xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGISel.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/IntrinsicsPowerPC.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MachineValueType.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <new>
65 #include <tuple>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "ppc-codegen"
71 
72 STATISTIC(NumSextSetcc,
73           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
74 STATISTIC(NumZextSetcc,
75           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(SignExtensionsAdded,
77           "Number of sign extensions for compare inputs added.");
78 STATISTIC(ZeroExtensionsAdded,
79           "Number of zero extensions for compare inputs added.");
80 STATISTIC(NumLogicOpsOnComparison,
81           "Number of logical ops on i1 values calculated in GPR.");
82 STATISTIC(OmittedForNonExtendUses,
83           "Number of compares not eliminated as they have non-extending uses.");
84 STATISTIC(NumP9Setb,
85           "Number of compares lowered to setb.");
86 
87 // FIXME: Remove this once the bug has been fixed!
88 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
89 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
90 
91 static cl::opt<bool>
92     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
93                        cl::desc("use aggressive ppc isel for bit permutations"),
94                        cl::Hidden);
95 static cl::opt<bool> BPermRewriterNoMasking(
96     "ppc-bit-perm-rewriter-stress-rotates",
97     cl::desc("stress rotate selection in aggressive ppc isel for "
98              "bit permutations"),
99     cl::Hidden);
100 
101 static cl::opt<bool> EnableBranchHint(
102   "ppc-use-branch-hint", cl::init(true),
103     cl::desc("Enable static hinting of branches on ppc"),
104     cl::Hidden);
105 
106 static cl::opt<bool> EnableTLSOpt(
107   "ppc-tls-opt", cl::init(true),
108     cl::desc("Enable tls optimization peephole"),
109     cl::Hidden);
110 
111 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
112   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
113   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
114 
115 static cl::opt<ICmpInGPRType> CmpInGPR(
116   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
117   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
118   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
119              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
120              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
121              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
122              clEnumValN(ICGPR_NonExtIn, "nonextin",
123                         "Only comparisons where inputs don't need [sz]ext."),
124              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
125              clEnumValN(ICGPR_ZextI32, "zexti32",
126                         "Only i32 comparisons with zext result."),
127              clEnumValN(ICGPR_ZextI64, "zexti64",
128                         "Only i64 comparisons with zext result."),
129              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
130              clEnumValN(ICGPR_SextI32, "sexti32",
131                         "Only i32 comparisons with sext result."),
132              clEnumValN(ICGPR_SextI64, "sexti64",
133                         "Only i64 comparisons with sext result.")));
134 namespace {
135 
136   //===--------------------------------------------------------------------===//
137   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
138   /// instructions for SelectionDAG operations.
139   ///
140   class PPCDAGToDAGISel : public SelectionDAGISel {
141     const PPCTargetMachine &TM;
142     const PPCSubtarget *Subtarget = nullptr;
143     const PPCTargetLowering *PPCLowering = nullptr;
144     unsigned GlobalBaseReg = 0;
145 
146   public:
147     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
148         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
149 
150     bool runOnMachineFunction(MachineFunction &MF) override {
151       // Make sure we re-emit a set of the global base reg if necessary
152       GlobalBaseReg = 0;
153       Subtarget = &MF.getSubtarget<PPCSubtarget>();
154       PPCLowering = Subtarget->getTargetLowering();
155       if (Subtarget->hasROPProtect()) {
156         // Create a place on the stack for the ROP Protection Hash.
157         // The ROP Protection Hash will always be 8 bytes and aligned to 8
158         // bytes.
159         MachineFrameInfo &MFI = MF.getFrameInfo();
160         PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
161         const int Result = MFI.CreateStackObject(8, Align(8), false);
162         FI->setROPProtectionHashSaveIndex(Result);
163       }
164       SelectionDAGISel::runOnMachineFunction(MF);
165 
166       return true;
167     }
168 
169     void PreprocessISelDAG() override;
170     void PostprocessISelDAG() override;
171 
172     /// getI16Imm - Return a target constant with the specified value, of type
173     /// i16.
174     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
175       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
176     }
177 
178     /// getI32Imm - Return a target constant with the specified value, of type
179     /// i32.
180     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
181       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
182     }
183 
184     /// getI64Imm - Return a target constant with the specified value, of type
185     /// i64.
186     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
187       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
188     }
189 
190     /// getSmallIPtrImm - Return a target constant of pointer type.
191     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
192       return CurDAG->getTargetConstant(
193           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
194     }
195 
196     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
197     /// rotate and mask opcode and mask operation.
198     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
199                                 unsigned &SH, unsigned &MB, unsigned &ME);
200 
201     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
202     /// base register.  Return the virtual register that holds this value.
203     SDNode *getGlobalBaseReg();
204 
205     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
206 
207     // Select - Convert the specified operand from a target-independent to a
208     // target-specific node if it hasn't already been changed.
209     void Select(SDNode *N) override;
210 
211     bool tryBitfieldInsert(SDNode *N);
212     bool tryBitPermutation(SDNode *N);
213     bool tryIntCompareInGPR(SDNode *N);
214 
215     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
216     // an X-Form load instruction with the offset being a relocation coming from
217     // the PPCISD::ADD_TLS.
218     bool tryTLSXFormLoad(LoadSDNode *N);
219     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
220     // an X-Form store instruction with the offset being a relocation coming from
221     // the PPCISD::ADD_TLS.
222     bool tryTLSXFormStore(StoreSDNode *N);
223     /// SelectCC - Select a comparison of the specified values with the
224     /// specified condition code, returning the CR# of the expression.
225     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
226                      const SDLoc &dl, SDValue Chain = SDValue());
227 
228     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
229     /// immediate field.  Note that the operand at this point is already the
230     /// result of a prior SelectAddressRegImm call.
231     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
232       if (N.getOpcode() == ISD::TargetConstant ||
233           N.getOpcode() == ISD::TargetGlobalAddress) {
234         Out = N;
235         return true;
236       }
237 
238       return false;
239     }
240 
241     /// SelectDSForm - Returns true if address N can be represented by the
242     /// addressing mode of DSForm instructions (a base register, plus a signed
243     /// 16-bit displacement that is a multiple of 4.
244     bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
245       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
246                                                 Align(4)) == PPC::AM_DSForm;
247     }
248 
249     /// SelectDQForm - Returns true if address N can be represented by the
250     /// addressing mode of DQForm instructions (a base register, plus a signed
251     /// 16-bit displacement that is a multiple of 16.
252     bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
253       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
254                                                 Align(16)) == PPC::AM_DQForm;
255     }
256 
257     /// SelectDForm - Returns true if address N can be represented by
258     /// the addressing mode of DForm instructions (a base register, plus a
259     /// signed 16-bit immediate.
260     bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
261       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
262                                                 None) == PPC::AM_DForm;
263     }
264 
265     /// SelectPCRelForm - Returns true if address N can be represented by
266     /// PC-Relative addressing mode.
267     bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
268                          SDValue &Base) {
269       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
270                                                 None) == PPC::AM_PCRel;
271     }
272 
273     /// SelectPDForm - Returns true if address N can be represented by Prefixed
274     /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
275     bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
276       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
277                                                 None) == PPC::AM_PrefixDForm;
278     }
279 
280     /// SelectXForm - Returns true if address N can be represented by the
281     /// addressing mode of XForm instructions (an indexed [r+r] operation).
282     bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
283       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
284                                                 None) == PPC::AM_XForm;
285     }
286 
287     /// SelectForceXForm - Given the specified address, force it to be
288     /// represented as an indexed [r+r] operation (an XForm instruction).
289     bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
290                           SDValue &Base) {
291       return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
292              PPC::AM_XForm;
293     }
294 
295     /// SelectAddrIdx - Given the specified address, check to see if it can be
296     /// represented as an indexed [r+r] operation.
297     /// This is for xform instructions whose associated displacement form is D.
298     /// The last parameter \p 0 means associated D form has no requirment for 16
299     /// bit signed displacement.
300     /// Returns false if it can be represented by [r+imm], which are preferred.
301     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
302       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None);
303     }
304 
305     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
306     /// represented as an indexed [r+r] operation.
307     /// This is for xform instructions whose associated displacement form is DS.
308     /// The last parameter \p 4 means associated DS form 16 bit signed
309     /// displacement must be a multiple of 4.
310     /// Returns false if it can be represented by [r+imm], which are preferred.
311     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
312       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
313                                               Align(4));
314     }
315 
316     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
317     /// represented as an indexed [r+r] operation.
318     /// This is for xform instructions whose associated displacement form is DQ.
319     /// The last parameter \p 16 means associated DQ form 16 bit signed
320     /// displacement must be a multiple of 16.
321     /// Returns false if it can be represented by [r+imm], which are preferred.
322     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
323       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
324                                               Align(16));
325     }
326 
327     /// SelectAddrIdxOnly - Given the specified address, force it to be
328     /// represented as an indexed [r+r] operation.
329     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
330       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
331     }
332 
333     /// SelectAddrImm - Returns true if the address N can be represented by
334     /// a base register plus a signed 16-bit displacement [r+imm].
335     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
336     /// displacement.
337     bool SelectAddrImm(SDValue N, SDValue &Disp,
338                        SDValue &Base) {
339       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None);
340     }
341 
342     /// SelectAddrImmX4 - Returns true if the address N can be represented by
343     /// a base register plus a signed 16-bit displacement that is a multiple of
344     /// 4 (last parameter). Suitable for use by STD and friends.
345     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
346       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
347     }
348 
349     /// SelectAddrImmX16 - Returns true if the address N can be represented by
350     /// a base register plus a signed 16-bit displacement that is a multiple of
351     /// 16(last parameter). Suitable for use by STXV and friends.
352     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
353       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
354                                               Align(16));
355     }
356 
357     /// SelectAddrImmX34 - Returns true if the address N can be represented by
358     /// a base register plus a signed 34-bit displacement. Suitable for use by
359     /// PSTXVP and friends.
360     bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
361       return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
362     }
363 
364     // Select an address into a single register.
365     bool SelectAddr(SDValue N, SDValue &Base) {
366       Base = N;
367       return true;
368     }
369 
370     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
371       return PPCLowering->SelectAddressPCRel(N, Base);
372     }
373 
374     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
375     /// inline asm expressions.  It is always correct to compute the value into
376     /// a register.  The case of adding a (possibly relocatable) constant to a
377     /// register can be improved, but it is wrong to substitute Reg+Reg for
378     /// Reg in an asm, because the load or store opcode would have to change.
379     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
380                                       unsigned ConstraintID,
381                                       std::vector<SDValue> &OutOps) override {
382       switch(ConstraintID) {
383       default:
384         errs() << "ConstraintID: " << ConstraintID << "\n";
385         llvm_unreachable("Unexpected asm memory constraint");
386       case InlineAsm::Constraint_es:
387       case InlineAsm::Constraint_m:
388       case InlineAsm::Constraint_o:
389       case InlineAsm::Constraint_Q:
390       case InlineAsm::Constraint_Z:
391       case InlineAsm::Constraint_Zy:
392         // We need to make sure that this one operand does not end up in r0
393         // (because we might end up lowering this as 0(%op)).
394         const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
395         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
396         SDLoc dl(Op);
397         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
398         SDValue NewOp =
399           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
400                                          dl, Op.getValueType(),
401                                          Op, RC), 0);
402 
403         OutOps.push_back(NewOp);
404         return false;
405       }
406       return true;
407     }
408 
409     StringRef getPassName() const override {
410       return "PowerPC DAG->DAG Pattern Instruction Selection";
411     }
412 
413 // Include the pieces autogenerated from the target description.
414 #include "PPCGenDAGISel.inc"
415 
416 private:
417     bool trySETCC(SDNode *N);
418     bool tryFoldSWTestBRCC(SDNode *N);
419     bool tryAsSingleRLDICL(SDNode *N);
420     bool tryAsSingleRLDICR(SDNode *N);
421     bool tryAsSingleRLWINM(SDNode *N);
422     bool tryAsSingleRLWINM8(SDNode *N);
423     bool tryAsSingleRLWIMI(SDNode *N);
424     bool tryAsPairOfRLDICL(SDNode *N);
425     bool tryAsSingleRLDIMI(SDNode *N);
426 
427     void PeepholePPC64();
428     void PeepholePPC64ZExt();
429     void PeepholeCROps();
430 
431     SDValue combineToCMPB(SDNode *N);
432     void foldBoolExts(SDValue &Res, SDNode *&N);
433 
434     bool AllUsersSelectZero(SDNode *N);
435     void SwapAllSelectUsers(SDNode *N);
436 
437     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
438     void transferMemOperands(SDNode *N, SDNode *Result);
439   };
440 
441 } // end anonymous namespace
442 
443 /// getGlobalBaseReg - Output the instructions required to put the
444 /// base address to use for accessing globals into a register.
445 ///
446 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
447   if (!GlobalBaseReg) {
448     const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
449     // Insert the set of GlobalBaseReg into the first MBB of the function
450     MachineBasicBlock &FirstMBB = MF->front();
451     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
452     const Module *M = MF->getFunction().getParent();
453     DebugLoc dl;
454 
455     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
456       if (Subtarget->isTargetELF()) {
457         GlobalBaseReg = PPC::R30;
458         if (!Subtarget->isSecurePlt() &&
459             M->getPICLevel() == PICLevel::SmallPIC) {
460           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
461           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
462           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
463         } else {
464           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
465           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
466           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
467           BuildMI(FirstMBB, MBBI, dl,
468                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
469                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
470           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
471         }
472       } else {
473         GlobalBaseReg =
474           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
475         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
476         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
477       }
478     } else {
479       // We must ensure that this sequence is dominated by the prologue.
480       // FIXME: This is a bit of a big hammer since we don't get the benefits
481       // of shrink-wrapping whenever we emit this instruction. Considering
482       // this is used in any function where we emit a jump table, this may be
483       // a significant limitation. We should consider inserting this in the
484       // block where it is used and then commoning this sequence up if it
485       // appears in multiple places.
486       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
487       // MovePCtoLR8.
488       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
489       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
490       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
491       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
492     }
493   }
494   return CurDAG->getRegister(GlobalBaseReg,
495                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
496       .getNode();
497 }
498 
499 // Check if a SDValue has the toc-data attribute.
500 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
501   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
502   if (!GA)
503     return false;
504 
505   const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
506   if (!GV)
507     return false;
508 
509   if (!GV->hasAttribute("toc-data"))
510     return false;
511 
512   // TODO: These asserts should be updated as more support for the toc data
513   // transformation is added (struct support, etc.).
514 
515   assert(
516       PointerSize >= GV->getAlign().valueOrOne().value() &&
517       "GlobalVariables with an alignment requirement stricter than TOC entry "
518       "size not supported by the toc data transformation.");
519 
520   Type *GVType = GV->getValueType();
521 
522   assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
523                               "supported by the toc data transformation.");
524 
525   if (GVType->isVectorTy())
526     report_fatal_error("A GlobalVariable of Vector type is not currently "
527                        "supported by the toc data transformation.");
528 
529   if (GVType->isArrayTy())
530     report_fatal_error("A GlobalVariable of Array type is not currently "
531                        "supported by the toc data transformation.");
532 
533   if (GVType->isStructTy())
534     report_fatal_error("A GlobalVariable of Struct type is not currently "
535                        "supported by the toc data transformation.");
536 
537   assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
538          "A GlobalVariable with size larger than a TOC entry is not currently "
539          "supported by the toc data transformation.");
540 
541   if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
542     report_fatal_error("A GlobalVariable with private or local linkage is not "
543                        "currently supported by the toc data transformation.");
544 
545   assert(!GV->hasCommonLinkage() &&
546          "Tentative definitions cannot have the mapping class XMC_TD.");
547 
548   return true;
549 }
550 
551 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
552 /// operand. If so Imm will receive the 32-bit value.
553 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
554   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
555     Imm = cast<ConstantSDNode>(N)->getZExtValue();
556     return true;
557   }
558   return false;
559 }
560 
561 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
562 /// operand.  If so Imm will receive the 64-bit value.
563 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
564   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
565     Imm = cast<ConstantSDNode>(N)->getZExtValue();
566     return true;
567   }
568   return false;
569 }
570 
571 // isInt32Immediate - This method tests to see if a constant operand.
572 // If so Imm will receive the 32 bit value.
573 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
574   return isInt32Immediate(N.getNode(), Imm);
575 }
576 
577 /// isInt64Immediate - This method tests to see if the value is a 64-bit
578 /// constant operand. If so Imm will receive the 64-bit value.
579 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
580   return isInt64Immediate(N.getNode(), Imm);
581 }
582 
583 static unsigned getBranchHint(unsigned PCC,
584                               const FunctionLoweringInfo &FuncInfo,
585                               const SDValue &DestMBB) {
586   assert(isa<BasicBlockSDNode>(DestMBB));
587 
588   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
589 
590   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
591   const Instruction *BBTerm = BB->getTerminator();
592 
593   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
594 
595   const BasicBlock *TBB = BBTerm->getSuccessor(0);
596   const BasicBlock *FBB = BBTerm->getSuccessor(1);
597 
598   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
599   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
600 
601   // We only want to handle cases which are easy to predict at static time, e.g.
602   // C++ throw statement, that is very likely not taken, or calling never
603   // returned function, e.g. stdlib exit(). So we set Threshold to filter
604   // unwanted cases.
605   //
606   // Below is LLVM branch weight table, we only want to handle case 1, 2
607   //
608   // Case                  Taken:Nontaken  Example
609   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
610   // 2. Invoke-terminating 1:1048575
611   // 3. Coldblock          4:64            __builtin_expect
612   // 4. Loop Branch        124:4           For loop
613   // 5. PH/ZH/FPH          20:12
614   const uint32_t Threshold = 10000;
615 
616   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
617     return PPC::BR_NO_HINT;
618 
619   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
620                     << "::" << BB->getName() << "'\n"
621                     << " -> " << TBB->getName() << ": " << TProb << "\n"
622                     << " -> " << FBB->getName() << ": " << FProb << "\n");
623 
624   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
625 
626   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
627   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
628   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
629     std::swap(TProb, FProb);
630 
631   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
632 }
633 
634 // isOpcWithIntImmediate - This method tests to see if the node is a specific
635 // opcode and that it has a immediate integer right operand.
636 // If so Imm will receive the 32 bit value.
637 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
638   return N->getOpcode() == Opc
639          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
640 }
641 
642 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
643   SDLoc dl(SN);
644   int FI = cast<FrameIndexSDNode>(N)->getIndex();
645   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
646   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
647   if (SN->hasOneUse())
648     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
649                          getSmallIPtrImm(Offset, dl));
650   else
651     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
652                                            getSmallIPtrImm(Offset, dl)));
653 }
654 
655 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
656                                       bool isShiftMask, unsigned &SH,
657                                       unsigned &MB, unsigned &ME) {
658   // Don't even go down this path for i64, since different logic will be
659   // necessary for rldicl/rldicr/rldimi.
660   if (N->getValueType(0) != MVT::i32)
661     return false;
662 
663   unsigned Shift  = 32;
664   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
665   unsigned Opcode = N->getOpcode();
666   if (N->getNumOperands() != 2 ||
667       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
668     return false;
669 
670   if (Opcode == ISD::SHL) {
671     // apply shift left to mask if it comes first
672     if (isShiftMask) Mask = Mask << Shift;
673     // determine which bits are made indeterminant by shift
674     Indeterminant = ~(0xFFFFFFFFu << Shift);
675   } else if (Opcode == ISD::SRL) {
676     // apply shift right to mask if it comes first
677     if (isShiftMask) Mask = Mask >> Shift;
678     // determine which bits are made indeterminant by shift
679     Indeterminant = ~(0xFFFFFFFFu >> Shift);
680     // adjust for the left rotate
681     Shift = 32 - Shift;
682   } else if (Opcode == ISD::ROTL) {
683     Indeterminant = 0;
684   } else {
685     return false;
686   }
687 
688   // if the mask doesn't intersect any Indeterminant bits
689   if (Mask && !(Mask & Indeterminant)) {
690     SH = Shift & 31;
691     // make sure the mask is still a mask (wrap arounds may not be)
692     return isRunOfOnes(Mask, MB, ME);
693   }
694   return false;
695 }
696 
697 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
698   SDValue Base = ST->getBasePtr();
699   if (Base.getOpcode() != PPCISD::ADD_TLS)
700     return false;
701   SDValue Offset = ST->getOffset();
702   if (!Offset.isUndef())
703     return false;
704   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
705     return false;
706 
707   SDLoc dl(ST);
708   EVT MemVT = ST->getMemoryVT();
709   EVT RegVT = ST->getValue().getValueType();
710 
711   unsigned Opcode;
712   switch (MemVT.getSimpleVT().SimpleTy) {
713     default:
714       return false;
715     case MVT::i8: {
716       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
717       break;
718     }
719     case MVT::i16: {
720       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
721       break;
722     }
723     case MVT::i32: {
724       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
725       break;
726     }
727     case MVT::i64: {
728       Opcode = PPC::STDXTLS;
729       break;
730     }
731   }
732   SDValue Chain = ST->getChain();
733   SDVTList VTs = ST->getVTList();
734   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
735                    Chain};
736   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
737   transferMemOperands(ST, MN);
738   ReplaceNode(ST, MN);
739   return true;
740 }
741 
742 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
743   SDValue Base = LD->getBasePtr();
744   if (Base.getOpcode() != PPCISD::ADD_TLS)
745     return false;
746   SDValue Offset = LD->getOffset();
747   if (!Offset.isUndef())
748     return false;
749   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
750     return false;
751 
752   SDLoc dl(LD);
753   EVT MemVT = LD->getMemoryVT();
754   EVT RegVT = LD->getValueType(0);
755   unsigned Opcode;
756   switch (MemVT.getSimpleVT().SimpleTy) {
757     default:
758       return false;
759     case MVT::i8: {
760       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
761       break;
762     }
763     case MVT::i16: {
764       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
765       break;
766     }
767     case MVT::i32: {
768       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
769       break;
770     }
771     case MVT::i64: {
772       Opcode = PPC::LDXTLS;
773       break;
774     }
775   }
776   SDValue Chain = LD->getChain();
777   SDVTList VTs = LD->getVTList();
778   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
779   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
780   transferMemOperands(LD, MN);
781   ReplaceNode(LD, MN);
782   return true;
783 }
784 
785 /// Turn an or of two masked values into the rotate left word immediate then
786 /// mask insert (rlwimi) instruction.
787 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
788   SDValue Op0 = N->getOperand(0);
789   SDValue Op1 = N->getOperand(1);
790   SDLoc dl(N);
791 
792   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
793   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
794 
795   unsigned TargetMask = LKnown.Zero.getZExtValue();
796   unsigned InsertMask = RKnown.Zero.getZExtValue();
797 
798   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
799     unsigned Op0Opc = Op0.getOpcode();
800     unsigned Op1Opc = Op1.getOpcode();
801     unsigned Value, SH = 0;
802     TargetMask = ~TargetMask;
803     InsertMask = ~InsertMask;
804 
805     // If the LHS has a foldable shift and the RHS does not, then swap it to the
806     // RHS so that we can fold the shift into the insert.
807     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
808       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
809           Op0.getOperand(0).getOpcode() == ISD::SRL) {
810         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
811             Op1.getOperand(0).getOpcode() != ISD::SRL) {
812           std::swap(Op0, Op1);
813           std::swap(Op0Opc, Op1Opc);
814           std::swap(TargetMask, InsertMask);
815         }
816       }
817     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
818       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
819           Op1.getOperand(0).getOpcode() != ISD::SRL) {
820         std::swap(Op0, Op1);
821         std::swap(Op0Opc, Op1Opc);
822         std::swap(TargetMask, InsertMask);
823       }
824     }
825 
826     unsigned MB, ME;
827     if (isRunOfOnes(InsertMask, MB, ME)) {
828       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
829           isInt32Immediate(Op1.getOperand(1), Value)) {
830         Op1 = Op1.getOperand(0);
831         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
832       }
833       if (Op1Opc == ISD::AND) {
834        // The AND mask might not be a constant, and we need to make sure that
835        // if we're going to fold the masking with the insert, all bits not
836        // know to be zero in the mask are known to be one.
837         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
838         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
839 
840         unsigned SHOpc = Op1.getOperand(0).getOpcode();
841         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
842             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
843           // Note that Value must be in range here (less than 32) because
844           // otherwise there would not be any bits set in InsertMask.
845           Op1 = Op1.getOperand(0).getOperand(0);
846           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
847         }
848       }
849 
850       SH &= 31;
851       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
852                           getI32Imm(ME, dl) };
853       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
854       return true;
855     }
856   }
857   return false;
858 }
859 
860 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
861   unsigned MaxTruncation = 0;
862   // Cannot use range-based for loop here as we need the actual use (i.e. we
863   // need the operand number corresponding to the use). A range-based for
864   // will unbox the use and provide an SDNode*.
865   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
866        Use != UseEnd; ++Use) {
867     unsigned Opc =
868       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
869     switch (Opc) {
870     default: return 0;
871     case ISD::TRUNCATE:
872       if (Use->isMachineOpcode())
873         return 0;
874       MaxTruncation =
875         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
876       continue;
877     case ISD::STORE: {
878       if (Use->isMachineOpcode())
879         return 0;
880       StoreSDNode *STN = cast<StoreSDNode>(*Use);
881       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
882       if (MemVTSize == 64 || Use.getOperandNo() != 0)
883         return 0;
884       MaxTruncation = std::max(MaxTruncation, MemVTSize);
885       continue;
886     }
887     case PPC::STW8:
888     case PPC::STWX8:
889     case PPC::STWU8:
890     case PPC::STWUX8:
891       if (Use.getOperandNo() != 0)
892         return 0;
893       MaxTruncation = std::max(MaxTruncation, 32u);
894       continue;
895     case PPC::STH8:
896     case PPC::STHX8:
897     case PPC::STHU8:
898     case PPC::STHUX8:
899       if (Use.getOperandNo() != 0)
900         return 0;
901       MaxTruncation = std::max(MaxTruncation, 16u);
902       continue;
903     case PPC::STB8:
904     case PPC::STBX8:
905     case PPC::STBU8:
906     case PPC::STBUX8:
907       if (Use.getOperandNo() != 0)
908         return 0;
909       MaxTruncation = std::max(MaxTruncation, 8u);
910       continue;
911     }
912   }
913   return MaxTruncation;
914 }
915 
916 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
917 // zeros and return the number of bits by the left of these consecutive zeros.
918 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
919   unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
920   unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
921   if ((HiTZ + LoLZ) >= Num)
922     return (32 + HiTZ);
923   return 0;
924 }
925 
926 // Direct materialization of 64-bit constants by enumerated patterns.
927 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
928                                   uint64_t Imm, unsigned &InstCnt) {
929   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
930   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
931   unsigned TO = countTrailingOnes<uint64_t>(Imm);
932   unsigned LO = countLeadingOnes<uint64_t>(Imm);
933   unsigned Hi32 = Hi_32(Imm);
934   unsigned Lo32 = Lo_32(Imm);
935   SDNode *Result = nullptr;
936   unsigned Shift = 0;
937 
938   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
939     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
940   };
941 
942   // Following patterns use 1 instructions to materialize the Imm.
943   InstCnt = 1;
944   // 1-1) Patterns : {zeros}{15-bit valve}
945   //                 {ones}{15-bit valve}
946   if (isInt<16>(Imm)) {
947     SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
948     return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
949   }
950   // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
951   //                 {ones}{15-bit valve}{16 zeros}
952   if (TZ > 15 && (LZ > 32 || LO > 32))
953     return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
954                                   getI32Imm((Imm >> 16) & 0xffff));
955 
956   // Following patterns use 2 instructions to materialize the Imm.
957   InstCnt = 2;
958   assert(LZ < 64 && "Unexpected leading zeros here.");
959   // Count of ones follwing the leading zeros.
960   unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
961   // 2-1) Patterns : {zeros}{31-bit value}
962   //                 {ones}{31-bit value}
963   if (isInt<32>(Imm)) {
964     uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
965     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
966     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
967     return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
968                                   getI32Imm(Imm & 0xffff));
969   }
970   // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
971   //                 {zeros}{15-bit value}{zeros}
972   //                 {zeros}{ones}{15-bit value}
973   //                 {ones}{15-bit value}{zeros}
974   // We can take advantage of LI's sign-extension semantics to generate leading
975   // ones, and then use RLDIC to mask off the ones in both sides after rotation.
976   if ((LZ + FO + TZ) > 48) {
977     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
978                                     getI32Imm((Imm >> TZ) & 0xffff));
979     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
980                                   getI32Imm(TZ), getI32Imm(LZ));
981   }
982   // 2-3) Pattern : {zeros}{15-bit value}{ones}
983   // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
984   // therefore we can take advantage of LI's sign-extension semantics, and then
985   // mask them off after rotation.
986   //
987   // +--LZ--||-15-bit-||--TO--+     +-------------|--16-bit--+
988   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
989   // +------------------------+     +------------------------+
990   // 63                      0      63                      0
991   //          Imm                   (Imm >> (48 - LZ) & 0xffff)
992   // +----sext-----|--16-bit--+     +clear-|-----------------+
993   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
994   // +------------------------+     +------------------------+
995   // 63                      0      63                      0
996   // LI8: sext many leading zeros   RLDICL: rotate left (48 - LZ), clear left LZ
997   if ((LZ + TO) > 48) {
998     // Since the immediates with (LZ > 32) have been handled by previous
999     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1000     // the Imm by a negative value.
1001     assert(LZ <= 32 && "Unexpected shift value.");
1002     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1003                                     getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1004     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1005                                   getI32Imm(48 - LZ), getI32Imm(LZ));
1006   }
1007   // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1008   //                 {ones}{15-bit value}{ones}
1009   // We can take advantage of LI's sign-extension semantics to generate leading
1010   // ones, and then use RLDICL to mask off the ones in left sides (if required)
1011   // after rotation.
