1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCFrameLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/RegisterScavenging.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Target/TargetOptions.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "framelowering" 34 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 35 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 36 STATISTIC(NumPrologProbed, "Number of prologues probed"); 37 38 static cl::opt<bool> 39 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 40 cl::desc("Enable spills in prologue to vector registers."), 41 cl::init(false), cl::Hidden); 42 43 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 44 if (STI.isAIXABI()) 45 return STI.isPPC64() ? 16 : 8; 46 // SVR4 ABI: 47 return STI.isPPC64() ? 16 : 4; 48 } 49 50 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 51 if (STI.isAIXABI()) 52 return STI.isPPC64() ? 40 : 20; 53 return STI.isELFv2ABI() ? 24 : 40; 54 } 55 56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 57 // First slot in the general register save area. 58 return STI.isPPC64() ? -8U : -4U; 59 } 60 61 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 62 if (STI.isAIXABI() || STI.isPPC64()) 63 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 64 65 // 32-bit SVR4 ABI: 66 return 8; 67 } 68 69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 70 // Third slot in the general purpose register save area. 71 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 72 return -12U; 73 74 // Second slot in the general purpose register save area. 75 return STI.isPPC64() ? -16U : -8U; 76 } 77 78 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 79 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 80 } 81 82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 83 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 84 STI.getPlatformStackAlignment(), 0), 85 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 86 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 87 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 88 LinkageSize(computeLinkageSize(Subtarget)), 89 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 90 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 91 92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 93 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 94 unsigned &NumEntries) const { 95 96 // Floating-point register save area offsets. 97 #define CALLEE_SAVED_FPRS \ 98 {PPC::F31, -8}, \ 99 {PPC::F30, -16}, \ 100 {PPC::F29, -24}, \ 101 {PPC::F28, -32}, \ 102 {PPC::F27, -40}, \ 103 {PPC::F26, -48}, \ 104 {PPC::F25, -56}, \ 105 {PPC::F24, -64}, \ 106 {PPC::F23, -72}, \ 107 {PPC::F22, -80}, \ 108 {PPC::F21, -88}, \ 109 {PPC::F20, -96}, \ 110 {PPC::F19, -104}, \ 111 {PPC::F18, -112}, \ 112 {PPC::F17, -120}, \ 113 {PPC::F16, -128}, \ 114 {PPC::F15, -136}, \ 115 {PPC::F14, -144} 116 117 // 32-bit general purpose register save area offsets shared by ELF and 118 // AIX. AIX has an extra CSR with r13. 119 #define CALLEE_SAVED_GPRS32 \ 120 {PPC::R31, -4}, \ 121 {PPC::R30, -8}, \ 122 {PPC::R29, -12}, \ 123 {PPC::R28, -16}, \ 124 {PPC::R27, -20}, \ 125 {PPC::R26, -24}, \ 126 {PPC::R25, -28}, \ 127 {PPC::R24, -32}, \ 128 {PPC::R23, -36}, \ 129 {PPC::R22, -40}, \ 130 {PPC::R21, -44}, \ 131 {PPC::R20, -48}, \ 132 {PPC::R19, -52}, \ 133 {PPC::R18, -56}, \ 134 {PPC::R17, -60}, \ 135 {PPC::R16, -64}, \ 136 {PPC::R15, -68}, \ 137 {PPC::R14, -72} 138 139 // 64-bit general purpose register save area offsets. 140 #define CALLEE_SAVED_GPRS64 \ 141 {PPC::X31, -8}, \ 142 {PPC::X30, -16}, \ 143 {PPC::X29, -24}, \ 144 {PPC::X28, -32}, \ 145 {PPC::X27, -40}, \ 146 {PPC::X26, -48}, \ 147 {PPC::X25, -56}, \ 148 {PPC::X24, -64}, \ 149 {PPC::X23, -72}, \ 150 {PPC::X22, -80}, \ 151 {PPC::X21, -88}, \ 152 {PPC::X20, -96}, \ 153 {PPC::X19, -104}, \ 154 {PPC::X18, -112}, \ 155 {PPC::X17, -120}, \ 156 {PPC::X16, -128}, \ 157 {PPC::X15, -136}, \ 158 {PPC::X14, -144} 159 160 // Vector register save area offsets. 161 #define CALLEE_SAVED_VRS \ 162 {PPC::V31, -16}, \ 163 {PPC::V30, -32}, \ 164 {PPC::V29, -48}, \ 165 {PPC::V28, -64}, \ 166 {PPC::V27, -80}, \ 167 {PPC::V26, -96}, \ 168 {PPC::V25, -112}, \ 169 {PPC::V24, -128}, \ 170 {PPC::V23, -144}, \ 171 {PPC::V22, -160}, \ 172 {PPC::V21, -176}, \ 173 {PPC::V20, -192} 174 175 // Note that the offsets here overlap, but this is fixed up in 176 // processFunctionBeforeFrameFinalized. 177 178 static const SpillSlot ELFOffsets32[] = { 179 CALLEE_SAVED_FPRS, 180 CALLEE_SAVED_GPRS32, 181 182 // CR save area offset. We map each of the nonvolatile CR fields 183 // to the slot for CR2, which is the first of the nonvolatile CR 184 // fields to be assigned, so that we only allocate one save slot. 185 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 186 {PPC::CR2, -4}, 187 188 // VRSAVE save area offset. 189 {PPC::VRSAVE, -4}, 190 191 CALLEE_SAVED_VRS, 192 193 // SPE register save area (overlaps Vector save area). 194 {PPC::S31, -8}, 195 {PPC::S30, -16}, 196 {PPC::S29, -24}, 197 {PPC::S28, -32}, 198 {PPC::S27, -40}, 199 {PPC::S26, -48}, 200 {PPC::S25, -56}, 201 {PPC::S24, -64}, 202 {PPC::S23, -72}, 203 {PPC::S22, -80}, 204 {PPC::S21, -88}, 205 {PPC::S20, -96}, 206 {PPC::S19, -104}, 207 {PPC::S18, -112}, 208 {PPC::S17, -120}, 209 {PPC::S16, -128}, 210 {PPC::S15, -136}, 211 {PPC::S14, -144}}; 212 213 static const SpillSlot ELFOffsets64[] = { 214 CALLEE_SAVED_FPRS, 215 CALLEE_SAVED_GPRS64, 216 217 // VRSAVE save area offset. 