1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/PPCPredicates.h" 14 #include "PPCFrameLowering.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/Target/TargetOptions.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "framelowering" 33 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 34 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 35 STATISTIC(NumPrologProbed, "Number of prologues probed"); 36 37 static cl::opt<bool> 38 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 39 cl::desc("Enable spills in prologue to vector registers."), 40 cl::init(false), cl::Hidden); 41 42 /// VRRegNo - Map from a numbered VR register to its enum value. 43 /// 44 static const MCPhysReg VRRegNo[] = { 45 PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 , 46 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15, 47 PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23, 48 PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31 49 }; 50 51 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 52 if (STI.isAIXABI()) 53 return STI.isPPC64() ? 16 : 8; 54 // SVR4 ABI: 55 return STI.isPPC64() ? 16 : 4; 56 } 57 58 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 59 if (STI.isAIXABI()) 60 return STI.isPPC64() ? 40 : 20; 61 return STI.isELFv2ABI() ? 24 : 40; 62 } 63 64 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 65 // First slot in the general register save area. 66 return STI.isPPC64() ? -8U : -4U; 67 } 68 69 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 70 if (STI.isAIXABI() || STI.isPPC64()) 71 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 72 73 // 32-bit SVR4 ABI: 74 return 8; 75 } 76 77 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 78 // Third slot in the general purpose register save area. 79 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 80 return -12U; 81 82 // Second slot in the general purpose register save area. 83 return STI.isPPC64() ? -16U : -8U; 84 } 85 86 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 87 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 88 } 89 90 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 91 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 92 STI.getPlatformStackAlignment(), 0), 93 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 94 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 95 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 96 LinkageSize(computeLinkageSize(Subtarget)), 97 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 98 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 99 100 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 101 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 102 unsigned &NumEntries) const { 103 104 // Floating-point register save area offsets. 105 #define CALLEE_SAVED_FPRS \ 106 {PPC::F31, -8}, \ 107 {PPC::F30, -16}, \ 108 {PPC::F29, -24}, \ 109 {PPC::F28, -32}, \ 110 {PPC::F27, -40}, \ 111 {PPC::F26, -48}, \ 112 {PPC::F25, -56}, \ 113 {PPC::F24, -64}, \ 114 {PPC::F23, -72}, \ 115 {PPC::F22, -80}, \ 116 {PPC::F21, -88}, \ 117 {PPC::F20, -96}, \ 118 {PPC::F19, -104}, \ 119 {PPC::F18, -112}, \ 120 {PPC::F17, -120}, \ 121 {PPC::F16, -128}, \ 122 {PPC::F15, -136}, \ 123 {PPC::F14, -144} 124 125 // 32-bit general purpose register save area offsets shared by ELF and 126 // AIX. AIX has an extra CSR with r13. 127 #define CALLEE_SAVED_GPRS32 \ 128 {PPC::R31, -4}, \ 129 {PPC::R30, -8}, \ 130 {PPC::R29, -12}, \ 131 {PPC::R28, -16}, \ 132 {PPC::R27, -20}, \ 133 {PPC::R26, -24}, \ 134 {PPC::R25, -28}, \ 135 {PPC::R24, -32}, \ 136 {PPC::R23, -36}, \ 137 {PPC::R22, -40}, \ 138 {PPC::R21, -44}, \ 139 {PPC::R20, -48}, \ 140 {PPC::R19, -52}, \ 141 {PPC::R18, -56}, \ 142 {PPC::R17, -60}, \ 143 {PPC::R16, -64}, \ 144 {PPC::R15, -68}, \ 145 {PPC::R14, -72} 146 147 // 64-bit general purpose register save area offsets. 148 #define CALLEE_SAVED_GPRS64 \ 149 {PPC::X31, -8}, \ 150 {PPC::X30, -16}, \ 151 {PPC::X29, -24}, \ 152 {PPC::X28, -32}, \ 153 {PPC::X27, -40}, \ 154 {PPC::X26, -48}, \ 155 {PPC::X25, -56}, \ 156 {PPC::X24, -64}, \ 157 {PPC::X23, -72}, \ 158 {PPC::X22, -80}, \ 159 {PPC::X21, -88}, \ 160 {PPC::X20, -96}, \ 161 {PPC::X19, -104}, \ 162 {PPC::X18, -112}, \ 163 {PPC::X17, -120}, \ 164 {PPC::X16, -128}, \ 165 {PPC::X15, -136}, \ 166 {PPC::X14, -144} 167 168 // Vector register save area offsets. 169 #define CALLEE_SAVED_VRS \ 170 {PPC::V31, -16}, \ 171 {PPC::V30, -32}, \ 172 {PPC::V29, -48}, \ 173 {PPC::V28, -64}, \ 174 {PPC::V27, -80}, \ 175 {PPC::V26, -96}, \ 176 {PPC::V25, -112}, \ 177 {PPC::V24, -128}, \ 178 {PPC::V23, -144}, \ 179 {PPC::V22, -160}, \ 180 {PPC::V21, -176}, \ 181 {PPC::V20, -192} 182 183 // Note that the offsets here overlap, but this is fixed up in 184 // processFunctionBeforeFrameFinalized. 185 186 static const SpillSlot ELFOffsets32[] = { 187 CALLEE_SAVED_FPRS, 188 CALLEE_SAVED_GPRS32, 189 190 // CR save area offset. We map each of the nonvolatile CR fields 191 // to the slot for CR2, which is the first of the nonvolatile CR 192 // fields to be assigned, so that we only allocate one save slot. 193 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 194 {PPC::CR2, -4}, 195 196 // VRSAVE save area offset. 197 {PPC::VRSAVE, -4}, 198 199 CALLEE_SAVED_VRS, 200 201 // SPE register save area (overlaps Vector save area). 202 {PPC::S31, -8}, 203 {PPC::S30, -16}, 204 {PPC::S29, -24}, 205 {PPC::S28, -32}, 206 {PPC::S27, -40}, 207 {PPC::S26, -48}, 208 {PPC::S25, -56}, 209 {PPC::S24, -64}, 210 {PPC::S23, -72}, 211 {PPC::S22, -80}, 212 {PPC::S21, -88}, 213 {PPC::S20, -96}, 214 {PPC::S19, -104}, 215 {PPC::S18, -112}, 216 {PPC::S17, -120}, 217 {PPC::S16, -128}, 218 {PPC::S15, -136}, 219 {PPC::S14, -144}}; 220 221 static const SpillSlot ELFOffsets64[] = { 222 CALLEE_SAVED_FPRS, 223 CALLEE_SAVED_GPRS64, 224 225 // VRSAVE save area offset. 226 {PPC::VRSAVE, -4}, 227 CALLEE_SAVED_VRS 228 }; 229 230 static const SpillSlot AIXOffsets32[] = { 231 CALLEE_SAVED_FPRS, 232 CALLEE_SAVED_GPRS32, 233 // Add AIX's extra CSR. 234 {PPC::R13, -76}, 235 // TODO: Update when we add vector support for AIX. 236 }; 237 238 static const SpillSlot AIXOffsets64[] = { 239 CALLEE_SAVED_FPRS, 240 CALLEE_SAVED_GPRS64, 241 // TODO: Update when we add vector support for AIX. 242 }; 243 244 if (Subtarget.is64BitELFABI()) { 245 NumEntries = array_lengthof(ELFOffsets64); 246 return ELFOffsets64; 247 } 248 249 if (Subtarget.is32BitELFABI()) { 250 NumEntries = array_lengthof(ELFOffsets32); 251 return ELFOffsets32; 252 } 253 254 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 255 256 if (Subtarget.isPPC64()) { 257 NumEntries = array_lengthof(AIXOffsets64); 258 return AIXOffsets64; 259 } 260 261 NumEntries = array_lengthof(AIXOffsets32); 262 return AIXOffsets32; 263 } 264 265 /// RemoveVRSaveCode - We have found that this function does not need any code 266 /// to manipulate the VRSAVE register, even though it uses vector registers. 267 /// This can happen when the only registers used are known to be live in or out 268 /// of the function. Remove all of the VRSAVE related code from the function. 269 /// FIXME: The removal of the code results in a compile failure at -O0 when the 270 /// function contains a function call, as the GPR containing original VRSAVE 271 /// contents is spilled and reloaded around the call. Without the prolog code, 272 /// the spill instruction refers to an undefined register. This code needs 273 /// to account for all uses of that GPR. 274 static void RemoveVRSaveCode(MachineInstr &MI) { 275 MachineBasicBlock *Entry = MI.getParent(); 276 MachineFunction *MF = Entry->getParent(); 277 278 // We know that the MTVRSAVE instruction immediately follows MI. Remove it. 279 MachineBasicBlock::iterator MBBI = MI; 280 ++MBBI; 281 assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE); 282 MBBI->eraseFromParent(); 283 284 bool RemovedAllMTVRSAVEs = true; 285 // See if we can find and remove the MTVRSAVE instruction from all of the 286 // epilog blocks. 287 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 288 // If last instruction is a return instruction, add an epilogue 289 if (I->isReturnBlock()) { 290 bool FoundIt = false; 291 for (MBBI = I->end(); MBBI != I->begin(); ) { 292 --MBBI; 293 if (MBBI->getOpcode() == PPC::MTVRSAVE) { 294 MBBI->eraseFromParent(); // remove it. 295 FoundIt = true; 296 break; 297 } 298 } 299 RemovedAllMTVRSAVEs &= FoundIt; 300 } 301 } 302 303 // If we found and removed all MTVRSAVE instructions, remove the read of 304 // VRSAVE as well. 305 if (RemovedAllMTVRSAVEs) { 306 MBBI = MI; 307 assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?"); 308 --MBBI; 309 assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?"); 310 MBBI->eraseFromParent(); 311 } 312 313 // Finally, nuke the UPDATE_VRSAVE. 314 MI.eraseFromParent(); 315 } 316 317 // HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the 318 // instruction selector. Based on the vector registers that have been used, 319 // transform this into the appropriate ORI instruction. 320 static void HandleVRSaveUpdate(MachineInstr &MI, const TargetInstrInfo &TII) { 321 MachineFunction *MF = MI.getParent()->getParent(); 322 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 323 DebugLoc dl = MI.getDebugLoc(); 324 325 const MachineRegisterInfo &MRI = MF->getRegInfo(); 326 unsigned UsedRegMask = 0; 327 for (unsigned i = 0; i != 32; ++i) 328 if (MRI.isPhysRegModified(VRRegNo[i])) 329 UsedRegMask |= 1 << (31-i); 330 331 // Live in and live out values already must be in the mask, so don't bother 332 // marking them. 333 for (std::pair<unsigned, unsigned> LI : MF->getRegInfo().liveins()) { 334 unsigned RegNo = TRI->getEncodingValue(LI.first); 335 if (VRRegNo[RegNo] == LI.first) // If this really is a vector reg. 336 UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked. 337 } 338 339 // Live out registers appear as use operands on return instructions. 340 for (MachineFunction::const_iterator BI = MF->begin(), BE = MF->end(); 341 UsedRegMask != 0 && BI != BE; ++BI) { 342 const MachineBasicBlock &MBB = *BI; 343 if (!MBB.isReturnBlock()) 344 continue; 345 const MachineInstr &Ret = MBB.back(); 346 for (unsigned I = 0, E = Ret.getNumOperands(); I != E; ++I) { 347 const MachineOperand &MO = Ret.getOperand(I); 348 if (!MO.isReg() || !PPC::VRRCRegClass.contains(MO.getReg())) 349 continue; 350 unsigned RegNo = TRI->getEncodingValue(MO.getReg()); 351 UsedRegMask &= ~(1 << (31-RegNo)); 352 } 353 } 354 355 // If no registers are used, turn this into a copy. 356 if (UsedRegMask == 0) { 357 // Remove all VRSAVE code. 358 RemoveVRSaveCode(MI); 359 return; 360 } 361 362 Register SrcReg = MI.getOperand(1).getReg(); 363 Register DstReg = MI.getOperand(0).getReg(); 364 365 if ((UsedRegMask & 0xFFFF) == UsedRegMask) { 366 if (DstReg != SrcReg) 367 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg) 368 .addReg(SrcReg) 369 .addImm(UsedRegMask); 370 else 371 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg) 372 .addReg(SrcReg, RegState::Kill) 373 .addImm(UsedRegMask); 374 } else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) { 375 if (DstReg != SrcReg) 376 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 377 .addReg(SrcReg) 378 .addImm(UsedRegMask >> 16); 379 else 380 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 381 .addReg(SrcReg, RegState::Kill) 382 .addImm(UsedRegMask >> 16); 383 } else { 384 if (DstReg != SrcReg) 385 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 386 .addReg(SrcReg) 387 .addImm(UsedRegMask >> 16); 388 else 389 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 390 .addReg(SrcReg, RegState::Kill) 391 .addImm(UsedRegMask >> 16); 392 393 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg) 394 .addReg(DstReg, RegState::Kill) 395 .addImm(UsedRegMask & 0xFFFF); 396 } 397 398 // Remove the old UPDATE_VRSAVE instruction. 