1012   //
1013   // +-LZ-FO||-15-bit-||--TO--+     +-------------|--16-bit--+
1014   // |00011110bbbbbbbbb1111111| ->  |000000000011110bbbbbbbbb|
1015   // +------------------------+     +------------------------+
1016   // 63                      0      63                      0
1017   //            Imm                    (Imm >> TO) & 0xffff
1018   // +----sext-----|--16-bit--+     +LZ|---------------------+
1019   // |111111111111110bbbbbbbbb| ->  |00011110bbbbbbbbb1111111|
1020   // +------------------------+     +------------------------+
1021   // 63                      0      63                      0
1022   // LI8: sext many leading zeros   RLDICL: rotate left TO, clear left LZ
1023   if ((LZ + FO + TO) > 48) {
1024     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1025                                     getI32Imm((Imm >> TO) & 0xffff));
1026     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1027                                   getI32Imm(TO), getI32Imm(LZ));
1028   }
1029   // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1030   // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1031   // value, we can use LI for Lo16 without generating leading ones then add the
1032   // Hi16(in Lo32).
1033   if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1034     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1035                                     getI32Imm(Lo32 & 0xffff));
1036     return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1037                                   getI32Imm(Lo32 >> 16));
1038   }
1039   // 2-6) Patterns : {******}{49 zeros}{******}
1040   //                 {******}{49 ones}{******}
1041   // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1042   // bits remain on both sides. Rotate right the Imm to construct an int<16>
1043   // value, use LI for int<16> value and then use RLDICL without mask to rotate
1044   // it back.
1045   //
1046   // 1) findContiguousZerosAtLeast(Imm, 49)
1047   // +------|--zeros-|------+     +---ones--||---15 bit--+
1048   // |bbbbbb0000000000aaaaaa| ->  |0000000000aaaaaabbbbbb|
1049   // +----------------------+     +----------------------+
1050   // 63                    0      63                    0
1051   //
1052   // 2) findContiguousZerosAtLeast(~Imm, 49)
1053   // +------|--ones--|------+     +---ones--||---15 bit--+
1054   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1055   // +----------------------+     +----------------------+
1056   // 63                    0      63                    0
1057   if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1058       (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1059     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1060     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1061                                     getI32Imm(RotImm & 0xffff));
1062     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1063                                   getI32Imm(Shift), getI32Imm(0));
1064   }
1065 
1066   // Following patterns use 3 instructions to materialize the Imm.
1067   InstCnt = 3;
1068   // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1069   //                 {zeros}{31-bit value}{zeros}
1070   //                 {zeros}{ones}{31-bit value}
1071   //                 {ones}{31-bit value}{zeros}
1072   // We can take advantage of LIS's sign-extension semantics to generate leading
1073   // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1074   // ones in both sides after rotation.
1075   if ((LZ + FO + TZ) > 32) {
1076     uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1077     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1078     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1079     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1080                                     getI32Imm((Imm >> TZ) & 0xffff));
1081     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1082                                   getI32Imm(TZ), getI32Imm(LZ));
1083   }
1084   // 3-2) Pattern : {zeros}{31-bit value}{ones}
1085   // Shift right the Imm by (32 - LZ) bits to construct a negtive 32 bits value,
1086   // therefore we can take advantage of LIS's sign-extension semantics, add
1087   // the remaining bits with ORI, and then mask them off after rotation.
1088   // This is similar to Pattern 2-3, please refer to the diagram there.
1089   if ((LZ + TO) > 32) {
1090     // Since the immediates with (LZ > 32) have been handled by previous
1091     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1092     // the Imm by a negative value.
1093     assert(LZ <= 32 && "Unexpected shift value.");
1094     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1095                                     getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1096     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1097                                     getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1098     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1099                                   getI32Imm(32 - LZ), getI32Imm(LZ));
1100   }
1101   // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1102   //                 {ones}{31-bit value}{ones}
1103   // We can take advantage of LIS's sign-extension semantics to generate leading
1104   // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1105   // ones in left sides (if required) after rotation.
1106   // This is similar to Pattern 2-4, please refer to the diagram there.
1107   if ((LZ + FO + TO) > 32) {
1108     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1109                                     getI32Imm((Imm >> (TO + 16)) & 0xffff));
1110     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1111                                     getI32Imm((Imm >> TO) & 0xffff));
1112     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1113                                   getI32Imm(TO), getI32Imm(LZ));
1114   }
1115   // 3-4) Patterns : High word == Low word
1116   if (Hi32 == Lo32) {
1117     // Handle the first 32 bits.
1118     uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1119     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1120     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1121     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1122                                     getI32Imm(Lo32 & 0xffff));
1123     // Use rldimi to insert the Low word into High word.
1124     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1125                      getI32Imm(0)};
1126     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1127   }
1128   // 3-5) Patterns : {******}{33 zeros}{******}
1129   //                 {******}{33 ones}{******}
1130   // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1131   // bits remain on both sides. Rotate right the Imm to construct an int<32>
1132   // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1133   // rotate it back.
1134   // This is similar to Pattern 2-6, please refer to the diagram there.
1135   if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1136       (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1137     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1138     uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1139     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1140     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1141     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1142                                     getI32Imm(RotImm & 0xffff));
1143     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1144                                   getI32Imm(Shift), getI32Imm(0));
1145   }
1146 
1147   InstCnt = 0;
1148   return nullptr;
1149 }
1150 
1151 // Try to select instructions to generate a 64 bit immediate using prefix as
1152 // well as non prefix instructions. The function will return the SDNode
1153 // to materialize that constant or it will return nullptr if it does not
1154 // find one. The variable InstCnt is set to the number of instructions that
1155 // were selected.
1156 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1157                                         uint64_t Imm, unsigned &InstCnt) {
1158   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
1159   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
1160   unsigned TO = countTrailingOnes<uint64_t>(Imm);
1161   unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1162   unsigned Hi32 = Hi_32(Imm);
1163   unsigned Lo32 = Lo_32(Imm);
1164 
1165   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1166     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1167   };
1168 
1169   auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1170     return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1171   };
1172 
1173   // Following patterns use 1 instruction to materialize Imm.
1174   InstCnt = 1;
1175 
1176   // The pli instruction can materialize up to 34 bits directly.
1177   // If a constant fits within 34-bits, emit the pli instruction here directly.
1178   if (isInt<34>(Imm))
1179     return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1180                                   CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1181 
1182   // Require at least two instructions.
1183   InstCnt = 2;
1184   SDNode *Result = nullptr;
1185   // Patterns : {zeros}{ones}{33-bit value}{zeros}
1186   //            {zeros}{33-bit value}{zeros}
1187   //            {zeros}{ones}{33-bit value}
1188   //            {ones}{33-bit value}{zeros}
1189   // We can take advantage of PLI's sign-extension semantics to generate leading
1190   // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1191   if ((LZ + FO + TZ) > 30) {
1192     APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1193     APInt Extended = SignedInt34.sext(64);
1194     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1195                                     getI64Imm(*Extended.getRawData()));
1196     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1197                                   getI32Imm(TZ), getI32Imm(LZ));
1198   }
1199   // Pattern : {zeros}{33-bit value}{ones}
1200   // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1201   // therefore we can take advantage of PLI's sign-extension semantics, and then
1202   // mask them off after rotation.
1203   //
1204   // +--LZ--||-33-bit-||--TO--+     +-------------|--34-bit--+
1205   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1206   // +------------------------+     +------------------------+
1207   // 63                      0      63                      0
1208   //
1209   // +----sext-----|--34-bit--+     +clear-|-----------------+
1210   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1211   // +------------------------+     +------------------------+
1212   // 63                      0      63                      0
1213   if ((LZ + TO) > 30) {
1214     APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1215     APInt Extended = SignedInt34.sext(64);
1216     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1217                                     getI64Imm(*Extended.getRawData()));
1218     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1219                                   getI32Imm(30 - LZ), getI32Imm(LZ));
1220   }
1221   // Patterns : {zeros}{ones}{33-bit value}{ones}
1222   //            {ones}{33-bit value}{ones}
1223   // Similar to LI we can take advantage of PLI's sign-extension semantics to
1224   // generate leading ones, and then use RLDICL to mask off the ones in left
1225   // sides (if required) after rotation.
1226   if ((LZ + FO + TO) > 30) {
1227     APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1228     APInt Extended = SignedInt34.sext(64);
1229     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1230                                     getI64Imm(*Extended.getRawData()));
1231     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1232                                   getI32Imm(TO), getI32Imm(LZ));
1233   }
1234   // Patterns : {******}{31 zeros}{******}
1235   //          : {******}{31 ones}{******}
1236   // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1237   // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1238   // for the int<33> value and then use RLDICL without a mask to rotate it back.
1239   //
1240   // +------|--ones--|------+     +---ones--||---33 bit--+
1241   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1242   // +----------------------+     +----------------------+
1243   // 63                    0      63                    0
1244   for (unsigned Shift = 0; Shift < 63; ++Shift) {
1245     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1246     if (isInt<34>(RotImm)) {
1247       Result =
1248           CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1249       return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1250                                     SDValue(Result, 0), getI32Imm(Shift),
1251                                     getI32Imm(0));
1252     }
1253   }
1254 
1255   // Patterns : High word == Low word
1256   // This is basically a splat of a 32 bit immediate.
1257   if (Hi32 == Lo32) {
1258     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1259     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1260                      getI32Imm(0)};
1261     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1262   }
1263 
1264   InstCnt = 3;
1265   // Catch-all
1266   // This pattern can form any 64 bit immediate in 3 instructions.
1267   SDNode *ResultHi =
1268       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1269   SDNode *ResultLo =
1270       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1271   SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1272                    getI32Imm(0)};
1273   return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1274 }
1275 
1276 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1277                             unsigned *InstCnt = nullptr) {
1278   unsigned InstCntDirect = 0;
1279   // No more than 3 instructions is used if we can select the i64 immediate
1280   // directly.
1281   SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1282 
1283   const PPCSubtarget &Subtarget =
1284       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1285 
1286   // If we have prefixed instructions and there is a chance we can
1287   // materialize the constant with fewer prefixed instructions than
1288   // non-prefixed, try that.
1289   if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1290     unsigned InstCntDirectP = 0;
1291     SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1292     // Use the prefix case in either of two cases:
1293     // 1) We have no result from the non-prefix case to use.
1294     // 2) The non-prefix case uses more instructions than the prefix case.
1295     // If the prefix and non-prefix cases use the same number of instructions
1296     // we will prefer the non-prefix case.
1297     if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1298       if (InstCnt)
1299         *InstCnt = InstCntDirectP;
1300       return ResultP;
1301     }
1302   }
1303 
1304   if (Result) {
1305     if (InstCnt)
1306       *InstCnt = InstCntDirect;
1307     return Result;
1308   }
1309   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1310     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1311   };
1312   // Handle the upper 32 bit value.
1313   Result =
1314       selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1315   // Add in the last bits as required.
1316   if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) {
1317     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1318                                     SDValue(Result, 0), getI32Imm(Hi16));
1319     ++InstCntDirect;
1320   }
1321   if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) {
1322     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1323                                     getI32Imm(Lo16));
1324     ++InstCntDirect;
1325   }
1326   if (InstCnt)
1327     *InstCnt = InstCntDirect;
1328   return Result;
1329 }
1330 
1331 // Select a 64-bit constant.
1332 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1333   SDLoc dl(N);
1334 
1335   // Get 64 bit value.
1336   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1337   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1338     uint64_t SextImm = SignExtend64(Imm, MinSize);
1339     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1340     if (isInt<16>(SextImm))
1341       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1342   }
1343   return selectI64Imm(CurDAG, dl, Imm);
1344 }
1345 
1346 namespace {
1347 
1348 class BitPermutationSelector {
1349   struct ValueBit {
1350     SDValue V;
1351 
1352     // The bit number in the value, using a convention where bit 0 is the
1353     // lowest-order bit.
1354     unsigned Idx;
1355 
1356     // ConstZero means a bit we need to mask off.
1357     // Variable is a bit comes from an input variable.
1358     // VariableKnownToBeZero is also a bit comes from an input variable,
1359     // but it is known to be already zero. So we do not need to mask them.
1360     enum Kind {
1361       ConstZero,
1362       Variable,
1363       VariableKnownToBeZero
1364     } K;
1365 
1366     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1367       : V(V), Idx(I), K(K) {}
1368     ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1369 
1370     bool isZero() const {
1371       return K == ConstZero || K == VariableKnownToBeZero;
1372     }
1373 
1374     bool hasValue() const {
1375       return K == Variable || K == VariableKnownToBeZero;
1376     }
1377 
1378     SDValue getValue() const {
1379       assert(hasValue() && "Cannot get the value of a constant bit");
1380       return V;
1381     }
1382 
1383     unsigned getValueBitIndex() const {
1384       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1385       return Idx;
1386     }
1387   };
1388 
1389   // A bit group has the same underlying value and the same rotate factor.
1390   struct BitGroup {
1391     SDValue V;
1392     unsigned RLAmt;
1393     unsigned StartIdx, EndIdx;
1394 
1395     // This rotation amount assumes that the lower 32 bits of the quantity are
1396     // replicated in the high 32 bits by the rotation operator (which is done
1397     // by rlwinm and friends in 64-bit mode).
1398     bool Repl32;
1399     // Did converting to Repl32 == true change the rotation factor? If it did,
1400     // it decreased it by 32.
1401     bool Repl32CR;
1402     // Was this group coalesced after setting Repl32 to true?
1403     bool Repl32Coalesced;
1404 
1405     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1406       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1407         Repl32Coalesced(false) {
1408       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1409                         << " [" << S << ", " << E << "]\n");
1410     }
1411   };
1412 
1413   // Information on each (Value, RLAmt) pair (like the number of groups
1414   // associated with each) used to choose the lowering method.
1415   struct ValueRotInfo {
1416     SDValue V;
1417     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1418     unsigned NumGroups = 0;
1419     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1420     bool Repl32 = false;
1421 
1422     ValueRotInfo() = default;
1423 
1424     // For sorting (in reverse order) by NumGroups, and then by
1425     // FirstGroupStartIdx.
1426     bool operator < (const ValueRotInfo &Other) const {
1427       // We need to sort so that the non-Repl32 come first because, when we're
1428       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1429       // masking operation.
1430       if (Repl32 < Other.Repl32)
1431         return true;
1432       else if (Repl32 > Other.Repl32)
1433         return false;
1434       else if (NumGroups > Other.NumGroups)
1435         return true;
1436       else if (NumGroups < Other.NumGroups)
1437         return false;
1438       else if (RLAmt == 0 && Other.RLAmt != 0)
1439         return true;
1440       else if (RLAmt != 0 && Other.RLAmt == 0)
1441         return false;
1442       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1443         return true;
1444       return false;
1445     }
1446   };
1447 
1448   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1449   using ValueBitsMemoizer =
1450       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1451   ValueBitsMemoizer Memoizer;
1452 
1453   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1454   // The bool is true if something interesting was deduced, otherwise if we're
1455   // providing only a generic representation of V (or something else likewise
1456   // uninteresting for instruction selection) through the SmallVector.
1457   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1458                                                             unsigned NumBits) {
1459     auto &ValueEntry = Memoizer[V];
1460     if (ValueEntry)
1461       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1462     ValueEntry.reset(new ValueBitsMemoizedValue());
1463     bool &Interesting = ValueEntry->first;
1464     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1465     Bits.resize(NumBits);
1466 
1467     switch (V.getOpcode()) {
1468     default: break;
1469     case ISD::ROTL:
1470       if (isa<ConstantSDNode>(V.getOperand(1))) {
1471         unsigned RotAmt = V.getConstantOperandVal(1);
1472 
1473         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1474 
1475         for (unsigned i = 0; i < NumBits; ++i)
1476           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1477 
1478         return std::make_pair(Interesting = true, &Bits);
1479       }
1480       break;
1481     case ISD::SHL:
1482     case PPCISD::SHL:
1483       if (isa<ConstantSDNode>(V.getOperand(1))) {
1484         unsigned ShiftAmt = V.getConstantOperandVal(1);
1485 
1486         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1487 
1488         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1489           Bits[i] = LHSBits[i - ShiftAmt];
1490 
1491         for (unsigned i = 0; i < ShiftAmt; ++i)
1492           Bits[i] = ValueBit(ValueBit::ConstZero);
1493 
1494         return std::make_pair(Interesting = true, &Bits);
1495       }
1496       break;
1497     case ISD::SRL:
1498     case PPCISD::SRL:
1499       if (isa<ConstantSDNode>(V.getOperand(1))) {
1500         unsigned ShiftAmt = V.getConstantOperandVal(1);
1501 
1502         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1503 
1504         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1505           Bits[i] = LHSBits[i + ShiftAmt];
1506 
1507         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1508           Bits[i] = ValueBit(ValueBit::ConstZero);
1509 
1510         return std::make_pair(Interesting = true, &Bits);
1511       }
1512       break;
1513     case ISD::AND:
1514       if (isa<ConstantSDNode>(V.getOperand(1))) {
1515         uint64_t Mask = V.getConstantOperandVal(1);
1516 
1517         const SmallVector<ValueBit, 64> *LHSBits;
1518         // Mark this as interesting, only if the LHS was also interesting. This
1519         // prevents the overall procedure from matching a single immediate 'and'
1520         // (which is non-optimal because such an and might be folded with other
1521         // things if we don't select it here).
1522         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1523 
1524         for (unsigned i = 0; i < NumBits; ++i)
1525           if (((Mask >> i) & 1) == 1)
1526             Bits[i] = (*LHSBits)[i];
1527           else {
1528             // AND instruction masks this bit. If the input is already zero,
1529             // we have nothing to do here. Otherwise, make the bit ConstZero.
1530             if ((*LHSBits)[i].isZero())
1531               Bits[i] = (*LHSBits)[i];
1532             else
1533               Bits[i] = ValueBit(ValueBit::ConstZero);
1534           }
1535 
1536         return std::make_pair(Interesting, &Bits);
1537       }
1538       break;
1539     case ISD::OR: {
1540       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1541       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1542 
1543       bool AllDisjoint = true;
1544       SDValue LastVal = SDValue();
1545       unsigned LastIdx = 0;
1546       for (unsigned i = 0; i < NumBits; ++i) {
1547         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1548           // If both inputs are known to be zero and one is ConstZero and
1549           // another is VariableKnownToBeZero, we can select whichever
1550           // we like. To minimize the number of bit groups, we select
1551           // VariableKnownToBeZero if this bit is the next bit of the same
1552           // input variable from the previous bit. Otherwise, we select
1553           // ConstZero.
1554           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1555               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1556             Bits[i] = LHSBits[i];
1557           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1558                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1559             Bits[i] = RHSBits[i];
1560           else
1561             Bits[i] = ValueBit(ValueBit::ConstZero);
1562         }
1563         else if (LHSBits[i].isZero())
1564           Bits[i] = RHSBits[i];
1565         else if (RHSBits[i].isZero())
1566           Bits[i] = LHSBits[i];
1567         else {
1568           AllDisjoint = false;
1569           break;
1570         }
1571         // We remember the value and bit index of this bit.
1572         if (Bits[i].hasValue()) {
1573           LastVal = Bits[i].getValue();
1574           LastIdx = Bits[i].getValueBitIndex();
1575         }
1576         else {
1577           if (LastVal) LastVal = SDValue();
1578           LastIdx = 0;
1579         }
1580       }
1581 
1582       if (!AllDisjoint)
1583         break;
1584 
1585       return std::make_pair(Interesting = true, &Bits);
1586     }
1587     case ISD::ZERO_EXTEND: {
1588       // We support only the case with zero extension from i32 to i64 so far.
1589       if (V.getValueType() != MVT::i64 ||
1590           V.getOperand(0).getValueType() != MVT::i32)
1591         break;
1592 
1593       const SmallVector<ValueBit, 64> *LHSBits;
1594       const unsigned NumOperandBits = 32;
1595       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1596                                                     NumOperandBits);
1597 
1598       for (unsigned i = 0; i < NumOperandBits; ++i)
1599         Bits[i] = (*LHSBits)[i];
1600 
1601       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1602         Bits[i] = ValueBit(ValueBit::ConstZero);
1603 
1604       return std::make_pair(Interesting, &Bits);
1605     }
1606     case ISD::TRUNCATE: {
1607       EVT FromType = V.getOperand(0).getValueType();
1608       EVT ToType = V.getValueType();
1609       // We support only the case with truncate from i64 to i32.
1610       if (FromType != MVT::i64 || ToType != MVT::i32)
1611         break;
1612       const unsigned NumAllBits = FromType.getSizeInBits();
1613       SmallVector<ValueBit, 64> *InBits;
1614       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1615                                                     NumAllBits);
1616       const unsigned NumValidBits = ToType.getSizeInBits();
1617 
1618       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1619       // So, we cannot include this truncate.
1620       bool UseUpper32bit = false;
1621       for (unsigned i = 0; i < NumValidBits; ++i)
1622         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1623           UseUpper32bit = true;
1624           break;
1625         }
1626       if (UseUpper32bit)
1627         break;
1628 
1629       for (unsigned i = 0; i < NumValidBits; ++i)
1630         Bits[i] = (*InBits)[i];
1631 
1632       return std::make_pair(Interesting, &Bits);
1633     }
1634     case ISD::AssertZext: {
1635       // For AssertZext, we look through the operand and
1636       // mark the bits known to be zero.
1637       const SmallVector<ValueBit, 64> *LHSBits;
1638       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1639                                                     NumBits);
1640 
1641       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1642       const unsigned NumValidBits = FromType.getSizeInBits();
1643       for (unsigned i = 0; i < NumValidBits; ++i)
1644         Bits[i] = (*LHSBits)[i];
1645 
1646       // These bits are known to be zero but the AssertZext may be from a value
1647       // that already has some constant zero bits (i.e. from a masking and).
1648       for (unsigned i = NumValidBits; i < NumBits; ++i)
1649         Bits[i] = (*LHSBits)[i].hasValue()
1650                       ? ValueBit((*LHSBits)[i].getValue(),
1651                                  (*LHSBits)[i].getValueBitIndex(),
1652                                  ValueBit::VariableKnownToBeZero)
1653                       : ValueBit(ValueBit::ConstZero);
1654 
1655       return std::make_pair(Interesting, &Bits);
1656     }
1657     case ISD::LOAD:
1658       LoadSDNode *LD = cast<LoadSDNode>(V);
1659       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1660         EVT VT = LD->getMemoryVT();
1661         const unsigned NumValidBits = VT.getSizeInBits();
1662 
1663         for (unsigned i = 0; i < NumValidBits; ++i)
1664           Bits[i] = ValueBit(V, i);
1665 
1666         // These bits are known to be zero.
1667         for (unsigned i = NumValidBits; i < NumBits; ++i)
1668           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1669 
1670         // Zero-extending load itself cannot be optimized. So, it is not
1671         // interesting by itself though it gives useful information.
1672         return std::make_pair(Interesting = false, &Bits);
1673       }
1674       break;
1675     }
1676 
1677     for (unsigned i = 0; i < NumBits; ++i)
1678       Bits[i] = ValueBit(V, i);
1679 
1680     return std::make_pair(Interesting = false, &Bits);
1681   }
1682 
1683   // For each value (except the constant ones), compute the left-rotate amount
1684   // to get it from its original to final position.
1685   void computeRotationAmounts() {
1686     NeedMask = false;
1687     RLAmt.resize(Bits.size());
1688     for (unsigned i = 0; i < Bits.size(); ++i)
1689       if (Bits[i].hasValue()) {
1690         unsigned VBI = Bits[i].getValueBitIndex();
1691         if (i >= VBI)
1692           RLAmt[i] = i - VBI;
1693         else
1694           RLAmt[i] = Bits.size() - (VBI - i);
1695       } else if (Bits[i].isZero()) {
1696         NeedMask = true;
1697         RLAmt[i] = UINT32_MAX;
1698       } else {
1699         llvm_unreachable("Unknown value bit type");
1700       }
1701   }
1702 
1703   // Collect groups of consecutive bits with the same underlying value and
1704   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1705   // they break up groups.
1706   void collectBitGroups(bool LateMask) {
1707     BitGroups.clear();
1708 
1709     unsigned LastRLAmt = RLAmt[0];
1710     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1711     unsigned LastGroupStartIdx = 0;
1712     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1713     for (unsigned i = 1; i < Bits.size(); ++i) {
1714       unsigned ThisRLAmt = RLAmt[i];
1715       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1716       if (LateMask && !ThisValue) {
1717         ThisValue = LastValue;
1718         ThisRLAmt = LastRLAmt;
1719         // If we're doing late masking, then the first bit group always starts
1720         // at zero (even if the first bits were zero).
1721         if (BitGroups.empty())
1722           LastGroupStartIdx = 0;
1723       }
1724 
1725       // If this bit is known to be zero and the current group is a bit group
1726       // of zeros, we do not need to terminate the current bit group even the
1727       // Value or RLAmt does not match here. Instead, we terminate this group
1728       // when the first non-zero bit appears later.
1729       if (IsGroupOfZeros && Bits[i].isZero())
1730         continue;
1731 
1732       // If this bit has the same underlying value and the same rotate factor as
1733       // the last one, then they're part of the same group.
1734       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1735         // We cannot continue the current group if this bits is not known to
1736         // be zero in a bit group of zeros.
1737         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1738           continue;
1739 
1740       if (LastValue.getNode())
1741         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1742                                      i-1));
1743       LastRLAmt = ThisRLAmt;
1744       LastValue = ThisValue;
1745       LastGroupStartIdx = i;
1746       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1747     }
1748     if (LastValue.getNode())
1749       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1750                                    Bits.size()-1));
1751 
1752     if (BitGroups.empty())
1753       return;
1754 
1755     // We might be able to combine the first and last groups.
1756     if (BitGroups.size() > 1) {
1757       // If the first and last groups are the same, then remove the first group
1758       // in favor of the last group, making the ending index of the last group
1759       // equal to the ending index of the to-be-removed first group.
1760       if (BitGroups[0].StartIdx == 0 &&
1761           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1762           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1763           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1764         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1765         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1766         BitGroups.erase(BitGroups.begin());
1767       }
1768     }
1769   }
1770 
1771   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1772   // associated with each. If the number of groups are same, we prefer a group
1773   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1774   // instruction. If there is a degeneracy, pick the one that occurs
1775   // first (in the final value).
1776   void collectValueRotInfo() {
1777     ValueRots.clear();
1778 
1779     for (auto &BG : BitGroups) {
1780       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1781       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1782       VRI.V = BG.V;
1783       VRI.RLAmt = BG.RLAmt;
1784       VRI.Repl32 = BG.Repl32;
1785       VRI.NumGroups += 1;
1786       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1787     }
1788 
1789     // Now that we've collected the various ValueRotInfo instances, we need to
1790     // sort them.
1791     ValueRotsVec.clear();
1792     for (auto &I : ValueRots) {
1793       ValueRotsVec.push_back(I.second);
1794     }
1795     llvm::sort(ValueRotsVec);
1796   }
1797 
1798   // In 64-bit mode, rlwinm and friends have a rotation operator that
1799   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1800   // indices of these instructions can only be in the lower 32 bits, so they
1801   // can only represent some 64-bit bit groups. However, when they can be used,
1802   // the 32-bit replication can be used to represent, as a single bit group,
1803   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1804   // groups when possible. Returns true if any of the bit groups were
1805   // converted.
1806   void assignRepl32BitGroups() {
1807     // If we have bits like this:
1808     //
1809     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1810     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1811     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1812     //
1813     // But, making use of a 32-bit operation that replicates the low-order 32
1814     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1815     // of 8.
1816 
1817     auto IsAllLow32 = [this](BitGroup & BG) {
1818       if (BG.StartIdx <= BG.EndIdx) {
1819         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1820           if (!Bits[i].hasValue())
1821             continue;
1822           if (Bits[i].getValueBitIndex() >= 32)
1823             return false;
1824         }
1825       } else {
1826         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1827           if (!Bits[i].hasValue())
1828             continue;
1829           if (Bits[i].getValueBitIndex() >= 32)
1830             return false;
1831         }
1832         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1833           if (!Bits[i].hasValue())
1834             continue;
1835           if (Bits[i].getValueBitIndex() >= 32)
1836             return false;
1837         }
1838       }
1839 
1840       return true;
1841     };
1842 
1843     for (auto &BG : BitGroups) {
1844       // If this bit group has RLAmt of 0 and will not be merged with
1845       // another bit group, we don't benefit from Repl32. We don't mark
1846       // such group to give more freedom for later instruction selection.
1847       if (BG.RLAmt == 0) {
1848         auto PotentiallyMerged = [this](BitGroup & BG) {
1849           for (auto &BG2 : BitGroups)
1850             if (&BG != &BG2 && BG.V == BG2.V &&
1851                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1852               return true;
1853           return false;
1854         };
1855         if (!PotentiallyMerged(BG))
1856           continue;
1857       }
1858       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1859         if (IsAllLow32(BG)) {
1860           if (BG.RLAmt >= 32) {
1861             BG.RLAmt -= 32;
1862             BG.Repl32CR = true;
1863           }
1864 
1865           BG.Repl32 = true;
1866 
1867           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1868                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1869                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1870         }
1871       }
1872     }
1873 
1874     // Now walk through the bit groups, consolidating where possible.
1875     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1876       // We might want to remove this bit group by merging it with the previous
1877       // group (which might be the ending group).
1878       auto IP = (I == BitGroups.begin()) ?
1879                 std::prev(BitGroups.end()) : std::prev(I);
1880       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1881           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1882 
1883         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1884                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1885                           << I->StartIdx << ", " << I->EndIdx
1886                           << "] with group with range [" << IP->StartIdx << ", "
1887                           << IP->EndIdx << "]\n");
1888 
1889         IP->EndIdx = I->EndIdx;
1890         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1891         IP->Repl32Coalesced = true;
1892         I = BitGroups.erase(I);
1893         continue;
1894       } else {
1895         // There is a special case worth handling: If there is a single group
1896         // covering the entire upper 32 bits, and it can be merged with both
1897         // the next and previous groups (which might be the same group), then
1898         // do so. If it is the same group (so there will be only one group in
1899         // total), then we need to reverse the order of the range so that it
1900         // covers the entire 64 bits.
