1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pattern matching instruction selector for PowerPC, 10 // converting from a legalized dag to a PPC dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCISelLowering.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGISel.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/IntrinsicsPowerPC.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MachineValueType.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <limits> 63 #include <memory> 64 #include <new> 65 #include <tuple> 66 #include <utility> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "ppc-codegen" 71 72 STATISTIC(NumSextSetcc, 73 "Number of (sext(setcc)) nodes expanded into GPR sequence."); 74 STATISTIC(NumZextSetcc, 75 "Number of (zext(setcc)) nodes expanded into GPR sequence."); 76 STATISTIC(SignExtensionsAdded, 77 "Number of sign extensions for compare inputs added."); 78 STATISTIC(ZeroExtensionsAdded, 79 "Number of zero extensions for compare inputs added."); 80 STATISTIC(NumLogicOpsOnComparison, 81 "Number of logical ops on i1 values calculated in GPR."); 82 STATISTIC(OmittedForNonExtendUses, 83 "Number of compares not eliminated as they have non-extending uses."); 84 STATISTIC(NumP9Setb, 85 "Number of compares lowered to setb."); 86 87 // FIXME: Remove this once the bug has been fixed! 88 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 89 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 90 91 static cl::opt<bool> 92 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 93 cl::desc("use aggressive ppc isel for bit permutations"), 94 cl::Hidden); 95 static cl::opt<bool> BPermRewriterNoMasking( 96 "ppc-bit-perm-rewriter-stress-rotates", 97 cl::desc("stress rotate selection in aggressive ppc isel for " 98 "bit permutations"), 99 cl::Hidden); 100 101 static cl::opt<bool> EnableBranchHint( 102 "ppc-use-branch-hint", cl::init(true), 103 cl::desc("Enable static hinting of branches on ppc"), 104 cl::Hidden); 105 106 static cl::opt<bool> EnableTLSOpt( 107 "ppc-tls-opt", cl::init(true), 108 cl::desc("Enable tls optimization peephole"), 109 cl::Hidden); 110 111 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, 112 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, 113 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; 114 115 static cl::opt<ICmpInGPRType> CmpInGPR( 116 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), 117 cl::desc("Specify the types of comparisons to emit GPR-only code for."), 118 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), 119 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), 120 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), 121 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), 122 clEnumValN(ICGPR_NonExtIn, "nonextin", 123 "Only comparisons where inputs don't need [sz]ext."), 124 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), 125 clEnumValN(ICGPR_ZextI32, "zexti32", 126 "Only i32 comparisons with zext result."), 127 clEnumValN(ICGPR_ZextI64, "zexti64", 128 "Only i64 comparisons with zext result."), 129 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), 130 clEnumValN(ICGPR_SextI32, "sexti32", 131 "Only i32 comparisons with sext result."), 132 clEnumValN(ICGPR_SextI64, "sexti64", 133 "Only i64 comparisons with sext result."))); 134 namespace { 135 136 //===--------------------------------------------------------------------===// 137 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 138 /// instructions for SelectionDAG operations. 139 /// 140 class PPCDAGToDAGISel : public SelectionDAGISel { 141 const PPCTargetMachine &TM; 142 const PPCSubtarget *Subtarget = nullptr; 143 const PPCTargetLowering *PPCLowering = nullptr; 144 unsigned GlobalBaseReg = 0; 145 146 public: 147 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) 148 : SelectionDAGISel(tm, OptLevel), TM(tm) {} 149 150 bool runOnMachineFunction(MachineFunction &MF) override { 151 // Make sure we re-emit a set of the global base reg if necessary 152 GlobalBaseReg = 0; 153 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 154 PPCLowering = Subtarget->getTargetLowering(); 155 if (Subtarget->hasROPProtect()) { 156 // Create a place on the stack for the ROP Protection Hash. 157 // The ROP Protection Hash will always be 8 bytes and aligned to 8 158 // bytes. 159 MachineFrameInfo &MFI = MF.getFrameInfo(); 160 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 161 const int Result = MFI.CreateStackObject(8, Align(8), false); 162 FI->setROPProtectionHashSaveIndex(Result); 163 } 164 SelectionDAGISel::runOnMachineFunction(MF); 165 166 return true; 167 } 168 169 void PreprocessISelDAG() override; 170 void PostprocessISelDAG() override; 171 172 /// getI16Imm - Return a target constant with the specified value, of type 173 /// i16. 174 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { 175 return CurDAG->getTargetConstant(Imm, dl, MVT::i16); 176 } 177 178 /// getI32Imm - Return a target constant with the specified value, of type 179 /// i32. 180 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 181 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 182 } 183 184 /// getI64Imm - Return a target constant with the specified value, of type 185 /// i64. 186 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 187 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 188 } 189 190 /// getSmallIPtrImm - Return a target constant of pointer type. 191 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { 192 return CurDAG->getTargetConstant( 193 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 194 } 195 196 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 197 /// rotate and mask opcode and mask operation. 198 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 199 unsigned &SH, unsigned &MB, unsigned &ME); 200 201 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 202 /// base register. Return the virtual register that holds this value. 203 SDNode *getGlobalBaseReg(); 204 205 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); 206 207 // Select - Convert the specified operand from a target-independent to a 208 // target-specific node if it hasn't already been changed. 209 void Select(SDNode *N) override; 210 211 bool tryBitfieldInsert(SDNode *N); 212 bool tryBitPermutation(SDNode *N); 213 bool tryIntCompareInGPR(SDNode *N); 214 215 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into 216 // an X-Form load instruction with the offset being a relocation coming from 217 // the PPCISD::ADD_TLS. 218 bool tryTLSXFormLoad(LoadSDNode *N); 219 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into 220 // an X-Form store instruction with the offset being a relocation coming from 221 // the PPCISD::ADD_TLS. 222 bool tryTLSXFormStore(StoreSDNode *N); 223 /// SelectCC - Select a comparison of the specified values with the 224 /// specified condition code, returning the CR# of the expression. 225 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 226 const SDLoc &dl, SDValue Chain = SDValue()); 227 228 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 229 /// immediate field. Note that the operand at this point is already the 230 /// result of a prior SelectAddressRegImm call. 231 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 232 if (N.getOpcode() == ISD::TargetConstant || 233 N.getOpcode() == ISD::TargetGlobalAddress) { 234 Out = N; 235 return true; 236 } 237 238 return false; 239 } 240 241 /// SelectDSForm - Returns true if address N can be represented by the 242 /// addressing mode of DSForm instructions (a base register, plus a signed 243 /// 16-bit displacement that is a multiple of 4. 244 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 245 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 246 Align(4)) == PPC::AM_DSForm; 247 } 248 249 /// SelectDQForm - Returns true if address N can be represented by the 250 /// addressing mode of DQForm instructions (a base register, plus a signed 251 /// 16-bit displacement that is a multiple of 16. 252 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 253 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 254 Align(16)) == PPC::AM_DQForm; 255 } 256 257 /// SelectDForm - Returns true if address N can be represented by 258 /// the addressing mode of DForm instructions (a base register, plus a 259 /// signed 16-bit immediate. 260 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 261 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 262 None) == PPC::AM_DForm; 263 } 264 265 /// SelectXForm - Returns true if address N can be represented by the 266 /// addressing mode of XForm instructions (an indexed [r+r] operation). 267 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 268 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 269 None) == PPC::AM_XForm; 270 } 271 272 /// SelectForceXForm - Given the specified address, force it to be 273 /// represented as an indexed [r+r] operation (an XForm instruction). 274 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp, 275 SDValue &Base) { 276 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) == 277 PPC::AM_XForm; 278 } 279 280 /// SelectAddrIdx - Given the specified address, check to see if it can be 281 /// represented as an indexed [r+r] operation. 282 /// This is for xform instructions whose associated displacement form is D. 283 /// The last parameter \p 0 means associated D form has no requirment for 16 284 /// bit signed displacement. 285 /// Returns false if it can be represented by [r+imm], which are preferred. 286 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 287 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None); 288 } 289 290 /// SelectAddrIdx4 - Given the specified address, check to see if it can be 291 /// represented as an indexed [r+r] operation. 292 /// This is for xform instructions whose associated displacement form is DS. 293 /// The last parameter \p 4 means associated DS form 16 bit signed 294 /// displacement must be a multiple of 4. 295 /// Returns false if it can be represented by [r+imm], which are preferred. 296 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { 297 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 298 Align(4)); 299 } 300 301 /// SelectAddrIdx16 - Given the specified address, check to see if it can be 302 /// represented as an indexed [r+r] operation. 303 /// This is for xform instructions whose associated displacement form is DQ. 304 /// The last parameter \p 16 means associated DQ form 16 bit signed 305 /// displacement must be a multiple of 16. 306 /// Returns false if it can be represented by [r+imm], which are preferred. 307 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { 308 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 309 Align(16)); 310 } 311 312 /// SelectAddrIdxOnly - Given the specified address, force it to be 313 /// represented as an indexed [r+r] operation. 314 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 315 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 316 } 317 318 /// SelectAddrImm - Returns true if the address N can be represented by 319 /// a base register plus a signed 16-bit displacement [r+imm]. 320 /// The last parameter \p 0 means D form has no requirment for 16 bit signed 321 /// displacement. 322 bool SelectAddrImm(SDValue N, SDValue &Disp, 323 SDValue &Base) { 324 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None); 325 } 326 327 /// SelectAddrImmX4 - Returns true if the address N can be represented by 328 /// a base register plus a signed 16-bit displacement that is a multiple of 329 /// 4 (last parameter). Suitable for use by STD and friends. 330 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 331 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); 332 } 333 334 /// SelectAddrImmX16 - Returns true if the address N can be represented by 335 /// a base register plus a signed 16-bit displacement that is a multiple of 336 /// 16(last parameter). Suitable for use by STXV and friends. 337 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { 338 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 339 Align(16)); 340 } 341 342 /// SelectAddrImmX34 - Returns true if the address N can be represented by 343 /// a base register plus a signed 34-bit displacement. Suitable for use by 344 /// PSTXVP and friends. 345 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) { 346 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG); 347 } 348 349 // Select an address into a single register. 350 bool SelectAddr(SDValue N, SDValue &Base) { 351 Base = N; 352 return true; 353 } 354 355 bool SelectAddrPCRel(SDValue N, SDValue &Base) { 356 return PPCLowering->SelectAddressPCRel(N, Base); 357 } 358 359 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 360 /// inline asm expressions. It is always correct to compute the value into 361 /// a register. The case of adding a (possibly relocatable) constant to a 362 /// register can be improved, but it is wrong to substitute Reg+Reg for 363 /// Reg in an asm, because the load or store opcode would have to change. 364 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 365 unsigned ConstraintID, 366 std::vector<SDValue> &OutOps) override { 367 switch(ConstraintID) { 368 default: 369 errs() << "ConstraintID: " << ConstraintID << "\n"; 370 llvm_unreachable("Unexpected asm memory constraint"); 371 case InlineAsm::Constraint_es: 372 case InlineAsm::Constraint_m: 373 case InlineAsm::Constraint_o: 374 case InlineAsm::Constraint_Q: 375 case InlineAsm::Constraint_Z: 376 case InlineAsm::Constraint_Zy: 377 // We need to make sure that this one operand does not end up in r0 378 // (because we might end up lowering this as 0(%op)). 379 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 380 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 381 SDLoc dl(Op); 382 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 383 SDValue NewOp = 384 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 385 dl, Op.getValueType(), 386 Op, RC), 0); 387 388 OutOps.push_back(NewOp); 389 return false; 390 } 391 return true; 392 } 393 394 StringRef getPassName() const override { 395 return "PowerPC DAG->DAG Pattern Instruction Selection"; 396 } 397 398 // Include the pieces autogenerated from the target description. 399 #include "PPCGenDAGISel.inc" 400 401 private: 402 bool trySETCC(SDNode *N); 403 bool tryFoldSWTestBRCC(SDNode *N); 404 bool tryAsSingleRLDICL(SDNode *N); 405 bool tryAsSingleRLDICR(SDNode *N); 406 bool tryAsSingleRLWINM(SDNode *N); 407 bool tryAsSingleRLWINM8(SDNode *N); 408 bool tryAsSingleRLWIMI(SDNode *N); 409 bool tryAsPairOfRLDICL(SDNode *N); 410 bool tryAsSingleRLDIMI(SDNode *N); 411 412 void PeepholePPC64(); 413 void PeepholePPC64ZExt(); 414 void PeepholeCROps(); 415 416 SDValue combineToCMPB(SDNode *N); 417 void foldBoolExts(SDValue &Res, SDNode *&N); 418 419 bool AllUsersSelectZero(SDNode *N); 420 void SwapAllSelectUsers(SDNode *N); 421 422 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; 423 void transferMemOperands(SDNode *N, SDNode *Result); 424 }; 425 426 } // end anonymous namespace 427 428 /// getGlobalBaseReg - Output the instructions required to put the 429 /// base address to use for accessing globals into a register. 430 /// 431 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 432 if (!GlobalBaseReg) { 433 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 434 // Insert the set of GlobalBaseReg into the first MBB of the function 435 MachineBasicBlock &FirstMBB = MF->front(); 436 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 437 const Module *M = MF->getFunction().getParent(); 438 DebugLoc dl; 439 440 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 441 if (Subtarget->isTargetELF()) { 442 GlobalBaseReg = PPC::R30; 443 if (!Subtarget->isSecurePlt() && 444 M->getPICLevel() == PICLevel::SmallPIC) { 445 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 446 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 447 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 448 } else { 449 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 450 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 451 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 452 BuildMI(FirstMBB, MBBI, dl, 453 TII.get(PPC::UpdateGBR), GlobalBaseReg) 454 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 455 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 456 } 457 } else { 458 GlobalBaseReg = 459 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); 460 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 461 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 462 } 463 } else { 464 // We must ensure that this sequence is dominated by the prologue. 465 // FIXME: This is a bit of a big hammer since we don't get the benefits 466 // of shrink-wrapping whenever we emit this instruction. Considering 467 // this is used in any function where we emit a jump table, this may be 468 // a significant limitation. We should consider inserting this in the 469 // block where it is used and then commoning this sequence up if it 470 // appears in multiple places. 471 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of 472 // MovePCtoLR8. 473 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); 474 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 475 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 476 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 477 } 478 } 479 return CurDAG->getRegister(GlobalBaseReg, 480 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 481 .getNode(); 482 } 483 484 // Check if a SDValue has the toc-data attribute. 485 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) { 486 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val); 487 if (!GA) 488 return false; 489 490 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal()); 491 if (!GV) 492 return false; 493 494 if (!GV->hasAttribute("toc-data")) 495 return false; 496 497 // TODO: These asserts should be updated as more support for the toc data 498 // transformation is added (64 bit, struct support, etc.). 499 500 assert(PointerSize == 4 && "Only 32 Bit Codegen is currently supported by " 501 "the toc data transformation."); 502 503 assert(PointerSize >= GV->getAlign().valueOrOne().value() && 504 "GlobalVariables with an alignment requirement stricter then 4-bytes " 505 "not supported by the toc data transformation."); 506 507 Type *GVType = GV->getValueType(); 508 509 assert(GVType->isSized() && "A GlobalVariable's size must be known to be " 510 "supported by the toc data transformation."); 511 512 if (GVType->isVectorTy()) 513 report_fatal_error("A GlobalVariable of Vector type is not currently " 514 "supported by the toc data transformation."); 515 516 if (GVType->isArrayTy()) 517 report_fatal_error("A GlobalVariable of Array type is not currently " 518 "supported by the toc data transformation."); 519 520 if (GVType->isStructTy()) 521 report_fatal_error("A GlobalVariable of Struct type is not currently " 522 "supported by the toc data transformation."); 523 524 assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && 525 "A GlobalVariable with size larger than 32 bits is not currently " 526 "supported by the toc data transformation."); 527 528 if (GV->hasLocalLinkage() || GV->hasPrivateLinkage()) 529 report_fatal_error("A GlobalVariable with private or local linkage is not " 530 "currently supported by the toc data transformation."); 531 532 assert(!GV->hasCommonLinkage() && 533 "Tentative definitions cannot have the mapping class XMC_TD."); 534 535 return true; 536 } 537 538 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 539 /// operand. If so Imm will receive the 32-bit value. 540 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 541 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 542 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 543 return true; 544 } 545 return false; 546 } 547 548 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 549 /// operand. If so Imm will receive the 64-bit value. 550 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 551 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 552 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 553 return true; 554 } 555 return false; 556 } 557 558 // isInt32Immediate - This method tests to see if a constant operand. 559 // If so Imm will receive the 32 bit value. 560 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 561 return isInt32Immediate(N.getNode(), Imm); 562 } 563 564 /// isInt64Immediate - This method tests to see if the value is a 64-bit 565 /// constant operand. If so Imm will receive the 64-bit value. 566 static bool isInt64Immediate(SDValue N, uint64_t &Imm) { 567 return isInt64Immediate(N.getNode(), Imm); 568 } 569 570 static unsigned getBranchHint(unsigned PCC, 571 const FunctionLoweringInfo &FuncInfo, 572 const SDValue &DestMBB) { 573 assert(isa<BasicBlockSDNode>(DestMBB)); 574 575 if (!FuncInfo.BPI) return PPC::BR_NO_HINT; 576 577 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); 578 const Instruction *BBTerm = BB->getTerminator(); 579 580 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 581 582 const BasicBlock *TBB = BBTerm->getSuccessor(0); 583 const BasicBlock *FBB = BBTerm->getSuccessor(1); 584 585 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); 586 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); 587 588 // We only want to handle cases which are easy to predict at static time, e.g. 589 // C++ throw statement, that is very likely not taken, or calling never 590 // returned function, e.g. stdlib exit(). So we set Threshold to filter 591 // unwanted cases. 592 // 593 // Below is LLVM branch weight table, we only want to handle case 1, 2 594 // 595 // Case Taken:Nontaken Example 596 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 597 // 2. Invoke-terminating 1:1048575 598 // 3. Coldblock 4:64 __builtin_expect 599 // 4. Loop Branch 124:4 For loop 600 // 5. PH/ZH/FPH 20:12 601 const uint32_t Threshold = 10000; 602 603 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 604 return PPC::BR_NO_HINT; 605 606 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() 607 << "::" << BB->getName() << "'\n" 608 << " -> " << TBB->getName() << ": " << TProb << "\n" 609 << " -> " << FBB->getName() << ": " << FProb << "\n"); 610 611 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 612 613 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 614 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 615 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 616 std::swap(TProb, FProb); 617 618 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 619 } 620 621 // isOpcWithIntImmediate - This method tests to see if the node is a specific 622 // opcode and that it has a immediate integer right operand. 623 // If so Imm will receive the 32 bit value. 624 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 625 return N->getOpcode() == Opc 626 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 627 } 628 629 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { 630 SDLoc dl(SN); 631 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 632 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 633 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 634 if (SN->hasOneUse()) 635 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 636 getSmallIPtrImm(Offset, dl)); 637 else 638 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 639 getSmallIPtrImm(Offset, dl))); 640 } 641 642 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 643 bool isShiftMask, unsigned &SH, 644 unsigned &MB, unsigned &ME) { 645 // Don't even go down this path for i64, since different logic will be 646 // necessary for rldicl/rldicr/rldimi. 647 if (N->getValueType(0) != MVT::i32) 648 return false; 649 650 unsigned Shift = 32; 651 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 652 unsigned Opcode = N->getOpcode(); 653 if (N->getNumOperands() != 2 || 654 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 655 return false; 656 657 if (Opcode == ISD::SHL) { 658 // apply shift left to mask if it comes first 659 if (isShiftMask) Mask = Mask << Shift; 660 // determine which bits are made indeterminant by shift 661 Indeterminant = ~(0xFFFFFFFFu << Shift); 662 } else if (Opcode == ISD::SRL) { 663 // apply shift right to mask if it comes first 664 if (isShiftMask) Mask = Mask >> Shift; 665 // determine which bits are made indeterminant by shift 666 Indeterminant = ~(0xFFFFFFFFu >> Shift); 667 // adjust for the left rotate 668 Shift = 32 - Shift; 669 } else if (Opcode == ISD::ROTL) { 670 Indeterminant = 0; 671 } else { 672 return false; 673 } 674 675 // if the mask doesn't intersect any Indeterminant bits 676 if (Mask && !(Mask & Indeterminant)) { 677 SH = Shift & 31; 678 // make sure the mask is still a mask (wrap arounds may not be) 679 return isRunOfOnes(Mask, MB, ME); 680 } 681 return false; 682 } 683 684 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { 685 SDValue Base = ST->getBasePtr(); 686 if (Base.getOpcode() != PPCISD::ADD_TLS) 687 return false; 688 SDValue Offset = ST->getOffset(); 689 if (!Offset.isUndef()) 690 return false; 691 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) 692 return false; 693 694 SDLoc dl(ST); 695 EVT MemVT = ST->getMemoryVT(); 696 EVT RegVT = ST->getValue().getValueType(); 697 698 unsigned Opcode; 699 switch (MemVT.getSimpleVT().SimpleTy) { 700 default: 701 return false; 702 case MVT::i8: { 703 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; 704 break; 705 } 706 case MVT::i16: { 707 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; 708 break; 709 } 710 case MVT::i32: { 711 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; 712 break; 713 } 714 case MVT::i64: { 715 Opcode = PPC::STDXTLS; 716 break; 717 } 718 } 719 SDValue Chain = ST->getChain(); 720 SDVTList VTs = ST->getVTList(); 721 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), 722 Chain}; 723 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 724 transferMemOperands(ST, MN); 725 ReplaceNode(ST, MN); 726 return true; 727 } 728 729 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { 730 SDValue Base = LD->getBasePtr(); 731 if (Base.getOpcode() != PPCISD::ADD_TLS) 732 return false; 733 SDValue Offset = LD->getOffset(); 734 if (!Offset.isUndef()) 735 return false; 736 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) 737 return false; 738 739 SDLoc dl(LD); 740 EVT MemVT = LD->getMemoryVT(); 741 EVT RegVT = LD->getValueType(0); 742 unsigned Opcode; 743 switch (MemVT.getSimpleVT().SimpleTy) { 744 default: 745 return false; 746 case MVT::i8: { 747 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; 748 break; 749 } 750 case MVT::i16: { 751 Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; 752 break; 753 } 754 case MVT::i32: { 755 Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; 756 break; 757 } 758 case MVT::i64: { 759 Opcode = PPC::LDXTLS; 760 break; 761 } 762 } 763 SDValue Chain = LD->getChain(); 764 SDVTList VTs = LD->getVTList(); 765 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; 766 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 767 transferMemOperands(LD, MN); 768 ReplaceNode(LD, MN); 769 return true; 770 } 771 772 /// Turn an or of two masked values into the rotate left word immediate then 773 /// mask insert (rlwimi) instruction. 774 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 775 SDValue Op0 = N->getOperand(0); 776 SDValue Op1 = N->getOperand(1); 777 SDLoc dl(N); 778 779 KnownBits LKnown = CurDAG->computeKnownBits(Op0); 780 KnownBits RKnown = CurDAG->computeKnownBits(Op1); 781 782 unsigned TargetMask = LKnown.Zero.getZExtValue(); 783 unsigned InsertMask = RKnown.Zero.getZExtValue(); 784 785 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 786 unsigned Op0Opc = Op0.getOpcode(); 787 unsigned Op1Opc = Op1.getOpcode(); 788 unsigned Value, SH = 0; 789 TargetMask = ~TargetMask; 790 InsertMask = ~InsertMask; 791 792 // If the LHS has a foldable shift and the RHS does not, then swap it to the 793 // RHS so that we can fold the shift into the insert. 794 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 795 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 796 Op0.getOperand(0).getOpcode() == ISD::SRL) { 797 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 798 Op1.getOperand(0).getOpcode() != ISD::SRL) { 799 std::swap(Op0, Op1); 800 std::swap(Op0Opc, Op1Opc); 801 std::swap(TargetMask, InsertMask); 802 } 803 } 804 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 805 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 806 Op1.getOperand(0).getOpcode() != ISD::SRL) { 807 std::swap(Op0, Op1); 808 std::swap(Op0Opc, Op1Opc); 809 std::swap(TargetMask, InsertMask); 810 } 811 } 812 813 unsigned MB, ME; 814 if (isRunOfOnes(InsertMask, MB, ME)) { 815 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 816 isInt32Immediate(Op1.getOperand(1), Value)) { 817 Op1 = Op1.getOperand(0); 818 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 819 } 820 if (Op1Opc == ISD::AND) { 821 // The AND mask might not be a constant, and we need to make sure that 822 // if we're going to fold the masking with the insert, all bits not 823 // know to be zero in the mask are known to be one. 824 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); 825 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); 826 827 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 828 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 829 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 830 // Note that Value must be in range here (less than 32) because 831 // otherwise there would not be any bits set in InsertMask. 832 Op1 = Op1.getOperand(0).getOperand(0); 833 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 834 } 835 } 836 837 SH &= 31; 838 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 839 getI32Imm(ME, dl) }; 840 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 841 return true; 842 } 843 } 844 return false; 845 } 846 847 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { 848 unsigned MaxTruncation = 0; 849 // Cannot use range-based for loop here as we need the actual use (i.e. we 850 // need the operand number corresponding to the use). A range-based for 851 // will unbox the use and provide an SDNode*. 852 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); 853 Use != UseEnd; ++Use) { 854 unsigned Opc = 855 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); 856 switch (Opc) { 857 default: return 0; 858 case ISD::TRUNCATE: 859 if (Use->isMachineOpcode()) 860 return 0; 861 MaxTruncation = 862 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); 863 continue; 864 case ISD::STORE: { 865 if (Use->isMachineOpcode()) 866 return 0; 867 StoreSDNode *STN = cast<StoreSDNode>(*Use); 868 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); 869 if (MemVTSize == 64 || Use.getOperandNo() != 0) 870 return 0; 871 MaxTruncation = std::max(MaxTruncation, MemVTSize); 872 continue; 873 } 874 case PPC::STW8: 875 case PPC::STWX8: 876 case PPC::STWU8: 877 case PPC::STWUX8: 878 if (Use.getOperandNo() != 0) 879 return 0; 880 MaxTruncation = std::max(MaxTruncation, 32u); 881 continue; 882 case PPC::STH8: 883 case PPC::STHX8: 884 case PPC::STHU8: 885 case PPC::STHUX8: 886 if (Use.getOperandNo() != 0) 887 return 0; 888 MaxTruncation = std::max(MaxTruncation, 16u); 889 continue; 890 case PPC::STB8: 891 case PPC::STBX8: 892 case PPC::STBU8: 893 case PPC::STBUX8: 894 if (Use.getOperandNo() != 0) 895 return 0; 896 MaxTruncation = std::max(MaxTruncation, 8u); 897 continue; 898 } 899 } 900 return MaxTruncation; 901 } 902 903 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive 904 // zeros and return the number of bits by the left of these consecutive zeros. 905 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) { 906 unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm)); 907 unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm)); 908 if ((HiTZ + LoLZ) >= Num) 909 return (32 + HiTZ); 910 return 0; 911 } 912 913 // Direct materialization of 64-bit constants by enumerated patterns. 