399 MI.eraseFromParent(); 400 } 401 402 static bool spillsCR(const MachineFunction &MF) { 403 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 404 return FuncInfo->isCRSpilled(); 405 } 406 407 static bool spillsVRSAVE(const MachineFunction &MF) { 408 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 409 return FuncInfo->isVRSAVESpilled(); 410 } 411 412 static bool hasSpills(const MachineFunction &MF) { 413 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 414 return FuncInfo->hasSpills(); 415 } 416 417 static bool hasNonRISpills(const MachineFunction &MF) { 418 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 419 return FuncInfo->hasNonRISpills(); 420 } 421 422 /// MustSaveLR - Return true if this function requires that we save the LR 423 /// register onto the stack in the prolog and restore it in the epilog of the 424 /// function. 425 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 426 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 427 428 // We need a save/restore of LR if there is any def of LR (which is 429 // defined by calls, including the PIC setup sequence), or if there is 430 // some use of the LR stack slot (e.g. for builtin_return_address). 431 // (LR comes in 32 and 64 bit versions.) 432 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 433 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 434 } 435 436 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 437 /// call frame size. Update the MachineFunction object with the stack size. 438 unsigned 439 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 440 bool UseEstimate) const { 441 unsigned NewMaxCallFrameSize = 0; 442 unsigned FrameSize = determineFrameLayout(MF, UseEstimate, 443 &NewMaxCallFrameSize); 444 MF.getFrameInfo().setStackSize(FrameSize); 445 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 446 return FrameSize; 447 } 448 449 /// determineFrameLayout - Determine the size of the frame and maximum call 450 /// frame size. 451 unsigned 452 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 453 bool UseEstimate, 454 unsigned *NewMaxCallFrameSize) const { 455 const MachineFrameInfo &MFI = MF.getFrameInfo(); 456 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 457 458 // Get the number of bytes to allocate from the FrameInfo 459 unsigned FrameSize = 460 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 461 462 // Get stack alignments. The frame must be aligned to the greatest of these: 463 Align TargetAlign = getStackAlign(); // alignment required per the ABI 464 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 465 Align Alignment = std::max(TargetAlign, MaxAlign); 466 467 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 468 469 unsigned LR = RegInfo->getRARegister(); 470 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 471 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 472 !MFI.adjustsStack() && // No calls. 473 !MustSaveLR(MF, LR) && // No need to save LR. 474 !FI->mustSaveTOC() && // No need to save TOC. 475 !RegInfo->hasBasePointer(MF); // No special alignment. 476 477 // Note: for PPC32 SVR4ABI (Non-DarwinABI), we can still generate stackless 478 // code if all local vars are reg-allocated. 479 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 480 481 // Check whether we can skip adjusting the stack pointer (by using red zone) 482 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 483 // No need for frame 484 return 0; 485 } 486 487 // Get the maximum call frame size of all the calls. 488 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 489 490 // Maximum call frame needs to be at least big enough for linkage area. 491 unsigned minCallFrameSize = getLinkageSize(); 492 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 493 494 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 495 // that allocations will be aligned. 496 if (MFI.hasVarSizedObjects()) 497 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 498 499 // Update the new max call frame size if the caller passes in a valid pointer. 500 if (NewMaxCallFrameSize) 501 *NewMaxCallFrameSize = maxCallFrameSize; 502 503 // Include call frame size in total. 504 FrameSize += maxCallFrameSize; 505 506 // Make sure the frame is aligned. 507 FrameSize = alignTo(FrameSize, Alignment); 508 509 return FrameSize; 510 } 511 512 // hasFP - Return true if the specified function actually has a dedicated frame 513 // pointer register. 514 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 515 const MachineFrameInfo &MFI = MF.getFrameInfo(); 516 // FIXME: This is pretty much broken by design: hasFP() might be called really 517 // early, before the stack layout was calculated and thus hasFP() might return 518 // true or false here depending on the time of call. 519 return (MFI.getStackSize()) && needsFP(MF); 520 } 521 522 // needsFP - Return true if the specified function should have a dedicated frame 523 // pointer register. This is true if the function has variable sized allocas or 524 // if frame pointer elimination is disabled. 525 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 526 const MachineFrameInfo &MFI = MF.getFrameInfo(); 527 528 // Naked functions have no stack frame pushed, so we don't have a frame 529 // pointer. 530 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 531 return false; 532 533 return MF.getTarget().Options.DisableFramePointerElim(MF) || 534 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 535 (MF.getTarget().Options.GuaranteedTailCallOpt && 536 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 537 } 538 539 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 540 bool is31 = needsFP(MF); 541 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 542 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 543 544 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 545 bool HasBP = RegInfo->hasBasePointer(MF); 546 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 547 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 548 549 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 550 BI != BE; ++BI) 551 for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) { 552 --MBBI; 553 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 554 MachineOperand &MO = MBBI->getOperand(I); 555 if (!MO.isReg()) 556 continue; 557 558 switch (MO.getReg()) { 559 case PPC::FP: 560 MO.setReg(FPReg); 561 break; 562 case PPC::FP8: 563 MO.setReg(FP8Reg); 564 break; 565 case PPC::BP: 566 MO.setReg(BPReg); 567 break; 568 case PPC::BP8: 569 MO.setReg(BP8Reg); 570 break; 571 572 } 573 } 574 } 575 } 576 577 /* This function will do the following: 578 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 579 respectively (defaults recommended by the ABI) and return true 580 - If MBB is not an entry block, initialize the register scavenger and look 581 for available registers. 582 - If the defaults (R0/R12) are available, return true 583 - If TwoUniqueRegsRequired is set to true, it looks for two unique 584 registers. Otherwise, look for a single available register. 585 - If the required registers are found, set SR1 and SR2 and return true. 586 - If the required registers are not found, set SR2 or both SR1 and SR2 to 587 PPC::NoRegister and return false. 588 589 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 590 is not set, this function will attempt to find two different registers, but 591 still return true if only one register is available (and set SR1 == SR2). 592 */ 593 bool 594 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 595 bool UseAtEnd, 596 bool TwoUniqueRegsRequired, 597 Register *SR1, 598 Register *SR2) const { 599 RegScavenger RS; 600 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 601 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 602 603 // Set the defaults for the two scratch registers. 604 if (SR1) 605 *SR1 = R0; 606 607 if (SR2) { 608 assert (SR1 && "Asking for the second scratch register but not the first?"); 609 *SR2 = R12; 610 } 611 612 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 613 if ((UseAtEnd && MBB->isReturnBlock()) || 614 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 615 return true; 616 617 RS.enterBasicBlock(*MBB); 618 619 if (UseAtEnd && !MBB->empty()) { 620 // The scratch register will be used at the end of the block, so must 621 // consider all registers used within the block 622 623 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 624 // If no terminator, back iterator up to previous instruction. 625 if (MBBI == MBB->end()) 626 MBBI = std::prev(MBBI); 627 628 if (MBBI != MBB->begin()) 629 RS.forward(MBBI); 630 } 631 632 // If the two registers are available, we're all good. 633 // Note that we only return here if both R0 and R12 are available because 634 // although the function may not require two unique registers, it may benefit 635 // from having two so we should try to provide them. 636 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 637 return true; 638 639 // Get the list of callee-saved registers for the target. 640 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 641 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 642 643 // Get all the available registers in the block. 644 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 645 &PPC::GPRCRegClass); 646 647 // We shouldn't use callee-saved registers as scratch registers as they may be 648 // available when looking for a candidate block for shrink wrapping but not 649 // available when the actual prologue/epilogue is being emitted because they 650 // were added as live-in to the prologue block by PrologueEpilogueInserter. 651 for (int i = 0; CSRegs[i]; ++i) 652 BV.reset(CSRegs[i]); 653 654 // Set the first scratch register to the first available one. 655 if (SR1) { 656 int FirstScratchReg = BV.find_first(); 657 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 658 } 659 660 // If there is another one available, set the second scratch register to that. 661 // Otherwise, set it to either PPC::NoRegister if this function requires two 662 // or to whatever SR1 is set to if this function doesn't require two. 663 if (SR2) { 664 int SecondScratchReg = BV.find_next(*SR1); 665 if (SecondScratchReg != -1) 666 *SR2 = SecondScratchReg; 667 else 668 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 669 } 670 671 // Now that we've done our best to provide both registers, double check 672 // whether we were unable to provide enough. 673 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 674 return false; 675 676 return true; 677 } 678 679 // We need a scratch register for spilling LR and for spilling CR. By default, 680 // we use two scratch registers to hide latency. However, if only one scratch 681 // register is available, we can adjust for that by not overlapping the spill 682 // code. However, if we need to realign the stack (i.e. have a base pointer) 683 // and the stack frame is large, we need two scratch registers. 684 bool 685 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 686 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 687 MachineFunction &MF = *(MBB->getParent()); 688 bool HasBP = RegInfo->hasBasePointer(MF); 689 unsigned FrameSize = determineFrameLayout(MF); 690 int NegFrameSize = -FrameSize; 691 bool IsLargeFrame = !isInt<16>(NegFrameSize); 692 MachineFrameInfo &MFI = MF.getFrameInfo(); 693 Align MaxAlign = MFI.getMaxAlign(); 694 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 695 696 return (IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1; 697 } 698 699 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 700 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 701 702 return findScratchRegister(TmpMBB, false, 703 twoUniqueScratchRegsRequired(TmpMBB)); 704 } 705 706 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 707 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 708 709 return findScratchRegister(TmpMBB, true); 710 } 711 712 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 713 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 714 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 715 716 // Abort if there is no register info or function info. 717 if (!RegInfo || !FI) 718 return false; 719 720 // Only move the stack update on ELFv2 ABI and PPC64. 