1901         if (I->StartIdx == 32 && I->EndIdx == 63) {
1902           assert(std::next(I) == BitGroups.end() &&
1903                  "bit group ends at index 63 but there is another?");
1904           auto IN = BitGroups.begin();
1905 
1906           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1907               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1908               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1909               IsAllLow32(*I)) {
1910 
1911             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1912                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1913                               << ", " << I->EndIdx
1914                               << "] with 32-bit replicated groups with ranges ["
1915                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1916                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1917 
1918             if (IP == IN) {
1919               // There is only one other group; change it to cover the whole
1920               // range (backward, so that it can still be Repl32 but cover the
1921               // whole 64-bit range).
1922               IP->StartIdx = 31;
1923               IP->EndIdx = 30;
1924               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1925               IP->Repl32Coalesced = true;
1926               I = BitGroups.erase(I);
1927             } else {
1928               // There are two separate groups, one before this group and one
1929               // after us (at the beginning). We're going to remove this group,
1930               // but also the group at the very beginning.
1931               IP->EndIdx = IN->EndIdx;
1932               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1933               IP->Repl32Coalesced = true;
1934               I = BitGroups.erase(I);
1935               BitGroups.erase(BitGroups.begin());
1936             }
1937 
1938             // This must be the last group in the vector (and we might have
1939             // just invalidated the iterator above), so break here.
1940             break;
1941           }
1942         }
1943       }
1944 
1945       ++I;
1946     }
1947   }
1948 
1949   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1950     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1951   }
1952 
1953   uint64_t getZerosMask() {
1954     uint64_t Mask = 0;
1955     for (unsigned i = 0; i < Bits.size(); ++i) {
1956       if (Bits[i].hasValue())
1957         continue;
1958       Mask |= (UINT64_C(1) << i);
1959     }
1960 
1961     return ~Mask;
1962   }
1963 
1964   // This method extends an input value to 64 bit if input is 32-bit integer.
1965   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1966   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1967   // In such case, we extend it to 64 bit to be consistent with other values.
1968   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1969     if (V.getValueSizeInBits() == 64)
1970       return V;
1971 
1972     assert(V.getValueSizeInBits() == 32);
1973     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1974     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1975                                                    MVT::i64), 0);
1976     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1977                                                     MVT::i64, ImDef, V,
1978                                                     SubRegIdx), 0);
1979     return ExtVal;
1980   }
1981 
1982   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1983     if (V.getValueSizeInBits() == 32)
1984       return V;
1985 
1986     assert(V.getValueSizeInBits() == 64);
1987     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1988     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1989                                                     MVT::i32, V, SubRegIdx), 0);
1990     return SubVal;
1991   }
1992 
1993   // Depending on the number of groups for a particular value, it might be
1994   // better to rotate, mask explicitly (using andi/andis), and then or the
1995   // result. Select this part of the result first.
1996   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1997     if (BPermRewriterNoMasking)
1998       return;
1999 
2000     for (ValueRotInfo &VRI : ValueRotsVec) {
2001       unsigned Mask = 0;
2002       for (unsigned i = 0; i < Bits.size(); ++i) {
2003         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2004           continue;
2005         if (RLAmt[i] != VRI.RLAmt)
2006           continue;
2007         Mask |= (1u << i);
2008       }
2009 
2010       // Compute the masks for andi/andis that would be necessary.
2011       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2012       assert((ANDIMask != 0 || ANDISMask != 0) &&
2013              "No set bits in mask for value bit groups");
2014       bool NeedsRotate = VRI.RLAmt != 0;
2015 
2016       // We're trying to minimize the number of instructions. If we have one
2017       // group, using one of andi/andis can break even.  If we have three
2018       // groups, we can use both andi and andis and break even (to use both
2019       // andi and andis we also need to or the results together). We need four
2020       // groups if we also need to rotate. To use andi/andis we need to do more
2021       // than break even because rotate-and-mask instructions tend to be easier
2022       // to schedule.
2023 
2024       // FIXME: We've biased here against using andi/andis, which is right for
2025       // POWER cores, but not optimal everywhere. For example, on the A2,
2026       // andi/andis have single-cycle latency whereas the rotate-and-mask
2027       // instructions take two cycles, and it would be better to bias toward
2028       // andi/andis in break-even cases.
2029 
2030       unsigned NumAndInsts = (unsigned) NeedsRotate +
2031                              (unsigned) (ANDIMask != 0) +
2032                              (unsigned) (ANDISMask != 0) +
2033                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2034                              (unsigned) (bool) Res;
2035 
2036       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2037                         << " RL: " << VRI.RLAmt << ":"
2038                         << "\n\t\t\tisel using masking: " << NumAndInsts
2039                         << " using rotates: " << VRI.NumGroups << "\n");
2040 
2041       if (NumAndInsts >= VRI.NumGroups)
2042         continue;
2043 
2044       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2045 
2046       if (InstCnt) *InstCnt += NumAndInsts;
2047 
2048       SDValue VRot;
2049       if (VRI.RLAmt) {
2050         SDValue Ops[] =
2051           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2052             getI32Imm(0, dl), getI32Imm(31, dl) };
2053         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2054                                               Ops), 0);
2055       } else {
2056         VRot = TruncateToInt32(VRI.V, dl);
2057       }
2058 
2059       SDValue ANDIVal, ANDISVal;
2060       if (ANDIMask != 0)
2061         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2062                                                  VRot, getI32Imm(ANDIMask, dl)),
2063                           0);
2064       if (ANDISMask != 0)
2065         ANDISVal =
2066             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2067                                            getI32Imm(ANDISMask, dl)),
2068                     0);
2069 
2070       SDValue TotalVal;
2071       if (!ANDIVal)
2072         TotalVal = ANDISVal;
2073       else if (!ANDISVal)
2074         TotalVal = ANDIVal;
2075       else
2076         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2077                              ANDIVal, ANDISVal), 0);
2078 
2079       if (!Res)
2080         Res = TotalVal;
2081       else
2082         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2083                         Res, TotalVal), 0);
2084 
2085       // Now, remove all groups with this underlying value and rotation
2086       // factor.
2087       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2088         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2089       });
2090     }
2091   }
2092 
2093   // Instruction selection for the 32-bit case.
2094   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2095     SDLoc dl(N);
2096     SDValue Res;
2097 
2098     if (InstCnt) *InstCnt = 0;
2099 
2100     // Take care of cases that should use andi/andis first.
2101     SelectAndParts32(dl, Res, InstCnt);
2102 
2103     // If we've not yet selected a 'starting' instruction, and we have no zeros
2104     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2105     // number of groups), and start with this rotated value.
2106     if ((!NeedMask || LateMask) && !Res) {
2107       ValueRotInfo &VRI = ValueRotsVec[0];
2108       if (VRI.RLAmt) {
2109         if (InstCnt) *InstCnt += 1;
2110         SDValue Ops[] =
2111           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2112             getI32Imm(0, dl), getI32Imm(31, dl) };
2113         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2114                       0);
2115       } else {
2116         Res = TruncateToInt32(VRI.V, dl);
2117       }
2118 
2119       // Now, remove all groups with this underlying value and rotation factor.
2120       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2121         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2122       });
2123     }
2124 
2125     if (InstCnt) *InstCnt += BitGroups.size();
2126 
2127     // Insert the other groups (one at a time).
2128     for (auto &BG : BitGroups) {
2129       if (!Res) {
2130         SDValue Ops[] =
2131           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2132             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2133             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2134         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2135       } else {
2136         SDValue Ops[] =
2137           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2138               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2139             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2140         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2141       }
2142     }
2143 
2144     if (LateMask) {
2145       unsigned Mask = (unsigned) getZerosMask();
2146 
2147       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2148       assert((ANDIMask != 0 || ANDISMask != 0) &&
2149              "No set bits in zeros mask?");
2150 
2151       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2152                                (unsigned) (ANDISMask != 0) +
2153                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2154 
2155       SDValue ANDIVal, ANDISVal;
2156       if (ANDIMask != 0)
2157         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2158                                                  Res, getI32Imm(ANDIMask, dl)),
2159                           0);
2160       if (ANDISMask != 0)
2161         ANDISVal =
2162             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2163                                            getI32Imm(ANDISMask, dl)),
2164                     0);
2165 
2166       if (!ANDIVal)
2167         Res = ANDISVal;
2168       else if (!ANDISVal)
2169         Res = ANDIVal;
2170       else
2171         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2172                         ANDIVal, ANDISVal), 0);
2173     }
2174 
2175     return Res.getNode();
2176   }
2177 
2178   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2179                                 unsigned MaskStart, unsigned MaskEnd,
2180                                 bool IsIns) {
2181     // In the notation used by the instructions, 'start' and 'end' are reversed
2182     // because bits are counted from high to low order.
2183     unsigned InstMaskStart = 64 - MaskEnd - 1,
2184              InstMaskEnd   = 64 - MaskStart - 1;
2185 
2186     if (Repl32)
2187       return 1;
2188 
2189     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2190         InstMaskEnd == 63 - RLAmt)
2191       return 1;
2192 
2193     return 2;
2194   }
2195 
2196   // For 64-bit values, not all combinations of rotates and masks are
2197   // available. Produce one if it is available.
2198   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2199                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2200                           unsigned *InstCnt = nullptr) {
2201     // In the notation used by the instructions, 'start' and 'end' are reversed
2202     // because bits are counted from high to low order.
2203     unsigned InstMaskStart = 64 - MaskEnd - 1,
2204              InstMaskEnd   = 64 - MaskStart - 1;
2205 
2206     if (InstCnt) *InstCnt += 1;
2207 
2208     if (Repl32) {
2209       // This rotation amount assumes that the lower 32 bits of the quantity
2210       // are replicated in the high 32 bits by the rotation operator (which is
2211       // done by rlwinm and friends).
2212       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2213       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2214       SDValue Ops[] =
2215         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2216           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2217       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2218                                             Ops), 0);
2219     }
2220 
2221     if (InstMaskEnd == 63) {
2222       SDValue Ops[] =
2223         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2224           getI32Imm(InstMaskStart, dl) };
2225       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2226     }
2227 
2228     if (InstMaskStart == 0) {
2229       SDValue Ops[] =
2230         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2231           getI32Imm(InstMaskEnd, dl) };
2232       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2233     }
2234 
2235     if (InstMaskEnd == 63 - RLAmt) {
2236       SDValue Ops[] =
2237         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2238           getI32Imm(InstMaskStart, dl) };
2239       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2240     }
2241 
2242     // We cannot do this with a single instruction, so we'll use two. The
2243     // problem is that we're not free to choose both a rotation amount and mask
2244     // start and end independently. We can choose an arbitrary mask start and
2245     // end, but then the rotation amount is fixed. Rotation, however, can be
2246     // inverted, and so by applying an "inverse" rotation first, we can get the
2247     // desired result.
2248     if (InstCnt) *InstCnt += 1;
2249 
2250     // The rotation mask for the second instruction must be MaskStart.
2251     unsigned RLAmt2 = MaskStart;
2252     // The first instruction must rotate V so that the overall rotation amount
2253     // is RLAmt.
2254     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2255     if (RLAmt1)
2256       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2257     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2258   }
2259 
2260   // For 64-bit values, not all combinations of rotates and masks are
2261   // available. Produce a rotate-mask-and-insert if one is available.
2262   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2263                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2264                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2265     // In the notation used by the instructions, 'start' and 'end' are reversed
2266     // because bits are counted from high to low order.
2267     unsigned InstMaskStart = 64 - MaskEnd - 1,
2268              InstMaskEnd   = 64 - MaskStart - 1;
2269 
2270     if (InstCnt) *InstCnt += 1;
2271 
2272     if (Repl32) {
2273       // This rotation amount assumes that the lower 32 bits of the quantity
2274       // are replicated in the high 32 bits by the rotation operator (which is
2275       // done by rlwinm and friends).
2276       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2277       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2278       SDValue Ops[] =
2279         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2280           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2281       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2282                                             Ops), 0);
2283     }
2284 
2285     if (InstMaskEnd == 63 - RLAmt) {
2286       SDValue Ops[] =
2287         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2288           getI32Imm(InstMaskStart, dl) };
2289       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2290     }
2291 
2292     // We cannot do this with a single instruction, so we'll use two. The
2293     // problem is that we're not free to choose both a rotation amount and mask
2294     // start and end independently. We can choose an arbitrary mask start and
2295     // end, but then the rotation amount is fixed. Rotation, however, can be
2296     // inverted, and so by applying an "inverse" rotation first, we can get the
2297     // desired result.
2298     if (InstCnt) *InstCnt += 1;
2299 
2300     // The rotation mask for the second instruction must be MaskStart.
2301     unsigned RLAmt2 = MaskStart;
2302     // The first instruction must rotate V so that the overall rotation amount
2303     // is RLAmt.
2304     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2305     if (RLAmt1)
2306       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2307     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2308   }
2309 
2310   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2311     if (BPermRewriterNoMasking)
2312       return;
2313 
2314     // The idea here is the same as in the 32-bit version, but with additional
2315     // complications from the fact that Repl32 might be true. Because we
2316     // aggressively convert bit groups to Repl32 form (which, for small
2317     // rotation factors, involves no other change), and then coalesce, it might
2318     // be the case that a single 64-bit masking operation could handle both
2319     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2320     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2321     // completely capture the new combined bit group.
2322 
2323     for (ValueRotInfo &VRI : ValueRotsVec) {
2324       uint64_t Mask = 0;
2325 
2326       // We need to add to the mask all bits from the associated bit groups.
2327       // If Repl32 is false, we need to add bits from bit groups that have
2328       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2329       // group is trivially convertable if it overlaps only with the lower 32
2330       // bits, and the group has not been coalesced.
2331       auto MatchingBG = [VRI](const BitGroup &BG) {
2332         if (VRI.V != BG.V)
2333           return false;
2334 
2335         unsigned EffRLAmt = BG.RLAmt;
2336         if (!VRI.Repl32 && BG.Repl32) {
2337           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2338               !BG.Repl32Coalesced) {
2339             if (BG.Repl32CR)
2340               EffRLAmt += 32;
2341           } else {
2342             return false;
2343           }
2344         } else if (VRI.Repl32 != BG.Repl32) {
2345           return false;
2346         }
2347 
2348         return VRI.RLAmt == EffRLAmt;
2349       };
2350 
2351       for (auto &BG : BitGroups) {
2352         if (!MatchingBG(BG))
2353           continue;
2354 
2355         if (BG.StartIdx <= BG.EndIdx) {
2356           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2357             Mask |= (UINT64_C(1) << i);
2358         } else {
2359           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2360             Mask |= (UINT64_C(1) << i);
2361           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2362             Mask |= (UINT64_C(1) << i);
2363         }
2364       }
2365 
2366       // We can use the 32-bit andi/andis technique if the mask does not
2367       // require any higher-order bits. This can save an instruction compared
2368       // to always using the general 64-bit technique.
2369       bool Use32BitInsts = isUInt<32>(Mask);
2370       // Compute the masks for andi/andis that would be necessary.
2371       unsigned ANDIMask = (Mask & UINT16_MAX),
2372                ANDISMask = (Mask >> 16) & UINT16_MAX;
2373 
2374       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2375 
2376       unsigned NumAndInsts = (unsigned) NeedsRotate +
2377                              (unsigned) (bool) Res;
2378       unsigned NumOfSelectInsts = 0;
2379       selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2380       assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2381       if (Use32BitInsts)
2382         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2383                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2384       else
2385         NumAndInsts += NumOfSelectInsts + /* and */ 1;
2386 
2387       unsigned NumRLInsts = 0;
2388       bool FirstBG = true;
2389       bool MoreBG = false;
2390       for (auto &BG : BitGroups) {
2391         if (!MatchingBG(BG)) {
2392           MoreBG = true;
2393           continue;
2394         }
2395         NumRLInsts +=
2396           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2397                                !FirstBG);
2398         FirstBG = false;
2399       }
2400 
2401       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2402                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2403                         << "\n\t\t\tisel using masking: " << NumAndInsts
2404                         << " using rotates: " << NumRLInsts << "\n");
2405 
2406       // When we'd use andi/andis, we bias toward using the rotates (andi only
2407       // has a record form, and is cracked on POWER cores). However, when using
2408       // general 64-bit constant formation, bias toward the constant form,
2409       // because that exposes more opportunities for CSE.
2410       if (NumAndInsts > NumRLInsts)
2411         continue;
2412       // When merging multiple bit groups, instruction or is used.
2413       // But when rotate is used, rldimi can inert the rotated value into any
2414       // register, so instruction or can be avoided.
2415       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2416         continue;
2417 
2418       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2419 
2420       if (InstCnt) *InstCnt += NumAndInsts;
2421 
2422       SDValue VRot;
2423       // We actually need to generate a rotation if we have a non-zero rotation
2424       // factor or, in the Repl32 case, if we care about any of the
2425       // higher-order replicated bits. In the latter case, we generate a mask
2426       // backward so that it actually includes the entire 64 bits.
2427       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2428         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2429                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2430       else
2431         VRot = VRI.V;
2432 
2433       SDValue TotalVal;
2434       if (Use32BitInsts) {
2435         assert((ANDIMask != 0 || ANDISMask != 0) &&
2436                "No set bits in mask when using 32-bit ands for 64-bit value");
2437 
2438         SDValue ANDIVal, ANDISVal;
2439         if (ANDIMask != 0)
2440           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2441                                                    ExtendToInt64(VRot, dl),
2442                                                    getI32Imm(ANDIMask, dl)),
2443                             0);
2444         if (ANDISMask != 0)
2445           ANDISVal =
2446               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2447                                              ExtendToInt64(VRot, dl),
2448                                              getI32Imm(ANDISMask, dl)),
2449                       0);
2450 
2451         if (!ANDIVal)
2452           TotalVal = ANDISVal;
2453         else if (!ANDISVal)
2454           TotalVal = ANDIVal;
2455         else
2456           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2457                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2458       } else {
2459         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2460         TotalVal =
2461           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2462                                          ExtendToInt64(VRot, dl), TotalVal),
2463                   0);
2464      }
2465 
2466       if (!Res)
2467         Res = TotalVal;
2468       else
2469         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2470                                              ExtendToInt64(Res, dl), TotalVal),
2471                       0);
2472 
2473       // Now, remove all groups with this underlying value and rotation
2474       // factor.
2475       eraseMatchingBitGroups(MatchingBG);
2476     }
2477   }
2478 
2479   // Instruction selection for the 64-bit case.
2480   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2481     SDLoc dl(N);
2482     SDValue Res;
2483 
2484     if (InstCnt) *InstCnt = 0;
2485 
2486     // Take care of cases that should use andi/andis first.
2487     SelectAndParts64(dl, Res, InstCnt);
2488 
2489     // If we've not yet selected a 'starting' instruction, and we have no zeros
2490     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2491     // number of groups), and start with this rotated value.
2492     if ((!NeedMask || LateMask) && !Res) {
2493       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2494       // groups will come first, and so the VRI representing the largest number
2495       // of groups might not be first (it might be the first Repl32 groups).
2496       unsigned MaxGroupsIdx = 0;
2497       if (!ValueRotsVec[0].Repl32) {
2498         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2499           if (ValueRotsVec[i].Repl32) {
2500             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2501               MaxGroupsIdx = i;
2502             break;
2503           }
2504       }
2505 
2506       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2507       bool NeedsRotate = false;
2508       if (VRI.RLAmt) {
2509         NeedsRotate = true;
2510       } else if (VRI.Repl32) {
2511         for (auto &BG : BitGroups) {
2512           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2513               BG.Repl32 != VRI.Repl32)
2514             continue;
2515 
2516           // We don't need a rotate if the bit group is confined to the lower
2517           // 32 bits.
2518           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2519             continue;
2520 
2521           NeedsRotate = true;
2522           break;
2523         }
2524       }
2525 
2526       if (NeedsRotate)
2527         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2528                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2529                               InstCnt);
2530       else
2531         Res = VRI.V;
2532 
2533       // Now, remove all groups with this underlying value and rotation factor.
2534       if (Res)
2535         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2536           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2537                  BG.Repl32 == VRI.Repl32;
2538         });
2539     }
2540 
2541     // Because 64-bit rotates are more flexible than inserts, we might have a
2542     // preference regarding which one we do first (to save one instruction).
2543     if (!Res)
2544       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2545         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2546                                 false) <
2547             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2548                                 true)) {
2549           if (I != BitGroups.begin()) {
2550             BitGroup BG = *I;
2551             BitGroups.erase(I);
2552             BitGroups.insert(BitGroups.begin(), BG);
2553           }
2554 
2555           break;
2556         }
2557       }
2558 
2559     // Insert the other groups (one at a time).
2560     for (auto &BG : BitGroups) {
2561       if (!Res)
2562         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2563                               BG.EndIdx, InstCnt);
2564       else
2565         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2566                                  BG.StartIdx, BG.EndIdx, InstCnt);
2567     }
2568 
2569     if (LateMask) {
2570       uint64_t Mask = getZerosMask();
2571 
2572       // We can use the 32-bit andi/andis technique if the mask does not
2573       // require any higher-order bits. This can save an instruction compared
2574       // to always using the general 64-bit technique.
2575       bool Use32BitInsts = isUInt<32>(Mask);
2576       // Compute the masks for andi/andis that would be necessary.
2577       unsigned ANDIMask = (Mask & UINT16_MAX),
2578                ANDISMask = (Mask >> 16) & UINT16_MAX;
2579 
2580       if (Use32BitInsts) {
2581         assert((ANDIMask != 0 || ANDISMask != 0) &&
2582                "No set bits in mask when using 32-bit ands for 64-bit value");
2583 
2584         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2585                                  (unsigned) (ANDISMask != 0) +
2586                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2587 
2588         SDValue ANDIVal, ANDISVal;
2589         if (ANDIMask != 0)
2590           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2591                                                    ExtendToInt64(Res, dl),
2592                                                    getI32Imm(ANDIMask, dl)),
2593                             0);
2594         if (ANDISMask != 0)
2595           ANDISVal =
2596               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2597                                              ExtendToInt64(Res, dl),
2598                                              getI32Imm(ANDISMask, dl)),
2599                       0);
2600 
2601         if (!ANDIVal)
2602           Res = ANDISVal;
2603         else if (!ANDISVal)
2604           Res = ANDIVal;
2605         else
2606           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2607                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2608       } else {
2609         unsigned NumOfSelectInsts = 0;
2610         SDValue MaskVal =
2611             SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2612         Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2613                                              ExtendToInt64(Res, dl), MaskVal),
2614                       0);
2615         if (InstCnt)
2616           *InstCnt += NumOfSelectInsts + /* and */ 1;
2617       }
2618     }
2619 
2620     return Res.getNode();
2621   }
2622 
2623   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2624     // Fill in BitGroups.
2625     collectBitGroups(LateMask);
2626     if (BitGroups.empty())
2627       return nullptr;
2628 
2629     // For 64-bit values, figure out when we can use 32-bit instructions.
2630     if (Bits.size() == 64)
2631       assignRepl32BitGroups();
2632 
2633     // Fill in ValueRotsVec.
2634     collectValueRotInfo();
2635 
2636     if (Bits.size() == 32) {
2637       return Select32(N, LateMask, InstCnt);
2638     } else {
2639       assert(Bits.size() == 64 && "Not 64 bits here?");
2640       return Select64(N, LateMask, InstCnt);
2641     }
2642 
2643     return nullptr;
2644   }
2645 
2646   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2647     erase_if(BitGroups, F);
2648   }
2649 
2650   SmallVector<ValueBit, 64> Bits;
2651 
2652   bool NeedMask = false;
2653   SmallVector<unsigned, 64> RLAmt;
2654 
2655   SmallVector<BitGroup, 16> BitGroups;
2656 
2657   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2658   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2659 
2660   SelectionDAG *CurDAG = nullptr;
2661 
2662 public:
2663   BitPermutationSelector(SelectionDAG *DAG)
2664     : CurDAG(DAG) {}
2665 
2666   // Here we try to match complex bit permutations into a set of
2667   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2668   // known to produce optimal code for common cases (like i32 byte swapping).
2669   SDNode *Select(SDNode *N) {
2670     Memoizer.clear();
2671     auto Result =
2672         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2673     if (!Result.first)
2674       return nullptr;
2675     Bits = std::move(*Result.second);
2676 
2677     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2678                          " selection for:    ");
2679     LLVM_DEBUG(N->dump(CurDAG));
2680 
2681     // Fill it RLAmt and set NeedMask.
2682     computeRotationAmounts();
2683 
2684     if (!NeedMask)
2685       return Select(N, false);
2686 
2687     // We currently have two techniques for handling results with zeros: early
2688     // masking (the default) and late masking. Late masking is sometimes more
2689     // efficient, but because the structure of the bit groups is different, it
2690     // is hard to tell without generating both and comparing the results. With
2691     // late masking, we ignore zeros in the resulting value when inserting each
2692     // set of bit groups, and then mask in the zeros at the end. With early
2693     // masking, we only insert the non-zero parts of the result at every step.
2694 
2695     unsigned InstCnt = 0, InstCntLateMask = 0;
2696     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2697     SDNode *RN = Select(N, false, &InstCnt);
2698     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2699 
2700     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2701     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2702     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2703                       << " instructions\n");
2704 
2705     if (InstCnt <= InstCntLateMask) {
2706       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2707       return RN;
2708     }
2709 
2710     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2711     return RNLM;
2712   }
2713 };
2714 
2715 class IntegerCompareEliminator {
2716   SelectionDAG *CurDAG;
2717   PPCDAGToDAGISel *S;
2718   // Conversion type for interpreting results of a 32-bit instruction as
2719   // a 64-bit value or vice versa.
2720   enum ExtOrTruncConversion { Ext, Trunc };
2721 
2722   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2723   // in a GPR.
2724   // ZExtOrig - use the original condition code, zero-extend value
2725   // ZExtInvert - invert the condition code, zero-extend value
2726   // SExtOrig - use the original condition code, sign-extend value
2727   // SExtInvert - invert the condition code, sign-extend value
2728   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2729 
2730   // Comparisons against zero to emit GPR code sequences for. Each of these
2731   // sequences may need to be emitted for two or more equivalent patterns.
2732   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2733   // matters as well as the extension type: sext (-1/0), zext (1/0).
2734   // GEZExt - (zext (LHS >= 0))
2735   // GESExt - (sext (LHS >= 0))
2736   // LEZExt - (zext (LHS <= 0))
2737   // LESExt - (sext (LHS <= 0))
2738   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2739 
2740   SDNode *tryEXTEND(SDNode *N);
2741   SDNode *tryLogicOpOfCompares(SDNode *N);
2742   SDValue computeLogicOpInGPR(SDValue LogicOp);
2743   SDValue signExtendInputIfNeeded(SDValue Input);
2744   SDValue zeroExtendInputIfNeeded(SDValue Input);
2745   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2746   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2747                                         ZeroCompare CmpTy);
2748   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2749                               int64_t RHSValue, SDLoc dl);
2750  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2751                               int64_t RHSValue, SDLoc dl);
2752   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2753                               int64_t RHSValue, SDLoc dl);
2754   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2755                               int64_t RHSValue, SDLoc dl);
2756   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2757 
2758 public:
2759   IntegerCompareEliminator(SelectionDAG *DAG,
2760                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2761     assert(CurDAG->getTargetLoweringInfo()
2762            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2763            "Only expecting to use this on 64 bit targets.");
2764   }
2765   SDNode *Select(SDNode *N) {
2766     if (CmpInGPR == ICGPR_None)
2767       return nullptr;
2768     switch (N->getOpcode()) {
2769     default: break;
2770     case ISD::ZERO_EXTEND:
2771       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2772           CmpInGPR == ICGPR_SextI64)
2773         return nullptr;
2774       LLVM_FALLTHROUGH;
2775     case ISD::SIGN_EXTEND:
2776       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2777           CmpInGPR == ICGPR_ZextI64)
2778         return nullptr;
2779       return tryEXTEND(N);
2780     case ISD::AND:
2781     case ISD::OR:
2782     case ISD::XOR:
2783       return tryLogicOpOfCompares(N);
2784     }
2785     return nullptr;
2786   }
2787 };
2788 
2789 static bool isLogicOp(unsigned Opc) {
2790   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2791 }
2792 // The obvious case for wanting to keep the value in a GPR. Namely, the
2793 // result of the comparison is actually needed in a GPR.
2794 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2795   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2796           N->getOpcode() == ISD::SIGN_EXTEND) &&
2797          "Expecting a zero/sign extend node!");
2798   SDValue WideRes;
2799   // If we are zero-extending the result of a logical operation on i1
2800   // values, we can keep the values in GPRs.
2801   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2802       N->getOperand(0).getValueType() == MVT::i1 &&
2803       N->getOpcode() == ISD::ZERO_EXTEND)
2804     WideRes = computeLogicOpInGPR(N->getOperand(0));
2805   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2806     return nullptr;
2807   else
2808     WideRes =
2809       getSETCCInGPR(N->getOperand(0),
2810                     N->getOpcode() == ISD::SIGN_EXTEND ?
2811                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2812 
2813   if (!WideRes)
2814     return nullptr;
2815 
2816   SDLoc dl(N);
2817   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2818   bool Output32Bit = N->getValueType(0) == MVT::i32;
2819 
2820   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2821   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2822 
2823   SDValue ConvOp = WideRes;
2824   if (Input32Bit != Output32Bit)
2825     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2826                            ExtOrTruncConversion::Trunc);
2827   return ConvOp.getNode();
2828 }
2829 
2830 // Attempt to perform logical operations on the results of comparisons while
2831 // keeping the values in GPRs. Without doing so, these would end up being
2832 // lowered to CR-logical operations which suffer from significant latency and
2833 // low ILP.