914 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, 915 uint64_t Imm, unsigned &InstCnt) { 916 unsigned TZ = countTrailingZeros<uint64_t>(Imm); 917 unsigned LZ = countLeadingZeros<uint64_t>(Imm); 918 unsigned TO = countTrailingOnes<uint64_t>(Imm); 919 unsigned LO = countLeadingOnes<uint64_t>(Imm); 920 unsigned Hi32 = Hi_32(Imm); 921 unsigned Lo32 = Lo_32(Imm); 922 SDNode *Result = nullptr; 923 unsigned Shift = 0; 924 925 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 926 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 927 }; 928 929 // Following patterns use 1 instructions to materialize the Imm. 930 InstCnt = 1; 931 // 1-1) Patterns : {zeros}{15-bit valve} 932 // {ones}{15-bit valve} 933 if (isInt<16>(Imm)) { 934 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64); 935 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 936 } 937 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros} 938 // {ones}{15-bit valve}{16 zeros} 939 if (TZ > 15 && (LZ > 32 || LO > 32)) 940 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 941 getI32Imm((Imm >> 16) & 0xffff)); 942 943 // Following patterns use 2 instructions to materialize the Imm. 944 InstCnt = 2; 945 assert(LZ < 64 && "Unexpected leading zeros here."); 946 // Count of ones follwing the leading zeros. 947 unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ); 948 // 2-1) Patterns : {zeros}{31-bit value} 949 // {ones}{31-bit value} 950 if (isInt<32>(Imm)) { 951 uint64_t ImmHi16 = (Imm >> 16) & 0xffff; 952 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 953 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 954 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 955 getI32Imm(Imm & 0xffff)); 956 } 957 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros} 958 // {zeros}{15-bit value}{zeros} 959 // {zeros}{ones}{15-bit value} 960 // {ones}{15-bit value}{zeros} 961 // We can take advantage of LI's sign-extension semantics to generate leading 962 // ones, and then use RLDIC to mask off the ones in both sides after rotation. 963 if ((LZ + FO + TZ) > 48) { 964 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 965 getI32Imm((Imm >> TZ) & 0xffff)); 966 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 967 getI32Imm(TZ), getI32Imm(LZ)); 968 } 969 // 2-3) Pattern : {zeros}{15-bit value}{ones} 970 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value, 971 // therefore we can take advantage of LI's sign-extension semantics, and then 972 // mask them off after rotation. 973 // 974 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+ 975 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 976 // +------------------------+ +------------------------+ 977 // 63 0 63 0 978 // Imm (Imm >> (48 - LZ) & 0xffff) 979 // +----sext-----|--16-bit--+ +clear-|-----------------+ 980 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 981 // +------------------------+ +------------------------+ 982 // 63 0 63 0 983 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ 984 if ((LZ + TO) > 48) { 985 // Since the immediates with (LZ > 32) have been handled by previous 986 // patterns, here we have (LZ <= 32) to make sure we will not shift right 987 // the Imm by a negative value. 988 assert(LZ <= 32 && "Unexpected shift value."); 989 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 990 getI32Imm((Imm >> (48 - LZ) & 0xffff))); 991 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 992 getI32Imm(48 - LZ), getI32Imm(LZ)); 993 } 994 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones} 995 // {ones}{15-bit value}{ones} 996 // We can take advantage of LI's sign-extension semantics to generate leading 997 // ones, and then use RLDICL to mask off the ones in left sides (if required) 998 // after rotation. 999 // 1000 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+ 1001 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb| 1002 // +------------------------+ +------------------------+ 1003 // 63 0 63 0 1004 // Imm (Imm >> TO) & 0xffff 1005 // +----sext-----|--16-bit--+ +LZ|---------------------+ 1006 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111| 1007 // +------------------------+ +------------------------+ 1008 // 63 0 63 0 1009 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ 1010 if ((LZ + FO + TO) > 48) { 1011 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1012 getI32Imm((Imm >> TO) & 0xffff)); 1013 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1014 getI32Imm(TO), getI32Imm(LZ)); 1015 } 1016 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value} 1017 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit 1018 // value, we can use LI for Lo16 without generating leading ones then add the 1019 // Hi16(in Lo32). 1020 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) { 1021 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1022 getI32Imm(Lo32 & 0xffff)); 1023 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), 1024 getI32Imm(Lo32 >> 16)); 1025 } 1026 // 2-6) Patterns : {******}{49 zeros}{******} 1027 // {******}{49 ones}{******} 1028 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15 1029 // bits remain on both sides. Rotate right the Imm to construct an int<16> 1030 // value, use LI for int<16> value and then use RLDICL without mask to rotate 1031 // it back. 1032 // 1033 // 1) findContiguousZerosAtLeast(Imm, 49) 1034 // +------|--zeros-|------+ +---ones--||---15 bit--+ 1035 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb| 1036 // +----------------------+ +----------------------+ 1037 // 63 0 63 0 1038 // 1039 // 2) findContiguousZerosAtLeast(~Imm, 49) 1040 // +------|--ones--|------+ +---ones--||---15 bit--+ 1041 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1042 // +----------------------+ +----------------------+ 1043 // 63 0 63 0 1044 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) || 1045 (Shift = findContiguousZerosAtLeast(~Imm, 49))) { 1046 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1047 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1048 getI32Imm(RotImm & 0xffff)); 1049 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1050 getI32Imm(Shift), getI32Imm(0)); 1051 } 1052 1053 // Following patterns use 3 instructions to materialize the Imm. 1054 InstCnt = 3; 1055 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros} 1056 // {zeros}{31-bit value}{zeros} 1057 // {zeros}{ones}{31-bit value} 1058 // {ones}{31-bit value}{zeros} 1059 // We can take advantage of LIS's sign-extension semantics to generate leading 1060 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the 1061 // ones in both sides after rotation. 1062 if ((LZ + FO + TZ) > 32) { 1063 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff; 1064 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1065 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1066 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1067 getI32Imm((Imm >> TZ) & 0xffff)); 1068 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1069 getI32Imm(TZ), getI32Imm(LZ)); 1070 } 1071 // 3-2) Pattern : {zeros}{31-bit value}{ones} 1072 // Shift right the Imm by (32 - LZ) bits to construct a negtive 32 bits value, 1073 // therefore we can take advantage of LIS's sign-extension semantics, add 1074 // the remaining bits with ORI, and then mask them off after rotation. 1075 // This is similar to Pattern 2-3, please refer to the diagram there. 1076 if ((LZ + TO) > 32) { 1077 // Since the immediates with (LZ > 32) have been handled by previous 1078 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1079 // the Imm by a negative value. 1080 assert(LZ <= 32 && "Unexpected shift value."); 1081 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1082 getI32Imm((Imm >> (48 - LZ)) & 0xffff)); 1083 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1084 getI32Imm((Imm >> (32 - LZ)) & 0xffff)); 1085 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1086 getI32Imm(32 - LZ), getI32Imm(LZ)); 1087 } 1088 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones} 1089 // {ones}{31-bit value}{ones} 1090 // We can take advantage of LIS's sign-extension semantics to generate leading 1091 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the 1092 // ones in left sides (if required) after rotation. 1093 // This is similar to Pattern 2-4, please refer to the diagram there. 1094 if ((LZ + FO + TO) > 32) { 1095 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1096 getI32Imm((Imm >> (TO + 16)) & 0xffff)); 1097 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1098 getI32Imm((Imm >> TO) & 0xffff)); 1099 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1100 getI32Imm(TO), getI32Imm(LZ)); 1101 } 1102 // 3-4) Patterns : High word == Low word 1103 if (Hi32 == Lo32) { 1104 // Handle the first 32 bits. 1105 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff; 1106 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1107 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1108 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1109 getI32Imm(Lo32 & 0xffff)); 1110 // Use rldimi to insert the Low word into High word. 1111 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1112 getI32Imm(0)}; 1113 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1114 } 1115 // 3-5) Patterns : {******}{33 zeros}{******} 1116 // {******}{33 ones}{******} 1117 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31 1118 // bits remain on both sides. Rotate right the Imm to construct an int<32> 1119 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to 1120 // rotate it back. 1121 // This is similar to Pattern 2-6, please refer to the diagram there. 1122 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) || 1123 (Shift = findContiguousZerosAtLeast(~Imm, 33))) { 1124 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1125 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff; 1126 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1127 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1128 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1129 getI32Imm(RotImm & 0xffff)); 1130 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1131 getI32Imm(Shift), getI32Imm(0)); 1132 } 1133 1134 InstCnt = 0; 1135 return nullptr; 1136 } 1137 1138 // Try to select instructions to generate a 64 bit immediate using prefix as 1139 // well as non prefix instructions. The function will return the SDNode 1140 // to materialize that constant or it will return nullptr if it does not 1141 // find one. The variable InstCnt is set to the number of instructions that 1142 // were selected. 1143 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl, 1144 uint64_t Imm, unsigned &InstCnt) { 1145 unsigned TZ = countTrailingZeros<uint64_t>(Imm); 1146 unsigned LZ = countLeadingZeros<uint64_t>(Imm); 1147 unsigned TO = countTrailingOnes<uint64_t>(Imm); 1148 unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ)); 1149 unsigned Hi32 = Hi_32(Imm); 1150 unsigned Lo32 = Lo_32(Imm); 1151 1152 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1153 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1154 }; 1155 1156 auto getI64Imm = [CurDAG, dl](uint64_t Imm) { 1157 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1158 }; 1159 1160 // Following patterns use 1 instruction to materialize Imm. 1161 InstCnt = 1; 1162 1163 // The pli instruction can materialize up to 34 bits directly. 1164 // If a constant fits within 34-bits, emit the pli instruction here directly. 1165 if (isInt<34>(Imm)) 1166 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1167 CurDAG->getTargetConstant(Imm, dl, MVT::i64)); 1168 1169 // Require at least two instructions. 1170 InstCnt = 2; 1171 SDNode *Result = nullptr; 1172 // Patterns : {zeros}{ones}{33-bit value}{zeros} 1173 // {zeros}{33-bit value}{zeros} 1174 // {zeros}{ones}{33-bit value} 1175 // {ones}{33-bit value}{zeros} 1176 // We can take advantage of PLI's sign-extension semantics to generate leading 1177 // ones, and then use RLDIC to mask off the ones on both sides after rotation. 1178 if ((LZ + FO + TZ) > 30) { 1179 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff); 1180 APInt Extended = SignedInt34.sext(64); 1181 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1182 getI64Imm(*Extended.getRawData())); 1183 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1184 getI32Imm(TZ), getI32Imm(LZ)); 1185 } 1186 // Pattern : {zeros}{33-bit value}{ones} 1187 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value, 1188 // therefore we can take advantage of PLI's sign-extension semantics, and then 1189 // mask them off after rotation. 1190 // 1191 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+ 1192 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1193 // +------------------------+ +------------------------+ 1194 // 63 0 63 0 1195 // 1196 // +----sext-----|--34-bit--+ +clear-|-----------------+ 1197 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1198 // +------------------------+ +------------------------+ 1199 // 63 0 63 0 1200 if ((LZ + TO) > 30) { 1201 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff); 1202 APInt Extended = SignedInt34.sext(64); 1203 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1204 getI64Imm(*Extended.getRawData())); 1205 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1206 getI32Imm(30 - LZ), getI32Imm(LZ)); 1207 } 1208 // Patterns : {zeros}{ones}{33-bit value}{ones} 1209 // {ones}{33-bit value}{ones} 1210 // Similar to LI we can take advantage of PLI's sign-extension semantics to 1211 // generate leading ones, and then use RLDICL to mask off the ones in left 1212 // sides (if required) after rotation. 1213 if ((LZ + FO + TO) > 30) { 1214 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff); 1215 APInt Extended = SignedInt34.sext(64); 1216 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1217 getI64Imm(*Extended.getRawData())); 1218 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1219 getI32Imm(TO), getI32Imm(LZ)); 1220 } 1221 // Patterns : {******}{31 zeros}{******} 1222 // : {******}{31 ones}{******} 1223 // If Imm contains 31 consecutive zeros/ones then the remaining bit count 1224 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI 1225 // for the int<33> value and then use RLDICL without a mask to rotate it back. 1226 // 1227 // +------|--ones--|------+ +---ones--||---33 bit--+ 1228 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1229 // +----------------------+ +----------------------+ 1230 // 63 0 63 0 1231 for (unsigned Shift = 0; Shift < 63; ++Shift) { 1232 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1233 if (isInt<34>(RotImm)) { 1234 Result = 1235 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm)); 1236 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 1237 SDValue(Result, 0), getI32Imm(Shift), 1238 getI32Imm(0)); 1239 } 1240 } 1241 1242 // Patterns : High word == Low word 1243 // This is basically a splat of a 32 bit immediate. 1244 if (Hi32 == Lo32) { 1245 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1246 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1247 getI32Imm(0)}; 1248 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1249 } 1250 1251 InstCnt = 3; 1252 // Catch-all 1253 // This pattern can form any 64 bit immediate in 3 instructions. 1254 SDNode *ResultHi = 1255 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1256 SDNode *ResultLo = 1257 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32)); 1258 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32), 1259 getI32Imm(0)}; 1260 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1261 } 1262 1263 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm, 1264 unsigned *InstCnt = nullptr) { 1265 unsigned InstCntDirect = 0; 1266 // No more than 3 instructions is used if we can select the i64 immediate 1267 // directly. 1268 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect); 1269 1270 const PPCSubtarget &Subtarget = 1271 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 1272 1273 // If we have prefixed instructions and there is a chance we can 1274 // materialize the constant with fewer prefixed instructions than 1275 // non-prefixed, try that. 1276 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) { 1277 unsigned InstCntDirectP = 0; 1278 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP); 1279 // Use the prefix case in either of two cases: 1280 // 1) We have no result from the non-prefix case to use. 1281 // 2) The non-prefix case uses more instructions than the prefix case. 1282 // If the prefix and non-prefix cases use the same number of instructions 1283 // we will prefer the non-prefix case. 1284 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) { 1285 if (InstCnt) 1286 *InstCnt = InstCntDirectP; 1287 return ResultP; 1288 } 1289 } 1290 1291 if (Result) { 1292 if (InstCnt) 1293 *InstCnt = InstCntDirect; 1294 return Result; 1295 } 1296 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1297 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1298 }; 1299 // Handle the upper 32 bit value. 1300 Result = 1301 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect); 1302 // Add in the last bits as required. 1303 if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) { 1304 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 1305 SDValue(Result, 0), getI32Imm(Hi16)); 1306 ++InstCntDirect; 1307 } 1308 if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) { 1309 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1310 getI32Imm(Lo16)); 1311 ++InstCntDirect; 1312 } 1313 if (InstCnt) 1314 *InstCnt = InstCntDirect; 1315 return Result; 1316 } 1317 1318 // Select a 64-bit constant. 1319 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { 1320 SDLoc dl(N); 1321 1322 // Get 64 bit value. 1323 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 1324 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { 1325 uint64_t SextImm = SignExtend64(Imm, MinSize); 1326 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 1327 if (isInt<16>(SextImm)) 1328 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1329 } 1330 return selectI64Imm(CurDAG, dl, Imm); 1331 } 1332 1333 namespace { 1334 1335 class BitPermutationSelector { 1336 struct ValueBit { 1337 SDValue V; 1338 1339 // The bit number in the value, using a convention where bit 0 is the 1340 // lowest-order bit. 1341 unsigned Idx; 1342 1343 // ConstZero means a bit we need to mask off. 1344 // Variable is a bit comes from an input variable. 1345 // VariableKnownToBeZero is also a bit comes from an input variable, 1346 // but it is known to be already zero. So we do not need to mask them. 1347 enum Kind { 1348 ConstZero, 1349 Variable, 1350 VariableKnownToBeZero 1351 } K; 1352 1353 ValueBit(SDValue V, unsigned I, Kind K = Variable) 1354 : V(V), Idx(I), K(K) {} 1355 ValueBit(Kind K = Variable) 1356 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} 1357 1358 bool isZero() const { 1359 return K == ConstZero || K == VariableKnownToBeZero; 1360 } 1361 1362 bool hasValue() const { 1363 return K == Variable || K == VariableKnownToBeZero; 1364 } 1365 1366 SDValue getValue() const { 1367 assert(hasValue() && "Cannot get the value of a constant bit"); 1368 return V; 1369 } 1370 1371 unsigned getValueBitIndex() const { 1372 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 1373 return Idx; 1374 } 1375 }; 1376 1377 // A bit group has the same underlying value and the same rotate factor. 1378 struct BitGroup { 1379 SDValue V; 1380 unsigned RLAmt; 1381 unsigned StartIdx, EndIdx; 1382 1383 // This rotation amount assumes that the lower 32 bits of the quantity are 1384 // replicated in the high 32 bits by the rotation operator (which is done 1385 // by rlwinm and friends in 64-bit mode). 1386 bool Repl32; 1387 // Did converting to Repl32 == true change the rotation factor? If it did, 1388 // it decreased it by 32. 1389 bool Repl32CR; 1390 // Was this group coalesced after setting Repl32 to true? 1391 bool Repl32Coalesced; 1392 1393 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 1394 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 1395 Repl32Coalesced(false) { 1396 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R 1397 << " [" << S << ", " << E << "]\n"); 1398 } 1399 }; 1400 1401 // Information on each (Value, RLAmt) pair (like the number of groups 1402 // associated with each) used to choose the lowering method. 1403 struct ValueRotInfo { 1404 SDValue V; 1405 unsigned RLAmt = std::numeric_limits<unsigned>::max(); 1406 unsigned NumGroups = 0; 1407 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); 1408 bool Repl32 = false; 1409 1410 ValueRotInfo() = default; 1411 1412 // For sorting (in reverse order) by NumGroups, and then by 1413 // FirstGroupStartIdx. 1414 bool operator < (const ValueRotInfo &Other) const { 1415 // We need to sort so that the non-Repl32 come first because, when we're 1416 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 1417 // masking operation. 1418 if (Repl32 < Other.Repl32) 1419 return true; 1420 else if (Repl32 > Other.Repl32) 1421 return false; 1422 else if (NumGroups > Other.NumGroups) 1423 return true; 1424 else if (NumGroups < Other.NumGroups) 1425 return false; 1426 else if (RLAmt == 0 && Other.RLAmt != 0) 1427 return true; 1428 else if (RLAmt != 0 && Other.RLAmt == 0) 1429 return false; 1430 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 1431 return true; 1432 return false; 1433 } 1434 }; 1435 1436 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 1437 using ValueBitsMemoizer = 1438 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 1439 ValueBitsMemoizer Memoizer; 1440 1441 // Return a pair of bool and a SmallVector pointer to a memoization entry. 1442 // The bool is true if something interesting was deduced, otherwise if we're 1443 // providing only a generic representation of V (or something else likewise 1444 // uninteresting for instruction selection) through the SmallVector. 1445 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 1446 unsigned NumBits) { 1447 auto &ValueEntry = Memoizer[V]; 1448 if (ValueEntry) 1449 return std::make_pair(ValueEntry->first, &ValueEntry->second); 1450 ValueEntry.reset(new ValueBitsMemoizedValue()); 1451 bool &Interesting = ValueEntry->first; 1452 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 1453 Bits.resize(NumBits); 1454 1455 switch (V.getOpcode()) { 1456 default: break; 1457 case ISD::ROTL: 1458 if (isa<ConstantSDNode>(V.getOperand(1))) { 1459 unsigned RotAmt = V.getConstantOperandVal(1); 1460 1461 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1462 1463 for (unsigned i = 0; i < NumBits; ++i) 1464 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 1465 1466 return std::make_pair(Interesting = true, &Bits); 1467 } 1468 break; 1469 case ISD::SHL: 1470 case PPCISD::SHL: 1471 if (isa<ConstantSDNode>(V.getOperand(1))) { 1472 unsigned ShiftAmt = V.getConstantOperandVal(1); 1473 1474 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1475 1476 for (unsigned i = ShiftAmt; i < NumBits; ++i) 1477 Bits[i] = LHSBits[i - ShiftAmt]; 1478 1479 for (unsigned i = 0; i < ShiftAmt; ++i) 1480 Bits[i] = ValueBit(ValueBit::ConstZero); 1481 1482 return std::make_pair(Interesting = true, &Bits); 1483 } 1484 break; 1485 case ISD::SRL: 1486 case PPCISD::SRL: 1487 if (isa<ConstantSDNode>(V.getOperand(1))) { 1488 unsigned ShiftAmt = V.getConstantOperandVal(1); 1489 1490 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1491 1492 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 1493 Bits[i] = LHSBits[i + ShiftAmt]; 1494 1495 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 1496 Bits[i] = ValueBit(ValueBit::ConstZero); 1497 1498 return std::make_pair(Interesting = true, &Bits); 1499 } 1500 break; 1501 case ISD::AND: 1502 if (isa<ConstantSDNode>(V.getOperand(1))) { 1503 uint64_t Mask = V.getConstantOperandVal(1); 1504 1505 const SmallVector<ValueBit, 64> *LHSBits; 1506 // Mark this as interesting, only if the LHS was also interesting. This 1507 // prevents the overall procedure from matching a single immediate 'and' 1508 // (which is non-optimal because such an and might be folded with other 1509 // things if we don't select it here). 1510 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 1511 1512 for (unsigned i = 0; i < NumBits; ++i) 1513 if (((Mask >> i) & 1) == 1) 1514 Bits[i] = (*LHSBits)[i]; 1515 else { 1516 // AND instruction masks this bit. If the input is already zero, 1517 // we have nothing to do here. Otherwise, make the bit ConstZero. 1518 if ((*LHSBits)[i].isZero()) 1519 Bits[i] = (*LHSBits)[i]; 1520 else 1521 Bits[i] = ValueBit(ValueBit::ConstZero); 1522 } 1523 1524 return std::make_pair(Interesting, &Bits); 1525 } 1526 break; 1527 case ISD::OR: { 1528 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1529 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1530 1531 bool AllDisjoint = true; 1532 SDValue LastVal = SDValue(); 1533 unsigned LastIdx = 0; 1534 for (unsigned i = 0; i < NumBits; ++i) { 1535 if (LHSBits[i].isZero() && RHSBits[i].isZero()) { 1536 // If both inputs are known to be zero and one is ConstZero and 1537 // another is VariableKnownToBeZero, we can select whichever 1538 // we like. To minimize the number of bit groups, we select 1539 // VariableKnownToBeZero if this bit is the next bit of the same 1540 // input variable from the previous bit. Otherwise, we select 1541 // ConstZero. 1542 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && 1543 LHSBits[i].getValueBitIndex() == LastIdx + 1) 1544 Bits[i] = LHSBits[i]; 1545 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && 1546 RHSBits[i].getValueBitIndex() == LastIdx + 1) 1547 Bits[i] = RHSBits[i]; 1548 else 1549 Bits[i] = ValueBit(ValueBit::ConstZero); 1550 } 1551 else if (LHSBits[i].isZero()) 1552 Bits[i] = RHSBits[i]; 1553 else if (RHSBits[i].isZero()) 1554 Bits[i] = LHSBits[i]; 1555 else { 1556 AllDisjoint = false; 1557 break; 1558 } 1559 // We remember the value and bit index of this bit. 1560 if (Bits[i].hasValue()) { 1561 LastVal = Bits[i].getValue(); 1562 LastIdx = Bits[i].getValueBitIndex(); 1563 } 1564 else { 1565 if (LastVal) LastVal = SDValue(); 1566 LastIdx = 0; 1567 } 1568 } 1569 1570 if (!AllDisjoint) 1571 break; 1572 1573 return std::make_pair(Interesting = true, &Bits); 1574 } 1575 case ISD::ZERO_EXTEND: { 1576 // We support only the case with zero extension from i32 to i64 so far. 1577 if (V.getValueType() != MVT::i64 || 1578 V.getOperand(0).getValueType() != MVT::i32) 1579 break; 1580 1581 const SmallVector<ValueBit, 64> *LHSBits; 1582 const unsigned NumOperandBits = 32; 1583 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1584 NumOperandBits); 1585 1586 for (unsigned i = 0; i < NumOperandBits; ++i) 1587 Bits[i] = (*LHSBits)[i]; 1588 1589 for (unsigned i = NumOperandBits; i < NumBits; ++i) 1590 Bits[i] = ValueBit(ValueBit::ConstZero); 1591 1592 return std::make_pair(Interesting, &Bits); 1593 } 1594 case ISD::TRUNCATE: { 1595 EVT FromType = V.getOperand(0).getValueType(); 1596 EVT ToType = V.getValueType(); 1597 // We support only the case with truncate from i64 to i32. 1598 if (FromType != MVT::i64 || ToType != MVT::i32) 1599 break; 1600 const unsigned NumAllBits = FromType.getSizeInBits(); 1601 SmallVector<ValueBit, 64> *InBits; 1602 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), 1603 NumAllBits); 1604 const unsigned NumValidBits = ToType.getSizeInBits(); 1605 1606 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. 1607 // So, we cannot include this truncate. 1608 bool UseUpper32bit = false; 1609 for (unsigned i = 0; i < NumValidBits; ++i) 1610 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { 1611 UseUpper32bit = true; 1612 break; 1613 } 1614 if (UseUpper32bit) 1615 break; 1616 1617 for (unsigned i = 0; i < NumValidBits; ++i) 1618 Bits[i] = (*InBits)[i]; 1619 1620 return std::make_pair(Interesting, &Bits); 1621 } 1622 case ISD::AssertZext: { 1623 // For AssertZext, we look through the operand and 1624 // mark the bits known to be zero. 1625 const SmallVector<ValueBit, 64> *LHSBits; 1626 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1627 NumBits); 1628 1629 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); 1630 const unsigned NumValidBits = FromType.getSizeInBits(); 1631 for (unsigned i = 0; i < NumValidBits; ++i) 1632 Bits[i] = (*LHSBits)[i]; 1633 1634 // These bits are known to be zero but the AssertZext may be from a value 1635 // that already has some constant zero bits (i.e. from a masking and). 1636 for (unsigned i = NumValidBits; i < NumBits; ++i) 1637 Bits[i] = (*LHSBits)[i].hasValue() 1638 ? ValueBit((*LHSBits)[i].getValue(), 1639 (*LHSBits)[i].getValueBitIndex(), 1640 ValueBit::VariableKnownToBeZero) 1641 : ValueBit(ValueBit::ConstZero); 1642 1643 return std::make_pair(Interesting, &Bits); 1644 } 1645 case ISD::LOAD: 1646 LoadSDNode *LD = cast<LoadSDNode>(V); 1647 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { 1648 EVT VT = LD->getMemoryVT(); 1649 const unsigned NumValidBits = VT.getSizeInBits(); 1650 1651 for (unsigned i = 0; i < NumValidBits; ++i) 1652 Bits[i] = ValueBit(V, i); 1653 1654 // These bits are known to be zero. 1655 for (unsigned i = NumValidBits; i < NumBits; ++i) 1656 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); 1657 1658 // Zero-extending load itself cannot be optimized. So, it is not 1659 // interesting by itself though it gives useful information. 1660 return std::make_pair(Interesting = false, &Bits); 1661 } 1662 break; 1663 } 1664 1665 for (unsigned i = 0; i < NumBits; ++i) 1666 Bits[i] = ValueBit(V, i); 1667 1668 return std::make_pair(Interesting = false, &Bits); 1669 } 1670 1671 // For each value (except the constant ones), compute the left-rotate amount 1672 // to get it from its original to final position. 1673 void computeRotationAmounts() { 1674 NeedMask = false; 1675 RLAmt.resize(Bits.size()); 1676 for (unsigned i = 0; i < Bits.size(); ++i) 1677 if (Bits[i].hasValue()) { 1678 unsigned VBI = Bits[i].getValueBitIndex(); 1679 if (i >= VBI) 1680 RLAmt[i] = i - VBI; 1681 else 1682 RLAmt[i] = Bits.size() - (VBI - i); 1683 } else if (Bits[i].isZero()) { 1684 NeedMask = true; 1685 RLAmt[i] = UINT32_MAX; 1686 } else { 1687 llvm_unreachable("Unknown value bit type"); 1688 } 1689 } 1690 1691 // Collect groups of consecutive bits with the same underlying value and 1692 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1693 // they break up groups. 1694 void collectBitGroups(bool LateMask) { 1695 BitGroups.clear(); 1696 1697 unsigned LastRLAmt = RLAmt[0]; 1698 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1699 unsigned LastGroupStartIdx = 0; 1700 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1701 for (unsigned i = 1; i < Bits.size(); ++i) { 1702 unsigned ThisRLAmt = RLAmt[i]; 1703 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1704 if (LateMask && !ThisValue) { 1705 ThisValue = LastValue; 1706 ThisRLAmt = LastRLAmt; 1707 // If we're doing late masking, then the first bit group always starts 1708 // at zero (even if the first bits were zero). 1709 if (BitGroups.empty()) 1710 LastGroupStartIdx = 0; 1711 } 1712 1713 // If this bit is known to be zero and the current group is a bit group 1714 // of zeros, we do not need to terminate the current bit group even the 1715 // Value or RLAmt does not match here. Instead, we terminate this group 1716 // when the first non-zero bit appears later. 1717 if (IsGroupOfZeros && Bits[i].isZero()) 1718 continue; 1719 1720 // If this bit has the same underlying value and the same rotate factor as 1721 // the last one, then they're part of the same group. 1722 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1723 // We cannot continue the current group if this bits is not known to 1724 // be zero in a bit group of zeros. 1725 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) 1726 continue; 1727 1728 if (LastValue.getNode()) 1729 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1730 i-1)); 1731 LastRLAmt = ThisRLAmt; 1732 LastValue = ThisValue; 1733 LastGroupStartIdx = i; 1734 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1735 } 1736 if (LastValue.getNode()) 1737 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1738 Bits.size()-1)); 1739 1740 if (BitGroups.empty()) 1741 return; 1742 1743 // We might be able to combine the first and last groups. 1744 if (BitGroups.size() > 1) { 1745 // If the first and last groups are the same, then remove the first group 1746 // in favor of the last group, making the ending index of the last group 1747 // equal to the ending index of the to-be-removed first group. 