721 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 722 return false; 723 724 // Check the frame size first and return false if it does not fit the 725 // requirements. 726 // We need a non-zero frame size as well as a frame that will fit in the red 727 // zone. This is because by moving the stack pointer update we are now storing 728 // to the red zone until the stack pointer is updated. If we get an interrupt 729 // inside the prologue but before the stack update we now have a number of 730 // stores to the red zone and those stores must all fit. 731 MachineFrameInfo &MFI = MF.getFrameInfo(); 732 unsigned FrameSize = MFI.getStackSize(); 733 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 734 return false; 735 736 // Frame pointers and base pointers complicate matters so don't do anything 737 // if we have them. For example having a frame pointer will sometimes require 738 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 739 // difficult. 740 if (hasFP(MF) || RegInfo->hasBasePointer(MF)) 741 return false; 742 743 // Calls to fast_cc functions use different rules for passing parameters on 744 // the stack from the ABI and using PIC base in the function imposes 745 // similar restrictions to using the base pointer. It is not generally safe 746 // to move the stack pointer update in these situations. 747 if (FI->hasFastCall() || FI->usesPICBase()) 748 return false; 749 750 // Finally we can move the stack update if we do not require register 751 // scavenging. Register scavenging can introduce more spills and so 752 // may make the frame size larger than we have computed. 753 return !RegInfo->requiresFrameIndexScavenging(MF); 754 } 755 756 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 757 MachineBasicBlock &MBB) const { 758 MachineBasicBlock::iterator MBBI = MBB.begin(); 759 MachineFrameInfo &MFI = MF.getFrameInfo(); 760 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 761 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 762 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 763 764 MachineModuleInfo &MMI = MF.getMMI(); 765 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 766 DebugLoc dl; 767 // AIX assembler does not support cfi directives. 768 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 769 770 // Get processor type. 771 bool isPPC64 = Subtarget.isPPC64(); 772 // Get the ABI. 773 bool isSVR4ABI = Subtarget.isSVR4ABI(); 774 bool isAIXABI = Subtarget.isAIXABI(); 775 bool isELFv2ABI = Subtarget.isELFv2ABI(); 776 assert((isSVR4ABI || isAIXABI) && "Unsupported PPC ABI."); 777 778 // Scan the prolog, looking for an UPDATE_VRSAVE instruction. If we find it, 779 // process it. 780 if (!isSVR4ABI) 781 for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) { 782 if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) { 783 if (isAIXABI) 784 report_fatal_error("UPDATE_VRSAVE is unexpected on AIX."); 785 HandleVRSaveUpdate(*MBBI, TII); 786 break; 787 } 788 } 789 790 // Move MBBI back to the beginning of the prologue block. 791 MBBI = MBB.begin(); 792 793 // Work out frame sizes. 794 unsigned FrameSize = determineFrameLayoutAndUpdate(MF); 795 int NegFrameSize = -FrameSize; 796 if (!isInt<32>(NegFrameSize)) 797 llvm_unreachable("Unhandled stack size!"); 798 799 if (MFI.isFrameAddressTaken()) 800 replaceFPWithRealFP(MF); 801 802 // Check if the link register (LR) must be saved. 803 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 804 bool MustSaveLR = FI->mustSaveLR(); 805 bool MustSaveTOC = FI->mustSaveTOC(); 806 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 807 bool MustSaveCR = !MustSaveCRs.empty(); 808 // Do we have a frame pointer and/or base pointer for this function? 809 bool HasFP = hasFP(MF); 810 bool HasBP = RegInfo->hasBasePointer(MF); 811 bool HasRedZone = isPPC64 || !isSVR4ABI; 812 813 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 814 Register BPReg = RegInfo->getBaseRegister(MF); 815 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 816 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 817 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 818 Register ScratchReg; 819 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 820 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 821 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 822 : PPC::MFLR ); 823 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 824 : PPC::STW ); 825 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 826 : PPC::STWU ); 827 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 828 : PPC::STWUX); 829 const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8 830 : PPC::LIS ); 831 const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8 832 : PPC::ORI ); 833 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 834 : PPC::OR ); 835 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 836 : PPC::SUBFC); 837 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 838 : PPC::SUBFIC); 839 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 840 : PPC::MFCR); 841 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 842 843 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 844 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 845 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 846 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 847 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 848 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 849 850 // Using the same bool variable as below to suppress compiler warnings. 851 // Stack probe requires two scratch registers, one for old sp, one for large 852 // frame and large probe size. 853 bool SingleScratchReg = findScratchRegister( 854 &MBB, false, 855 twoUniqueScratchRegsRequired(&MBB) || TLI.hasInlineStackProbe(MF), 856 &ScratchReg, &TempReg); 857 assert(SingleScratchReg && 858 "Required number of registers not available in this block"); 859 860 SingleScratchReg = ScratchReg == TempReg; 861 862 int LROffset = getReturnSaveOffset(); 863 864 int FPOffset = 0; 865 if (HasFP) { 866 if (isSVR4ABI) { 867 MachineFrameInfo &MFI = MF.getFrameInfo(); 868 int FPIndex = FI->getFramePointerSaveIndex(); 869 assert(FPIndex && "No Frame Pointer Save Slot!"); 870 FPOffset = MFI.getObjectOffset(FPIndex); 871 } else { 872 FPOffset = getFramePointerSaveOffset(); 873 } 874 } 875 876 int BPOffset = 0; 877 if (HasBP) { 878 if (isSVR4ABI) { 879 MachineFrameInfo &MFI = MF.getFrameInfo(); 880 int BPIndex = FI->getBasePointerSaveIndex(); 881 assert(BPIndex && "No Base Pointer Save Slot!"); 882 BPOffset = MFI.getObjectOffset(BPIndex); 883 } else { 884 BPOffset = getBasePointerSaveOffset(); 885 } 886 } 887 888 int PBPOffset = 0; 889 if (FI->usesPICBase()) { 890 MachineFrameInfo &MFI = MF.getFrameInfo(); 891 int PBPIndex = FI->getPICBasePointerSaveIndex(); 892 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 893 PBPOffset = MFI.getObjectOffset(PBPIndex); 894 } 895 896 // Get stack alignments. 897 Align MaxAlign = MFI.getMaxAlign(); 898 if (HasBP && MaxAlign > 1) 899 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 900 901 // Frames of 32KB & larger require special handling because they cannot be 902 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 903 bool isLargeFrame = !isInt<16>(NegFrameSize); 904 905 // Check if we can move the stack update instruction (stdu) down the prologue 906 // past the callee saves. Hopefully this will avoid the situation where the 907 // saves are waiting for the update on the store with update to complete. 908 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 909 bool MovingStackUpdateDown = false; 910 911 // Check if we can move the stack update. 912 if (stackUpdateCanBeMoved(MF)) { 913 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 914 for (CalleeSavedInfo CSI : Info) { 915 int FrIdx = CSI.getFrameIdx(); 916 // If the frame index is not negative the callee saved info belongs to a 917 // stack object that is not a fixed stack object. We ignore non-fixed 918 // stack objects because we won't move the stack update pointer past them. 919 if (FrIdx >= 0) 920 continue; 921 922 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 923 StackUpdateLoc++; 924 MovingStackUpdateDown = true; 925 } else { 926 // We need all of the Frame Indices to meet these conditions. 927 // If they do not, abort the whole operation. 928 StackUpdateLoc = MBBI; 929 MovingStackUpdateDown = false; 930 break; 931 } 932 } 933 934 // If the operation was not aborted then update the object offset. 935 if (MovingStackUpdateDown) { 936 for (CalleeSavedInfo CSI : Info) { 937 int FrIdx = CSI.getFrameIdx(); 938 if (FrIdx < 0) 939 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 940 } 941 } 942 } 943 944 // Where in the prologue we move the CR fields depends on how many scratch 945 // registers we have, and if we need to save the link register or not. This 946 // lambda is to avoid duplicating the logic in 2 places. 947 auto BuildMoveFromCR = [&]() { 948 if (isELFv2ABI && MustSaveCRs.size() == 1) { 949 // In the ELFv2 ABI, we are not required to save all CR fields. 950 // If only one CR field is clobbered, it is more efficient to use 951 // mfocrf to selectively save just that field, because mfocrf has short 952 // latency compares to mfcr. 953 assert(isPPC64 && "V2 ABI is 64-bit only."); 954 MachineInstrBuilder MIB = 955 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 956 MIB.addReg(MustSaveCRs[0], RegState::Kill); 957 } else { 958 MachineInstrBuilder MIB = 959 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 960 for (unsigned CRfield : MustSaveCRs) 961 MIB.addReg(CRfield, RegState::ImplicitKill); 962 } 963 }; 964 965 // If we need to spill the CR and the LR but we don't have two separate 966 // registers available, we must spill them one at a time 967 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 968 BuildMoveFromCR(); 969 BuildMI(MBB, MBBI, dl, StoreWordInst) 970 .addReg(TempReg, getKillRegState(true)) 971 .addImm(CRSaveOffset) 972 .addReg(SPReg); 973 } 974 975 if (MustSaveLR) 976 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 977 978 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 979 BuildMoveFromCR(); 980 981 if (HasRedZone) { 982 if (HasFP) 983 BuildMI(MBB, MBBI, dl, StoreInst) 984 .addReg(FPReg) 985 .addImm(FPOffset) 986 .addReg(SPReg); 987 if (FI->usesPICBase()) 988 BuildMI(MBB, MBBI, dl, StoreInst) 989 .addReg(PPC::R30) 990 .addImm(PBPOffset) 991 .addReg(SPReg); 992 if (HasBP) 993 BuildMI(MBB, MBBI, dl, StoreInst) 994 .addReg(BPReg) 995 .addImm(BPOffset) 996 .addReg(SPReg); 997 } 998 999 if (MustSaveLR) 1000 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 1001 .addReg(ScratchReg, getKillRegState(true)) 1002 .addImm(LROffset) 1003 .addReg(SPReg); 1004 1005 if (MustSaveCR && 1006 !(SingleScratchReg && MustSaveLR)) { 1007 assert(HasRedZone && "A red zone is always available on PPC64"); 1008 BuildMI(MBB, MBBI, dl, StoreWordInst) 1009 .addReg(TempReg, getKillRegState(true)) 1010 .addImm(CRSaveOffset) 1011 .addReg(SPReg); 1012 } 1013 1014 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 1015 if (!FrameSize) 1016 return; 1017 1018 // Adjust stack pointer: r1 += NegFrameSize. 1019 // If there is a preferred stack alignment, align R1 now 1020 1021 if (HasBP && HasRedZone) { 1022 // Save a copy of r1 as the base pointer. 1023 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1024 .addReg(SPReg) 1025 .addReg(SPReg); 1026 } 1027 1028 // Have we generated a STUX instruction to claim stack frame? If so, 1029 // the negated frame size will be placed in ScratchReg. 1030 bool HasSTUX = false; 1031 1032 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 1033 // pointer is always stored at SP, we will get a free probe due to an essential 1034 // STU(X) instruction. 