2834 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2835   if (N->getValueType(0) != MVT::i1)
2836     return nullptr;
2837   assert(isLogicOp(N->getOpcode()) &&
2838          "Expected a logic operation on setcc results.");
2839   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2840   if (!LoweredLogical)
2841     return nullptr;
2842 
2843   SDLoc dl(N);
2844   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2845   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2846   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2847   SDValue LHS = LoweredLogical.getOperand(0);
2848   SDValue RHS = LoweredLogical.getOperand(1);
2849   SDValue WideOp;
2850   SDValue OpToConvToRecForm;
2851 
2852   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2853   // opcode that is input to the XORI.
2854   if (IsBitwiseNegate &&
2855       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2856     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2857   else if (IsBitwiseNegate)
2858     // If the input to the XORI isn't an extension, that's what we're after.
2859     OpToConvToRecForm = LoweredLogical.getOperand(0);
2860   else
2861     // If this is not an XORI, it is a reg-reg logical op and we can convert
2862     // it to record-form.
2863     OpToConvToRecForm = LoweredLogical;
2864 
2865   // Get the record-form version of the node we're looking to use to get the
2866   // CR result from.
2867   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2868   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2869 
2870   // Convert the right node to record-form. This is either the logical we're
2871   // looking at or it is the input node to the negation (if we're looking at
2872   // a bitwise negation).
2873   if (NewOpc != -1 && IsBitwiseNegate) {
2874     // The input to the XORI has a record-form. Use it.
2875     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2876            "Expected a PPC::XORI8 only for bitwise negation.");
2877     // Emit the record-form instruction.
2878     std::vector<SDValue> Ops;
2879     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2880       Ops.push_back(OpToConvToRecForm.getOperand(i));
2881 
2882     WideOp =
2883       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2884                                      OpToConvToRecForm.getValueType(),
2885                                      MVT::Glue, Ops), 0);
2886   } else {
2887     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2888            "No record form available for AND8/OR8/XOR8?");
2889     WideOp =
2890         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2891                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
2892                 0);
2893   }
2894 
2895   // Select this node to a single bit from CR0 set by the record-form node
2896   // just created. For bitwise negation, use the EQ bit which is the equivalent
2897   // of negating the result (i.e. it is a bit set when the result of the
2898   // operation is zero).
2899   SDValue SRIdxVal =
2900     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2901   SDValue CRBit =
2902     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2903                                    MVT::i1, CR0Reg, SRIdxVal,
2904                                    WideOp.getValue(1)), 0);
2905   return CRBit.getNode();
2906 }
2907 
2908 // Lower a logical operation on i1 values into a GPR sequence if possible.
2909 // The result can be kept in a GPR if requested.
2910 // Three types of inputs can be handled:
2911 // - SETCC
2912 // - TRUNCATE
2913 // - Logical operation (AND/OR/XOR)
2914 // There is also a special case that is handled (namely a complement operation
2915 // achieved with xor %a, -1).
2916 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2917   assert(isLogicOp(LogicOp.getOpcode()) &&
2918         "Can only handle logic operations here.");
2919   assert(LogicOp.getValueType() == MVT::i1 &&
2920          "Can only handle logic operations on i1 values here.");
2921   SDLoc dl(LogicOp);
2922   SDValue LHS, RHS;
2923 
2924  // Special case: xor %a, -1
2925   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2926 
2927   // Produces a GPR sequence for each operand of the binary logic operation.
2928   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2929   // the value in a GPR and for logic operations, it will recursively produce
2930   // a GPR sequence for the operation.
2931  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2932     unsigned OperandOpcode = Operand.getOpcode();
2933     if (OperandOpcode == ISD::SETCC)
2934       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2935     else if (OperandOpcode == ISD::TRUNCATE) {
2936       SDValue InputOp = Operand.getOperand(0);
2937      EVT InVT = InputOp.getValueType();
2938       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2939                                             PPC::RLDICL, dl, InVT, InputOp,
2940                                             S->getI64Imm(0, dl),
2941                                             S->getI64Imm(63, dl)), 0);
2942     } else if (isLogicOp(OperandOpcode))
2943       return computeLogicOpInGPR(Operand);
2944     return SDValue();
2945   };
2946   LHS = getLogicOperand(LogicOp.getOperand(0));
2947   RHS = getLogicOperand(LogicOp.getOperand(1));
2948 
2949   // If a GPR sequence can't be produced for the LHS we can't proceed.
2950   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2951   // a bitwise negation operation.
2952   if (!LHS || (!RHS && !IsBitwiseNegation))
2953     return SDValue();
2954 
2955   NumLogicOpsOnComparison++;
2956 
2957   // We will use the inputs as 64-bit values.
2958   if (LHS.getValueType() == MVT::i32)
2959     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2960   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2961     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2962 
2963   unsigned NewOpc;
2964   switch (LogicOp.getOpcode()) {
2965   default: llvm_unreachable("Unknown logic operation.");
2966   case ISD::AND: NewOpc = PPC::AND8; break;
2967   case ISD::OR:  NewOpc = PPC::OR8;  break;
2968   case ISD::XOR: NewOpc = PPC::XOR8; break;
2969   }
2970 
2971   if (IsBitwiseNegation) {
2972     RHS = S->getI64Imm(1, dl);
2973     NewOpc = PPC::XORI8;
2974   }
2975 
2976   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2977 
2978 }
2979 
2980 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2981 /// Otherwise just reinterpret it as a 64-bit value.
2982 /// Useful when emitting comparison code for 32-bit values without using
2983 /// the compare instruction (which only considers the lower 32-bits).
2984 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2985   assert(Input.getValueType() == MVT::i32 &&
2986          "Can only sign-extend 32-bit values here.");
2987   unsigned Opc = Input.getOpcode();
2988 
2989   // The value was sign extended and then truncated to 32-bits. No need to
2990   // sign extend it again.
2991   if (Opc == ISD::TRUNCATE &&
2992       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2993        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2994     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2995 
2996   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2997   // The input is a sign-extending load. All ppc sign-extending loads
2998   // sign-extend to the full 64-bits.
2999   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3000     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3001 
3002   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3003   // We don't sign-extend constants.
3004   if (InputConst)
3005     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3006 
3007   SDLoc dl(Input);
3008   SignExtensionsAdded++;
3009   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3010                                         MVT::i64, Input), 0);
3011 }
3012 
3013 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3014 /// Otherwise just reinterpret it as a 64-bit value.
3015 /// Useful when emitting comparison code for 32-bit values without using
3016 /// the compare instruction (which only considers the lower 32-bits).
3017 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3018   assert(Input.getValueType() == MVT::i32 &&
3019          "Can only zero-extend 32-bit values here.");
3020   unsigned Opc = Input.getOpcode();
3021 
3022   // The only condition under which we can omit the actual extend instruction:
3023   // - The value is a positive constant
3024   // - The value comes from a load that isn't a sign-extending load
3025   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3026   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3027     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3028      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3029   if (IsTruncateOfZExt)
3030     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3031 
3032   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3033   if (InputConst && InputConst->getSExtValue() >= 0)
3034     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3035 
3036   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3037   // The input is a load that doesn't sign-extend (it will be zero-extended).
3038   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3039     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3040 
3041   // None of the above, need to zero-extend.
3042   SDLoc dl(Input);
3043   ZeroExtensionsAdded++;
3044   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3045                                         S->getI64Imm(0, dl),
3046                                         S->getI64Imm(32, dl)), 0);
3047 }
3048 
3049 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3050 // course not actual zero/sign extensions that will generate machine code,
3051 // they're just a way to reinterpret a 32 bit value in a register as a
3052 // 64 bit value and vice-versa.
3053 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3054                                                 ExtOrTruncConversion Conv) {
3055   SDLoc dl(NatWidthRes);
3056 
3057   // For reinterpreting 32-bit values as 64 bit values, we generate
3058   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3059   if (Conv == ExtOrTruncConversion::Ext) {
3060     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3061     SDValue SubRegIdx =
3062       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3063     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3064                                           ImDef, NatWidthRes, SubRegIdx), 0);
3065   }
3066 
3067   assert(Conv == ExtOrTruncConversion::Trunc &&
3068          "Unknown convertion between 32 and 64 bit values.");
3069   // For reinterpreting 64-bit values as 32-bit values, we just need to
3070   // EXTRACT_SUBREG (i.e. extract the low word).
3071   SDValue SubRegIdx =
3072     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3073   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3074                                         NatWidthRes, SubRegIdx), 0);
3075 }
3076 
3077 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3078 // Handle both zero-extensions and sign-extensions.
3079 SDValue
3080 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3081                                                          ZeroCompare CmpTy) {
3082   EVT InVT = LHS.getValueType();
3083   bool Is32Bit = InVT == MVT::i32;
3084   SDValue ToExtend;
3085 
3086   // Produce the value that needs to be either zero or sign extended.
3087   switch (CmpTy) {
3088   case ZeroCompare::GEZExt:
3089   case ZeroCompare::GESExt:
3090     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3091                                               dl, InVT, LHS, LHS), 0);
3092     break;
3093   case ZeroCompare::LEZExt:
3094   case ZeroCompare::LESExt: {
3095     if (Is32Bit) {
3096       // Upper 32 bits cannot be undefined for this sequence.
3097       LHS = signExtendInputIfNeeded(LHS);
3098       SDValue Neg =
3099         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3100       ToExtend =
3101         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3102                                        Neg, S->getI64Imm(1, dl),
3103                                        S->getI64Imm(63, dl)), 0);
3104     } else {
3105       SDValue Addi =
3106         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3107                                        S->getI64Imm(~0ULL, dl)), 0);
3108       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3109                                                 Addi, LHS), 0);
3110     }
3111     break;
3112   }
3113   }
3114 
3115   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3116   if (!Is32Bit &&
3117       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3118     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3119                                           ToExtend, S->getI64Imm(1, dl),
3120                                           S->getI64Imm(63, dl)), 0);
3121   if (!Is32Bit &&
3122       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3123     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3124                                           S->getI64Imm(63, dl)), 0);
3125 
3126   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3127   // For 32-bit sequences, the extensions differ between GE/LE cases.
3128   switch (CmpTy) {
3129   case ZeroCompare::GEZExt: {
3130     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3131                            S->getI32Imm(31, dl) };
3132     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3133                                           ShiftOps), 0);
3134   }
3135   case ZeroCompare::GESExt:
3136     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3137                                           S->getI32Imm(31, dl)), 0);
3138   case ZeroCompare::LEZExt:
3139     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3140                                           S->getI32Imm(1, dl)), 0);
3141   case ZeroCompare::LESExt:
3142     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3143                                           S->getI32Imm(-1, dl)), 0);
3144   }
3145 
3146   // The above case covers all the enumerators so it can't have a default clause
3147   // to avoid compiler warnings.
3148   llvm_unreachable("Unknown zero-comparison type.");
3149 }
3150 
3151 /// Produces a zero-extended result of comparing two 32-bit values according to
3152 /// the passed condition code.
3153 SDValue
3154 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3155                                               ISD::CondCode CC,
3156                                               int64_t RHSValue, SDLoc dl) {
3157   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3158       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3159     return SDValue();
3160   bool IsRHSZero = RHSValue == 0;
3161   bool IsRHSOne = RHSValue == 1;
3162   bool IsRHSNegOne = RHSValue == -1LL;
3163   switch (CC) {
3164   default: return SDValue();
3165   case ISD::SETEQ: {
3166     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3167     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
3168     SDValue Xor = IsRHSZero ? LHS :
3169       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3170     SDValue Clz =
3171       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3172     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3173       S->getI32Imm(31, dl) };
3174     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3175                                           ShiftOps), 0);
3176   }
3177   case ISD::SETNE: {
3178     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3179     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
3180     SDValue Xor = IsRHSZero ? LHS :
3181       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3182     SDValue Clz =
3183       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3184     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3185       S->getI32Imm(31, dl) };
3186     SDValue Shift =
3187       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3188     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3189                                           S->getI32Imm(1, dl)), 0);
3190   }
3191   case ISD::SETGE: {
3192     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3193     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
3194     if(IsRHSZero)
3195       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3196 
3197     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3198     // by swapping inputs and falling through.
3199     std::swap(LHS, RHS);
3200     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3201     IsRHSZero = RHSConst && RHSConst->isZero();
3202     LLVM_FALLTHROUGH;
3203   }
3204   case ISD::SETLE: {
3205     if (CmpInGPR == ICGPR_NonExtIn)
3206       return SDValue();
3207     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3208     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
3209     if(IsRHSZero) {
3210       if (CmpInGPR == ICGPR_NonExtIn)
3211         return SDValue();
3212       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3213     }
3214 
3215     // The upper 32-bits of the register can't be undefined for this sequence.
3216     LHS = signExtendInputIfNeeded(LHS);
3217     RHS = signExtendInputIfNeeded(RHS);
3218     SDValue Sub =
3219       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3220     SDValue Shift =
3221       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3222                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3223               0);
3224     return
3225       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3226                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3227   }
3228   case ISD::SETGT: {
3229     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3230     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3231     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
3232     // Handle SETLT -1 (which is equivalent to SETGE 0).
3233     if (IsRHSNegOne)
3234       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3235 
3236     if (IsRHSZero) {
3237       if (CmpInGPR == ICGPR_NonExtIn)
3238         return SDValue();
3239       // The upper 32-bits of the register can't be undefined for this sequence.
3240       LHS = signExtendInputIfNeeded(LHS);
3241       RHS = signExtendInputIfNeeded(RHS);
3242       SDValue Neg =
3243         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3244       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3245                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3246     }
3247     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3248     // (%b < %a) by swapping inputs and falling through.
3249     std::swap(LHS, RHS);
3250     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3251     IsRHSZero = RHSConst && RHSConst->isZero();
3252     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3253     LLVM_FALLTHROUGH;
3254   }
3255   case ISD::SETLT: {
3256     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3257     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3258     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3259     // Handle SETLT 1 (which is equivalent to SETLE 0).
3260     if (IsRHSOne) {
3261       if (CmpInGPR == ICGPR_NonExtIn)
3262         return SDValue();
3263       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3264     }
3265 
3266     if (IsRHSZero) {
3267       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3268                              S->getI32Imm(31, dl) };
3269       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3270                                             ShiftOps), 0);
3271     }
3272 
3273     if (CmpInGPR == ICGPR_NonExtIn)
3274       return SDValue();
3275     // The upper 32-bits of the register can't be undefined for this sequence.
3276     LHS = signExtendInputIfNeeded(LHS);
3277     RHS = signExtendInputIfNeeded(RHS);
3278     SDValue SUBFNode =
3279       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3280     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3281                                     SUBFNode, S->getI64Imm(1, dl),
3282                                     S->getI64Imm(63, dl)), 0);
3283   }
3284   case ISD::SETUGE:
3285     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3286     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3287     std::swap(LHS, RHS);
3288     LLVM_FALLTHROUGH;
3289   case ISD::SETULE: {
3290     if (CmpInGPR == ICGPR_NonExtIn)
3291       return SDValue();
3292     // The upper 32-bits of the register can't be undefined for this sequence.
3293     LHS = zeroExtendInputIfNeeded(LHS);
3294     RHS = zeroExtendInputIfNeeded(RHS);
3295     SDValue Subtract =
3296       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3297     SDValue SrdiNode =
3298       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3299                                           Subtract, S->getI64Imm(1, dl),
3300                                           S->getI64Imm(63, dl)), 0);
3301     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3302                                             S->getI32Imm(1, dl)), 0);
3303   }
3304   case ISD::SETUGT:
3305     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3306     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3307     std::swap(LHS, RHS);
3308     LLVM_FALLTHROUGH;
3309   case ISD::SETULT: {
3310     if (CmpInGPR == ICGPR_NonExtIn)
3311       return SDValue();
3312     // The upper 32-bits of the register can't be undefined for this sequence.
3313     LHS = zeroExtendInputIfNeeded(LHS);
3314     RHS = zeroExtendInputIfNeeded(RHS);
3315     SDValue Subtract =
3316       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3317     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3318                                           Subtract, S->getI64Imm(1, dl),
3319                                           S->getI64Imm(63, dl)), 0);
3320   }
3321   }
3322 }
3323 
3324 /// Produces a sign-extended result of comparing two 32-bit values according to
3325 /// the passed condition code.
3326 SDValue
3327 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3328                                               ISD::CondCode CC,
3329                                               int64_t RHSValue, SDLoc dl) {
3330   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3331       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3332     return SDValue();
3333   bool IsRHSZero = RHSValue == 0;
3334   bool IsRHSOne = RHSValue == 1;
3335   bool IsRHSNegOne = RHSValue == -1LL;
3336 
3337   switch (CC) {
3338   default: return SDValue();
3339   case ISD::SETEQ: {
3340     // (sext (setcc %a, %b, seteq)) ->
3341     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3342     // (sext (setcc %a, 0, seteq)) ->
3343     //   (ashr (shl (ctlz %a), 58), 63)
3344     SDValue CountInput = IsRHSZero ? LHS :
3345       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3346     SDValue Cntlzw =
3347       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3348     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3349                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3350     SDValue Slwi =
3351       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3352     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3353   }
3354   case ISD::SETNE: {
3355     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3356     // flip the bit, finally take 2's complement.
3357     // (sext (setcc %a, %b, setne)) ->
3358     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3359     // Same as above, but the first xor is not needed.
3360     // (sext (setcc %a, 0, setne)) ->
3361     //   (neg (xor (lshr (ctlz %a), 5), 1))
3362     SDValue Xor = IsRHSZero ? LHS :
3363       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3364     SDValue Clz =
3365       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3366     SDValue ShiftOps[] =
3367       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3368     SDValue Shift =
3369       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3370     SDValue Xori =
3371       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3372                                      S->getI32Imm(1, dl)), 0);
3373     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3374   }
3375   case ISD::SETGE: {
3376     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3377     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3378     if (IsRHSZero)
3379       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3380 
3381     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3382     // by swapping inputs and falling through.
3383     std::swap(LHS, RHS);
3384     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3385     IsRHSZero = RHSConst && RHSConst->isZero();
3386     LLVM_FALLTHROUGH;
3387   }
3388   case ISD::SETLE: {
3389     if (CmpInGPR == ICGPR_NonExtIn)
3390       return SDValue();
3391     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3392     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3393     if (IsRHSZero)
3394       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3395 
3396     // The upper 32-bits of the register can't be undefined for this sequence.
3397     LHS = signExtendInputIfNeeded(LHS);
3398     RHS = signExtendInputIfNeeded(RHS);
3399     SDValue SUBFNode =
3400       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3401                                      LHS, RHS), 0);
3402     SDValue Srdi =
3403       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3404                                      SUBFNode, S->getI64Imm(1, dl),
3405                                      S->getI64Imm(63, dl)), 0);
3406     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3407                                           S->getI32Imm(-1, dl)), 0);
3408   }
3409   case ISD::SETGT: {
3410     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3411     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3412     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3413     if (IsRHSNegOne)
3414       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3415     if (IsRHSZero) {
3416       if (CmpInGPR == ICGPR_NonExtIn)
3417         return SDValue();
3418       // The upper 32-bits of the register can't be undefined for this sequence.
3419       LHS = signExtendInputIfNeeded(LHS);
3420       RHS = signExtendInputIfNeeded(RHS);
3421       SDValue Neg =
3422         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3423         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3424                                               S->getI64Imm(63, dl)), 0);
3425     }
3426     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3427     // (%b < %a) by swapping inputs and falling through.
3428     std::swap(LHS, RHS);
3429     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3430     IsRHSZero = RHSConst && RHSConst->isZero();
3431     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3432     LLVM_FALLTHROUGH;
3433   }
3434   case ISD::SETLT: {
3435     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3436     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3437     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3438     if (IsRHSOne) {
3439       if (CmpInGPR == ICGPR_NonExtIn)
3440         return SDValue();
3441       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3442     }
3443     if (IsRHSZero)
3444       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3445                                             S->getI32Imm(31, dl)), 0);
3446 
3447     if (CmpInGPR == ICGPR_NonExtIn)
3448       return SDValue();
3449     // The upper 32-bits of the register can't be undefined for this sequence.
3450     LHS = signExtendInputIfNeeded(LHS);
3451     RHS = signExtendInputIfNeeded(RHS);
3452     SDValue SUBFNode =
3453       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3454     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3455                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3456   }
3457   case ISD::SETUGE:
3458     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3459     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3460     std::swap(LHS, RHS);
3461     LLVM_FALLTHROUGH;
3462   case ISD::SETULE: {
3463     if (CmpInGPR == ICGPR_NonExtIn)
3464       return SDValue();
3465     // The upper 32-bits of the register can't be undefined for this sequence.
3466     LHS = zeroExtendInputIfNeeded(LHS);
3467     RHS = zeroExtendInputIfNeeded(RHS);
3468     SDValue Subtract =
3469       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3470     SDValue Shift =
3471       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3472                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3473               0);
3474     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3475                                           S->getI32Imm(-1, dl)), 0);
3476   }
3477   case ISD::SETUGT:
3478     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3479     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3480     std::swap(LHS, RHS);
3481     LLVM_FALLTHROUGH;
3482   case ISD::SETULT: {
3483     if (CmpInGPR == ICGPR_NonExtIn)
3484       return SDValue();
3485     // The upper 32-bits of the register can't be undefined for this sequence.
3486     LHS = zeroExtendInputIfNeeded(LHS);
3487     RHS = zeroExtendInputIfNeeded(RHS);
3488     SDValue Subtract =
3489       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3490     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3491                                           Subtract, S->getI64Imm(63, dl)), 0);
3492   }
3493   }
3494 }
3495 
3496 /// Produces a zero-extended result of comparing two 64-bit values according to
3497 /// the passed condition code.
3498 SDValue
3499 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3500                                               ISD::CondCode CC,
3501                                               int64_t RHSValue, SDLoc dl) {
3502   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3503       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3504     return SDValue();
3505   bool IsRHSZero = RHSValue == 0;
3506   bool IsRHSOne = RHSValue == 1;
3507   bool IsRHSNegOne = RHSValue == -1LL;
3508   switch (CC) {
3509   default: return SDValue();
3510   case ISD::SETEQ: {
3511     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3512     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3513     SDValue Xor = IsRHSZero ? LHS :
3514       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3515     SDValue Clz =
3516       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3517     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3518                                           S->getI64Imm(58, dl),
3519                                           S->getI64Imm(63, dl)), 0);
3520   }
3521   case ISD::SETNE: {
3522     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3523     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3524     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3525     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3526     SDValue Xor = IsRHSZero ? LHS :
3527       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3528     SDValue AC =
3529       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3530                                      Xor, S->getI32Imm(~0U, dl)), 0);
3531     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3532                                           Xor, AC.getValue(1)), 0);
3533   }
3534   case ISD::SETGE: {
3535     // {subc.reg, subc.CA} = (subcarry %a, %b)
3536     // (zext (setcc %a, %b, setge)) ->
3537     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3538     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3539     if (IsRHSZero)
3540       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3541     std::swap(LHS, RHS);
3542     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3543     IsRHSZero = RHSConst && RHSConst->isZero();
3544     LLVM_FALLTHROUGH;
3545   }
3546   case ISD::SETLE: {
3547     // {subc.reg, subc.CA} = (subcarry %b, %a)
3548     // (zext (setcc %a, %b, setge)) ->
3549     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3550     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3551     if (IsRHSZero)
3552       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3553     SDValue ShiftL =
3554       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3555                                      S->getI64Imm(1, dl),
3556                                      S->getI64Imm(63, dl)), 0);
3557     SDValue ShiftR =
3558       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3559                                      S->getI64Imm(63, dl)), 0);
3560     SDValue SubtractCarry =
3561       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3562                                      LHS, RHS), 1);
3563     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3564                                           ShiftR, ShiftL, SubtractCarry), 0);
3565   }
3566   case ISD::SETGT: {
3567     // {subc.reg, subc.CA} = (subcarry %b, %a)
3568     // (zext (setcc %a, %b, setgt)) ->
3569     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3570     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3571     if (IsRHSNegOne)
3572       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3573     if (IsRHSZero) {
3574       SDValue Addi =
3575         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3576                                        S->getI64Imm(~0ULL, dl)), 0);
3577       SDValue Nor =
3578         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3579       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3580                                             S->getI64Imm(1, dl),
3581                                             S->getI64Imm(63, dl)), 0);
3582     }
3583     std::swap(LHS, RHS);
3584     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3585     IsRHSZero = RHSConst && RHSConst->isZero();
3586     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3587     LLVM_FALLTHROUGH;
3588   }
3589   case ISD::SETLT: {
3590     // {subc.reg, subc.CA} = (subcarry %a, %b)
3591     // (zext (setcc %a, %b, setlt)) ->
3592     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3593     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3594     if (IsRHSOne)
3595       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3596     if (IsRHSZero)
3597       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3598                                             S->getI64Imm(1, dl),
3599                                             S->getI64Imm(63, dl)), 0);
3600     SDValue SRADINode =
3601       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3602                                      LHS, S->getI64Imm(63, dl)), 0);
3603     SDValue SRDINode =
3604       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3605                                      RHS, S->getI64Imm(1, dl),
3606                                      S->getI64Imm(63, dl)), 0);
3607     SDValue SUBFC8Carry =
3608       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3609                                      RHS, LHS), 1);
3610     SDValue ADDE8Node =
3611       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3612                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3613     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3614                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3615   }
3616   case ISD::SETUGE:
3617     // {subc.reg, subc.CA} = (subcarry %a, %b)
3618     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3619     std::swap(LHS, RHS);
3620     LLVM_FALLTHROUGH;
3621   case ISD::SETULE: {
3622     // {subc.reg, subc.CA} = (subcarry %b, %a)
3623     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3624     SDValue SUBFC8Carry =
3625       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3626                                      LHS, RHS), 1);
3627     SDValue SUBFE8Node =
3628       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3629                                      LHS, LHS, SUBFC8Carry), 0);
3630     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3631                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3632   }
3633   case ISD::SETUGT:
3634     // {subc.reg, subc.CA} = (subcarry %b, %a)
3635     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3636     std::swap(LHS, RHS);
3637     LLVM_FALLTHROUGH;
3638   case ISD::SETULT: {
3639     // {subc.reg, subc.CA} = (subcarry %a, %b)
3640     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3641     SDValue SubtractCarry =
3642       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3643                                      RHS, LHS), 1);
3644     SDValue ExtSub =
3645       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3646                                      LHS, LHS, SubtractCarry), 0);
3647     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3648                                           ExtSub), 0);
3649   }
3650   }
3651 }
3652 
3653 /// Produces a sign-extended result of comparing two 64-bit values according to
3654 /// the passed condition code.
3655 SDValue
3656 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3657                                               ISD::CondCode CC,
3658                                               int64_t RHSValue, SDLoc dl) {
3659   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3660       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3661     return SDValue();
3662   bool IsRHSZero = RHSValue == 0;
3663   bool IsRHSOne = RHSValue == 1;
3664   bool IsRHSNegOne = RHSValue == -1LL;
3665   switch (CC) {
3666   default: return SDValue();
3667   case ISD::SETEQ: {
3668     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3669     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3670     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3671     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3672     SDValue AddInput = IsRHSZero ? LHS :
3673       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3674     SDValue Addic =
3675       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3676                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3677     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3678                                           Addic, Addic.getValue(1)), 0);
3679   }
3680   case ISD::SETNE: {
3681     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3682     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3683     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3684     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3685     SDValue Xor = IsRHSZero ? LHS :
3686       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3687     SDValue SC =
3688       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3689                                      Xor, S->getI32Imm(0, dl)), 0);
3690     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3691                                           SC, SC.getValue(1)), 0);
3692   }
3693   case ISD::SETGE: {
3694     // {subc.reg, subc.CA} = (subcarry %a, %b)
3695     // (zext (setcc %a, %b, setge)) ->
3696     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3697     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3698     if (IsRHSZero)
3699       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3700     std::swap(LHS, RHS);
3701     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3702     IsRHSZero = RHSConst && RHSConst->isZero();
3703     LLVM_FALLTHROUGH;
3704   }
3705   case ISD::SETLE: {
3706     // {subc.reg, subc.CA} = (subcarry %b, %a)
3707     // (zext (setcc %a, %b, setge)) ->
3708     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3709     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3710     if (IsRHSZero)
3711       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3712     SDValue ShiftR =
3713       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3714                                      S->getI64Imm(63, dl)), 0);
3715     SDValue ShiftL =
3716       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3717                                      S->getI64Imm(1, dl),
3718                                      S->getI64Imm(63, dl)), 0);
3719     SDValue SubtractCarry =
3720       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3721                                      LHS, RHS), 1);
3722     SDValue Adde =
3723       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3724                                      ShiftR, ShiftL, SubtractCarry), 0);
3725     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3726   }
3727   case ISD::SETGT: {
3728     // {subc.reg, subc.CA} = (subcarry %b, %a)
3729     // (zext (setcc %a, %b, setgt)) ->
3730     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3731     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3732     if (IsRHSNegOne)
3733       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3734     if (IsRHSZero) {
3735       SDValue Add =
3736         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3737                                        S->getI64Imm(-1, dl)), 0);
3738       SDValue Nor =
3739         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3740       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3741                                             S->getI64Imm(63, dl)), 0);
3742     }
3743     std::swap(LHS, RHS);
3744     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3745     IsRHSZero = RHSConst && RHSConst->isZero();
3746     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3747     LLVM_FALLTHROUGH;
3748   }
3749   case ISD::SETLT: {
3750     // {subc.reg, subc.CA} = (subcarry %a, %b)
3751     // (zext (setcc %a, %b, setlt)) ->
3752     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3753     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3754     if (IsRHSOne)
3755       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3756     if (IsRHSZero) {
3757       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3758                                             S->getI64Imm(63, dl)), 0);
3759     }
3760     SDValue SRADINode =
3761       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3762                                      LHS, S->getI64Imm(63, dl)), 0);
3763     SDValue SRDINode =
3764       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3765                                      RHS, S->getI64Imm(1, dl),
3766                                      S->getI64Imm(63, dl)), 0);
3767     SDValue SUBFC8Carry =
3768       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3769                                      RHS, LHS), 1);
3770     SDValue ADDE8Node =
3771       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3772                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3773     SDValue XORI8Node =
3774       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3775                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3776     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3777                                           XORI8Node), 0);
3778   }
3779   case ISD::SETUGE:
3780     // {subc.reg, subc.CA} = (subcarry %a, %b)
3781     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3782     std::swap(LHS, RHS);
3783     LLVM_FALLTHROUGH;
3784   case ISD::SETULE: {
3785     // {subc.reg, subc.CA} = (subcarry %b, %a)
3786     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3787     SDValue SubtractCarry =
3788       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3789                                      LHS, RHS), 1);
3790     SDValue ExtSub =
3791       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3792                                      LHS, SubtractCarry), 0);
3793     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3794                                           ExtSub, ExtSub), 0);
3795   }
3796   case ISD::SETUGT:
3797     // {subc.reg, subc.CA} = (subcarry %b, %a)
3798     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3799     std::swap(LHS, RHS);
3800     LLVM_FALLTHROUGH;
3801   case ISD::SETULT: {
3802     // {subc.reg, subc.CA} = (subcarry %a, %b)
3803     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3804     SDValue SubCarry =
3805       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3806                                      RHS, LHS), 1);
3807     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3808                                      LHS, LHS, SubCarry), 0);
3809   }
3810   }
3811 }
3812 
3813 /// Do all uses of this SDValue need the result in a GPR?
