)
3180     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3181 
3182   SDLoc dl(Input);
3183   SignExtensionsAdded++;
3184   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3185                                         MVT::i64, Input), 0);
3186 }
3187 
3188 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3189 /// Otherwise just reinterpret it as a 64-bit value.
3190 /// Useful when emitting comparison code for 32-bit values without using
3191 /// the compare instruction (which only considers the lower 32-bits).
3192 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3193   assert(Input.getValueType() == MVT::i32 &&
3194          "Can only zero-extend 32-bit values here.");
3195   unsigned Opc = Input.getOpcode();
3196 
3197   // The only condition under which we can omit the actual extend instruction:
3198   // - The value is a positive constant
3199   // - The value comes from a load that isn't a sign-extending load
3200   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3201   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3202     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3203      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3204   if (IsTruncateOfZExt)
3205     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3206 
3207   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3208   if (InputConst && InputConst->getSExtValue() >= 0)
3209     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3210 
3211   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3212   // The input is a load that doesn't sign-extend (it will be zero-extended).
3213   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3214     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3215 
3216   // None of the above, need to zero-extend.
3217   SDLoc dl(Input);
3218   ZeroExtensionsAdded++;
3219   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3220                                         S->getI64Imm(0, dl),
3221                                         S->getI64Imm(32, dl)), 0);
3222 }
3223 
3224 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3225 // course not actual zero/sign extensions that will generate machine code,
3226 // they're just a way to reinterpret a 32 bit value in a register as a
3227 // 64 bit value and vice-versa.
3228 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3229                                                 ExtOrTruncConversion Conv) {
3230   SDLoc dl(NatWidthRes);
3231 
3232   // For reinterpreting 32-bit values as 64 bit values, we generate
3233   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3234   if (Conv == ExtOrTruncConversion::Ext) {
3235     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3236     SDValue SubRegIdx =
3237       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3238     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3239                                           ImDef, NatWidthRes, SubRegIdx), 0);
3240   }
3241 
3242   assert(Conv == ExtOrTruncConversion::Trunc &&
3243          "Unknown convertion between 32 and 64 bit values.");
3244   // For reinterpreting 64-bit values as 32-bit values, we just need to
3245   // EXTRACT_SUBREG (i.e. extract the low word).
3246   SDValue SubRegIdx =
3247     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3248   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3249                                         NatWidthRes, SubRegIdx), 0);
3250 }
3251 
3252 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3253 // Handle both zero-extensions and sign-extensions.
3254 SDValue
3255 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3256                                                          ZeroCompare CmpTy) {
3257   EVT InVT = LHS.getValueType();
3258   bool Is32Bit = InVT == MVT::i32;
3259   SDValue ToExtend;
3260 
3261   // Produce the value that needs to be either zero or sign extended.
3262   switch (CmpTy) {
3263   case ZeroCompare::GEZExt:
3264   case ZeroCompare::GESExt:
3265     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3266                                               dl, InVT, LHS, LHS), 0);
3267     break;
3268   case ZeroCompare::LEZExt:
3269   case ZeroCompare::LESExt: {
3270     if (Is32Bit) {
3271       // Upper 32 bits cannot be undefined for this sequence.
3272       LHS = signExtendInputIfNeeded(LHS);
3273       SDValue Neg =
3274         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3275       ToExtend =
3276         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3277                                        Neg, S->getI64Imm(1, dl),
3278                                        S->getI64Imm(63, dl)), 0);
3279     } else {
3280       SDValue Addi =
3281         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3282                                        S->getI64Imm(~0ULL, dl)), 0);
3283       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3284                                                 Addi, LHS), 0);
3285     }
3286     break;
3287   }
3288   }
3289 
3290   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3291   if (!Is32Bit &&
3292       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3293     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3294                                           ToExtend, S->getI64Imm(1, dl),
3295                                           S->getI64Imm(63, dl)), 0);
3296   if (!Is32Bit &&
3297       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3298     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3299                                           S->getI64Imm(63, dl)), 0);
3300 
3301   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3302   // For 32-bit sequences, the extensions differ between GE/LE cases.
3303   switch (CmpTy) {
3304   case ZeroCompare::GEZExt: {
3305     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3306                            S->getI32Imm(31, dl) };
3307     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3308                                           ShiftOps), 0);
3309   }
3310   case ZeroCompare::GESExt:
3311     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3312                                           S->getI32Imm(31, dl)), 0);
3313   case ZeroCompare::LEZExt:
3314     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3315                                           S->getI32Imm(1, dl)), 0);
3316   case ZeroCompare::LESExt:
3317     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3318                                           S->getI32Imm(-1, dl)), 0);
3319   }
3320 
3321   // The above case covers all the enumerators so it can't have a default clause
3322   // to avoid compiler warnings.
3323   llvm_unreachable("Unknown zero-comparison type.");
3324 }
3325 
3326 /// Produces a zero-extended result of comparing two 32-bit values according to
3327 /// the passed condition code.
3328 SDValue
3329 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3330                                               ISD::CondCode CC,
3331                                               int64_t RHSValue, SDLoc dl) {
3332   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3333       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3334     return SDValue();
3335   bool IsRHSZero = RHSValue == 0;
3336   bool IsRHSOne = RHSValue == 1;
3337   bool IsRHSNegOne = RHSValue == -1LL;
3338   switch (CC) {
3339   default: return SDValue();
3340   case ISD::SETEQ: {
3341     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3342     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
3343     SDValue Xor = IsRHSZero ? LHS :
3344       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3345     SDValue Clz =
3346       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3347     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3348       S->getI32Imm(31, dl) };
3349     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3350                                           ShiftOps), 0);
3351   }
3352   case ISD::SETNE: {
3353     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3354     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
3355     SDValue Xor = IsRHSZero ? LHS :
3356       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3357     SDValue Clz =
3358       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3359     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3360       S->getI32Imm(31, dl) };
3361     SDValue Shift =
3362       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3363     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3364                                           S->getI32Imm(1, dl)), 0);
3365   }
3366   case ISD::SETGE: {
3367     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3368     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
3369     if(IsRHSZero)
3370       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3371 
3372     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3373     // by swapping inputs and falling through.
3374     std::swap(LHS, RHS);
3375     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3376     IsRHSZero = RHSConst && RHSConst->isZero();
3377     [[fallthrough]];
3378   }
3379   case ISD::SETLE: {
3380     if (CmpInGPR == ICGPR_NonExtIn)
3381       return SDValue();
3382     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3383     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
3384     if(IsRHSZero) {
3385       if (CmpInGPR == ICGPR_NonExtIn)
3386         return SDValue();
3387       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3388     }
3389 
3390     // The upper 32-bits of the register can't be undefined for this sequence.
3391     LHS = signExtendInputIfNeeded(LHS);
3392     RHS = signExtendInputIfNeeded(RHS);
3393     SDValue Sub =
3394       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3395     SDValue Shift =
3396       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3397                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3398               0);
3399     return
3400       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3401                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3402   }
3403   case ISD::SETGT: {
3404     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3405     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3406     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
3407     // Handle SETLT -1 (which is equivalent to SETGE 0).
3408     if (IsRHSNegOne)
3409       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3410 
3411     if (IsRHSZero) {
3412       if (CmpInGPR == ICGPR_NonExtIn)
3413         return SDValue();
3414       // The upper 32-bits of the register can't be undefined for this sequence.
3415       LHS = signExtendInputIfNeeded(LHS);
3416       RHS = signExtendInputIfNeeded(RHS);
3417       SDValue Neg =
3418         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3419       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3420                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3421     }
3422     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3423     // (%b < %a) by swapping inputs and falling through.
3424     std::swap(LHS, RHS);
3425     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3426     IsRHSZero = RHSConst && RHSConst->isZero();
3427     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3428     [[fallthrough]];
3429   }
3430   case ISD::SETLT: {
3431     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3432     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3433     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3434     // Handle SETLT 1 (which is equivalent to SETLE 0).
3435     if (IsRHSOne) {
3436       if (CmpInGPR == ICGPR_NonExtIn)
3437         return SDValue();
3438       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3439     }
3440 
3441     if (IsRHSZero) {
3442       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3443                              S->getI32Imm(31, dl) };
3444       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3445                                             ShiftOps), 0);
3446     }
3447 
3448     if (CmpInGPR == ICGPR_NonExtIn)
3449       return SDValue();
3450     // The upper 32-bits of the register can't be undefined for this sequence.
3451     LHS = signExtendInputIfNeeded(LHS);
3452     RHS = signExtendInputIfNeeded(RHS);
3453     SDValue SUBFNode =
3454       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3455     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3456                                     SUBFNode, S->getI64Imm(1, dl),
3457                                     S->getI64Imm(63, dl)), 0);
3458   }
3459   case ISD::SETUGE:
3460     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3461     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3462     std::swap(LHS, RHS);
3463     [[fallthrough]];
3464   case ISD::SETULE: {
3465     if (CmpInGPR == ICGPR_NonExtIn)
3466       return SDValue();
3467     // The upper 32-bits of the register can't be undefined for this sequence.
3468     LHS = zeroExtendInputIfNeeded(LHS);
3469     RHS = zeroExtendInputIfNeeded(RHS);
3470     SDValue Subtract =
3471       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3472     SDValue SrdiNode =
3473       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3474                                           Subtract, S->getI64Imm(1, dl),
3475                                           S->getI64Imm(63, dl)), 0);
3476     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3477                                             S->getI32Imm(1, dl)), 0);
3478   }
3479   case ISD::SETUGT:
3480     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3481     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3482     std::swap(LHS, RHS);
3483     [[fallthrough]];
3484   case ISD::SETULT: {
3485     if (CmpInGPR == ICGPR_NonExtIn)
3486       return SDValue();
3487     // The upper 32-bits of the register can't be undefined for this sequence.
3488     LHS = zeroExtendInputIfNeeded(LHS);
3489     RHS = zeroExtendInputIfNeeded(RHS);
3490     SDValue Subtract =
3491       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3492     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3493                                           Subtract, S->getI64Imm(1, dl),
3494                                           S->getI64Imm(63, dl)), 0);
3495   }
3496   }
3497 }
3498 
3499 /// Produces a sign-extended result of comparing two 32-bit values according to
3500 /// the passed condition code.
3501 SDValue
3502 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3503                                               ISD::CondCode CC,
3504                                               int64_t RHSValue, SDLoc dl) {
3505   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3506       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3507     return SDValue();
3508   bool IsRHSZero = RHSValue == 0;
3509   bool IsRHSOne = RHSValue == 1;
3510   bool IsRHSNegOne = RHSValue == -1LL;
3511 
3512   switch (CC) {
3513   default: return SDValue();
3514   case ISD::SETEQ: {
3515     // (sext (setcc %a, %b, seteq)) ->
3516     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3517     // (sext (setcc %a, 0, seteq)) ->
3518     //   (ashr (shl (ctlz %a), 58), 63)
3519     SDValue CountInput = IsRHSZero ? LHS :
3520       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3521     SDValue Cntlzw =
3522       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3523     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3524                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3525     SDValue Slwi =
3526       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3527     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3528   }
3529   case ISD::SETNE: {
3530     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3531     // flip the bit, finally take 2's complement.
3532     // (sext (setcc %a, %b, setne)) ->
3533     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3534     // Same as above, but the first xor is not needed.
3535     // (sext (setcc %a, 0, setne)) ->
3536     //   (neg (xor (lshr (ctlz %a), 5), 1))
3537     SDValue Xor = IsRHSZero ? LHS :
3538       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3539     SDValue Clz =
3540       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3541     SDValue ShiftOps[] =
3542       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3543     SDValue Shift =
3544       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3545     SDValue Xori =
3546       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3547                                      S->getI32Imm(1, dl)), 0);
3548     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3549   }
3550   case ISD::SETGE: {
3551     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3552     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3553     if (IsRHSZero)
3554       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3555 
3556     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3557     // by swapping inputs and falling through.
3558     std::swap(LHS, RHS);
3559     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3560     IsRHSZero = RHSConst && RHSConst->isZero();
3561     [[fallthrough]];
3562   }
3563   case ISD::SETLE: {
3564     if (CmpInGPR == ICGPR_NonExtIn)
3565       return SDValue();
3566     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3567     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3568     if (IsRHSZero)
3569       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3570 
3571     // The upper 32-bits of the register can't be undefined for this sequence.
3572     LHS = signExtendInputIfNeeded(LHS);
3573     RHS = signExtendInputIfNeeded(RHS);
3574     SDValue SUBFNode =
3575       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3576                                      LHS, RHS), 0);
3577     SDValue Srdi =
3578       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3579                                      SUBFNode, S->getI64Imm(1, dl),
3580                                      S->getI64Imm(63, dl)), 0);
3581     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3582                                           S->getI32Imm(-1, dl)), 0);
3583   }
3584   case ISD::SETGT: {
3585     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3586     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3587     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3588     if (IsRHSNegOne)
3589       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3590     if (IsRHSZero) {
3591       if (CmpInGPR == ICGPR_NonExtIn)
3592         return SDValue();
3593       // The upper 32-bits of the register can't be undefined for this sequence.
3594       LHS = signExtendInputIfNeeded(LHS);
3595       RHS = signExtendInputIfNeeded(RHS);
3596       SDValue Neg =
3597         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3598         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3599                                               S->getI64Imm(63, dl)), 0);
3600     }
3601     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3602     // (%b < %a) by swapping inputs and falling through.
3603     std::swap(LHS, RHS);
3604     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3605     IsRHSZero = RHSConst && RHSConst->isZero();
3606     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3607     [[fallthrough]];
3608   }
3609   case ISD::SETLT: {
3610     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3611     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3612     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3613     if (IsRHSOne) {
3614       if (CmpInGPR == ICGPR_NonExtIn)
3615         return SDValue();
3616       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3617     }
3618     if (IsRHSZero)
3619       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3620                                             S->getI32Imm(31, dl)), 0);
3621 
3622     if (CmpInGPR == ICGPR_NonExtIn)
3623       return SDValue();
3624     // The upper 32-bits of the register can't be undefined for this sequence.
3625     LHS = signExtendInputIfNeeded(LHS);
3626     RHS = signExtendInputIfNeeded(RHS);
3627     SDValue SUBFNode =
3628       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3629     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3630                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3631   }
3632   case ISD::SETUGE:
3633     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3634     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3635     std::swap(LHS, RHS);
3636     [[fallthrough]];
3637   case ISD::SETULE: {
3638     if (CmpInGPR == ICGPR_NonExtIn)
3639       return SDValue();
3640     // The upper 32-bits of the register can't be undefined for this sequence.
3641     LHS = zeroExtendInputIfNeeded(LHS);
3642     RHS = zeroExtendInputIfNeeded(RHS);
3643     SDValue Subtract =
3644       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3645     SDValue Shift =
3646       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3647                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3648               0);
3649     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3650                                           S->getI32Imm(-1, dl)), 0);
3651   }
3652   case ISD::SETUGT:
3653     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3654     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3655     std::swap(LHS, RHS);
3656     [[fallthrough]];
3657   case ISD::SETULT: {
3658     if (CmpInGPR == ICGPR_NonExtIn)
3659       return SDValue();
3660     // The upper 32-bits of the register can't be undefined for this sequence.
3661     LHS = zeroExtendInputIfNeeded(LHS);
3662     RHS = zeroExtendInputIfNeeded(RHS);
3663     SDValue Subtract =
3664       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3665     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3666                                           Subtract, S->getI64Imm(63, dl)), 0);
3667   }
3668   }
3669 }
3670 
3671 /// Produces a zero-extended result of comparing two 64-bit values according to
3672 /// the passed condition code.
3673 SDValue
3674 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3675                                               ISD::CondCode CC,
3676                                               int64_t RHSValue, SDLoc dl) {
3677   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3678       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3679     return SDValue();
3680   bool IsRHSZero = RHSValue == 0;
3681   bool IsRHSOne = RHSValue == 1;
3682   bool IsRHSNegOne = RHSValue == -1LL;
3683   switch (CC) {
3684   default: return SDValue();
3685   case ISD::SETEQ: {
3686     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3687     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3688     SDValue Xor = IsRHSZero ? LHS :
3689       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3690     SDValue Clz =
3691       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3692     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3693                                           S->getI64Imm(58, dl),
3694                                           S->getI64Imm(63, dl)), 0);
3695   }
3696   case ISD::SETNE: {
3697     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3698     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3699     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3700     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3701     SDValue Xor = IsRHSZero ? LHS :
3702       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3703     SDValue AC =
3704       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3705                                      Xor, S->getI32Imm(~0U, dl)), 0);
3706     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3707                                           Xor, AC.getValue(1)), 0);
3708   }
3709   case ISD::SETGE: {
3710     // {subc.reg, subc.CA} = (subcarry %a, %b)
3711     // (zext (setcc %a, %b, setge)) ->
3712     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3713     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3714     if (IsRHSZero)
3715       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3716     std::swap(LHS, RHS);
3717     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3718     IsRHSZero = RHSConst && RHSConst->isZero();
3719     [[fallthrough]];
3720   }
3721   case ISD::SETLE: {
3722     // {subc.reg, subc.CA} = (subcarry %b, %a)
3723     // (zext (setcc %a, %b, setge)) ->
3724     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3725     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3726     if (IsRHSZero)
3727       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3728     SDValue ShiftL =
3729       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3730                                      S->getI64Imm(1, dl),
3731                                      S->getI64Imm(63, dl)), 0);
3732     SDValue ShiftR =
3733       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3734                                      S->getI64Imm(63, dl)), 0);
3735     SDValue SubtractCarry =
3736       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3737                                      LHS, RHS), 1);
3738     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3739                                           ShiftR, ShiftL, SubtractCarry), 0);
3740   }
3741   case ISD::SETGT: {
3742     // {subc.reg, subc.CA} = (subcarry %b, %a)
3743     // (zext (setcc %a, %b, setgt)) ->
3744     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3745     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3746     if (IsRHSNegOne)
3747       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3748     if (IsRHSZero) {
3749       SDValue Addi =
3750         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3751                                        S->getI64Imm(~0ULL, dl)), 0);
3752       SDValue Nor =
3753         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3754       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3755                                             S->getI64Imm(1, dl),
3756                                             S->getI64Imm(63, dl)), 0);
3757     }
3758     std::swap(LHS, RHS);
3759     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3760     IsRHSZero = RHSConst && RHSConst->isZero();
3761     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3762     [[fallthrough]];
3763   }
3764   case ISD::SETLT: {
3765     // {subc.reg, subc.CA} = (subcarry %a, %b)
3766     // (zext (setcc %a, %b, setlt)) ->
3767     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3768     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3769     if (IsRHSOne)
3770       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3771     if (IsRHSZero)
3772       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3773                                             S->getI64Imm(1, dl),
3774                                             S->getI64Imm(63, dl)), 0);
3775     SDValue SRADINode =
3776       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3777                                      LHS, S->getI64Imm(63, dl)), 0);
3778     SDValue SRDINode =
3779       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3780                                      RHS, S->getI64Imm(1, dl),
3781                                      S->getI64Imm(63, dl)), 0);
3782     SDValue SUBFC8Carry =
3783       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3784                                      RHS, LHS), 1);
3785     SDValue ADDE8Node =
3786       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3787                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3788     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3789                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3790   }
3791   case ISD::SETUGE:
3792     // {subc.reg, subc.CA} = (subcarry %a, %b)
3793     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3794     std::swap(LHS, RHS);
3795     [[fallthrough]];
3796   case ISD::SETULE: {
3797     // {subc.reg, subc.CA} = (subcarry %b, %a)
3798     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3799     SDValue SUBFC8Carry =
3800       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3801                                      LHS, RHS), 1);
3802     SDValue SUBFE8Node =
3803       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3804                                      LHS, LHS, SUBFC8Carry), 0);
3805     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3806                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3807   }
3808   case ISD::SETUGT:
3809     // {subc.reg, subc.CA} = (subcarry %b, %a)
3810     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3811     std::swap(LHS, RHS);
3812     [[fallthrough]];
3813   case ISD::SETULT: {
3814     // {subc.reg, subc.CA} = (subcarry %a, %b)
3815     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3816     SDValue SubtractCarry =
3817       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3818                                      RHS, LHS), 1);
3819     SDValue ExtSub =
3820       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3821                                      LHS, LHS, SubtractCarry), 0);
3822     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3823                                           ExtSub), 0);
3824   }
3825   }
3826 }
3827 
3828 /// Produces a sign-extended result of comparing two 64-bit values according to
3829 /// the passed condition code.