1035 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 1036 // To be consistent with other targets, a pseudo instruction is emitted and 1037 // will be later expanded in `inlineStackProbe`. 1038 BuildMI(MBB, MBBI, dl, 1039 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 1040 : PPC::PROBED_STACKALLOC_32)) 1041 .addDef(ScratchReg) 1042 .addDef(TempReg) // TempReg stores the old sp. 1043 .addImm(NegFrameSize); 1044 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 1045 // update the ScratchReg to meet the assumption that ScratchReg contains 1046 // the NegFrameSize. This solution is rather tricky. 1047 if (!HasRedZone) { 1048 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 1049 .addReg(TempReg) 1050 .addReg(SPReg); 1051 HasSTUX = true; 1052 } 1053 } else { 1054 // This condition must be kept in sync with canUseAsPrologue. 1055 if (HasBP && MaxAlign > 1) { 1056 if (isPPC64) 1057 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 1058 .addReg(SPReg) 1059 .addImm(0) 1060 .addImm(64 - Log2(MaxAlign)); 1061 else // PPC32... 1062 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 1063 .addReg(SPReg) 1064 .addImm(0) 1065 .addImm(32 - Log2(MaxAlign)) 1066 .addImm(31); 1067 if (!isLargeFrame) { 1068 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 1069 .addReg(ScratchReg, RegState::Kill) 1070 .addImm(NegFrameSize); 1071 } else { 1072 assert(!SingleScratchReg && "Only a single scratch reg available"); 1073 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg) 1074 .addImm(NegFrameSize >> 16); 1075 BuildMI(MBB, MBBI, dl, OrImmInst, TempReg) 1076 .addReg(TempReg, RegState::Kill) 1077 .addImm(NegFrameSize & 0xFFFF); 1078 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 1079 .addReg(ScratchReg, RegState::Kill) 1080 .addReg(TempReg, RegState::Kill); 1081 } 1082 1083 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 1084 .addReg(SPReg, RegState::Kill) 1085 .addReg(SPReg) 1086 .addReg(ScratchReg); 1087 HasSTUX = true; 1088 1089 } else if (!isLargeFrame) { 1090 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 1091 .addReg(SPReg) 1092 .addImm(NegFrameSize) 1093 .addReg(SPReg); 1094 1095 } else { 1096 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1097 .addImm(NegFrameSize >> 16); 1098 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1099 .addReg(ScratchReg, RegState::Kill) 1100 .addImm(NegFrameSize & 0xFFFF); 1101 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 1102 .addReg(SPReg, RegState::Kill) 1103 .addReg(SPReg) 1104 .addReg(ScratchReg); 1105 HasSTUX = true; 1106 } 1107 } 1108 1109 // Save the TOC register after the stack pointer update if a prologue TOC 1110 // save is required for the function. 1111 if (MustSaveTOC) { 1112 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 1113 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 1114 .addReg(TOCReg, getKillRegState(true)) 1115 .addImm(TOCSaveOffset) 1116 .addReg(SPReg); 1117 } 1118 1119 if (!HasRedZone) { 1120 assert(!isPPC64 && "A red zone is always available on PPC64"); 1121 if (HasSTUX) { 1122 // The negated frame size is in ScratchReg, and the SPReg has been 1123 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 1124 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 1125 // the stack frame (i.e. the old SP), ideally, we would put the old 1126 // SP into a register and use it as the base for the stores. The 1127 // problem is that the only available register may be ScratchReg, 1128 // which could be R0, and R0 cannot be used as a base address. 1129 1130 // First, set ScratchReg to the old SP. This may need to be modified 1131 // later. 1132 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 1133 .addReg(ScratchReg, RegState::Kill) 1134 .addReg(SPReg); 1135 1136 if (ScratchReg == PPC::R0) { 1137 // R0 cannot be used as a base register, but it can be used as an 1138 // index in a store-indexed. 1139 int LastOffset = 0; 1140 if (HasFP) { 1141 // R0 += (FPOffset-LastOffset). 1142 // Need addic, since addi treats R0 as 0. 1143 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1144 .addReg(ScratchReg) 1145 .addImm(FPOffset-LastOffset); 1146 LastOffset = FPOffset; 1147 // Store FP into *R0. 1148 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1149 .addReg(FPReg, RegState::Kill) // Save FP. 1150 .addReg(PPC::ZERO) 1151 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1152 } 1153 if (FI->usesPICBase()) { 1154 // R0 += (PBPOffset-LastOffset). 1155 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1156 .addReg(ScratchReg) 1157 .addImm(PBPOffset-LastOffset); 1158 LastOffset = PBPOffset; 1159 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1160 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1161 .addReg(PPC::ZERO) 1162 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1163 } 1164 if (HasBP) { 1165 // R0 += (BPOffset-LastOffset). 1166 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1167 .addReg(ScratchReg) 1168 .addImm(BPOffset-LastOffset); 1169 LastOffset = BPOffset; 1170 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1171 .addReg(BPReg, RegState::Kill) // Save BP. 1172 .addReg(PPC::ZERO) 1173 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1174 // BP = R0-LastOffset 1175 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1176 .addReg(ScratchReg, RegState::Kill) 1177 .addImm(-LastOffset); 1178 } 1179 } else { 1180 // ScratchReg is not R0, so use it as the base register. It is 1181 // already set to the old SP, so we can use the offsets directly. 1182 1183 // Now that the stack frame has been allocated, save all the necessary 1184 // registers using ScratchReg as the base address. 1185 if (HasFP) 1186 BuildMI(MBB, MBBI, dl, StoreInst) 1187 .addReg(FPReg) 1188 .addImm(FPOffset) 1189 .addReg(ScratchReg); 1190 if (FI->usesPICBase()) 1191 BuildMI(MBB, MBBI, dl, StoreInst) 1192 .addReg(PPC::R30) 1193 .addImm(PBPOffset) 1194 .addReg(ScratchReg); 1195 if (HasBP) { 1196 BuildMI(MBB, MBBI, dl, StoreInst) 1197 .addReg(BPReg) 1198 .addImm(BPOffset) 1199 .addReg(ScratchReg); 1200 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1201 .addReg(ScratchReg, RegState::Kill) 1202 .addReg(ScratchReg); 1203 } 1204 } 1205 } else { 1206 // The frame size is a known 16-bit constant (fitting in the immediate 1207 // field of STWU). To be here we have to be compiling for PPC32. 1208 // Since the SPReg has been decreased by FrameSize, add it back to each 1209 // offset. 1210 if (HasFP) 1211 BuildMI(MBB, MBBI, dl, StoreInst) 1212 .addReg(FPReg) 1213 .addImm(FrameSize + FPOffset) 1214 .addReg(SPReg); 1215 if (FI->usesPICBase()) 1216 BuildMI(MBB, MBBI, dl, StoreInst) 1217 .addReg(PPC::R30) 1218 .addImm(FrameSize + PBPOffset) 1219 .addReg(SPReg); 1220 if (HasBP) { 1221 BuildMI(MBB, MBBI, dl, StoreInst) 1222 .addReg(BPReg) 1223 .addImm(FrameSize + BPOffset) 1224 .addReg(SPReg); 1225 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1226 .addReg(SPReg) 1227 .addImm(FrameSize); 1228 } 1229 } 1230 } 1231 1232 // Add Call Frame Information for the instructions we generated above. 1233 if (needsCFI) { 1234 unsigned CFIIndex; 1235 1236 if (HasBP) { 1237 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1238 // because if the stack needed aligning then CFA won't be at a fixed 1239 // offset from FP/SP. 1240 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1241 CFIIndex = MF.addFrameInst( 1242 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1243 } else { 1244 // Adjust the definition of CFA to account for the change in SP. 1245 assert(NegFrameSize); 1246 CFIIndex = MF.addFrameInst( 1247 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1248 } 1249 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1250 .addCFIIndex(CFIIndex); 1251 1252 if (HasFP) { 1253 // Describe where FP was saved, at a fixed offset from CFA. 1254 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1255 CFIIndex = MF.addFrameInst( 1256 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1257 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1258 .addCFIIndex(CFIIndex); 1259 } 1260 1261 if (FI->usesPICBase()) { 1262 // Describe where FP was saved, at a fixed offset from CFA. 1263 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1264 CFIIndex = MF.addFrameInst( 1265 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1266 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1267 .addCFIIndex(CFIIndex); 1268 } 1269 1270 if (HasBP) { 1271 // Describe where BP was saved, at a fixed offset from CFA. 1272 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1273 CFIIndex = MF.addFrameInst( 1274 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1275 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1276 .addCFIIndex(CFIIndex); 1277 } 1278 1279 if (MustSaveLR) { 1280 // Describe where LR was saved, at a fixed offset from CFA. 1281 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1282 CFIIndex = MF.addFrameInst( 1283 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1284 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1285 .addCFIIndex(CFIIndex); 1286 } 1287 } 1288 1289 // If there is a frame pointer, copy R1 into R31 1290 if (HasFP) { 1291 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1292 .addReg(SPReg) 1293 .addReg(SPReg); 1294 1295 if (!HasBP && needsCFI) { 1296 // Change the definition of CFA from SP+offset to FP+offset, because SP 1297 // will change at every alloca. 1298 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1299 unsigned CFIIndex = MF.addFrameInst( 1300 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1301 1302 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1303 .addCFIIndex(CFIIndex); 1304 } 1305 } 1306 1307 if (needsCFI) { 1308 // Describe where callee saved registers were saved, at fixed offsets from 1309 // CFA. 1310 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1311 for (unsigned I = 0, E = CSI.size(); I != E; ++I) { 1312 unsigned Reg = CSI[I].getReg(); 1313 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1314 1315 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1316 // subregisters of CR2. We just need to emit a move of CR2. 1317 if (PPC::CRBITRCRegClass.contains(Reg)) 1318 continue; 1319 1320 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1321 continue; 1322 1323 // For SVR4, don't emit a move for the CR spill slot if we haven't 1324 // spilled CRs. 1325 if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4) 1326 && !MustSaveCR) 1327 continue; 1328 1329 // For 64-bit SVR4 when we have spilled CRs, the spill location 1330 // is SP+8, not a frame-relative slot. 1331 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1332 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1333 // the whole CR word. In the ELFv2 ABI, every CR that was 1334 // actually saved gets its own CFI record. 1335 unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2; 1336 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1337 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1338 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1339 .addCFIIndex(CFIIndex); 1340 continue; 1341 } 1342 1343 if (CSI[I].isSpilledToReg()) { 1344 unsigned SpilledReg = CSI[I].getDstReg(); 1345 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1346 nullptr, MRI->getDwarfRegNum(Reg, true), 1347 MRI->getDwarfRegNum(SpilledReg, true))); 1348 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1349 .addCFIIndex(CFIRegister); 1350 } else { 1351 int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx()); 1352 // We have changed the object offset above but we do not want to change 1353 // the actual offsets in the CFI instruction so we have to undo the 1354 // offset change here. 1355 if (MovingStackUpdateDown) 1356 Offset -= NegFrameSize; 1357 1358 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1359 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1360 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1361 .addCFIIndex(CFIIndex); 1362 } 1363 } 1364 } 1365 } 1366 1367 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1368 MachineBasicBlock &PrologMBB) const { 1369 // TODO: Generate CFI instructions. 