3814 /// This is meant to be used on values that have type i1 since
3815 /// it is somewhat meaningless to ask if values of other types
3816 /// should be kept in GPR's.
3817 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3818   assert(Compare.getOpcode() == ISD::SETCC &&
3819          "An ISD::SETCC node required here.");
3820 
3821   // For values that have a single use, the caller should obviously already have
3822   // checked if that use is an extending use. We check the other uses here.
3823   if (Compare.hasOneUse())
3824     return true;
3825   // We want the value in a GPR if it is being extended, used for a select, or
3826   // used in logical operations.
3827   for (auto CompareUse : Compare.getNode()->uses())
3828     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3829         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3830         CompareUse->getOpcode() != ISD::SELECT &&
3831         !isLogicOp(CompareUse->getOpcode())) {
3832       OmittedForNonExtendUses++;
3833       return false;
3834     }
3835   return true;
3836 }
3837 
3838 /// Returns an equivalent of a SETCC node but with the result the same width as
3839 /// the inputs. This can also be used for SELECT_CC if either the true or false
3840 /// values is a power of two while the other is zero.
3841 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3842                                                 SetccInGPROpts ConvOpts) {
3843   assert((Compare.getOpcode() == ISD::SETCC ||
3844           Compare.getOpcode() == ISD::SELECT_CC) &&
3845          "An ISD::SETCC node required here.");
3846 
3847   // Don't convert this comparison to a GPR sequence because there are uses
3848   // of the i1 result (i.e. uses that require the result in the CR).
3849   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3850     return SDValue();
3851 
3852   SDValue LHS = Compare.getOperand(0);
3853   SDValue RHS = Compare.getOperand(1);
3854 
3855   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3856   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3857   ISD::CondCode CC =
3858     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3859   EVT InputVT = LHS.getValueType();
3860   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3861     return SDValue();
3862 
3863   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3864       ConvOpts == SetccInGPROpts::SExtInvert)
3865     CC = ISD::getSetCCInverse(CC, InputVT);
3866 
3867   bool Inputs32Bit = InputVT == MVT::i32;
3868 
3869   SDLoc dl(Compare);
3870   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3871   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3872   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3873     ConvOpts == SetccInGPROpts::SExtInvert;
3874 
3875   if (IsSext && Inputs32Bit)
3876     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3877   else if (Inputs32Bit)
3878     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3879   else if (IsSext)
3880     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3881   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3882 }
3883 
3884 } // end anonymous namespace
3885 
3886 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3887   if (N->getValueType(0) != MVT::i32 &&
3888       N->getValueType(0) != MVT::i64)
3889     return false;
3890 
3891   // This optimization will emit code that assumes 64-bit registers
3892   // so we don't want to run it in 32-bit mode. Also don't run it
3893   // on functions that are not to be optimized.
3894   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3895     return false;
3896 
3897   // For POWER10, it is more profitable to use the set boolean extension
3898   // instructions rather than the integer compare elimination codegen.
3899   // Users can override this via the command line option, `--ppc-gpr-icmps`.
3900   if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
3901     return false;
3902 
3903   switch (N->getOpcode()) {
3904   default: break;
3905   case ISD::ZERO_EXTEND:
3906   case ISD::SIGN_EXTEND:
3907   case ISD::AND:
3908   case ISD::OR:
3909   case ISD::XOR: {
3910     IntegerCompareEliminator ICmpElim(CurDAG, this);
3911     if (SDNode *New = ICmpElim.Select(N)) {
3912       ReplaceNode(N, New);
3913       return true;
3914     }
3915   }
3916   }
3917   return false;
3918 }
3919 
3920 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3921   if (N->getValueType(0) != MVT::i32 &&
3922       N->getValueType(0) != MVT::i64)
3923     return false;
3924 
3925   if (!UseBitPermRewriter)
3926     return false;
3927 
3928   switch (N->getOpcode()) {
3929   default: break;
3930   case ISD::ROTL:
3931   case ISD::SHL:
3932   case ISD::SRL:
3933   case ISD::AND:
3934   case ISD::OR: {
3935     BitPermutationSelector BPS(CurDAG);
3936     if (SDNode *New = BPS.Select(N)) {
3937       ReplaceNode(N, New);
3938       return true;
3939     }
3940     return false;
3941   }
3942   }
3943 
3944   return false;
3945 }
3946 
3947 /// SelectCC - Select a comparison of the specified values with the specified
3948 /// condition code, returning the CR# of the expression.
3949 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3950                                   const SDLoc &dl, SDValue Chain) {
3951   // Always select the LHS.
3952   unsigned Opc;
3953 
3954   if (LHS.getValueType() == MVT::i32) {
3955     unsigned Imm;
3956     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3957       if (isInt32Immediate(RHS, Imm)) {
3958         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3959         if (isUInt<16>(Imm))
3960           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3961                                                 getI32Imm(Imm & 0xFFFF, dl)),
3962                          0);
3963         // If this is a 16-bit signed immediate, fold it.
3964         if (isInt<16>((int)Imm))
3965           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3966                                                 getI32Imm(Imm & 0xFFFF, dl)),
3967                          0);
3968 
3969         // For non-equality comparisons, the default code would materialize the
3970         // constant, then compare against it, like this:
3971         //   lis r2, 4660
3972         //   ori r2, r2, 22136
3973         //   cmpw cr0, r3, r2
3974         // Since we are just comparing for equality, we can emit this instead:
3975         //   xoris r0,r3,0x1234
3976         //   cmplwi cr0,r0,0x5678
3977         //   beq cr0,L6
3978         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3979                                            getI32Imm(Imm >> 16, dl)), 0);
3980         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3981                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3982       }
3983       Opc = PPC::CMPLW;
3984     } else if (ISD::isUnsignedIntSetCC(CC)) {
3985       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3986         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3987                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3988       Opc = PPC::CMPLW;
3989     } else {
3990       int16_t SImm;
3991       if (isIntS16Immediate(RHS, SImm))
3992         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3993                                               getI32Imm((int)SImm & 0xFFFF,
3994                                                         dl)),
3995                          0);
3996       Opc = PPC::CMPW;
3997     }
3998   } else if (LHS.getValueType() == MVT::i64) {
3999     uint64_t Imm;
4000     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4001       if (isInt64Immediate(RHS.getNode(), Imm)) {
4002         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4003         if (isUInt<16>(Imm))
4004           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4005                                                 getI32Imm(Imm & 0xFFFF, dl)),
4006                          0);
4007         // If this is a 16-bit signed immediate, fold it.
4008         if (isInt<16>(Imm))
4009           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4010                                                 getI32Imm(Imm & 0xFFFF, dl)),
4011                          0);
4012 
4013         // For non-equality comparisons, the default code would materialize the
4014         // constant, then compare against it, like this:
4015         //   lis r2, 4660
4016         //   ori r2, r2, 22136
4017         //   cmpd cr0, r3, r2
4018         // Since we are just comparing for equality, we can emit this instead:
4019         //   xoris r0,r3,0x1234
4020         //   cmpldi cr0,r0,0x5678
4021         //   beq cr0,L6
4022         if (isUInt<32>(Imm)) {
4023           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4024                                              getI64Imm(Imm >> 16, dl)), 0);
4025           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4026                                                 getI64Imm(Imm & 0xFFFF, dl)),
4027                          0);
4028         }
4029       }
4030       Opc = PPC::CMPLD;
4031     } else if (ISD::isUnsignedIntSetCC(CC)) {
4032       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4033         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4034                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
4035       Opc = PPC::CMPLD;
4036     } else {
4037       int16_t SImm;
4038       if (isIntS16Immediate(RHS, SImm))
4039         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4040                                               getI64Imm(SImm & 0xFFFF, dl)),
4041                          0);
4042       Opc = PPC::CMPD;
4043     }
4044   } else if (LHS.getValueType() == MVT::f32) {
4045     if (Subtarget->hasSPE()) {
4046       switch (CC) {
4047         default:
4048         case ISD::SETEQ:
4049         case ISD::SETNE:
4050           Opc = PPC::EFSCMPEQ;
4051           break;
4052         case ISD::SETLT:
4053         case ISD::SETGE:
4054         case ISD::SETOLT:
4055         case ISD::SETOGE:
4056         case ISD::SETULT:
4057         case ISD::SETUGE:
4058           Opc = PPC::EFSCMPLT;
4059           break;
4060         case ISD::SETGT:
4061         case ISD::SETLE:
4062         case ISD::SETOGT:
4063         case ISD::SETOLE:
4064         case ISD::SETUGT:
4065         case ISD::SETULE:
4066           Opc = PPC::EFSCMPGT;
4067           break;
4068       }
4069     } else
4070       Opc = PPC::FCMPUS;
4071   } else if (LHS.getValueType() == MVT::f64) {
4072     if (Subtarget->hasSPE()) {
4073       switch (CC) {
4074         default:
4075         case ISD::SETEQ:
4076         case ISD::SETNE:
4077           Opc = PPC::EFDCMPEQ;
4078           break;
4079         case ISD::SETLT:
4080         case ISD::SETGE:
4081         case ISD::SETOLT:
4082         case ISD::SETOGE:
4083         case ISD::SETULT:
4084         case ISD::SETUGE:
4085           Opc = PPC::EFDCMPLT;
4086           break;
4087         case ISD::SETGT:
4088         case ISD::SETLE:
4089         case ISD::SETOGT:
4090         case ISD::SETOLE:
4091         case ISD::SETUGT:
4092         case ISD::SETULE:
4093           Opc = PPC::EFDCMPGT;
4094           break;
4095       }
4096     } else
4097       Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4098   } else {
4099     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4100     assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4101     Opc = PPC::XSCMPUQP;
4102   }
4103   if (Chain)
4104     return SDValue(
4105         CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4106         0);
4107   else
4108     return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4109 }
4110 
4111 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4112                                            const PPCSubtarget *Subtarget) {
4113   // For SPE instructions, the result is in GT bit of the CR
4114   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4115 
4116   switch (CC) {
4117   case ISD::SETUEQ:
4118   case ISD::SETONE:
4119   case ISD::SETOLE:
4120   case ISD::SETOGE:
4121     llvm_unreachable("Should be lowered by legalize!");
4122   default: llvm_unreachable("Unknown condition!");
4123   case ISD::SETOEQ:
4124   case ISD::SETEQ:
4125     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4126   case ISD::SETUNE:
4127   case ISD::SETNE:
4128     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4129   case ISD::SETOLT:
4130   case ISD::SETLT:
4131     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4132   case ISD::SETULE:
4133   case ISD::SETLE:
4134     return PPC::PRED_LE;
4135   case ISD::SETOGT:
4136   case ISD::SETGT:
4137     return PPC::PRED_GT;
4138   case ISD::SETUGE:
4139   case ISD::SETGE:
4140     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4141   case ISD::SETO:   return PPC::PRED_NU;
4142   case ISD::SETUO:  return PPC::PRED_UN;
4143     // These two are invalid for floating point.  Assume we have int.
4144   case ISD::SETULT: return PPC::PRED_LT;
4145   case ISD::SETUGT: return PPC::PRED_GT;
4146   }
4147 }
4148 
4149 /// getCRIdxForSetCC - Return the index of the condition register field
4150 /// associated with the SetCC condition, and whether or not the field is
4151 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
4152 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4153   Invert = false;
4154   switch (CC) {
4155   default: llvm_unreachable("Unknown condition!");
4156   case ISD::SETOLT:
4157   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
4158   case ISD::SETOGT:
4159   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
4160   case ISD::SETOEQ:
4161   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
4162   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
4163   case ISD::SETUGE:
4164   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
4165   case ISD::SETULE:
4166   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
4167   case ISD::SETUNE:
4168   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
4169   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
4170   case ISD::SETUEQ:
4171   case ISD::SETOGE:
4172   case ISD::SETOLE:
4173   case ISD::SETONE:
4174     llvm_unreachable("Invalid branch code: should be expanded by legalize");
4175   // These are invalid for floating point.  Assume integer.
4176   case ISD::SETULT: return 0;
4177   case ISD::SETUGT: return 1;
4178   }
4179 }
4180 
4181 // getVCmpInst: return the vector compare instruction for the specified
4182 // vector type and condition code. Since this is for altivec specific code,
4183 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4184 // and v4f32).
4185 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4186                                 bool HasVSX, bool &Swap, bool &Negate) {
4187   Swap = false;
4188   Negate = false;
4189 
4190   if (VecVT.isFloatingPoint()) {
4191     /* Handle some cases by swapping input operands.  */
4192     switch (CC) {
4193       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4194       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4195       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4196       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4197       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4198       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4199       default: break;
4200     }
4201     /* Handle some cases by negating the result.  */
4202     switch (CC) {
4203       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4204       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4205       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4206       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4207       default: break;
4208     }
4209     /* We have instructions implementing the remaining cases.  */
4210     switch (CC) {
4211       case ISD::SETEQ:
4212       case ISD::SETOEQ:
4213         if (VecVT == MVT::v4f32)
4214           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4215         else if (VecVT == MVT::v2f64)
4216           return PPC::XVCMPEQDP;
4217         break;
4218       case ISD::SETGT:
4219       case ISD::SETOGT:
4220         if (VecVT == MVT::v4f32)
4221           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4222         else if (VecVT == MVT::v2f64)
4223           return PPC::XVCMPGTDP;
4224         break;
4225       case ISD::SETGE:
4226       case ISD::SETOGE:
4227         if (VecVT == MVT::v4f32)
4228           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4229         else if (VecVT == MVT::v2f64)
4230           return PPC::XVCMPGEDP;
4231         break;
4232       default:
4233         break;
4234     }
4235     llvm_unreachable("Invalid floating-point vector compare condition");
4236   } else {
4237     /* Handle some cases by swapping input operands.  */
4238     switch (CC) {
4239       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4240       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4241       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4242       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4243       default: break;
4244     }
4245     /* Handle some cases by negating the result.  */
4246     switch (CC) {
4247       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4248       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4249       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4250       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4251       default: break;
4252     }
4253     /* We have instructions implementing the remaining cases.  */
4254     switch (CC) {
4255       case ISD::SETEQ:
4256       case ISD::SETUEQ:
4257         if (VecVT == MVT::v16i8)
4258           return PPC::VCMPEQUB;
4259         else if (VecVT == MVT::v8i16)
4260           return PPC::VCMPEQUH;
4261         else if (VecVT == MVT::v4i32)
4262           return PPC::VCMPEQUW;
4263         else if (VecVT == MVT::v2i64)
4264           return PPC::VCMPEQUD;
4265         else if (VecVT == MVT::v1i128)
4266           return PPC::VCMPEQUQ;
4267         break;
4268       case ISD::SETGT:
4269         if (VecVT == MVT::v16i8)
4270           return PPC::VCMPGTSB;
4271         else if (VecVT == MVT::v8i16)
4272           return PPC::VCMPGTSH;
4273         else if (VecVT == MVT::v4i32)
4274           return PPC::VCMPGTSW;
4275         else if (VecVT == MVT::v2i64)
4276           return PPC::VCMPGTSD;
4277         else if (VecVT == MVT::v1i128)
4278            return PPC::VCMPGTSQ;
4279         break;
4280       case ISD::SETUGT:
4281         if (VecVT == MVT::v16i8)
4282           return PPC::VCMPGTUB;
4283         else if (VecVT == MVT::v8i16)
4284           return PPC::VCMPGTUH;
4285         else if (VecVT == MVT::v4i32)
4286           return PPC::VCMPGTUW;
4287         else if (VecVT == MVT::v2i64)
4288           return PPC::VCMPGTUD;
4289         else if (VecVT == MVT::v1i128)
4290            return PPC::VCMPGTUQ;
4291         break;
4292       default:
4293         break;
4294     }
4295     llvm_unreachable("Invalid integer vector compare condition");
4296   }
4297 }
4298 
4299 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4300   SDLoc dl(N);
4301   unsigned Imm;
4302   bool IsStrict = N->isStrictFPOpcode();
4303   ISD::CondCode CC =
4304       cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4305   EVT PtrVT =
4306       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4307   bool isPPC64 = (PtrVT == MVT::i64);
4308   SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4309 
4310   SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4311   SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4312 
4313   if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4314     // We can codegen setcc op, imm very efficiently compared to a brcond.
4315     // Check for those cases here.
4316     // setcc op, 0
4317     if (Imm == 0) {
4318       SDValue Op = LHS;
4319       switch (CC) {
4320       default: break;
4321       case ISD::SETEQ: {
4322         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4323         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4324                           getI32Imm(31, dl) };
4325         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4326         return true;
4327       }
4328       case ISD::SETNE: {
4329         if (isPPC64) break;
4330         SDValue AD =
4331           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4332                                          Op, getI32Imm(~0U, dl)), 0);
4333         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4334         return true;
4335       }
4336       case ISD::SETLT: {
4337         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4338                           getI32Imm(31, dl) };
4339         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4340         return true;
4341       }
4342       case ISD::SETGT: {
4343         SDValue T =
4344           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4345         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4346         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4347                           getI32Imm(31, dl) };
4348         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4349         return true;
4350       }
4351       }
4352     } else if (Imm == ~0U) {        // setcc op, -1
4353       SDValue Op = LHS;
4354       switch (CC) {
4355       default: break;
4356       case ISD::SETEQ:
4357         if (isPPC64) break;
4358         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4359                                             Op, getI32Imm(1, dl)), 0);
4360         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4361                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4362                                                             MVT::i32,
4363                                                             getI32Imm(0, dl)),
4364                                      0), Op.getValue(1));
4365         return true;
4366       case ISD::SETNE: {
4367         if (isPPC64) break;
4368         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4369         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4370                                             Op, getI32Imm(~0U, dl));
4371         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4372                              SDValue(AD, 1));
4373         return true;
4374       }
4375       case ISD::SETLT: {
4376         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4377                                                     getI32Imm(1, dl)), 0);
4378         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4379                                                     Op), 0);
4380         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4381                           getI32Imm(31, dl) };
4382         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4383         return true;
4384       }
4385       case ISD::SETGT: {
4386         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4387                           getI32Imm(31, dl) };
4388         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4389         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4390         return true;
4391       }
4392       }
4393     }
4394   }
4395 
4396   // Altivec Vector compare instructions do not set any CR register by default and
4397   // vector compare operations return the same type as the operands.
4398   if (!IsStrict && LHS.getValueType().isVector()) {
4399     if (Subtarget->hasSPE())
4400       return false;
4401 
4402     EVT VecVT = LHS.getValueType();
4403     bool Swap, Negate;
4404     unsigned int VCmpInst =
4405         getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4406     if (Swap)
4407       std::swap(LHS, RHS);
4408 
4409     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4410     if (Negate) {
4411       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4412       CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4413                            ResVT, VCmp, VCmp);
4414       return true;
4415     }
4416 
4417     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4418     return true;
4419   }
4420 
4421   if (Subtarget->useCRBits())
4422     return false;
4423 
4424   bool Inv;
4425   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4426   SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4427   if (IsStrict)
4428     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4429   SDValue IntCR;
4430 
4431   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4432   // The correct compare instruction is already set by SelectCC()
4433   if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4434     Idx = 1;
4435   }
4436 
4437   // Force the ccreg into CR7.
4438   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4439 
4440   SDValue InFlag;  // Null incoming flag value.
4441   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4442                                InFlag).getValue(1);
4443 
4444   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4445                                          CCReg), 0);
4446 
4447   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4448                       getI32Imm(31, dl), getI32Imm(31, dl) };
4449   if (!Inv) {
4450     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4451     return true;
4452   }
4453 
4454   // Get the specified bit.
4455   SDValue Tmp =
4456     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4457   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4458   return true;
4459 }
4460 
4461 /// Does this node represent a load/store node whose address can be represented
4462 /// with a register plus an immediate that's a multiple of \p Val:
4463 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4464   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4465   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4466   MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4467   SDValue AddrOp;
4468   if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4469     AddrOp = N->getOperand(1);
4470   else if (STN)
4471     AddrOp = STN->getOperand(2);
4472 
4473   // If the address points a frame object or a frame object with an offset,
4474   // we need to check the object alignment.
4475   short Imm = 0;
4476   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4477           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4478                                            AddrOp)) {
4479     // If op0 is a frame index that is under aligned, we can't do it either,
4480     // because it is translated to r31 or r1 + slot + offset. We won't know the
4481     // slot number until the stack frame is finalized.
4482     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4483     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4484     if ((SlotAlign % Val) != 0)
4485       return false;
4486 
4487     // If we have an offset, we need further check on the offset.
4488     if (AddrOp.getOpcode() != ISD::ADD)
4489       return true;
4490   }
4491 
4492   if (AddrOp.getOpcode() == ISD::ADD)
4493     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4494 
4495   // If the address comes from the outside, the offset will be zero.
4496   return AddrOp.getOpcode() == ISD::CopyFromReg;
4497 }
4498 
4499 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4500   // Transfer memoperands.
4501   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4502   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4503 }
4504 
4505 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4506                          bool &NeedSwapOps, bool &IsUnCmp) {
4507 
4508   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4509 
4510   SDValue LHS = N->getOperand(0);
4511   SDValue RHS = N->getOperand(1);
4512   SDValue TrueRes = N->getOperand(2);
4513   SDValue FalseRes = N->getOperand(3);
4514   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4515   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4516                      N->getSimpleValueType(0) != MVT::i32))
4517     return false;
4518 
4519   // We are looking for any of:
4520   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4521   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4522   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4523   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4524   int64_t TrueResVal = TrueConst->getSExtValue();
4525   if ((TrueResVal < -1 || TrueResVal > 1) ||
4526       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4527       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4528       (TrueResVal == 0 &&
4529        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4530     return false;
4531 
4532   SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4533                            ? FalseRes
4534                            : FalseRes.getOperand(0);
4535   bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4536   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4537       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4538     return false;
4539 
4540   // Without this setb optimization, the outer SELECT_CC will be manually
4541   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4542   // transforms pseudo instruction to isel instruction. When there are more than
4543   // one use for result like zext/sext, with current optimization we only see
4544   // isel is replaced by setb but can't see any significant gain. Since
4545   // setb has longer latency than original isel, we should avoid this. Another
4546   // point is that setb requires comparison always kept, it can break the
4547   // opportunity to get the comparison away if we have in future.
4548   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4549     return false;
4550 
4551   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4552   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4553   ISD::CondCode InnerCC =
4554       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4555   // If the inner comparison is a select_cc, make sure the true/false values are
4556   // 1/-1 and canonicalize it if needed.
4557   if (InnerIsSel) {
4558     ConstantSDNode *SelCCTrueConst =
4559         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4560     ConstantSDNode *SelCCFalseConst =
4561         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4562     if (!SelCCTrueConst || !SelCCFalseConst)
4563       return false;
4564     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4565     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4566     // The values must be -1/1 (requiring a swap) or 1/-1.
4567     if (SelCCTVal == -1 && SelCCFVal == 1) {
4568       std::swap(InnerLHS, InnerRHS);
4569     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4570       return false;
4571   }
4572 
4573   // Canonicalize unsigned case
4574   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4575     IsUnCmp = true;
4576     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4577   }
4578 
4579   bool InnerSwapped = false;
4580   if (LHS == InnerRHS && RHS == InnerLHS)
4581     InnerSwapped = true;
4582   else if (LHS != InnerLHS || RHS != InnerRHS)
4583     return false;
4584 
4585   switch (CC) {
4586   // (select_cc lhs, rhs,  0, \
4587   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4588   case ISD::SETEQ:
4589     if (!InnerIsSel)
4590       return false;
4591     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4592       return false;
4593     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4594     break;
4595 
4596   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4597   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4598   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4599   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4600   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4601   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4602   case ISD::SETULT:
4603     if (!IsUnCmp && InnerCC != ISD::SETNE)
4604       return false;
4605     IsUnCmp = true;
4606     LLVM_FALLTHROUGH;
4607   case ISD::SETLT:
4608     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4609         (InnerCC == ISD::SETLT && InnerSwapped))
4610       NeedSwapOps = (TrueResVal == 1);
4611     else
4612       return false;
4613     break;
4614 
4615   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4616   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4617   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4618   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4619   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4620   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4621   case ISD::SETUGT:
4622     if (!IsUnCmp && InnerCC != ISD::SETNE)
4623       return false;
4624     IsUnCmp = true;
4625     LLVM_FALLTHROUGH;
4626   case ISD::SETGT:
4627     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4628         (InnerCC == ISD::SETGT && InnerSwapped))
4629       NeedSwapOps = (TrueResVal == -1);
4630     else
4631       return false;
4632     break;
4633 
4634   default:
4635     return false;
4636   }
4637 
4638   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4639   LLVM_DEBUG(N->dump());
4640 
4641   return true;
4642 }
4643 
4644 // Return true if it's a software square-root/divide operand.
4645 static bool isSWTestOp(SDValue N) {
4646   if (N.getOpcode() == PPCISD::FTSQRT)
4647     return true;
4648   if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)))
4649     return false;
4650   switch (N.getConstantOperandVal(0)) {
4651   case Intrinsic::ppc_vsx_xvtdivdp:
4652   case Intrinsic::ppc_vsx_xvtdivsp:
4653   case Intrinsic::ppc_vsx_xvtsqrtdp:
4654   case Intrinsic::ppc_vsx_xvtsqrtsp:
4655     return true;
4656   }
4657   return false;
4658 }
4659 
4660 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4661   assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4662   // We are looking for following patterns, where `truncate to i1` actually has
4663   // the same semantic with `and 1`.
4664   // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4665   // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4666   // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4667   // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4668   // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4669   // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4670   // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4671   // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4672   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4673   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4674     return false;
4675 
4676   SDValue CmpRHS = N->getOperand(3);
4677   if (!isa<ConstantSDNode>(CmpRHS) ||
4678       cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
4679     return false;
4680 
4681   SDValue CmpLHS = N->getOperand(2);
4682   if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4683     return false;
4684 
4685   unsigned PCC = 0;
4686   bool IsCCNE = CC == ISD::SETNE;
4687   if (CmpLHS.getOpcode() == ISD::AND &&
4688       isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4689     switch (CmpLHS.getConstantOperandVal(1)) {
4690     case 1:
4691       PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4692       break;
4693     case 2:
4694       PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4695       break;
4696     case 4:
4697       PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4698       break;
4699     case 8:
4700       PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4701       break;
4702     default:
4703       return false;
4704     }
4705   else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4706            CmpLHS.getValueType() == MVT::i1)
4707     PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4708 
4709   if (PCC) {
4710     SDLoc dl(N);
4711     SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4712                      N->getOperand(0)};
4713     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4714     return true;
4715   }
4716   return false;
4717 }
4718 
4719 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4720   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4721   unsigned Imm;
4722   if (!isInt32Immediate(N->getOperand(1), Imm))
4723     return false;
4724 
4725   SDLoc dl(N);
4726   SDValue Val = N->getOperand(0);
4727   unsigned SH, MB, ME;
4728   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4729   // with a mask, emit rlwinm
4730   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4731     Val = Val.getOperand(0);
4732     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4733                      getI32Imm(ME, dl)};
4734     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4735     return true;
4736   }
4737 
4738   // If this is just a masked value where the input is not handled, and
4739   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4740   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4741     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4742                      getI32Imm(ME, dl)};
4743     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4744     return true;
4745   }
4746 
4747   // AND X, 0 -> 0, not "rlwinm 32".
4748   if (Imm == 0) {
4749     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4750     return true;
4751   }
4752 
4753   return false;
4754 }
4755 
4756 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4757   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4758   uint64_t Imm64;
4759   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4760     return false;
4761 
4762   unsigned MB, ME;
4763   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4764     //                MB  ME
4765     // +----------------------+
4766     // |xxxxxxxxxxx00011111000|
4767     // +----------------------+
4768     //  0         32         64
4769     // We can only do it if the MB is larger than 32 and MB <= ME
4770     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4771     // we didn't rotate it.
4772     SDLoc dl(N);
4773     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4774                      getI64Imm(ME - 32, dl)};
4775     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4776     return true;
4777   }
4778 
4779   return false;
4780 }
4781 
4782 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4783   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4784   uint64_t Imm64;
4785   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4786     return false;
4787 
4788   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
4789   // it well with "andi.".
4790   if (isUInt<16>(Imm64))
4791     return false;
4792 
4793   SDLoc Loc(N);
4794   SDValue Val = N->getOperand(0);
4795 
4796   // Optimized with two rldicl's as follows:
4797   // Add missing bits on left to the mask and check that the mask is a
4798   // wrapped run of ones, i.e.