3830 SDValue
3831 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3832                                               ISD::CondCode CC,
3833                                               int64_t RHSValue, SDLoc dl) {
3834   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3835       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3836     return SDValue();
3837   bool IsRHSZero = RHSValue == 0;
3838   bool IsRHSOne = RHSValue == 1;
3839   bool IsRHSNegOne = RHSValue == -1LL;
3840   switch (CC) {
3841   default: return SDValue();
3842   case ISD::SETEQ: {
3843     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3844     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3845     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3846     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3847     SDValue AddInput = IsRHSZero ? LHS :
3848       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3849     SDValue Addic =
3850       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3851                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3852     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3853                                           Addic, Addic.getValue(1)), 0);
3854   }
3855   case ISD::SETNE: {
3856     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3857     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3858     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3859     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3860     SDValue Xor = IsRHSZero ? LHS :
3861       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3862     SDValue SC =
3863       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3864                                      Xor, S->getI32Imm(0, dl)), 0);
3865     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3866                                           SC, SC.getValue(1)), 0);
3867   }
3868   case ISD::SETGE: {
3869     // {subc.reg, subc.CA} = (subcarry %a, %b)
3870     // (zext (setcc %a, %b, setge)) ->
3871     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3872     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3873     if (IsRHSZero)
3874       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3875     std::swap(LHS, RHS);
3876     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3877     IsRHSZero = RHSConst && RHSConst->isZero();
3878     [[fallthrough]];
3879   }
3880   case ISD::SETLE: {
3881     // {subc.reg, subc.CA} = (subcarry %b, %a)
3882     // (zext (setcc %a, %b, setge)) ->
3883     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3884     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3885     if (IsRHSZero)
3886       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3887     SDValue ShiftR =
3888       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3889                                      S->getI64Imm(63, dl)), 0);
3890     SDValue ShiftL =
3891       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3892                                      S->getI64Imm(1, dl),
3893                                      S->getI64Imm(63, dl)), 0);
3894     SDValue SubtractCarry =
3895       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3896                                      LHS, RHS), 1);
3897     SDValue Adde =
3898       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3899                                      ShiftR, ShiftL, SubtractCarry), 0);
3900     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3901   }
3902   case ISD::SETGT: {
3903     // {subc.reg, subc.CA} = (subcarry %b, %a)
3904     // (zext (setcc %a, %b, setgt)) ->
3905     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3906     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3907     if (IsRHSNegOne)
3908       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3909     if (IsRHSZero) {
3910       SDValue Add =
3911         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3912                                        S->getI64Imm(-1, dl)), 0);
3913       SDValue Nor =
3914         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3915       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3916                                             S->getI64Imm(63, dl)), 0);
3917     }
3918     std::swap(LHS, RHS);
3919     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3920     IsRHSZero = RHSConst && RHSConst->isZero();
3921     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3922     [[fallthrough]];
3923   }
3924   case ISD::SETLT: {
3925     // {subc.reg, subc.CA} = (subcarry %a, %b)
3926     // (zext (setcc %a, %b, setlt)) ->
3927     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3928     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3929     if (IsRHSOne)
3930       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3931     if (IsRHSZero) {
3932       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3933                                             S->getI64Imm(63, dl)), 0);
3934     }
3935     SDValue SRADINode =
3936       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3937                                      LHS, S->getI64Imm(63, dl)), 0);
3938     SDValue SRDINode =
3939       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3940                                      RHS, S->getI64Imm(1, dl),
3941                                      S->getI64Imm(63, dl)), 0);
3942     SDValue SUBFC8Carry =
3943       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3944                                      RHS, LHS), 1);
3945     SDValue ADDE8Node =
3946       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3947                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3948     SDValue XORI8Node =
3949       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3950                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3951     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3952                                           XORI8Node), 0);
3953   }
3954   case ISD::SETUGE:
3955     // {subc.reg, subc.CA} = (subcarry %a, %b)
3956     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3957     std::swap(LHS, RHS);
3958     [[fallthrough]];
3959   case ISD::SETULE: {
3960     // {subc.reg, subc.CA} = (subcarry %b, %a)
3961     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3962     SDValue SubtractCarry =
3963       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3964                                      LHS, RHS), 1);
3965     SDValue ExtSub =
3966       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3967                                      LHS, SubtractCarry), 0);
3968     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3969                                           ExtSub, ExtSub), 0);
3970   }
3971   case ISD::SETUGT:
3972     // {subc.reg, subc.CA} = (subcarry %b, %a)
3973     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3974     std::swap(LHS, RHS);
3975     [[fallthrough]];
3976   case ISD::SETULT: {
3977     // {subc.reg, subc.CA} = (subcarry %a, %b)
3978     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3979     SDValue SubCarry =
3980       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3981                                      RHS, LHS), 1);
3982     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3983                                      LHS, LHS, SubCarry), 0);
3984   }
3985   }
3986 }
3987 
3988 /// Do all uses of this SDValue need the result in a GPR?
3989 /// This is meant to be used on values that have type i1 since
3990 /// it is somewhat meaningless to ask if values of other types
3991 /// should be kept in GPR's.
3992 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3993   assert(Compare.getOpcode() == ISD::SETCC &&
3994          "An ISD::SETCC node required here.");
3995 
3996   // For values that have a single use, the caller should obviously already have
3997   // checked if that use is an extending use. We check the other uses here.
3998   if (Compare.hasOneUse())
3999     return true;
4000   // We want the value in a GPR if it is being extended, used for a select, or
4001   // used in logical operations.
4002   for (auto *CompareUse : Compare.getNode()->uses())
4003     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
4004         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
4005         CompareUse->getOpcode() != ISD::SELECT &&
4006         !ISD::isBitwiseLogicOp(CompareUse->getOpcode())) {
4007       OmittedForNonExtendUses++;
4008       return false;
4009     }
4010   return true;
4011 }
4012 
4013 /// Returns an equivalent of a SETCC node but with the result the same width as
4014 /// the inputs. This can also be used for SELECT_CC if either the true or false
4015 /// values is a power of two while the other is zero.
4016 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
4017                                                 SetccInGPROpts ConvOpts) {
4018   assert((Compare.getOpcode() == ISD::SETCC ||
4019           Compare.getOpcode() == ISD::SELECT_CC) &&
4020          "An ISD::SETCC node required here.");
4021 
4022   // Don't convert this comparison to a GPR sequence because there are uses
4023   // of the i1 result (i.e. uses that require the result in the CR).
4024   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
4025     return SDValue();
4026 
4027   SDValue LHS = Compare.getOperand(0);
4028   SDValue RHS = Compare.getOperand(1);
4029 
4030   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
4031   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
4032   ISD::CondCode CC =
4033     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
4034   EVT InputVT = LHS.getValueType();
4035   if (InputVT != MVT::i32 && InputVT != MVT::i64)
4036     return SDValue();
4037 
4038   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
4039       ConvOpts == SetccInGPROpts::SExtInvert)
4040     CC = ISD::getSetCCInverse(CC, InputVT);
4041 
4042   bool Inputs32Bit = InputVT == MVT::i32;
4043 
4044   SDLoc dl(Compare);
4045   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
4046   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
4047   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
4048     ConvOpts == SetccInGPROpts::SExtInvert;
4049 
4050   if (IsSext && Inputs32Bit)
4051     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4052   else if (Inputs32Bit)
4053     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4054   else if (IsSext)
4055     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
4056   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
4057 }
4058 
4059 } // end anonymous namespace
4060 
4061 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
4062   if (N->getValueType(0) != MVT::i32 &&
4063       N->getValueType(0) != MVT::i64)
4064     return false;
4065 
4066   // This optimization will emit code that assumes 64-bit registers
4067   // so we don't want to run it in 32-bit mode. Also don't run it
4068   // on functions that are not to be optimized.
4069   if (TM.getOptLevel() == CodeGenOptLevel::None || !TM.isPPC64())
4070     return false;
4071 
4072   // For POWER10, it is more profitable to use the set boolean extension
4073   // instructions rather than the integer compare elimination codegen.
4074   // Users can override this via the command line option, `--ppc-gpr-icmps`.
4075   if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
4076     return false;
4077 
4078   switch (N->getOpcode()) {
4079   default: break;
4080   case ISD::ZERO_EXTEND:
4081   case ISD::SIGN_EXTEND:
4082   case ISD::AND:
4083   case ISD::OR:
4084   case ISD::XOR: {
4085     IntegerCompareEliminator ICmpElim(CurDAG, this);
4086     if (SDNode *New = ICmpElim.Select(N)) {
4087       ReplaceNode(N, New);
4088       return true;
4089     }
4090   }
4091   }
4092   return false;
4093 }
4094 
4095 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
4096   if (N->getValueType(0) != MVT::i32 &&
4097       N->getValueType(0) != MVT::i64)
4098     return false;
4099 
4100   if (!UseBitPermRewriter)
4101     return false;
4102 
4103   switch (N->getOpcode()) {
4104   default: break;
4105   case ISD::SRL:
4106     // If we are on P10, we have a pattern for 32-bit (srl (bswap r), 16) that
4107     // uses the BRH instruction.
4108     if (Subtarget->isISA3_1() && N->getValueType(0) == MVT::i32 &&
4109         N->getOperand(0).getOpcode() == ISD::BSWAP) {
4110       auto &OpRight = N->getOperand(1);
4111       ConstantSDNode *SRLConst = dyn_cast<ConstantSDNode>(OpRight);
4112       if (SRLConst && SRLConst->getSExtValue() == 16)
4113         return false;
4114     }
4115     [[fallthrough]];
4116   case ISD::ROTL:
4117   case ISD::SHL:
4118   case ISD::AND:
4119   case ISD::OR: {
4120     BitPermutationSelector BPS(CurDAG);
4121     if (SDNode *New = BPS.Select(N)) {
4122       ReplaceNode(N, New);
4123       return true;
4124     }
4125     return false;
4126   }
4127   }
4128 
4129   return false;
4130 }
4131 
4132 /// SelectCC - Select a comparison of the specified values with the specified
4133 /// condition code, returning the CR# of the expression.
4134 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4135                                   const SDLoc &dl, SDValue Chain) {
4136   // Always select the LHS.
4137   unsigned Opc;
4138 
4139   if (LHS.getValueType() == MVT::i32) {
4140     unsigned Imm;
4141     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4142       if (isInt32Immediate(RHS, Imm)) {
4143         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4144         if (isUInt<16>(Imm))
4145           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4146                                                 getI32Imm(Imm & 0xFFFF, dl)),
4147                          0);
4148         // If this is a 16-bit signed immediate, fold it.
4149         if (isInt<16>((int)Imm))
4150           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4151                                                 getI32Imm(Imm & 0xFFFF, dl)),
4152                          0);
4153 
4154         // For non-equality comparisons, the default code would materialize the
4155         // constant, then compare against it, like this:
4156         //   lis r2, 4660
4157         //   ori r2, r2, 22136
4158         //   cmpw cr0, r3, r2
4159         // Since we are just comparing for equality, we can emit this instead:
4160         //   xoris r0,r3,0x1234
4161         //   cmplwi cr0,r0,0x5678
4162         //   beq cr0,L6
4163         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
4164                                            getI32Imm(Imm >> 16, dl)), 0);
4165         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
4166                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4167       }
4168       Opc = PPC::CMPLW;
4169     } else if (ISD::isUnsignedIntSetCC(CC)) {
4170       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
4171         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
4172                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
4173       Opc = PPC::CMPLW;
4174     } else {
4175       int16_t SImm;
4176       if (isIntS16Immediate(RHS, SImm))
4177         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
4178                                               getI32Imm((int)SImm & 0xFFFF,
4179                                                         dl)),
4180                          0);
4181       Opc = PPC::CMPW;
4182     }
4183   } else if (LHS.getValueType() == MVT::i64) {
4184     uint64_t Imm;
4185     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4186       if (isInt64Immediate(RHS.getNode(), Imm)) {
4187         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4188         if (isUInt<16>(Imm))
4189           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4190                                                 getI32Imm(Imm & 0xFFFF, dl)),
4191                          0);
4192         // If this is a 16-bit signed immediate, fold it.
4193         if (isInt<16>(Imm))
4194           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4195                                                 getI32Imm(Imm & 0xFFFF, dl)),
4196                          0);
4197 
4198         // For non-equality comparisons, the default code would materialize the
4199         // constant, then compare against it, like this:
4200         //   lis r2, 4660
4201         //   ori r2, r2, 22136
4202         //   cmpd cr0, r3, r2
4203         // Since we are just comparing for equality, we can emit this instead:
4204         //   xoris r0,r3,0x1234
4205         //   cmpldi cr0,r0,0x5678
4206         //   beq cr0,L6
4207         if (isUInt<32>(Imm)) {
4208           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4209                                              getI64Imm(Imm >> 16, dl)), 0);
4210           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4211                                                 getI64Imm(Imm & 0xFFFF, dl)),
4212                          0);
4213         }
4214       }
4215       Opc = PPC::CMPLD;
4216     } else if (ISD::isUnsignedIntSetCC(CC)) {
4217       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4218         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4219                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
4220       Opc = PPC::CMPLD;
4221     } else {
4222       int16_t SImm;
4223       if (isIntS16Immediate(RHS, SImm))
4224         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4225                                               getI64Imm(SImm & 0xFFFF, dl)),
4226                          0);
4227       Opc = PPC::CMPD;
4228     }
4229   } else if (LHS.getValueType() == MVT::f32) {
4230     if (Subtarget->hasSPE()) {
4231       switch (CC) {
4232         default:
4233         case ISD::SETEQ:
4234         case ISD::SETNE:
4235           Opc = PPC::EFSCMPEQ;
4236           break;
4237         case ISD::SETLT:
4238         case ISD::SETGE:
4239         case ISD::SETOLT:
4240         case ISD::SETOGE:
4241         case ISD::SETULT:
4242         case ISD::SETUGE:
4243           Opc = PPC::EFSCMPLT;
4244           break;
4245         case ISD::SETGT:
4246         case ISD::SETLE:
4247         case ISD::SETOGT:
4248         case ISD::SETOLE:
4249         case ISD::SETUGT:
4250         case ISD::SETULE:
4251           Opc = PPC::EFSCMPGT;
4252           break;
4253       }
4254     } else
4255       Opc = PPC::FCMPUS;
4256   } else if (LHS.getValueType() == MVT::f64) {
4257     if (Subtarget->hasSPE()) {
4258       switch (CC) {
4259         default:
4260         case ISD::SETEQ:
4261         case ISD::SETNE:
4262           Opc = PPC::EFDCMPEQ;
4263           break;
4264         case ISD::SETLT:
4265         case ISD::SETGE:
4266         case ISD::SETOLT:
4267         case ISD::SETOGE:
4268         case ISD::SETULT:
4269         case ISD::SETUGE:
4270           Opc = PPC::EFDCMPLT;
4271           break;
4272         case ISD::SETGT:
4273         case ISD::SETLE:
4274         case ISD::SETOGT:
4275         case ISD::SETOLE:
4276         case ISD::SETUGT:
4277         case ISD::SETULE:
4278           Opc = PPC::EFDCMPGT;
4279           break;
4280       }
4281     } else
4282       Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4283   } else {
4284     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4285     assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4286     Opc = PPC::XSCMPUQP;
4287   }
4288   if (Chain)
4289     return SDValue(
4290         CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4291         0);
4292   else
4293     return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4294 }
4295 
4296 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4297                                            const PPCSubtarget *Subtarget) {
4298   // For SPE instructions, the result is in GT bit of the CR
4299   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4300 
4301   switch (CC) {
4302   case ISD::SETUEQ:
4303   case ISD::SETONE:
4304   case ISD::SETOLE:
4305   case ISD::SETOGE:
4306     llvm_unreachable("Should be lowered by legalize!");
4307   default: llvm_unreachable("Unknown condition!");
4308   case ISD::SETOEQ:
4309   case ISD::SETEQ:
4310     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4311   case ISD::SETUNE:
4312   case ISD::SETNE:
4313     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4314   case ISD::SETOLT:
4315   case ISD::SETLT:
4316     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4317   case ISD::SETULE:
4318   case ISD::SETLE:
4319     return PPC::PRED_LE;
4320   case ISD::SETOGT:
4321   case ISD::SETGT:
4322     return PPC::PRED_GT;
4323   case ISD::SETUGE:
4324   case ISD::SETGE:
4325     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4326   case ISD::SETO:   return PPC::PRED_NU;
4327   case ISD::SETUO:  return PPC::PRED_UN;
4328     // These two are invalid for floating point.  Assume we have int.
4329   case ISD::SETULT: return PPC::PRED_LT;
4330   case ISD::SETUGT: return PPC::PRED_GT;
4331   }
4332 }
4333 
4334 /// getCRIdxForSetCC - Return the index of the condition register field
4335 /// associated with the SetCC condition, and whether or not the field is
4336 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
4337 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4338   Invert = false;
4339   switch (CC) {
4340   default: llvm_unreachable("Unknown condition!");
4341   case ISD::SETOLT:
4342   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
4343   case ISD::SETOGT:
4344   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
4345   case ISD::SETOEQ:
4346   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
4347   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
4348   case ISD::SETUGE:
4349   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
4350   case ISD::SETULE:
4351   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
4352   case ISD::SETUNE:
4353   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
4354   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
4355   case ISD::SETUEQ:
4356   case ISD::SETOGE:
4357   case ISD::SETOLE:
4358   case ISD::SETONE:
4359     llvm_unreachable("Invalid branch code: should be expanded by legalize");
4360   // These are invalid for floating point.  Assume integer.