1370 bool isPPC64 = Subtarget.isPPC64(); 1371 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1372 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1373 MachineFrameInfo &MFI = MF.getFrameInfo(); 1374 MachineModuleInfo &MMI = MF.getMMI(); 1375 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1376 // AIX assembler does not support cfi directives. 1377 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1378 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1379 int Opc = MI.getOpcode(); 1380 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1381 }); 1382 if (StackAllocMIPos == PrologMBB.end()) 1383 return; 1384 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1385 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1386 MachineInstr &MI = *StackAllocMIPos; 1387 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1388 int64_t NegProbeSize = -(int64_t)TLI.getStackProbeSize(MF); 1389 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1390 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1391 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1392 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1393 Register ScratchReg = MI.getOperand(0).getReg(); 1394 Register FPReg = MI.getOperand(1).getReg(); 1395 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1396 bool HasBP = RegInfo->hasBasePointer(MF); 1397 Align MaxAlign = MFI.getMaxAlign(); 1398 // Initialize current frame pointer. 1399 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1400 BuildMI(PrologMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1401 // Subroutines to generate .cfi_* directives. 1402 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1403 MachineBasicBlock::iterator MBBI, Register Reg) { 1404 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1405 unsigned CFIIndex = MF.addFrameInst( 1406 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1407 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1408 .addCFIIndex(CFIIndex); 1409 }; 1410 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1411 MachineBasicBlock::iterator MBBI, Register Reg, 1412 int Offset) { 1413 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1414 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1415 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1416 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1417 .addCFIIndex(CFIIndex); 1418 }; 1419 // Subroutine to determine if we can use the Imm as part of d-form. 1420 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1421 // Subroutine to materialize the Imm into TempReg. 1422 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1423 MachineBasicBlock::iterator MBBI, int64_t Imm, 1424 Register &TempReg) { 1425 assert(isInt<32>(Imm) && "Unhandled imm"); 1426 if (isInt<16>(Imm)) 1427 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1428 .addImm(Imm); 1429 else { 1430 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1431 .addImm(Imm >> 16); 1432 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1433 .addReg(TempReg) 1434 .addImm(Imm & 0xFFFF); 1435 } 1436 }; 1437 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1438 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1439 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1440 Register NegSizeReg, bool UseDForm) { 1441 if (UseDForm) 1442 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1443 .addReg(FPReg) 1444 .addImm(NegSize) 1445 .addReg(SPReg); 1446 else 1447 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1448 .addReg(FPReg) 1449 .addReg(SPReg) 1450 .addReg(NegSizeReg); 1451 }; 1452 // Use FPReg to calculate CFA. 1453 if (needsCFI) 1454 buildDefCFA(PrologMBB, {MI}, FPReg, 0); 1455 // For case HasBP && MaxAlign > 1, we have to align the SP by performing 1456 // SP = SP - SP % MaxAlign. 1457 if (HasBP && MaxAlign > 1) { 1458 if (isPPC64) 1459 BuildMI(PrologMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg) 1460 .addReg(FPReg) 1461 .addImm(0) 1462 .addImm(64 - Log2(MaxAlign)); 1463 else 1464 BuildMI(PrologMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1465 .addReg(FPReg) 1466 .addImm(0) 1467 .addImm(32 - Log2(MaxAlign)) 1468 .addImm(31); 1469 BuildMI(PrologMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBFC8 : PPC::SUBFC), 1470 SPReg) 1471 .addReg(ScratchReg) 1472 .addReg(SPReg); 1473 } 1474 // Probe residual part. 1475 if (NegResidualSize) { 1476 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1477 if (!ResidualUseDForm) 1478 MaterializeImm(PrologMBB, {MI}, NegResidualSize, ScratchReg); 1479 allocateAndProbe(PrologMBB, {MI}, NegResidualSize, ScratchReg, 1480 ResidualUseDForm); 1481 } 1482 bool UseDForm = CanUseDForm(NegProbeSize); 1483 // If number of blocks is small, just probe them directly. 1484 if (NumBlocks < 3) { 1485 if (!UseDForm) 1486 MaterializeImm(PrologMBB, {MI}, NegProbeSize, ScratchReg); 1487 for (int i = 0; i < NumBlocks; ++i) 1488 allocateAndProbe(PrologMBB, {MI}, NegProbeSize, ScratchReg, UseDForm); 1489 if (needsCFI) { 1490 // Restore using SPReg to calculate CFA. 1491 buildDefCFAReg(PrologMBB, {MI}, SPReg); 1492 } 1493 } else { 1494 // Since CTR is a volatile register and current shrinkwrap implementation 1495 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1496 // CTR loop to probe. 1497 // Calculate trip count and stores it in CTRReg. 1498 MaterializeImm(PrologMBB, {MI}, NumBlocks, ScratchReg); 1499 BuildMI(PrologMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1500 .addReg(ScratchReg, RegState::Kill); 1501 if (!UseDForm) 1502 MaterializeImm(PrologMBB, {MI}, NegProbeSize, ScratchReg); 1503 // Create MBBs of the loop. 1504 MachineFunction::iterator MBBInsertPoint = 1505 std::next(PrologMBB.getIterator()); 1506 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1507 MF.insert(MBBInsertPoint, LoopMBB); 1508 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1509 MF.insert(MBBInsertPoint, ExitMBB); 1510 // Synthesize the loop body. 1511 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1512 UseDForm); 1513 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1514 .addMBB(LoopMBB); 1515 LoopMBB->addSuccessor(ExitMBB); 1516 LoopMBB->addSuccessor(LoopMBB); 1517 // Synthesize the exit MBB. 1518 ExitMBB->splice(ExitMBB->end(), &PrologMBB, 1519 std::next(MachineBasicBlock::iterator(MI)), 1520 PrologMBB.end()); 1521 ExitMBB->transferSuccessorsAndUpdatePHIs(&PrologMBB); 1522 PrologMBB.addSuccessor(LoopMBB); 1523 if (needsCFI) { 1524 // Restore using SPReg to calculate CFA. 1525 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1526 } 1527 // Update liveins. 1528 recomputeLiveIns(*LoopMBB); 1529 recomputeLiveIns(*ExitMBB); 1530 } 1531 ++NumPrologProbed; 1532 MI.eraseFromParent(); 1533 } 1534 1535 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1536 MachineBasicBlock &MBB) const { 1537 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1538 DebugLoc dl; 1539 1540 if (MBBI != MBB.end()) 1541 dl = MBBI->getDebugLoc(); 1542 1543 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1544 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1545 1546 // Get alignment info so we know how to restore the SP. 1547 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1548 1549 // Get the number of bytes allocated from the FrameInfo. 1550 int FrameSize = MFI.getStackSize(); 1551 1552 // Get processor type. 1553 bool isPPC64 = Subtarget.isPPC64(); 1554 // Get the ABI. 1555 bool isSVR4ABI = Subtarget.isSVR4ABI(); 1556 1557 // Check if the link register (LR) has been saved. 1558 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1559 bool MustSaveLR = FI->mustSaveLR(); 1560 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1561 bool MustSaveCR = !MustSaveCRs.empty(); 1562 // Do we have a frame pointer and/or base pointer for this function? 1563 bool HasFP = hasFP(MF); 1564 bool HasBP = RegInfo->hasBasePointer(MF); 1565 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1566 1567 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1568 Register BPReg = RegInfo->getBaseRegister(MF); 1569 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1570 Register ScratchReg; 1571 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1572 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1573 : PPC::MTLR ); 1574 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1575 : PPC::LWZ ); 1576 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1577 : PPC::LIS ); 1578 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1579 : PPC::OR ); 1580 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1581 : PPC::ORI ); 1582 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1583 : PPC::ADDI ); 1584 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1585 : PPC::ADD4 ); 1586 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1587 : PPC::LWZ); 1588 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1589 : PPC::MTOCRF); 1590 int LROffset = getReturnSaveOffset(); 1591 1592 int FPOffset = 0; 1593 1594 // Using the same bool variable as below to suppress compiler warnings. 1595 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1596 &TempReg); 1597 assert(SingleScratchReg && 1598 "Could not find an available scratch register"); 1599 1600 SingleScratchReg = ScratchReg == TempReg; 1601 1602 if (HasFP) { 1603 if (isSVR4ABI) { 1604 int FPIndex = FI->getFramePointerSaveIndex(); 1605 assert(FPIndex && "No Frame Pointer Save Slot!"); 1606 FPOffset = MFI.getObjectOffset(FPIndex); 1607 } else { 1608 FPOffset = getFramePointerSaveOffset(); 1609 } 1610 } 1611 1612 int BPOffset = 0; 1613 if (HasBP) { 1614 if (isSVR4ABI) { 1615 int BPIndex = FI->getBasePointerSaveIndex(); 1616 assert(BPIndex && "No Base Pointer Save Slot!"); 1617 BPOffset = MFI.getObjectOffset(BPIndex); 1618 } else { 1619 BPOffset = getBasePointerSaveOffset(); 1620 } 1621 } 1622 1623 int PBPOffset = 0; 1624 if (FI->usesPICBase()) { 1625 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1626 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1627 PBPOffset = MFI.getObjectOffset(PBPIndex); 1628 } 1629 1630 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1631 1632 if (IsReturnBlock) { 1633 unsigned RetOpcode = MBBI->getOpcode(); 1634 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1635 RetOpcode == PPC::TCRETURNdi || 1636 RetOpcode == PPC::TCRETURNai || 1637 RetOpcode == PPC::TCRETURNri8 || 1638 RetOpcode == PPC::TCRETURNdi8 || 1639 RetOpcode == PPC::TCRETURNai8; 1640 1641 if (UsesTCRet) { 1642 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1643 MachineOperand &StackAdjust = MBBI->getOperand(1); 1644 assert(StackAdjust.isImm() && "Expecting immediate value."); 1645 // Adjust stack pointer. 1646 int StackAdj = StackAdjust.getImm(); 1647 int Delta = StackAdj - MaxTCRetDelta; 1648 assert((Delta >= 0) && "Delta must be positive"); 1649 if (MaxTCRetDelta>0) 1650 FrameSize += (StackAdj +Delta); 1651 else 1652 FrameSize += StackAdj; 1653 } 1654 } 1655 1656 // Frames of 32KB & larger require special handling because they cannot be 1657 // indexed into with a simple LD/LWZ immediate offset operand. 1658 bool isLargeFrame = !isInt<16>(FrameSize); 1659 1660 // On targets without red zone, the SP needs to be restored last, so that 1661 // all live contents of the stack frame are upwards of the SP. This means 1662 // that we cannot restore SP just now, since there may be more registers 1663 // to restore from the stack frame (e.g. R31). If the frame size is not 1664 // a simple immediate value, we will need a spare register to hold the 1665 // restored SP. If the frame size is known and small, we can simply adjust 1666 // the offsets of the registers to be restored, and still use SP to restore 1667 // them. In such case, the final update of SP will be to add the frame 1668 // size to it. 1669 // To simplify the code, set RBReg to the base register used to restore 1670 // values from the stack, and set SPAdd to the value that needs to be added 1671 // to the SP at the end. The default values are as if red zone was present. 