4799   // Change pattern |0001111100000011111111|
4800   //             to |1111111100000011111111|.
4801   unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
4802   if (NumOfLeadingZeros != 0)
4803     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
4804 
4805   unsigned MB, ME;
4806   if (!isRunOfOnes64(Imm64, MB, ME))
4807     return false;
4808 
4809   //         ME     MB                   MB-ME+63
4810   // +----------------------+     +----------------------+
4811   // |1111111100000011111111| ->  |0000001111111111111111|
4812   // +----------------------+     +----------------------+
4813   //  0                    63      0                    63
4814   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
4815   unsigned OnesOnLeft = ME + 1;
4816   unsigned ZerosInBetween = (MB - ME + 63) & 63;
4817   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
4818   // on the left the bits that are already zeros in the mask.
4819   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
4820                                        getI64Imm(OnesOnLeft, Loc),
4821                                        getI64Imm(ZerosInBetween, Loc)),
4822                 0);
4823   //        MB-ME+63                      ME     MB
4824   // +----------------------+     +----------------------+
4825   // |0000001111111111111111| ->  |0001111100000011111111|
4826   // +----------------------+     +----------------------+
4827   //  0                    63      0                    63
4828   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
4829   // left the number of ones we previously added.
4830   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
4831                    getI64Imm(NumOfLeadingZeros, Loc)};
4832   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4833   return true;
4834 }
4835 
4836 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
4837   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4838   unsigned Imm;
4839   if (!isInt32Immediate(N->getOperand(1), Imm))
4840     return false;
4841 
4842   SDValue Val = N->getOperand(0);
4843   unsigned Imm2;
4844   // ISD::OR doesn't get all the bitfield insertion fun.
4845   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4846   // bitfield insert.
4847   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
4848     return false;
4849 
4850   // The idea here is to check whether this is equivalent to:
4851   //   (c1 & m) | (x & ~m)
4852   // where m is a run-of-ones mask. The logic here is that, for each bit in
4853   // c1 and c2:
4854   //  - if both are 1, then the output will be 1.
4855   //  - if both are 0, then the output will be 0.
4856   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4857   //    come from x.
4858   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4859   //    be 0.
4860   //  If that last condition is never the case, then we can form m from the
4861   //  bits that are the same between c1 and c2.
4862   unsigned MB, ME;
4863   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
4864     SDLoc dl(N);
4865     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
4866                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
4867     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4868     return true;
4869   }
4870 
4871   return false;
4872 }
4873 
4874 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
4875   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4876   uint64_t Imm64;
4877   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
4878     return false;
4879 
4880   // If this is a 64-bit zero-extension mask, emit rldicl.
4881   unsigned MB = 64 - countTrailingOnes(Imm64);
4882   unsigned SH = 0;
4883   unsigned Imm;
4884   SDValue Val = N->getOperand(0);
4885   SDLoc dl(N);
4886 
4887   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4888     auto Op0 = Val.getOperand(0);
4889     if (Op0.getOpcode() == ISD::SRL &&
4890         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4891 
4892       auto ResultType = Val.getNode()->getValueType(0);
4893       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
4894       SDValue IDVal(ImDef, 0);
4895 
4896       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
4897                                            IDVal, Op0.getOperand(0),
4898                                            getI32Imm(1, dl)),
4899                     0);
4900       SH = 64 - Imm;
4901     }
4902   }
4903 
4904   // If the operand is a logical right shift, we can fold it into this
4905   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4906   // for n <= mb. The right shift is really a left rotate followed by a
4907   // mask, and this mask is a more-restrictive sub-mask of the mask implied
4908   // by the shift.
4909   if (Val.getOpcode() == ISD::SRL &&
4910       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4911     assert(Imm < 64 && "Illegal shift amount");
4912     Val = Val.getOperand(0);
4913     SH = 64 - Imm;
4914   }
4915 
4916   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
4917   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4918   return true;
4919 }
4920 
4921 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
4922   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4923   uint64_t Imm64;
4924   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4925       !isMask_64(~Imm64))
4926     return false;
4927 
4928   // If this is a negated 64-bit zero-extension mask,
4929   // i.e. the immediate is a sequence of ones from most significant side
4930   // and all zero for reminder, we should use rldicr.
4931   unsigned MB = 63 - countTrailingOnes(~Imm64);
4932   unsigned SH = 0;
4933   SDLoc dl(N);
4934   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
4935   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4936   return true;
4937 }
4938 
4939 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
4940   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
4941   uint64_t Imm64;
4942   unsigned MB, ME;
4943   SDValue N0 = N->getOperand(0);
4944 
4945   // We won't get fewer instructions if the imm is 32-bit integer.
4946   // rldimi requires the imm to have consecutive ones with both sides zero.
4947   // Also, make sure the first Op has only one use, otherwise this may increase
4948   // register pressure since rldimi is destructive.
4949   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4950       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
4951     return false;
4952 
4953   unsigned SH = 63 - ME;
4954   SDLoc Dl(N);
4955   // Use select64Imm for making LI instr instead of directly putting Imm64
4956   SDValue Ops[] = {
4957       N->getOperand(0),
4958       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
4959       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
4960   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
4961   return true;
4962 }
4963 
4964 // Select - Convert the specified operand from a target-independent to a
4965 // target-specific node if it hasn't already been changed.
4966 void PPCDAGToDAGISel::Select(SDNode *N) {
4967   SDLoc dl(N);
4968   if (N->isMachineOpcode()) {
4969     N->setNodeId(-1);
4970     return;   // Already selected.
4971   }
4972 
4973   // In case any misguided DAG-level optimizations form an ADD with a
4974   // TargetConstant operand, crash here instead of miscompiling (by selecting
4975   // an r+r add instead of some kind of r+i add).
4976   if (N->getOpcode() == ISD::ADD &&
4977       N->getOperand(1).getOpcode() == ISD::TargetConstant)
4978     llvm_unreachable("Invalid ADD with TargetConstant operand");
4979 
4980   // Try matching complex bit permutations before doing anything else.
4981   if (tryBitPermutation(N))
4982     return;
4983 
4984   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4985   if (tryIntCompareInGPR(N))
4986     return;
4987 
4988   switch (N->getOpcode()) {
4989   default: break;
4990 
4991   case ISD::Constant:
4992     if (N->getValueType(0) == MVT::i64) {
4993       ReplaceNode(N, selectI64Imm(CurDAG, N));
4994       return;
4995     }
4996     break;
4997 
4998   case ISD::INTRINSIC_VOID: {
4999     auto IntrinsicID = N->getConstantOperandVal(1);
5000     if (IntrinsicID == Intrinsic::ppc_tdw || IntrinsicID == Intrinsic::ppc_tw) {
5001       unsigned Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TDI : PPC::TWI;
5002       SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5003       int16_t SImmOperand2;
5004       int16_t SImmOperand3;
5005       int16_t SImmOperand4;
5006       bool isOperand2IntS16Immediate =
5007           isIntS16Immediate(N->getOperand(2), SImmOperand2);
5008       bool isOperand3IntS16Immediate =
5009           isIntS16Immediate(N->getOperand(3), SImmOperand3);
5010       // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5011       // reg or imm + imm. The imm + imm form will be optimized to either an
5012       // unconditional trap or a nop in a later pass.
5013       if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5014         Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5015       else if (isOperand3IntS16Immediate)
5016         // The 2nd and 3rd operands are reg + imm.
5017         Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5018       else {
5019         // The 2nd and 3rd operands are imm + reg.
5020         bool isOperand4IntS16Immediate =
5021             isIntS16Immediate(N->getOperand(4), SImmOperand4);
5022         (void)isOperand4IntS16Immediate;
5023         assert(isOperand4IntS16Immediate &&
5024                "The 4th operand is not an Immediate");
5025         // We need to flip the condition immediate TO.
5026         int16_t TO = int(SImmOperand4) & 0x1F;
5027         // We swap the first and second bit of TO if they are not same.
5028         if ((TO & 0x1) != ((TO & 0x2) >> 1))
5029           TO = (TO & 0x1) ? TO + 1 : TO - 1;
5030         // We swap the fourth and fifth bit of TO if they are not same.
5031         if ((TO & 0x8) != ((TO & 0x10) >> 1))
5032           TO = (TO & 0x8) ? TO + 8 : TO - 8;
5033         Ops[0] = getI32Imm(TO, dl);
5034         Ops[1] = N->getOperand(3);
5035         Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5036       }
5037       CurDAG->SelectNodeTo(N, Opcode, MVT::Other, Ops);
5038       return;
5039     }
5040     break;
5041   }
5042 
5043   case ISD::INTRINSIC_WO_CHAIN: {
5044     // We emit the PPC::FSELS instruction here because of type conflicts with
5045     // the comparison operand. The FSELS instruction is defined to use an 8-byte
5046     // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5047     // value for the comparison. When selecting through a .td file, a type
5048     // error is raised. Must check this first so we never break on the
5049     // !Subtarget->isISA3_1() check.
5050     auto IntID = N->getConstantOperandVal(0);
5051     if (IntID == Intrinsic::ppc_fsels) {
5052       SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5053       CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5054       return;
5055     }
5056 
5057     if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5058       auto Pred = N->getConstantOperandVal(1);
5059       unsigned Opcode =
5060           IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5061       unsigned SubReg = 0;
5062       unsigned ShiftVal = 0;
5063       bool Reverse = false;
5064       switch (Pred) {
5065       case 0:
5066         SubReg = PPC::sub_eq;
5067         ShiftVal = 1;
5068         break;
5069       case 1:
5070         SubReg = PPC::sub_eq;
5071         ShiftVal = 1;
5072         Reverse = true;
5073         break;
5074       case 2:
5075         SubReg = PPC::sub_lt;
5076         ShiftVal = 3;
5077         break;
5078       case 3:
5079         SubReg = PPC::sub_lt;
5080         ShiftVal = 3;
5081         Reverse = true;
5082         break;
5083       case 4:
5084         SubReg = PPC::sub_gt;
5085         ShiftVal = 2;
5086         break;
5087       case 5:
5088         SubReg = PPC::sub_gt;
5089         ShiftVal = 2;
5090         Reverse = true;
5091         break;
5092       case 6:
5093         SubReg = PPC::sub_un;
5094         break;
5095       case 7:
5096         SubReg = PPC::sub_un;
5097         Reverse = true;
5098         break;
5099       }
5100 
5101       EVT VTs[] = {MVT::v16i8, MVT::Glue};
5102       SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5103                        CurDAG->getTargetConstant(0, dl, MVT::i32)};
5104       SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5105       SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5106       // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5107       // MFOCRF and shift/negate the value.
5108       if (Subtarget->isISA3_1()) {
5109         SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5110         SDValue CRBit = SDValue(
5111             CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5112                                    CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5113             0);
5114         CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5115                              CRBit);
5116       } else {
5117         SDValue Move =
5118             SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5119                                            BCDOp.getValue(1)),
5120                     0);
5121         SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5122                          getI32Imm(31, dl), getI32Imm(31, dl)};
5123         if (!Reverse)
5124           CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5125         else {
5126           SDValue Shift = SDValue(
5127               CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5128           CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5129         }
5130       }
5131       return;
5132     }
5133 
5134     if (!Subtarget->isISA3_1())
5135       break;
5136     unsigned Opcode = 0;
5137     switch (IntID) {
5138     default:
5139       break;
5140     case Intrinsic::ppc_altivec_vstribr_p:
5141       Opcode = PPC::VSTRIBR_rec;
5142       break;
5143     case Intrinsic::ppc_altivec_vstribl_p:
5144       Opcode = PPC::VSTRIBL_rec;
5145       break;
5146     case Intrinsic::ppc_altivec_vstrihr_p:
5147       Opcode = PPC::VSTRIHR_rec;
5148       break;
5149     case Intrinsic::ppc_altivec_vstrihl_p:
5150       Opcode = PPC::VSTRIHL_rec;
5151       break;
5152     }
5153     if (!Opcode)
5154       break;
5155 
5156     // Generate the appropriate vector string isolate intrinsic to match.
5157     EVT VTs[] = {MVT::v16i8, MVT::Glue};
5158     SDValue VecStrOp =
5159         SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5160     // Vector string isolate instructions update the EQ bit of CR6.
5161     // Generate a SETBC instruction to extract the bit and place it in a GPR.
5162     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5163     SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5164     SDValue CRBit = SDValue(
5165         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5166                                CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5167         0);
5168     CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5169     return;
5170   }
5171 
5172   case ISD::SETCC:
5173   case ISD::STRICT_FSETCC:
5174   case ISD::STRICT_FSETCCS:
5175     if (trySETCC(N))
5176       return;
5177     break;
5178   // These nodes will be transformed into GETtlsADDR32 node, which
5179   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5180   case PPCISD::ADDI_TLSLD_L_ADDR:
5181   case PPCISD::ADDI_TLSGD_L_ADDR: {
5182     const Module *Mod = MF->getFunction().getParent();
5183     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5184         !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5185         Mod->getPICLevel() == PICLevel::SmallPIC)
5186       break;
5187     // Attach global base pointer on GETtlsADDR32 node in order to
5188     // generate secure plt code for TLS symbols.
5189     getGlobalBaseReg();
5190   } break;
5191   case PPCISD::CALL: {
5192     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5193         !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5194         !Subtarget->isTargetELF())
5195       break;
5196 
5197     SDValue Op = N->getOperand(1);
5198 
5199     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5200       if (GA->getTargetFlags() == PPCII::MO_PLT)
5201         getGlobalBaseReg();
5202     }
5203     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5204       if (ES->getTargetFlags() == PPCII::MO_PLT)
5205         getGlobalBaseReg();
5206     }
5207   }
5208     break;
5209 
5210   case PPCISD::GlobalBaseReg:
5211     ReplaceNode(N, getGlobalBaseReg());
5212     return;
5213 
5214   case ISD::FrameIndex:
5215     selectFrameIndex(N, N);
5216     return;
5217 
5218   case PPCISD::MFOCRF: {
5219     SDValue InFlag = N->getOperand(1);
5220     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5221                                           N->getOperand(0), InFlag));
5222     return;
5223   }
5224 
5225   case PPCISD::READ_TIME_BASE:
5226     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5227                                           MVT::Other, N->getOperand(0)));
5228     return;
5229 
5230   case PPCISD::SRA_ADDZE: {
5231     SDValue N0 = N->getOperand(0);
5232     SDValue ShiftAmt =
5233       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5234                                   getConstantIntValue(), dl,
5235                                   N->getValueType(0));
5236     if (N->getValueType(0) == MVT::i64) {
5237       SDNode *Op =
5238         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5239                                N0, ShiftAmt);
5240       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5241                            SDValue(Op, 1));
5242       return;
5243     } else {
5244       assert(N->getValueType(0) == MVT::i32 &&
5245              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5246       SDNode *Op =
5247         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5248                                N0, ShiftAmt);
5249       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5250                            SDValue(Op, 1));
5251       return;
5252     }
5253   }
5254 
5255   case ISD::STORE: {
5256     // Change TLS initial-exec D-form stores to X-form stores.
5257     StoreSDNode *ST = cast<StoreSDNode>(N);
5258     if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
5259         ST->getAddressingMode() != ISD::PRE_INC)
5260       if (tryTLSXFormStore(ST))
5261         return;
5262     break;
5263   }
5264   case ISD::LOAD: {
5265     // Handle preincrement loads.
5266     LoadSDNode *LD = cast<LoadSDNode>(N);
5267     EVT LoadedVT = LD->getMemoryVT();
5268 
5269     // Normal loads are handled by code generated from the .td file.
5270     if (LD->getAddressingMode() != ISD::PRE_INC) {
5271       // Change TLS initial-exec D-form loads to X-form loads.
5272       if (EnableTLSOpt && Subtarget->isELFv2ABI())
5273         if (tryTLSXFormLoad(LD))
5274           return;
5275       break;
5276     }
5277 
5278     SDValue Offset = LD->getOffset();
5279     if (Offset.getOpcode() == ISD::TargetConstant ||
5280         Offset.getOpcode() == ISD::TargetGlobalAddress) {
5281 
5282       unsigned Opcode;
5283       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5284       if (LD->getValueType(0) != MVT::i64) {
5285         // Handle PPC32 integer and normal FP loads.
5286         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5287         switch (LoadedVT.getSimpleVT().SimpleTy) {
5288           default: llvm_unreachable("Invalid PPC load type!");
5289           case MVT::f64: Opcode = PPC::LFDU; break;
5290           case MVT::f32: Opcode = PPC::LFSU; break;
5291           case MVT::i32: Opcode = PPC::LWZU; break;
5292           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5293           case MVT::i1:
5294           case MVT::i8:  Opcode = PPC::LBZU; break;
5295         }
5296       } else {
5297         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5298         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5299         switch (LoadedVT.getSimpleVT().SimpleTy) {
5300           default: llvm_unreachable("Invalid PPC load type!");
5301           case MVT::i64: Opcode = PPC::LDU; break;
5302           case MVT::i32: Opcode = PPC::LWZU8; break;
5303           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5304           case MVT::i1:
5305           case MVT::i8:  Opcode = PPC::LBZU8; break;
5306         }
5307       }
5308 
5309       SDValue Chain = LD->getChain();
5310       SDValue Base = LD->getBasePtr();
5311       SDValue Ops[] = { Offset, Base, Chain };
5312       SDNode *MN = CurDAG->getMachineNode(
5313           Opcode, dl, LD->getValueType(0),
5314           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5315       transferMemOperands(N, MN);
5316       ReplaceNode(N, MN);
5317       return;
5318     } else {
5319       unsigned Opcode;
5320       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5321       if (LD->getValueType(0) != MVT::i64) {
5322         // Handle PPC32 integer and normal FP loads.
5323         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5324         switch (LoadedVT.getSimpleVT().SimpleTy) {
5325           default: llvm_unreachable("Invalid PPC load type!");
5326           case MVT::f64: Opcode = PPC::LFDUX; break;
5327           case MVT::f32: Opcode = PPC::LFSUX; break;
5328           case MVT::i32: Opcode = PPC::LWZUX; break;
5329           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5330           case MVT::i1:
5331           case MVT::i8:  Opcode = PPC::LBZUX; break;
5332         }
5333       } else {
5334         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5335         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5336                "Invalid sext update load");
5337         switch (LoadedVT.getSimpleVT().SimpleTy) {
5338           default: llvm_unreachable("Invalid PPC load type!");
5339           case MVT::i64: Opcode = PPC::LDUX; break;
5340           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
5341           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5342           case MVT::i1:
5343           case MVT::i8:  Opcode = PPC::LBZUX8; break;
5344         }
5345       }
5346 
5347       SDValue Chain = LD->getChain();
5348       SDValue Base = LD->getBasePtr();
5349       SDValue Ops[] = { Base, Offset, Chain };
5350       SDNode *MN = CurDAG->getMachineNode(
5351           Opcode, dl, LD->getValueType(0),
5352           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5353       transferMemOperands(N, MN);
5354       ReplaceNode(N, MN);
5355       return;
5356     }
5357   }
5358 
5359   case ISD::AND:
5360     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5361     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
5362         tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
5363       return;
5364 
5365     // Other cases are autogenerated.
5366     break;
5367   case ISD::OR: {
5368     if (N->getValueType(0) == MVT::i32)
5369       if (tryBitfieldInsert(N))
5370         return;
5371 
5372     int16_t Imm;
5373     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5374         isIntS16Immediate(N->getOperand(1), Imm)) {
5375       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5376 
5377       // If this is equivalent to an add, then we can fold it with the
5378       // FrameIndex calculation.
5379       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5380         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
5381         return;
5382       }
5383     }
5384 
5385     // If this is 'or' against an imm with consecutive ones and both sides zero,
5386     // try to emit rldimi
5387     if (tryAsSingleRLDIMI(N))
5388       return;
5389 
5390     // OR with a 32-bit immediate can be handled by ori + oris
5391     // without creating an immediate in a GPR.
5392     uint64_t Imm64 = 0;
5393     bool IsPPC64 = Subtarget->isPPC64();
5394     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5395         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5396       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5397       uint64_t ImmHi = Imm64 >> 16;
5398       uint64_t ImmLo = Imm64 & 0xFFFF;
5399       if (ImmHi != 0 && ImmLo != 0) {
5400         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5401                                             N->getOperand(0),
5402                                             getI16Imm(ImmLo, dl));
5403         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5404         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5405         return;
5406       }
5407     }
5408 
5409     // Other cases are autogenerated.
5410     break;
5411   }
5412   case ISD::XOR: {
5413     // XOR with a 32-bit immediate can be handled by xori + xoris
5414     // without creating an immediate in a GPR.
5415     uint64_t Imm64 = 0;
5416     bool IsPPC64 = Subtarget->isPPC64();
5417     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5418         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5419       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5420       uint64_t ImmHi = Imm64 >> 16;
5421       uint64_t ImmLo = Imm64 & 0xFFFF;
5422       if (ImmHi != 0 && ImmLo != 0) {
5423         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5424                                             N->getOperand(0),
5425                                             getI16Imm(ImmLo, dl));
5426         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5427         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5428         return;
5429       }
5430     }
5431 
5432     break;
5433   }
5434   case ISD::ADD: {
5435     int16_t Imm;
5436     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5437         isIntS16Immediate(N->getOperand(1), Imm)) {
5438       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
5439       return;
5440     }
5441 
5442     break;
5443   }
5444   case ISD::SHL: {
5445     unsigned Imm, SH, MB, ME;
5446     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5447         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5448       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5449                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5450                           getI32Imm(ME, dl) };
5451       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5452       return;
5453     }
5454 
5455     // Other cases are autogenerated.
5456     break;
5457   }
5458   case ISD::SRL: {
5459     unsigned Imm, SH, MB, ME;
5460     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5461         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5462       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5463                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5464                           getI32Imm(ME, dl) };
5465       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5466       return;
5467     }
5468 
5469     // Other cases are autogenerated.
5470     break;
5471   }
5472   case ISD::MUL: {
5473     SDValue Op1 = N->getOperand(1);
5474     if (Op1.getOpcode() != ISD::Constant || Op1.getValueType() != MVT::i64)
5475       break;
5476 
5477     // If the multiplier fits int16, we can handle it with mulli.
5478     int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
5479     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
5480     if (isInt<16>(Imm) || !Shift)
5481       break;
5482 
5483     // If the shifted value fits int16, we can do this transformation:
5484     // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5485     // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5486     uint64_t ImmSh = Imm >> Shift;
5487     if (isInt<16>(ImmSh)) {
5488       uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5489       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5490       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5491                                                N->getOperand(0), SDImm);
5492       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, SDValue(MulNode, 0),
5493                            getI32Imm(Shift, dl), getI32Imm(63 - Shift, dl));
5494       return;
5495     }
5496     break;
5497   }
5498   // FIXME: Remove this once the ANDI glue bug is fixed:
5499   case PPCISD::ANDI_rec_1_EQ_BIT:
5500   case PPCISD::ANDI_rec_1_GT_BIT: {
5501     if (!ANDIGlueBug)
5502       break;
5503 
5504     EVT InVT = N->getOperand(0).getValueType();
5505     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5506            "Invalid input type for ANDI_rec_1_EQ_BIT");
5507 
5508     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5509     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5510                                         N->getOperand(0),
5511                                         CurDAG->getTargetConstant(1, dl, InVT)),
5512                  0);
5513     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5514     SDValue SRIdxVal = CurDAG->getTargetConstant(
5515         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5516         dl, MVT::i32);
5517 
5518     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5519                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5520     return;
5521   }
5522   case ISD::SELECT_CC: {
5523     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5524     EVT PtrVT =
5525         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5526     bool isPPC64 = (PtrVT == MVT::i64);
5527 
5528     // If this is a select of i1 operands, we'll pattern match it.
5529     if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5530       break;
5531 
5532     if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5533       bool NeedSwapOps = false;
5534       bool IsUnCmp = false;
5535       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5536         SDValue LHS = N->getOperand(0);
5537         SDValue RHS = N->getOperand(1);
5538         if (NeedSwapOps)
5539           std::swap(LHS, RHS);
5540 
5541         // Make use of SelectCC to generate the comparison to set CR bits, for
5542         // equality comparisons having one literal operand, SelectCC probably
5543         // doesn't need to materialize the whole literal and just use xoris to
5544         // check it first, it leads the following comparison result can't
5545         // exactly represent GT/LT relationship. So to avoid this we specify
5546         // SETGT/SETUGT here instead of SETEQ.
5547         SDValue GenCC =
5548             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5549         CurDAG->SelectNodeTo(
5550             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5551             N->getValueType(0), GenCC);
5552         NumP9Setb++;
5553         return;
5554       }
5555     }
5556 
5557     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5558     if (!isPPC64)
5559       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
5560         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
5561           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
5562             if (N1C->isZero() && N3C->isZero() && N2C->getZExtValue() == 1ULL &&
5563                 CC == ISD::SETNE &&
5564                 // FIXME: Implement this optzn for PPC64.
5565                 N->getValueType(0) == MVT::i32) {
5566               SDNode *Tmp =
5567                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5568                                        N->getOperand(0), getI32Imm(~0U, dl));
5569               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5570                                    N->getOperand(0), SDValue(Tmp, 1));
5571               return;
5572             }
5573 
5574     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5575 
5576     if (N->getValueType(0) == MVT::i1) {
5577       // An i1 select is: (c & t) | (!c & f).
5578       bool Inv;
5579       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5580 
5581       unsigned SRI;
5582       switch (Idx) {
5583       default: llvm_unreachable("Invalid CC index");
5584       case 0: SRI = PPC::sub_lt; break;
5585       case 1: SRI = PPC::sub_gt; break;
5586       case 2: SRI = PPC::sub_eq; break;
5587       case 3: SRI = PPC::sub_un; break;
5588       }
5589 
5590       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5591 
5592       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5593                                               CCBit, CCBit), 0);
5594       SDValue C =    Inv ? NotCCBit : CCBit,
5595               NotC = Inv ? CCBit    : NotCCBit;
5596 
5597       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5598                                            C, N->getOperand(2)), 0);
5599       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5600                                               NotC, N->getOperand(3)), 0);
5601 
5602       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5603       return;
5604     }
5605 
5606     unsigned BROpc =
5607         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5608 
5609     unsigned SelectCCOp;
5610     if (N->getValueType(0) == MVT::i32)
5611       SelectCCOp = PPC::SELECT_CC_I4;
5612     else if (N->getValueType(0) == MVT::i64)
5613       SelectCCOp = PPC::SELECT_CC_I8;
5614     else if (N->getValueType(0) == MVT::f32) {
5615       if (Subtarget->hasP8Vector())
5616         SelectCCOp = PPC::SELECT_CC_VSSRC;
5617       else if (Subtarget->hasSPE())
5618         SelectCCOp = PPC::SELECT_CC_SPE4;
5619       else
5620         SelectCCOp = PPC::SELECT_CC_F4;
5621     } else if (N->getValueType(0) == MVT::f64) {
5622       if (Subtarget->hasVSX())
5623         SelectCCOp = PPC::SELECT_CC_VSFRC;
5624       else if (Subtarget->hasSPE())
5625         SelectCCOp = PPC::SELECT_CC_SPE;
5626       else
5627         SelectCCOp = PPC::SELECT_CC_F8;
5628     } else if (N->getValueType(0) == MVT::f128)
5629       SelectCCOp = PPC::SELECT_CC_F16;
5630     else if (Subtarget->hasSPE())
5631       SelectCCOp = PPC::SELECT_CC_SPE;
5632     else if (N->getValueType(0) == MVT::v2f64 ||
5633              N->getValueType(0) == MVT::v2i64)
5634       SelectCCOp = PPC::SELECT_CC_VSRC;
5635     else
5636       SelectCCOp = PPC::SELECT_CC_VRRC;
5637 
5638     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5639                         getI32Imm(BROpc, dl) };
5640     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5641     return;
5642   }
5643   case ISD::VECTOR_SHUFFLE:
5644     if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5645                                 N->getValueType(0) == MVT::v2i64)) {
5646       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5647 
5648       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5649               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5650       unsigned DM[2];
5651 
5652       for (int i = 0; i < 2; ++i)
5653         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5654           DM[i] = 0;
5655         else
5656           DM[i] = 1;
5657 
5658       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5659           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5660           isa<LoadSDNode>(Op1.getOperand(0))) {
5661         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5662         SDValue Base, Offset;
5663 
5664         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5665             (LD->getMemoryVT() == MVT::f64 ||
5666              LD->getMemoryVT() == MVT::i64) &&
5667             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5668           SDValue Chain = LD->getChain();
5669           SDValue Ops[] = { Base, Offset, Chain };
5670           MachineMemOperand *MemOp = LD->getMemOperand();
5671           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5672                                               N->getValueType(0), Ops);
5673           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5674           return;
5675         }
5676       }
5677 
5678       // For little endian, we must swap the input operands and adjust
5679       // the mask elements (reverse and invert them).
5680       if (Subtarget->isLittleEndian()) {
5681         std::swap(Op1, Op2);
5682         unsigned tmp = DM[0];
5683         DM[0] = 1 - DM[1];
5684         DM[1] = 1 - tmp;
5685       }
5686 
5687       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5688                                               MVT::i32);
5689       SDValue Ops[] = { Op1, Op2, DMV };
5690       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5691       return;
5692     }
5693 
5694     break;
5695   case PPCISD::BDNZ:
5696   case PPCISD::BDZ: {
5697     bool IsPPC64 = Subtarget->isPPC64();
5698     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5699     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5700                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5701                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5702                          MVT::Other, Ops);
5703     return;
5704   }
5705   case PPCISD::COND_BRANCH: {
5706     // Op #0 is the Chain.
5707     // Op #1 is the PPC::PRED_* number.
5708     // Op #2 is the CR#
5709     // Op #3 is the Dest MBB
5710     // Op #4 is the Flag.
5711     // Prevent PPC::PRED_* from being selected into LI.