1748 if (BitGroups[0].StartIdx == 0 && 1749 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1750 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1751 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1752 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1753 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1754 BitGroups.erase(BitGroups.begin()); 1755 } 1756 } 1757 } 1758 1759 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1760 // associated with each. If the number of groups are same, we prefer a group 1761 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate 1762 // instruction. If there is a degeneracy, pick the one that occurs 1763 // first (in the final value). 1764 void collectValueRotInfo() { 1765 ValueRots.clear(); 1766 1767 for (auto &BG : BitGroups) { 1768 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1769 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1770 VRI.V = BG.V; 1771 VRI.RLAmt = BG.RLAmt; 1772 VRI.Repl32 = BG.Repl32; 1773 VRI.NumGroups += 1; 1774 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1775 } 1776 1777 // Now that we've collected the various ValueRotInfo instances, we need to 1778 // sort them. 1779 ValueRotsVec.clear(); 1780 for (auto &I : ValueRots) { 1781 ValueRotsVec.push_back(I.second); 1782 } 1783 llvm::sort(ValueRotsVec); 1784 } 1785 1786 // In 64-bit mode, rlwinm and friends have a rotation operator that 1787 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1788 // indices of these instructions can only be in the lower 32 bits, so they 1789 // can only represent some 64-bit bit groups. However, when they can be used, 1790 // the 32-bit replication can be used to represent, as a single bit group, 1791 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1792 // groups when possible. Returns true if any of the bit groups were 1793 // converted. 1794 void assignRepl32BitGroups() { 1795 // If we have bits like this: 1796 // 1797 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1798 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1799 // Groups: | RLAmt = 8 | RLAmt = 40 | 1800 // 1801 // But, making use of a 32-bit operation that replicates the low-order 32 1802 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1803 // of 8. 1804 1805 auto IsAllLow32 = [this](BitGroup & BG) { 1806 if (BG.StartIdx <= BG.EndIdx) { 1807 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1808 if (!Bits[i].hasValue()) 1809 continue; 1810 if (Bits[i].getValueBitIndex() >= 32) 1811 return false; 1812 } 1813 } else { 1814 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1815 if (!Bits[i].hasValue()) 1816 continue; 1817 if (Bits[i].getValueBitIndex() >= 32) 1818 return false; 1819 } 1820 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1821 if (!Bits[i].hasValue()) 1822 continue; 1823 if (Bits[i].getValueBitIndex() >= 32) 1824 return false; 1825 } 1826 } 1827 1828 return true; 1829 }; 1830 1831 for (auto &BG : BitGroups) { 1832 // If this bit group has RLAmt of 0 and will not be merged with 1833 // another bit group, we don't benefit from Repl32. We don't mark 1834 // such group to give more freedom for later instruction selection. 1835 if (BG.RLAmt == 0) { 1836 auto PotentiallyMerged = [this](BitGroup & BG) { 1837 for (auto &BG2 : BitGroups) 1838 if (&BG != &BG2 && BG.V == BG2.V && 1839 (BG2.RLAmt == 0 || BG2.RLAmt == 32)) 1840 return true; 1841 return false; 1842 }; 1843 if (!PotentiallyMerged(BG)) 1844 continue; 1845 } 1846 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 1847 if (IsAllLow32(BG)) { 1848 if (BG.RLAmt >= 32) { 1849 BG.RLAmt -= 32; 1850 BG.Repl32CR = true; 1851 } 1852 1853 BG.Repl32 = true; 1854 1855 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " 1856 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" 1857 << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 1858 } 1859 } 1860 } 1861 1862 // Now walk through the bit groups, consolidating where possible. 1863 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1864 // We might want to remove this bit group by merging it with the previous 1865 // group (which might be the ending group). 1866 auto IP = (I == BitGroups.begin()) ? 1867 std::prev(BitGroups.end()) : std::prev(I); 1868 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 1869 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 1870 1871 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " 1872 << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" 1873 << I->StartIdx << ", " << I->EndIdx 1874 << "] with group with range [" << IP->StartIdx << ", " 1875 << IP->EndIdx << "]\n"); 1876 1877 IP->EndIdx = I->EndIdx; 1878 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 1879 IP->Repl32Coalesced = true; 1880 I = BitGroups.erase(I); 1881 continue; 1882 } else { 1883 // There is a special case worth handling: If there is a single group 1884 // covering the entire upper 32 bits, and it can be merged with both 1885 // the next and previous groups (which might be the same group), then 1886 // do so. If it is the same group (so there will be only one group in 1887 // total), then we need to reverse the order of the range so that it 1888 // covers the entire 64 bits. 1889 if (I->StartIdx == 32 && I->EndIdx == 63) { 1890 assert(std::next(I) == BitGroups.end() && 1891 "bit group ends at index 63 but there is another?"); 1892 auto IN = BitGroups.begin(); 1893 1894 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 1895 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 1896 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 1897 IsAllLow32(*I)) { 1898 1899 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() 1900 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx 1901 << ", " << I->EndIdx 1902 << "] with 32-bit replicated groups with ranges [" 1903 << IP->StartIdx << ", " << IP->EndIdx << "] and [" 1904 << IN->StartIdx << ", " << IN->EndIdx << "]\n"); 1905 1906 if (IP == IN) { 1907 // There is only one other group; change it to cover the whole 1908 // range (backward, so that it can still be Repl32 but cover the 1909 // whole 64-bit range). 1910 IP->StartIdx = 31; 1911 IP->EndIdx = 30; 1912 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 1913 IP->Repl32Coalesced = true; 1914 I = BitGroups.erase(I); 1915 } else { 1916 // There are two separate groups, one before this group and one 1917 // after us (at the beginning). We're going to remove this group, 1918 // but also the group at the very beginning. 1919 IP->EndIdx = IN->EndIdx; 1920 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 1921 IP->Repl32Coalesced = true; 1922 I = BitGroups.erase(I); 1923 BitGroups.erase(BitGroups.begin()); 1924 } 1925 1926 // This must be the last group in the vector (and we might have 1927 // just invalidated the iterator above), so break here. 1928 break; 1929 } 1930 } 1931 } 1932 1933 ++I; 1934 } 1935 } 1936 1937 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 1938 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1939 } 1940 1941 uint64_t getZerosMask() { 1942 uint64_t Mask = 0; 1943 for (unsigned i = 0; i < Bits.size(); ++i) { 1944 if (Bits[i].hasValue()) 1945 continue; 1946 Mask |= (UINT64_C(1) << i); 1947 } 1948 1949 return ~Mask; 1950 } 1951 1952 // This method extends an input value to 64 bit if input is 32-bit integer. 1953 // While selecting instructions in BitPermutationSelector in 64-bit mode, 1954 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. 1955 // In such case, we extend it to 64 bit to be consistent with other values. 1956 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { 1957 if (V.getValueSizeInBits() == 64) 1958 return V; 1959 1960 assert(V.getValueSizeInBits() == 32); 1961 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1962 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 1963 MVT::i64), 0); 1964 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 1965 MVT::i64, ImDef, V, 1966 SubRegIdx), 0); 1967 return ExtVal; 1968 } 1969 1970 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { 1971 if (V.getValueSizeInBits() == 32) 1972 return V; 1973 1974 assert(V.getValueSizeInBits() == 64); 1975 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1976 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, 1977 MVT::i32, V, SubRegIdx), 0); 1978 return SubVal; 1979 } 1980 1981 // Depending on the number of groups for a particular value, it might be 1982 // better to rotate, mask explicitly (using andi/andis), and then or the 1983 // result. Select this part of the result first. 1984 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 1985 if (BPermRewriterNoMasking) 1986 return; 1987 1988 for (ValueRotInfo &VRI : ValueRotsVec) { 1989 unsigned Mask = 0; 1990 for (unsigned i = 0; i < Bits.size(); ++i) { 1991 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 1992 continue; 1993 if (RLAmt[i] != VRI.RLAmt) 1994 continue; 1995 Mask |= (1u << i); 1996 } 1997 1998 // Compute the masks for andi/andis that would be necessary. 1999 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2000 assert((ANDIMask != 0 || ANDISMask != 0) && 2001 "No set bits in mask for value bit groups"); 2002 bool NeedsRotate = VRI.RLAmt != 0; 2003 2004 // We're trying to minimize the number of instructions. If we have one 2005 // group, using one of andi/andis can break even. If we have three 2006 // groups, we can use both andi and andis and break even (to use both 2007 // andi and andis we also need to or the results together). We need four 2008 // groups if we also need to rotate. To use andi/andis we need to do more 2009 // than break even because rotate-and-mask instructions tend to be easier 2010 // to schedule. 2011 2012 // FIXME: We've biased here against using andi/andis, which is right for 2013 // POWER cores, but not optimal everywhere. For example, on the A2, 2014 // andi/andis have single-cycle latency whereas the rotate-and-mask 2015 // instructions take two cycles, and it would be better to bias toward 2016 // andi/andis in break-even cases. 2017 2018 unsigned NumAndInsts = (unsigned) NeedsRotate + 2019 (unsigned) (ANDIMask != 0) + 2020 (unsigned) (ANDISMask != 0) + 2021 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 2022 (unsigned) (bool) Res; 2023 2024 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2025 << " RL: " << VRI.RLAmt << ":" 2026 << "\n\t\t\tisel using masking: " << NumAndInsts 2027 << " using rotates: " << VRI.NumGroups << "\n"); 2028 2029 if (NumAndInsts >= VRI.NumGroups) 2030 continue; 2031 2032 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2033 2034 if (InstCnt) *InstCnt += NumAndInsts; 2035 2036 SDValue VRot; 2037 if (VRI.RLAmt) { 2038 SDValue Ops[] = 2039 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2040 getI32Imm(0, dl), getI32Imm(31, dl) }; 2041 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2042 Ops), 0); 2043 } else { 2044 VRot = TruncateToInt32(VRI.V, dl); 2045 } 2046 2047 SDValue ANDIVal, ANDISVal; 2048 if (ANDIMask != 0) 2049 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2050 VRot, getI32Imm(ANDIMask, dl)), 2051 0); 2052 if (ANDISMask != 0) 2053 ANDISVal = 2054 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, 2055 getI32Imm(ANDISMask, dl)), 2056 0); 2057 2058 SDValue TotalVal; 2059 if (!ANDIVal) 2060 TotalVal = ANDISVal; 2061 else if (!ANDISVal) 2062 TotalVal = ANDIVal; 2063 else 2064 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2065 ANDIVal, ANDISVal), 0); 2066 2067 if (!Res) 2068 Res = TotalVal; 2069 else 2070 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2071 Res, TotalVal), 0); 2072 2073 // Now, remove all groups with this underlying value and rotation 2074 // factor. 2075 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2076 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2077 }); 2078 } 2079 } 2080 2081 // Instruction selection for the 32-bit case. 2082 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 2083 SDLoc dl(N); 2084 SDValue Res; 2085 2086 if (InstCnt) *InstCnt = 0; 2087 2088 // Take care of cases that should use andi/andis first. 2089 SelectAndParts32(dl, Res, InstCnt); 2090 2091 // If we've not yet selected a 'starting' instruction, and we have no zeros 2092 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2093 // number of groups), and start with this rotated value. 2094 if ((!NeedMask || LateMask) && !Res) { 2095 ValueRotInfo &VRI = ValueRotsVec[0]; 2096 if (VRI.RLAmt) { 2097 if (InstCnt) *InstCnt += 1; 2098 SDValue Ops[] = 2099 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2100 getI32Imm(0, dl), getI32Imm(31, dl) }; 2101 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 2102 0); 2103 } else { 2104 Res = TruncateToInt32(VRI.V, dl); 2105 } 2106 2107 // Now, remove all groups with this underlying value and rotation factor. 2108 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2109 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2110 }); 2111 } 2112 2113 if (InstCnt) *InstCnt += BitGroups.size(); 2114 2115 // Insert the other groups (one at a time). 2116 for (auto &BG : BitGroups) { 2117 if (!Res) { 2118 SDValue Ops[] = 2119 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2120 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2121 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2122 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2123 } else { 2124 SDValue Ops[] = 2125 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2126 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2127 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2128 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 2129 } 2130 } 2131 2132 if (LateMask) { 2133 unsigned Mask = (unsigned) getZerosMask(); 2134 2135 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2136 assert((ANDIMask != 0 || ANDISMask != 0) && 2137 "No set bits in zeros mask?"); 2138 2139 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2140 (unsigned) (ANDISMask != 0) + 2141 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2142 2143 SDValue ANDIVal, ANDISVal; 2144 if (ANDIMask != 0) 2145 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2146 Res, getI32Imm(ANDIMask, dl)), 2147 0); 2148 if (ANDISMask != 0) 2149 ANDISVal = 2150 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, 2151 getI32Imm(ANDISMask, dl)), 2152 0); 2153 2154 if (!ANDIVal) 2155 Res = ANDISVal; 2156 else if (!ANDISVal) 2157 Res = ANDIVal; 2158 else 2159 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2160 ANDIVal, ANDISVal), 0); 2161 } 2162 2163 return Res.getNode(); 2164 } 2165 2166 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 2167 unsigned MaskStart, unsigned MaskEnd, 2168 bool IsIns) { 2169 // In the notation used by the instructions, 'start' and 'end' are reversed 2170 // because bits are counted from high to low order. 2171 unsigned InstMaskStart = 64 - MaskEnd - 1, 2172 InstMaskEnd = 64 - MaskStart - 1; 2173 2174 if (Repl32) 2175 return 1; 2176 2177 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 2178 InstMaskEnd == 63 - RLAmt) 2179 return 1; 2180 2181 return 2; 2182 } 2183 2184 // For 64-bit values, not all combinations of rotates and masks are 2185 // available. Produce one if it is available. 2186 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 2187 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 2188 unsigned *InstCnt = nullptr) { 2189 // In the notation used by the instructions, 'start' and 'end' are reversed 2190 // because bits are counted from high to low order. 2191 unsigned InstMaskStart = 64 - MaskEnd - 1, 2192 InstMaskEnd = 64 - MaskStart - 1; 2193 2194 if (InstCnt) *InstCnt += 1; 2195 2196 if (Repl32) { 2197 // This rotation amount assumes that the lower 32 bits of the quantity 2198 // are replicated in the high 32 bits by the rotation operator (which is 2199 // done by rlwinm and friends). 2200 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2201 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2202 SDValue Ops[] = 2203 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2204 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2205 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 2206 Ops), 0); 2207 } 2208 2209 if (InstMaskEnd == 63) { 2210 SDValue Ops[] = 2211 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2212 getI32Imm(InstMaskStart, dl) }; 2213 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 2214 } 2215 2216 if (InstMaskStart == 0) { 2217 SDValue Ops[] = 2218 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2219 getI32Imm(InstMaskEnd, dl) }; 2220 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 2221 } 2222 2223 if (InstMaskEnd == 63 - RLAmt) { 2224 SDValue Ops[] = 2225 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2226 getI32Imm(InstMaskStart, dl) }; 2227 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 2228 } 2229 2230 // We cannot do this with a single instruction, so we'll use two. The 2231 // problem is that we're not free to choose both a rotation amount and mask 2232 // start and end independently. We can choose an arbitrary mask start and 2233 // end, but then the rotation amount is fixed. Rotation, however, can be 2234 // inverted, and so by applying an "inverse" rotation first, we can get the 2235 // desired result. 2236 if (InstCnt) *InstCnt += 1; 2237 2238 // The rotation mask for the second instruction must be MaskStart. 2239 unsigned RLAmt2 = MaskStart; 2240 // The first instruction must rotate V so that the overall rotation amount 2241 // is RLAmt. 2242 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2243 if (RLAmt1) 2244 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2245 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 2246 } 2247 2248 // For 64-bit values, not all combinations of rotates and masks are 2249 // available. Produce a rotate-mask-and-insert if one is available. 2250 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 2251 unsigned RLAmt, bool Repl32, unsigned MaskStart, 2252 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 2253 // In the notation used by the instructions, 'start' and 'end' are reversed 2254 // because bits are counted from high to low order. 2255 unsigned InstMaskStart = 64 - MaskEnd - 1, 2256 InstMaskEnd = 64 - MaskStart - 1; 2257 2258 if (InstCnt) *InstCnt += 1; 2259 2260 if (Repl32) { 2261 // This rotation amount assumes that the lower 32 bits of the quantity 2262 // are replicated in the high 32 bits by the rotation operator (which is 2263 // done by rlwinm and friends). 2264 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2265 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2266 SDValue Ops[] = 2267 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2268 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2269 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 2270 Ops), 0); 2271 } 2272 2273 if (InstMaskEnd == 63 - RLAmt) { 2274 SDValue Ops[] = 2275 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2276 getI32Imm(InstMaskStart, dl) }; 2277 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 2278 } 2279 2280 // We cannot do this with a single instruction, so we'll use two. The 2281 // problem is that we're not free to choose both a rotation amount and mask 2282 // start and end independently. We can choose an arbitrary mask start and 2283 // end, but then the rotation amount is fixed. Rotation, however, can be 2284 // inverted, and so by applying an "inverse" rotation first, we can get the 2285 // desired result. 2286 if (InstCnt) *InstCnt += 1; 2287 2288 // The rotation mask for the second instruction must be MaskStart. 2289 unsigned RLAmt2 = MaskStart; 2290 // The first instruction must rotate V so that the overall rotation amount 2291 // is RLAmt. 2292 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2293 if (RLAmt1) 2294 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2295 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 2296 } 2297 2298 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2299 if (BPermRewriterNoMasking) 2300 return; 2301 2302 // The idea here is the same as in the 32-bit version, but with additional 2303 // complications from the fact that Repl32 might be true. Because we 2304 // aggressively convert bit groups to Repl32 form (which, for small 2305 // rotation factors, involves no other change), and then coalesce, it might 2306 // be the case that a single 64-bit masking operation could handle both 2307 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 2308 // form allowed coalescing, then we must use a 32-bit rotaton in order to 2309 // completely capture the new combined bit group. 2310 2311 for (ValueRotInfo &VRI : ValueRotsVec) { 2312 uint64_t Mask = 0; 2313 2314 // We need to add to the mask all bits from the associated bit groups. 2315 // If Repl32 is false, we need to add bits from bit groups that have 2316 // Repl32 true, but are trivially convertable to Repl32 false. Such a 2317 // group is trivially convertable if it overlaps only with the lower 32 2318 // bits, and the group has not been coalesced. 2319 auto MatchingBG = [VRI](const BitGroup &BG) { 2320 if (VRI.V != BG.V) 2321 return false; 2322 2323 unsigned EffRLAmt = BG.RLAmt; 2324 if (!VRI.Repl32 && BG.Repl32) { 2325 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 2326 !BG.Repl32Coalesced) { 2327 if (BG.Repl32CR) 2328 EffRLAmt += 32; 2329 } else { 2330 return false; 2331 } 2332 } else if (VRI.Repl32 != BG.Repl32) { 2333 return false; 2334 } 2335 2336 return VRI.RLAmt == EffRLAmt; 2337 }; 2338 2339 for (auto &BG : BitGroups) { 2340 if (!MatchingBG(BG)) 2341 continue; 2342 2343 if (BG.StartIdx <= BG.EndIdx) { 2344 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 2345 Mask |= (UINT64_C(1) << i); 2346 } else { 2347 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 2348 Mask |= (UINT64_C(1) << i); 2349 for (unsigned i = 0; i <= BG.EndIdx; ++i) 2350 Mask |= (UINT64_C(1) << i); 2351 } 2352 } 2353 2354 // We can use the 32-bit andi/andis technique if the mask does not 2355 // require any higher-order bits. This can save an instruction compared 2356 // to always using the general 64-bit technique. 2357 bool Use32BitInsts = isUInt<32>(Mask); 2358 // Compute the masks for andi/andis that would be necessary. 2359 unsigned ANDIMask = (Mask & UINT16_MAX), 2360 ANDISMask = (Mask >> 16) & UINT16_MAX; 2361 2362 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 2363 2364 unsigned NumAndInsts = (unsigned) NeedsRotate + 2365 (unsigned) (bool) Res; 2366 unsigned NumOfSelectInsts = 0; 2367 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts); 2368 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant."); 2369 if (Use32BitInsts) 2370 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 2371 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2372 else 2373 NumAndInsts += NumOfSelectInsts + /* and */ 1; 2374 2375 unsigned NumRLInsts = 0; 2376 bool FirstBG = true; 2377 bool MoreBG = false; 2378 for (auto &BG : BitGroups) { 2379 if (!MatchingBG(BG)) { 2380 MoreBG = true; 2381 continue; 2382 } 2383 NumRLInsts += 2384 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 2385 !FirstBG); 2386 FirstBG = false; 2387 } 2388 2389 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2390 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") 2391 << "\n\t\t\tisel using masking: " << NumAndInsts 2392 << " using rotates: " << NumRLInsts << "\n"); 2393 2394 // When we'd use andi/andis, we bias toward using the rotates (andi only 2395 // has a record form, and is cracked on POWER cores). However, when using 2396 // general 64-bit constant formation, bias toward the constant form, 2397 // because that exposes more opportunities for CSE. 2398 if (NumAndInsts > NumRLInsts) 2399 continue; 2400 // When merging multiple bit groups, instruction or is used. 2401 // But when rotate is used, rldimi can inert the rotated value into any 2402 // register, so instruction or can be avoided. 2403 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) 2404 continue; 2405 2406 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2407 2408 if (InstCnt) *InstCnt += NumAndInsts; 2409 2410 SDValue VRot; 2411 // We actually need to generate a rotation if we have a non-zero rotation 2412 // factor or, in the Repl32 case, if we care about any of the 2413 // higher-order replicated bits. In the latter case, we generate a mask 2414 // backward so that it actually includes the entire 64 bits. 2415 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 2416 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2417 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 2418 else 2419 VRot = VRI.V; 2420 2421 SDValue TotalVal; 2422 if (Use32BitInsts) { 2423 assert((ANDIMask != 0 || ANDISMask != 0) && 2424 "No set bits in mask when using 32-bit ands for 64-bit value"); 2425 2426 SDValue ANDIVal, ANDISVal; 2427 if (ANDIMask != 0) 2428 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2429 ExtendToInt64(VRot, dl), 2430 getI32Imm(ANDIMask, dl)), 2431 0); 2432 if (ANDISMask != 0) 2433 ANDISVal = 2434 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2435 ExtendToInt64(VRot, dl), 2436 getI32Imm(ANDISMask, dl)), 2437 0); 2438 2439 if (!ANDIVal) 2440 TotalVal = ANDISVal; 2441 else if (!ANDISVal) 2442 TotalVal = ANDIVal; 2443 else 2444 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2445 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2446 } else { 2447 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2448 TotalVal = 2449 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2450 ExtendToInt64(VRot, dl), TotalVal), 2451 0); 2452 } 2453 2454 if (!Res) 2455 Res = TotalVal; 2456 else 2457 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2458 ExtendToInt64(Res, dl), TotalVal), 2459 0); 2460 2461 // Now, remove all groups with this underlying value and rotation 2462 // factor. 2463 eraseMatchingBitGroups(MatchingBG); 2464 } 2465 } 2466 2467 // Instruction selection for the 64-bit case. 2468 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 2469 SDLoc dl(N); 2470 SDValue Res; 2471 2472 if (InstCnt) *InstCnt = 0; 2473 2474 // Take care of cases that should use andi/andis first. 2475 SelectAndParts64(dl, Res, InstCnt); 2476 2477 // If we've not yet selected a 'starting' instruction, and we have no zeros 2478 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2479 // number of groups), and start with this rotated value. 2480 if ((!NeedMask || LateMask) && !Res) { 2481 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 2482 // groups will come first, and so the VRI representing the largest number 2483 // of groups might not be first (it might be the first Repl32 groups). 2484 unsigned MaxGroupsIdx = 0; 2485 if (!ValueRotsVec[0].Repl32) { 2486 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 2487 if (ValueRotsVec[i].Repl32) { 2488 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 2489 MaxGroupsIdx = i; 2490 break; 2491 } 2492 } 2493 2494 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 2495 bool NeedsRotate = false; 2496 if (VRI.RLAmt) { 2497 NeedsRotate = true; 2498 } else if (VRI.Repl32) { 2499 for (auto &BG : BitGroups) { 2500 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 2501 BG.Repl32 != VRI.Repl32) 2502 continue; 2503 2504 // We don't need a rotate if the bit group is confined to the lower 2505 // 32 bits. 2506 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 2507 continue; 2508 2509 NeedsRotate = true; 2510 break; 2511 } 2512 } 2513 2514 if (NeedsRotate) 2515 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2516 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 2517 InstCnt); 2518 else 2519 Res = VRI.V; 2520 2521 // Now, remove all groups with this underlying value and rotation factor. 2522 if (Res) 2523 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2524 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 2525 BG.Repl32 == VRI.Repl32; 2526 }); 2527 } 2528 2529 // Because 64-bit rotates are more flexible than inserts, we might have a 2530 // preference regarding which one we do first (to save one instruction). 2531 if (!Res) 2532 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 2533 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2534 false) < 2535 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2536 true)) { 2537 if (I != BitGroups.begin()) { 2538 BitGroup BG = *I; 2539 BitGroups.erase(I); 2540 BitGroups.insert(BitGroups.begin(), BG); 2541 } 2542 2543 break; 2544 } 2545 } 2546 2547 // Insert the other groups (one at a time). 2548 for (auto &BG : BitGroups) { 2549 if (!Res) 2550 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 2551 BG.EndIdx, InstCnt); 2552 else 2553 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 2554 BG.StartIdx, BG.EndIdx, InstCnt); 2555 } 2556 2557 if (LateMask) { 2558 uint64_t Mask = getZerosMask(); 2559 2560 // We can use the 32-bit andi/andis technique if the mask does not 2561 // require any higher-order bits. This can save an instruction compared 2562 // to always using the general 64-bit technique. 2563 bool Use32BitInsts = isUInt<32>(Mask); 2564 // Compute the masks for andi/andis that would be necessary. 2565 unsigned ANDIMask = (Mask & UINT16_MAX), 2566 ANDISMask = (Mask >> 16) & UINT16_MAX; 2567 2568 if (Use32BitInsts) { 2569 assert((ANDIMask != 0 || ANDISMask != 0) && 2570 "No set bits in mask when using 32-bit ands for 64-bit value"); 2571 2572 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2573 (unsigned) (ANDISMask != 0) + 2574 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2575 2576 SDValue ANDIVal, ANDISVal; 2577 if (ANDIMask != 0) 2578 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2579 ExtendToInt64(Res, dl), 2580 getI32Imm(ANDIMask, dl)), 2581 0); 2582 if (ANDISMask != 0) 2583 ANDISVal = 2584 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2585 ExtendToInt64(Res, dl), 2586 getI32Imm(ANDISMask, dl)), 2587 0); 2588 2589 if (!ANDIVal) 2590 Res = ANDISVal; 2591 else if (!ANDISVal) 2592 Res = ANDIVal; 2593 else 2594 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2595 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2596 } else { 2597 unsigned NumOfSelectInsts = 0; 2598 SDValue MaskVal = 2599 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0); 2600 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2601 ExtendToInt64(Res, dl), MaskVal), 2602 0); 2603 if (InstCnt) 2604 *InstCnt += NumOfSelectInsts + /* and */ 1; 2605 } 2606 } 2607 2608 return Res.getNode(); 2609 } 2610 2611 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 2612 // Fill in BitGroups. 2613 collectBitGroups(LateMask); 2614 if (BitGroups.empty()) 2615 return nullptr; 2616 2617 // For 64-bit values, figure out when we can use 32-bit instructions. 2618 if (Bits.size() == 64) 2619 assignRepl32BitGroups(); 2620 2621 // Fill in ValueRotsVec. 2622 collectValueRotInfo(); 2623 2624 if (Bits.size() == 32) { 2625 return Select32(N, LateMask, InstCnt); 2626 } else { 2627 assert(Bits.size() == 64 && "Not 64 bits here?"); 2628 return Select64(N, LateMask, InstCnt); 2629 } 2630 2631 return nullptr; 2632 } 2633 2634 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 2635 erase_if(BitGroups, F); 2636 } 2637 2638 SmallVector<ValueBit, 64> Bits; 2639 2640 bool NeedMask = false; 2641 SmallVector<unsigned, 64> RLAmt; 2642 2643 SmallVector<BitGroup, 16> BitGroups; 2644 2645 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 2646 SmallVector<ValueRotInfo, 16> ValueRotsVec; 2647 2648 SelectionDAG *CurDAG = nullptr; 2649 2650 public: 2651 BitPermutationSelector(SelectionDAG *DAG) 2652 : CurDAG(DAG) {} 2653 2654 // Here we try to match complex bit permutations into a set of 2655 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 2656 // known to produce optimal code for common cases (like i32 byte swapping). 2657 SDNode *Select(SDNode *N) { 2658 Memoizer.clear(); 2659 auto Result = 2660 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 2661 if (!Result.first) 2662 return nullptr; 2663 Bits = std::move(*Result.second); 2664 2665 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" 2666 " selection for: "); 2667 LLVM_DEBUG(N->dump(CurDAG)); 2668 2669 // Fill it RLAmt and set NeedMask. 