4361   case ISD::SETULT: return 0;
4362   case ISD::SETUGT: return 1;
4363   }
4364 }
4365 
4366 // getVCmpInst: return the vector compare instruction for the specified
4367 // vector type and condition code. Since this is for altivec specific code,
4368 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4369 // and v4f32).
4370 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4371                                 bool HasVSX, bool &Swap, bool &Negate) {
4372   Swap = false;
4373   Negate = false;
4374 
4375   if (VecVT.isFloatingPoint()) {
4376     /* Handle some cases by swapping input operands.  */
4377     switch (CC) {
4378       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4379       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4380       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4381       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4382       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4383       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4384       default: break;
4385     }
4386     /* Handle some cases by negating the result.  */
4387     switch (CC) {
4388       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4389       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4390       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4391       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4392       default: break;
4393     }
4394     /* We have instructions implementing the remaining cases.  */
4395     switch (CC) {
4396       case ISD::SETEQ:
4397       case ISD::SETOEQ:
4398         if (VecVT == MVT::v4f32)
4399           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4400         else if (VecVT == MVT::v2f64)
4401           return PPC::XVCMPEQDP;
4402         break;
4403       case ISD::SETGT:
4404       case ISD::SETOGT:
4405         if (VecVT == MVT::v4f32)
4406           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4407         else if (VecVT == MVT::v2f64)
4408           return PPC::XVCMPGTDP;
4409         break;
4410       case ISD::SETGE:
4411       case ISD::SETOGE:
4412         if (VecVT == MVT::v4f32)
4413           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4414         else if (VecVT == MVT::v2f64)
4415           return PPC::XVCMPGEDP;
4416         break;
4417       default:
4418         break;
4419     }
4420     llvm_unreachable("Invalid floating-point vector compare condition");
4421   } else {
4422     /* Handle some cases by swapping input operands.  */
4423     switch (CC) {
4424       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4425       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4426       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4427       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4428       default: break;
4429     }
4430     /* Handle some cases by negating the result.  */
4431     switch (CC) {
4432       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4433       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4434       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4435       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4436       default: break;
4437     }
4438     /* We have instructions implementing the remaining cases.  */
4439     switch (CC) {
4440       case ISD::SETEQ:
4441       case ISD::SETUEQ:
4442         if (VecVT == MVT::v16i8)
4443           return PPC::VCMPEQUB;
4444         else if (VecVT == MVT::v8i16)
4445           return PPC::VCMPEQUH;
4446         else if (VecVT == MVT::v4i32)
4447           return PPC::VCMPEQUW;
4448         else if (VecVT == MVT::v2i64)
4449           return PPC::VCMPEQUD;
4450         else if (VecVT == MVT::v1i128)
4451           return PPC::VCMPEQUQ;
4452         break;
4453       case ISD::SETGT:
4454         if (VecVT == MVT::v16i8)
4455           return PPC::VCMPGTSB;
4456         else if (VecVT == MVT::v8i16)
4457           return PPC::VCMPGTSH;
4458         else if (VecVT == MVT::v4i32)
4459           return PPC::VCMPGTSW;
4460         else if (VecVT == MVT::v2i64)
4461           return PPC::VCMPGTSD;
4462         else if (VecVT == MVT::v1i128)
4463            return PPC::VCMPGTSQ;
4464         break;
4465       case ISD::SETUGT:
4466         if (VecVT == MVT::v16i8)
4467           return PPC::VCMPGTUB;
4468         else if (VecVT == MVT::v8i16)
4469           return PPC::VCMPGTUH;
4470         else if (VecVT == MVT::v4i32)
4471           return PPC::VCMPGTUW;
4472         else if (VecVT == MVT::v2i64)
4473           return PPC::VCMPGTUD;
4474         else if (VecVT == MVT::v1i128)
4475            return PPC::VCMPGTUQ;
4476         break;
4477       default:
4478         break;
4479     }
4480     llvm_unreachable("Invalid integer vector compare condition");
4481   }
4482 }
4483 
4484 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4485   SDLoc dl(N);
4486   unsigned Imm;
4487   bool IsStrict = N->isStrictFPOpcode();
4488   ISD::CondCode CC =
4489       cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4490   EVT PtrVT =
4491       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4492   bool isPPC64 = (PtrVT == MVT::i64);
4493   SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4494 
4495   SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4496   SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4497 
4498   if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4499     // We can codegen setcc op, imm very efficiently compared to a brcond.
4500     // Check for those cases here.
4501     // setcc op, 0
4502     if (Imm == 0) {
4503       SDValue Op = LHS;
4504       switch (CC) {
4505       default: break;
4506       case ISD::SETEQ: {
4507         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4508         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4509                           getI32Imm(31, dl) };
4510         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4511         return true;
4512       }
4513       case ISD::SETNE: {
4514         if (isPPC64) break;
4515         SDValue AD =
4516           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4517                                          Op, getI32Imm(~0U, dl)), 0);
4518         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4519         return true;
4520       }
4521       case ISD::SETLT: {
4522         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4523                           getI32Imm(31, dl) };
4524         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4525         return true;
4526       }
4527       case ISD::SETGT: {
4528         SDValue T =
4529           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4530         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4531         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4532                           getI32Imm(31, dl) };
4533         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4534         return true;
4535       }
4536       }
4537     } else if (Imm == ~0U) {        // setcc op, -1
4538       SDValue Op = LHS;
4539       switch (CC) {
4540       default: break;
4541       case ISD::SETEQ:
4542         if (isPPC64) break;
4543         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4544                                             Op, getI32Imm(1, dl)), 0);
4545         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4546                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4547                                                             MVT::i32,
4548                                                             getI32Imm(0, dl)),
4549                                      0), Op.getValue(1));
4550         return true;
4551       case ISD::SETNE: {
4552         if (isPPC64) break;
4553         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4554         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4555                                             Op, getI32Imm(~0U, dl));
4556         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4557                              SDValue(AD, 1));
4558         return true;
4559       }
4560       case ISD::SETLT: {
4561         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4562                                                     getI32Imm(1, dl)), 0);
4563         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4564                                                     Op), 0);
4565         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4566                           getI32Imm(31, dl) };
4567         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4568         return true;
4569       }
4570       case ISD::SETGT: {
4571         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4572                           getI32Imm(31, dl) };
4573         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4574         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4575         return true;
4576       }
4577       }
4578     }
4579   }
4580 
4581   // Altivec Vector compare instructions do not set any CR register by default and
4582   // vector compare operations return the same type as the operands.
4583   if (!IsStrict && LHS.getValueType().isVector()) {
4584     if (Subtarget->hasSPE())
4585       return false;
4586 
4587     EVT VecVT = LHS.getValueType();
4588     bool Swap, Negate;
4589     unsigned int VCmpInst =
4590         getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4591     if (Swap)
4592       std::swap(LHS, RHS);
4593 
4594     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4595     if (Negate) {
4596       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4597       CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4598                            ResVT, VCmp, VCmp);
4599       return true;
4600     }
4601 
4602     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4603     return true;
4604   }
4605 
4606   if (Subtarget->useCRBits())
4607     return false;
4608 
4609   bool Inv;
4610   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4611   SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4612   if (IsStrict)
4613     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4614   SDValue IntCR;
4615 
4616   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4617   // The correct compare instruction is already set by SelectCC()
4618   if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4619     Idx = 1;
4620   }
4621 
4622   // Force the ccreg into CR7.
4623   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4624 
4625   SDValue InGlue;  // Null incoming flag value.
4626   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4627                                InGlue).getValue(1);
4628 
4629   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4630                                          CCReg), 0);
4631 
4632   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4633                       getI32Imm(31, dl), getI32Imm(31, dl) };
4634   if (!Inv) {
4635     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4636     return true;
4637   }
4638 
4639   // Get the specified bit.
4640   SDValue Tmp =
4641     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4642   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4643   return true;
4644 }
4645 
4646 /// Does this node represent a load/store node whose address can be represented
4647 /// with a register plus an immediate that's a multiple of \p Val:
4648 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4649   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4650   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4651   MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4652   SDValue AddrOp;
4653   if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4654     AddrOp = N->getOperand(1);
4655   else if (STN)
4656     AddrOp = STN->getOperand(2);
4657 
4658   // If the address points a frame object or a frame object with an offset,
4659   // we need to check the object alignment.
4660   short Imm = 0;
4661   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4662           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4663                                            AddrOp)) {
4664     // If op0 is a frame index that is under aligned, we can't do it either,
4665     // because it is translated to r31 or r1 + slot + offset. We won't know the
4666     // slot number until the stack frame is finalized.
4667     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4668     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4669     if ((SlotAlign % Val) != 0)
4670       return false;
4671 
4672     // If we have an offset, we need further check on the offset.
4673     if (AddrOp.getOpcode() != ISD::ADD)
4674       return true;
4675   }
4676 
4677   if (AddrOp.getOpcode() == ISD::ADD)
4678     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4679 
4680   // If the address comes from the outside, the offset will be zero.
4681   return AddrOp.getOpcode() == ISD::CopyFromReg;
4682 }
4683 
4684 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4685   // Transfer memoperands.
4686   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4687   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4688 }
4689 
4690 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4691                          bool &NeedSwapOps, bool &IsUnCmp) {
4692 
4693   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4694 
4695   SDValue LHS = N->getOperand(0);
4696   SDValue RHS = N->getOperand(1);
4697   SDValue TrueRes = N->getOperand(2);
4698   SDValue FalseRes = N->getOperand(3);
4699   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4700   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4701                      N->getSimpleValueType(0) != MVT::i32))
4702     return false;
4703 
4704   // We are looking for any of:
4705   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4706   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4707   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4708   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4709   int64_t TrueResVal = TrueConst->getSExtValue();
4710   if ((TrueResVal < -1 || TrueResVal > 1) ||
4711       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4712       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4713       (TrueResVal == 0 &&
4714        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4715     return false;
4716 
4717   SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4718                            ? FalseRes
4719                            : FalseRes.getOperand(0);
4720   bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4721   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4722       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4723     return false;
4724 
4725   // Without this setb optimization, the outer SELECT_CC will be manually
4726   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4727   // transforms pseudo instruction to isel instruction. When there are more than
4728   // one use for result like zext/sext, with current optimization we only see
4729   // isel is replaced by setb but can't see any significant gain. Since
4730   // setb has longer latency than original isel, we should avoid this. Another
4731   // point is that setb requires comparison always kept, it can break the
4732   // opportunity to get the comparison away if we have in future.
4733   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4734     return false;
4735 
4736   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4737   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4738   ISD::CondCode InnerCC =
4739       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4740   // If the inner comparison is a select_cc, make sure the true/false values are
4741   // 1/-1 and canonicalize it if needed.
4742   if (InnerIsSel) {
4743     ConstantSDNode *SelCCTrueConst =
4744         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4745     ConstantSDNode *SelCCFalseConst =
4746         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4747     if (!SelCCTrueConst || !SelCCFalseConst)
4748       return false;
4749     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4750     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4751     // The values must be -1/1 (requiring a swap) or 1/-1.
4752     if (SelCCTVal == -1 && SelCCFVal == 1) {
4753       std::swap(InnerLHS, InnerRHS);
4754     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4755       return false;
4756   }
4757 
4758   // Canonicalize unsigned case
4759   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4760     IsUnCmp = true;
4761     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4762   }
4763 
4764   bool InnerSwapped = false;
4765   if (LHS == InnerRHS && RHS == InnerLHS)
4766     InnerSwapped = true;
4767   else if (LHS != InnerLHS || RHS != InnerRHS)
4768     return false;
4769 
4770   switch (CC) {
4771   // (select_cc lhs, rhs,  0, \
4772   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4773   case ISD::SETEQ:
4774     if (!InnerIsSel)
4775       return false;
4776     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4777       return false;
4778     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4779     break;
4780 
4781   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4782   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4783   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4784   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4785   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4786   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4787   case ISD::SETULT:
4788     if (!IsUnCmp && InnerCC != ISD::SETNE)
4789       return false;
4790     IsUnCmp = true;
4791     [[fallthrough]];
4792   case ISD::SETLT:
4793     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4794         (InnerCC == ISD::SETLT && InnerSwapped))
4795       NeedSwapOps = (TrueResVal == 1);
4796     else
4797       return false;
4798     break;
4799 
4800   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4801   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4802   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4803   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4804   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4805   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4806   case ISD::SETUGT:
4807     if (!IsUnCmp && InnerCC != ISD::SETNE)
4808       return false;
4809     IsUnCmp = true;
4810     [[fallthrough]];
4811   case ISD::SETGT:
4812     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4813         (InnerCC == ISD::SETGT && InnerSwapped))
4814       NeedSwapOps = (TrueResVal == -1);
4815     else
4816       return false;
4817     break;
4818 
4819   default:
4820     return false;
4821   }
4822 
4823   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4824   LLVM_DEBUG(N->dump());
4825 
4826   return true;
4827 }
4828 
4829 // Return true if it's a software square-root/divide operand.
4830 static bool isSWTestOp(SDValue N) {
4831   if (N.getOpcode() == PPCISD::FTSQRT)
4832     return true;
4833   if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4834       N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4835     return false;
4836   switch (N.getConstantOperandVal(0)) {
4837   case Intrinsic::ppc_vsx_xvtdivdp:
4838   case Intrinsic::ppc_vsx_xvtdivsp:
4839   case Intrinsic::ppc_vsx_xvtsqrtdp:
4840   case Intrinsic::ppc_vsx_xvtsqrtsp:
4841     return true;
4842   }
4843   return false;
4844 }
4845 
4846 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4847   assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4848   // We are looking for following patterns, where `truncate to i1` actually has
4849   // the same semantic with `and 1`.
4850   // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4851   // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4852   // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4853   // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4854   // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4855   // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4856   // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4857   // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4858   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4859   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4860     return false;
4861 
4862   SDValue CmpRHS = N->getOperand(3);
4863   if (!isNullConstant(CmpRHS))
4864     return false;
4865 
4866   SDValue CmpLHS = N->getOperand(2);
4867   if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4868     return false;
4869 
4870   unsigned PCC = 0;
4871   bool IsCCNE = CC == ISD::SETNE;
4872   if (CmpLHS.getOpcode() == ISD::AND &&
4873       isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4874     switch (CmpLHS.getConstantOperandVal(1)) {
4875     case 1:
4876       PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4877       break;
4878     case 2:
4879       PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4880       break;
4881     case 4:
4882       PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4883       break;
4884     case 8:
4885       PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4886       break;
4887     default:
4888       return false;
4889     }
4890   else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4891            CmpLHS.getValueType() == MVT::i1)
4892     PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4893 
4894   if (PCC) {
4895     SDLoc dl(N);
4896     SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4897                      N->getOperand(0)};
4898     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4899     return true;
4900   }
4901   return false;
4902 }
4903 
4904 bool PPCDAGToDAGISel::trySelectLoopCountIntrinsic(SDNode *N) {
4905   // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
4906   // value, for example when crbits is disabled. If so, select the
4907   // loop_decrement intrinsics now.
4908   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4909   SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4910 
4911   if (LHS.getOpcode() != ISD::AND || !isa<ConstantSDNode>(LHS.getOperand(1)) ||
4912       isNullConstant(LHS.getOperand(1)))
4913     return false;
4914 
4915   if (LHS.getOperand(0).getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4916       LHS.getOperand(0).getConstantOperandVal(1) != Intrinsic::loop_decrement)
4917     return false;
4918 
4919   if (!isa<ConstantSDNode>(RHS))
4920     return false;
4921 
4922   assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
4923          "Counter decrement comparison is not EQ or NE");
4924 
4925   SDValue OldDecrement = LHS.getOperand(0);
4926   assert(OldDecrement.hasOneUse() && "loop decrement has more than one use!");
4927 
4928   SDLoc DecrementLoc(OldDecrement);
4929   SDValue ChainInput = OldDecrement.getOperand(0);
4930   SDValue DecrementOps[] = {Subtarget->isPPC64() ? getI64Imm(1, DecrementLoc)
4931                                                  : getI32Imm(1, DecrementLoc)};
4932   unsigned DecrementOpcode =
4933       Subtarget->isPPC64() ? PPC::DecreaseCTR8loop : PPC::DecreaseCTRloop;
4934   SDNode *NewDecrement = CurDAG->getMachineNode(DecrementOpcode, DecrementLoc,
4935                                                 MVT::i1, DecrementOps);
4936 
4937   unsigned Val = RHS->getAsZExtVal();
4938   bool IsBranchOnTrue = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val);
4939   unsigned Opcode = IsBranchOnTrue ? PPC::BC : PPC::BCn;
4940 
4941   ReplaceUses(LHS.getValue(0), LHS.getOperand(1));
4942   CurDAG->RemoveDeadNode(LHS.getNode());
4943 
4944   // Mark the old loop_decrement intrinsic as dead.
4945   ReplaceUses(OldDecrement.getValue(1), ChainInput);
4946   CurDAG->RemoveDeadNode(OldDecrement.getNode());
4947 
4948   SDValue Chain = CurDAG->getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
4949                                   ChainInput, N->getOperand(0));
4950 
4951   CurDAG->SelectNodeTo(N, Opcode, MVT::Other, SDValue(NewDecrement, 0),
4952                        N->getOperand(4), Chain);
4953   return true;
4954 }
4955 
4956 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4957   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4958   unsigned Imm;
4959   if (!isInt32Immediate(N->getOperand(1), Imm))
4960     return false;
4961 
4962   SDLoc dl(N);
4963   SDValue Val = N->getOperand(0);
4964   unsigned SH, MB, ME;
4965   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4966   // with a mask, emit rlwinm
4967   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4968     Val = Val.getOperand(0);
4969     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4970                      getI32Imm(ME, dl)};
4971     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4972     return true;
4973   }
4974 
4975   // If this is just a masked value where the input is not handled, and
4976   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4977   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4978     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4979                      getI32Imm(ME, dl)};
4980     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4981     return true;
4982   }
4983 
4984   // AND X, 0 -> 0, not "rlwinm 32".
4985   if (Imm == 0) {
4986     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4987     return true;
4988   }
4989 
4990   return false;
4991 }
4992 
4993 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4994   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4995   uint64_t Imm64;
4996   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4997     return false;
4998 
4999   unsigned MB, ME;
5000   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
5001     //                MB  ME
5002     // +----------------------+
5003     // |xxxxxxxxxxx00011111000|
5004     // +----------------------+
5005     //  0         32         64
5006     // We can only do it if the MB is larger than 32 and MB <= ME
5007     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
5008     // we didn't rotate it.
5009     SDLoc dl(N);
5010     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
5011                      getI64Imm(ME - 32, dl)};
5012     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
5013     return true;
5014   }
5015 
5016   return false;
5017 }
5018 
5019 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
5020   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5021   uint64_t Imm64;
5022   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
5023     return false;
5024 
5025   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
5026   // it well with "andi.".