1672 unsigned RBReg = SPReg; 1673 unsigned SPAdd = 0; 1674 1675 // Check if we can move the stack update instruction up the epilogue 1676 // past the callee saves. This will allow the move to LR instruction 1677 // to be executed before the restores of the callee saves which means 1678 // that the callee saves can hide the latency from the MTLR instrcution. 1679 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1680 if (stackUpdateCanBeMoved(MF)) { 1681 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1682 for (CalleeSavedInfo CSI : Info) { 1683 int FrIdx = CSI.getFrameIdx(); 1684 // If the frame index is not negative the callee saved info belongs to a 1685 // stack object that is not a fixed stack object. We ignore non-fixed 1686 // stack objects because we won't move the update of the stack pointer 1687 // past them. 1688 if (FrIdx >= 0) 1689 continue; 1690 1691 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1692 StackUpdateLoc--; 1693 else { 1694 // Abort the operation as we can't update all CSR restores. 1695 StackUpdateLoc = MBBI; 1696 break; 1697 } 1698 } 1699 } 1700 1701 if (FrameSize) { 1702 // In the prologue, the loaded (or persistent) stack pointer value is 1703 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1704 // zone add this offset back now. 1705 1706 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1707 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1708 // call which invalidates the stack pointer value in SP(0). So we use the 1709 // value of R31 in this case. 1710 if (FI->hasFastCall()) { 1711 assert(HasFP && "Expecting a valid frame pointer."); 1712 if (!HasRedZone) 1713 RBReg = FPReg; 1714 if (!isLargeFrame) { 1715 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1716 .addReg(FPReg).addImm(FrameSize); 1717 } else { 1718 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1719 .addImm(FrameSize >> 16); 1720 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1721 .addReg(ScratchReg, RegState::Kill) 1722 .addImm(FrameSize & 0xFFFF); 1723 BuildMI(MBB, MBBI, dl, AddInst) 1724 .addReg(RBReg) 1725 .addReg(FPReg) 1726 .addReg(ScratchReg); 1727 } 1728 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1729 if (HasRedZone) { 1730 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1731 .addReg(SPReg) 1732 .addImm(FrameSize); 1733 } else { 1734 // Make sure that adding FrameSize will not overflow the max offset 1735 // size. 1736 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1737 "Local offsets should be negative"); 1738 SPAdd = FrameSize; 1739 FPOffset += FrameSize; 1740 BPOffset += FrameSize; 1741 PBPOffset += FrameSize; 1742 } 1743 } else { 1744 // We don't want to use ScratchReg as a base register, because it 1745 // could happen to be R0. Use FP instead, but make sure to preserve it. 1746 if (!HasRedZone) { 1747 // If FP is not saved, copy it to ScratchReg. 1748 if (!HasFP) 1749 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1750 .addReg(FPReg) 1751 .addReg(FPReg); 1752 RBReg = FPReg; 1753 } 1754 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1755 .addImm(0) 1756 .addReg(SPReg); 1757 } 1758 } 1759 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1760 // If there is no red zone, ScratchReg may be needed for holding a useful 1761 // value (although not the base register). Make sure it is not overwritten 1762 // too early. 1763 1764 // If we need to restore both the LR and the CR and we only have one 1765 // available scratch register, we must do them one at a time. 1766 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1767 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1768 // is live here. 1769 assert(HasRedZone && "Expecting red zone"); 1770 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1771 .addImm(CRSaveOffset) 1772 .addReg(SPReg); 1773 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1774 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1775 .addReg(TempReg, getKillRegState(i == e-1)); 1776 } 1777 1778 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1779 // LR is stored in the caller's stack frame. ScratchReg will be needed 1780 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1781 // a base register anyway, because it may happen to be R0. 1782 bool LoadedLR = false; 1783 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1784 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1785 .addImm(LROffset+SPAdd) 1786 .addReg(RBReg); 1787 LoadedLR = true; 1788 } 1789 1790 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1791 assert(RBReg == SPReg && "Should be using SP as a base register"); 1792 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1793 .addImm(CRSaveOffset) 1794 .addReg(RBReg); 1795 } 1796 1797 if (HasFP) { 1798 // If there is red zone, restore FP directly, since SP has already been 1799 // restored. Otherwise, restore the value of FP into ScratchReg. 1800 if (HasRedZone || RBReg == SPReg) 1801 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1802 .addImm(FPOffset) 1803 .addReg(SPReg); 1804 else 1805 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1806 .addImm(FPOffset) 1807 .addReg(RBReg); 1808 } 1809 1810 if (FI->usesPICBase()) 1811 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1812 .addImm(PBPOffset) 1813 .addReg(RBReg); 1814 1815 if (HasBP) 1816 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1817 .addImm(BPOffset) 1818 .addReg(RBReg); 1819 1820 // There is nothing more to be loaded from the stack, so now we can 1821 // restore SP: SP = RBReg + SPAdd. 1822 if (RBReg != SPReg || SPAdd != 0) { 1823 assert(!HasRedZone && "This should not happen with red zone"); 1824 // If SPAdd is 0, generate a copy. 1825 if (SPAdd == 0) 1826 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1827 .addReg(RBReg) 1828 .addReg(RBReg); 1829 else 1830 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1831 .addReg(RBReg) 1832 .addImm(SPAdd); 1833 1834 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1835 if (RBReg == FPReg) 1836 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1837 .addReg(ScratchReg) 1838 .addReg(ScratchReg); 1839 1840 // Now load the LR from the caller's stack frame. 1841 if (MustSaveLR && !LoadedLR) 1842 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1843 .addImm(LROffset) 1844 .addReg(SPReg); 1845 } 1846 1847 if (MustSaveCR && 1848 !(SingleScratchReg && MustSaveLR)) 1849 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1850 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1851 .addReg(TempReg, getKillRegState(i == e-1)); 1852 1853 if (MustSaveLR) 1854 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1855 1856 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1857 // call optimization 1858 if (IsReturnBlock) { 1859 unsigned RetOpcode = MBBI->getOpcode(); 1860 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1861 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1862 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1863 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1864 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1865 1866 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1867 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1868 .addReg(SPReg).addImm(CallerAllocatedAmt); 1869 } else { 1870 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1871 .addImm(CallerAllocatedAmt >> 16); 1872 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1873 .addReg(ScratchReg, RegState::Kill) 1874 .addImm(CallerAllocatedAmt & 0xFFFF); 1875 BuildMI(MBB, MBBI, dl, AddInst) 1876 .addReg(SPReg) 1877 .addReg(FPReg) 1878 .addReg(ScratchReg); 1879 } 1880 } else { 1881 createTailCallBranchInstr(MBB); 1882 } 1883 } 1884 } 1885 1886 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1887 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1888 1889 // If we got this far a first terminator should exist. 1890 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1891 1892 DebugLoc dl = MBBI->getDebugLoc(); 1893 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1894 1895 // Create branch instruction for pseudo tail call return instruction. 1896 // The TCRETURNdi variants are direct calls. Valid targets for those are 1897 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1898 // since we can tail call external functions with PC-Rel (i.e. we don't need 1899 // to worry about different TOC pointers). Some of the external functions will 1900 // be MO_GlobalAddress while others like memcpy for example, are going to 1901 // be MO_ExternalSymbol. 1902 unsigned RetOpcode = MBBI->getOpcode(); 1903 if (RetOpcode == PPC::TCRETURNdi) { 1904 MBBI = MBB.getLastNonDebugInstr(); 1905 MachineOperand &JumpTarget = MBBI->getOperand(0); 1906 if (JumpTarget.isGlobal()) 1907 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1908 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1909 else if (JumpTarget.isSymbol()) 1910 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1911 addExternalSymbol(JumpTarget.getSymbolName()); 1912 else 1913 llvm_unreachable("Expecting Global or External Symbol"); 1914 } else if (RetOpcode == PPC::TCRETURNri) { 1915 MBBI = MBB.getLastNonDebugInstr(); 1916 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1917 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1918 } else if (RetOpcode == PPC::TCRETURNai) { 1919 MBBI = MBB.getLastNonDebugInstr(); 1920 MachineOperand &JumpTarget = MBBI->getOperand(0); 1921 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1922 } else if (RetOpcode == PPC::TCRETURNdi8) { 1923 MBBI = MBB.getLastNonDebugInstr(); 1924 MachineOperand &JumpTarget = MBBI->getOperand(0); 1925 if (JumpTarget.isGlobal()) 1926 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1927 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1928 else if (JumpTarget.isSymbol()) 1929 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1930 addExternalSymbol(JumpTarget.getSymbolName()); 1931 else 1932 llvm_unreachable("Expecting Global or External Symbol"); 1933 } else if (RetOpcode == PPC::TCRETURNri8) { 1934 MBBI = MBB.getLastNonDebugInstr(); 1935 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1936 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1937 } else if (RetOpcode == PPC::TCRETURNai8) { 1938 MBBI = MBB.getLastNonDebugInstr(); 1939 MachineOperand &JumpTarget = MBBI->getOperand(0); 1940 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1941 } 1942 } 1943 1944 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1945 BitVector &SavedRegs, 1946 RegScavenger *RS) const { 1947 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1948 1949 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1950 1951 // Save and clear the LR state. 1952 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1953 unsigned LR = RegInfo->getRARegister(); 1954 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1955 SavedRegs.reset(LR); 1956 1957 // Save R31 if necessary 1958 int FPSI = FI->getFramePointerSaveIndex(); 1959 const bool isPPC64 = Subtarget.isPPC64(); 1960 MachineFrameInfo &MFI = MF.getFrameInfo(); 1961 1962 // If the frame pointer save index hasn't been defined yet. 1963 if (!FPSI && needsFP(MF)) { 1964 // Find out what the fix offset of the frame pointer save area. 1965 int FPOffset = getFramePointerSaveOffset(); 1966 // Allocate the frame index for frame pointer save area. 1967 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 1968 // Save the result. 1969 FI->setFramePointerSaveIndex(FPSI); 1970 } 1971 1972 int BPSI = FI->getBasePointerSaveIndex(); 1973 if (!BPSI && RegInfo->hasBasePointer(MF)) { 1974 int BPOffset = getBasePointerSaveOffset(); 1975 // Allocate the frame index for the base pointer save area. 1976 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 1977 // Save the result. 