2670 computeRotationAmounts(); 2671 2672 if (!NeedMask) 2673 return Select(N, false); 2674 2675 // We currently have two techniques for handling results with zeros: early 2676 // masking (the default) and late masking. Late masking is sometimes more 2677 // efficient, but because the structure of the bit groups is different, it 2678 // is hard to tell without generating both and comparing the results. With 2679 // late masking, we ignore zeros in the resulting value when inserting each 2680 // set of bit groups, and then mask in the zeros at the end. With early 2681 // masking, we only insert the non-zero parts of the result at every step. 2682 2683 unsigned InstCnt = 0, InstCntLateMask = 0; 2684 LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); 2685 SDNode *RN = Select(N, false, &InstCnt); 2686 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 2687 2688 LLVM_DEBUG(dbgs() << "\tLate masking:\n"); 2689 SDNode *RNLM = Select(N, true, &InstCntLateMask); 2690 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask 2691 << " instructions\n"); 2692 2693 if (InstCnt <= InstCntLateMask) { 2694 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 2695 return RN; 2696 } 2697 2698 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 2699 return RNLM; 2700 } 2701 }; 2702 2703 class IntegerCompareEliminator { 2704 SelectionDAG *CurDAG; 2705 PPCDAGToDAGISel *S; 2706 // Conversion type for interpreting results of a 32-bit instruction as 2707 // a 64-bit value or vice versa. 2708 enum ExtOrTruncConversion { Ext, Trunc }; 2709 2710 // Modifiers to guide how an ISD::SETCC node's result is to be computed 2711 // in a GPR. 2712 // ZExtOrig - use the original condition code, zero-extend value 2713 // ZExtInvert - invert the condition code, zero-extend value 2714 // SExtOrig - use the original condition code, sign-extend value 2715 // SExtInvert - invert the condition code, sign-extend value 2716 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; 2717 2718 // Comparisons against zero to emit GPR code sequences for. Each of these 2719 // sequences may need to be emitted for two or more equivalent patterns. 2720 // For example (a >= 0) == (a > -1). The direction of the comparison (</>) 2721 // matters as well as the extension type: sext (-1/0), zext (1/0). 2722 // GEZExt - (zext (LHS >= 0)) 2723 // GESExt - (sext (LHS >= 0)) 2724 // LEZExt - (zext (LHS <= 0)) 2725 // LESExt - (sext (LHS <= 0)) 2726 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; 2727 2728 SDNode *tryEXTEND(SDNode *N); 2729 SDNode *tryLogicOpOfCompares(SDNode *N); 2730 SDValue computeLogicOpInGPR(SDValue LogicOp); 2731 SDValue signExtendInputIfNeeded(SDValue Input); 2732 SDValue zeroExtendInputIfNeeded(SDValue Input); 2733 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); 2734 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2735 ZeroCompare CmpTy); 2736 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2737 int64_t RHSValue, SDLoc dl); 2738 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2739 int64_t RHSValue, SDLoc dl); 2740 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2741 int64_t RHSValue, SDLoc dl); 2742 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2743 int64_t RHSValue, SDLoc dl); 2744 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); 2745 2746 public: 2747 IntegerCompareEliminator(SelectionDAG *DAG, 2748 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { 2749 assert(CurDAG->getTargetLoweringInfo() 2750 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && 2751 "Only expecting to use this on 64 bit targets."); 2752 } 2753 SDNode *Select(SDNode *N) { 2754 if (CmpInGPR == ICGPR_None) 2755 return nullptr; 2756 switch (N->getOpcode()) { 2757 default: break; 2758 case ISD::ZERO_EXTEND: 2759 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || 2760 CmpInGPR == ICGPR_SextI64) 2761 return nullptr; 2762 LLVM_FALLTHROUGH; 2763 case ISD::SIGN_EXTEND: 2764 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || 2765 CmpInGPR == ICGPR_ZextI64) 2766 return nullptr; 2767 return tryEXTEND(N); 2768 case ISD::AND: 2769 case ISD::OR: 2770 case ISD::XOR: 2771 return tryLogicOpOfCompares(N); 2772 } 2773 return nullptr; 2774 } 2775 }; 2776 2777 static bool isLogicOp(unsigned Opc) { 2778 return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; 2779 } 2780 // The obvious case for wanting to keep the value in a GPR. Namely, the 2781 // result of the comparison is actually needed in a GPR. 2782 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { 2783 assert((N->getOpcode() == ISD::ZERO_EXTEND || 2784 N->getOpcode() == ISD::SIGN_EXTEND) && 2785 "Expecting a zero/sign extend node!"); 2786 SDValue WideRes; 2787 // If we are zero-extending the result of a logical operation on i1 2788 // values, we can keep the values in GPRs. 2789 if (isLogicOp(N->getOperand(0).getOpcode()) && 2790 N->getOperand(0).getValueType() == MVT::i1 && 2791 N->getOpcode() == ISD::ZERO_EXTEND) 2792 WideRes = computeLogicOpInGPR(N->getOperand(0)); 2793 else if (N->getOperand(0).getOpcode() != ISD::SETCC) 2794 return nullptr; 2795 else 2796 WideRes = 2797 getSETCCInGPR(N->getOperand(0), 2798 N->getOpcode() == ISD::SIGN_EXTEND ? 2799 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); 2800 2801 if (!WideRes) 2802 return nullptr; 2803 2804 SDLoc dl(N); 2805 bool Input32Bit = WideRes.getValueType() == MVT::i32; 2806 bool Output32Bit = N->getValueType(0) == MVT::i32; 2807 2808 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; 2809 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; 2810 2811 SDValue ConvOp = WideRes; 2812 if (Input32Bit != Output32Bit) 2813 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : 2814 ExtOrTruncConversion::Trunc); 2815 return ConvOp.getNode(); 2816 } 2817 2818 // Attempt to perform logical operations on the results of comparisons while 2819 // keeping the values in GPRs. Without doing so, these would end up being 2820 // lowered to CR-logical operations which suffer from significant latency and 2821 // low ILP. 2822 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { 2823 if (N->getValueType(0) != MVT::i1) 2824 return nullptr; 2825 assert(isLogicOp(N->getOpcode()) && 2826 "Expected a logic operation on setcc results."); 2827 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); 2828 if (!LoweredLogical) 2829 return nullptr; 2830 2831 SDLoc dl(N); 2832 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; 2833 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; 2834 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2835 SDValue LHS = LoweredLogical.getOperand(0); 2836 SDValue RHS = LoweredLogical.getOperand(1); 2837 SDValue WideOp; 2838 SDValue OpToConvToRecForm; 2839 2840 // Look through any 32-bit to 64-bit implicit extend nodes to find the 2841 // opcode that is input to the XORI. 2842 if (IsBitwiseNegate && 2843 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) 2844 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); 2845 else if (IsBitwiseNegate) 2846 // If the input to the XORI isn't an extension, that's what we're after. 2847 OpToConvToRecForm = LoweredLogical.getOperand(0); 2848 else 2849 // If this is not an XORI, it is a reg-reg logical op and we can convert 2850 // it to record-form. 2851 OpToConvToRecForm = LoweredLogical; 2852 2853 // Get the record-form version of the node we're looking to use to get the 2854 // CR result from. 2855 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); 2856 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); 2857 2858 // Convert the right node to record-form. This is either the logical we're 2859 // looking at or it is the input node to the negation (if we're looking at 2860 // a bitwise negation). 2861 if (NewOpc != -1 && IsBitwiseNegate) { 2862 // The input to the XORI has a record-form. Use it. 2863 assert(LoweredLogical.getConstantOperandVal(1) == 1 && 2864 "Expected a PPC::XORI8 only for bitwise negation."); 2865 // Emit the record-form instruction. 2866 std::vector<SDValue> Ops; 2867 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) 2868 Ops.push_back(OpToConvToRecForm.getOperand(i)); 2869 2870 WideOp = 2871 SDValue(CurDAG->getMachineNode(NewOpc, dl, 2872 OpToConvToRecForm.getValueType(), 2873 MVT::Glue, Ops), 0); 2874 } else { 2875 assert((NewOpc != -1 || !IsBitwiseNegate) && 2876 "No record form available for AND8/OR8/XOR8?"); 2877 WideOp = 2878 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, 2879 dl, MVT::i64, MVT::Glue, LHS, RHS), 2880 0); 2881 } 2882 2883 // Select this node to a single bit from CR0 set by the record-form node 2884 // just created. For bitwise negation, use the EQ bit which is the equivalent 2885 // of negating the result (i.e. it is a bit set when the result of the 2886 // operation is zero). 2887 SDValue SRIdxVal = 2888 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); 2889 SDValue CRBit = 2890 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 2891 MVT::i1, CR0Reg, SRIdxVal, 2892 WideOp.getValue(1)), 0); 2893 return CRBit.getNode(); 2894 } 2895 2896 // Lower a logical operation on i1 values into a GPR sequence if possible. 2897 // The result can be kept in a GPR if requested. 2898 // Three types of inputs can be handled: 2899 // - SETCC 2900 // - TRUNCATE 2901 // - Logical operation (AND/OR/XOR) 2902 // There is also a special case that is handled (namely a complement operation 2903 // achieved with xor %a, -1). 2904 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { 2905 assert(isLogicOp(LogicOp.getOpcode()) && 2906 "Can only handle logic operations here."); 2907 assert(LogicOp.getValueType() == MVT::i1 && 2908 "Can only handle logic operations on i1 values here."); 2909 SDLoc dl(LogicOp); 2910 SDValue LHS, RHS; 2911 2912 // Special case: xor %a, -1 2913 bool IsBitwiseNegation = isBitwiseNot(LogicOp); 2914 2915 // Produces a GPR sequence for each operand of the binary logic operation. 2916 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates 2917 // the value in a GPR and for logic operations, it will recursively produce 2918 // a GPR sequence for the operation. 2919 auto getLogicOperand = [&] (SDValue Operand) -> SDValue { 2920 unsigned OperandOpcode = Operand.getOpcode(); 2921 if (OperandOpcode == ISD::SETCC) 2922 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); 2923 else if (OperandOpcode == ISD::TRUNCATE) { 2924 SDValue InputOp = Operand.getOperand(0); 2925 EVT InVT = InputOp.getValueType(); 2926 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : 2927 PPC::RLDICL, dl, InVT, InputOp, 2928 S->getI64Imm(0, dl), 2929 S->getI64Imm(63, dl)), 0); 2930 } else if (isLogicOp(OperandOpcode)) 2931 return computeLogicOpInGPR(Operand); 2932 return SDValue(); 2933 }; 2934 LHS = getLogicOperand(LogicOp.getOperand(0)); 2935 RHS = getLogicOperand(LogicOp.getOperand(1)); 2936 2937 // If a GPR sequence can't be produced for the LHS we can't proceed. 2938 // Not producing a GPR sequence for the RHS is only a problem if this isn't 2939 // a bitwise negation operation. 2940 if (!LHS || (!RHS && !IsBitwiseNegation)) 2941 return SDValue(); 2942 2943 NumLogicOpsOnComparison++; 2944 2945 // We will use the inputs as 64-bit values. 2946 if (LHS.getValueType() == MVT::i32) 2947 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); 2948 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) 2949 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); 2950 2951 unsigned NewOpc; 2952 switch (LogicOp.getOpcode()) { 2953 default: llvm_unreachable("Unknown logic operation."); 2954 case ISD::AND: NewOpc = PPC::AND8; break; 2955 case ISD::OR: NewOpc = PPC::OR8; break; 2956 case ISD::XOR: NewOpc = PPC::XOR8; break; 2957 } 2958 2959 if (IsBitwiseNegation) { 2960 RHS = S->getI64Imm(1, dl); 2961 NewOpc = PPC::XORI8; 2962 } 2963 2964 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); 2965 2966 } 2967 2968 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. 2969 /// Otherwise just reinterpret it as a 64-bit value. 2970 /// Useful when emitting comparison code for 32-bit values without using 2971 /// the compare instruction (which only considers the lower 32-bits). 2972 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { 2973 assert(Input.getValueType() == MVT::i32 && 2974 "Can only sign-extend 32-bit values here."); 2975 unsigned Opc = Input.getOpcode(); 2976 2977 // The value was sign extended and then truncated to 32-bits. No need to 2978 // sign extend it again. 2979 if (Opc == ISD::TRUNCATE && 2980 (Input.getOperand(0).getOpcode() == ISD::AssertSext || 2981 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) 2982 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2983 2984 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 2985 // The input is a sign-extending load. All ppc sign-extending loads 2986 // sign-extend to the full 64-bits. 2987 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) 2988 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2989 2990 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 2991 // We don't sign-extend constants. 2992 if (InputConst) 2993 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2994 2995 SDLoc dl(Input); 2996 SignExtensionsAdded++; 2997 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, 2998 MVT::i64, Input), 0); 2999 } 3000 3001 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. 3002 /// Otherwise just reinterpret it as a 64-bit value. 3003 /// Useful when emitting comparison code for 32-bit values without using 3004 /// the compare instruction (which only considers the lower 32-bits). 3005 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { 3006 assert(Input.getValueType() == MVT::i32 && 3007 "Can only zero-extend 32-bit values here."); 3008 unsigned Opc = Input.getOpcode(); 3009 3010 // The only condition under which we can omit the actual extend instruction: 3011 // - The value is a positive constant 3012 // - The value comes from a load that isn't a sign-extending load 3013 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. 3014 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && 3015 (Input.getOperand(0).getOpcode() == ISD::AssertZext || 3016 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); 3017 if (IsTruncateOfZExt) 3018 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3019 3020 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3021 if (InputConst && InputConst->getSExtValue() >= 0) 3022 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3023 3024 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3025 // The input is a load that doesn't sign-extend (it will be zero-extended). 3026 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) 3027 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3028 3029 // None of the above, need to zero-extend. 3030 SDLoc dl(Input); 3031 ZeroExtensionsAdded++; 3032 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, 3033 S->getI64Imm(0, dl), 3034 S->getI64Imm(32, dl)), 0); 3035 } 3036 3037 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of 3038 // course not actual zero/sign extensions that will generate machine code, 3039 // they're just a way to reinterpret a 32 bit value in a register as a 3040 // 64 bit value and vice-versa. 3041 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, 3042 ExtOrTruncConversion Conv) { 3043 SDLoc dl(NatWidthRes); 3044 3045 // For reinterpreting 32-bit values as 64 bit values, we generate 3046 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> 3047 if (Conv == ExtOrTruncConversion::Ext) { 3048 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); 3049 SDValue SubRegIdx = 3050 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3051 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, 3052 ImDef, NatWidthRes, SubRegIdx), 0); 3053 } 3054 3055 assert(Conv == ExtOrTruncConversion::Trunc && 3056 "Unknown convertion between 32 and 64 bit values."); 3057 // For reinterpreting 64-bit values as 32-bit values, we just need to 3058 // EXTRACT_SUBREG (i.e. extract the low word). 3059 SDValue SubRegIdx = 3060 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3061 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, 3062 NatWidthRes, SubRegIdx), 0); 3063 } 3064 3065 // Produce a GPR sequence for compound comparisons (<=, >=) against zero. 3066 // Handle both zero-extensions and sign-extensions. 3067 SDValue 3068 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 3069 ZeroCompare CmpTy) { 3070 EVT InVT = LHS.getValueType(); 3071 bool Is32Bit = InVT == MVT::i32; 3072 SDValue ToExtend; 3073 3074 // Produce the value that needs to be either zero or sign extended. 3075 switch (CmpTy) { 3076 case ZeroCompare::GEZExt: 3077 case ZeroCompare::GESExt: 3078 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, 3079 dl, InVT, LHS, LHS), 0); 3080 break; 3081 case ZeroCompare::LEZExt: 3082 case ZeroCompare::LESExt: { 3083 if (Is32Bit) { 3084 // Upper 32 bits cannot be undefined for this sequence. 3085 LHS = signExtendInputIfNeeded(LHS); 3086 SDValue Neg = 3087 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3088 ToExtend = 3089 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3090 Neg, S->getI64Imm(1, dl), 3091 S->getI64Imm(63, dl)), 0); 3092 } else { 3093 SDValue Addi = 3094 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3095 S->getI64Imm(~0ULL, dl)), 0); 3096 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 3097 Addi, LHS), 0); 3098 } 3099 break; 3100 } 3101 } 3102 3103 // For 64-bit sequences, the extensions are the same for the GE/LE cases. 3104 if (!Is32Bit && 3105 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) 3106 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3107 ToExtend, S->getI64Imm(1, dl), 3108 S->getI64Imm(63, dl)), 0); 3109 if (!Is32Bit && 3110 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) 3111 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, 3112 S->getI64Imm(63, dl)), 0); 3113 3114 assert(Is32Bit && "Should have handled the 32-bit sequences above."); 3115 // For 32-bit sequences, the extensions differ between GE/LE cases. 3116 switch (CmpTy) { 3117 case ZeroCompare::GEZExt: { 3118 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3119 S->getI32Imm(31, dl) }; 3120 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3121 ShiftOps), 0); 3122 } 3123 case ZeroCompare::GESExt: 3124 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, 3125 S->getI32Imm(31, dl)), 0); 3126 case ZeroCompare::LEZExt: 3127 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, 3128 S->getI32Imm(1, dl)), 0); 3129 case ZeroCompare::LESExt: 3130 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, 3131 S->getI32Imm(-1, dl)), 0); 3132 } 3133 3134 // The above case covers all the enumerators so it can't have a default clause 3135 // to avoid compiler warnings. 3136 llvm_unreachable("Unknown zero-comparison type."); 3137 } 3138 3139 /// Produces a zero-extended result of comparing two 32-bit values according to 3140 /// the passed condition code. 3141 SDValue 3142 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, 3143 ISD::CondCode CC, 3144 int64_t RHSValue, SDLoc dl) { 3145 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3146 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) 3147 return SDValue(); 3148 bool IsRHSZero = RHSValue == 0; 3149 bool IsRHSOne = RHSValue == 1; 3150 bool IsRHSNegOne = RHSValue == -1LL; 3151 switch (CC) { 3152 default: return SDValue(); 3153 case ISD::SETEQ: { 3154 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) 3155 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) 3156 SDValue Xor = IsRHSZero ? LHS : 3157 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3158 SDValue Clz = 3159 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3160 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3161 S->getI32Imm(31, dl) }; 3162 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3163 ShiftOps), 0); 3164 } 3165 case ISD::SETNE: { 3166 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) 3167 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) 3168 SDValue Xor = IsRHSZero ? LHS : 3169 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3170 SDValue Clz = 3171 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3172 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3173 S->getI32Imm(31, dl) }; 3174 SDValue Shift = 3175 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3176 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3177 S->getI32Imm(1, dl)), 0); 3178 } 3179 case ISD::SETGE: { 3180 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) 3181 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) 3182 if(IsRHSZero) 3183 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3184 3185 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3186 // by swapping inputs and falling through. 3187 std::swap(LHS, RHS); 3188 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3189 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3190 LLVM_FALLTHROUGH; 3191 } 3192 case ISD::SETLE: { 3193 if (CmpInGPR == ICGPR_NonExtIn) 3194 return SDValue(); 3195 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) 3196 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) 3197 if(IsRHSZero) { 3198 if (CmpInGPR == ICGPR_NonExtIn) 3199 return SDValue(); 3200 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3201 } 3202 3203 // The upper 32-bits of the register can't be undefined for this sequence. 3204 LHS = signExtendInputIfNeeded(LHS); 3205 RHS = signExtendInputIfNeeded(RHS); 3206 SDValue Sub = 3207 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3208 SDValue Shift = 3209 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, 3210 S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 3211 0); 3212 return 3213 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, 3214 MVT::i64, Shift, S->getI32Imm(1, dl)), 0); 3215 } 3216 case ISD::SETGT: { 3217 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) 3218 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) 3219 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) 3220 // Handle SETLT -1 (which is equivalent to SETGE 0). 3221 if (IsRHSNegOne) 3222 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3223 3224 if (IsRHSZero) { 3225 if (CmpInGPR == ICGPR_NonExtIn) 3226 return SDValue(); 3227 // The upper 32-bits of the register can't be undefined for this sequence. 3228 LHS = signExtendInputIfNeeded(LHS); 3229 RHS = signExtendInputIfNeeded(RHS); 3230 SDValue Neg = 3231 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3232 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3233 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); 3234 } 3235 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3236 // (%b < %a) by swapping inputs and falling through. 3237 std::swap(LHS, RHS); 3238 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3239 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3240 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3241 LLVM_FALLTHROUGH; 3242 } 3243 case ISD::SETLT: { 3244 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) 3245 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) 3246 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) 3247 // Handle SETLT 1 (which is equivalent to SETLE 0). 3248 if (IsRHSOne) { 3249 if (CmpInGPR == ICGPR_NonExtIn) 3250 return SDValue(); 3251 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3252 } 3253 3254 if (IsRHSZero) { 3255 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3256 S->getI32Imm(31, dl) }; 3257 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3258 ShiftOps), 0); 3259 } 3260 3261 if (CmpInGPR == ICGPR_NonExtIn) 3262 return SDValue(); 3263 // The upper 32-bits of the register can't be undefined for this sequence. 3264 LHS = signExtendInputIfNeeded(LHS); 3265 RHS = signExtendInputIfNeeded(RHS); 3266 SDValue SUBFNode = 3267 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3268 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3269 SUBFNode, S->getI64Imm(1, dl), 3270 S->getI64Imm(63, dl)), 0); 3271 } 3272 case ISD::SETUGE: 3273 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) 3274 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) 3275 std::swap(LHS, RHS); 3276 LLVM_FALLTHROUGH; 3277 case ISD::SETULE: { 3278 if (CmpInGPR == ICGPR_NonExtIn) 3279 return SDValue(); 3280 // The upper 32-bits of the register can't be undefined for this sequence. 3281 LHS = zeroExtendInputIfNeeded(LHS); 3282 RHS = zeroExtendInputIfNeeded(RHS); 3283 SDValue Subtract = 3284 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3285 SDValue SrdiNode = 3286 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3287 Subtract, S->getI64Imm(1, dl), 3288 S->getI64Imm(63, dl)), 0); 3289 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, 3290 S->getI32Imm(1, dl)), 0); 3291 } 3292 case ISD::SETUGT: 3293 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) 3294 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) 3295 std::swap(LHS, RHS); 3296 LLVM_FALLTHROUGH; 3297 case ISD::SETULT: { 3298 if (CmpInGPR == ICGPR_NonExtIn) 3299 return SDValue(); 3300 // The upper 32-bits of the register can't be undefined for this sequence. 3301 LHS = zeroExtendInputIfNeeded(LHS); 3302 RHS = zeroExtendInputIfNeeded(RHS); 3303 SDValue Subtract = 3304 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3305 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3306 Subtract, S->getI64Imm(1, dl), 3307 S->getI64Imm(63, dl)), 0); 3308 } 3309 } 3310 } 3311 3312 /// Produces a sign-extended result of comparing two 32-bit values according to 3313 /// the passed condition code. 3314 SDValue 3315 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, 3316 ISD::CondCode CC, 3317 int64_t RHSValue, SDLoc dl) { 3318 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3319 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) 3320 return SDValue(); 3321 bool IsRHSZero = RHSValue == 0; 3322 bool IsRHSOne = RHSValue == 1; 3323 bool IsRHSNegOne = RHSValue == -1LL; 3324 3325 switch (CC) { 3326 default: return SDValue(); 3327 case ISD::SETEQ: { 3328 // (sext (setcc %a, %b, seteq)) -> 3329 // (ashr (shl (ctlz (xor %a, %b)), 58), 63) 3330 // (sext (setcc %a, 0, seteq)) -> 3331 // (ashr (shl (ctlz %a), 58), 63) 3332 SDValue CountInput = IsRHSZero ? LHS : 3333 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3334 SDValue Cntlzw = 3335 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); 3336 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), 3337 S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3338 SDValue Slwi = 3339 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); 3340 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); 3341 } 3342 case ISD::SETNE: { 3343 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and 3344 // flip the bit, finally take 2's complement. 3345 // (sext (setcc %a, %b, setne)) -> 3346 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) 3347 // Same as above, but the first xor is not needed. 3348 // (sext (setcc %a, 0, setne)) -> 3349 // (neg (xor (lshr (ctlz %a), 5), 1)) 3350 SDValue Xor = IsRHSZero ? LHS : 3351 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3352 SDValue Clz = 3353 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3354 SDValue ShiftOps[] = 3355 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3356 SDValue Shift = 3357 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3358 SDValue Xori = 3359 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3360 S->getI32Imm(1, dl)), 0); 3361 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); 3362 } 3363 case ISD::SETGE: { 3364 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) 3365 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) 3366 if (IsRHSZero) 3367 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3368 3369 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3370 // by swapping inputs and falling through. 3371 std::swap(LHS, RHS); 3372 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3373 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3374 LLVM_FALLTHROUGH; 3375 } 3376 case ISD::SETLE: { 3377 if (CmpInGPR == ICGPR_NonExtIn) 3378 return SDValue(); 3379 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) 3380 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) 3381 if (IsRHSZero) 3382 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3383 3384 // The upper 32-bits of the register can't be undefined for this sequence. 3385 LHS = signExtendInputIfNeeded(LHS); 3386 RHS = signExtendInputIfNeeded(RHS); 3387 SDValue SUBFNode = 3388 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, 3389 LHS, RHS), 0); 3390 SDValue Srdi = 3391 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3392 SUBFNode, S->getI64Imm(1, dl), 3393 S->getI64Imm(63, dl)), 0); 3394 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, 3395 S->getI32Imm(-1, dl)), 0); 3396 } 3397 case ISD::SETGT: { 3398 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) 3399 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) 3400 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) 3401 if (IsRHSNegOne) 3402 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3403 if (IsRHSZero) { 3404 if (CmpInGPR == ICGPR_NonExtIn) 3405 return SDValue(); 3406 // The upper 32-bits of the register can't be undefined for this sequence. 3407 LHS = signExtendInputIfNeeded(LHS); 3408 RHS = signExtendInputIfNeeded(RHS); 3409 SDValue Neg = 3410 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3411 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, 3412 S->getI64Imm(63, dl)), 0); 3413 } 3414 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3415 // (%b < %a) by swapping inputs and falling through. 3416 std::swap(LHS, RHS); 3417 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3418 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3419 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3420 LLVM_FALLTHROUGH; 3421 } 3422 case ISD::SETLT: { 3423 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) 3424 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) 3425 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) 3426 if (IsRHSOne) { 3427 if (CmpInGPR == ICGPR_NonExtIn) 3428 return SDValue(); 3429 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3430 } 3431 if (IsRHSZero) 3432 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, 3433 S->getI32Imm(31, dl)), 0); 3434 3435 if (CmpInGPR == ICGPR_NonExtIn) 3436 return SDValue(); 3437 // The upper 32-bits of the register can't be undefined for this sequence. 3438 LHS = signExtendInputIfNeeded(LHS); 3439 RHS = signExtendInputIfNeeded(RHS); 3440 SDValue SUBFNode = 3441 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3442 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3443 SUBFNode, S->getI64Imm(63, dl)), 0); 3444 } 3445 case ISD::SETUGE: 3446 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) 3447 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) 3448 std::swap(LHS, RHS); 3449 LLVM_FALLTHROUGH; 3450 case ISD::SETULE: { 3451 if (CmpInGPR == ICGPR_NonExtIn) 3452 return SDValue(); 3453 // The upper 32-bits of the register can't be undefined for this sequence. 3454 LHS = zeroExtendInputIfNeeded(LHS); 3455 RHS = zeroExtendInputIfNeeded(RHS); 3456 SDValue Subtract = 3457 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3458 SDValue Shift = 3459 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, 3460 S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 3461 0); 3462 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, 3463 S->getI32Imm(-1, dl)), 0); 3464 } 3465 case ISD::SETUGT: 3466 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) 3467 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) 3468 std::swap(LHS, RHS); 3469 LLVM_FALLTHROUGH; 3470 case ISD::SETULT: { 3471 if (CmpInGPR == ICGPR_NonExtIn) 3472 return SDValue(); 3473 // The upper 32-bits of the register can't be undefined for this sequence. 