5027   if (isUInt<16>(Imm64))
5028     return false;
5029 
5030   SDLoc Loc(N);
5031   SDValue Val = N->getOperand(0);
5032 
5033   // Optimized with two rldicl's as follows:
5034   // Add missing bits on left to the mask and check that the mask is a
5035   // wrapped run of ones, i.e.
5036   // Change pattern |0001111100000011111111|
5037   //             to |1111111100000011111111|.
5038   unsigned NumOfLeadingZeros = llvm::countl_zero(Imm64);
5039   if (NumOfLeadingZeros != 0)
5040     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
5041 
5042   unsigned MB, ME;
5043   if (!isRunOfOnes64(Imm64, MB, ME))
5044     return false;
5045 
5046   //         ME     MB                   MB-ME+63
5047   // +----------------------+     +----------------------+
5048   // |1111111100000011111111| ->  |0000001111111111111111|
5049   // +----------------------+     +----------------------+
5050   //  0                    63      0                    63
5051   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
5052   unsigned OnesOnLeft = ME + 1;
5053   unsigned ZerosInBetween = (MB - ME + 63) & 63;
5054   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
5055   // on the left the bits that are already zeros in the mask.
5056   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
5057                                        getI64Imm(OnesOnLeft, Loc),
5058                                        getI64Imm(ZerosInBetween, Loc)),
5059                 0);
5060   //        MB-ME+63                      ME     MB
5061   // +----------------------+     +----------------------+
5062   // |0000001111111111111111| ->  |0001111100000011111111|
5063   // +----------------------+     +----------------------+
5064   //  0                    63      0                    63
5065   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
5066   // left the number of ones we previously added.
5067   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
5068                    getI64Imm(NumOfLeadingZeros, Loc)};
5069   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5070   return true;
5071 }
5072 
5073 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
5074   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5075   unsigned Imm;
5076   if (!isInt32Immediate(N->getOperand(1), Imm))
5077     return false;
5078 
5079   SDValue Val = N->getOperand(0);
5080   unsigned Imm2;
5081   // ISD::OR doesn't get all the bitfield insertion fun.
5082   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
5083   // bitfield insert.
5084   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
5085     return false;
5086 
5087   // The idea here is to check whether this is equivalent to:
5088   //   (c1 & m) | (x & ~m)
5089   // where m is a run-of-ones mask. The logic here is that, for each bit in
5090   // c1 and c2:
5091   //  - if both are 1, then the output will be 1.
5092   //  - if both are 0, then the output will be 0.
5093   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
5094   //    come from x.
5095   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
5096   //    be 0.
5097   //  If that last condition is never the case, then we can form m from the
5098   //  bits that are the same between c1 and c2.
5099   unsigned MB, ME;
5100   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
5101     SDLoc dl(N);
5102     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
5103                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
5104     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
5105     return true;
5106   }
5107 
5108   return false;
5109 }
5110 
5111 bool PPCDAGToDAGISel::tryAsSingleRLDCL(SDNode *N) {
5112   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5113 
5114   uint64_t Imm64;
5115   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
5116     return false;
5117 
5118   SDValue Val = N->getOperand(0);
5119 
5120   if (Val.getOpcode() != ISD::ROTL)
5121     return false;
5122 
5123   // Looking to try to avoid a situation like this one:
5124   //   %2 = tail call i64 @llvm.fshl.i64(i64 %word, i64 %word, i64 23)
5125   //   %and1 = and i64 %2, 9223372036854775807
5126   // In this function we are looking to try to match RLDCL. However, the above
5127   // DAG would better match RLDICL instead which is not what we are looking
5128   // for here.
5129   SDValue RotateAmt = Val.getOperand(1);
5130   if (RotateAmt.getOpcode() == ISD::Constant)
5131     return false;
5132 
5133   unsigned MB = 64 - llvm::countr_one(Imm64);
5134   SDLoc dl(N);
5135   SDValue Ops[] = {Val.getOperand(0), RotateAmt, getI32Imm(MB, dl)};
5136   CurDAG->SelectNodeTo(N, PPC::RLDCL, MVT::i64, Ops);
5137   return true;
5138 }
5139 
5140 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
5141   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5142   uint64_t Imm64;
5143   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
5144     return false;
5145 
5146   // If this is a 64-bit zero-extension mask, emit rldicl.
5147   unsigned MB = 64 - llvm::countr_one(Imm64);
5148   unsigned SH = 0;
5149   unsigned Imm;
5150   SDValue Val = N->getOperand(0);
5151   SDLoc dl(N);
5152 
5153   if (Val.getOpcode() == ISD::ANY_EXTEND) {
5154     auto Op0 = Val.getOperand(0);
5155     if (Op0.getOpcode() == ISD::SRL &&
5156         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
5157 
5158       auto ResultType = Val.getNode()->getValueType(0);
5159       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
5160       SDValue IDVal(ImDef, 0);
5161 
5162       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
5163                                            IDVal, Op0.getOperand(0),
5164                                            getI32Imm(1, dl)),
5165                     0);
5166       SH = 64 - Imm;
5167     }
5168   }
5169 
5170   // If the operand is a logical right shift, we can fold it into this
5171   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
5172   // for n <= mb. The right shift is really a left rotate followed by a
5173   // mask, and this mask is a more-restrictive sub-mask of the mask implied
5174   // by the shift.
5175   if (Val.getOpcode() == ISD::SRL &&
5176       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
5177     assert(Imm < 64 && "Illegal shift amount");
5178     Val = Val.getOperand(0);
5179     SH = 64 - Imm;
5180   }
5181 
5182   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
5183   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
5184   return true;
5185 }
5186 
5187 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
5188   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
5189   uint64_t Imm64;
5190   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5191       !isMask_64(~Imm64))
5192     return false;
5193 
5194   // If this is a negated 64-bit zero-extension mask,
5195   // i.e. the immediate is a sequence of ones from most significant side
5196   // and all zero for reminder, we should use rldicr.
5197   unsigned MB = 63 - llvm::countr_one(~Imm64);
5198   unsigned SH = 0;
5199   SDLoc dl(N);
5200   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
5201   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5202   return true;
5203 }
5204 
5205 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
5206   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
5207   uint64_t Imm64;
5208   unsigned MB, ME;
5209   SDValue N0 = N->getOperand(0);
5210 
5211   // We won't get fewer instructions if the imm is 32-bit integer.
5212   // rldimi requires the imm to have consecutive ones with both sides zero.
5213   // Also, make sure the first Op has only one use, otherwise this may increase
5214   // register pressure since rldimi is destructive.
5215   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
5216       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
5217     return false;
5218 
5219   unsigned SH = 63 - ME;
5220   SDLoc Dl(N);
5221   // Use select64Imm for making LI instr instead of directly putting Imm64
5222   SDValue Ops[] = {
5223       N->getOperand(0),
5224       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
5225       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
5226   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
5227   return true;
5228 }
5229 
5230 // Select - Convert the specified operand from a target-independent to a
5231 // target-specific node if it hasn't already been changed.
5232 void PPCDAGToDAGISel::Select(SDNode *N) {
5233   SDLoc dl(N);
5234   if (N->isMachineOpcode()) {
5235     N->setNodeId(-1);
5236     return;   // Already selected.
5237   }
5238 
5239   // In case any misguided DAG-level optimizations form an ADD with a
5240   // TargetConstant operand, crash here instead of miscompiling (by selecting
5241   // an r+r add instead of some kind of r+i add).
5242   if (N->getOpcode() == ISD::ADD &&
5243       N->getOperand(1).getOpcode() == ISD::TargetConstant)
5244     llvm_unreachable("Invalid ADD with TargetConstant operand");
5245 
5246   // Try matching complex bit permutations before doing anything else.
5247   if (tryBitPermutation(N))
5248     return;
5249 
5250   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
5251   if (tryIntCompareInGPR(N))
5252     return;
5253 
5254   switch (N->getOpcode()) {
5255   default: break;
5256 
5257   case ISD::Constant:
5258     if (N->getValueType(0) == MVT::i64) {
5259       ReplaceNode(N, selectI64Imm(CurDAG, N));
5260       return;
5261     }
5262     break;
5263 
5264   case ISD::INTRINSIC_VOID: {
5265     auto IntrinsicID = N->getConstantOperandVal(1);
5266     if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
5267         IntrinsicID != Intrinsic::ppc_trapd &&
5268         IntrinsicID != Intrinsic::ppc_trap)
5269         break;
5270     unsigned Opcode = (IntrinsicID == Intrinsic::ppc_tdw ||
5271                        IntrinsicID == Intrinsic::ppc_trapd)
5272                           ? PPC::TDI
5273                           : PPC::TWI;
5274     SmallVector<SDValue, 4> OpsWithMD;
5275     unsigned MDIndex;
5276     if (IntrinsicID == Intrinsic::ppc_tdw ||
5277         IntrinsicID == Intrinsic::ppc_tw) {
5278       SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5279       int16_t SImmOperand2;
5280       int16_t SImmOperand3;
5281       int16_t SImmOperand4;
5282       bool isOperand2IntS16Immediate =
5283           isIntS16Immediate(N->getOperand(2), SImmOperand2);
5284       bool isOperand3IntS16Immediate =
5285           isIntS16Immediate(N->getOperand(3), SImmOperand3);
5286       // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5287       // reg or imm + imm. The imm + imm form will be optimized to either an
5288       // unconditional trap or a nop in a later pass.
5289       if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5290         Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5291       else if (isOperand3IntS16Immediate)
5292         // The 2nd and 3rd operands are reg + imm.
5293         Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5294       else {
5295         // The 2nd and 3rd operands are imm + reg.
5296         bool isOperand4IntS16Immediate =
5297             isIntS16Immediate(N->getOperand(4), SImmOperand4);
5298         (void)isOperand4IntS16Immediate;
5299         assert(isOperand4IntS16Immediate &&
5300                "The 4th operand is not an Immediate");
5301         // We need to flip the condition immediate TO.
5302         int16_t TO = int(SImmOperand4) & 0x1F;
5303         // We swap the first and second bit of TO if they are not same.
5304         if ((TO & 0x1) != ((TO & 0x2) >> 1))
5305           TO = (TO & 0x1) ? TO + 1 : TO - 1;
5306         // We swap the fourth and fifth bit of TO if they are not same.
5307         if ((TO & 0x8) != ((TO & 0x10) >> 1))
5308           TO = (TO & 0x8) ? TO + 8 : TO - 8;
5309         Ops[0] = getI32Imm(TO, dl);
5310         Ops[1] = N->getOperand(3);
5311         Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5312       }
5313       OpsWithMD = {Ops[0], Ops[1], Ops[2]};
5314       MDIndex = 5;
5315     } else {
5316       OpsWithMD = {getI32Imm(24, dl), N->getOperand(2), getI32Imm(0, dl)};
5317       MDIndex = 3;
5318     }
5319 
5320     if (N->getNumOperands() > MDIndex) {
5321       SDValue MDV = N->getOperand(MDIndex);
5322       const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
5323       assert(MD->getNumOperands() != 0 && "Empty MDNode in operands!");
5324       assert((isa<MDString>(MD->getOperand(0)) && cast<MDString>(
5325            MD->getOperand(0))->getString().equals("ppc-trap-reason"))
5326            && "Unsupported annotation data type!");
5327       for (unsigned i = 1; i < MD->getNumOperands(); i++) {
5328         assert(isa<MDString>(MD->getOperand(i)) &&
5329                "Invalid data type for annotation ppc-trap-reason!");
5330         OpsWithMD.push_back(
5331             getI32Imm(std::stoi(cast<MDString>(
5332                       MD->getOperand(i))->getString().str()), dl));
5333       }
5334     }
5335     OpsWithMD.push_back(N->getOperand(0)); // chain
5336     CurDAG->SelectNodeTo(N, Opcode, MVT::Other, OpsWithMD);
5337     return;
5338   }
5339 
5340   case ISD::INTRINSIC_WO_CHAIN: {
5341     // We emit the PPC::FSELS instruction here because of type conflicts with
5342     // the comparison operand. The FSELS instruction is defined to use an 8-byte
5343     // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5344     // value for the comparison. When selecting through a .td file, a type
5345     // error is raised. Must check this first so we never break on the
5346     // !Subtarget->isISA3_1() check.
5347     auto IntID = N->getConstantOperandVal(0);
5348     if (IntID == Intrinsic::ppc_fsels) {
5349       SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5350       CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5351       return;
5352     }
5353 
5354     if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5355       auto Pred = N->getConstantOperandVal(1);
5356       unsigned Opcode =
5357           IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5358       unsigned SubReg = 0;
5359       unsigned ShiftVal = 0;
5360       bool Reverse = false;
5361       switch (Pred) {
5362       case 0:
5363         SubReg = PPC::sub_eq;
5364         ShiftVal = 1;
5365         break;
5366       case 1:
5367         SubReg = PPC::sub_eq;
5368         ShiftVal = 1;
5369         Reverse = true;
5370         break;
5371       case 2:
5372         SubReg = PPC::sub_lt;
5373         ShiftVal = 3;
5374         break;
5375       case 3:
5376         SubReg = PPC::sub_lt;
5377         ShiftVal = 3;
5378         Reverse = true;
5379         break;
5380       case 4:
5381         SubReg = PPC::sub_gt;
5382         ShiftVal = 2;
5383         break;
5384       case 5:
5385         SubReg = PPC::sub_gt;
5386         ShiftVal = 2;
5387         Reverse = true;
5388         break;
5389       case 6:
5390         SubReg = PPC::sub_un;
5391         break;
5392       case 7:
5393         SubReg = PPC::sub_un;
5394         Reverse = true;
5395         break;
5396       }
5397 
5398       EVT VTs[] = {MVT::v16i8, MVT::Glue};
5399       SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5400                        CurDAG->getTargetConstant(0, dl, MVT::i32)};
5401       SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5402       SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5403       // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5404       // MFOCRF and shift/negate the value.
5405       if (Subtarget->isISA3_1()) {
5406         SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5407         SDValue CRBit = SDValue(
5408             CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5409                                    CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5410             0);
5411         CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5412                              CRBit);
5413       } else {
5414         SDValue Move =
5415             SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5416                                            BCDOp.getValue(1)),
5417                     0);
5418         SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5419                          getI32Imm(31, dl), getI32Imm(31, dl)};
5420         if (!Reverse)
5421           CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5422         else {
5423           SDValue Shift = SDValue(
5424               CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5425           CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5426         }
5427       }
5428       return;
5429     }
5430 
5431     if (!Subtarget->isISA3_1())
5432       break;
5433     unsigned Opcode = 0;
5434     switch (IntID) {
5435     default:
5436       break;
5437     case Intrinsic::ppc_altivec_vstribr_p:
5438       Opcode = PPC::VSTRIBR_rec;
5439       break;
5440     case Intrinsic::ppc_altivec_vstribl_p:
5441       Opcode = PPC::VSTRIBL_rec;
5442       break;
5443     case Intrinsic::ppc_altivec_vstrihr_p:
5444       Opcode = PPC::VSTRIHR_rec;
5445       break;
5446     case Intrinsic::ppc_altivec_vstrihl_p:
5447       Opcode = PPC::VSTRIHL_rec;
5448       break;
5449     }
5450     if (!Opcode)
5451       break;
5452 
5453     // Generate the appropriate vector string isolate intrinsic to match.
5454     EVT VTs[] = {MVT::v16i8, MVT::Glue};
5455     SDValue VecStrOp =
5456         SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5457     // Vector string isolate instructions update the EQ bit of CR6.
5458     // Generate a SETBC instruction to extract the bit and place it in a GPR.
5459     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5460     SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5461     SDValue CRBit = SDValue(
5462         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5463                                CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5464         0);
5465     CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5466     return;
5467   }
5468 
5469   case ISD::SETCC:
5470   case ISD::STRICT_FSETCC:
5471   case ISD::STRICT_FSETCCS:
5472     if (trySETCC(N))
5473       return;
5474     break;
5475   // These nodes will be transformed into GETtlsADDR32 node, which
5476   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5477   case PPCISD::ADDI_TLSLD_L_ADDR:
5478   case PPCISD::ADDI_TLSGD_L_ADDR: {
5479     const Module *Mod = MF->getFunction().getParent();
5480     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5481         !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5482         Mod->getPICLevel() == PICLevel::SmallPIC)
5483       break;
5484     // Attach global base pointer on GETtlsADDR32 node in order to
5485     // generate secure plt code for TLS symbols.
5486     getGlobalBaseReg();
5487   } break;
5488   case PPCISD::CALL: {
5489     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5490         !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5491         !Subtarget->isTargetELF())
5492       break;
5493 
5494     SDValue Op = N->getOperand(1);
5495 
5496     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5497       if (GA->getTargetFlags() == PPCII::MO_PLT)
5498         getGlobalBaseReg();
5499     }
5500     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5501       if (ES->getTargetFlags() == PPCII::MO_PLT)
5502         getGlobalBaseReg();
5503     }
5504   }
5505     break;
5506 
5507   case PPCISD::GlobalBaseReg:
5508     ReplaceNode(N, getGlobalBaseReg());
5509     return;
5510 
5511   case ISD::FrameIndex:
5512     selectFrameIndex(N, N);
5513     return;
5514 
5515   case PPCISD::MFOCRF: {
5516     SDValue InGlue = N->getOperand(1);
5517     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5518                                           N->getOperand(0), InGlue));
5519     return;
5520   }
5521 
5522   case PPCISD::READ_TIME_BASE:
5523     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5524                                           MVT::Other, N->getOperand(0)));
5525     return;
5526 
5527   case PPCISD::SRA_ADDZE: {
5528     SDValue N0 = N->getOperand(0);
5529     SDValue ShiftAmt =
5530       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5531                                   getConstantIntValue(), dl,
5532                                   N->getValueType(0));
5533     if (N->getValueType(0) == MVT::i64) {
5534       SDNode *Op =
5535         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5536                                N0, ShiftAmt);
5537       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5538                            SDValue(Op, 1));
5539       return;
5540     } else {
5541       assert(N->getValueType(0) == MVT::i32 &&
5542              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5543       SDNode *Op =
5544         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5545                                N0, ShiftAmt);
5546       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5547                            SDValue(Op, 1));
5548       return;
5549     }
5550   }
5551 
5552   case ISD::STORE: {
5553     // Change TLS initial-exec (or TLS local-exec on AIX) D-form stores to
5554     // X-form stores.
5555     StoreSDNode *ST = cast<StoreSDNode>(N);
5556     if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()) &&
5557         ST->getAddressingMode() != ISD::PRE_INC)
5558       if (tryTLSXFormStore(ST))
5559         return;
5560     break;
5561   }
5562   case ISD::LOAD: {
5563     // Handle preincrement loads.
5564     LoadSDNode *LD = cast<LoadSDNode>(N);
5565     EVT LoadedVT = LD->getMemoryVT();
5566 
5567     // Normal loads are handled by code generated from the .td file.