1978 FI->setBasePointerSaveIndex(BPSI); 1979 } 1980 1981 // Reserve stack space for the PIC Base register (R30). 1982 // Only used in SVR4 32-bit. 1983 if (FI->usesPICBase()) { 1984 int PBPSI = MFI.CreateFixedObject(4, -8, true); 1985 FI->setPICBasePointerSaveIndex(PBPSI); 1986 } 1987 1988 // Make sure we don't explicitly spill r31, because, for example, we have 1989 // some inline asm which explicitly clobbers it, when we otherwise have a 1990 // frame pointer and are using r31's spill slot for the prologue/epilogue 1991 // code. Same goes for the base pointer and the PIC base register. 1992 if (needsFP(MF)) 1993 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 1994 if (RegInfo->hasBasePointer(MF)) 1995 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 1996 if (FI->usesPICBase()) 1997 SavedRegs.reset(PPC::R30); 1998 1999 // Reserve stack space to move the linkage area to in case of a tail call. 2000 int TCSPDelta = 0; 2001 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2002 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 2003 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 2004 } 2005 2006 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 2007 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 2008 // object at the offset of the CR-save slot in the linkage area. The actual 2009 // save and restore of the condition register will be created as part of the 2010 // prologue and epilogue insertion, but the FixedStack object is needed to 2011 // keep the CalleSavedInfo valid. 2012 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 2013 SavedRegs.test(PPC::CR4))) { 2014 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 2015 const int64_t SpillOffset = 2016 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 2017 int FrameIdx = 2018 MFI.CreateFixedObject(SpillSize, SpillOffset, 2019 /* IsImmutable */ true, /* IsAliased */ false); 2020 FI->setCRSpillFrameIndex(FrameIdx); 2021 } 2022 } 2023 2024 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 2025 RegScavenger *RS) const { 2026 // Get callee saved register information. 2027 MachineFrameInfo &MFI = MF.getFrameInfo(); 2028 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2029 2030 // If the function is shrink-wrapped, and if the function has a tail call, the 2031 // tail call might not be in the new RestoreBlock, so real branch instruction 2032 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 2033 // RestoreBlock. So we handle this case here. 2034 if (MFI.getSavePoint() && MFI.hasTailCall()) { 2035 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 2036 for (MachineBasicBlock &MBB : MF) { 2037 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 2038 createTailCallBranchInstr(MBB); 2039 } 2040 } 2041 2042 // Early exit if no callee saved registers are modified! 2043 if (CSI.empty() && !needsFP(MF)) { 2044 addScavengingSpillSlot(MF, RS); 2045 return; 2046 } 2047 2048 unsigned MinGPR = PPC::R31; 2049 unsigned MinG8R = PPC::X31; 2050 unsigned MinFPR = PPC::F31; 2051 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 2052 2053 bool HasGPSaveArea = false; 2054 bool HasG8SaveArea = false; 2055 bool HasFPSaveArea = false; 2056 bool HasVRSAVESaveArea = false; 2057 bool HasVRSaveArea = false; 2058 2059 SmallVector<CalleeSavedInfo, 18> GPRegs; 2060 SmallVector<CalleeSavedInfo, 18> G8Regs; 2061 SmallVector<CalleeSavedInfo, 18> FPRegs; 2062 SmallVector<CalleeSavedInfo, 18> VRegs; 2063 2064 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2065 unsigned Reg = CSI[i].getReg(); 2066 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2067 (Reg != PPC::X2 && Reg != PPC::R2)) && 2068 "Not expecting to try to spill R2 in a function that must save TOC"); 2069 if (PPC::GPRCRegClass.contains(Reg)) { 2070 HasGPSaveArea = true; 2071 2072 GPRegs.push_back(CSI[i]); 2073 2074 if (Reg < MinGPR) { 2075 MinGPR = Reg; 2076 } 2077 } else if (PPC::G8RCRegClass.contains(Reg)) { 2078 HasG8SaveArea = true; 2079 2080 G8Regs.push_back(CSI[i]); 2081 2082 if (Reg < MinG8R) { 2083 MinG8R = Reg; 2084 } 2085 } else if (PPC::F8RCRegClass.contains(Reg)) { 2086 HasFPSaveArea = true; 2087 2088 FPRegs.push_back(CSI[i]); 2089 2090 if (Reg < MinFPR) { 2091 MinFPR = Reg; 2092 } 2093 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2094 PPC::CRRCRegClass.contains(Reg)) { 2095 ; // do nothing, as we already know whether CRs are spilled 2096 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 2097 HasVRSAVESaveArea = true; 2098 } else if (PPC::VRRCRegClass.contains(Reg) || 2099 PPC::SPERCRegClass.contains(Reg)) { 2100 // Altivec and SPE are mutually exclusive, but have the same stack 2101 // alignment requirements, so overload the save area for both cases. 2102 HasVRSaveArea = true; 2103 2104 VRegs.push_back(CSI[i]); 2105 2106 if (Reg < MinVR) { 2107 MinVR = Reg; 2108 } 2109 } else { 2110 llvm_unreachable("Unknown RegisterClass!"); 2111 } 2112 } 2113 2114 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2115 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2116 2117 int64_t LowerBound = 0; 2118 2119 // Take into account stack space reserved for tail calls. 2120 int TCSPDelta = 0; 2121 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2122 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2123 LowerBound = TCSPDelta; 2124 } 2125 2126 // The Floating-point register save area is right below the back chain word 2127 // of the previous stack frame. 2128 if (HasFPSaveArea) { 2129 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2130 int FI = FPRegs[i].getFrameIdx(); 2131 2132 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2133 } 2134 2135 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2136 } 2137 2138 // Check whether the frame pointer register is allocated. If so, make sure it 2139 // is spilled to the correct offset. 2140 if (needsFP(MF)) { 2141 int FI = PFI->getFramePointerSaveIndex(); 2142 assert(FI && "No Frame Pointer Save Slot!"); 2143 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2144 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2145 HasGPSaveArea = true; 2146 } 2147 2148 if (PFI->usesPICBase()) { 2149 int FI = PFI->getPICBasePointerSaveIndex(); 2150 assert(FI && "No PIC Base Pointer Save Slot!"); 2151 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2152 2153 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2154 HasGPSaveArea = true; 2155 } 2156 2157 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2158 if (RegInfo->hasBasePointer(MF)) { 2159 int FI = PFI->getBasePointerSaveIndex(); 2160 assert(FI && "No Base Pointer Save Slot!"); 2161 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2162 2163 Register BP = RegInfo->getBaseRegister(MF); 2164 if (PPC::G8RCRegClass.contains(BP)) { 2165 MinG8R = std::min<unsigned>(MinG8R, BP); 2166 HasG8SaveArea = true; 2167 } else if (PPC::GPRCRegClass.contains(BP)) { 2168 MinGPR = std::min<unsigned>(MinGPR, BP); 2169 HasGPSaveArea = true; 2170 } 2171 } 2172 2173 // General register save area starts right below the Floating-point 2174 // register save area. 2175 if (HasGPSaveArea || HasG8SaveArea) { 2176 // Move general register save area spill slots down, taking into account 2177 // the size of the Floating-point register save area. 2178 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2179 if (!GPRegs[i].isSpilledToReg()) { 2180 int FI = GPRegs[i].getFrameIdx(); 2181 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2182 } 2183 } 2184 2185 // Move general register save area spill slots down, taking into account 2186 // the size of the Floating-point register save area. 2187 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2188 if (!G8Regs[i].isSpilledToReg()) { 2189 int FI = G8Regs[i].getFrameIdx(); 2190 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2191 } 2192 } 2193 2194 unsigned MinReg = 2195 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2196 TRI->getEncodingValue(MinG8R)); 2197 2198 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2199 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2200 } 2201 2202 // For 32-bit only, the CR save area is below the general register 2203 // save area. For 64-bit SVR4, the CR save area is addressed relative 2204 // to the stack pointer and hence does not need an adjustment here. 2205 // Only CR2 (the first nonvolatile spilled) has an associated frame 2206 // index so that we have a single uniform save area. 2207 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2208 // Adjust the frame index of the CR spill slot. 2209 for (const auto &CSInfo : CSI) { 2210 if (CSInfo.getReg() == PPC::CR2) { 2211 int FI = CSInfo.getFrameIdx(); 2212 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2213 break; 2214 } 2215 } 2216 2217 LowerBound -= 4; // The CR save area is always 4 bytes long. 2218 } 2219 2220 if (HasVRSAVESaveArea) { 2221 // FIXME SVR4: Is it actually possible to have multiple elements in CSI 2222 // which have the VRSAVE register class? 2223 // Adjust the frame index of the VRSAVE spill slot. 2224 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2225 unsigned Reg = CSI[i].getReg(); 2226 2227 if (PPC::VRSAVERCRegClass.contains(Reg)) { 2228 int FI = CSI[i].getFrameIdx(); 2229 2230 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2231 } 2232 } 2233 2234 LowerBound -= 4; // The VRSAVE save area is always 4 bytes long. 2235 } 2236 2237 // Both Altivec and SPE have the same alignment and padding requirements 2238 // within the stack frame. 2239 if (HasVRSaveArea) { 2240 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2241 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2242 // we are using negative number here (the stack grows downward). We should 2243 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2244 // is the alignment size ( n = 16 here) and y is the size after aligning. 2245 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2246 LowerBound &= ~(15); 2247 2248 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2249 int FI = VRegs[i].getFrameIdx(); 2250 2251 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2252 } 2253 } 2254 2255 addScavengingSpillSlot(MF, RS); 2256 } 2257 2258 void 2259 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2260 RegScavenger *RS) const { 2261 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2262 // a large stack, which will require scavenging a register to materialize a 2263 // large offset. 2264 2265 // We need to have a scavenger spill slot for spills if the frame size is 2266 // large. In case there is no free register for large-offset addressing, 2267 // this slot is used for the necessary emergency spill. Also, we need the 2268 // slot for dynamic stack allocations. 2269 2270 // The scavenger might be invoked if the frame offset does not fit into 2271 // the 16-bit immediate. We don't know the complete frame size here 2272 // because we've not yet computed callee-saved register spills or the 2273 // needed alignment padding. 2274 unsigned StackSize = determineFrameLayout(MF, true); 2275 MachineFrameInfo &MFI = MF.getFrameInfo(); 2276 if (MFI.hasVarSizedObjects() || spillsCR(MF) || spillsVRSAVE(MF) || 2277 hasNonRISpills(MF) || (hasSpills(MF) && !isInt<16>(StackSize))) { 2278 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2279 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2280 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2281 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2282 unsigned Size = TRI.getSpillSize(RC); 2283 Align Alignment = TRI.getSpillAlign(RC); 2284 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2285 2286 // Might we have over-aligned allocas? 2287 bool HasAlVars = 2288 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2289 2290 // These kinds of spills might need two registers. 