3474 LHS = zeroExtendInputIfNeeded(LHS); 3475 RHS = zeroExtendInputIfNeeded(RHS); 3476 SDValue Subtract = 3477 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3478 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3479 Subtract, S->getI64Imm(63, dl)), 0); 3480 } 3481 } 3482 } 3483 3484 /// Produces a zero-extended result of comparing two 64-bit values according to 3485 /// the passed condition code. 3486 SDValue 3487 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, 3488 ISD::CondCode CC, 3489 int64_t RHSValue, SDLoc dl) { 3490 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3491 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) 3492 return SDValue(); 3493 bool IsRHSZero = RHSValue == 0; 3494 bool IsRHSOne = RHSValue == 1; 3495 bool IsRHSNegOne = RHSValue == -1LL; 3496 switch (CC) { 3497 default: return SDValue(); 3498 case ISD::SETEQ: { 3499 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) 3500 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) 3501 SDValue Xor = IsRHSZero ? LHS : 3502 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3503 SDValue Clz = 3504 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); 3505 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, 3506 S->getI64Imm(58, dl), 3507 S->getI64Imm(63, dl)), 0); 3508 } 3509 case ISD::SETNE: { 3510 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3511 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) 3512 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3513 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3514 SDValue Xor = IsRHSZero ? LHS : 3515 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3516 SDValue AC = 3517 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3518 Xor, S->getI32Imm(~0U, dl)), 0); 3519 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, 3520 Xor, AC.getValue(1)), 0); 3521 } 3522 case ISD::SETGE: { 3523 // {subc.reg, subc.CA} = (subcarry %a, %b) 3524 // (zext (setcc %a, %b, setge)) -> 3525 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) 3526 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) 3527 if (IsRHSZero) 3528 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3529 std::swap(LHS, RHS); 3530 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3531 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3532 LLVM_FALLTHROUGH; 3533 } 3534 case ISD::SETLE: { 3535 // {subc.reg, subc.CA} = (subcarry %b, %a) 3536 // (zext (setcc %a, %b, setge)) -> 3537 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) 3538 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) 3539 if (IsRHSZero) 3540 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3541 SDValue ShiftL = 3542 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3543 S->getI64Imm(1, dl), 3544 S->getI64Imm(63, dl)), 0); 3545 SDValue ShiftR = 3546 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3547 S->getI64Imm(63, dl)), 0); 3548 SDValue SubtractCarry = 3549 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3550 LHS, RHS), 1); 3551 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3552 ShiftR, ShiftL, SubtractCarry), 0); 3553 } 3554 case ISD::SETGT: { 3555 // {subc.reg, subc.CA} = (subcarry %b, %a) 3556 // (zext (setcc %a, %b, setgt)) -> 3557 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3558 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) 3559 if (IsRHSNegOne) 3560 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3561 if (IsRHSZero) { 3562 SDValue Addi = 3563 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3564 S->getI64Imm(~0ULL, dl)), 0); 3565 SDValue Nor = 3566 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); 3567 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, 3568 S->getI64Imm(1, dl), 3569 S->getI64Imm(63, dl)), 0); 3570 } 3571 std::swap(LHS, RHS); 3572 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3573 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3574 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3575 LLVM_FALLTHROUGH; 3576 } 3577 case ISD::SETLT: { 3578 // {subc.reg, subc.CA} = (subcarry %a, %b) 3579 // (zext (setcc %a, %b, setlt)) -> 3580 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3581 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) 3582 if (IsRHSOne) 3583 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3584 if (IsRHSZero) 3585 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3586 S->getI64Imm(1, dl), 3587 S->getI64Imm(63, dl)), 0); 3588 SDValue SRADINode = 3589 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3590 LHS, S->getI64Imm(63, dl)), 0); 3591 SDValue SRDINode = 3592 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3593 RHS, S->getI64Imm(1, dl), 3594 S->getI64Imm(63, dl)), 0); 3595 SDValue SUBFC8Carry = 3596 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3597 RHS, LHS), 1); 3598 SDValue ADDE8Node = 3599 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3600 SRDINode, SRADINode, SUBFC8Carry), 0); 3601 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3602 ADDE8Node, S->getI64Imm(1, dl)), 0); 3603 } 3604 case ISD::SETUGE: 3605 // {subc.reg, subc.CA} = (subcarry %a, %b) 3606 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) 3607 std::swap(LHS, RHS); 3608 LLVM_FALLTHROUGH; 3609 case ISD::SETULE: { 3610 // {subc.reg, subc.CA} = (subcarry %b, %a) 3611 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) 3612 SDValue SUBFC8Carry = 3613 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3614 LHS, RHS), 1); 3615 SDValue SUBFE8Node = 3616 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, 3617 LHS, LHS, SUBFC8Carry), 0); 3618 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, 3619 SUBFE8Node, S->getI64Imm(1, dl)), 0); 3620 } 3621 case ISD::SETUGT: 3622 // {subc.reg, subc.CA} = (subcarry %b, %a) 3623 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) 3624 std::swap(LHS, RHS); 3625 LLVM_FALLTHROUGH; 3626 case ISD::SETULT: { 3627 // {subc.reg, subc.CA} = (subcarry %a, %b) 3628 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) 3629 SDValue SubtractCarry = 3630 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3631 RHS, LHS), 1); 3632 SDValue ExtSub = 3633 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3634 LHS, LHS, SubtractCarry), 0); 3635 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3636 ExtSub), 0); 3637 } 3638 } 3639 } 3640 3641 /// Produces a sign-extended result of comparing two 64-bit values according to 3642 /// the passed condition code. 3643 SDValue 3644 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, 3645 ISD::CondCode CC, 3646 int64_t RHSValue, SDLoc dl) { 3647 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3648 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) 3649 return SDValue(); 3650 bool IsRHSZero = RHSValue == 0; 3651 bool IsRHSOne = RHSValue == 1; 3652 bool IsRHSNegOne = RHSValue == -1LL; 3653 switch (CC) { 3654 default: return SDValue(); 3655 case ISD::SETEQ: { 3656 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3657 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) 3658 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3659 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3660 SDValue AddInput = IsRHSZero ? LHS : 3661 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3662 SDValue Addic = 3663 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3664 AddInput, S->getI32Imm(~0U, dl)), 0); 3665 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, 3666 Addic, Addic.getValue(1)), 0); 3667 } 3668 case ISD::SETNE: { 3669 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) 3670 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) 3671 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) 3672 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) 3673 SDValue Xor = IsRHSZero ? LHS : 3674 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3675 SDValue SC = 3676 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, 3677 Xor, S->getI32Imm(0, dl)), 0); 3678 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, 3679 SC, SC.getValue(1)), 0); 3680 } 3681 case ISD::SETGE: { 3682 // {subc.reg, subc.CA} = (subcarry %a, %b) 3683 // (zext (setcc %a, %b, setge)) -> 3684 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) 3685 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) 3686 if (IsRHSZero) 3687 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3688 std::swap(LHS, RHS); 3689 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3690 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3691 LLVM_FALLTHROUGH; 3692 } 3693 case ISD::SETLE: { 3694 // {subc.reg, subc.CA} = (subcarry %b, %a) 3695 // (zext (setcc %a, %b, setge)) -> 3696 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) 3697 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) 3698 if (IsRHSZero) 3699 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3700 SDValue ShiftR = 3701 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3702 S->getI64Imm(63, dl)), 0); 3703 SDValue ShiftL = 3704 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3705 S->getI64Imm(1, dl), 3706 S->getI64Imm(63, dl)), 0); 3707 SDValue SubtractCarry = 3708 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3709 LHS, RHS), 1); 3710 SDValue Adde = 3711 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3712 ShiftR, ShiftL, SubtractCarry), 0); 3713 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); 3714 } 3715 case ISD::SETGT: { 3716 // {subc.reg, subc.CA} = (subcarry %b, %a) 3717 // (zext (setcc %a, %b, setgt)) -> 3718 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3719 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) 3720 if (IsRHSNegOne) 3721 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3722 if (IsRHSZero) { 3723 SDValue Add = 3724 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3725 S->getI64Imm(-1, dl)), 0); 3726 SDValue Nor = 3727 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); 3728 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, 3729 S->getI64Imm(63, dl)), 0); 3730 } 3731 std::swap(LHS, RHS); 3732 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3733 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3734 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3735 LLVM_FALLTHROUGH; 3736 } 3737 case ISD::SETLT: { 3738 // {subc.reg, subc.CA} = (subcarry %a, %b) 3739 // (zext (setcc %a, %b, setlt)) -> 3740 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3741 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) 3742 if (IsRHSOne) 3743 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3744 if (IsRHSZero) { 3745 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, 3746 S->getI64Imm(63, dl)), 0); 3747 } 3748 SDValue SRADINode = 3749 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3750 LHS, S->getI64Imm(63, dl)), 0); 3751 SDValue SRDINode = 3752 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3753 RHS, S->getI64Imm(1, dl), 3754 S->getI64Imm(63, dl)), 0); 3755 SDValue SUBFC8Carry = 3756 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3757 RHS, LHS), 1); 3758 SDValue ADDE8Node = 3759 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, 3760 SRDINode, SRADINode, SUBFC8Carry), 0); 3761 SDValue XORI8Node = 3762 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3763 ADDE8Node, S->getI64Imm(1, dl)), 0); 3764 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3765 XORI8Node), 0); 3766 } 3767 case ISD::SETUGE: 3768 // {subc.reg, subc.CA} = (subcarry %a, %b) 3769 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) 3770 std::swap(LHS, RHS); 3771 LLVM_FALLTHROUGH; 3772 case ISD::SETULE: { 3773 // {subc.reg, subc.CA} = (subcarry %b, %a) 3774 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) 3775 SDValue SubtractCarry = 3776 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3777 LHS, RHS), 1); 3778 SDValue ExtSub = 3779 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, 3780 LHS, SubtractCarry), 0); 3781 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, 3782 ExtSub, ExtSub), 0); 3783 } 3784 case ISD::SETUGT: 3785 // {subc.reg, subc.CA} = (subcarry %b, %a) 3786 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) 3787 std::swap(LHS, RHS); 3788 LLVM_FALLTHROUGH; 3789 case ISD::SETULT: { 3790 // {subc.reg, subc.CA} = (subcarry %a, %b) 3791 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) 3792 SDValue SubCarry = 3793 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3794 RHS, LHS), 1); 3795 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3796 LHS, LHS, SubCarry), 0); 3797 } 3798 } 3799 } 3800 3801 /// Do all uses of this SDValue need the result in a GPR? 3802 /// This is meant to be used on values that have type i1 since 3803 /// it is somewhat meaningless to ask if values of other types 3804 /// should be kept in GPR's. 3805 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { 3806 assert(Compare.getOpcode() == ISD::SETCC && 3807 "An ISD::SETCC node required here."); 3808 3809 // For values that have a single use, the caller should obviously already have 3810 // checked if that use is an extending use. We check the other uses here. 3811 if (Compare.hasOneUse()) 3812 return true; 3813 // We want the value in a GPR if it is being extended, used for a select, or 3814 // used in logical operations. 3815 for (auto CompareUse : Compare.getNode()->uses()) 3816 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && 3817 CompareUse->getOpcode() != ISD::ZERO_EXTEND && 3818 CompareUse->getOpcode() != ISD::SELECT && 3819 !isLogicOp(CompareUse->getOpcode())) { 3820 OmittedForNonExtendUses++; 3821 return false; 3822 } 3823 return true; 3824 } 3825 3826 /// Returns an equivalent of a SETCC node but with the result the same width as 3827 /// the inputs. This can also be used for SELECT_CC if either the true or false 3828 /// values is a power of two while the other is zero. 3829 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, 3830 SetccInGPROpts ConvOpts) { 3831 assert((Compare.getOpcode() == ISD::SETCC || 3832 Compare.getOpcode() == ISD::SELECT_CC) && 3833 "An ISD::SETCC node required here."); 3834 3835 // Don't convert this comparison to a GPR sequence because there are uses 3836 // of the i1 result (i.e. uses that require the result in the CR). 3837 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) 3838 return SDValue(); 3839 3840 SDValue LHS = Compare.getOperand(0); 3841 SDValue RHS = Compare.getOperand(1); 3842 3843 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. 3844 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; 3845 ISD::CondCode CC = 3846 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); 3847 EVT InputVT = LHS.getValueType(); 3848 if (InputVT != MVT::i32 && InputVT != MVT::i64) 3849 return SDValue(); 3850 3851 if (ConvOpts == SetccInGPROpts::ZExtInvert || 3852 ConvOpts == SetccInGPROpts::SExtInvert) 3853 CC = ISD::getSetCCInverse(CC, InputVT); 3854 3855 bool Inputs32Bit = InputVT == MVT::i32; 3856 3857 SDLoc dl(Compare); 3858 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3859 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; 3860 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || 3861 ConvOpts == SetccInGPROpts::SExtInvert; 3862 3863 if (IsSext && Inputs32Bit) 3864 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3865 else if (Inputs32Bit) 3866 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3867 else if (IsSext) 3868 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3869 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3870 } 3871 3872 } // end anonymous namespace 3873 3874 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { 3875 if (N->getValueType(0) != MVT::i32 && 3876 N->getValueType(0) != MVT::i64) 3877 return false; 3878 3879 // This optimization will emit code that assumes 64-bit registers 3880 // so we don't want to run it in 32-bit mode. Also don't run it 3881 // on functions that are not to be optimized. 3882 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) 3883 return false; 3884 3885 // For POWER10, it is more profitable to use the set boolean extension 3886 // instructions rather than the integer compare elimination codegen. 3887 // Users can override this via the command line option, `--ppc-gpr-icmps`. 3888 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1()) 3889 return false; 3890 3891 switch (N->getOpcode()) { 3892 default: break; 3893 case ISD::ZERO_EXTEND: 3894 case ISD::SIGN_EXTEND: 3895 case ISD::AND: 3896 case ISD::OR: 3897 case ISD::XOR: { 3898 IntegerCompareEliminator ICmpElim(CurDAG, this); 3899 if (SDNode *New = ICmpElim.Select(N)) { 3900 ReplaceNode(N, New); 3901 return true; 3902 } 3903 } 3904 } 3905 return false; 3906 } 3907 3908 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 3909 if (N->getValueType(0) != MVT::i32 && 3910 N->getValueType(0) != MVT::i64) 3911 return false; 3912 3913 if (!UseBitPermRewriter) 3914 return false; 3915 3916 switch (N->getOpcode()) { 3917 default: break; 3918 case ISD::ROTL: 3919 case ISD::SHL: 3920 case ISD::SRL: 3921 case ISD::AND: 3922 case ISD::OR: { 3923 BitPermutationSelector BPS(CurDAG); 3924 if (SDNode *New = BPS.Select(N)) { 3925 ReplaceNode(N, New); 3926 return true; 3927 } 3928 return false; 3929 } 3930 } 3931 3932 return false; 3933 } 3934 3935 /// SelectCC - Select a comparison of the specified values with the specified 3936 /// condition code, returning the CR# of the expression. 3937 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 3938 const SDLoc &dl, SDValue Chain) { 3939 // Always select the LHS. 3940 unsigned Opc; 3941 3942 if (LHS.getValueType() == MVT::i32) { 3943 unsigned Imm; 3944 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3945 if (isInt32Immediate(RHS, Imm)) { 3946 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 3947 if (isUInt<16>(Imm)) 3948 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3949 getI32Imm(Imm & 0xFFFF, dl)), 3950 0); 3951 // If this is a 16-bit signed immediate, fold it. 3952 if (isInt<16>((int)Imm)) 3953 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3954 getI32Imm(Imm & 0xFFFF, dl)), 3955 0); 3956 3957 // For non-equality comparisons, the default code would materialize the 3958 // constant, then compare against it, like this: 3959 // lis r2, 4660 3960 // ori r2, r2, 22136 3961 // cmpw cr0, r3, r2 3962 // Since we are just comparing for equality, we can emit this instead: 3963 // xoris r0,r3,0x1234 3964 // cmplwi cr0,r0,0x5678 3965 // beq cr0,L6 3966 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 3967 getI32Imm(Imm >> 16, dl)), 0); 3968 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 3969 getI32Imm(Imm & 0xFFFF, dl)), 0); 3970 } 3971 Opc = PPC::CMPLW; 3972 } else if (ISD::isUnsignedIntSetCC(CC)) { 3973 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 3974 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3975 getI32Imm(Imm & 0xFFFF, dl)), 0); 3976 Opc = PPC::CMPLW; 3977 } else { 3978 int16_t SImm; 3979 if (isIntS16Immediate(RHS, SImm)) 3980 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3981 getI32Imm((int)SImm & 0xFFFF, 3982 dl)), 3983 0); 3984 Opc = PPC::CMPW; 3985 } 3986 } else if (LHS.getValueType() == MVT::i64) { 3987 uint64_t Imm; 3988 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3989 if (isInt64Immediate(RHS.getNode(), Imm)) { 3990 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 3991 if (isUInt<16>(Imm)) 3992 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 3993 getI32Imm(Imm & 0xFFFF, dl)), 3994 0); 3995 // If this is a 16-bit signed immediate, fold it. 3996 if (isInt<16>(Imm)) 3997 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 3998 getI32Imm(Imm & 0xFFFF, dl)), 3999 0); 4000 4001 // For non-equality comparisons, the default code would materialize the 4002 // constant, then compare against it, like this: 4003 // lis r2, 4660 4004 // ori r2, r2, 22136 4005 // cmpd cr0, r3, r2 4006 // Since we are just comparing for equality, we can emit this instead: 4007 // xoris r0,r3,0x1234 4008 // cmpldi cr0,r0,0x5678 4009 // beq cr0,L6 4010 if (isUInt<32>(Imm)) { 4011 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 4012 getI64Imm(Imm >> 16, dl)), 0); 4013 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 4014 getI64Imm(Imm & 0xFFFF, dl)), 4015 0); 4016 } 4017 } 4018 Opc = PPC::CMPLD; 4019 } else if (ISD::isUnsignedIntSetCC(CC)) { 4020 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 4021 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4022 getI64Imm(Imm & 0xFFFF, dl)), 0); 4023 Opc = PPC::CMPLD; 4024 } else { 4025 int16_t SImm; 4026 if (isIntS16Immediate(RHS, SImm)) 4027 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4028 getI64Imm(SImm & 0xFFFF, dl)), 4029 0); 4030 Opc = PPC::CMPD; 4031 } 4032 } else if (LHS.getValueType() == MVT::f32) { 4033 if (Subtarget->hasSPE()) { 4034 switch (CC) { 4035 default: 4036 case ISD::SETEQ: 4037 case ISD::SETNE: 4038 Opc = PPC::EFSCMPEQ; 4039 break; 4040 case ISD::SETLT: 4041 case ISD::SETGE: 4042 case ISD::SETOLT: 4043 case ISD::SETOGE: 4044 case ISD::SETULT: 4045 case ISD::SETUGE: 4046 Opc = PPC::EFSCMPLT; 4047 break; 4048 case ISD::SETGT: 4049 case ISD::SETLE: 4050 case ISD::SETOGT: 4051 case ISD::SETOLE: 4052 case ISD::SETUGT: 4053 case ISD::SETULE: 4054 Opc = PPC::EFSCMPGT; 4055 break; 4056 } 4057 } else 4058 Opc = PPC::FCMPUS; 4059 } else if (LHS.getValueType() == MVT::f64) { 4060 if (Subtarget->hasSPE()) { 4061 switch (CC) { 4062 default: 4063 case ISD::SETEQ: 4064 case ISD::SETNE: 4065 Opc = PPC::EFDCMPEQ; 4066 break; 4067 case ISD::SETLT: 4068 case ISD::SETGE: 4069 case ISD::SETOLT: 4070 case ISD::SETOGE: 4071 case ISD::SETULT: 4072 case ISD::SETUGE: 4073 Opc = PPC::EFDCMPLT; 4074 break; 4075 case ISD::SETGT: 4076 case ISD::SETLE: 4077 case ISD::SETOGT: 4078 case ISD::SETOLE: 4079 case ISD::SETUGT: 4080 case ISD::SETULE: 4081 Opc = PPC::EFDCMPGT; 4082 break; 4083 } 4084 } else 4085 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 4086 } else { 4087 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); 4088 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector"); 4089 Opc = PPC::XSCMPUQP; 4090 } 4091 if (Chain) 4092 return SDValue( 4093 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain), 4094 0); 4095 else 4096 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 4097 } 4098 4099 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, 4100 const PPCSubtarget *Subtarget) { 4101 // For SPE instructions, the result is in GT bit of the CR 4102 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); 4103 4104 switch (CC) { 4105 case ISD::SETUEQ: 4106 case ISD::SETONE: 4107 case ISD::SETOLE: 4108 case ISD::SETOGE: 4109 llvm_unreachable("Should be lowered by legalize!"); 4110 default: llvm_unreachable("Unknown condition!"); 4111 case ISD::SETOEQ: 4112 case ISD::SETEQ: 4113 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; 4114 case ISD::SETUNE: 4115 case ISD::SETNE: 4116 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; 4117 case ISD::SETOLT: 4118 case ISD::SETLT: 4119 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; 4120 case ISD::SETULE: 4121 case ISD::SETLE: 4122 return PPC::PRED_LE; 4123 case ISD::SETOGT: 4124 case ISD::SETGT: 4125 return PPC::PRED_GT; 4126 case ISD::SETUGE: 4127 case ISD::SETGE: 4128 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; 4129 case ISD::SETO: return PPC::PRED_NU; 4130 case ISD::SETUO: return PPC::PRED_UN; 4131 // These two are invalid for floating point. Assume we have int. 4132 case ISD::SETULT: return PPC::PRED_LT; 4133 case ISD::SETUGT: return PPC::PRED_GT; 4134 } 4135 } 4136 4137 /// getCRIdxForSetCC - Return the index of the condition register field 4138 /// associated with the SetCC condition, and whether or not the field is 4139 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 4140 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 4141 Invert = false; 4142 switch (CC) { 4143 default: llvm_unreachable("Unknown condition!"); 4144 case ISD::SETOLT: 4145 case ISD::SETLT: return 0; // Bit #0 = SETOLT 4146 case ISD::SETOGT: 4147 case ISD::SETGT: return 1; // Bit #1 = SETOGT 4148 case ISD::SETOEQ: 4149 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 4150 case ISD::SETUO: return 3; // Bit #3 = SETUO 4151 case ISD::SETUGE: 4152 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 4153 case ISD::SETULE: 4154 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 4155 case ISD::SETUNE: 4156 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 4157 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 4158 case ISD::SETUEQ: 4159 case ISD::SETOGE: 4160 case ISD::SETOLE: 4161 case ISD::SETONE: 4162 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 4163 // These are invalid for floating point. Assume integer. 4164 case ISD::SETULT: return 0; 4165 case ISD::SETUGT: return 1; 4166 } 4167 } 4168 4169 // getVCmpInst: return the vector compare instruction for the specified 4170 // vector type and condition code. Since this is for altivec specific code, 4171 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128, 4172 // and v4f32). 4173 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 4174 bool HasVSX, bool &Swap, bool &Negate) { 4175 Swap = false; 4176 Negate = false; 4177 4178 if (VecVT.isFloatingPoint()) { 4179 /* Handle some cases by swapping input operands. */ 4180 switch (CC) { 4181 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 4182 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4183 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 4184 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 4185 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4186 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 4187 default: break; 4188 } 4189 /* Handle some cases by negating the result. */ 4190 switch (CC) { 4191 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4192 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 4193 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 4194 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 4195 default: break; 4196 } 4197 /* We have instructions implementing the remaining cases. */ 4198 switch (CC) { 4199 case ISD::SETEQ: 4200 case ISD::SETOEQ: 4201 if (VecVT == MVT::v4f32) 4202 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 4203 else if (VecVT == MVT::v2f64) 4204 return PPC::XVCMPEQDP; 4205 break; 4206 case ISD::SETGT: 4207 case ISD::SETOGT: 4208 if (VecVT == MVT::v4f32) 4209 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 4210 else if (VecVT == MVT::v2f64) 4211 return PPC::XVCMPGTDP; 4212 break; 4213 case ISD::SETGE: 4214 case ISD::SETOGE: 4215 if (VecVT == MVT::v4f32) 4216 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 4217 else if (VecVT == MVT::v2f64) 4218 return PPC::XVCMPGEDP; 4219 break; 4220 default: 4221 break; 4222 } 4223 llvm_unreachable("Invalid floating-point vector compare condition"); 4224 } else { 4225 /* Handle some cases by swapping input operands. */ 4226 switch (CC) { 4227 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 4228 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4229 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4230 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 4231 default: break; 4232 } 4233 /* Handle some cases by negating the result. */ 4234 switch (CC) { 4235 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4236 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 4237 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 4238 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 4239 default: break; 4240 } 4241 /* We have instructions implementing the remaining cases. */ 4242 switch (CC) { 4243 case ISD::SETEQ: 4244 case ISD::SETUEQ: 4245 if (VecVT == MVT::v16i8) 4246 return PPC::VCMPEQUB; 4247 else if (VecVT == MVT::v8i16) 4248 return PPC::VCMPEQUH; 4249 else if (VecVT == MVT::v4i32) 4250 return PPC::VCMPEQUW; 4251 else if (VecVT == MVT::v2i64) 4252 return PPC::VCMPEQUD; 4253 else if (VecVT == MVT::v1i128) 4254 return PPC::VCMPEQUQ; 4255 break; 4256 case ISD::SETGT: 4257 if (VecVT == MVT::v16i8) 4258 return PPC::VCMPGTSB; 4259 else if (VecVT == MVT::v8i16) 4260 return PPC::VCMPGTSH; 4261 else if (VecVT == MVT::v4i32) 4262 return PPC::VCMPGTSW; 4263 else if (VecVT == MVT::v2i64) 4264 return PPC::VCMPGTSD; 4265 else if (VecVT == MVT::v1i128) 4266 return PPC::VCMPGTSQ; 4267 break; 4268 case ISD::SETUGT: 4269 if (VecVT == MVT::v16i8) 4270 return PPC::VCMPGTUB; 4271 else if (VecVT == MVT::v8i16) 4272 return PPC::VCMPGTUH; 4273 else if (VecVT == MVT::v4i32) 4274 return PPC::VCMPGTUW; 4275 else if (VecVT == MVT::v2i64) 4276 return PPC::VCMPGTUD; 4277 else if (VecVT == MVT::v1i128) 4278 return PPC::VCMPGTUQ; 4279 break; 4280 default: 4281 break; 4282 } 4283 llvm_unreachable("Invalid integer vector compare condition"); 4284 } 4285 } 4286 4287 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 4288 SDLoc dl(N); 4289 unsigned Imm; 4290 bool IsStrict = N->isStrictFPOpcode(); 4291 ISD::CondCode CC = 4292 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get(); 4293 EVT PtrVT = 4294 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4295 bool isPPC64 = (PtrVT == MVT::i64); 4296 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4297 4298 SDValue LHS = N->getOperand(IsStrict ? 1 : 0); 4299 SDValue RHS = N->getOperand(IsStrict ? 2 : 1); 4300 4301 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) { 4302 // We can codegen setcc op, imm very efficiently compared to a brcond. 4303 // Check for those cases here. 4304 // setcc op, 0 4305 if (Imm == 0) { 4306 SDValue Op = LHS; 4307 switch (CC) { 4308 default: break; 4309 case ISD::SETEQ: { 4310 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 4311 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 4312 getI32Imm(31, dl) }; 4313 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4314 return true; 4315 } 4316 case ISD::SETNE: { 4317 if (isPPC64) break; 4318 SDValue AD = 4319 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4320 Op, getI32Imm(~0U, dl)), 0); 4321 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 4322 return true; 4323 } 4324 case ISD::SETLT: { 4325 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4326 getI32Imm(31, dl) }; 4327 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4328 return true; 4329 } 4330 case ISD::SETGT: { 4331 SDValue T = 4332 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 4333 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 4334 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 4335 getI32Imm(31, dl) }; 4336 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4337 return true; 4338 } 4339 } 4340 } else if (Imm == ~0U) { // setcc op, -1 4341 SDValue Op = LHS; 4342 switch (CC) { 4343 default: break; 4344 case ISD::SETEQ: 4345 if (isPPC64) break; 4346 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4347 Op, getI32Imm(1, dl)), 0); 4348 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 4349 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 4350 MVT::i32, 4351 getI32Imm(0, dl)), 4352 0), Op.getValue(1)); 4353 return true; 4354 case ISD::SETNE: { 4355 if (isPPC64) break; 4356 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 4357 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4358 Op, getI32Imm(~0U, dl)); 4359 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 4360 SDValue(AD, 1)); 4361 return true; 4362 } 4363 case ISD::SETLT: { 4364 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 4365 getI32Imm(1, dl)), 0); 4366 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 4367 Op), 0); 4368 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 4369 getI32Imm(31, dl) }; 4370 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4371 return true; 4372 } 4373 case ISD::SETGT: { 4374 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4375 getI32Imm(31, dl) }; 4376 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4377 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 4378 return true; 4379 } 4380 } 4381 } 4382 } 4383 4384 // Altivec Vector compare instructions do not set any CR register by default and 4385 // vector compare operations return the same type as the operands. 4386 if (!IsStrict && LHS.getValueType().isVector()) { 4387 if (Subtarget->hasSPE()) 4388 return false; 4389 4390 EVT VecVT = LHS.getValueType(); 4391 bool Swap, Negate; 4392 unsigned int VCmpInst = 4393 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); 4394 if (Swap) 4395 std::swap(LHS, RHS); 4396 4397 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 4398 if (Negate) { 4399 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 4400 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 4401 ResVT, VCmp, VCmp); 4402 return true; 4403 } 4404 4405 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 4406 return true; 4407 } 4408 4409 if (Subtarget->useCRBits()) 4410 return false; 4411 4412 bool Inv; 4413 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4414 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain); 4415 if (IsStrict) 4416 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1)); 4417 SDValue IntCR; 4418 4419 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that 4420 // The correct compare instruction is already set by SelectCC() 4421 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { 4422 Idx = 1; 4423 } 4424 4425 // Force the ccreg into CR7. 