5568     if (LD->getAddressingMode() != ISD::PRE_INC) {
5569       // Change TLS initial-exec (or TLS local-exec on AIX) D-form loads to
5570       // X-form loads.
5571       if (EnableTLSOpt && (Subtarget->isELFv2ABI() || Subtarget->isAIXABI()))
5572         if (tryTLSXFormLoad(LD))
5573           return;
5574       break;
5575     }
5576 
5577     SDValue Offset = LD->getOffset();
5578     if (Offset.getOpcode() == ISD::TargetConstant ||
5579         Offset.getOpcode() == ISD::TargetGlobalAddress) {
5580 
5581       unsigned Opcode;
5582       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5583       if (LD->getValueType(0) != MVT::i64) {
5584         // Handle PPC32 integer and normal FP loads.
5585         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5586         switch (LoadedVT.getSimpleVT().SimpleTy) {
5587           default: llvm_unreachable("Invalid PPC load type!");
5588           case MVT::f64: Opcode = PPC::LFDU; break;
5589           case MVT::f32: Opcode = PPC::LFSU; break;
5590           case MVT::i32: Opcode = PPC::LWZU; break;
5591           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5592           case MVT::i1:
5593           case MVT::i8:  Opcode = PPC::LBZU; break;
5594         }
5595       } else {
5596         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5597         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5598         switch (LoadedVT.getSimpleVT().SimpleTy) {
5599           default: llvm_unreachable("Invalid PPC load type!");
5600           case MVT::i64: Opcode = PPC::LDU; break;
5601           case MVT::i32: Opcode = PPC::LWZU8; break;
5602           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5603           case MVT::i1:
5604           case MVT::i8:  Opcode = PPC::LBZU8; break;
5605         }
5606       }
5607 
5608       SDValue Chain = LD->getChain();
5609       SDValue Base = LD->getBasePtr();
5610       SDValue Ops[] = { Offset, Base, Chain };
5611       SDNode *MN = CurDAG->getMachineNode(
5612           Opcode, dl, LD->getValueType(0),
5613           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5614       transferMemOperands(N, MN);
5615       ReplaceNode(N, MN);
5616       return;
5617     } else {
5618       unsigned Opcode;
5619       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5620       if (LD->getValueType(0) != MVT::i64) {
5621         // Handle PPC32 integer and normal FP loads.
5622         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5623         switch (LoadedVT.getSimpleVT().SimpleTy) {
5624           default: llvm_unreachable("Invalid PPC load type!");
5625           case MVT::f64: Opcode = PPC::LFDUX; break;
5626           case MVT::f32: Opcode = PPC::LFSUX; break;
5627           case MVT::i32: Opcode = PPC::LWZUX; break;
5628           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5629           case MVT::i1:
5630           case MVT::i8:  Opcode = PPC::LBZUX; break;
5631         }
5632       } else {
5633         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5634         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5635                "Invalid sext update load");
5636         switch (LoadedVT.getSimpleVT().SimpleTy) {
5637           default: llvm_unreachable("Invalid PPC load type!");
5638           case MVT::i64: Opcode = PPC::LDUX; break;
5639           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
5640           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5641           case MVT::i1:
5642           case MVT::i8:  Opcode = PPC::LBZUX8; break;
5643         }
5644       }
5645 
5646       SDValue Chain = LD->getChain();
5647       SDValue Base = LD->getBasePtr();
5648       SDValue Ops[] = { Base, Offset, Chain };
5649       SDNode *MN = CurDAG->getMachineNode(
5650           Opcode, dl, LD->getValueType(0),
5651           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5652       transferMemOperands(N, MN);
5653       ReplaceNode(N, MN);
5654       return;
5655     }
5656   }
5657 
5658   case ISD::AND:
5659     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5660     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDCL(N) ||
5661         tryAsSingleRLDICL(N) || tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) ||
5662         tryAsPairOfRLDICL(N))
5663       return;
5664 
5665     // Other cases are autogenerated.
5666     break;
5667   case ISD::OR: {
5668     if (N->getValueType(0) == MVT::i32)
5669       if (tryBitfieldInsert(N))
5670         return;
5671 
5672     int16_t Imm;
5673     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5674         isIntS16Immediate(N->getOperand(1), Imm)) {
5675       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5676 
5677       // If this is equivalent to an add, then we can fold it with the
5678       // FrameIndex calculation.
5679       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5680         selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5681         return;
5682       }
5683     }
5684 
5685     // If this is 'or' against an imm with consecutive ones and both sides zero,
5686     // try to emit rldimi
5687     if (tryAsSingleRLDIMI(N))
5688       return;
5689 
5690     // OR with a 32-bit immediate can be handled by ori + oris
5691     // without creating an immediate in a GPR.
5692     uint64_t Imm64 = 0;
5693     bool IsPPC64 = Subtarget->isPPC64();
5694     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5695         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5696       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5697       uint64_t ImmHi = Imm64 >> 16;
5698       uint64_t ImmLo = Imm64 & 0xFFFF;
5699       if (ImmHi != 0 && ImmLo != 0) {
5700         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5701                                             N->getOperand(0),
5702                                             getI16Imm(ImmLo, dl));
5703         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5704         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5705         return;
5706       }
5707     }
5708 
5709     // Other cases are autogenerated.
5710     break;
5711   }
5712   case ISD::XOR: {
5713     // XOR with a 32-bit immediate can be handled by xori + xoris
5714     // without creating an immediate in a GPR.
5715     uint64_t Imm64 = 0;
5716     bool IsPPC64 = Subtarget->isPPC64();
5717     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5718         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5719       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5720       uint64_t ImmHi = Imm64 >> 16;
5721       uint64_t ImmLo = Imm64 & 0xFFFF;
5722       if (ImmHi != 0 && ImmLo != 0) {
5723         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5724                                             N->getOperand(0),
5725                                             getI16Imm(ImmLo, dl));
5726         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5727         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5728         return;
5729       }
5730     }
5731 
5732     break;
5733   }
5734   case ISD::ADD: {
5735     int16_t Imm;
5736     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5737         isIntS16Immediate(N->getOperand(1), Imm)) {
5738       selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5739       return;
5740     }
5741 
5742     break;
5743   }
5744   case ISD::SHL: {
5745     unsigned Imm, SH, MB, ME;
5746     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5747         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5748       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5749                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5750                           getI32Imm(ME, dl) };
5751       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5752       return;
5753     }
5754 
5755     // Other cases are autogenerated.
5756     break;
5757   }
5758   case ISD::SRL: {
5759     unsigned Imm, SH, MB, ME;
5760     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5761         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5762       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5763                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5764                           getI32Imm(ME, dl) };
5765       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5766       return;
5767     }
5768 
5769     // Other cases are autogenerated.
5770     break;
5771   }
5772   case ISD::MUL: {
5773     SDValue Op1 = N->getOperand(1);
5774     if (Op1.getOpcode() != ISD::Constant ||
5775         (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5776       break;
5777 
5778     // If the multiplier fits int16, we can handle it with mulli.
5779     int64_t Imm = Op1->getAsZExtVal();
5780     unsigned Shift = llvm::countr_zero<uint64_t>(Imm);
5781     if (isInt<16>(Imm) || !Shift)
5782       break;
5783 
5784     // If the shifted value fits int16, we can do this transformation:
5785     // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5786     // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5787     uint64_t ImmSh = Imm >> Shift;
5788     if (!isInt<16>(ImmSh))
5789       break;
5790 
5791     uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5792     if (Op1.getValueType() == MVT::i64) {
5793       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5794       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5795                                                N->getOperand(0), SDImm);
5796 
5797       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5798                        getI32Imm(63 - Shift, dl)};
5799       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5800       return;
5801     } else {
5802       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5803       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5804                                               N->getOperand(0), SDImm);
5805 
5806       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5807                        getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5808       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5809       return;
5810     }
5811     break;
5812   }
5813   // FIXME: Remove this once the ANDI glue bug is fixed:
5814   case PPCISD::ANDI_rec_1_EQ_BIT:
5815   case PPCISD::ANDI_rec_1_GT_BIT: {
5816     if (!ANDIGlueBug)
5817       break;
5818 
5819     EVT InVT = N->getOperand(0).getValueType();
5820     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5821            "Invalid input type for ANDI_rec_1_EQ_BIT");
5822 
5823     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5824     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5825                                         N->getOperand(0),
5826                                         CurDAG->getTargetConstant(1, dl, InVT)),
5827                  0);
5828     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5829     SDValue SRIdxVal = CurDAG->getTargetConstant(
5830         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5831         dl, MVT::i32);
5832 
5833     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5834                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5835     return;
5836   }
5837   case ISD::SELECT_CC: {
5838     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5839     EVT PtrVT =
5840         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5841     bool isPPC64 = (PtrVT == MVT::i64);
5842 
5843     // If this is a select of i1 operands, we'll pattern match it.
5844     if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5845       break;
5846 
5847     if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5848       bool NeedSwapOps = false;
5849       bool IsUnCmp = false;
5850       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5851         SDValue LHS = N->getOperand(0);
5852         SDValue RHS = N->getOperand(1);
5853         if (NeedSwapOps)
5854           std::swap(LHS, RHS);
5855 
5856         // Make use of SelectCC to generate the comparison to set CR bits, for
5857         // equality comparisons having one literal operand, SelectCC probably
5858         // doesn't need to materialize the whole literal and just use xoris to
5859         // check it first, it leads the following comparison result can't
5860         // exactly represent GT/LT relationship. So to avoid this we specify
5861         // SETGT/SETUGT here instead of SETEQ.
5862         SDValue GenCC =
5863             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5864         CurDAG->SelectNodeTo(
5865             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5866             N->getValueType(0), GenCC);
5867         NumP9Setb++;
5868         return;
5869       }
5870     }
5871 
5872     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5873     if (!isPPC64 && isNullConstant(N->getOperand(1)) &&
5874         isOneConstant(N->getOperand(2)) && isNullConstant(N->getOperand(3)) &&
5875         CC == ISD::SETNE &&
5876         // FIXME: Implement this optzn for PPC64.
5877         N->getValueType(0) == MVT::i32) {
5878       SDNode *Tmp =
5879           CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5880                                  N->getOperand(0), getI32Imm(~0U, dl));
5881       CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5882                            N->getOperand(0), SDValue(Tmp, 1));
5883       return;
5884     }
5885 
5886     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5887 
5888     if (N->getValueType(0) == MVT::i1) {
5889       // An i1 select is: (c & t) | (!c & f).
5890       bool Inv;
5891       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5892 
5893       unsigned SRI;
5894       switch (Idx) {
5895       default: llvm_unreachable("Invalid CC index");
5896       case 0: SRI = PPC::sub_lt; break;
5897       case 1: SRI = PPC::sub_gt; break;
5898       case 2: SRI = PPC::sub_eq; break;
5899       case 3: SRI = PPC::sub_un; break;
5900       }
5901 
5902       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5903 
5904       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5905                                               CCBit, CCBit), 0);
5906       SDValue C =    Inv ? NotCCBit : CCBit,
5907               NotC = Inv ? CCBit    : NotCCBit;
5908 
5909       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5910                                            C, N->getOperand(2)), 0);
5911       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5912                                               NotC, N->getOperand(3)), 0);
5913 
5914       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5915       return;
5916     }
5917 
5918     unsigned BROpc =
5919         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5920 
5921     unsigned SelectCCOp;
5922     if (N->getValueType(0) == MVT::i32)
5923       SelectCCOp = PPC::SELECT_CC_I4;
5924     else if (N->getValueType(0) == MVT::i64)
5925       SelectCCOp = PPC::SELECT_CC_I8;
5926     else if (N->getValueType(0) == MVT::f32) {
5927       if (Subtarget->hasP8Vector())
5928         SelectCCOp = PPC::SELECT_CC_VSSRC;
5929       else if (Subtarget->hasSPE())
5930         SelectCCOp = PPC::SELECT_CC_SPE4;
5931       else
5932         SelectCCOp = PPC::SELECT_CC_F4;
5933     } else if (N->getValueType(0) == MVT::f64) {
5934       if (Subtarget->hasVSX())
5935         SelectCCOp = PPC::SELECT_CC_VSFRC;
5936       else if (Subtarget->hasSPE())
5937         SelectCCOp = PPC::SELECT_CC_SPE;
5938       else
5939         SelectCCOp = PPC::SELECT_CC_F8;
5940     } else if (N->getValueType(0) == MVT::f128)
5941       SelectCCOp = PPC::SELECT_CC_F16;
5942     else if (Subtarget->hasSPE())
5943       SelectCCOp = PPC::SELECT_CC_SPE;
5944     else if (N->getValueType(0) == MVT::v2f64 ||
5945              N->getValueType(0) == MVT::v2i64)
5946       SelectCCOp = PPC::SELECT_CC_VSRC;
5947     else
5948       SelectCCOp = PPC::SELECT_CC_VRRC;
5949 
5950     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5951                         getI32Imm(BROpc, dl) };
5952     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5953     return;
5954   }
5955   case ISD::VECTOR_SHUFFLE:
5956     if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5957                                 N->getValueType(0) == MVT::v2i64)) {
5958       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5959 
5960       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5961               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5962       unsigned DM[2];
5963 
5964       for (int i = 0; i < 2; ++i)
5965         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5966           DM[i] = 0;
5967         else
5968           DM[i] = 1;
5969 
5970       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5971           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5972           isa<LoadSDNode>(Op1.getOperand(0))) {
5973         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5974         SDValue Base, Offset;
5975 
5976         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5977             (LD->getMemoryVT() == MVT::f64 ||
5978              LD->getMemoryVT() == MVT::i64) &&
5979             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5980           SDValue Chain = LD->getChain();
5981           SDValue Ops[] = { Base, Offset, Chain };
5982           MachineMemOperand *MemOp = LD->getMemOperand();
5983           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5984                                               N->getValueType(0), Ops);
5985           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5986           return;
5987         }
5988       }
5989 
5990       // For little endian, we must swap the input operands and adjust
5991       // the mask elements (reverse and invert them).
5992       if (Subtarget->isLittleEndian()) {
5993         std::swap(Op1, Op2);
5994         unsigned tmp = DM[0];
5995         DM[0] = 1 - DM[1];
5996         DM[1] = 1 - tmp;
5997       }
5998 
5999       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
6000                                               MVT::i32);
6001       SDValue Ops[] = { Op1, Op2, DMV };
6002       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
6003       return;
6004     }
6005 
6006     break;
6007   case PPCISD::BDNZ:
6008   case PPCISD::BDZ: {
6009     bool IsPPC64 = Subtarget->isPPC64();
6010     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
6011     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
6012                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
6013                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
6014                          MVT::Other, Ops);
6015     return;
6016   }
6017   case PPCISD::COND_BRANCH: {
6018     // Op #0 is the Chain.
6019     // Op #1 is the PPC::PRED_* number.
6020     // Op #2 is the CR#
6021     // Op #3 is the Dest MBB
6022     // Op #4 is the Flag.
6023     // Prevent PPC::PRED_* from being selected into LI.
6024     unsigned PCC = N->getConstantOperandVal(1);
6025     if (EnableBranchHint)
6026       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
6027 
6028     SDValue Pred = getI32Imm(PCC, dl);
6029     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
6030       N->getOperand(0), N->getOperand(4) };
6031     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
6032     return;
6033   }
6034   case ISD::BR_CC: {
6035     if (tryFoldSWTestBRCC(N))
6036       return;
6037     if (trySelectLoopCountIntrinsic(N))
6038       return;
6039     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6040     unsigned PCC =
6041         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
6042 
6043     if (N->getOperand(2).getValueType() == MVT::i1) {
6044       unsigned Opc;
6045       bool Swap;
6046       switch (PCC) {
6047       default: llvm_unreachable("Unexpected Boolean-operand predicate");
6048       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
6049       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
6050       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
6051       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
6052       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
6053       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
6054       }
6055 
6056       // A signed comparison of i1 values produces the opposite result to an
6057       // unsigned one if the condition code includes less-than or greater-than.
6058       // This is because 1 is the most negative signed i1 number and the most
6059       // positive unsigned i1 number. The CR-logical operations used for such
6060       // comparisons are non-commutative so for signed comparisons vs. unsigned
6061       // ones, the input operands just need to be swapped.
6062       if (ISD::isSignedIntSetCC(CC))
6063         Swap = !Swap;
6064 
6065       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
6066                                              N->getOperand(Swap ? 3 : 2),
6067                                              N->getOperand(Swap ? 2 : 3)), 0);
6068       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
6069                            N->getOperand(0));
6070       return;
6071     }
6072 
6073     if (EnableBranchHint)
6074       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
6075 
6076     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
6077     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
6078                         N->getOperand(4), N->getOperand(0) };
6079     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
6080     return;
6081   }
6082   case ISD::BRIND: {
6083     // FIXME: Should custom lower this.
6084     SDValue Chain = N->getOperand(0);
6085     SDValue Target = N->getOperand(1);
6086     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
6087     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
6088     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
6089                                            Chain), 0);
6090     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
6091     return;
6092   }
6093   case PPCISD::TOC_ENTRY: {
6094     const bool isPPC64 = Subtarget->isPPC64();
6095     const bool isELFABI = Subtarget->isSVR4ABI();
6096     const bool isAIXABI = Subtarget->isAIXABI();
6097 
6098     // PowerPC only support small, medium and large code model.
6099     const CodeModel::Model CModel = TM.getCodeModel();
6100     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
6101            "PowerPC doesn't support tiny or kernel code models.");
6102 
6103     if (isAIXABI && CModel == CodeModel::Medium)
6104       report_fatal_error("Medium code model is not supported on AIX.");
6105 
6106     // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
6107     // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
6108     // small code model, we need to check for a toc-data attribute.
6109     if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
6110       break;
6111 
6112     auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
6113                                    EVT OperandTy) {
6114       SDValue GA = TocEntry->getOperand(0);
6115       SDValue TocBase = TocEntry->getOperand(1);
6116       SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
6117       transferMemOperands(TocEntry, MN);
6118       ReplaceNode(TocEntry, MN);
6119     };
6120 
6121     // Handle 32-bit small code model.
6122     if (!isPPC64 && CModel == CodeModel::Small) {
6123       // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
6124       // PPC::ADDItoc, or PPC::LWZtoc
6125       if (isELFABI) {
6126         assert(TM.isPositionIndependent() &&
6127                "32-bit ELF can only have TOC entries in position independent"
6128                " code.");
6129         // 32-bit ELF always uses a small code model toc access.