5712     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5713     if (EnableBranchHint)
5714       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5715 
5716     SDValue Pred = getI32Imm(PCC, dl);
5717     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5718       N->getOperand(0), N->getOperand(4) };
5719     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5720     return;
5721   }
5722   case ISD::BR_CC: {
5723     if (tryFoldSWTestBRCC(N))
5724       return;
5725     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5726     unsigned PCC =
5727         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
5728 
5729     if (N->getOperand(2).getValueType() == MVT::i1) {
5730       unsigned Opc;
5731       bool Swap;
5732       switch (PCC) {
5733       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5734       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5735       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5736       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5737       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5738       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5739       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
5740       }
5741 
5742       // A signed comparison of i1 values produces the opposite result to an
5743       // unsigned one if the condition code includes less-than or greater-than.
5744       // This is because 1 is the most negative signed i1 number and the most
5745       // positive unsigned i1 number. The CR-logical operations used for such
5746       // comparisons are non-commutative so for signed comparisons vs. unsigned
5747       // ones, the input operands just need to be swapped.
5748       if (ISD::isSignedIntSetCC(CC))
5749         Swap = !Swap;
5750 
5751       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5752                                              N->getOperand(Swap ? 3 : 2),
5753                                              N->getOperand(Swap ? 2 : 3)), 0);
5754       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5755                            N->getOperand(0));
5756       return;
5757     }
5758 
5759     if (EnableBranchHint)
5760       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
5761 
5762     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5763     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5764                         N->getOperand(4), N->getOperand(0) };
5765     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5766     return;
5767   }
5768   case ISD::BRIND: {
5769     // FIXME: Should custom lower this.
5770     SDValue Chain = N->getOperand(0);
5771     SDValue Target = N->getOperand(1);
5772     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5773     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5774     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5775                                            Chain), 0);
5776     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5777     return;
5778   }
5779   case PPCISD::TOC_ENTRY: {
5780     const bool isPPC64 = Subtarget->isPPC64();
5781     const bool isELFABI = Subtarget->isSVR4ABI();
5782     const bool isAIXABI = Subtarget->isAIXABI();
5783 
5784     // PowerPC only support small, medium and large code model.
5785     const CodeModel::Model CModel = TM.getCodeModel();
5786     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
5787            "PowerPC doesn't support tiny or kernel code models.");
5788 
5789     if (isAIXABI && CModel == CodeModel::Medium)
5790       report_fatal_error("Medium code model is not supported on AIX.");
5791 
5792     // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
5793     // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
5794     // small code model, we need to check for a toc-data attribute.
5795     if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
5796       break;
5797 
5798     auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
5799                                    EVT OperandTy) {
5800       SDValue GA = TocEntry->getOperand(0);
5801       SDValue TocBase = TocEntry->getOperand(1);
5802       SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
5803       transferMemOperands(TocEntry, MN);
5804       ReplaceNode(TocEntry, MN);
5805     };
5806 
5807     // Handle 32-bit small code model.
5808     if (!isPPC64 && CModel == CodeModel::Small) {
5809       // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
5810       // PPC::ADDItoc, or PPC::LWZtoc
5811       if (isELFABI) {
5812         assert(TM.isPositionIndependent() &&
5813                "32-bit ELF can only have TOC entries in position independent"
5814                " code.");
5815         // 32-bit ELF always uses a small code model toc access.
5816         replaceWith(PPC::LWZtoc, N, MVT::i32);
5817         return;
5818       }
5819 
5820       assert(isAIXABI && "ELF ABI already handled");
5821 
5822       if (hasTocDataAttr(N->getOperand(0),
5823                          CurDAG->getDataLayout().getPointerSize())) {
5824         replaceWith(PPC::ADDItoc, N, MVT::i32);
5825         return;
5826       }
5827 
5828       replaceWith(PPC::LWZtoc, N, MVT::i32);
5829       return;
5830     }
5831 
5832     if (isPPC64 && CModel == CodeModel::Small) {
5833       assert(isAIXABI && "ELF ABI handled in common SelectCode");
5834 
5835       if (hasTocDataAttr(N->getOperand(0),
5836                          CurDAG->getDataLayout().getPointerSize())) {
5837         replaceWith(PPC::ADDItoc8, N, MVT::i64);
5838         return;
5839       }
5840       // Break if it doesn't have toc data attribute. Proceed with common
5841       // SelectCode.
5842       break;
5843     }
5844 
5845     assert(CModel != CodeModel::Small && "All small code models handled.");
5846 
5847     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
5848            " ELF/AIX or 32-bit AIX in the following.");
5849 
5850     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
5851     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
5852     // generate two instructions as described below. The first source operand
5853     // is a symbol reference. If it must be toc-referenced according to
5854     // Subtarget, we generate:
5855     // [32-bit AIX]
5856     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
5857     // [64-bit ELF/AIX]
5858     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
5859     // Otherwise we generate:
5860     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
5861     SDValue GA = N->getOperand(0);
5862     SDValue TOCbase = N->getOperand(1);
5863 
5864     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5865     SDNode *Tmp = CurDAG->getMachineNode(
5866         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
5867 
5868     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5869       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
5870       // the address.
5871       SDNode *MN = CurDAG->getMachineNode(
5872           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
5873 
5874       transferMemOperands(N, MN);
5875       ReplaceNode(N, MN);
5876       return;
5877     }
5878 
5879     // Build the address relative to the TOC-pointer.
5880     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
5881                                           SDValue(Tmp, 0), GA));
5882     return;
5883   }
5884   case PPCISD::PPC32_PICGOT:
5885     // Generate a PIC-safe GOT reference.
5886     assert(Subtarget->is32BitELFABI() &&
5887            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
5888     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
5889                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
5890                          MVT::i32);
5891     return;
5892 
5893   case PPCISD::VADD_SPLAT: {
5894     // This expands into one of three sequences, depending on whether
5895     // the first operand is odd or even, positive or negative.
5896     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
5897            isa<ConstantSDNode>(N->getOperand(1)) &&
5898            "Invalid operand on VADD_SPLAT!");
5899 
5900     int Elt     = N->getConstantOperandVal(0);
5901     int EltSize = N->getConstantOperandVal(1);
5902     unsigned Opc1, Opc2, Opc3;
5903     EVT VT;
5904 
5905     if (EltSize == 1) {
5906       Opc1 = PPC::VSPLTISB;
5907       Opc2 = PPC::VADDUBM;
5908       Opc3 = PPC::VSUBUBM;
5909       VT = MVT::v16i8;
5910     } else if (EltSize == 2) {
5911       Opc1 = PPC::VSPLTISH;
5912       Opc2 = PPC::VADDUHM;
5913       Opc3 = PPC::VSUBUHM;
5914       VT = MVT::v8i16;
5915     } else {
5916       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
5917       Opc1 = PPC::VSPLTISW;
5918       Opc2 = PPC::VADDUWM;
5919       Opc3 = PPC::VSUBUWM;
5920       VT = MVT::v4i32;
5921     }
5922 
5923     if ((Elt & 1) == 0) {
5924       // Elt is even, in the range [-32,-18] + [16,30].
5925       //
5926       // Convert: VADD_SPLAT elt, size
5927       // Into:    tmp = VSPLTIS[BHW] elt
5928       //          VADDU[BHW]M tmp, tmp
5929       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
5930       SDValue EltVal = getI32Imm(Elt >> 1, dl);
5931       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5932       SDValue TmpVal = SDValue(Tmp, 0);
5933       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
5934       return;
5935     } else if (Elt > 0) {
5936       // Elt is odd and positive, in the range [17,31].
5937       //
5938       // Convert: VADD_SPLAT elt, size
5939       // Into:    tmp1 = VSPLTIS[BHW] elt-16
5940       //          tmp2 = VSPLTIS[BHW] -16
5941       //          VSUBU[BHW]M tmp1, tmp2
5942       SDValue EltVal = getI32Imm(Elt - 16, dl);
5943       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5944       EltVal = getI32Imm(-16, dl);
5945       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5946       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
5947                                             SDValue(Tmp2, 0)));
5948       return;
5949     } else {
5950       // Elt is odd and negative, in the range [-31,-17].
5951       //
5952       // Convert: VADD_SPLAT elt, size
5953       // Into:    tmp1 = VSPLTIS[BHW] elt+16
5954       //          tmp2 = VSPLTIS[BHW] -16
5955       //          VADDU[BHW]M tmp1, tmp2
5956       SDValue EltVal = getI32Imm(Elt + 16, dl);
5957       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5958       EltVal = getI32Imm(-16, dl);
5959       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5960       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
5961                                             SDValue(Tmp2, 0)));
5962       return;
5963     }
5964   }
5965   case PPCISD::LD_SPLAT: {
5966     // Here we want to handle splat load for type v16i8 and v8i16 when there is
5967     // no direct move, we don't need to use stack for this case. If target has
5968     // direct move, we should be able to get the best selection in the .td file.
5969     if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
5970       break;
5971 
5972     EVT Type = N->getValueType(0);
5973     if (Type != MVT::v16i8 && Type != MVT::v8i16)
5974       break;
5975 
5976     // If the alignment for the load is 16 or bigger, we don't need the
5977     // permutated mask to get the required value. The value must be the 0
5978     // element in big endian target or 7/15 in little endian target in the
5979     // result vsx register of lvx instruction.
5980     // Select the instruction in the .td file.
5981     if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
5982         isOffsetMultipleOf(N, 16))
5983       break;
5984 
5985     SDValue ZeroReg =
5986         CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
5987                             Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
5988     unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
5989     // v16i8 LD_SPLAT addr
5990     // ======>
5991     // Mask = LVSR/LVSL 0, addr
5992     // LoadLow = LVX 0, addr
5993     // Perm = VPERM LoadLow, LoadLow, Mask
5994     // Splat = VSPLTB 15/0, Perm
5995     //
5996     // v8i16 LD_SPLAT addr
5997     // ======>
5998     // Mask = LVSR/LVSL 0, addr
5999     // LoadLow = LVX 0, addr
6000     // LoadHigh = LVX (LI, 1), addr
6001     // Perm = VPERM LoadLow, LoadHigh, Mask
6002     // Splat = VSPLTH 7/0, Perm
6003     unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6004     unsigned SplatElemIndex =
6005         Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6006 
6007     SDNode *Mask = CurDAG->getMachineNode(
6008         Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6009         N->getOperand(1));
6010 
6011     SDNode *LoadLow =
6012         CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6013                                {ZeroReg, N->getOperand(1), N->getOperand(0)});
6014 
6015     SDNode *LoadHigh = LoadLow;
6016     if (Type == MVT::v8i16) {
6017       LoadHigh = CurDAG->getMachineNode(
6018           PPC::LVX, dl, MVT::v16i8, MVT::Other,
6019           {SDValue(CurDAG->getMachineNode(
6020                        LIOpcode, dl, MVT::i32,
6021                        CurDAG->getTargetConstant(1, dl, MVT::i8)),
6022                    0),
6023            N->getOperand(1), SDValue(LoadLow, 1)});
6024     }
6025 
6026     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6027     transferMemOperands(N, LoadHigh);
6028 
6029     SDNode *Perm =
6030         CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6031                                SDValue(LoadHigh, 0), SDValue(Mask, 0));
6032     CurDAG->SelectNodeTo(N, SplatOp, Type,
6033                          CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6034                          SDValue(Perm, 0));
6035     return;
6036   }
6037   }
6038 
6039   SelectCode(N);
6040 }
6041 
6042 // If the target supports the cmpb instruction, do the idiom recognition here.
6043 // We don't do this as a DAG combine because we don't want to do it as nodes
6044 // are being combined (because we might miss part of the eventual idiom). We
6045 // don't want to do it during instruction selection because we want to reuse
6046 // the logic for lowering the masking operations already part of the
6047 // instruction selector.
6048 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6049   SDLoc dl(N);
6050 
6051   assert(N->getOpcode() == ISD::OR &&
6052          "Only OR nodes are supported for CMPB");
6053 
6054   SDValue Res;
6055   if (!Subtarget->hasCMPB())
6056     return Res;
6057 
6058   if (N->getValueType(0) != MVT::i32 &&
6059       N->getValueType(0) != MVT::i64)
6060     return Res;
6061 
6062   EVT VT = N->getValueType(0);
6063 
6064   SDValue RHS, LHS;
6065   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6066   uint64_t Mask = 0, Alt = 0;
6067 
6068   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6069                                uint64_t &Mask, uint64_t &Alt,
6070                                SDValue &LHS, SDValue &RHS) {
6071     if (O.getOpcode() != ISD::SELECT_CC)
6072       return false;
6073     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6074 
6075     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6076         !isa<ConstantSDNode>(O.getOperand(3)))
6077       return false;
6078 
6079     uint64_t PM = O.getConstantOperandVal(2);
6080     uint64_t PAlt = O.getConstantOperandVal(3);
6081     for (b = 0; b < 8; ++b) {
6082       uint64_t Mask = UINT64_C(0xFF) << (8*b);
6083       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6084         break;
6085     }
6086 
6087     if (b == 8)
6088       return false;
6089     Mask |= PM;
6090     Alt  |= PAlt;
6091 
6092     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6093         O.getConstantOperandVal(1) != 0) {
6094       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6095       if (Op0.getOpcode() == ISD::TRUNCATE)
6096         Op0 = Op0.getOperand(0);
6097       if (Op1.getOpcode() == ISD::TRUNCATE)
6098         Op1 = Op1.getOperand(0);
6099 
6100       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6101           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6102           isa<ConstantSDNode>(Op0.getOperand(1))) {
6103 
6104         unsigned Bits = Op0.getValueSizeInBits();
6105         if (b != Bits/8-1)
6106           return false;
6107         if (Op0.getConstantOperandVal(1) != Bits-8)
6108           return false;
6109 
6110         LHS = Op0.getOperand(0);
6111         RHS = Op1.getOperand(0);
6112         return true;
6113       }
6114 
6115       // When we have small integers (i16 to be specific), the form present
6116       // post-legalization uses SETULT in the SELECT_CC for the
6117       // higher-order byte, depending on the fact that the
6118       // even-higher-order bytes are known to all be zero, for example:
6119       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6120       // (so when the second byte is the same, because all higher-order
6121       // bits from bytes 3 and 4 are known to be zero, the result of the
6122       // xor can be at most 255)
6123       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6124           isa<ConstantSDNode>(O.getOperand(1))) {
6125 
6126         uint64_t ULim = O.getConstantOperandVal(1);
6127         if (ULim != (UINT64_C(1) << b*8))
6128           return false;
6129 
6130         // Now we need to make sure that the upper bytes are known to be
6131         // zero.
6132         unsigned Bits = Op0.getValueSizeInBits();
6133         if (!CurDAG->MaskedValueIsZero(
6134                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6135           return false;
6136 
6137         LHS = Op0.getOperand(0);
6138         RHS = Op0.getOperand(1);
6139         return true;
6140       }
6141 
6142       return false;
6143     }
6144 
6145     if (CC != ISD::SETEQ)
6146       return false;
6147 
6148     SDValue Op = O.getOperand(0);
6149     if (Op.getOpcode() == ISD::AND) {
6150       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6151         return false;
6152       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6153         return false;
6154 
6155       SDValue XOR = Op.getOperand(0);
6156       if (XOR.getOpcode() == ISD::TRUNCATE)
6157         XOR = XOR.getOperand(0);
6158       if (XOR.getOpcode() != ISD::XOR)
6159         return false;
6160 
6161       LHS = XOR.getOperand(0);
6162       RHS = XOR.getOperand(1);
6163       return true;
6164     } else if (Op.getOpcode() == ISD::SRL) {
6165       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6166         return false;
6167       unsigned Bits = Op.getValueSizeInBits();
6168       if (b != Bits/8-1)
6169         return false;
6170       if (Op.getConstantOperandVal(1) != Bits-8)
6171         return false;
6172 
6173       SDValue XOR = Op.getOperand(0);
6174       if (XOR.getOpcode() == ISD::TRUNCATE)
6175         XOR = XOR.getOperand(0);
6176       if (XOR.getOpcode() != ISD::XOR)
6177         return false;
6178 
6179       LHS = XOR.getOperand(0);
6180       RHS = XOR.getOperand(1);
6181       return true;
6182     }
6183 
6184     return false;
6185   };
6186 
6187   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6188   while (!Queue.empty()) {
6189     SDValue V = Queue.pop_back_val();
6190 
6191     for (const SDValue &O : V.getNode()->ops()) {
6192       unsigned b = 0;
6193       uint64_t M = 0, A = 0;
6194       SDValue OLHS, ORHS;
6195       if (O.getOpcode() == ISD::OR) {
6196         Queue.push_back(O);
6197       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6198         if (!LHS) {
6199           LHS = OLHS;
6200           RHS = ORHS;
6201           BytesFound[b] = true;
6202           Mask |= M;
6203           Alt  |= A;
6204         } else if ((LHS == ORHS && RHS == OLHS) ||
6205                    (RHS == ORHS && LHS == OLHS)) {
6206           BytesFound[b] = true;
6207           Mask |= M;
6208           Alt  |= A;
6209         } else {
6210           return Res;
6211         }
6212       } else {
6213         return Res;
6214       }
6215     }
6216   }
6217 
6218   unsigned LastB = 0, BCnt = 0;
6219   for (unsigned i = 0; i < 8; ++i)
6220     if (BytesFound[LastB]) {
6221       ++BCnt;
6222       LastB = i;
6223     }
6224 
6225   if (!LastB || BCnt < 2)
6226     return Res;
6227 
6228   // Because we'll be zero-extending the output anyway if don't have a specific
6229   // value for each input byte (via the Mask), we can 'anyext' the inputs.
6230   if (LHS.getValueType() != VT) {
6231     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6232     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6233   }
6234 
6235   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6236 
6237   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6238   if (NonTrivialMask && !Alt) {
6239     // Res = Mask & CMPB
6240     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6241                           CurDAG->getConstant(Mask, dl, VT));
6242   } else if (Alt) {
6243     // Res = (CMPB & Mask) | (~CMPB & Alt)
6244     // Which, as suggested here:
6245     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6246     // can be written as:
6247     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6248     // useful because the (Alt ^ Mask) can be pre-computed.
6249     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6250                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
6251     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6252                           CurDAG->getConstant(Alt, dl, VT));
6253   }
6254 
6255   return Res;
6256 }
6257 
6258 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6259 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6260 // involves constant materialization of a 0 or a 1 or both. If the result of
6261 // the extension is then operated upon by some operator that can be constant
6262 // folded with a constant 0 or 1, and that constant can be materialized using
6263 // only one instruction (like a zero or one), then we should fold in those
6264 // operations with the select.
6265 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6266   if (!Subtarget->useCRBits())
6267     return;
6268 
6269   if (N->getOpcode() != ISD::ZERO_EXTEND &&
6270       N->getOpcode() != ISD::SIGN_EXTEND &&
6271       N->getOpcode() != ISD::ANY_EXTEND)
6272     return;
6273 
6274   if (N->getOperand(0).getValueType() != MVT::i1)
6275     return;
6276 
6277   if (!N->hasOneUse())
6278     return;
6279 
6280   SDLoc dl(N);
6281   EVT VT = N->getValueType(0);
6282   SDValue Cond = N->getOperand(0);
6283   SDValue ConstTrue =
6284     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6285   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6286 
6287   do {
6288     SDNode *User = *N->use_begin();
6289     if (User->getNumOperands() != 2)
6290       break;
6291 
6292     auto TryFold = [this, N, User, dl](SDValue Val) {
6293       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6294       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6295       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6296 
6297       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6298                                             User->getValueType(0), {O0, O1});
6299     };
6300 
6301     // FIXME: When the semantics of the interaction between select and undef
6302     // are clearly defined, it may turn out to be unnecessary to break here.
6303     SDValue TrueRes = TryFold(ConstTrue);
6304     if (!TrueRes || TrueRes.isUndef())
6305       break;
6306     SDValue FalseRes = TryFold(ConstFalse);
6307     if (!FalseRes || FalseRes.isUndef())
6308       break;
6309 
6310     // For us to materialize these using one instruction, we must be able to
6311     // represent them as signed 16-bit integers.
6312     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
6313              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
6314     if (!isInt<16>(True) || !isInt<16>(False))
6315       break;
6316 
6317     // We can replace User with a new SELECT node, and try again to see if we
6318     // can fold the select with its user.
6319     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6320     N = User;
6321     ConstTrue = TrueRes;
6322     ConstFalse = FalseRes;
6323   } while (N->hasOneUse());
6324 }
6325 
6326 void PPCDAGToDAGISel::PreprocessISelDAG() {
6327   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6328 
6329   bool MadeChange = false;
6330   while (Position != CurDAG->allnodes_begin()) {
6331     SDNode *N = &*--Position;
6332     if (N->use_empty())
6333       continue;
6334 
6335     SDValue Res;
6336     switch (N->getOpcode()) {
6337     default: break;
6338     case ISD::OR:
6339       Res = combineToCMPB(N);
6340       break;
6341     }
6342 
6343     if (!Res)
6344       foldBoolExts(Res, N);
6345 
6346     if (Res) {
6347       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
6348       LLVM_DEBUG(N->dump(CurDAG));
6349       LLVM_DEBUG(dbgs() << "\nNew: ");
6350       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6351       LLVM_DEBUG(dbgs() << "\n");
6352 
6353       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6354       MadeChange = true;
6355     }
6356   }
6357 
6358   if (MadeChange)
6359     CurDAG->RemoveDeadNodes();
6360 }
6361 
6362 /// PostprocessISelDAG - Perform some late peephole optimizations
6363 /// on the DAG representation.
6364 void PPCDAGToDAGISel::PostprocessISelDAG() {
6365   // Skip peepholes at -O0.
6366   if (TM.getOptLevel() == CodeGenOpt::None)
6367     return;
6368 
6369   PeepholePPC64();
6370   PeepholeCROps();
6371   PeepholePPC64ZExt();
6372 }
6373 
6374 // Check if all users of this node will become isel where the second operand
6375 // is the constant zero. If this is so, and if we can negate the condition,
6376 // then we can flip the true and false operands. This will allow the zero to
6377 // be folded with the isel so that we don't need to materialize a register
6378 // containing zero.
6379 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6380   for (const SDNode *User : N->uses()) {
6381     if (!User->isMachineOpcode())
6382       return false;
6383     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6384         User->getMachineOpcode() != PPC::SELECT_I8)
6385       return false;
6386 
6387     SDNode *Op1 = User->getOperand(1).getNode();
6388     SDNode *Op2 = User->getOperand(2).getNode();
6389     // If we have a degenerate select with two equal operands, swapping will
6390     // not do anything, and we may run into an infinite loop.
6391     if (Op1 == Op2)
6392       return false;
6393 
6394     if (!Op2->isMachineOpcode())
6395       return false;
6396 
6397     if (Op2->getMachineOpcode() != PPC::LI &&
6398         Op2->getMachineOpcode() != PPC::LI8)
6399       return false;
6400 
6401     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
6402     if (!C)
6403       return false;
6404 
6405     if (!C->isZero())
6406       return false;
6407   }
6408 
6409   return true;
6410 }
6411 
6412 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6413   SmallVector<SDNode *, 4> ToReplace;
6414   for (SDNode *User : N->uses()) {
6415     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6416             User->getMachineOpcode() == PPC::SELECT_I8) &&
6417            "Must have all select users");
6418     ToReplace.push_back(User);
6419   }
6420 
6421   for (SDNode *User : ToReplace) {
6422     SDNode *ResNode =
6423       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6424                              User->getValueType(0), User->getOperand(0),
6425                              User->getOperand(2),
6426                              User->getOperand(1));
6427 
6428     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6429     LLVM_DEBUG(User->dump(CurDAG));
6430     LLVM_DEBUG(dbgs() << "\nNew: ");
6431     LLVM_DEBUG(ResNode->dump(CurDAG));
6432     LLVM_DEBUG(dbgs() << "\n");
6433 
6434     ReplaceUses(User, ResNode);
6435   }
6436 }
6437 
6438 void PPCDAGToDAGISel::PeepholeCROps() {
6439   bool IsModified;
6440   do {
6441     IsModified = false;
6442     for (SDNode &Node : CurDAG->allnodes()) {
6443       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6444       if (!MachineNode || MachineNode->use_empty())
6445         continue;
6446       SDNode *ResNode = MachineNode;
6447 
6448       bool Op1Set   = false, Op1Unset = false,
6449            Op1Not   = false,
6450            Op2Set   = false, Op2Unset = false,
6451            Op2Not   = false;
6452 
6453       unsigned Opcode = MachineNode->getMachineOpcode();
6454       switch (Opcode) {
6455       default: break;
6456       case PPC::CRAND:
6457       case PPC::CRNAND:
6458       case PPC::CROR:
6459       case PPC::CRXOR:
6460       case PPC::CRNOR:
6461       case PPC::CREQV:
6462       case PPC::CRANDC:
6463       case PPC::CRORC: {
6464         SDValue Op = MachineNode->getOperand(1);
6465         if (Op.isMachineOpcode()) {
6466           if (Op.getMachineOpcode() == PPC::CRSET)
6467             Op2Set = true;
6468           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6469             Op2Unset = true;
6470           else if (Op.getMachineOpcode() == PPC::CRNOR &&
6471                    Op.getOperand(0) == Op.getOperand(1))
6472             Op2Not = true;
6473         }
6474         LLVM_FALLTHROUGH;
6475       }
6476       case PPC::BC:
6477       case PPC::BCn:
6478       case PPC::SELECT_I4:
6479       case PPC::SELECT_I8:
6480       case PPC::SELECT_F4:
6481       case PPC::SELECT_F8:
6482       case PPC::SELECT_SPE:
6483       case PPC::SELECT_SPE4:
6484       case PPC::SELECT_VRRC:
6485       case PPC::SELECT_VSFRC:
6486       case PPC::SELECT_VSSRC:
6487       case PPC::SELECT_VSRC: {
6488         SDValue Op = MachineNode->getOperand(0);
6489         if (Op.isMachineOpcode()) {
6490           if (Op.getMachineOpcode() == PPC::CRSET)
6491             Op1Set = true;
6492           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6493             Op1Unset = true;
6494           else if (Op.getMachineOpcode() == PPC::CRNOR &&
6495                    Op.getOperand(0) == Op.getOperand(1))
6496             Op1Not = true;
6497         }
6498         }
6499         break;
6500       }
6501 
6502       bool SelectSwap = false;
6503       switch (Opcode) {
6504       default: break;
6505       case PPC::CRAND:
6506         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6507           // x & x = x
6508           ResNode = MachineNode->getOperand(0).getNode();
6509         else if (Op1Set)
6510           // 1 & y = y
6511           ResNode = MachineNode->getOperand(1).getNode();
6512         else if (Op2Set)
6513           // x & 1 = x
6514           ResNode = MachineNode->getOperand(0).getNode();
6515         else if (Op1Unset || Op2Unset)
6516           // x & 0 = 0 & y = 0
6517           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6518                                            MVT::i1);
6519         else if (Op1Not)
6520           // ~x & y = andc(y, x)
6521           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6522                                            MVT::i1, MachineNode->getOperand(1),
6523                                            MachineNode->getOperand(0).
6524                                              getOperand(0));
6525         else if (Op2Not)
6526           // x & ~y = andc(x, y)
6527           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6528                                            MVT::i1, MachineNode->getOperand(0),
6529                                            MachineNode->getOperand(1).
6530                                              getOperand(0));
6531         else if (AllUsersSelectZero(MachineNode)) {
6532           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6533                                            MVT::i1, MachineNode->getOperand(0),
6534                                            MachineNode->getOperand(1));
6535           SelectSwap = true;
6536         }
6537         break;
6538       case PPC::CRNAND:
6539         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6540           // nand(x, x) -> nor(x, x)
6541           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6542                                            MVT::i1, MachineNode->getOperand(0),
6543                                            MachineNode->getOperand(0));
6544         else if (Op1Set)
6545           // nand(1, y) -> nor(y, y)
6546           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6547                                            MVT::i1, MachineNode->getOperand(1),
6548                                            MachineNode->getOperand(1));
6549         else if (Op2Set)
6550           // nand(x, 1) -> nor(x, x)
6551           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6552                                            MVT::i1, MachineNode->getOperand(0),
6553                                            MachineNode->getOperand(0));
6554         else if (Op1Unset || Op2Unset)
6555           // nand(x, 0) = nand(0, y) = 1
6556           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6557                                            MVT::i1);
6558         else if (Op1Not)
6559           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6560           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6561                                            MVT::i1, MachineNode->getOperand(0).
6562                                                       getOperand(0),
6563                                            MachineNode->getOperand(1));
6564         else if (Op2Not)
6565           // nand(x, ~y) = ~x | y = orc(y, x)
6566           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6567                                            MVT::i1, MachineNode->getOperand(1).
6568                                                       getOperand(0),
6569                                            MachineNode->getOperand(0));
6570         else if (AllUsersSelectZero(MachineNode)) {
6571           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6572                                            MVT::i1, MachineNode->getOperand(0),
6573                                            MachineNode->getOperand(1));
6574           SelectSwap = true;
6575         }
6576         break;
6577       case PPC::CROR:
6578         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6579           // x | x = x
6580           ResNode = MachineNode->getOperand(0).getNode();
6581         else if (Op1Set || Op2Set)
6582           // x | 1 = 1 | y = 1
6583           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6584                                            MVT::i1);
6585         else if (Op1Unset)
6586           // 0 | y = y
6587           ResNode = MachineNode->getOperand(1).getNode();
6588         else if (Op2Unset)
6589           // x | 0 = x
6590           ResNode = MachineNode->getOperand(0).getNode();
6591         else if (Op1Not)
6592           // ~x | y = orc(y, x)
6593           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6594                                            MVT::i1, MachineNode->getOperand(1),
6595                                            MachineNode->getOperand(0).
6596                                              getOperand(0));
6597         else if (Op2Not)
6598           // x | ~y = orc(x, y)
6599           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6600                                            MVT::i1, MachineNode->getOperand(0),
6601                                            MachineNode->getOperand(1).
6602                                              getOperand(0));
6603         else if (AllUsersSelectZero(MachineNode)) {
6604           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6605                                            MVT::i1, MachineNode->getOperand(0),
6606                                            MachineNode->getOperand(1));
6607           SelectSwap = true;
6608         }
6609         break;
6610       case PPC::CRXOR:
6611         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6612           // xor(x, x) = 0
6613           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6614                                            MVT::i1);
6615         else if (Op1Set)
6616           // xor(1, y) -> nor(y, y)
6617           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6618                                            MVT::i1, MachineNode->getOperand(1),
6619                                            MachineNode->getOperand(1));
6620         else if (Op2Set)
6621           // xor(x, 1) -> nor(x, x)
6622           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6623                                            MVT::i1, MachineNode->getOperand(0),
6624                                            MachineNode->getOperand(0));
6625         else if (Op1Unset)
6626           // xor(0, y) = y
6627           ResNode = MachineNode->getOperand(1).getNode();
6628         else if (Op2Unset)
6629           // xor(x, 0) = x
6630           ResNode = MachineNode->getOperand(0).getNode();
6631         else if (Op1Not)
6632           // xor(~x, y) = eqv(x, y)
6633           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6634                                            MVT::i1, MachineNode->getOperand(0).