4426 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 4427 4428 SDValue InFlag(nullptr, 0); // Null incoming flag value. 4429 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 4430 InFlag).getValue(1); 4431 4432 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 4433 CCReg), 0); 4434 4435 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 4436 getI32Imm(31, dl), getI32Imm(31, dl) }; 4437 if (!Inv) { 4438 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4439 return true; 4440 } 4441 4442 // Get the specified bit. 4443 SDValue Tmp = 4444 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4445 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 4446 return true; 4447 } 4448 4449 /// Does this node represent a load/store node whose address can be represented 4450 /// with a register plus an immediate that's a multiple of \p Val: 4451 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { 4452 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); 4453 StoreSDNode *STN = dyn_cast<StoreSDNode>(N); 4454 SDValue AddrOp; 4455 if (LDN) 4456 AddrOp = LDN->getOperand(1); 4457 else if (STN) 4458 AddrOp = STN->getOperand(2); 4459 4460 // If the address points a frame object or a frame object with an offset, 4461 // we need to check the object alignment. 4462 short Imm = 0; 4463 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( 4464 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : 4465 AddrOp)) { 4466 // If op0 is a frame index that is under aligned, we can't do it either, 4467 // because it is translated to r31 or r1 + slot + offset. We won't know the 4468 // slot number until the stack frame is finalized. 4469 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); 4470 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); 4471 if ((SlotAlign % Val) != 0) 4472 return false; 4473 4474 // If we have an offset, we need further check on the offset. 4475 if (AddrOp.getOpcode() != ISD::ADD) 4476 return true; 4477 } 4478 4479 if (AddrOp.getOpcode() == ISD::ADD) 4480 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); 4481 4482 // If the address comes from the outside, the offset will be zero. 4483 return AddrOp.getOpcode() == ISD::CopyFromReg; 4484 } 4485 4486 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 4487 // Transfer memoperands. 4488 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4489 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 4490 } 4491 4492 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, 4493 bool &NeedSwapOps, bool &IsUnCmp) { 4494 4495 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); 4496 4497 SDValue LHS = N->getOperand(0); 4498 SDValue RHS = N->getOperand(1); 4499 SDValue TrueRes = N->getOperand(2); 4500 SDValue FalseRes = N->getOperand(3); 4501 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); 4502 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && 4503 N->getSimpleValueType(0) != MVT::i32)) 4504 return false; 4505 4506 // We are looking for any of: 4507 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4508 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4509 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) 4510 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) 4511 int64_t TrueResVal = TrueConst->getSExtValue(); 4512 if ((TrueResVal < -1 || TrueResVal > 1) || 4513 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || 4514 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || 4515 (TrueResVal == 0 && 4516 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) 4517 return false; 4518 4519 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC 4520 ? FalseRes 4521 : FalseRes.getOperand(0); 4522 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC; 4523 if (SetOrSelCC.getOpcode() != ISD::SETCC && 4524 SetOrSelCC.getOpcode() != ISD::SELECT_CC) 4525 return false; 4526 4527 // Without this setb optimization, the outer SELECT_CC will be manually 4528 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass 4529 // transforms pseudo instruction to isel instruction. When there are more than 4530 // one use for result like zext/sext, with current optimization we only see 4531 // isel is replaced by setb but can't see any significant gain. Since 4532 // setb has longer latency than original isel, we should avoid this. Another 4533 // point is that setb requires comparison always kept, it can break the 4534 // opportunity to get the comparison away if we have in future. 4535 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) 4536 return false; 4537 4538 SDValue InnerLHS = SetOrSelCC.getOperand(0); 4539 SDValue InnerRHS = SetOrSelCC.getOperand(1); 4540 ISD::CondCode InnerCC = 4541 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); 4542 // If the inner comparison is a select_cc, make sure the true/false values are 4543 // 1/-1 and canonicalize it if needed. 4544 if (InnerIsSel) { 4545 ConstantSDNode *SelCCTrueConst = 4546 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); 4547 ConstantSDNode *SelCCFalseConst = 4548 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); 4549 if (!SelCCTrueConst || !SelCCFalseConst) 4550 return false; 4551 int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); 4552 int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); 4553 // The values must be -1/1 (requiring a swap) or 1/-1. 4554 if (SelCCTVal == -1 && SelCCFVal == 1) { 4555 std::swap(InnerLHS, InnerRHS); 4556 } else if (SelCCTVal != 1 || SelCCFVal != -1) 4557 return false; 4558 } 4559 4560 // Canonicalize unsigned case 4561 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { 4562 IsUnCmp = true; 4563 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; 4564 } 4565 4566 bool InnerSwapped = false; 4567 if (LHS == InnerRHS && RHS == InnerLHS) 4568 InnerSwapped = true; 4569 else if (LHS != InnerLHS || RHS != InnerRHS) 4570 return false; 4571 4572 switch (CC) { 4573 // (select_cc lhs, rhs, 0, \ 4574 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) 4575 case ISD::SETEQ: 4576 if (!InnerIsSel) 4577 return false; 4578 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) 4579 return false; 4580 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; 4581 break; 4582 4583 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4584 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) 4585 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) 4586 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4587 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) 4588 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) 4589 case ISD::SETULT: 4590 if (!IsUnCmp && InnerCC != ISD::SETNE) 4591 return false; 4592 IsUnCmp = true; 4593 LLVM_FALLTHROUGH; 4594 case ISD::SETLT: 4595 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || 4596 (InnerCC == ISD::SETLT && InnerSwapped)) 4597 NeedSwapOps = (TrueResVal == 1); 4598 else 4599 return false; 4600 break; 4601 4602 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4603 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) 4604 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) 4605 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4606 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) 4607 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) 4608 case ISD::SETUGT: 4609 if (!IsUnCmp && InnerCC != ISD::SETNE) 4610 return false; 4611 IsUnCmp = true; 4612 LLVM_FALLTHROUGH; 4613 case ISD::SETGT: 4614 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || 4615 (InnerCC == ISD::SETGT && InnerSwapped)) 4616 NeedSwapOps = (TrueResVal == -1); 4617 else 4618 return false; 4619 break; 4620 4621 default: 4622 return false; 4623 } 4624 4625 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); 4626 LLVM_DEBUG(N->dump()); 4627 4628 return true; 4629 } 4630 4631 // Return true if it's a software square-root/divide operand. 4632 static bool isSWTestOp(SDValue N) { 4633 if (N.getOpcode() == PPCISD::FTSQRT) 4634 return true; 4635 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0))) 4636 return false; 4637 switch (N.getConstantOperandVal(0)) { 4638 case Intrinsic::ppc_vsx_xvtdivdp: 4639 case Intrinsic::ppc_vsx_xvtdivsp: 4640 case Intrinsic::ppc_vsx_xvtsqrtdp: 4641 case Intrinsic::ppc_vsx_xvtsqrtsp: 4642 return true; 4643 } 4644 return false; 4645 } 4646 4647 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) { 4648 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected."); 4649 // We are looking for following patterns, where `truncate to i1` actually has 4650 // the same semantic with `and 1`. 4651 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp) 4652 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp) 4653 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp) 4654 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp) 4655 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp) 4656 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp) 4657 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp) 4658 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp) 4659 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4660 if (CC != ISD::SETEQ && CC != ISD::SETNE) 4661 return false; 4662 4663 SDValue CmpRHS = N->getOperand(3); 4664 if (!isa<ConstantSDNode>(CmpRHS) || 4665 cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0) 4666 return false; 4667 4668 SDValue CmpLHS = N->getOperand(2); 4669 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0))) 4670 return false; 4671 4672 unsigned PCC = 0; 4673 bool IsCCNE = CC == ISD::SETNE; 4674 if (CmpLHS.getOpcode() == ISD::AND && 4675 isa<ConstantSDNode>(CmpLHS.getOperand(1))) 4676 switch (CmpLHS.getConstantOperandVal(1)) { 4677 case 1: 4678 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4679 break; 4680 case 2: 4681 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE; 4682 break; 4683 case 4: 4684 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE; 4685 break; 4686 case 8: 4687 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE; 4688 break; 4689 default: 4690 return false; 4691 } 4692 else if (CmpLHS.getOpcode() == ISD::TRUNCATE && 4693 CmpLHS.getValueType() == MVT::i1) 4694 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4695 4696 if (PCC) { 4697 SDLoc dl(N); 4698 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4), 4699 N->getOperand(0)}; 4700 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 4701 return true; 4702 } 4703 return false; 4704 } 4705 4706 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { 4707 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4708 unsigned Imm; 4709 if (!isInt32Immediate(N->getOperand(1), Imm)) 4710 return false; 4711 4712 SDLoc dl(N); 4713 SDValue Val = N->getOperand(0); 4714 unsigned SH, MB, ME; 4715 // If this is an and of a value rotated between 0 and 31 bits and then and'd 4716 // with a mask, emit rlwinm 4717 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { 4718 Val = Val.getOperand(0); 4719 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 4720 getI32Imm(ME, dl)}; 4721 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4722 return true; 4723 } 4724 4725 // If this is just a masked value where the input is not handled, and 4726 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 4727 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { 4728 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), 4729 getI32Imm(ME, dl)}; 4730 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4731 return true; 4732 } 4733 4734 // AND X, 0 -> 0, not "rlwinm 32". 4735 if (Imm == 0) { 4736 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 4737 return true; 4738 } 4739 4740 return false; 4741 } 4742 4743 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { 4744 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4745 uint64_t Imm64; 4746 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 4747 return false; 4748 4749 unsigned MB, ME; 4750 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { 4751 // MB ME 4752 // +----------------------+ 4753 // |xxxxxxxxxxx00011111000| 4754 // +----------------------+ 4755 // 0 32 64 4756 // We can only do it if the MB is larger than 32 and MB <= ME 4757 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even 4758 // we didn't rotate it. 4759 SDLoc dl(N); 4760 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), 4761 getI64Imm(ME - 32, dl)}; 4762 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); 4763 return true; 4764 } 4765 4766 return false; 4767 } 4768 4769 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { 4770 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4771 uint64_t Imm64; 4772 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 4773 return false; 4774 4775 // Do nothing if it is 16-bit imm as the pattern in the .td file handle 4776 // it well with "andi.". 4777 if (isUInt<16>(Imm64)) 4778 return false; 4779 4780 SDLoc Loc(N); 4781 SDValue Val = N->getOperand(0); 4782 4783 // Optimized with two rldicl's as follows: 4784 // Add missing bits on left to the mask and check that the mask is a 4785 // wrapped run of ones, i.e. 4786 // Change pattern |0001111100000011111111| 4787 // to |1111111100000011111111|. 4788 unsigned NumOfLeadingZeros = countLeadingZeros(Imm64); 4789 if (NumOfLeadingZeros != 0) 4790 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); 4791 4792 unsigned MB, ME; 4793 if (!isRunOfOnes64(Imm64, MB, ME)) 4794 return false; 4795 4796 // ME MB MB-ME+63 4797 // +----------------------+ +----------------------+ 4798 // |1111111100000011111111| -> |0000001111111111111111| 4799 // +----------------------+ +----------------------+ 4800 // 0 63 0 63 4801 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. 4802 unsigned OnesOnLeft = ME + 1; 4803 unsigned ZerosInBetween = (MB - ME + 63) & 63; 4804 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear 4805 // on the left the bits that are already zeros in the mask. 4806 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, 4807 getI64Imm(OnesOnLeft, Loc), 4808 getI64Imm(ZerosInBetween, Loc)), 4809 0); 4810 // MB-ME+63 ME MB 4811 // +----------------------+ +----------------------+ 4812 // |0000001111111111111111| -> |0001111100000011111111| 4813 // +----------------------+ +----------------------+ 4814 // 0 63 0 63 4815 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the 4816 // left the number of ones we previously added. 4817 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), 4818 getI64Imm(NumOfLeadingZeros, Loc)}; 4819 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 4820 return true; 4821 } 4822 4823 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { 4824 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4825 unsigned Imm; 4826 if (!isInt32Immediate(N->getOperand(1), Imm)) 4827 return false; 4828 4829 SDValue Val = N->getOperand(0); 4830 unsigned Imm2; 4831 // ISD::OR doesn't get all the bitfield insertion fun. 4832 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 4833 // bitfield insert. 4834 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) 4835 return false; 4836 4837 // The idea here is to check whether this is equivalent to: 4838 // (c1 & m) | (x & ~m) 4839 // where m is a run-of-ones mask. The logic here is that, for each bit in 4840 // c1 and c2: 4841 // - if both are 1, then the output will be 1. 4842 // - if both are 0, then the output will be 0. 4843 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 4844 // come from x. 4845 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 4846 // be 0. 4847 // If that last condition is never the case, then we can form m from the 4848 // bits that are the same between c1 and c2. 4849 unsigned MB, ME; 4850 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { 4851 SDLoc dl(N); 4852 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), 4853 getI32Imm(MB, dl), getI32Imm(ME, dl)}; 4854 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 4855 return true; 4856 } 4857 4858 return false; 4859 } 4860 4861 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { 4862 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4863 uint64_t Imm64; 4864 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) 4865 return false; 4866 4867 // If this is a 64-bit zero-extension mask, emit rldicl. 4868 unsigned MB = 64 - countTrailingOnes(Imm64); 4869 unsigned SH = 0; 4870 unsigned Imm; 4871 SDValue Val = N->getOperand(0); 4872 SDLoc dl(N); 4873 4874 if (Val.getOpcode() == ISD::ANY_EXTEND) { 4875 auto Op0 = Val.getOperand(0); 4876 if (Op0.getOpcode() == ISD::SRL && 4877 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { 4878 4879 auto ResultType = Val.getNode()->getValueType(0); 4880 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); 4881 SDValue IDVal(ImDef, 0); 4882 4883 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, 4884 IDVal, Op0.getOperand(0), 4885 getI32Imm(1, dl)), 4886 0); 4887 SH = 64 - Imm; 4888 } 4889 } 4890 4891 // If the operand is a logical right shift, we can fold it into this 4892 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 4893 // for n <= mb. The right shift is really a left rotate followed by a 4894 // mask, and this mask is a more-restrictive sub-mask of the mask implied 4895 // by the shift. 4896 if (Val.getOpcode() == ISD::SRL && 4897 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 4898 assert(Imm < 64 && "Illegal shift amount"); 4899 Val = Val.getOperand(0); 4900 SH = 64 - Imm; 4901 } 4902 4903 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; 4904 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 4905 return true; 4906 } 4907 4908 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { 4909 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4910 uint64_t Imm64; 4911 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 4912 !isMask_64(~Imm64)) 4913 return false; 4914 4915 // If this is a negated 64-bit zero-extension mask, 4916 // i.e. the immediate is a sequence of ones from most significant side 4917 // and all zero for reminder, we should use rldicr. 4918 unsigned MB = 63 - countTrailingOnes(~Imm64); 4919 unsigned SH = 0; 4920 SDLoc dl(N); 4921 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; 4922 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 4923 return true; 4924 } 4925 4926 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { 4927 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected"); 4928 uint64_t Imm64; 4929 unsigned MB, ME; 4930 SDValue N0 = N->getOperand(0); 4931 4932 // We won't get fewer instructions if the imm is 32-bit integer. 4933 // rldimi requires the imm to have consecutive ones with both sides zero. 4934 // Also, make sure the first Op has only one use, otherwise this may increase 4935 // register pressure since rldimi is destructive. 4936 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 4937 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) 4938 return false; 4939 4940 unsigned SH = 63 - ME; 4941 SDLoc Dl(N); 4942 // Use select64Imm for making LI instr instead of directly putting Imm64 4943 SDValue Ops[] = { 4944 N->getOperand(0), 4945 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), 4946 getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; 4947 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); 4948 return true; 4949 } 4950 4951 // Select - Convert the specified operand from a target-independent to a 4952 // target-specific node if it hasn't already been changed. 4953 void PPCDAGToDAGISel::Select(SDNode *N) { 4954 SDLoc dl(N); 4955 if (N->isMachineOpcode()) { 4956 N->setNodeId(-1); 4957 return; // Already selected. 4958 } 4959 4960 // In case any misguided DAG-level optimizations form an ADD with a 4961 // TargetConstant operand, crash here instead of miscompiling (by selecting 4962 // an r+r add instead of some kind of r+i add). 4963 if (N->getOpcode() == ISD::ADD && 4964 N->getOperand(1).getOpcode() == ISD::TargetConstant) 4965 llvm_unreachable("Invalid ADD with TargetConstant operand"); 4966 4967 // Try matching complex bit permutations before doing anything else. 4968 if (tryBitPermutation(N)) 4969 return; 4970 4971 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). 4972 if (tryIntCompareInGPR(N)) 4973 return; 4974 4975 switch (N->getOpcode()) { 4976 default: break; 4977 4978 case ISD::Constant: 4979 if (N->getValueType(0) == MVT::i64) { 4980 ReplaceNode(N, selectI64Imm(CurDAG, N)); 4981 return; 4982 } 4983 break; 4984 4985 case ISD::INTRINSIC_WO_CHAIN: { 4986 // We emit the PPC::FSELS instruction here because of type conflicts with 4987 // the comparison operand. The FSELS instruction is defined to use an 8-byte 4988 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte 4989 // value for the comparison. When selecting through a .td file, a type 4990 // error is raised. Must check this first so we never break on the 4991 // !Subtarget->isISA3_1() check. 4992 if (N->getConstantOperandVal(0) == Intrinsic::ppc_fsels) { 4993 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)}; 4994 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops); 4995 return; 4996 } 4997 4998 if (!Subtarget->isISA3_1()) 4999 break; 5000 unsigned Opcode = 0; 5001 switch (N->getConstantOperandVal(0)) { 5002 default: 5003 break; 5004 case Intrinsic::ppc_altivec_vstribr_p: 5005 Opcode = PPC::VSTRIBR_rec; 5006 break; 5007 case Intrinsic::ppc_altivec_vstribl_p: 5008 Opcode = PPC::VSTRIBL_rec; 5009 break; 5010 case Intrinsic::ppc_altivec_vstrihr_p: 5011 Opcode = PPC::VSTRIHR_rec; 5012 break; 5013 case Intrinsic::ppc_altivec_vstrihl_p: 5014 Opcode = PPC::VSTRIHL_rec; 5015 break; 5016 } 5017 if (!Opcode) 5018 break; 5019 5020 // Generate the appropriate vector string isolate intrinsic to match. 5021 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5022 SDValue VecStrOp = 5023 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0); 5024 // Vector string isolate instructions update the EQ bit of CR6. 5025 // Generate a SETBC instruction to extract the bit and place it in a GPR. 5026 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32); 5027 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5028 SDValue CRBit = SDValue( 5029 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5030 CR6Reg, SubRegIdx, VecStrOp.getValue(1)), 5031 0); 5032 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit); 5033 return; 5034 } 5035 5036 case ISD::SETCC: 5037 case ISD::STRICT_FSETCC: 5038 case ISD::STRICT_FSETCCS: 5039 if (trySETCC(N)) 5040 return; 5041 break; 5042 // These nodes will be transformed into GETtlsADDR32 node, which 5043 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT 5044 case PPCISD::ADDI_TLSLD_L_ADDR: 5045 case PPCISD::ADDI_TLSGD_L_ADDR: { 5046 const Module *Mod = MF->getFunction().getParent(); 5047 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5048 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || 5049 Mod->getPICLevel() == PICLevel::SmallPIC) 5050 break; 5051 // Attach global base pointer on GETtlsADDR32 node in order to 5052 // generate secure plt code for TLS symbols. 5053 getGlobalBaseReg(); 5054 } break; 5055 case PPCISD::CALL: { 5056 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5057 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || 5058 !Subtarget->isTargetELF()) 5059 break; 5060 5061 SDValue Op = N->getOperand(1); 5062 5063 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5064 if (GA->getTargetFlags() == PPCII::MO_PLT) 5065 getGlobalBaseReg(); 5066 } 5067 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 5068 if (ES->getTargetFlags() == PPCII::MO_PLT) 5069 getGlobalBaseReg(); 5070 } 5071 } 5072 break; 5073 5074 case PPCISD::GlobalBaseReg: 5075 ReplaceNode(N, getGlobalBaseReg()); 5076 return; 5077 5078 case ISD::FrameIndex: 5079 selectFrameIndex(N, N); 5080 return; 5081 5082 case PPCISD::MFOCRF: { 5083 SDValue InFlag = N->getOperand(1); 5084 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 5085 N->getOperand(0), InFlag)); 5086 return; 5087 } 5088 5089 case PPCISD::READ_TIME_BASE: 5090 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 5091 MVT::Other, N->getOperand(0))); 5092 return; 5093 5094 case PPCISD::SRA_ADDZE: { 5095 SDValue N0 = N->getOperand(0); 5096 SDValue ShiftAmt = 5097 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 5098 getConstantIntValue(), dl, 5099 N->getValueType(0)); 5100 if (N->getValueType(0) == MVT::i64) { 5101 SDNode *Op = 5102 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 5103 N0, ShiftAmt); 5104 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 5105 SDValue(Op, 1)); 5106 return; 5107 } else { 5108 assert(N->getValueType(0) == MVT::i32 && 5109 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 5110 SDNode *Op = 5111 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 5112 N0, ShiftAmt); 5113 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 5114 SDValue(Op, 1)); 5115 return; 5116 } 5117 } 5118 5119 case ISD::STORE: { 5120 // Change TLS initial-exec D-form stores to X-form stores. 5121 StoreSDNode *ST = cast<StoreSDNode>(N); 5122 if (EnableTLSOpt && Subtarget->isELFv2ABI() && 5123 ST->getAddressingMode() != ISD::PRE_INC) 5124 if (tryTLSXFormStore(ST)) 5125 return; 5126 break; 5127 } 5128 case ISD::LOAD: { 5129 // Handle preincrement loads. 5130 LoadSDNode *LD = cast<LoadSDNode>(N); 5131 EVT LoadedVT = LD->getMemoryVT(); 5132 5133 // Normal loads are handled by code generated from the .td file. 5134 if (LD->getAddressingMode() != ISD::PRE_INC) { 5135 // Change TLS initial-exec D-form loads to X-form loads. 5136 if (EnableTLSOpt && Subtarget->isELFv2ABI()) 5137 if (tryTLSXFormLoad(LD)) 5138 return; 5139 break; 5140 } 5141 5142 SDValue Offset = LD->getOffset(); 5143 if (Offset.getOpcode() == ISD::TargetConstant || 5144 Offset.getOpcode() == ISD::TargetGlobalAddress) { 5145 5146 unsigned Opcode; 5147 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5148 if (LD->getValueType(0) != MVT::i64) { 5149 // Handle PPC32 integer and normal FP loads. 5150 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5151 switch (LoadedVT.getSimpleVT().SimpleTy) { 5152 default: llvm_unreachable("Invalid PPC load type!"); 5153 case MVT::f64: Opcode = PPC::LFDU; break; 5154 case MVT::f32: Opcode = PPC::LFSU; break; 5155 case MVT::i32: Opcode = PPC::LWZU; break; 5156 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 5157 case MVT::i1: 5158 case MVT::i8: Opcode = PPC::LBZU; break; 5159 } 5160 } else { 5161 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5162 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5163 switch (LoadedVT.getSimpleVT().SimpleTy) { 5164 default: llvm_unreachable("Invalid PPC load type!"); 5165 case MVT::i64: Opcode = PPC::LDU; break; 5166 case MVT::i32: Opcode = PPC::LWZU8; break; 5167 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 5168 case MVT::i1: 5169 case MVT::i8: Opcode = PPC::LBZU8; break; 5170 } 5171 } 5172 5173 SDValue Chain = LD->getChain(); 5174 SDValue Base = LD->getBasePtr(); 5175 SDValue Ops[] = { Offset, Base, Chain }; 5176 SDNode *MN = CurDAG->getMachineNode( 5177 Opcode, dl, LD->getValueType(0), 5178 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5179 transferMemOperands(N, MN); 5180 ReplaceNode(N, MN); 5181 return; 5182 } else { 5183 unsigned Opcode; 5184 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5185 if (LD->getValueType(0) != MVT::i64) { 5186 // Handle PPC32 integer and normal FP loads. 5187 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5188 switch (LoadedVT.getSimpleVT().SimpleTy) { 5189 default: llvm_unreachable("Invalid PPC load type!"); 5190 case MVT::f64: Opcode = PPC::LFDUX; break; 5191 case MVT::f32: Opcode = PPC::LFSUX; break; 5192 case MVT::i32: Opcode = PPC::LWZUX; break; 5193 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 5194 case MVT::i1: 5195 case MVT::i8: Opcode = PPC::LBZUX; break; 5196 } 5197 } else { 5198 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5199 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 5200 "Invalid sext update load"); 5201 switch (LoadedVT.getSimpleVT().SimpleTy) { 5202 default: llvm_unreachable("Invalid PPC load type!"); 5203 case MVT::i64: Opcode = PPC::LDUX; break; 5204 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 5205 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 5206 case MVT::i1: 5207 case MVT::i8: Opcode = PPC::LBZUX8; break; 5208 } 5209 } 5210 5211 SDValue Chain = LD->getChain(); 5212 SDValue Base = LD->getBasePtr(); 5213 SDValue Ops[] = { Base, Offset, Chain }; 5214 SDNode *MN = CurDAG->getMachineNode( 5215 Opcode, dl, LD->getValueType(0), 5216 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5217 transferMemOperands(N, MN); 5218 ReplaceNode(N, MN); 5219 return; 5220 } 5221 } 5222 5223 case ISD::AND: 5224 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr 5225 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) || 5226 tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N)) 5227 return; 5228 5229 // Other cases are autogenerated. 5230 break; 5231 case ISD::OR: { 5232 if (N->getValueType(0) == MVT::i32) 5233 if (tryBitfieldInsert(N)) 5234 return; 5235 5236 int16_t Imm; 5237 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5238 isIntS16Immediate(N->getOperand(1), Imm)) { 5239 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); 5240 5241 // If this is equivalent to an add, then we can fold it with the 5242 // FrameIndex calculation. 5243 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 5244 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 5245 return; 5246 } 5247 } 5248 5249 // If this is 'or' against an imm with consecutive ones and both sides zero, 5250 // try to emit rldimi 5251 if (tryAsSingleRLDIMI(N)) 5252 return; 5253 5254 // OR with a 32-bit immediate can be handled by ori + oris 5255 // without creating an immediate in a GPR. 5256 uint64_t Imm64 = 0; 5257 bool IsPPC64 = Subtarget->isPPC64(); 5258 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5259 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5260 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. 5261 uint64_t ImmHi = Imm64 >> 16; 5262 uint64_t ImmLo = Imm64 & 0xFFFF; 5263 if (ImmHi != 0 && ImmLo != 0) { 5264 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 5265 N->getOperand(0), 5266 getI16Imm(ImmLo, dl)); 5267 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5268 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); 5269 return; 5270 } 5271 } 5272 5273 // Other cases are autogenerated. 5274 break; 5275 } 5276 case ISD::XOR: { 5277 // XOR with a 32-bit immediate can be handled by xori + xoris 5278 // without creating an immediate in a GPR. 5279 uint64_t Imm64 = 0; 5280 bool IsPPC64 = Subtarget->isPPC64(); 5281 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5282 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5283 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. 5284 uint64_t ImmHi = Imm64 >> 16; 5285 uint64_t ImmLo = Imm64 & 0xFFFF; 5286 if (ImmHi != 0 && ImmLo != 0) { 5287 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 5288 N->getOperand(0), 5289 getI16Imm(ImmLo, dl)); 5290 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5291 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); 5292 return; 5293 } 5294 } 5295 5296 break; 5297 } 5298 case ISD::ADD: { 5299 int16_t Imm; 5300 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5301 isIntS16Immediate(N->getOperand(1), Imm)) { 5302 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 5303 return; 5304 } 5305 5306 break; 5307 } 5308 case ISD::SHL: { 5309 unsigned Imm, SH, MB, ME; 5310 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5311 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5312 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5313 getI32Imm(SH, dl), getI32Imm(MB, dl), 5314 getI32Imm(ME, dl) }; 5315 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5316 return; 5317 } 5318 5319 // Other cases are autogenerated. 5320 break; 5321 } 5322 case ISD::SRL: { 5323 unsigned Imm, SH, MB, ME; 5324 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5325 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5326 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5327 getI32Imm(SH, dl), getI32Imm(MB, dl), 5328 getI32Imm(ME, dl) }; 5329 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5330 return; 5331 } 5332 5333 // Other cases are autogenerated. 