6130         replaceWith(PPC::LWZtoc, N, MVT::i32);
6131         return;
6132       }
6133 
6134       assert(isAIXABI && "ELF ABI already handled");
6135 
6136       if (hasTocDataAttr(N->getOperand(0),
6137                          CurDAG->getDataLayout().getPointerSize())) {
6138         replaceWith(PPC::ADDItoc, N, MVT::i32);
6139         return;
6140       }
6141 
6142       replaceWith(PPC::LWZtoc, N, MVT::i32);
6143       return;
6144     }
6145 
6146     if (isPPC64 && CModel == CodeModel::Small) {
6147       assert(isAIXABI && "ELF ABI handled in common SelectCode");
6148 
6149       if (hasTocDataAttr(N->getOperand(0),
6150                          CurDAG->getDataLayout().getPointerSize())) {
6151         replaceWith(PPC::ADDItoc8, N, MVT::i64);
6152         return;
6153       }
6154       // Break if it doesn't have toc data attribute. Proceed with common
6155       // SelectCode.
6156       break;
6157     }
6158 
6159     assert(CModel != CodeModel::Small && "All small code models handled.");
6160 
6161     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
6162            " ELF/AIX or 32-bit AIX in the following.");
6163 
6164     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
6165     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
6166     // generate two instructions as described below. The first source operand
6167     // is a symbol reference. If it must be toc-referenced according to
6168     // Subtarget, we generate:
6169     // [32-bit AIX]
6170     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
6171     // [64-bit ELF/AIX]
6172     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
6173     // Otherwise we generate:
6174     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
6175     SDValue GA = N->getOperand(0);
6176     SDValue TOCbase = N->getOperand(1);
6177 
6178     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
6179     SDNode *Tmp = CurDAG->getMachineNode(
6180         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
6181 
6182     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
6183       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
6184       // the address.
6185       SDNode *MN = CurDAG->getMachineNode(
6186           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
6187 
6188       transferMemOperands(N, MN);
6189       ReplaceNode(N, MN);
6190       return;
6191     }
6192 
6193     // Build the address relative to the TOC-pointer.
6194     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
6195                                           SDValue(Tmp, 0), GA));
6196     return;
6197   }
6198   case PPCISD::PPC32_PICGOT:
6199     // Generate a PIC-safe GOT reference.
6200     assert(Subtarget->is32BitELFABI() &&
6201            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
6202     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
6203                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
6204                          MVT::i32);
6205     return;
6206 
6207   case PPCISD::VADD_SPLAT: {
6208     // This expands into one of three sequences, depending on whether
6209     // the first operand is odd or even, positive or negative.
6210     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
6211            isa<ConstantSDNode>(N->getOperand(1)) &&
6212            "Invalid operand on VADD_SPLAT!");
6213 
6214     int Elt     = N->getConstantOperandVal(0);
6215     int EltSize = N->getConstantOperandVal(1);
6216     unsigned Opc1, Opc2, Opc3;
6217     EVT VT;
6218 
6219     if (EltSize == 1) {
6220       Opc1 = PPC::VSPLTISB;
6221       Opc2 = PPC::VADDUBM;
6222       Opc3 = PPC::VSUBUBM;
6223       VT = MVT::v16i8;
6224     } else if (EltSize == 2) {
6225       Opc1 = PPC::VSPLTISH;
6226       Opc2 = PPC::VADDUHM;
6227       Opc3 = PPC::VSUBUHM;
6228       VT = MVT::v8i16;
6229     } else {
6230       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
6231       Opc1 = PPC::VSPLTISW;
6232       Opc2 = PPC::VADDUWM;
6233       Opc3 = PPC::VSUBUWM;
6234       VT = MVT::v4i32;
6235     }
6236 
6237     if ((Elt & 1) == 0) {
6238       // Elt is even, in the range [-32,-18] + [16,30].
6239       //
6240       // Convert: VADD_SPLAT elt, size
6241       // Into:    tmp = VSPLTIS[BHW] elt
6242       //          VADDU[BHW]M tmp, tmp
6243       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
6244       SDValue EltVal = getI32Imm(Elt >> 1, dl);
6245       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6246       SDValue TmpVal = SDValue(Tmp, 0);
6247       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
6248       return;
6249     } else if (Elt > 0) {
6250       // Elt is odd and positive, in the range [17,31].
6251       //
6252       // Convert: VADD_SPLAT elt, size
6253       // Into:    tmp1 = VSPLTIS[BHW] elt-16
6254       //          tmp2 = VSPLTIS[BHW] -16
6255       //          VSUBU[BHW]M tmp1, tmp2
6256       SDValue EltVal = getI32Imm(Elt - 16, dl);
6257       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6258       EltVal = getI32Imm(-16, dl);
6259       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6260       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
6261                                             SDValue(Tmp2, 0)));
6262       return;
6263     } else {
6264       // Elt is odd and negative, in the range [-31,-17].
6265       //
6266       // Convert: VADD_SPLAT elt, size
6267       // Into:    tmp1 = VSPLTIS[BHW] elt+16
6268       //          tmp2 = VSPLTIS[BHW] -16
6269       //          VADDU[BHW]M tmp1, tmp2
6270       SDValue EltVal = getI32Imm(Elt + 16, dl);
6271       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6272       EltVal = getI32Imm(-16, dl);
6273       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
6274       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
6275                                             SDValue(Tmp2, 0)));
6276       return;
6277     }
6278   }
6279   case PPCISD::LD_SPLAT: {
6280     // Here we want to handle splat load for type v16i8 and v8i16 when there is
6281     // no direct move, we don't need to use stack for this case. If target has
6282     // direct move, we should be able to get the best selection in the .td file.
6283     if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
6284       break;
6285 
6286     EVT Type = N->getValueType(0);
6287     if (Type != MVT::v16i8 && Type != MVT::v8i16)
6288       break;
6289 
6290     // If the alignment for the load is 16 or bigger, we don't need the
6291     // permutated mask to get the required value. The value must be the 0
6292     // element in big endian target or 7/15 in little endian target in the
6293     // result vsx register of lvx instruction.
6294     // Select the instruction in the .td file.
6295     if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
6296         isOffsetMultipleOf(N, 16))
6297       break;
6298 
6299     SDValue ZeroReg =
6300         CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
6301                             Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
6302     unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
6303     // v16i8 LD_SPLAT addr
6304     // ======>
6305     // Mask = LVSR/LVSL 0, addr
6306     // LoadLow = LVX 0, addr
6307     // Perm = VPERM LoadLow, LoadLow, Mask
6308     // Splat = VSPLTB 15/0, Perm
6309     //
6310     // v8i16 LD_SPLAT addr
6311     // ======>
6312     // Mask = LVSR/LVSL 0, addr
6313     // LoadLow = LVX 0, addr
6314     // LoadHigh = LVX (LI, 1), addr
6315     // Perm = VPERM LoadLow, LoadHigh, Mask
6316     // Splat = VSPLTH 7/0, Perm
6317     unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6318     unsigned SplatElemIndex =
6319         Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6320 
6321     SDNode *Mask = CurDAG->getMachineNode(
6322         Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6323         N->getOperand(1));
6324 
6325     SDNode *LoadLow =
6326         CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6327                                {ZeroReg, N->getOperand(1), N->getOperand(0)});
6328 
6329     SDNode *LoadHigh = LoadLow;
6330     if (Type == MVT::v8i16) {
6331       LoadHigh = CurDAG->getMachineNode(
6332           PPC::LVX, dl, MVT::v16i8, MVT::Other,
6333           {SDValue(CurDAG->getMachineNode(
6334                        LIOpcode, dl, MVT::i32,
6335                        CurDAG->getTargetConstant(1, dl, MVT::i8)),
6336                    0),
6337            N->getOperand(1), SDValue(LoadLow, 1)});
6338     }
6339 
6340     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6341     transferMemOperands(N, LoadHigh);
6342 
6343     SDNode *Perm =
6344         CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6345                                SDValue(LoadHigh, 0), SDValue(Mask, 0));
6346     CurDAG->SelectNodeTo(N, SplatOp, Type,
6347                          CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6348                          SDValue(Perm, 0));
6349     return;
6350   }
6351   }
6352 
6353   SelectCode(N);
6354 }
6355 
6356 // If the target supports the cmpb instruction, do the idiom recognition here.
6357 // We don't do this as a DAG combine because we don't want to do it as nodes
6358 // are being combined (because we might miss part of the eventual idiom). We
6359 // don't want to do it during instruction selection because we want to reuse
6360 // the logic for lowering the masking operations already part of the
6361 // instruction selector.
6362 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6363   SDLoc dl(N);
6364 
6365   assert(N->getOpcode() == ISD::OR &&
6366          "Only OR nodes are supported for CMPB");
6367 
6368   SDValue Res;
6369   if (!Subtarget->hasCMPB())
6370     return Res;
6371 
6372   if (N->getValueType(0) != MVT::i32 &&
6373       N->getValueType(0) != MVT::i64)
6374     return Res;
6375 
6376   EVT VT = N->getValueType(0);
6377 
6378   SDValue RHS, LHS;
6379   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6380   uint64_t Mask = 0, Alt = 0;
6381 
6382   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6383                                uint64_t &Mask, uint64_t &Alt,
6384                                SDValue &LHS, SDValue &RHS) {
6385     if (O.getOpcode() != ISD::SELECT_CC)
6386       return false;
6387     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6388 
6389     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6390         !isa<ConstantSDNode>(O.getOperand(3)))
6391       return false;
6392 
6393     uint64_t PM = O.getConstantOperandVal(2);
6394     uint64_t PAlt = O.getConstantOperandVal(3);
6395     for (b = 0; b < 8; ++b) {
6396       uint64_t Mask = UINT64_C(0xFF) << (8*b);
6397       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6398         break;
6399     }
6400 
6401     if (b == 8)
6402       return false;
6403     Mask |= PM;
6404     Alt  |= PAlt;
6405 
6406     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6407         O.getConstantOperandVal(1) != 0) {
6408       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6409       if (Op0.getOpcode() == ISD::TRUNCATE)
6410         Op0 = Op0.getOperand(0);
6411       if (Op1.getOpcode() == ISD::TRUNCATE)
6412         Op1 = Op1.getOperand(0);
6413 
6414       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6415           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6416           isa<ConstantSDNode>(Op0.getOperand(1))) {
6417 
6418         unsigned Bits = Op0.getValueSizeInBits();
6419         if (b != Bits/8-1)
6420           return false;
6421         if (Op0.getConstantOperandVal(1) != Bits-8)
6422           return false;
6423 
6424         LHS = Op0.getOperand(0);
6425         RHS = Op1.getOperand(0);
6426         return true;
6427       }
6428 
6429       // When we have small integers (i16 to be specific), the form present
6430       // post-legalization uses SETULT in the SELECT_CC for the
6431       // higher-order byte, depending on the fact that the
6432       // even-higher-order bytes are known to all be zero, for example:
6433       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6434       // (so when the second byte is the same, because all higher-order
6435       // bits from bytes 3 and 4 are known to be zero, the result of the
6436       // xor can be at most 255)
6437       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6438           isa<ConstantSDNode>(O.getOperand(1))) {
6439 
6440         uint64_t ULim = O.getConstantOperandVal(1);
6441         if (ULim != (UINT64_C(1) << b*8))
6442           return false;
6443 
6444         // Now we need to make sure that the upper bytes are known to be
6445         // zero.
6446         unsigned Bits = Op0.getValueSizeInBits();
6447         if (!CurDAG->MaskedValueIsZero(
6448                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6449           return false;
6450 
6451         LHS = Op0.getOperand(0);
6452         RHS = Op0.getOperand(1);
6453         return true;
6454       }
6455 
6456       return false;
6457     }
6458 
6459     if (CC != ISD::SETEQ)
6460       return false;
6461 
6462     SDValue Op = O.getOperand(0);
6463     if (Op.getOpcode() == ISD::AND) {
6464       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6465         return false;
6466       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6467         return false;
6468 
6469       SDValue XOR = Op.getOperand(0);
6470       if (XOR.getOpcode() == ISD::TRUNCATE)
6471         XOR = XOR.getOperand(0);
6472       if (XOR.getOpcode() != ISD::XOR)
6473         return false;
6474 
6475       LHS = XOR.getOperand(0);
6476       RHS = XOR.getOperand(1);
6477       return true;
6478     } else if (Op.getOpcode() == ISD::SRL) {
6479       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6480         return false;
6481       unsigned Bits = Op.getValueSizeInBits();
6482       if (b != Bits/8-1)
6483         return false;
6484       if (Op.getConstantOperandVal(1) != Bits-8)
6485         return false;
6486 
6487       SDValue XOR = Op.getOperand(0);
6488       if (XOR.getOpcode() == ISD::TRUNCATE)
6489         XOR = XOR.getOperand(0);
6490       if (XOR.getOpcode() != ISD::XOR)
6491         return false;
6492 
6493       LHS = XOR.getOperand(0);
6494       RHS = XOR.getOperand(1);
6495       return true;
6496     }
6497 
6498     return false;
6499   };
6500 
6501   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6502   while (!Queue.empty()) {
6503     SDValue V = Queue.pop_back_val();
6504 
6505     for (const SDValue &O : V.getNode()->ops()) {
6506       unsigned b = 0;
6507       uint64_t M = 0, A = 0;
6508       SDValue OLHS, ORHS;
6509       if (O.getOpcode() == ISD::OR) {
6510         Queue.push_back(O);
6511       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6512         if (!LHS) {
6513           LHS = OLHS;
6514           RHS = ORHS;
6515           BytesFound[b] = true;
6516           Mask |= M;
6517           Alt  |= A;
6518         } else if ((LHS == ORHS && RHS == OLHS) ||
6519                    (RHS == ORHS && LHS == OLHS)) {
6520           BytesFound[b] = true;
6521           Mask |= M;
6522           Alt  |= A;
6523         } else {
6524           return Res;
6525         }
6526       } else {
6527         return Res;
6528       }
6529     }
6530   }
6531 
6532   unsigned LastB = 0, BCnt = 0;
6533   for (unsigned i = 0; i < 8; ++i)
6534     if (BytesFound[LastB]) {
6535       ++BCnt;
6536       LastB = i;
6537     }
6538 
6539   if (!LastB || BCnt < 2)
6540     return Res;
6541 
6542   // Because we'll be zero-extending the output anyway if don't have a specific
6543   // value for each input byte (via the Mask), we can 'anyext' the inputs.
6544   if (LHS.getValueType() != VT) {
6545     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6546     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6547   }
6548 
6549   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6550 
6551   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6552   if (NonTrivialMask && !Alt) {
6553     // Res = Mask & CMPB
6554     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6555                           CurDAG->getConstant(Mask, dl, VT));
6556   } else if (Alt) {
6557     // Res = (CMPB & Mask) | (~CMPB & Alt)
6558     // Which, as suggested here:
6559     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6560     // can be written as:
6561     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6562     // useful because the (Alt ^ Mask) can be pre-computed.
6563     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6564                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
6565     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6566                           CurDAG->getConstant(Alt, dl, VT));
6567   }
6568 
6569   return Res;
6570 }
6571 
6572 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6573 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6574 // involves constant materialization of a 0 or a 1 or both. If the result of
6575 // the extension is then operated upon by some operator that can be constant
6576 // folded with a constant 0 or 1, and that constant can be materialized using
6577 // only one instruction (like a zero or one), then we should fold in those
6578 // operations with the select.
6579 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6580   if (!Subtarget->useCRBits())
6581     return;
6582 
6583   if (N->getOpcode() != ISD::ZERO_EXTEND &&
6584       N->getOpcode() != ISD::SIGN_EXTEND &&
6585       N->getOpcode() != ISD::ANY_EXTEND)
6586     return;
6587 
6588   if (N->getOperand(0).getValueType() != MVT::i1)
6589     return;
6590 
6591   if (!N->hasOneUse())
6592     return;
6593 
6594   SDLoc dl(N);
6595   EVT VT = N->getValueType(0);
6596   SDValue Cond = N->getOperand(0);
6597   SDValue ConstTrue =
6598     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6599   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6600 
6601   do {
6602     SDNode *User = *N->use_begin();
6603     if (User->getNumOperands() != 2)
6604       break;
6605 
6606     auto TryFold = [this, N, User, dl](SDValue Val) {
6607       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6608       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6609       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6610 
6611       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6612                                             User->getValueType(0), {O0, O1});
6613     };
6614 
6615     // FIXME: When the semantics of the interaction between select and undef
6616     // are clearly defined, it may turn out to be unnecessary to break here.
6617     SDValue TrueRes = TryFold(ConstTrue);
6618     if (!TrueRes || TrueRes.isUndef())
6619       break;
6620     SDValue FalseRes = TryFold(ConstFalse);
6621     if (!FalseRes || FalseRes.isUndef())
6622       break;
6623 
6624     // For us to materialize these using one instruction, we must be able to
6625     // represent them as signed 16-bit integers.
6626     uint64_t True = TrueRes->getAsZExtVal(), False = FalseRes->getAsZExtVal();
6627     if (!isInt<16>(True) || !isInt<16>(False))
6628       break;
6629 
6630     // We can replace User with a new SELECT node, and try again to see if we
6631     // can fold the select with its user.
6632     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6633     N = User;
6634     ConstTrue = TrueRes;
6635     ConstFalse = FalseRes;
6636   } while (N->hasOneUse());
6637 }
6638 
6639 void PPCDAGToDAGISel::PreprocessISelDAG() {
6640   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6641 
6642   bool MadeChange = false;
6643   while (Position != CurDAG->allnodes_begin()) {
6644     SDNode *N = &*--Position;
6645     if (N->use_empty())
6646       continue;
6647 
6648     SDValue Res;
6649     switch (N->getOpcode()) {
6650     default: break;
6651     case ISD::OR:
6652       Res = combineToCMPB(N);
6653       break;
6654     }
6655 
6656     if (!Res)
6657       foldBoolExts(Res, N);
6658 
6659     if (Res) {
6660       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
6661       LLVM_DEBUG(N->dump(CurDAG));
6662       LLVM_DEBUG(dbgs() << "\nNew: ");
6663       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6664       LLVM_DEBUG(dbgs() << "\n");
6665 
6666       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6667       MadeChange = true;
6668     }
6669   }
6670 
6671   if (MadeChange)
6672     CurDAG->RemoveDeadNodes();
6673 }
6674 
6675 /// PostprocessISelDAG - Perform some late peephole optimizations
6676 /// on the DAG representation.
6677 void PPCDAGToDAGISel::PostprocessISelDAG() {
6678   // Skip peepholes at -O0.
6679   if (TM.getOptLevel() == CodeGenOptLevel::None)
6680     return;
6681 
6682   PeepholePPC64();
6683   PeepholeCROps();
6684   PeepholePPC64ZExt();
6685 }
6686 
6687 // Check if all users of this node will become isel where the second operand
6688 // is the constant zero. If this is so, and if we can negate the condition,
6689 // then we can flip the true and false operands. This will allow the zero to
6690 // be folded with the isel so that we don't need to materialize a register
6691 // containing zero.
6692 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6693   for (const SDNode *User : N->uses()) {
6694     if (!User->isMachineOpcode())
6695       return false;
6696     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6697         User->getMachineOpcode() != PPC::SELECT_I8)
6698       return false;
6699 
6700     SDNode *Op1 = User->getOperand(1).getNode();
6701     SDNode *Op2 = User->getOperand(2).getNode();
6702     // If we have a degenerate select with two equal operands, swapping will
6703     // not do anything, and we may run into an infinite loop.