6635                                                       getOperand(0),
6636                                            MachineNode->getOperand(1));
6637         else if (Op2Not)
6638           // xor(x, ~y) = eqv(x, y)
6639           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6640                                            MVT::i1, MachineNode->getOperand(0),
6641                                            MachineNode->getOperand(1).
6642                                              getOperand(0));
6643         else if (AllUsersSelectZero(MachineNode)) {
6644           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6645                                            MVT::i1, MachineNode->getOperand(0),
6646                                            MachineNode->getOperand(1));
6647           SelectSwap = true;
6648         }
6649         break;
6650       case PPC::CRNOR:
6651         if (Op1Set || Op2Set)
6652           // nor(1, y) -> 0
6653           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6654                                            MVT::i1);
6655         else if (Op1Unset)
6656           // nor(0, y) = ~y -> nor(y, y)
6657           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6658                                            MVT::i1, MachineNode->getOperand(1),
6659                                            MachineNode->getOperand(1));
6660         else if (Op2Unset)
6661           // nor(x, 0) = ~x
6662           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6663                                            MVT::i1, MachineNode->getOperand(0),
6664                                            MachineNode->getOperand(0));
6665         else if (Op1Not)
6666           // nor(~x, y) = andc(x, y)
6667           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6668                                            MVT::i1, MachineNode->getOperand(0).
6669                                                       getOperand(0),
6670                                            MachineNode->getOperand(1));
6671         else if (Op2Not)
6672           // nor(x, ~y) = andc(y, x)
6673           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6674                                            MVT::i1, MachineNode->getOperand(1).
6675                                                       getOperand(0),
6676                                            MachineNode->getOperand(0));
6677         else if (AllUsersSelectZero(MachineNode)) {
6678           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6679                                            MVT::i1, MachineNode->getOperand(0),
6680                                            MachineNode->getOperand(1));
6681           SelectSwap = true;
6682         }
6683         break;
6684       case PPC::CREQV:
6685         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6686           // eqv(x, x) = 1
6687           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6688                                            MVT::i1);
6689         else if (Op1Set)
6690           // eqv(1, y) = y
6691           ResNode = MachineNode->getOperand(1).getNode();
6692         else if (Op2Set)
6693           // eqv(x, 1) = x
6694           ResNode = MachineNode->getOperand(0).getNode();
6695         else if (Op1Unset)
6696           // eqv(0, y) = ~y -> nor(y, y)
6697           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6698                                            MVT::i1, MachineNode->getOperand(1),
6699                                            MachineNode->getOperand(1));
6700         else if (Op2Unset)
6701           // eqv(x, 0) = ~x
6702           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6703                                            MVT::i1, MachineNode->getOperand(0),
6704                                            MachineNode->getOperand(0));
6705         else if (Op1Not)
6706           // eqv(~x, y) = xor(x, y)
6707           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6708                                            MVT::i1, MachineNode->getOperand(0).
6709                                                       getOperand(0),
6710                                            MachineNode->getOperand(1));
6711         else if (Op2Not)
6712           // eqv(x, ~y) = xor(x, y)
6713           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6714                                            MVT::i1, MachineNode->getOperand(0),
6715                                            MachineNode->getOperand(1).
6716                                              getOperand(0));
6717         else if (AllUsersSelectZero(MachineNode)) {
6718           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6719                                            MVT::i1, MachineNode->getOperand(0),
6720                                            MachineNode->getOperand(1));
6721           SelectSwap = true;
6722         }
6723         break;
6724       case PPC::CRANDC:
6725         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6726           // andc(x, x) = 0
6727           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6728                                            MVT::i1);
6729         else if (Op1Set)
6730           // andc(1, y) = ~y
6731           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6732                                            MVT::i1, MachineNode->getOperand(1),
6733                                            MachineNode->getOperand(1));
6734         else if (Op1Unset || Op2Set)
6735           // andc(0, y) = andc(x, 1) = 0
6736           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6737                                            MVT::i1);
6738         else if (Op2Unset)
6739           // andc(x, 0) = x
6740           ResNode = MachineNode->getOperand(0).getNode();
6741         else if (Op1Not)
6742           // andc(~x, y) = ~(x | y) = nor(x, y)
6743           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6744                                            MVT::i1, MachineNode->getOperand(0).
6745                                                       getOperand(0),
6746                                            MachineNode->getOperand(1));
6747         else if (Op2Not)
6748           // andc(x, ~y) = x & y
6749           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6750                                            MVT::i1, MachineNode->getOperand(0),
6751                                            MachineNode->getOperand(1).
6752                                              getOperand(0));
6753         else if (AllUsersSelectZero(MachineNode)) {
6754           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6755                                            MVT::i1, MachineNode->getOperand(1),
6756                                            MachineNode->getOperand(0));
6757           SelectSwap = true;
6758         }
6759         break;
6760       case PPC::CRORC:
6761         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6762           // orc(x, x) = 1
6763           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6764                                            MVT::i1);
6765         else if (Op1Set || Op2Unset)
6766           // orc(1, y) = orc(x, 0) = 1
6767           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6768                                            MVT::i1);
6769         else if (Op2Set)
6770           // orc(x, 1) = x
6771           ResNode = MachineNode->getOperand(0).getNode();
6772         else if (Op1Unset)
6773           // orc(0, y) = ~y
6774           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6775                                            MVT::i1, MachineNode->getOperand(1),
6776                                            MachineNode->getOperand(1));
6777         else if (Op1Not)
6778           // orc(~x, y) = ~(x & y) = nand(x, y)
6779           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6780                                            MVT::i1, MachineNode->getOperand(0).
6781                                                       getOperand(0),
6782                                            MachineNode->getOperand(1));
6783         else if (Op2Not)
6784           // orc(x, ~y) = x | y
6785           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6786                                            MVT::i1, MachineNode->getOperand(0),
6787                                            MachineNode->getOperand(1).
6788                                              getOperand(0));
6789         else if (AllUsersSelectZero(MachineNode)) {
6790           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6791                                            MVT::i1, MachineNode->getOperand(1),
6792                                            MachineNode->getOperand(0));
6793           SelectSwap = true;
6794         }
6795         break;
6796       case PPC::SELECT_I4:
6797       case PPC::SELECT_I8:
6798       case PPC::SELECT_F4:
6799       case PPC::SELECT_F8:
6800       case PPC::SELECT_SPE:
6801       case PPC::SELECT_SPE4:
6802       case PPC::SELECT_VRRC:
6803       case PPC::SELECT_VSFRC:
6804       case PPC::SELECT_VSSRC:
6805       case PPC::SELECT_VSRC:
6806         if (Op1Set)
6807           ResNode = MachineNode->getOperand(1).getNode();
6808         else if (Op1Unset)
6809           ResNode = MachineNode->getOperand(2).getNode();
6810         else if (Op1Not)
6811           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
6812                                            SDLoc(MachineNode),
6813                                            MachineNode->getValueType(0),
6814                                            MachineNode->getOperand(0).
6815                                              getOperand(0),
6816                                            MachineNode->getOperand(2),
6817                                            MachineNode->getOperand(1));
6818         break;
6819       case PPC::BC:
6820       case PPC::BCn:
6821         if (Op1Not)
6822           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
6823                                                                PPC::BC,
6824                                            SDLoc(MachineNode),
6825                                            MVT::Other,
6826                                            MachineNode->getOperand(0).
6827                                              getOperand(0),
6828                                            MachineNode->getOperand(1),
6829                                            MachineNode->getOperand(2));
6830         // FIXME: Handle Op1Set, Op1Unset here too.
6831         break;
6832       }
6833 
6834       // If we're inverting this node because it is used only by selects that
6835       // we'd like to swap, then swap the selects before the node replacement.
6836       if (SelectSwap)
6837         SwapAllSelectUsers(MachineNode);
6838 
6839       if (ResNode != MachineNode) {
6840         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6841         LLVM_DEBUG(MachineNode->dump(CurDAG));
6842         LLVM_DEBUG(dbgs() << "\nNew: ");
6843         LLVM_DEBUG(ResNode->dump(CurDAG));
6844         LLVM_DEBUG(dbgs() << "\n");
6845 
6846         ReplaceUses(MachineNode, ResNode);
6847         IsModified = true;
6848       }
6849     }
6850     if (IsModified)
6851       CurDAG->RemoveDeadNodes();
6852   } while (IsModified);
6853 }
6854 
6855 // Gather the set of 32-bit operations that are known to have their
6856 // higher-order 32 bits zero, where ToPromote contains all such operations.
6857 static bool PeepholePPC64ZExtGather(SDValue Op32,
6858                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
6859   if (!Op32.isMachineOpcode())
6860     return false;
6861 
6862   // First, check for the "frontier" instructions (those that will clear the
6863   // higher-order 32 bits.
6864 
6865   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6866   // around. If it does not, then these instructions will clear the
6867   // higher-order bits.
6868   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6869        Op32.getMachineOpcode() == PPC::RLWNM) &&
6870       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6871     ToPromote.insert(Op32.getNode());
6872     return true;
6873   }
6874 
6875   // SLW and SRW always clear the higher-order bits.
6876   if (Op32.getMachineOpcode() == PPC::SLW ||
6877       Op32.getMachineOpcode() == PPC::SRW) {
6878     ToPromote.insert(Op32.getNode());
6879     return true;
6880   }
6881 
6882   // For LI and LIS, we need the immediate to be positive (so that it is not
6883   // sign extended).
6884   if (Op32.getMachineOpcode() == PPC::LI ||
6885       Op32.getMachineOpcode() == PPC::LIS) {
6886     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
6887       return false;
6888 
6889     ToPromote.insert(Op32.getNode());
6890     return true;
6891   }
6892 
6893   // LHBRX and LWBRX always clear the higher-order bits.
6894   if (Op32.getMachineOpcode() == PPC::LHBRX ||
6895       Op32.getMachineOpcode() == PPC::LWBRX) {
6896     ToPromote.insert(Op32.getNode());
6897     return true;
6898   }
6899 
6900   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
6901   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
6902       Op32.getMachineOpcode() == PPC::CNTTZW) {
6903     ToPromote.insert(Op32.getNode());
6904     return true;
6905   }
6906 
6907   // Next, check for those instructions we can look through.
6908 
6909   // Assuming the mask does not wrap around, then the higher-order bits are
6910   // taken directly from the first operand.
6911   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
6912       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
6913     SmallPtrSet<SDNode *, 16> ToPromote1;
6914     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6915       return false;
6916 
6917     ToPromote.insert(Op32.getNode());
6918     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6919     return true;
6920   }
6921 
6922   // For OR, the higher-order bits are zero if that is true for both operands.
6923   // For SELECT_I4, the same is true (but the relevant operand numbers are
6924   // shifted by 1).
6925   if (Op32.getMachineOpcode() == PPC::OR ||
6926       Op32.getMachineOpcode() == PPC::SELECT_I4) {
6927     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
6928     SmallPtrSet<SDNode *, 16> ToPromote1;
6929     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
6930       return false;
6931     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
6932       return false;
6933 
6934     ToPromote.insert(Op32.getNode());
6935     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6936     return true;
6937   }
6938 
6939   // For ORI and ORIS, we need the higher-order bits of the first operand to be
6940   // zero, and also for the constant to be positive (so that it is not sign
6941   // extended).
6942   if (Op32.getMachineOpcode() == PPC::ORI ||
6943       Op32.getMachineOpcode() == PPC::ORIS) {
6944     SmallPtrSet<SDNode *, 16> ToPromote1;
6945     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6946       return false;
6947     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
6948       return false;
6949 
6950     ToPromote.insert(Op32.getNode());
6951     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6952     return true;
6953   }
6954 
6955   // The higher-order bits of AND are zero if that is true for at least one of
6956   // the operands.
6957   if (Op32.getMachineOpcode() == PPC::AND) {
6958     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
6959     bool Op0OK =
6960       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6961     bool Op1OK =
6962       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
6963     if (!Op0OK && !Op1OK)
6964       return false;
6965 
6966     ToPromote.insert(Op32.getNode());
6967 
6968     if (Op0OK)
6969       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6970 
6971     if (Op1OK)
6972       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
6973 
6974     return true;
6975   }
6976 
6977   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
6978   // of the first operand, or if the second operand is positive (so that it is
6979   // not sign extended).
6980   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
6981       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
6982     SmallPtrSet<SDNode *, 16> ToPromote1;
6983     bool Op0OK =
6984       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6985     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
6986     if (!Op0OK && !Op1OK)
6987       return false;
6988 
6989     ToPromote.insert(Op32.getNode());
6990 
6991     if (Op0OK)
6992       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6993 
6994     return true;
6995   }
6996 
6997   return false;
6998 }
6999 
7000 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7001   if (!Subtarget->isPPC64())
7002     return;
7003 
7004   // When we zero-extend from i32 to i64, we use a pattern like this:
7005   // def : Pat<(i64 (zext i32:$in)),
7006   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7007   //                   0, 32)>;
7008   // There are several 32-bit shift/rotate instructions, however, that will
7009   // clear the higher-order bits of their output, rendering the RLDICL
7010   // unnecessary. When that happens, we remove it here, and redefine the
7011   // relevant 32-bit operation to be a 64-bit operation.
7012 
7013   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7014 
7015   bool MadeChange = false;
7016   while (Position != CurDAG->allnodes_begin()) {
7017     SDNode *N = &*--Position;
7018     // Skip dead nodes and any non-machine opcodes.
7019     if (N->use_empty() || !N->isMachineOpcode())
7020       continue;
7021 
7022     if (N->getMachineOpcode() != PPC::RLDICL)
7023       continue;
7024 
7025     if (N->getConstantOperandVal(1) != 0 ||
7026         N->getConstantOperandVal(2) != 32)
7027       continue;
7028 
7029     SDValue ISR = N->getOperand(0);
7030     if (!ISR.isMachineOpcode() ||
7031         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7032       continue;
7033 
7034     if (!ISR.hasOneUse())
7035       continue;
7036 
7037     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7038       continue;
7039 
7040     SDValue IDef = ISR.getOperand(0);
7041     if (!IDef.isMachineOpcode() ||
7042         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7043       continue;
7044 
7045     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7046     // can get rid of it.
7047 
7048     SDValue Op32 = ISR->getOperand(1);
7049     if (!Op32.isMachineOpcode())
7050       continue;
7051 
7052     // There are some 32-bit instructions that always clear the high-order 32
7053     // bits, there are also some instructions (like AND) that we can look
7054     // through.
7055     SmallPtrSet<SDNode *, 16> ToPromote;
7056     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7057       continue;
7058 
7059     // If the ToPromote set contains nodes that have uses outside of the set
7060     // (except for the original INSERT_SUBREG), then abort the transformation.
7061     bool OutsideUse = false;
7062     for (SDNode *PN : ToPromote) {
7063       for (SDNode *UN : PN->uses()) {
7064         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7065           OutsideUse = true;
7066           break;
7067         }
7068       }
7069 
7070       if (OutsideUse)
7071         break;
7072     }
7073     if (OutsideUse)
7074       continue;
7075 
7076     MadeChange = true;
7077 
7078     // We now know that this zero extension can be removed by promoting to
7079     // nodes in ToPromote to 64-bit operations, where for operations in the
7080     // frontier of the set, we need to insert INSERT_SUBREGs for their
7081     // operands.
7082     for (SDNode *PN : ToPromote) {
7083       unsigned NewOpcode;
7084       switch (PN->getMachineOpcode()) {
7085       default:
7086         llvm_unreachable("Don't know the 64-bit variant of this instruction");
7087       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
7088       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
7089       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
7090       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
7091       case PPC::LI:        NewOpcode = PPC::LI8; break;
7092       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
7093       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
7094       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
7095       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
7096       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
7097       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
7098       case PPC::OR:        NewOpcode = PPC::OR8; break;
7099       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7100       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
7101       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
7102       case PPC::AND:       NewOpcode = PPC::AND8; break;
7103       case PPC::ANDI_rec:
7104         NewOpcode = PPC::ANDI8_rec;
7105         break;
7106       case PPC::ANDIS_rec:
7107         NewOpcode = PPC::ANDIS8_rec;
7108         break;
7109       }
7110 
7111       // Note: During the replacement process, the nodes will be in an
7112       // inconsistent state (some instructions will have operands with values
7113       // of the wrong type). Once done, however, everything should be right
7114       // again.
7115 
7116       SmallVector<SDValue, 4> Ops;
7117       for (const SDValue &V : PN->ops()) {
7118         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7119             !isa<ConstantSDNode>(V)) {
7120           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7121           SDNode *ReplOp =
7122             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7123                                    ISR.getNode()->getVTList(), ReplOpOps);
7124           Ops.push_back(SDValue(ReplOp, 0));
7125         } else {
7126           Ops.push_back(V);
7127         }
7128       }
7129 
7130       // Because all to-be-promoted nodes only have users that are other
7131       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7132       // the i32 result value type with i64.
7133 
7134       SmallVector<EVT, 2> NewVTs;
7135       SDVTList VTs = PN->getVTList();
7136       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7137         if (VTs.VTs[i] == MVT::i32)
7138           NewVTs.push_back(MVT::i64);
7139         else
7140           NewVTs.push_back(VTs.VTs[i]);
7141 
7142       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
7143       LLVM_DEBUG(PN->dump(CurDAG));
7144 
7145       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7146 
7147       LLVM_DEBUG(dbgs() << "\nNew: ");
7148       LLVM_DEBUG(PN->dump(CurDAG));
7149       LLVM_DEBUG(dbgs() << "\n");
7150     }
7151 
7152     // Now we replace the original zero extend and its associated INSERT_SUBREG
7153     // with the value feeding the INSERT_SUBREG (which has now been promoted to
7154     // return an i64).
7155 
7156     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
7157     LLVM_DEBUG(N->dump(CurDAG));
7158     LLVM_DEBUG(dbgs() << "\nNew: ");
7159     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7160     LLVM_DEBUG(dbgs() << "\n");
7161 
7162     ReplaceUses(N, Op32.getNode());
7163   }
7164 
7165   if (MadeChange)
7166     CurDAG->RemoveDeadNodes();
7167 }
7168 
7169 static bool isVSXSwap(SDValue N) {
7170   if (!N->isMachineOpcode())
7171     return false;
7172   unsigned Opc = N->getMachineOpcode();
7173 
7174   // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7175   // operand is 2.
7176   if (Opc == PPC::XXPERMDIs) {
7177     return isa<ConstantSDNode>(N->getOperand(1)) &&
7178            N->getConstantOperandVal(1) == 2;
7179   } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7180     return N->getOperand(0) == N->getOperand(1) &&
7181            isa<ConstantSDNode>(N->getOperand(2)) &&
7182            N->getConstantOperandVal(2) == 2;
7183   }
7184 
7185   return false;
7186 }
7187 
7188 // TODO: Make this complete and replace with a table-gen bit.
7189 static bool isLaneInsensitive(SDValue N) {
7190   if (!N->isMachineOpcode())
7191     return false;
7192   unsigned Opc = N->getMachineOpcode();
7193 
7194   switch (Opc) {
7195   default:
7196     return false;
7197   case PPC::VAVGSB:
7198   case PPC::VAVGUB:
7199   case PPC::VAVGSH:
7200   case PPC::VAVGUH:
7201   case PPC::VAVGSW:
7202   case PPC::VAVGUW:
7203   case PPC::VMAXFP:
7204   case PPC::VMAXSB:
7205   case PPC::VMAXUB:
7206   case PPC::VMAXSH:
7207   case PPC::VMAXUH:
7208   case PPC::VMAXSW:
7209   case PPC::VMAXUW:
7210   case PPC::VMINFP:
7211   case PPC::VMINSB:
7212   case PPC::VMINUB:
7213   case PPC::VMINSH:
7214   case PPC::VMINUH:
7215   case PPC::VMINSW:
7216   case PPC::VMINUW:
7217   case PPC::VADDFP:
7218   case PPC::VADDUBM:
7219   case PPC::VADDUHM:
7220   case PPC::VADDUWM:
7221   case PPC::VSUBFP:
7222   case PPC::VSUBUBM:
7223   case PPC::VSUBUHM:
7224   case PPC::VSUBUWM:
7225   case PPC::VAND:
7226   case PPC::VANDC:
7227   case PPC::VOR:
7228   case PPC::VORC:
7229   case PPC::VXOR:
7230   case PPC::VNOR:
7231   case PPC::VMULUWM:
7232     return true;
7233   }
7234 }
7235 
7236 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7237 // lane-insensitive.
7238 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7239   // Our desired xxswap might be source of COPY_TO_REGCLASS.
7240   // TODO: Can we put this a common method for DAG?
7241   auto SkipRCCopy = [](SDValue V) {
7242     while (V->isMachineOpcode() &&
7243            V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7244       // All values in the chain should have single use.
7245       if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7246         return SDValue();
7247       V = V->getOperand(0);
7248     }
7249     return V.hasOneUse() ? V : SDValue();
7250   };
7251 
7252   SDValue VecOp = SkipRCCopy(N->getOperand(0));
7253   if (!VecOp || !isLaneInsensitive(VecOp))
7254     return;
7255 
7256   SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7257           RHS = SkipRCCopy(VecOp.getOperand(1));
7258   if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7259     return;
7260 
7261   // These swaps may still have chain-uses here, count on dead code elimination
7262   // in following passes to remove them.
7263   DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7264   DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7265   DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7266 }
7267 
7268 void PPCDAGToDAGISel::PeepholePPC64() {
7269   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7270 
7271   while (Position != CurDAG->allnodes_begin()) {
7272     SDNode *N = &*--Position;
7273     // Skip dead nodes and any non-machine opcodes.
7274     if (N->use_empty() || !N->isMachineOpcode())
7275       continue;
7276 
7277     if (isVSXSwap(SDValue(N, 0)))
7278       reduceVSXSwap(N, CurDAG);
7279 
7280     unsigned FirstOp;
7281     unsigned StorageOpcode = N->getMachineOpcode();
7282     bool RequiresMod4Offset = false;
7283 
7284     switch (StorageOpcode) {
7285     default: continue;
7286 
7287     case PPC::LWA:
7288     case PPC::LD:
7289     case PPC::DFLOADf64:
7290     case PPC::DFLOADf32:
7291       RequiresMod4Offset = true;
7292       LLVM_FALLTHROUGH;
7293     case PPC::LBZ:
7294     case PPC::LBZ8:
7295     case PPC::LFD:
7296     case PPC::LFS:
7297     case PPC::LHA:
7298     case PPC::LHA8:
7299     case PPC::LHZ:
7300     case PPC::LHZ8:
7301     case PPC::LWZ:
7302     case PPC::LWZ8:
7303       FirstOp = 0;
7304       break;
7305 
7306     case PPC::STD:
7307     case PPC::DFSTOREf64:
7308     case PPC::DFSTOREf32:
7309       RequiresMod4Offset = true;
7310       LLVM_FALLTHROUGH;
7311     case PPC::STB:
7312     case PPC::STB8:
7313     case PPC::STFD:
7314     case PPC::STFS:
7315     case PPC::STH:
7316     case PPC::STH8:
7317     case PPC::STW:
7318     case PPC::STW8:
7319       FirstOp = 1;
7320       break;
7321     }
7322 
7323     // If this is a load or store with a zero offset, or within the alignment,
7324     // we may be able to fold an add-immediate into the memory operation.
7325     // The check against alignment is below, as it can't occur until we check
7326     // the arguments to N
7327     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7328       continue;
7329 
7330     SDValue Base = N->getOperand(FirstOp + 1);
7331     if (!Base.isMachineOpcode())
7332       continue;
7333 
7334     unsigned Flags = 0;
7335     bool ReplaceFlags = true;
7336 
7337     // When the feeding operation is an add-immediate of some sort,
7338     // determine whether we need to add relocation information to the
7339     // target flags on the immediate operand when we fold it into the
7340     // load instruction.
7341     //
7342     // For something like ADDItocL, the relocation information is
7343     // inferred from the opcode; when we process it in the AsmPrinter,
7344     // we add the necessary relocation there.  A load, though, can receive
7345     // relocation from various flavors of ADDIxxx, so we need to carry
7346     // the relocation information in the target flags.
7347     switch (Base.getMachineOpcode()) {
7348     default: continue;
7349 
7350     case PPC::ADDI8:
7351     case PPC::ADDI:
7352       // In some cases (such as TLS) the relocation information
7353       // is already in place on the operand, so copying the operand
7354       // is sufficient.
7355       ReplaceFlags = false;
7356       // For these cases, the immediate may not be divisible by 4, in
7357       // which case the fold is illegal for DS-form instructions.  (The
7358       // other cases provide aligned addresses and are always safe.)
7359       if (RequiresMod4Offset &&
7360           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
7361            Base.getConstantOperandVal(1) % 4 != 0))
7362         continue;
7363       break;
7364     case PPC::ADDIdtprelL:
7365       Flags = PPCII::MO_DTPREL_LO;
7366       break;
7367     case PPC::ADDItlsldL:
7368       Flags = PPCII::MO_TLSLD_LO;
7369       break;
7370     case PPC::ADDItocL:
7371       Flags = PPCII::MO_TOC_LO;
7372       break;
7373     }
7374 
7375     SDValue ImmOpnd = Base.getOperand(1);
7376 
7377     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7378     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7379     // we might have needed different @ha relocation values for the offset
7380     // pointers).
7381     int MaxDisplacement = 7;
7382     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7383       const GlobalValue *GV = GA->getGlobal();
7384       Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7385       MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7386     }
7387 
7388     bool UpdateHBase = false;
7389     SDValue HBase = Base.getOperand(0);
7390 
7391     int Offset = N->getConstantOperandVal(FirstOp);
7392     if (ReplaceFlags) {
7393       if (Offset < 0 || Offset > MaxDisplacement) {
7394         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7395         // one use, then we can do this for any offset, we just need to also
7396         // update the offset (i.e. the symbol addend) on the addis also.
7397         if (Base.getMachineOpcode() != PPC::ADDItocL)
7398           continue;
7399 
7400         if (!HBase.isMachineOpcode() ||
7401             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7402           continue;
7403 
7404         if (!Base.hasOneUse() || !HBase.hasOneUse())
7405           continue;
7406 
7407         SDValue HImmOpnd = HBase.getOperand(1);
7408         if (HImmOpnd != ImmOpnd)
7409           continue;
7410 
7411         UpdateHBase = true;
7412       }
7413     } else {
7414       // If we're directly folding the addend from an addi instruction, then:
7415       //  1. In general, the offset on the memory access must be zero.
7416       //  2. If the addend is a constant, then it can be combined with a
7417       //     non-zero offset, but only if the result meets the encoding
7418       //     requirements.
7419       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7420         Offset += C->getSExtValue();
7421 
7422         if (RequiresMod4Offset && (Offset % 4) != 0)
7423           continue;
7424 
7425         if (!isInt<16>(Offset))
7426           continue;
7427 
7428         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7429                                             ImmOpnd.getValueType());
7430       } else if (Offset != 0) {
7431         continue;
7432       }
7433     }
7434 
7435     // We found an opportunity.  Reverse the operands from the add
7436     // immediate and substitute them into the load or store.  If
7437     // needed, update the target flags for the immediate operand to
7438     // reflect the necessary relocation information.
7439     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
7440     LLVM_DEBUG(Base->dump(CurDAG));
7441     LLVM_DEBUG(dbgs() << "\nN: ");
7442     LLVM_DEBUG(N->dump(CurDAG));
7443     LLVM_DEBUG(dbgs() << "\n");
7444 
7445     // If the relocation information isn't already present on the
7446     // immediate operand, add it now.
7447     if (ReplaceFlags) {
7448       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7449         SDLoc dl(GA);
7450         const GlobalValue *GV = GA->getGlobal();
7451         Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7452         // We can't perform this optimization for data whose alignment
7453         // is insufficient for the instruction encoding.
7454         if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7455           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7456           continue;
7457         }
7458         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7459       } else if (ConstantPoolSDNode *CP =
7460                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7461         const Constant *C = CP->getConstVal();
7462         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7463                                                 Offset, Flags);
7464       }
7465     }
7466 
7467     if (FirstOp == 1) // Store
7468       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7469                                        Base.getOperand(0), N->getOperand(3));
7470     else // Load
7471       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7472                                        N->getOperand(2));
7473 
7474     if (UpdateHBase)
7475       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7476                                        ImmOpnd);
7477 
7478     // The add-immediate may now be dead, in which case remove it.
7479     if (Base.getNode()->use_empty())
7480       CurDAG->RemoveDeadNode(Base.getNode());
7481   }
7482 }
7483 
7484 /// createPPCISelDag - This pass converts a legalized DAG into a
7485 /// PowerPC-specific DAG, ready for instruction scheduling.
7486 ///
7487 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7488                                      CodeGenOpt::Level OptLevel) {
7489   return new PPCDAGToDAGISel(TM, OptLevel);
7490 }
7491