5334 break; 5335 } 5336 case ISD::MUL: { 5337 SDValue Op1 = N->getOperand(1); 5338 if (Op1.getOpcode() != ISD::Constant || Op1.getValueType() != MVT::i64) 5339 break; 5340 5341 // If the multiplier fits int16, we can handle it with mulli. 5342 int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue(); 5343 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 5344 if (isInt<16>(Imm) || !Shift) 5345 break; 5346 5347 // If the shifted value fits int16, we can do this transformation: 5348 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to 5349 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2). 5350 uint64_t ImmSh = Imm >> Shift; 5351 if (isInt<16>(ImmSh)) { 5352 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16); 5353 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 5354 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64, 5355 N->getOperand(0), SDImm); 5356 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, SDValue(MulNode, 0), 5357 getI32Imm(Shift, dl), getI32Imm(63 - Shift, dl)); 5358 return; 5359 } 5360 break; 5361 } 5362 // FIXME: Remove this once the ANDI glue bug is fixed: 5363 case PPCISD::ANDI_rec_1_EQ_BIT: 5364 case PPCISD::ANDI_rec_1_GT_BIT: { 5365 if (!ANDIGlueBug) 5366 break; 5367 5368 EVT InVT = N->getOperand(0).getValueType(); 5369 assert((InVT == MVT::i64 || InVT == MVT::i32) && 5370 "Invalid input type for ANDI_rec_1_EQ_BIT"); 5371 5372 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; 5373 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 5374 N->getOperand(0), 5375 CurDAG->getTargetConstant(1, dl, InVT)), 5376 0); 5377 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 5378 SDValue SRIdxVal = CurDAG->getTargetConstant( 5379 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, 5380 dl, MVT::i32); 5381 5382 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 5383 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 5384 return; 5385 } 5386 case ISD::SELECT_CC: { 5387 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 5388 EVT PtrVT = 5389 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 5390 bool isPPC64 = (PtrVT == MVT::i64); 5391 5392 // If this is a select of i1 operands, we'll pattern match it. 5393 if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) 5394 break; 5395 5396 if (Subtarget->isISA3_0() && Subtarget->isPPC64()) { 5397 bool NeedSwapOps = false; 5398 bool IsUnCmp = false; 5399 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { 5400 SDValue LHS = N->getOperand(0); 5401 SDValue RHS = N->getOperand(1); 5402 if (NeedSwapOps) 5403 std::swap(LHS, RHS); 5404 5405 // Make use of SelectCC to generate the comparison to set CR bits, for 5406 // equality comparisons having one literal operand, SelectCC probably 5407 // doesn't need to materialize the whole literal and just use xoris to 5408 // check it first, it leads the following comparison result can't 5409 // exactly represent GT/LT relationship. So to avoid this we specify 5410 // SETGT/SETUGT here instead of SETEQ. 5411 SDValue GenCC = 5412 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); 5413 CurDAG->SelectNodeTo( 5414 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, 5415 N->getValueType(0), GenCC); 5416 NumP9Setb++; 5417 return; 5418 } 5419 } 5420 5421 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 5422 if (!isPPC64) 5423 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 5424 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 5425 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 5426 if (N1C->isNullValue() && N3C->isNullValue() && 5427 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 5428 // FIXME: Implement this optzn for PPC64. 5429 N->getValueType(0) == MVT::i32) { 5430 SDNode *Tmp = 5431 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 5432 N->getOperand(0), getI32Imm(~0U, dl)); 5433 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 5434 N->getOperand(0), SDValue(Tmp, 1)); 5435 return; 5436 } 5437 5438 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 5439 5440 if (N->getValueType(0) == MVT::i1) { 5441 // An i1 select is: (c & t) | (!c & f). 5442 bool Inv; 5443 unsigned Idx = getCRIdxForSetCC(CC, Inv); 5444 5445 unsigned SRI; 5446 switch (Idx) { 5447 default: llvm_unreachable("Invalid CC index"); 5448 case 0: SRI = PPC::sub_lt; break; 5449 case 1: SRI = PPC::sub_gt; break; 5450 case 2: SRI = PPC::sub_eq; break; 5451 case 3: SRI = PPC::sub_un; break; 5452 } 5453 5454 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 5455 5456 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 5457 CCBit, CCBit), 0); 5458 SDValue C = Inv ? NotCCBit : CCBit, 5459 NotC = Inv ? CCBit : NotCCBit; 5460 5461 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5462 C, N->getOperand(2)), 0); 5463 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5464 NotC, N->getOperand(3)), 0); 5465 5466 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 5467 return; 5468 } 5469 5470 unsigned BROpc = 5471 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget); 5472 5473 unsigned SelectCCOp; 5474 if (N->getValueType(0) == MVT::i32) 5475 SelectCCOp = PPC::SELECT_CC_I4; 5476 else if (N->getValueType(0) == MVT::i64) 5477 SelectCCOp = PPC::SELECT_CC_I8; 5478 else if (N->getValueType(0) == MVT::f32) { 5479 if (Subtarget->hasP8Vector()) 5480 SelectCCOp = PPC::SELECT_CC_VSSRC; 5481 else if (Subtarget->hasSPE()) 5482 SelectCCOp = PPC::SELECT_CC_SPE4; 5483 else 5484 SelectCCOp = PPC::SELECT_CC_F4; 5485 } else if (N->getValueType(0) == MVT::f64) { 5486 if (Subtarget->hasVSX()) 5487 SelectCCOp = PPC::SELECT_CC_VSFRC; 5488 else if (Subtarget->hasSPE()) 5489 SelectCCOp = PPC::SELECT_CC_SPE; 5490 else 5491 SelectCCOp = PPC::SELECT_CC_F8; 5492 } else if (N->getValueType(0) == MVT::f128) 5493 SelectCCOp = PPC::SELECT_CC_F16; 5494 else if (Subtarget->hasSPE()) 5495 SelectCCOp = PPC::SELECT_CC_SPE; 5496 else if (N->getValueType(0) == MVT::v2f64 || 5497 N->getValueType(0) == MVT::v2i64) 5498 SelectCCOp = PPC::SELECT_CC_VSRC; 5499 else 5500 SelectCCOp = PPC::SELECT_CC_VRRC; 5501 5502 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 5503 getI32Imm(BROpc, dl) }; 5504 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 5505 return; 5506 } 5507 case ISD::VECTOR_SHUFFLE: 5508 if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 5509 N->getValueType(0) == MVT::v2i64)) { 5510 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5511 5512 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 5513 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 5514 unsigned DM[2]; 5515 5516 for (int i = 0; i < 2; ++i) 5517 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 5518 DM[i] = 0; 5519 else 5520 DM[i] = 1; 5521 5522 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 5523 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 5524 isa<LoadSDNode>(Op1.getOperand(0))) { 5525 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 5526 SDValue Base, Offset; 5527 5528 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 5529 (LD->getMemoryVT() == MVT::f64 || 5530 LD->getMemoryVT() == MVT::i64) && 5531 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 5532 SDValue Chain = LD->getChain(); 5533 SDValue Ops[] = { Base, Offset, Chain }; 5534 MachineMemOperand *MemOp = LD->getMemOperand(); 5535 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, 5536 N->getValueType(0), Ops); 5537 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); 5538 return; 5539 } 5540 } 5541 5542 // For little endian, we must swap the input operands and adjust 5543 // the mask elements (reverse and invert them). 5544 if (Subtarget->isLittleEndian()) { 5545 std::swap(Op1, Op2); 5546 unsigned tmp = DM[0]; 5547 DM[0] = 1 - DM[1]; 5548 DM[1] = 1 - tmp; 5549 } 5550 5551 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 5552 MVT::i32); 5553 SDValue Ops[] = { Op1, Op2, DMV }; 5554 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 5555 return; 5556 } 5557 5558 break; 5559 case PPCISD::BDNZ: 5560 case PPCISD::BDZ: { 5561 bool IsPPC64 = Subtarget->isPPC64(); 5562 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 5563 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 5564 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 5565 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 5566 MVT::Other, Ops); 5567 return; 5568 } 5569 case PPCISD::COND_BRANCH: { 5570 // Op #0 is the Chain. 5571 // Op #1 is the PPC::PRED_* number. 5572 // Op #2 is the CR# 5573 // Op #3 is the Dest MBB 5574 // Op #4 is the Flag. 5575 // Prevent PPC::PRED_* from being selected into LI. 5576 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 5577 if (EnableBranchHint) 5578 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); 5579 5580 SDValue Pred = getI32Imm(PCC, dl); 5581 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 5582 N->getOperand(0), N->getOperand(4) }; 5583 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5584 return; 5585 } 5586 case ISD::BR_CC: { 5587 if (tryFoldSWTestBRCC(N)) 5588 return; 5589 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5590 unsigned PCC = 5591 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget); 5592 5593 if (N->getOperand(2).getValueType() == MVT::i1) { 5594 unsigned Opc; 5595 bool Swap; 5596 switch (PCC) { 5597 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 5598 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 5599 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 5600 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 5601 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 5602 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 5603 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 5604 } 5605 5606 // A signed comparison of i1 values produces the opposite result to an 5607 // unsigned one if the condition code includes less-than or greater-than. 5608 // This is because 1 is the most negative signed i1 number and the most 5609 // positive unsigned i1 number. The CR-logical operations used for such 5610 // comparisons are non-commutative so for signed comparisons vs. unsigned 5611 // ones, the input operands just need to be swapped. 5612 if (ISD::isSignedIntSetCC(CC)) 5613 Swap = !Swap; 5614 5615 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 5616 N->getOperand(Swap ? 3 : 2), 5617 N->getOperand(Swap ? 2 : 3)), 0); 5618 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 5619 N->getOperand(0)); 5620 return; 5621 } 5622 5623 if (EnableBranchHint) 5624 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); 5625 5626 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 5627 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 5628 N->getOperand(4), N->getOperand(0) }; 5629 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5630 return; 5631 } 5632 case ISD::BRIND: { 5633 // FIXME: Should custom lower this. 5634 SDValue Chain = N->getOperand(0); 5635 SDValue Target = N->getOperand(1); 5636 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 5637 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 5638 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 5639 Chain), 0); 5640 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 5641 return; 5642 } 5643 case PPCISD::TOC_ENTRY: { 5644 const bool isPPC64 = Subtarget->isPPC64(); 5645 const bool isELFABI = Subtarget->isSVR4ABI(); 5646 const bool isAIXABI = Subtarget->isAIXABI(); 5647 5648 // PowerPC only support small, medium and large code model. 5649 const CodeModel::Model CModel = TM.getCodeModel(); 5650 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && 5651 "PowerPC doesn't support tiny or kernel code models."); 5652 5653 if (isAIXABI && CModel == CodeModel::Medium) 5654 report_fatal_error("Medium code model is not supported on AIX."); 5655 5656 // For 64-bit small code model, we allow SelectCodeCommon to handle this, 5657 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. 5658 if (isPPC64 && CModel == CodeModel::Small) 5659 break; 5660 5661 // Handle 32-bit small code model. 5662 if (!isPPC64) { 5663 // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either 5664 // PPC::ADDItoc, or PPC::LWZtoc 5665 auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry) { 5666 SDValue GA = TocEntry->getOperand(0); 5667 SDValue TocBase = TocEntry->getOperand(1); 5668 SDNode *MN = CurDAG->getMachineNode(OpCode, dl, MVT::i32, GA, TocBase); 5669 transferMemOperands(TocEntry, MN); 5670 ReplaceNode(TocEntry, MN); 5671 }; 5672 5673 if (isELFABI) { 5674 assert(TM.isPositionIndependent() && 5675 "32-bit ELF can only have TOC entries in position independent" 5676 " code."); 5677 // 32-bit ELF always uses a small code model toc access. 5678 replaceWith(PPC::LWZtoc, N); 5679 return; 5680 } 5681 5682 if (isAIXABI && CModel == CodeModel::Small) { 5683 if (hasTocDataAttr(N->getOperand(0), 5684 CurDAG->getDataLayout().getPointerSize())) 5685 replaceWith(PPC::ADDItoc, N); 5686 else 5687 replaceWith(PPC::LWZtoc, N); 5688 5689 return; 5690 } 5691 } 5692 5693 assert(CModel != CodeModel::Small && "All small code models handled."); 5694 5695 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" 5696 " ELF/AIX or 32-bit AIX in the following."); 5697 5698 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode 5699 // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We 5700 // generate two instructions as described below. The first source operand 5701 // is a symbol reference. If it must be toc-referenced according to 5702 // Subtarget, we generate: 5703 // [32-bit AIX] 5704 // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) 5705 // [64-bit ELF/AIX] 5706 // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) 5707 // Otherwise we generate: 5708 // ADDItocL(ADDIStocHA8(%x2, @sym), @sym) 5709 SDValue GA = N->getOperand(0); 5710 SDValue TOCbase = N->getOperand(1); 5711 5712 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5713 SDNode *Tmp = CurDAG->getMachineNode( 5714 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); 5715 5716 if (PPCLowering->isAccessedAsGotIndirect(GA)) { 5717 // If it is accessed as got-indirect, we need an extra LWZ/LD to load 5718 // the address. 5719 SDNode *MN = CurDAG->getMachineNode( 5720 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); 5721 5722 transferMemOperands(N, MN); 5723 ReplaceNode(N, MN); 5724 return; 5725 } 5726 5727 // Build the address relative to the TOC-pointer. 5728 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 5729 SDValue(Tmp, 0), GA)); 5730 return; 5731 } 5732 case PPCISD::PPC32_PICGOT: 5733 // Generate a PIC-safe GOT reference. 5734 assert(Subtarget->is32BitELFABI() && 5735 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 5736 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 5737 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 5738 MVT::i32); 5739 return; 5740 5741 case PPCISD::VADD_SPLAT: { 5742 // This expands into one of three sequences, depending on whether 5743 // the first operand is odd or even, positive or negative. 5744 assert(isa<ConstantSDNode>(N->getOperand(0)) && 5745 isa<ConstantSDNode>(N->getOperand(1)) && 5746 "Invalid operand on VADD_SPLAT!"); 5747 5748 int Elt = N->getConstantOperandVal(0); 5749 int EltSize = N->getConstantOperandVal(1); 5750 unsigned Opc1, Opc2, Opc3; 5751 EVT VT; 5752 5753 if (EltSize == 1) { 5754 Opc1 = PPC::VSPLTISB; 5755 Opc2 = PPC::VADDUBM; 5756 Opc3 = PPC::VSUBUBM; 5757 VT = MVT::v16i8; 5758 } else if (EltSize == 2) { 5759 Opc1 = PPC::VSPLTISH; 5760 Opc2 = PPC::VADDUHM; 5761 Opc3 = PPC::VSUBUHM; 5762 VT = MVT::v8i16; 5763 } else { 5764 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 5765 Opc1 = PPC::VSPLTISW; 5766 Opc2 = PPC::VADDUWM; 5767 Opc3 = PPC::VSUBUWM; 5768 VT = MVT::v4i32; 5769 } 5770 5771 if ((Elt & 1) == 0) { 5772 // Elt is even, in the range [-32,-18] + [16,30]. 5773 // 5774 // Convert: VADD_SPLAT elt, size 5775 // Into: tmp = VSPLTIS[BHW] elt 5776 // VADDU[BHW]M tmp, tmp 5777 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 5778 SDValue EltVal = getI32Imm(Elt >> 1, dl); 5779 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5780 SDValue TmpVal = SDValue(Tmp, 0); 5781 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 5782 return; 5783 } else if (Elt > 0) { 5784 // Elt is odd and positive, in the range [17,31]. 5785 // 5786 // Convert: VADD_SPLAT elt, size 5787 // Into: tmp1 = VSPLTIS[BHW] elt-16 5788 // tmp2 = VSPLTIS[BHW] -16 5789 // VSUBU[BHW]M tmp1, tmp2 5790 SDValue EltVal = getI32Imm(Elt - 16, dl); 5791 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5792 EltVal = getI32Imm(-16, dl); 5793 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5794 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 5795 SDValue(Tmp2, 0))); 5796 return; 5797 } else { 5798 // Elt is odd and negative, in the range [-31,-17]. 5799 // 5800 // Convert: VADD_SPLAT elt, size 5801 // Into: tmp1 = VSPLTIS[BHW] elt+16 5802 // tmp2 = VSPLTIS[BHW] -16 5803 // VADDU[BHW]M tmp1, tmp2 5804 SDValue EltVal = getI32Imm(Elt + 16, dl); 5805 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5806 EltVal = getI32Imm(-16, dl); 5807 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5808 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 5809 SDValue(Tmp2, 0))); 5810 return; 5811 } 5812 } 5813 } 5814 5815 SelectCode(N); 5816 } 5817 5818 // If the target supports the cmpb instruction, do the idiom recognition here. 5819 // We don't do this as a DAG combine because we don't want to do it as nodes 5820 // are being combined (because we might miss part of the eventual idiom). We 5821 // don't want to do it during instruction selection because we want to reuse 5822 // the logic for lowering the masking operations already part of the 5823 // instruction selector. 5824 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 5825 SDLoc dl(N); 5826 5827 assert(N->getOpcode() == ISD::OR && 5828 "Only OR nodes are supported for CMPB"); 5829 5830 SDValue Res; 5831 if (!Subtarget->hasCMPB()) 5832 return Res; 5833 5834 if (N->getValueType(0) != MVT::i32 && 5835 N->getValueType(0) != MVT::i64) 5836 return Res; 5837 5838 EVT VT = N->getValueType(0); 5839 5840 SDValue RHS, LHS; 5841 bool BytesFound[8] = {false, false, false, false, false, false, false, false}; 5842 uint64_t Mask = 0, Alt = 0; 5843 5844 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 5845 uint64_t &Mask, uint64_t &Alt, 5846 SDValue &LHS, SDValue &RHS) { 5847 if (O.getOpcode() != ISD::SELECT_CC) 5848 return false; 5849 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 5850 5851 if (!isa<ConstantSDNode>(O.getOperand(2)) || 5852 !isa<ConstantSDNode>(O.getOperand(3))) 5853 return false; 5854 5855 uint64_t PM = O.getConstantOperandVal(2); 5856 uint64_t PAlt = O.getConstantOperandVal(3); 5857 for (b = 0; b < 8; ++b) { 5858 uint64_t Mask = UINT64_C(0xFF) << (8*b); 5859 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 5860 break; 5861 } 5862 5863 if (b == 8) 5864 return false; 5865 Mask |= PM; 5866 Alt |= PAlt; 5867 5868 if (!isa<ConstantSDNode>(O.getOperand(1)) || 5869 O.getConstantOperandVal(1) != 0) { 5870 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 5871 if (Op0.getOpcode() == ISD::TRUNCATE) 5872 Op0 = Op0.getOperand(0); 5873 if (Op1.getOpcode() == ISD::TRUNCATE) 5874 Op1 = Op1.getOperand(0); 5875 5876 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 5877 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 5878 isa<ConstantSDNode>(Op0.getOperand(1))) { 5879 5880 unsigned Bits = Op0.getValueSizeInBits(); 5881 if (b != Bits/8-1) 5882 return false; 5883 if (Op0.getConstantOperandVal(1) != Bits-8) 5884 return false; 5885 5886 LHS = Op0.getOperand(0); 5887 RHS = Op1.getOperand(0); 5888 return true; 5889 } 5890 5891 // When we have small integers (i16 to be specific), the form present 5892 // post-legalization uses SETULT in the SELECT_CC for the 5893 // higher-order byte, depending on the fact that the 5894 // even-higher-order bytes are known to all be zero, for example: 5895 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 5896 // (so when the second byte is the same, because all higher-order 5897 // bits from bytes 3 and 4 are known to be zero, the result of the 5898 // xor can be at most 255) 5899 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 5900 isa<ConstantSDNode>(O.getOperand(1))) { 5901 5902 uint64_t ULim = O.getConstantOperandVal(1); 5903 if (ULim != (UINT64_C(1) << b*8)) 5904 return false; 5905 5906 // Now we need to make sure that the upper bytes are known to be 5907 // zero. 5908 unsigned Bits = Op0.getValueSizeInBits(); 5909 if (!CurDAG->MaskedValueIsZero( 5910 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 5911 return false; 5912 5913 LHS = Op0.getOperand(0); 5914 RHS = Op0.getOperand(1); 5915 return true; 5916 } 5917 5918 return false; 5919 } 5920 5921 if (CC != ISD::SETEQ) 5922 return false; 5923 5924 SDValue Op = O.getOperand(0); 5925 if (Op.getOpcode() == ISD::AND) { 5926 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5927 return false; 5928 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 5929 return false; 5930 5931 SDValue XOR = Op.getOperand(0); 5932 if (XOR.getOpcode() == ISD::TRUNCATE) 5933 XOR = XOR.getOperand(0); 5934 if (XOR.getOpcode() != ISD::XOR) 5935 return false; 5936 5937 LHS = XOR.getOperand(0); 5938 RHS = XOR.getOperand(1); 5939 return true; 5940 } else if (Op.getOpcode() == ISD::SRL) { 5941 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5942 return false; 5943 unsigned Bits = Op.getValueSizeInBits(); 5944 if (b != Bits/8-1) 5945 return false; 5946 if (Op.getConstantOperandVal(1) != Bits-8) 5947 return false; 5948 5949 SDValue XOR = Op.getOperand(0); 5950 if (XOR.getOpcode() == ISD::TRUNCATE) 5951 XOR = XOR.getOperand(0); 5952 if (XOR.getOpcode() != ISD::XOR) 5953 return false; 5954 5955 LHS = XOR.getOperand(0); 5956 RHS = XOR.getOperand(1); 5957 return true; 5958 } 5959 5960 return false; 5961 }; 5962 5963 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 5964 while (!Queue.empty()) { 5965 SDValue V = Queue.pop_back_val(); 5966 5967 for (const SDValue &O : V.getNode()->ops()) { 5968 unsigned b = 0; 5969 uint64_t M = 0, A = 0; 5970 SDValue OLHS, ORHS; 5971 if (O.getOpcode() == ISD::OR) { 5972 Queue.push_back(O); 5973 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 5974 if (!LHS) { 5975 LHS = OLHS; 5976 RHS = ORHS; 5977 BytesFound[b] = true; 5978 Mask |= M; 5979 Alt |= A; 5980 } else if ((LHS == ORHS && RHS == OLHS) || 5981 (RHS == ORHS && LHS == OLHS)) { 5982 BytesFound[b] = true; 5983 Mask |= M; 5984 Alt |= A; 5985 } else { 5986 return Res; 5987 } 5988 } else { 5989 return Res; 5990 } 5991 } 5992 } 5993 5994 unsigned LastB = 0, BCnt = 0; 5995 for (unsigned i = 0; i < 8; ++i) 5996 if (BytesFound[LastB]) { 5997 ++BCnt; 5998 LastB = i; 5999 } 6000 6001 if (!LastB || BCnt < 2) 6002 return Res; 6003 6004 // Because we'll be zero-extending the output anyway if don't have a specific 6005 // value for each input byte (via the Mask), we can 'anyext' the inputs. 6006 if (LHS.getValueType() != VT) { 6007 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 6008 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 6009 } 6010 6011 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 6012 6013 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 6014 if (NonTrivialMask && !Alt) { 6015 // Res = Mask & CMPB 6016 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6017 CurDAG->getConstant(Mask, dl, VT)); 6018 } else if (Alt) { 6019 // Res = (CMPB & Mask) | (~CMPB & Alt) 6020 // Which, as suggested here: 6021 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 6022 // can be written as: 6023 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 6024 // useful because the (Alt ^ Mask) can be pre-computed. 6025 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6026 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 6027 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 6028 CurDAG->getConstant(Alt, dl, VT)); 6029 } 6030 6031 return Res; 6032 } 6033 6034 // When CR bit registers are enabled, an extension of an i1 variable to a i32 6035 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 6036 // involves constant materialization of a 0 or a 1 or both. If the result of 6037 // the extension is then operated upon by some operator that can be constant 6038 // folded with a constant 0 or 1, and that constant can be materialized using 6039 // only one instruction (like a zero or one), then we should fold in those 6040 // operations with the select. 6041 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 6042 if (!Subtarget->useCRBits()) 6043 return; 6044 6045 if (N->getOpcode() != ISD::ZERO_EXTEND && 6046 N->getOpcode() != ISD::SIGN_EXTEND && 6047 N->getOpcode() != ISD::ANY_EXTEND) 6048 return; 6049 6050 if (N->getOperand(0).getValueType() != MVT::i1) 6051 return; 6052 6053 if (!N->hasOneUse()) 6054 return; 6055 6056 SDLoc dl(N); 6057 EVT VT = N->getValueType(0); 6058 SDValue Cond = N->getOperand(0); 6059 SDValue ConstTrue = 6060 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 6061 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 6062 6063 do { 6064 SDNode *User = *N->use_begin(); 6065 if (User->getNumOperands() != 2) 6066 break; 6067 6068 auto TryFold = [this, N, User, dl](SDValue Val) { 6069 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 6070 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 6071 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 6072 6073 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 6074 User->getValueType(0), {O0, O1}); 6075 }; 6076 6077 // FIXME: When the semantics of the interaction between select and undef 6078 // are clearly defined, it may turn out to be unnecessary to break here. 6079 SDValue TrueRes = TryFold(ConstTrue); 6080 if (!TrueRes || TrueRes.isUndef()) 6081 break; 6082 SDValue FalseRes = TryFold(ConstFalse); 6083 if (!FalseRes || FalseRes.isUndef()) 6084 break; 6085 6086 // For us to materialize these using one instruction, we must be able to 6087 // represent them as signed 16-bit integers. 6088 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 6089 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 6090 if (!isInt<16>(True) || !isInt<16>(False)) 6091 break; 6092 6093 // We can replace User with a new SELECT node, and try again to see if we 6094 // can fold the select with its user. 6095 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 6096 N = User; 6097 ConstTrue = TrueRes; 6098 ConstFalse = FalseRes; 6099 } while (N->hasOneUse()); 6100 } 6101 6102 void PPCDAGToDAGISel::PreprocessISelDAG() { 6103 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6104 6105 bool MadeChange = false; 6106 while (Position != CurDAG->allnodes_begin()) { 6107 SDNode *N = &*--Position; 6108 if (N->use_empty()) 6109 continue; 6110 6111 SDValue Res; 6112 switch (N->getOpcode()) { 6113 default: break; 6114 case ISD::OR: 6115 Res = combineToCMPB(N); 6116 break; 6117 } 6118 6119 if (!Res) 6120 foldBoolExts(Res, N); 6121 6122 if (Res) { 6123 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 6124 LLVM_DEBUG(N->dump(CurDAG)); 6125 LLVM_DEBUG(dbgs() << "\nNew: "); 6126 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 6127 LLVM_DEBUG(dbgs() << "\n"); 6128 6129 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 6130 MadeChange = true; 6131 } 6132 } 6133 6134 if (MadeChange) 6135 CurDAG->RemoveDeadNodes(); 6136 } 6137 6138 /// PostprocessISelDAG - Perform some late peephole optimizations 6139 /// on the DAG representation. 6140 void PPCDAGToDAGISel::PostprocessISelDAG() { 6141 // Skip peepholes at -O0. 6142 if (TM.getOptLevel() == CodeGenOpt::None) 6143 return; 6144 6145 PeepholePPC64(); 6146 PeepholeCROps(); 6147 PeepholePPC64ZExt(); 6148 } 6149 6150 // Check if all users of this node will become isel where the second operand 6151 // is the constant zero. If this is so, and if we can negate the condition, 6152 // then we can flip the true and false operands. This will allow the zero to 6153 // be folded with the isel so that we don't need to materialize a register 6154 // containing zero. 6155 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 6156 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6157 UI != UE; ++UI) { 6158 SDNode *User = *UI; 6159 if (!User->isMachineOpcode()) 6160 return false; 6161 if (User->getMachineOpcode() != PPC::SELECT_I4 && 6162 User->getMachineOpcode() != PPC::SELECT_I8) 6163 return false; 6164 6165 SDNode *Op1 = User->getOperand(1).getNode(); 6166 SDNode *Op2 = User->getOperand(2).getNode(); 6167 // If we have a degenerate select with two equal operands, swapping will 6168 // not do anything, and we may run into an infinite loop. 6169 if (Op1 == Op2) 6170 return false; 6171 6172 if (!Op2->isMachineOpcode()) 6173 return false; 6174 6175 if (Op2->getMachineOpcode() != PPC::LI && 6176 Op2->getMachineOpcode() != PPC::LI8) 6177 return false; 6178 6179 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 6180 if (!C) 6181 return false; 6182 6183 if (!C->isNullValue()) 6184 return false; 6185 } 6186 6187 return true; 6188 } 6189 6190 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 6191 SmallVector<SDNode *, 4> ToReplace; 6192 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6193 UI != UE; ++UI) { 6194 SDNode *User = *UI; 6195 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 6196 User->getMachineOpcode() == PPC::SELECT_I8) && 6197 "Must have all select users"); 6198 ToReplace.push_back(User); 6199 } 6200 6201 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), 6202 UE = ToReplace.end(); UI != UE; ++UI) { 6203 SDNode *User = *UI; 6204 SDNode *ResNode = 6205 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 6206 User->getValueType(0), User->getOperand(0), 6207 User->getOperand(2), 6208 User->getOperand(1)); 6209 6210 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6211 LLVM_DEBUG(User->dump(CurDAG)); 6212 LLVM_DEBUG(dbgs() << "\nNew: "); 6213 LLVM_DEBUG(ResNode->dump(CurDAG)); 6214 LLVM_DEBUG(dbgs() << "\n"); 6215 6216 ReplaceUses(User, ResNode); 6217 } 6218 } 6219 6220 void PPCDAGToDAGISel::PeepholeCROps() { 6221 bool IsModified; 6222 do { 6223 IsModified = false; 6224 for (SDNode &Node : CurDAG->allnodes()) { 6225 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 6226 if (!MachineNode || MachineNode->use_empty()) 6227 continue; 6228 SDNode *ResNode = MachineNode; 6229 6230 bool Op1Set = false, Op1Unset = false, 6231 Op1Not = false, 6232 Op2Set = false, Op2Unset = false, 6233 Op2Not = false; 6234 6235 unsigned Opcode = MachineNode->getMachineOpcode(); 6236 switch (Opcode) { 6237 default: break; 6238 case PPC::CRAND: 6239 case PPC::CRNAND: 6240 case PPC::CROR: 6241 case PPC::CRXOR: 6242 case PPC::CRNOR: 6243 case PPC::CREQV: 6244 case PPC::CRANDC: 6245 case PPC::CRORC: { 6246 SDValue Op = MachineNode->getOperand(1); 6247 if (Op.isMachineOpcode()) { 6248 if (Op.getMachineOpcode() == PPC::CRSET) 6249 Op2Set = true; 6250 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6251 Op2Unset = true; 6252 else if (Op.getMachineOpcode() == PPC::CRNOR && 6253 Op.getOperand(0) == Op.getOperand(1)) 6254 Op2Not = true; 6255 } 6256 LLVM_FALLTHROUGH; 6257 } 6258 case PPC::BC: 6259 case PPC::BCn: 6260 case PPC::SELECT_I4: 6261 case PPC::SELECT_I8: 6262 case PPC::SELECT_F4: 6263 case PPC::SELECT_F8: 6264 case PPC::SELECT_SPE: 6265 case PPC::SELECT_SPE4: 6266 case PPC::SELECT_VRRC: 6267 case PPC::SELECT_VSFRC: 6268 case PPC::SELECT_VSSRC: 6269 case PPC::SELECT_VSRC: { 6270 SDValue Op = MachineNode->getOperand(0); 6271 if (Op.isMachineOpcode()) { 6272 if (Op.getMachineOpcode() == PPC::CRSET) 6273 Op1Set = true; 6274 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6275 Op1Unset = true; 6276 else if (Op.getMachineOpcode() == PPC::CRNOR && 6277 Op.getOperand(0) == Op.getOperand(1)) 6278 Op1Not = true; 6279 } 6280 } 6281 break; 6282 } 6283 6284 bool SelectSwap = false; 6285 switch (Opcode) { 6286 default: break; 6287 case PPC::CRAND: 6288 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6289 // x & x = x 6290 ResNode = MachineNode->getOperand(0).getNode(); 6291 else if (Op1Set) 6292 // 1 & y = y 6293 ResNode = MachineNode->getOperand(1).getNode(); 6294 else if (Op2Set) 6295 // x & 1 = x 6296 ResNode = MachineNode->getOperand(0).getNode(); 6297 else if (Op1Unset || Op2Unset) 6298 // x & 0 = 0 & y = 0 6299 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6300 MVT::i1); 6301 else if (Op1Not) 6302 // ~x & y = andc(y, x) 6303 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6304 MVT::i1, MachineNode->getOperand(1), 6305 MachineNode->getOperand(0). 