6704     if (Op1 == Op2)
6705       return false;
6706 
6707     if (!Op2->isMachineOpcode())
6708       return false;
6709 
6710     if (Op2->getMachineOpcode() != PPC::LI &&
6711         Op2->getMachineOpcode() != PPC::LI8)
6712       return false;
6713 
6714     if (!isNullConstant(Op2->getOperand(0)))
6715       return false;
6716   }
6717 
6718   return true;
6719 }
6720 
6721 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6722   SmallVector<SDNode *, 4> ToReplace;
6723   for (SDNode *User : N->uses()) {
6724     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6725             User->getMachineOpcode() == PPC::SELECT_I8) &&
6726            "Must have all select users");
6727     ToReplace.push_back(User);
6728   }
6729 
6730   for (SDNode *User : ToReplace) {
6731     SDNode *ResNode =
6732       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6733                              User->getValueType(0), User->getOperand(0),
6734                              User->getOperand(2),
6735                              User->getOperand(1));
6736 
6737     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6738     LLVM_DEBUG(User->dump(CurDAG));
6739     LLVM_DEBUG(dbgs() << "\nNew: ");
6740     LLVM_DEBUG(ResNode->dump(CurDAG));
6741     LLVM_DEBUG(dbgs() << "\n");
6742 
6743     ReplaceUses(User, ResNode);
6744   }
6745 }
6746 
6747 void PPCDAGToDAGISel::PeepholeCROps() {
6748   bool IsModified;
6749   do {
6750     IsModified = false;
6751     for (SDNode &Node : CurDAG->allnodes()) {
6752       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6753       if (!MachineNode || MachineNode->use_empty())
6754         continue;
6755       SDNode *ResNode = MachineNode;
6756 
6757       bool Op1Set   = false, Op1Unset = false,
6758            Op1Not   = false,
6759            Op2Set   = false, Op2Unset = false,
6760            Op2Not   = false;
6761 
6762       unsigned Opcode = MachineNode->getMachineOpcode();
6763       switch (Opcode) {
6764       default: break;
6765       case PPC::CRAND:
6766       case PPC::CRNAND:
6767       case PPC::CROR:
6768       case PPC::CRXOR:
6769       case PPC::CRNOR:
6770       case PPC::CREQV:
6771       case PPC::CRANDC:
6772       case PPC::CRORC: {
6773         SDValue Op = MachineNode->getOperand(1);
6774         if (Op.isMachineOpcode()) {
6775           if (Op.getMachineOpcode() == PPC::CRSET)
6776             Op2Set = true;
6777           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6778             Op2Unset = true;
6779           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6780                     Op.getOperand(0) == Op.getOperand(1)) ||
6781                    Op.getMachineOpcode() == PPC::CRNOT)
6782             Op2Not = true;
6783         }
6784         [[fallthrough]];
6785       }
6786       case PPC::BC:
6787       case PPC::BCn:
6788       case PPC::SELECT_I4:
6789       case PPC::SELECT_I8:
6790       case PPC::SELECT_F4:
6791       case PPC::SELECT_F8:
6792       case PPC::SELECT_SPE:
6793       case PPC::SELECT_SPE4:
6794       case PPC::SELECT_VRRC:
6795       case PPC::SELECT_VSFRC:
6796       case PPC::SELECT_VSSRC:
6797       case PPC::SELECT_VSRC: {
6798         SDValue Op = MachineNode->getOperand(0);
6799         if (Op.isMachineOpcode()) {
6800           if (Op.getMachineOpcode() == PPC::CRSET)
6801             Op1Set = true;
6802           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6803             Op1Unset = true;
6804           else if ((Op.getMachineOpcode() == PPC::CRNOR &&
6805                     Op.getOperand(0) == Op.getOperand(1)) ||
6806                    Op.getMachineOpcode() == PPC::CRNOT)
6807             Op1Not = true;
6808         }
6809         }
6810         break;
6811       }
6812 
6813       bool SelectSwap = false;
6814       switch (Opcode) {
6815       default: break;
6816       case PPC::CRAND:
6817         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6818           // x & x = x
6819           ResNode = MachineNode->getOperand(0).getNode();
6820         else if (Op1Set)
6821           // 1 & y = y
6822           ResNode = MachineNode->getOperand(1).getNode();
6823         else if (Op2Set)
6824           // x & 1 = x
6825           ResNode = MachineNode->getOperand(0).getNode();
6826         else if (Op1Unset || Op2Unset)
6827           // x & 0 = 0 & y = 0
6828           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6829                                            MVT::i1);
6830         else if (Op1Not)
6831           // ~x & y = andc(y, x)
6832           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6833                                            MVT::i1, MachineNode->getOperand(1),
6834                                            MachineNode->getOperand(0).
6835                                              getOperand(0));
6836         else if (Op2Not)
6837           // x & ~y = andc(x, y)
6838           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6839                                            MVT::i1, MachineNode->getOperand(0),
6840                                            MachineNode->getOperand(1).
6841                                              getOperand(0));
6842         else if (AllUsersSelectZero(MachineNode)) {
6843           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6844                                            MVT::i1, MachineNode->getOperand(0),
6845                                            MachineNode->getOperand(1));
6846           SelectSwap = true;
6847         }
6848         break;
6849       case PPC::CRNAND:
6850         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6851           // nand(x, x) -> nor(x, x)
6852           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6853                                            MVT::i1, MachineNode->getOperand(0),
6854                                            MachineNode->getOperand(0));
6855         else if (Op1Set)
6856           // nand(1, y) -> nor(y, y)
6857           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6858                                            MVT::i1, MachineNode->getOperand(1),
6859                                            MachineNode->getOperand(1));
6860         else if (Op2Set)
6861           // nand(x, 1) -> nor(x, x)
6862           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6863                                            MVT::i1, MachineNode->getOperand(0),
6864                                            MachineNode->getOperand(0));
6865         else if (Op1Unset || Op2Unset)
6866           // nand(x, 0) = nand(0, y) = 1
6867           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6868                                            MVT::i1);
6869         else if (Op1Not)
6870           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6871           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6872                                            MVT::i1, MachineNode->getOperand(0).
6873                                                       getOperand(0),
6874                                            MachineNode->getOperand(1));
6875         else if (Op2Not)
6876           // nand(x, ~y) = ~x | y = orc(y, x)
6877           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6878                                            MVT::i1, MachineNode->getOperand(1).
6879                                                       getOperand(0),
6880                                            MachineNode->getOperand(0));
6881         else if (AllUsersSelectZero(MachineNode)) {
6882           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6883                                            MVT::i1, MachineNode->getOperand(0),
6884                                            MachineNode->getOperand(1));
6885           SelectSwap = true;
6886         }
6887         break;
6888       case PPC::CROR:
6889         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6890           // x | x = x
6891           ResNode = MachineNode->getOperand(0).getNode();
6892         else if (Op1Set || Op2Set)
6893           // x | 1 = 1 | y = 1
6894           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6895                                            MVT::i1);
6896         else if (Op1Unset)
6897           // 0 | y = y
6898           ResNode = MachineNode->getOperand(1).getNode();
6899         else if (Op2Unset)
6900           // x | 0 = x
6901           ResNode = MachineNode->getOperand(0).getNode();
6902         else if (Op1Not)
6903           // ~x | y = orc(y, x)
6904           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6905                                            MVT::i1, MachineNode->getOperand(1),
6906                                            MachineNode->getOperand(0).
6907                                              getOperand(0));
6908         else if (Op2Not)
6909           // x | ~y = orc(x, y)
6910           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6911                                            MVT::i1, MachineNode->getOperand(0),
6912                                            MachineNode->getOperand(1).
6913                                              getOperand(0));
6914         else if (AllUsersSelectZero(MachineNode)) {
6915           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6916                                            MVT::i1, MachineNode->getOperand(0),
6917                                            MachineNode->getOperand(1));
6918           SelectSwap = true;
6919         }
6920         break;
6921       case PPC::CRXOR:
6922         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6923           // xor(x, x) = 0
6924           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6925                                            MVT::i1);
6926         else if (Op1Set)
6927           // xor(1, y) -> nor(y, y)
6928           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6929                                            MVT::i1, MachineNode->getOperand(1),
6930                                            MachineNode->getOperand(1));
6931         else if (Op2Set)
6932           // xor(x, 1) -> nor(x, x)
6933           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6934                                            MVT::i1, MachineNode->getOperand(0),
6935                                            MachineNode->getOperand(0));
6936         else if (Op1Unset)
6937           // xor(0, y) = y
6938           ResNode = MachineNode->getOperand(1).getNode();
6939         else if (Op2Unset)
6940           // xor(x, 0) = x
6941           ResNode = MachineNode->getOperand(0).getNode();
6942         else if (Op1Not)
6943           // xor(~x, y) = eqv(x, y)
6944           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6945                                            MVT::i1, MachineNode->getOperand(0).
6946                                                       getOperand(0),
6947                                            MachineNode->getOperand(1));
6948         else if (Op2Not)
6949           // xor(x, ~y) = eqv(x, y)
6950           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6951                                            MVT::i1, MachineNode->getOperand(0),
6952                                            MachineNode->getOperand(1).
6953                                              getOperand(0));
6954         else if (AllUsersSelectZero(MachineNode)) {
6955           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6956                                            MVT::i1, MachineNode->getOperand(0),
6957                                            MachineNode->getOperand(1));
6958           SelectSwap = true;
6959         }
6960         break;
6961       case PPC::CRNOR:
6962         if (Op1Set || Op2Set)
6963           // nor(1, y) -> 0
6964           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6965                                            MVT::i1);
6966         else if (Op1Unset)
6967           // nor(0, y) = ~y -> nor(y, y)
6968           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6969                                            MVT::i1, MachineNode->getOperand(1),
6970                                            MachineNode->getOperand(1));
6971         else if (Op2Unset)
6972           // nor(x, 0) = ~x
6973           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6974                                            MVT::i1, MachineNode->getOperand(0),
6975                                            MachineNode->getOperand(0));
6976         else if (Op1Not)
6977           // nor(~x, y) = andc(x, y)
6978           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6979                                            MVT::i1, MachineNode->getOperand(0).
6980                                                       getOperand(0),
6981                                            MachineNode->getOperand(1));
6982         else if (Op2Not)
6983           // nor(x, ~y) = andc(y, x)
6984           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6985                                            MVT::i1, MachineNode->getOperand(1).
6986                                                       getOperand(0),
6987                                            MachineNode->getOperand(0));
6988         else if (AllUsersSelectZero(MachineNode)) {
6989           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6990                                            MVT::i1, MachineNode->getOperand(0),
6991                                            MachineNode->getOperand(1));
6992           SelectSwap = true;
6993         }
6994         break;
6995       case PPC::CREQV:
6996         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6997           // eqv(x, x) = 1
6998           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6999                                            MVT::i1);
7000         else if (Op1Set)
7001           // eqv(1, y) = y
7002           ResNode = MachineNode->getOperand(1).getNode();
7003         else if (Op2Set)
7004           // eqv(x, 1) = x
7005           ResNode = MachineNode->getOperand(0).getNode();
7006         else if (Op1Unset)
7007           // eqv(0, y) = ~y -> nor(y, y)
7008           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7009                                            MVT::i1, MachineNode->getOperand(1),
7010                                            MachineNode->getOperand(1));
7011         else if (Op2Unset)
7012           // eqv(x, 0) = ~x
7013           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7014                                            MVT::i1, MachineNode->getOperand(0),
7015                                            MachineNode->getOperand(0));
7016         else if (Op1Not)
7017           // eqv(~x, y) = xor(x, y)
7018           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7019                                            MVT::i1, MachineNode->getOperand(0).
7020                                                       getOperand(0),
7021                                            MachineNode->getOperand(1));
7022         else if (Op2Not)
7023           // eqv(x, ~y) = xor(x, y)
7024           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7025                                            MVT::i1, MachineNode->getOperand(0),
7026                                            MachineNode->getOperand(1).
7027                                              getOperand(0));
7028         else if (AllUsersSelectZero(MachineNode)) {
7029           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
7030                                            MVT::i1, MachineNode->getOperand(0),
7031                                            MachineNode->getOperand(1));
7032           SelectSwap = true;
7033         }
7034         break;
7035       case PPC::CRANDC:
7036         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7037           // andc(x, x) = 0
7038           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
7039                                            MVT::i1);
7040         else if (Op1Set)
7041           // andc(1, y) = ~y
7042           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7043                                            MVT::i1, MachineNode->getOperand(1),
7044                                            MachineNode->getOperand(1));
7045         else if (Op1Unset || Op2Set)
7046           // andc(0, y) = andc(x, 1) = 0
7047           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
7048                                            MVT::i1);
7049         else if (Op2Unset)
7050           // andc(x, 0) = x
7051           ResNode = MachineNode->getOperand(0).getNode();
7052         else if (Op1Not)
7053           // andc(~x, y) = ~(x | y) = nor(x, y)
7054           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7055                                            MVT::i1, MachineNode->getOperand(0).
7056                                                       getOperand(0),
7057                                            MachineNode->getOperand(1));
7058         else if (Op2Not)
7059           // andc(x, ~y) = x & y
7060           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
7061                                            MVT::i1, MachineNode->getOperand(0),
7062                                            MachineNode->getOperand(1).
7063                                              getOperand(0));
7064         else if (AllUsersSelectZero(MachineNode)) {
7065           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
7066                                            MVT::i1, MachineNode->getOperand(1),
7067                                            MachineNode->getOperand(0));
7068           SelectSwap = true;
7069         }
7070         break;
7071       case PPC::CRORC:
7072         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
7073           // orc(x, x) = 1
7074           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7075                                            MVT::i1);
7076         else if (Op1Set || Op2Unset)
7077           // orc(1, y) = orc(x, 0) = 1
7078           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
7079                                            MVT::i1);
7080         else if (Op2Set)
7081           // orc(x, 1) = x
7082           ResNode = MachineNode->getOperand(0).getNode();
7083         else if (Op1Unset)
7084           // orc(0, y) = ~y
7085           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
7086                                            MVT::i1, MachineNode->getOperand(1),
7087                                            MachineNode->getOperand(1));
7088         else if (Op1Not)
7089           // orc(~x, y) = ~(x & y) = nand(x, y)
7090           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
7091                                            MVT::i1, MachineNode->getOperand(0).
7092                                                       getOperand(0),
7093                                            MachineNode->getOperand(1));
7094         else if (Op2Not)
7095           // orc(x, ~y) = x | y
7096           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
7097                                            MVT::i1, MachineNode->getOperand(0),
7098                                            MachineNode->getOperand(1).
7099                                              getOperand(0));
7100         else if (AllUsersSelectZero(MachineNode)) {
7101           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
7102                                            MVT::i1, MachineNode->getOperand(1),
7103                                            MachineNode->getOperand(0));
7104           SelectSwap = true;
7105         }
7106         break;
7107       case PPC::SELECT_I4:
7108       case PPC::SELECT_I8:
7109       case PPC::SELECT_F4:
7110       case PPC::SELECT_F8:
7111       case PPC::SELECT_SPE:
7112       case PPC::SELECT_SPE4:
7113       case PPC::SELECT_VRRC:
7114       case PPC::SELECT_VSFRC:
7115       case PPC::SELECT_VSSRC:
7116       case PPC::SELECT_VSRC:
7117         if (Op1Set)
7118           ResNode = MachineNode->getOperand(1).getNode();
7119         else if (Op1Unset)
7120           ResNode = MachineNode->getOperand(2).getNode();
7121         else if (Op1Not)
7122           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
7123                                            SDLoc(MachineNode),
7124                                            MachineNode->getValueType(0),
7125                                            MachineNode->getOperand(0).
7126                                              getOperand(0),
7127                                            MachineNode->getOperand(2),
7128                                            MachineNode->getOperand(1));
7129         break;
7130       case PPC::BC:
7131       case PPC::BCn:
7132         if (Op1Not)
7133           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
7134                                                                PPC::BC,
7135                                            SDLoc(MachineNode),
7136                                            MVT::Other,
7137                                            MachineNode->getOperand(0).
7138                                              getOperand(0),
7139                                            MachineNode->getOperand(1),
7140                                            MachineNode->getOperand(2));
7141         // FIXME: Handle Op1Set, Op1Unset here too.
7142         break;
7143       }
7144 
7145       // If we're inverting this node because it is used only by selects that
7146       // we'd like to swap, then swap the selects before the node replacement.
7147       if (SelectSwap)
7148         SwapAllSelectUsers(MachineNode);
7149 
7150       if (ResNode != MachineNode) {
7151         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
7152         LLVM_DEBUG(MachineNode->dump(CurDAG));
7153         LLVM_DEBUG(dbgs() << "\nNew: ");
7154         LLVM_DEBUG(ResNode->dump(CurDAG));
7155         LLVM_DEBUG(dbgs() << "\n");
7156 
7157         ReplaceUses(MachineNode, ResNode);
7158         IsModified = true;
7159       }
7160     }
7161     if (IsModified)
7162       CurDAG->RemoveDeadNodes();
7163   } while (IsModified);
7164 }
7165 
7166 // Gather the set of 32-bit operations that are known to have their
7167 // higher-order 32 bits zero, where ToPromote contains all such operations.
7168 static bool PeepholePPC64ZExtGather(SDValue Op32,
7169                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
7170   if (!Op32.isMachineOpcode())
7171     return false;
7172 
7173   // First, check for the "frontier" instructions (those that will clear the
7174   // higher-order 32 bits.
7175 
7176   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
7177   // around. If it does not, then these instructions will clear the
7178   // higher-order bits.
7179   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
7180        Op32.getMachineOpcode() == PPC::RLWNM) &&
7181       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
7182     ToPromote.insert(Op32.getNode());
7183     return true;
7184   }
7185 
7186   // SLW and SRW always clear the higher-order bits.
7187   if (Op32.getMachineOpcode() == PPC::SLW ||
7188       Op32.getMachineOpcode() == PPC::SRW) {
7189     ToPromote.insert(Op32.getNode());
7190     return true;
7191   }
7192 
7193   // For LI and LIS, we need the immediate to be positive (so that it is not
7194   // sign extended).
7195   if (Op32.getMachineOpcode() == PPC::LI ||
7196       Op32.getMachineOpcode() == PPC::LIS) {
7197     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
7198       return false;
7199 
7200     ToPromote.insert(Op32.getNode());
7201     return true;
7202   }
7203 
7204   // LHBRX and LWBRX always clear the higher-order bits.
7205   if (Op32.getMachineOpcode() == PPC::LHBRX ||
7206       Op32.getMachineOpcode() == PPC::LWBRX) {
7207     ToPromote.insert(Op32.getNode());
7208     return true;
7209   }
7210 
7211   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
7212   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
7213       Op32.getMachineOpcode() == PPC::CNTTZW) {
7214     ToPromote.insert(Op32.getNode());
7215     return true;
7216   }
7217 
7218   // Next, check for those instructions we can look through.