2291 if (spillsCR(MF) || spillsVRSAVE(MF) || HasAlVars) 2292 RS->addScavengingFrameIndex( 2293 MFI.CreateStackObject(Size, Alignment, false)); 2294 } 2295 } 2296 2297 // This function checks if a callee saved gpr can be spilled to a volatile 2298 // vector register. This occurs for leaf functions when the option 2299 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2300 // which were not spilled to vectors, return false so the target independent 2301 // code can handle them by assigning a FrameIdx to a stack slot. 2302 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2303 MachineFunction &MF, const TargetRegisterInfo *TRI, 2304 std::vector<CalleeSavedInfo> &CSI) const { 2305 2306 if (CSI.empty()) 2307 return true; // Early exit if no callee saved registers are modified! 2308 2309 // Early exit if cannot spill gprs to volatile vector registers. 2310 MachineFrameInfo &MFI = MF.getFrameInfo(); 2311 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2312 return false; 2313 2314 // Build a BitVector of VSRs that can be used for spilling GPRs. 2315 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2316 BitVector BVCalleeSaved(TRI->getNumRegs()); 2317 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2318 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2319 for (unsigned i = 0; CSRegs[i]; ++i) 2320 BVCalleeSaved.set(CSRegs[i]); 2321 2322 for (unsigned Reg : BVAllocatable.set_bits()) { 2323 // Set to 0 if the register is not a volatile VF/F8 register, or if it is 2324 // used in the function. 2325 if (BVCalleeSaved[Reg] || 2326 (!PPC::F8RCRegClass.contains(Reg) && 2327 !PPC::VFRCRegClass.contains(Reg)) || 2328 (MF.getRegInfo().isPhysRegUsed(Reg))) 2329 BVAllocatable.reset(Reg); 2330 } 2331 2332 bool AllSpilledToReg = true; 2333 for (auto &CS : CSI) { 2334 if (BVAllocatable.none()) 2335 return false; 2336 2337 unsigned Reg = CS.getReg(); 2338 if (!PPC::G8RCRegClass.contains(Reg) && !PPC::GPRCRegClass.contains(Reg)) { 2339 AllSpilledToReg = false; 2340 continue; 2341 } 2342 2343 unsigned VolatileVFReg = BVAllocatable.find_first(); 2344 if (VolatileVFReg < BVAllocatable.size()) { 2345 CS.setDstReg(VolatileVFReg); 2346 BVAllocatable.reset(VolatileVFReg); 2347 } else { 2348 AllSpilledToReg = false; 2349 } 2350 } 2351 return AllSpilledToReg; 2352 } 2353 2354 bool PPCFrameLowering::spillCalleeSavedRegisters( 2355 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2356 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2357 2358 MachineFunction *MF = MBB.getParent(); 2359 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2360 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2361 bool MustSaveTOC = FI->mustSaveTOC(); 2362 DebugLoc DL; 2363 bool CRSpilled = false; 2364 MachineInstrBuilder CRMIB; 2365 2366 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2367 unsigned Reg = CSI[i].getReg(); 2368 // VRSAVE can appear here if, for example, @llvm.eh.unwind.init() is used. 2369 if (Reg == PPC::VRSAVE) 2370 continue; 2371 2372 // CR2 through CR4 are the nonvolatile CR fields. 2373 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2374 2375 // Add the callee-saved register as live-in; it's killed at the spill. 2376 // Do not do this for callee-saved registers that are live-in to the 2377 // function because they will already be marked live-in and this will be 2378 // adding it for a second time. It is an error to add the same register 2379 // to the set more than once. 2380 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2381 bool IsLiveIn = MRI.isLiveIn(Reg); 2382 if (!IsLiveIn) 2383 MBB.addLiveIn(Reg); 2384 2385 if (CRSpilled && IsCRField) { 2386 CRMIB.addReg(Reg, RegState::ImplicitKill); 2387 continue; 2388 } 2389 2390 // The actual spill will happen in the prologue. 2391 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2392 continue; 2393 2394 // Insert the spill to the stack frame. 2395 if (IsCRField) { 2396 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2397 if (!Subtarget.is32BitELFABI()) { 2398 // The actual spill will happen at the start of the prologue. 2399 FuncInfo->addMustSaveCR(Reg); 2400 } else { 2401 CRSpilled = true; 2402 FuncInfo->setSpillsCR(); 2403 2404 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2405 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2406 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2407 .addReg(Reg, RegState::ImplicitKill); 2408 2409 MBB.insert(MI, CRMIB); 2410 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2411 .addReg(PPC::R12, 2412 getKillRegState(true)), 2413 CSI[i].getFrameIdx())); 2414 } 2415 } else { 2416 if (CSI[i].isSpilledToReg()) { 2417 NumPESpillVSR++; 2418 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), CSI[i].getDstReg()) 2419 .addReg(Reg, getKillRegState(true)); 2420 } else { 2421 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2422 // Use !IsLiveIn for the kill flag. 2423 // We do not want to kill registers that are live in this function 2424 // before their use because they will become undefined registers. 2425 // Functions without NoUnwind need to preserve the order of elements in 2426 // saved vector registers. 2427 if (Subtarget.needsSwapsForVSXMemOps() && 2428 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2429 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2430 CSI[i].getFrameIdx(), RC, TRI); 2431 else 2432 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, CSI[i].getFrameIdx(), 2433 RC, TRI); 2434 } 2435 } 2436 } 2437 return true; 2438 } 2439 2440 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2441 bool CR4Spilled, MachineBasicBlock &MBB, 2442 MachineBasicBlock::iterator MI, 2443 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2444 2445 MachineFunction *MF = MBB.getParent(); 2446 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2447 DebugLoc DL; 2448 unsigned MoveReg = PPC::R12; 2449 2450 // 32-bit: FP-relative 2451 MBB.insert(MI, 2452 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2453 CSI[CSIIndex].getFrameIdx())); 2454 2455 unsigned RestoreOp = PPC::MTOCRF; 2456 if (CR2Spilled) 2457 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2458 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2459 2460 if (CR3Spilled) 2461 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2462 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2463 2464 if (CR4Spilled) 2465 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2466 .addReg(MoveReg, getKillRegState(true))); 2467 } 2468 2469 MachineBasicBlock::iterator PPCFrameLowering:: 2470 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2471 MachineBasicBlock::iterator I) const { 2472 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2473 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2474 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2475 // Add (actually subtract) back the amount the callee popped on return. 2476 if (int CalleeAmt = I->getOperand(1).getImm()) { 2477 bool is64Bit = Subtarget.isPPC64(); 2478 CalleeAmt *= -1; 2479 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2480 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2481 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2482 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2483 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2484 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2485 const DebugLoc &dl = I->getDebugLoc(); 2486 2487 if (isInt<16>(CalleeAmt)) { 2488 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2489 .addReg(StackReg, RegState::Kill) 2490 .addImm(CalleeAmt); 2491 } else { 2492 MachineBasicBlock::iterator MBBI = I; 2493 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2494 .addImm(CalleeAmt >> 16); 2495 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2496 .addReg(TmpReg, RegState::Kill) 2497 .addImm(CalleeAmt & 0xFFFF); 2498 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2499 .addReg(StackReg, RegState::Kill) 2500 .addReg(TmpReg); 2501 } 2502 } 2503 } 2504 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2505 return MBB.erase(I); 2506 } 2507 2508 static bool isCalleeSavedCR(unsigned Reg) { 2509 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2510 } 2511 2512 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2513 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2514 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2515 MachineFunction *MF = MBB.getParent(); 2516 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2517 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2518 bool MustSaveTOC = FI->mustSaveTOC(); 2519 bool CR2Spilled = false; 2520 bool CR3Spilled = false; 2521 bool CR4Spilled = false; 2522 unsigned CSIIndex = 0; 2523 2524 // Initialize insertion-point logic; we will be restoring in reverse 2525 // order of spill. 2526 MachineBasicBlock::iterator I = MI, BeforeI = I; 2527 bool AtStart = I == MBB.begin(); 2528 2529 if (!AtStart) 2530 --BeforeI; 2531 2532 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2533 unsigned Reg = CSI[i].getReg(); 2534 2535 // VRSAVE can appear here if, for example, @llvm.eh.unwind.init() is used. 2536 if (Reg == PPC::VRSAVE) 2537 continue; 2538 2539 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2540 continue; 2541 2542 // Restore of callee saved condition register field is handled during 2543 // epilogue insertion. 2544 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2545 continue; 2546 2547 if (Reg == PPC::CR2) { 2548 CR2Spilled = true; 2549 // The spill slot is associated only with CR2, which is the 2550 // first nonvolatile spilled. Save it here. 2551 CSIIndex = i; 2552 continue; 2553 } else if (Reg == PPC::CR3) { 2554 CR3Spilled = true; 2555 continue; 2556 } else if (Reg == PPC::CR4) { 2557 CR4Spilled = true; 2558 continue; 2559 } else { 2560 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2561 // least one CR register, restore all spilled CRs together. 2562 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2563 bool is31 = needsFP(*MF); 2564 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2565 CSIIndex); 2566 CR2Spilled = CR3Spilled = CR4Spilled = false; 2567 } 2568 2569 if (CSI[i].isSpilledToReg()) { 2570 DebugLoc DL; 2571 NumPEReloadVSR++; 2572 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), Reg) 2573 .addReg(CSI[i].getDstReg(), getKillRegState(true)); 2574 } else { 2575 // Default behavior for non-CR saves. 2576 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2577 2578 // Functions without NoUnwind need to preserve the order of elements in 2579 // saved vector registers. 2580 if (Subtarget.needsSwapsForVSXMemOps() && 2581 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2582 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2583 TRI); 2584 else 2585 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI); 2586 2587 assert(I != MBB.begin() && 2588 "loadRegFromStackSlot didn't insert any code!"); 2589 } 2590 } 2591 2592 // Insert in reverse order. 2593 if (AtStart) 2594 I = MBB.begin(); 2595 else { 2596 I = BeforeI; 2597 ++I; 2598 } 2599 } 2600 2601 // If we haven't yet spilled the CRs, do so now. 2602 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2603 assert(Subtarget.is32BitELFABI() && 2604 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2605 bool is31 = needsFP(*MF); 2606 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2607 } 2608 2609 return true; 2610 } 2611 2612 unsigned PPCFrameLowering::getTOCSaveOffset() const { 2613 return TOCSaveOffset; 2614 } 2615 2616 unsigned PPCFrameLowering::getFramePointerSaveOffset() const { 2617 return FramePointerSaveOffset; 2618 } 2619 2620 unsigned PPCFrameLowering::getBasePointerSaveOffset() const { 2621 return BasePointerSaveOffset; 2622 } 2623 2624 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2625 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2626 return false; 2627 return (MF.getSubtarget<PPCSubtarget>().isSVR4ABI() && 2628 MF.getSubtarget<PPCSubtarget>().isPPC64()); 2629 } 2630