6306 getOperand(0)); 6307 else if (Op2Not) 6308 // x & ~y = andc(x, y) 6309 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6310 MVT::i1, MachineNode->getOperand(0), 6311 MachineNode->getOperand(1). 6312 getOperand(0)); 6313 else if (AllUsersSelectZero(MachineNode)) { 6314 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6315 MVT::i1, MachineNode->getOperand(0), 6316 MachineNode->getOperand(1)); 6317 SelectSwap = true; 6318 } 6319 break; 6320 case PPC::CRNAND: 6321 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6322 // nand(x, x) -> nor(x, x) 6323 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6324 MVT::i1, MachineNode->getOperand(0), 6325 MachineNode->getOperand(0)); 6326 else if (Op1Set) 6327 // nand(1, y) -> nor(y, y) 6328 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6329 MVT::i1, MachineNode->getOperand(1), 6330 MachineNode->getOperand(1)); 6331 else if (Op2Set) 6332 // nand(x, 1) -> nor(x, x) 6333 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6334 MVT::i1, MachineNode->getOperand(0), 6335 MachineNode->getOperand(0)); 6336 else if (Op1Unset || Op2Unset) 6337 // nand(x, 0) = nand(0, y) = 1 6338 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6339 MVT::i1); 6340 else if (Op1Not) 6341 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 6342 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6343 MVT::i1, MachineNode->getOperand(0). 6344 getOperand(0), 6345 MachineNode->getOperand(1)); 6346 else if (Op2Not) 6347 // nand(x, ~y) = ~x | y = orc(y, x) 6348 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6349 MVT::i1, MachineNode->getOperand(1). 6350 getOperand(0), 6351 MachineNode->getOperand(0)); 6352 else if (AllUsersSelectZero(MachineNode)) { 6353 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6354 MVT::i1, MachineNode->getOperand(0), 6355 MachineNode->getOperand(1)); 6356 SelectSwap = true; 6357 } 6358 break; 6359 case PPC::CROR: 6360 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6361 // x | x = x 6362 ResNode = MachineNode->getOperand(0).getNode(); 6363 else if (Op1Set || Op2Set) 6364 // x | 1 = 1 | y = 1 6365 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6366 MVT::i1); 6367 else if (Op1Unset) 6368 // 0 | y = y 6369 ResNode = MachineNode->getOperand(1).getNode(); 6370 else if (Op2Unset) 6371 // x | 0 = x 6372 ResNode = MachineNode->getOperand(0).getNode(); 6373 else if (Op1Not) 6374 // ~x | y = orc(y, x) 6375 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6376 MVT::i1, MachineNode->getOperand(1), 6377 MachineNode->getOperand(0). 6378 getOperand(0)); 6379 else if (Op2Not) 6380 // x | ~y = orc(x, y) 6381 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6382 MVT::i1, MachineNode->getOperand(0), 6383 MachineNode->getOperand(1). 6384 getOperand(0)); 6385 else if (AllUsersSelectZero(MachineNode)) { 6386 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6387 MVT::i1, MachineNode->getOperand(0), 6388 MachineNode->getOperand(1)); 6389 SelectSwap = true; 6390 } 6391 break; 6392 case PPC::CRXOR: 6393 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6394 // xor(x, x) = 0 6395 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6396 MVT::i1); 6397 else if (Op1Set) 6398 // xor(1, y) -> nor(y, y) 6399 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6400 MVT::i1, MachineNode->getOperand(1), 6401 MachineNode->getOperand(1)); 6402 else if (Op2Set) 6403 // xor(x, 1) -> nor(x, x) 6404 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6405 MVT::i1, MachineNode->getOperand(0), 6406 MachineNode->getOperand(0)); 6407 else if (Op1Unset) 6408 // xor(0, y) = y 6409 ResNode = MachineNode->getOperand(1).getNode(); 6410 else if (Op2Unset) 6411 // xor(x, 0) = x 6412 ResNode = MachineNode->getOperand(0).getNode(); 6413 else if (Op1Not) 6414 // xor(~x, y) = eqv(x, y) 6415 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6416 MVT::i1, MachineNode->getOperand(0). 6417 getOperand(0), 6418 MachineNode->getOperand(1)); 6419 else if (Op2Not) 6420 // xor(x, ~y) = eqv(x, y) 6421 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6422 MVT::i1, MachineNode->getOperand(0), 6423 MachineNode->getOperand(1). 6424 getOperand(0)); 6425 else if (AllUsersSelectZero(MachineNode)) { 6426 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6427 MVT::i1, MachineNode->getOperand(0), 6428 MachineNode->getOperand(1)); 6429 SelectSwap = true; 6430 } 6431 break; 6432 case PPC::CRNOR: 6433 if (Op1Set || Op2Set) 6434 // nor(1, y) -> 0 6435 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6436 MVT::i1); 6437 else if (Op1Unset) 6438 // nor(0, y) = ~y -> nor(y, y) 6439 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6440 MVT::i1, MachineNode->getOperand(1), 6441 MachineNode->getOperand(1)); 6442 else if (Op2Unset) 6443 // nor(x, 0) = ~x 6444 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6445 MVT::i1, MachineNode->getOperand(0), 6446 MachineNode->getOperand(0)); 6447 else if (Op1Not) 6448 // nor(~x, y) = andc(x, y) 6449 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6450 MVT::i1, MachineNode->getOperand(0). 6451 getOperand(0), 6452 MachineNode->getOperand(1)); 6453 else if (Op2Not) 6454 // nor(x, ~y) = andc(y, x) 6455 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6456 MVT::i1, MachineNode->getOperand(1). 6457 getOperand(0), 6458 MachineNode->getOperand(0)); 6459 else if (AllUsersSelectZero(MachineNode)) { 6460 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 6461 MVT::i1, MachineNode->getOperand(0), 6462 MachineNode->getOperand(1)); 6463 SelectSwap = true; 6464 } 6465 break; 6466 case PPC::CREQV: 6467 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6468 // eqv(x, x) = 1 6469 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6470 MVT::i1); 6471 else if (Op1Set) 6472 // eqv(1, y) = y 6473 ResNode = MachineNode->getOperand(1).getNode(); 6474 else if (Op2Set) 6475 // eqv(x, 1) = x 6476 ResNode = MachineNode->getOperand(0).getNode(); 6477 else if (Op1Unset) 6478 // eqv(0, y) = ~y -> nor(y, y) 6479 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6480 MVT::i1, MachineNode->getOperand(1), 6481 MachineNode->getOperand(1)); 6482 else if (Op2Unset) 6483 // eqv(x, 0) = ~x 6484 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6485 MVT::i1, MachineNode->getOperand(0), 6486 MachineNode->getOperand(0)); 6487 else if (Op1Not) 6488 // eqv(~x, y) = xor(x, y) 6489 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6490 MVT::i1, MachineNode->getOperand(0). 6491 getOperand(0), 6492 MachineNode->getOperand(1)); 6493 else if (Op2Not) 6494 // eqv(x, ~y) = xor(x, y) 6495 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6496 MVT::i1, MachineNode->getOperand(0), 6497 MachineNode->getOperand(1). 6498 getOperand(0)); 6499 else if (AllUsersSelectZero(MachineNode)) { 6500 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6501 MVT::i1, MachineNode->getOperand(0), 6502 MachineNode->getOperand(1)); 6503 SelectSwap = true; 6504 } 6505 break; 6506 case PPC::CRANDC: 6507 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6508 // andc(x, x) = 0 6509 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6510 MVT::i1); 6511 else if (Op1Set) 6512 // andc(1, y) = ~y 6513 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6514 MVT::i1, MachineNode->getOperand(1), 6515 MachineNode->getOperand(1)); 6516 else if (Op1Unset || Op2Set) 6517 // andc(0, y) = andc(x, 1) = 0 6518 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6519 MVT::i1); 6520 else if (Op2Unset) 6521 // andc(x, 0) = x 6522 ResNode = MachineNode->getOperand(0).getNode(); 6523 else if (Op1Not) 6524 // andc(~x, y) = ~(x | y) = nor(x, y) 6525 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6526 MVT::i1, MachineNode->getOperand(0). 6527 getOperand(0), 6528 MachineNode->getOperand(1)); 6529 else if (Op2Not) 6530 // andc(x, ~y) = x & y 6531 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6532 MVT::i1, MachineNode->getOperand(0), 6533 MachineNode->getOperand(1). 6534 getOperand(0)); 6535 else if (AllUsersSelectZero(MachineNode)) { 6536 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6537 MVT::i1, MachineNode->getOperand(1), 6538 MachineNode->getOperand(0)); 6539 SelectSwap = true; 6540 } 6541 break; 6542 case PPC::CRORC: 6543 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6544 // orc(x, x) = 1 6545 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6546 MVT::i1); 6547 else if (Op1Set || Op2Unset) 6548 // orc(1, y) = orc(x, 0) = 1 6549 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6550 MVT::i1); 6551 else if (Op2Set) 6552 // orc(x, 1) = x 6553 ResNode = MachineNode->getOperand(0).getNode(); 6554 else if (Op1Unset) 6555 // orc(0, y) = ~y 6556 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6557 MVT::i1, MachineNode->getOperand(1), 6558 MachineNode->getOperand(1)); 6559 else if (Op1Not) 6560 // orc(~x, y) = ~(x & y) = nand(x, y) 6561 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6562 MVT::i1, MachineNode->getOperand(0). 6563 getOperand(0), 6564 MachineNode->getOperand(1)); 6565 else if (Op2Not) 6566 // orc(x, ~y) = x | y 6567 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 6568 MVT::i1, MachineNode->getOperand(0), 6569 MachineNode->getOperand(1). 6570 getOperand(0)); 6571 else if (AllUsersSelectZero(MachineNode)) { 6572 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6573 MVT::i1, MachineNode->getOperand(1), 6574 MachineNode->getOperand(0)); 6575 SelectSwap = true; 6576 } 6577 break; 6578 case PPC::SELECT_I4: 6579 case PPC::SELECT_I8: 6580 case PPC::SELECT_F4: 6581 case PPC::SELECT_F8: 6582 case PPC::SELECT_SPE: 6583 case PPC::SELECT_SPE4: 6584 case PPC::SELECT_VRRC: 6585 case PPC::SELECT_VSFRC: 6586 case PPC::SELECT_VSSRC: 6587 case PPC::SELECT_VSRC: 6588 if (Op1Set) 6589 ResNode = MachineNode->getOperand(1).getNode(); 6590 else if (Op1Unset) 6591 ResNode = MachineNode->getOperand(2).getNode(); 6592 else if (Op1Not) 6593 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 6594 SDLoc(MachineNode), 6595 MachineNode->getValueType(0), 6596 MachineNode->getOperand(0). 6597 getOperand(0), 6598 MachineNode->getOperand(2), 6599 MachineNode->getOperand(1)); 6600 break; 6601 case PPC::BC: 6602 case PPC::BCn: 6603 if (Op1Not) 6604 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 6605 PPC::BC, 6606 SDLoc(MachineNode), 6607 MVT::Other, 6608 MachineNode->getOperand(0). 6609 getOperand(0), 6610 MachineNode->getOperand(1), 6611 MachineNode->getOperand(2)); 6612 // FIXME: Handle Op1Set, Op1Unset here too. 6613 break; 6614 } 6615 6616 // If we're inverting this node because it is used only by selects that 6617 // we'd like to swap, then swap the selects before the node replacement. 6618 if (SelectSwap) 6619 SwapAllSelectUsers(MachineNode); 6620 6621 if (ResNode != MachineNode) { 6622 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6623 LLVM_DEBUG(MachineNode->dump(CurDAG)); 6624 LLVM_DEBUG(dbgs() << "\nNew: "); 6625 LLVM_DEBUG(ResNode->dump(CurDAG)); 6626 LLVM_DEBUG(dbgs() << "\n"); 6627 6628 ReplaceUses(MachineNode, ResNode); 6629 IsModified = true; 6630 } 6631 } 6632 if (IsModified) 6633 CurDAG->RemoveDeadNodes(); 6634 } while (IsModified); 6635 } 6636 6637 // Gather the set of 32-bit operations that are known to have their 6638 // higher-order 32 bits zero, where ToPromote contains all such operations. 6639 static bool PeepholePPC64ZExtGather(SDValue Op32, 6640 SmallPtrSetImpl<SDNode *> &ToPromote) { 6641 if (!Op32.isMachineOpcode()) 6642 return false; 6643 6644 // First, check for the "frontier" instructions (those that will clear the 6645 // higher-order 32 bits. 6646 6647 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 6648 // around. If it does not, then these instructions will clear the 6649 // higher-order bits. 6650 if ((Op32.getMachineOpcode() == PPC::RLWINM || 6651 Op32.getMachineOpcode() == PPC::RLWNM) && 6652 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 6653 ToPromote.insert(Op32.getNode()); 6654 return true; 6655 } 6656 6657 // SLW and SRW always clear the higher-order bits. 6658 if (Op32.getMachineOpcode() == PPC::SLW || 6659 Op32.getMachineOpcode() == PPC::SRW) { 6660 ToPromote.insert(Op32.getNode()); 6661 return true; 6662 } 6663 6664 // For LI and LIS, we need the immediate to be positive (so that it is not 6665 // sign extended). 6666 if (Op32.getMachineOpcode() == PPC::LI || 6667 Op32.getMachineOpcode() == PPC::LIS) { 6668 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 6669 return false; 6670 6671 ToPromote.insert(Op32.getNode()); 6672 return true; 6673 } 6674 6675 // LHBRX and LWBRX always clear the higher-order bits. 6676 if (Op32.getMachineOpcode() == PPC::LHBRX || 6677 Op32.getMachineOpcode() == PPC::LWBRX) { 6678 ToPromote.insert(Op32.getNode()); 6679 return true; 6680 } 6681 6682 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. 6683 if (Op32.getMachineOpcode() == PPC::CNTLZW || 6684 Op32.getMachineOpcode() == PPC::CNTTZW) { 6685 ToPromote.insert(Op32.getNode()); 6686 return true; 6687 } 6688 6689 // Next, check for those instructions we can look through. 6690 6691 // Assuming the mask does not wrap around, then the higher-order bits are 6692 // taken directly from the first operand. 6693 if (Op32.getMachineOpcode() == PPC::RLWIMI && 6694 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 6695 SmallPtrSet<SDNode *, 16> ToPromote1; 6696 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6697 return false; 6698 6699 ToPromote.insert(Op32.getNode()); 6700 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6701 return true; 6702 } 6703 6704 // For OR, the higher-order bits are zero if that is true for both operands. 6705 // For SELECT_I4, the same is true (but the relevant operand numbers are 6706 // shifted by 1). 6707 if (Op32.getMachineOpcode() == PPC::OR || 6708 Op32.getMachineOpcode() == PPC::SELECT_I4) { 6709 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 6710 SmallPtrSet<SDNode *, 16> ToPromote1; 6711 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 6712 return false; 6713 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 6714 return false; 6715 6716 ToPromote.insert(Op32.getNode()); 6717 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6718 return true; 6719 } 6720 6721 // For ORI and ORIS, we need the higher-order bits of the first operand to be 6722 // zero, and also for the constant to be positive (so that it is not sign 6723 // extended). 6724 if (Op32.getMachineOpcode() == PPC::ORI || 6725 Op32.getMachineOpcode() == PPC::ORIS) { 6726 SmallPtrSet<SDNode *, 16> ToPromote1; 6727 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6728 return false; 6729 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 6730 return false; 6731 6732 ToPromote.insert(Op32.getNode()); 6733 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6734 return true; 6735 } 6736 6737 // The higher-order bits of AND are zero if that is true for at least one of 6738 // the operands. 6739 if (Op32.getMachineOpcode() == PPC::AND) { 6740 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 6741 bool Op0OK = 6742 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6743 bool Op1OK = 6744 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 6745 if (!Op0OK && !Op1OK) 6746 return false; 6747 6748 ToPromote.insert(Op32.getNode()); 6749 6750 if (Op0OK) 6751 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6752 6753 if (Op1OK) 6754 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 6755 6756 return true; 6757 } 6758 6759 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 6760 // of the first operand, or if the second operand is positive (so that it is 6761 // not sign extended). 6762 if (Op32.getMachineOpcode() == PPC::ANDI_rec || 6763 Op32.getMachineOpcode() == PPC::ANDIS_rec) { 6764 SmallPtrSet<SDNode *, 16> ToPromote1; 6765 bool Op0OK = 6766 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6767 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 6768 if (!Op0OK && !Op1OK) 6769 return false; 6770 6771 ToPromote.insert(Op32.getNode()); 6772 6773 if (Op0OK) 6774 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6775 6776 return true; 6777 } 6778 6779 return false; 6780 } 6781 6782 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 6783 if (!Subtarget->isPPC64()) 6784 return; 6785 6786 // When we zero-extend from i32 to i64, we use a pattern like this: 6787 // def : Pat<(i64 (zext i32:$in)), 6788 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 6789 // 0, 32)>; 6790 // There are several 32-bit shift/rotate instructions, however, that will 6791 // clear the higher-order bits of their output, rendering the RLDICL 6792 // unnecessary. When that happens, we remove it here, and redefine the 6793 // relevant 32-bit operation to be a 64-bit operation. 6794 6795 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6796 6797 bool MadeChange = false; 6798 while (Position != CurDAG->allnodes_begin()) { 6799 SDNode *N = &*--Position; 6800 // Skip dead nodes and any non-machine opcodes. 6801 if (N->use_empty() || !N->isMachineOpcode()) 6802 continue; 6803 6804 if (N->getMachineOpcode() != PPC::RLDICL) 6805 continue; 6806 6807 if (N->getConstantOperandVal(1) != 0 || 6808 N->getConstantOperandVal(2) != 32) 6809 continue; 6810 6811 SDValue ISR = N->getOperand(0); 6812 if (!ISR.isMachineOpcode() || 6813 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 6814 continue; 6815 6816 if (!ISR.hasOneUse()) 6817 continue; 6818 6819 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 6820 continue; 6821 6822 SDValue IDef = ISR.getOperand(0); 6823 if (!IDef.isMachineOpcode() || 6824 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 6825 continue; 6826 6827 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 6828 // can get rid of it. 6829 6830 SDValue Op32 = ISR->getOperand(1); 6831 if (!Op32.isMachineOpcode()) 6832 continue; 6833 6834 // There are some 32-bit instructions that always clear the high-order 32 6835 // bits, there are also some instructions (like AND) that we can look 6836 // through. 6837 SmallPtrSet<SDNode *, 16> ToPromote; 6838 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 6839 continue; 6840 6841 // If the ToPromote set contains nodes that have uses outside of the set 6842 // (except for the original INSERT_SUBREG), then abort the transformation. 6843 bool OutsideUse = false; 6844 for (SDNode *PN : ToPromote) { 6845 for (SDNode *UN : PN->uses()) { 6846 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 6847 OutsideUse = true; 6848 break; 6849 } 6850 } 6851 6852 if (OutsideUse) 6853 break; 6854 } 6855 if (OutsideUse) 6856 continue; 6857 6858 MadeChange = true; 6859 6860 // We now know that this zero extension can be removed by promoting to 6861 // nodes in ToPromote to 64-bit operations, where for operations in the 6862 // frontier of the set, we need to insert INSERT_SUBREGs for their 6863 // operands. 6864 for (SDNode *PN : ToPromote) { 6865 unsigned NewOpcode; 6866 switch (PN->getMachineOpcode()) { 6867 default: 6868 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 6869 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 6870 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 6871 case PPC::SLW: NewOpcode = PPC::SLW8; break; 6872 case PPC::SRW: NewOpcode = PPC::SRW8; break; 6873 case PPC::LI: NewOpcode = PPC::LI8; break; 6874 case PPC::LIS: NewOpcode = PPC::LIS8; break; 6875 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 6876 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 6877 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 6878 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; 6879 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 6880 case PPC::OR: NewOpcode = PPC::OR8; break; 6881 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 6882 case PPC::ORI: NewOpcode = PPC::ORI8; break; 6883 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 6884 case PPC::AND: NewOpcode = PPC::AND8; break; 6885 case PPC::ANDI_rec: 6886 NewOpcode = PPC::ANDI8_rec; 6887 break; 6888 case PPC::ANDIS_rec: 6889 NewOpcode = PPC::ANDIS8_rec; 6890 break; 6891 } 6892 6893 // Note: During the replacement process, the nodes will be in an 6894 // inconsistent state (some instructions will have operands with values 6895 // of the wrong type). Once done, however, everything should be right 6896 // again. 6897 6898 SmallVector<SDValue, 4> Ops; 6899 for (const SDValue &V : PN->ops()) { 6900 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 6901 !isa<ConstantSDNode>(V)) { 6902 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 6903 SDNode *ReplOp = 6904 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 6905 ISR.getNode()->getVTList(), ReplOpOps); 6906 Ops.push_back(SDValue(ReplOp, 0)); 6907 } else { 6908 Ops.push_back(V); 6909 } 6910 } 6911 6912 // Because all to-be-promoted nodes only have users that are other 6913 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 6914 // the i32 result value type with i64. 6915 6916 SmallVector<EVT, 2> NewVTs; 6917 SDVTList VTs = PN->getVTList(); 6918 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 6919 if (VTs.VTs[i] == MVT::i32) 6920 NewVTs.push_back(MVT::i64); 6921 else 6922 NewVTs.push_back(VTs.VTs[i]); 6923 6924 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 6925 LLVM_DEBUG(PN->dump(CurDAG)); 6926 6927 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 6928 6929 LLVM_DEBUG(dbgs() << "\nNew: "); 6930 LLVM_DEBUG(PN->dump(CurDAG)); 6931 LLVM_DEBUG(dbgs() << "\n"); 6932 } 6933 6934 // Now we replace the original zero extend and its associated INSERT_SUBREG 6935 // with the value feeding the INSERT_SUBREG (which has now been promoted to 6936 // return an i64). 6937 6938 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 6939 LLVM_DEBUG(N->dump(CurDAG)); 6940 LLVM_DEBUG(dbgs() << "\nNew: "); 6941 LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); 6942 LLVM_DEBUG(dbgs() << "\n"); 6943 6944 ReplaceUses(N, Op32.getNode()); 6945 } 6946 6947 if (MadeChange) 6948 CurDAG->RemoveDeadNodes(); 6949 } 6950 6951 static bool isVSXSwap(SDValue N) { 6952 if (!N->isMachineOpcode()) 6953 return false; 6954 unsigned Opc = N->getMachineOpcode(); 6955 6956 // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate 6957 // operand is 2. 6958 if (Opc == PPC::XXPERMDIs) { 6959 return isa<ConstantSDNode>(N->getOperand(1)) && 6960 N->getConstantOperandVal(1) == 2; 6961 } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) { 6962 return N->getOperand(0) == N->getOperand(1) && 6963 isa<ConstantSDNode>(N->getOperand(2)) && 6964 N->getConstantOperandVal(2) == 2; 6965 } 6966 6967 return false; 6968 } 6969 6970 // TODO: Make this complete and replace with a table-gen bit. 6971 static bool isLaneInsensitive(SDValue N) { 6972 if (!N->isMachineOpcode()) 6973 return false; 6974 unsigned Opc = N->getMachineOpcode(); 6975 6976 switch (Opc) { 6977 default: 6978 return false; 6979 case PPC::VAVGSB: 6980 case PPC::VAVGUB: 6981 case PPC::VAVGSH: 6982 case PPC::VAVGUH: 6983 case PPC::VAVGSW: 6984 case PPC::VAVGUW: 6985 case PPC::VMAXFP: 6986 case PPC::VMAXSB: 6987 case PPC::VMAXUB: 6988 case PPC::VMAXSH: 6989 case PPC::VMAXUH: 6990 case PPC::VMAXSW: 6991 case PPC::VMAXUW: 6992 case PPC::VMINFP: 6993 case PPC::VMINSB: 6994 case PPC::VMINUB: 6995 case PPC::VMINSH: 6996 case PPC::VMINUH: 6997 case PPC::VMINSW: 6998 case PPC::VMINUW: 6999 case PPC::VADDFP: 7000 case PPC::VADDUBM: 7001 case PPC::VADDUHM: 7002 case PPC::VADDUWM: 7003 case PPC::VSUBFP: 7004 case PPC::VSUBUBM: 7005 case PPC::VSUBUHM: 7006 case PPC::VSUBUWM: 7007 case PPC::VAND: 7008 case PPC::VANDC: 7009 case PPC::VOR: 7010 case PPC::VORC: 7011 case PPC::VXOR: 7012 case PPC::VNOR: 7013 case PPC::VMULUWM: 7014 return true; 7015 } 7016 } 7017 7018 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is 7019 // lane-insensitive. 7020 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) { 7021 // Our desired xxswap might be source of COPY_TO_REGCLASS. 7022 // TODO: Can we put this a common method for DAG? 7023 auto SkipRCCopy = [](SDValue V) { 7024 while (V->isMachineOpcode() && 7025 V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) { 7026 // All values in the chain should have single use. 7027 if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode())) 7028 return SDValue(); 7029 V = V->getOperand(0); 7030 } 7031 return V.hasOneUse() ? V : SDValue(); 7032 }; 7033 7034 SDValue VecOp = SkipRCCopy(N->getOperand(0)); 7035 if (!VecOp || !isLaneInsensitive(VecOp)) 7036 return; 7037 7038 SDValue LHS = SkipRCCopy(VecOp.getOperand(0)), 7039 RHS = SkipRCCopy(VecOp.getOperand(1)); 7040 if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS)) 7041 return; 7042 7043 // These swaps may still have chain-uses here, count on dead code elimination 7044 // in following passes to remove them. 7045 DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0)); 7046 DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0)); 7047 DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0)); 7048 } 7049 7050 void PPCDAGToDAGISel::PeepholePPC64() { 7051 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7052 7053 while (Position != CurDAG->allnodes_begin()) { 7054 SDNode *N = &*--Position; 7055 // Skip dead nodes and any non-machine opcodes. 7056 if (N->use_empty() || !N->isMachineOpcode()) 7057 continue; 7058 7059 if (isVSXSwap(SDValue(N, 0))) 7060 reduceVSXSwap(N, CurDAG); 7061 7062 unsigned FirstOp; 7063 unsigned StorageOpcode = N->getMachineOpcode(); 7064 bool RequiresMod4Offset = false; 7065 7066 switch (StorageOpcode) { 7067 default: continue; 7068 7069 case PPC::LWA: 7070 case PPC::LD: 7071 case PPC::DFLOADf64: 7072 case PPC::DFLOADf32: 7073 RequiresMod4Offset = true; 7074 LLVM_FALLTHROUGH; 7075 case PPC::LBZ: 7076 case PPC::LBZ8: 7077 case PPC::LFD: 7078 case PPC::LFS: 7079 case PPC::LHA: 7080 case PPC::LHA8: 7081 case PPC::LHZ: 7082 case PPC::LHZ8: 7083 case PPC::LWZ: 7084 case PPC::LWZ8: 7085 FirstOp = 0; 7086 break; 7087 7088 case PPC::STD: 7089 case PPC::DFSTOREf64: 7090 case PPC::DFSTOREf32: 7091 RequiresMod4Offset = true; 7092 LLVM_FALLTHROUGH; 7093 case PPC::STB: 7094 case PPC::STB8: 7095 case PPC::STFD: 7096 case PPC::STFS: 7097 case PPC::STH: 7098 case PPC::STH8: 7099 case PPC::STW: 7100 case PPC::STW8: 7101 FirstOp = 1; 7102 break; 7103 } 7104 7105 // If this is a load or store with a zero offset, or within the alignment, 7106 // we may be able to fold an add-immediate into the memory operation. 7107 // The check against alignment is below, as it can't occur until we check 7108 // the arguments to N 7109 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 7110 continue; 7111 7112 SDValue Base = N->getOperand(FirstOp + 1); 7113 if (!Base.isMachineOpcode()) 7114 continue; 7115 7116 unsigned Flags = 0; 7117 bool ReplaceFlags = true; 7118 7119 // When the feeding operation is an add-immediate of some sort, 7120 // determine whether we need to add relocation information to the 7121 // target flags on the immediate operand when we fold it into the 7122 // load instruction. 7123 // 7124 // For something like ADDItocL, the relocation information is 7125 // inferred from the opcode; when we process it in the AsmPrinter, 7126 // we add the necessary relocation there. A load, though, can receive 7127 // relocation from various flavors of ADDIxxx, so we need to carry 7128 // the relocation information in the target flags. 7129 switch (Base.getMachineOpcode()) { 7130 default: continue; 7131 7132 case PPC::ADDI8: 7133 case PPC::ADDI: 7134 // In some cases (such as TLS) the relocation information 7135 // is already in place on the operand, so copying the operand 7136 // is sufficient. 7137 ReplaceFlags = false; 7138 // For these cases, the immediate may not be divisible by 4, in 7139 // which case the fold is illegal for DS-form instructions. (The 7140 // other cases provide aligned addresses and are always safe.) 7141 if (RequiresMod4Offset && 7142 (!isa<ConstantSDNode>(Base.getOperand(1)) || 7143 Base.getConstantOperandVal(1) % 4 != 0)) 7144 continue; 7145 break; 7146 case PPC::ADDIdtprelL: 7147 Flags = PPCII::MO_DTPREL_LO; 7148 break; 7149 case PPC::ADDItlsldL: 7150 Flags = PPCII::MO_TLSLD_LO; 7151 break; 7152 case PPC::ADDItocL: 7153 Flags = PPCII::MO_TOC_LO; 7154 break; 7155 } 7156 7157 SDValue ImmOpnd = Base.getOperand(1); 7158 7159 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 7160 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 7161 // we might have needed different @ha relocation values for the offset 7162 // pointers). 7163 int MaxDisplacement = 7; 7164 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7165 const GlobalValue *GV = GA->getGlobal(); 7166 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7167 MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement); 7168 } 7169 7170 bool UpdateHBase = false; 7171 SDValue HBase = Base.getOperand(0); 7172 7173 int Offset = N->getConstantOperandVal(FirstOp); 7174 if (ReplaceFlags) { 7175 if (Offset < 0 || Offset > MaxDisplacement) { 7176 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 7177 // one use, then we can do this for any offset, we just need to also 7178 // update the offset (i.e. the symbol addend) on the addis also. 7179 if (Base.getMachineOpcode() != PPC::ADDItocL) 7180 continue; 7181 7182 if (!HBase.isMachineOpcode() || 7183 HBase.getMachineOpcode() != PPC::ADDIStocHA8) 7184 continue; 7185 7186 if (!Base.hasOneUse() || !HBase.hasOneUse()) 7187 continue; 7188 7189 SDValue HImmOpnd = HBase.getOperand(1); 7190 if (HImmOpnd != ImmOpnd) 7191 continue; 7192 7193 UpdateHBase = true; 7194 } 7195 } else { 7196 // If we're directly folding the addend from an addi instruction, then: 7197 // 1. In general, the offset on the memory access must be zero. 7198 // 2. If the addend is a constant, then it can be combined with a 7199 // non-zero offset, but only if the result meets the encoding 7200 // requirements. 7201 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 7202 Offset += C->getSExtValue(); 7203 7204 if (RequiresMod4Offset && (Offset % 4) != 0) 7205 continue; 7206 7207 if (!isInt<16>(Offset)) 7208 continue; 7209 7210 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 7211 ImmOpnd.getValueType()); 7212 } else if (Offset != 0) { 7213 continue; 7214 } 7215 } 7216 7217 // We found an opportunity. Reverse the operands from the add 7218 // immediate and substitute them into the load or store. If 7219 // needed, update the target flags for the immediate operand to 7220 // reflect the necessary relocation information. 7221 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 7222 LLVM_DEBUG(Base->dump(CurDAG)); 7223 LLVM_DEBUG(dbgs() << "\nN: "); 7224 LLVM_DEBUG(N->dump(CurDAG)); 7225 LLVM_DEBUG(dbgs() << "\n"); 7226 7227 // If the relocation information isn't already present on the 7228 // immediate operand, add it now. 7229 if (ReplaceFlags) { 7230 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7231 SDLoc dl(GA); 7232 const GlobalValue *GV = GA->getGlobal(); 7233 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7234 // We can't perform this optimization for data whose alignment 7235 // is insufficient for the instruction encoding. 7236 if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { 7237 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 7238 continue; 7239 } 7240 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 7241 } else if (ConstantPoolSDNode *CP = 7242 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 7243 const Constant *C = CP->getConstVal(); 7244 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(), 7245 Offset, Flags); 7246 } 7247 } 7248 7249 if (FirstOp == 1) // Store 7250 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 7251 Base.getOperand(0), N->getOperand(3)); 7252 else // Load 7253 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 7254 N->getOperand(2)); 7255 7256 if (UpdateHBase) 7257 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 7258 ImmOpnd); 7259 7260 // The add-immediate may now be dead, in which case remove it. 7261 if (Base.getNode()->use_empty()) 7262 CurDAG->RemoveDeadNode(Base.getNode()); 7263 } 7264 } 7265 7266 /// createPPCISelDag - This pass converts a legalized DAG into a 7267 /// PowerPC-specific DAG, ready for instruction scheduling. 7268 /// 7269 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, 7270 CodeGenOpt::Level OptLevel) { 7271 return new PPCDAGToDAGISel(TM, OptLevel); 7272 } 7273