7219 
7220   // Assuming the mask does not wrap around, then the higher-order bits are
7221   // taken directly from the first operand.
7222   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
7223       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
7224     SmallPtrSet<SDNode *, 16> ToPromote1;
7225     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7226       return false;
7227 
7228     ToPromote.insert(Op32.getNode());
7229     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7230     return true;
7231   }
7232 
7233   // For OR, the higher-order bits are zero if that is true for both operands.
7234   // For SELECT_I4, the same is true (but the relevant operand numbers are
7235   // shifted by 1).
7236   if (Op32.getMachineOpcode() == PPC::OR ||
7237       Op32.getMachineOpcode() == PPC::SELECT_I4) {
7238     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
7239     SmallPtrSet<SDNode *, 16> ToPromote1;
7240     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
7241       return false;
7242     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
7243       return false;
7244 
7245     ToPromote.insert(Op32.getNode());
7246     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7247     return true;
7248   }
7249 
7250   // For ORI and ORIS, we need the higher-order bits of the first operand to be
7251   // zero, and also for the constant to be positive (so that it is not sign
7252   // extended).
7253   if (Op32.getMachineOpcode() == PPC::ORI ||
7254       Op32.getMachineOpcode() == PPC::ORIS) {
7255     SmallPtrSet<SDNode *, 16> ToPromote1;
7256     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
7257       return false;
7258     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
7259       return false;
7260 
7261     ToPromote.insert(Op32.getNode());
7262     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7263     return true;
7264   }
7265 
7266   // The higher-order bits of AND are zero if that is true for at least one of
7267   // the operands.
7268   if (Op32.getMachineOpcode() == PPC::AND) {
7269     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
7270     bool Op0OK =
7271       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7272     bool Op1OK =
7273       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
7274     if (!Op0OK && !Op1OK)
7275       return false;
7276 
7277     ToPromote.insert(Op32.getNode());
7278 
7279     if (Op0OK)
7280       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7281 
7282     if (Op1OK)
7283       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
7284 
7285     return true;
7286   }
7287 
7288   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
7289   // of the first operand, or if the second operand is positive (so that it is
7290   // not sign extended).
7291   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
7292       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
7293     SmallPtrSet<SDNode *, 16> ToPromote1;
7294     bool Op0OK =
7295       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7296     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
7297     if (!Op0OK && !Op1OK)
7298       return false;
7299 
7300     ToPromote.insert(Op32.getNode());
7301 
7302     if (Op0OK)
7303       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7304 
7305     return true;
7306   }
7307 
7308   return false;
7309 }
7310 
7311 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7312   if (!Subtarget->isPPC64())
7313     return;
7314 
7315   // When we zero-extend from i32 to i64, we use a pattern like this:
7316   // def : Pat<(i64 (zext i32:$in)),
7317   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7318   //                   0, 32)>;
7319   // There are several 32-bit shift/rotate instructions, however, that will
7320   // clear the higher-order bits of their output, rendering the RLDICL
7321   // unnecessary. When that happens, we remove it here, and redefine the
7322   // relevant 32-bit operation to be a 64-bit operation.
7323 
7324   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7325 
7326   bool MadeChange = false;
7327   while (Position != CurDAG->allnodes_begin()) {
7328     SDNode *N = &*--Position;
7329     // Skip dead nodes and any non-machine opcodes.
7330     if (N->use_empty() || !N->isMachineOpcode())
7331       continue;
7332 
7333     if (N->getMachineOpcode() != PPC::RLDICL)
7334       continue;
7335 
7336     if (N->getConstantOperandVal(1) != 0 ||
7337         N->getConstantOperandVal(2) != 32)
7338       continue;
7339 
7340     SDValue ISR = N->getOperand(0);
7341     if (!ISR.isMachineOpcode() ||
7342         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7343       continue;
7344 
7345     if (!ISR.hasOneUse())
7346       continue;
7347 
7348     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7349       continue;
7350 
7351     SDValue IDef = ISR.getOperand(0);
7352     if (!IDef.isMachineOpcode() ||
7353         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7354       continue;
7355 
7356     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7357     // can get rid of it.
7358 
7359     SDValue Op32 = ISR->getOperand(1);
7360     if (!Op32.isMachineOpcode())
7361       continue;
7362 
7363     // There are some 32-bit instructions that always clear the high-order 32
7364     // bits, there are also some instructions (like AND) that we can look
7365     // through.
7366     SmallPtrSet<SDNode *, 16> ToPromote;
7367     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7368       continue;
7369 
7370     // If the ToPromote set contains nodes that have uses outside of the set
7371     // (except for the original INSERT_SUBREG), then abort the transformation.
7372     bool OutsideUse = false;
7373     for (SDNode *PN : ToPromote) {
7374       for (SDNode *UN : PN->uses()) {
7375         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7376           OutsideUse = true;
7377           break;
7378         }
7379       }
7380 
7381       if (OutsideUse)
7382         break;
7383     }
7384     if (OutsideUse)
7385       continue;
7386 
7387     MadeChange = true;
7388 
7389     // We now know that this zero extension can be removed by promoting to
7390     // nodes in ToPromote to 64-bit operations, where for operations in the
7391     // frontier of the set, we need to insert INSERT_SUBREGs for their
7392     // operands.
7393     for (SDNode *PN : ToPromote) {
7394       unsigned NewOpcode;
7395       switch (PN->getMachineOpcode()) {
7396       default:
7397         llvm_unreachable("Don't know the 64-bit variant of this instruction");
7398       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
7399       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
7400       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
7401       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
7402       case PPC::LI:        NewOpcode = PPC::LI8; break;
7403       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
7404       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
7405       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
7406       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
7407       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
7408       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
7409       case PPC::OR:        NewOpcode = PPC::OR8; break;
7410       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7411       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
7412       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
7413       case PPC::AND:       NewOpcode = PPC::AND8; break;
7414       case PPC::ANDI_rec:
7415         NewOpcode = PPC::ANDI8_rec;
7416         break;
7417       case PPC::ANDIS_rec:
7418         NewOpcode = PPC::ANDIS8_rec;
7419         break;
7420       }
7421 
7422       // Note: During the replacement process, the nodes will be in an
7423       // inconsistent state (some instructions will have operands with values
7424       // of the wrong type). Once done, however, everything should be right
7425       // again.
7426 
7427       SmallVector<SDValue, 4> Ops;
7428       for (const SDValue &V : PN->ops()) {
7429         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7430             !isa<ConstantSDNode>(V)) {
7431           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7432           SDNode *ReplOp =
7433             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7434                                    ISR.getNode()->getVTList(), ReplOpOps);
7435           Ops.push_back(SDValue(ReplOp, 0));
7436         } else {
7437           Ops.push_back(V);
7438         }
7439       }
7440 
7441       // Because all to-be-promoted nodes only have users that are other
7442       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7443       // the i32 result value type with i64.
7444 
7445       SmallVector<EVT, 2> NewVTs;
7446       SDVTList VTs = PN->getVTList();
7447       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7448         if (VTs.VTs[i] == MVT::i32)
7449           NewVTs.push_back(MVT::i64);
7450         else
7451           NewVTs.push_back(VTs.VTs[i]);
7452 
7453       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
7454       LLVM_DEBUG(PN->dump(CurDAG));
7455 
7456       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7457 
7458       LLVM_DEBUG(dbgs() << "\nNew: ");
7459       LLVM_DEBUG(PN->dump(CurDAG));
7460       LLVM_DEBUG(dbgs() << "\n");
7461     }
7462 
7463     // Now we replace the original zero extend and its associated INSERT_SUBREG
7464     // with the value feeding the INSERT_SUBREG (which has now been promoted to
7465     // return an i64).
7466 
7467     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
7468     LLVM_DEBUG(N->dump(CurDAG));
7469     LLVM_DEBUG(dbgs() << "\nNew: ");
7470     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7471     LLVM_DEBUG(dbgs() << "\n");
7472 
7473     ReplaceUses(N, Op32.getNode());
7474   }
7475 
7476   if (MadeChange)
7477     CurDAG->RemoveDeadNodes();
7478 }
7479 
7480 static bool isVSXSwap(SDValue N) {
7481   if (!N->isMachineOpcode())
7482     return false;
7483   unsigned Opc = N->getMachineOpcode();
7484 
7485   // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7486   // operand is 2.
7487   if (Opc == PPC::XXPERMDIs) {
7488     return isa<ConstantSDNode>(N->getOperand(1)) &&
7489            N->getConstantOperandVal(1) == 2;
7490   } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7491     return N->getOperand(0) == N->getOperand(1) &&
7492            isa<ConstantSDNode>(N->getOperand(2)) &&
7493            N->getConstantOperandVal(2) == 2;
7494   }
7495 
7496   return false;
7497 }
7498 
7499 // TODO: Make this complete and replace with a table-gen bit.
7500 static bool isLaneInsensitive(SDValue N) {
7501   if (!N->isMachineOpcode())
7502     return false;
7503   unsigned Opc = N->getMachineOpcode();
7504 
7505   switch (Opc) {
7506   default:
7507     return false;
7508   case PPC::VAVGSB:
7509   case PPC::VAVGUB:
7510   case PPC::VAVGSH:
7511   case PPC::VAVGUH:
7512   case PPC::VAVGSW:
7513   case PPC::VAVGUW:
7514   case PPC::VMAXFP:
7515   case PPC::VMAXSB:
7516   case PPC::VMAXUB:
7517   case PPC::VMAXSH:
7518   case PPC::VMAXUH:
7519   case PPC::VMAXSW:
7520   case PPC::VMAXUW:
7521   case PPC::VMINFP:
7522   case PPC::VMINSB:
7523   case PPC::VMINUB:
7524   case PPC::VMINSH:
7525   case PPC::VMINUH:
7526   case PPC::VMINSW:
7527   case PPC::VMINUW:
7528   case PPC::VADDFP:
7529   case PPC::VADDUBM:
7530   case PPC::VADDUHM:
7531   case PPC::VADDUWM:
7532   case PPC::VSUBFP:
7533   case PPC::VSUBUBM:
7534   case PPC::VSUBUHM:
7535   case PPC::VSUBUWM:
7536   case PPC::VAND:
7537   case PPC::VANDC:
7538   case PPC::VOR:
7539   case PPC::VORC:
7540   case PPC::VXOR:
7541   case PPC::VNOR:
7542   case PPC::VMULUWM:
7543     return true;
7544   }
7545 }
7546 
7547 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7548 // lane-insensitive.
7549 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7550   // Our desired xxswap might be source of COPY_TO_REGCLASS.
7551   // TODO: Can we put this a common method for DAG?
7552   auto SkipRCCopy = [](SDValue V) {
7553     while (V->isMachineOpcode() &&
7554            V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7555       // All values in the chain should have single use.
7556       if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7557         return SDValue();
7558       V = V->getOperand(0);
7559     }
7560     return V.hasOneUse() ? V : SDValue();
7561   };
7562 
7563   SDValue VecOp = SkipRCCopy(N->getOperand(0));
7564   if (!VecOp || !isLaneInsensitive(VecOp))
7565     return;
7566 
7567   SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7568           RHS = SkipRCCopy(VecOp.getOperand(1));
7569   if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7570     return;
7571 
7572   // These swaps may still have chain-uses here, count on dead code elimination
7573   // in following passes to remove them.
7574   DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7575   DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7576   DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7577 }
7578 
7579 void PPCDAGToDAGISel::PeepholePPC64() {
7580   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7581 
7582   while (Position != CurDAG->allnodes_begin()) {
7583     SDNode *N = &*--Position;
7584     // Skip dead nodes and any non-machine opcodes.
7585     if (N->use_empty() || !N->isMachineOpcode())
7586       continue;
7587 
7588     if (isVSXSwap(SDValue(N, 0)))
7589       reduceVSXSwap(N, CurDAG);
7590 
7591     unsigned FirstOp;
7592     unsigned StorageOpcode = N->getMachineOpcode();
7593     bool RequiresMod4Offset = false;
7594 
7595     switch (StorageOpcode) {
7596     default: continue;
7597 
7598     case PPC::LWA:
7599     case PPC::LD:
7600     case PPC::DFLOADf64:
7601     case PPC::DFLOADf32:
7602       RequiresMod4Offset = true;
7603       [[fallthrough]];
7604     case PPC::LBZ:
7605     case PPC::LBZ8:
7606     case PPC::LFD:
7607     case PPC::LFS:
7608     case PPC::LHA:
7609     case PPC::LHA8:
7610     case PPC::LHZ:
7611     case PPC::LHZ8:
7612     case PPC::LWZ:
7613     case PPC::LWZ8:
7614       FirstOp = 0;
7615       break;
7616 
7617     case PPC::STD:
7618     case PPC::DFSTOREf64:
7619     case PPC::DFSTOREf32:
7620       RequiresMod4Offset = true;
7621       [[fallthrough]];
7622     case PPC::STB:
7623     case PPC::STB8:
7624     case PPC::STFD:
7625     case PPC::STFS:
7626     case PPC::STH:
7627     case PPC::STH8:
7628     case PPC::STW:
7629     case PPC::STW8:
7630       FirstOp = 1;
7631       break;
7632     }
7633 
7634     // If this is a load or store with a zero offset, or within the alignment,
7635     // we may be able to fold an add-immediate into the memory operation.
7636     // The check against alignment is below, as it can't occur until we check
7637     // the arguments to N
7638     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7639       continue;
7640 
7641     SDValue Base = N->getOperand(FirstOp + 1);
7642     if (!Base.isMachineOpcode())
7643       continue;
7644 
7645     unsigned Flags = 0;
7646     bool ReplaceFlags = true;
7647 
7648     // When the feeding operation is an add-immediate of some sort,
7649     // determine whether we need to add relocation information to the
7650     // target flags on the immediate operand when we fold it into the
7651     // load instruction.
7652     //
7653     // For something like ADDItocL, the relocation information is
7654     // inferred from the opcode; when we process it in the AsmPrinter,
7655     // we add the necessary relocation there.  A load, though, can receive
7656     // relocation from various flavors of ADDIxxx, so we need to carry
7657     // the relocation information in the target flags.
7658     switch (Base.getMachineOpcode()) {
7659     default: continue;
7660 
7661     case PPC::ADDI8:
7662     case PPC::ADDI:
7663       // In some cases (such as TLS) the relocation information
7664       // is already in place on the operand, so copying the operand
7665       // is sufficient.
7666       ReplaceFlags = false;
7667       break;
7668     case PPC::ADDIdtprelL:
7669       Flags = PPCII::MO_DTPREL_LO;
7670       break;
7671     case PPC::ADDItlsldL:
7672       Flags = PPCII::MO_TLSLD_LO;
7673       break;
7674     case PPC::ADDItocL:
7675       Flags = PPCII::MO_TOC_LO;
7676       break;
7677     }
7678 
7679     SDValue ImmOpnd = Base.getOperand(1);
7680 
7681     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7682     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7683     // we might have needed different @ha relocation values for the offset
7684     // pointers).
7685     int MaxDisplacement = 7;
7686     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7687       const GlobalValue *GV = GA->getGlobal();
7688       Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7689       MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7690     }
7691 
7692     bool UpdateHBase = false;
7693     SDValue HBase = Base.getOperand(0);
7694 
7695     int Offset = N->getConstantOperandVal(FirstOp);
7696     if (ReplaceFlags) {
7697       if (Offset < 0 || Offset > MaxDisplacement) {
7698         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7699         // one use, then we can do this for any offset, we just need to also
7700         // update the offset (i.e. the symbol addend) on the addis also.
7701         if (Base.getMachineOpcode() != PPC::ADDItocL)
7702           continue;
7703 
7704         if (!HBase.isMachineOpcode() ||
7705             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7706           continue;
7707 
7708         if (!Base.hasOneUse() || !HBase.hasOneUse())
7709           continue;
7710 
7711         SDValue HImmOpnd = HBase.getOperand(1);
7712         if (HImmOpnd != ImmOpnd)
7713           continue;
7714 
7715         UpdateHBase = true;
7716       }
7717     } else {
7718       // Global addresses can be folded, but only if they are sufficiently
7719       // aligned.
7720       if (RequiresMod4Offset) {
7721         if (GlobalAddressSDNode *GA =
7722                 dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7723           const GlobalValue *GV = GA->getGlobal();
7724           Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7725           if (Alignment < 4)
7726             continue;
7727         }
7728       }
7729 
7730       // If we're directly folding the addend from an addi instruction, then:
7731       //  1. In general, the offset on the memory access must be zero.
7732       //  2. If the addend is a constant, then it can be combined with a
7733       //     non-zero offset, but only if the result meets the encoding
7734       //     requirements.
7735       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7736         Offset += C->getSExtValue();
7737 
7738         if (RequiresMod4Offset && (Offset % 4) != 0)
7739           continue;
7740 
7741         if (!isInt<16>(Offset))
7742           continue;
7743 
7744         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7745                                             ImmOpnd.getValueType());
7746       } else if (Offset != 0) {
7747         continue;
7748       }
7749     }
7750 
7751     // We found an opportunity.  Reverse the operands from the add
7752     // immediate and substitute them into the load or store.  If
7753     // needed, update the target flags for the immediate operand to
7754     // reflect the necessary relocation information.
7755     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
7756     LLVM_DEBUG(Base->dump(CurDAG));
7757     LLVM_DEBUG(dbgs() << "\nN: ");
7758     LLVM_DEBUG(N->dump(CurDAG));
7759     LLVM_DEBUG(dbgs() << "\n");
7760 
7761     // If the relocation information isn't already present on the
7762     // immediate operand, add it now.
7763     if (ReplaceFlags) {
7764       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7765         SDLoc dl(GA);
7766         const GlobalValue *GV = GA->getGlobal();
7767         Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7768         // We can't perform this optimization for data whose alignment
7769         // is insufficient for the instruction encoding.
7770         if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7771           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7772           continue;
7773         }
7774         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7775       } else if (ConstantPoolSDNode *CP =
7776                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7777         const Constant *C = CP->getConstVal();
7778         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7779                                                 Offset, Flags);
7780       }
7781     }
7782 
7783     if (FirstOp == 1) // Store
7784       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7785                                        Base.getOperand(0), N->getOperand(3));
7786     else // Load
7787       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7788                                        N->getOperand(2));
7789 
7790     if (UpdateHBase)
7791       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7792                                        ImmOpnd);
7793 
7794     // The add-immediate may now be dead, in which case remove it.
7795     if (Base.getNode()->use_empty())
7796       CurDAG->RemoveDeadNode(Base.getNode());
7797   }
7798 }
7799 
7800 /// createPPCISelDag - This pass converts a legalized DAG into a
7801 /// PowerPC-specific DAG, ready for instruction scheduling.
7802 ///
7803 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7804                                      CodeGenOptLevel OptLevel) {
7805   return new PPCDAGToDAGISel(TM, OptLevel);
7806 }
7807