218 {PPC::VRSAVE, -4}, 219 CALLEE_SAVED_VRS 220 }; 221 222 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS, 223 CALLEE_SAVED_GPRS32, 224 // Add AIX's extra CSR. 225 {PPC::R13, -76}, 226 CALLEE_SAVED_VRS}; 227 228 static const SpillSlot AIXOffsets64[] = { 229 CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS}; 230 231 if (Subtarget.is64BitELFABI()) { 232 NumEntries = std::size(ELFOffsets64); 233 return ELFOffsets64; 234 } 235 236 if (Subtarget.is32BitELFABI()) { 237 NumEntries = std::size(ELFOffsets32); 238 return ELFOffsets32; 239 } 240 241 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 242 243 if (Subtarget.isPPC64()) { 244 NumEntries = std::size(AIXOffsets64); 245 return AIXOffsets64; 246 } 247 248 NumEntries = std::size(AIXOffsets32); 249 return AIXOffsets32; 250 } 251 252 static bool spillsCR(const MachineFunction &MF) { 253 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 254 return FuncInfo->isCRSpilled(); 255 } 256 257 static bool hasSpills(const MachineFunction &MF) { 258 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 259 return FuncInfo->hasSpills(); 260 } 261 262 static bool hasNonRISpills(const MachineFunction &MF) { 263 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 264 return FuncInfo->hasNonRISpills(); 265 } 266 267 /// MustSaveLR - Return true if this function requires that we save the LR 268 /// register onto the stack in the prolog and restore it in the epilog of the 269 /// function. 270 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 271 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 272 273 // We need a save/restore of LR if there is any def of LR (which is 274 // defined by calls, including the PIC setup sequence), or if there is 275 // some use of the LR stack slot (e.g. for builtin_return_address). 276 // (LR comes in 32 and 64 bit versions.) 277 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 278 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 279 } 280 281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 282 /// call frame size. Update the MachineFunction object with the stack size. 283 uint64_t 284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 285 bool UseEstimate) const { 286 unsigned NewMaxCallFrameSize = 0; 287 uint64_t FrameSize = determineFrameLayout(MF, UseEstimate, 288 &NewMaxCallFrameSize); 289 MF.getFrameInfo().setStackSize(FrameSize); 290 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 291 return FrameSize; 292 } 293 294 /// determineFrameLayout - Determine the size of the frame and maximum call 295 /// frame size. 296 uint64_t 297 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 298 bool UseEstimate, 299 unsigned *NewMaxCallFrameSize) const { 300 const MachineFrameInfo &MFI = MF.getFrameInfo(); 301 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 302 303 // Get the number of bytes to allocate from the FrameInfo 304 uint64_t FrameSize = 305 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 306 307 // Get stack alignments. The frame must be aligned to the greatest of these: 308 Align TargetAlign = getStackAlign(); // alignment required per the ABI 309 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 310 Align Alignment = std::max(TargetAlign, MaxAlign); 311 312 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 313 314 unsigned LR = RegInfo->getRARegister(); 315 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 316 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 317 !MFI.adjustsStack() && // No calls. 318 !MustSaveLR(MF, LR) && // No need to save LR. 319 !FI->mustSaveTOC() && // No need to save TOC. 320 !RegInfo->hasBasePointer(MF); // No special alignment. 321 322 // Note: for PPC32 SVR4ABI, we can still generate stackless 323 // code if all local vars are reg-allocated. 324 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 325 326 // Check whether we can skip adjusting the stack pointer (by using red zone) 327 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 328 // No need for frame 329 return 0; 330 } 331 332 // Get the maximum call frame size of all the calls. 333 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 334 335 // Maximum call frame needs to be at least big enough for linkage area. 336 unsigned minCallFrameSize = getLinkageSize(); 337 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 338 339 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 340 // that allocations will be aligned. 341 if (MFI.hasVarSizedObjects()) 342 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 343 344 // Update the new max call frame size if the caller passes in a valid pointer. 345 if (NewMaxCallFrameSize) 346 *NewMaxCallFrameSize = maxCallFrameSize; 347 348 // Include call frame size in total. 349 FrameSize += maxCallFrameSize; 350 351 // Make sure the frame is aligned. 352 FrameSize = alignTo(FrameSize, Alignment); 353 354 return FrameSize; 355 } 356 357 // hasFP - Return true if the specified function actually has a dedicated frame 358 // pointer register. 359 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 360 const MachineFrameInfo &MFI = MF.getFrameInfo(); 361 // FIXME: This is pretty much broken by design: hasFP() might be called really 362 // early, before the stack layout was calculated and thus hasFP() might return 363 // true or false here depending on the time of call. 364 return (MFI.getStackSize()) && needsFP(MF); 365 } 366 367 // needsFP - Return true if the specified function should have a dedicated frame 368 // pointer register. This is true if the function has variable sized allocas or 369 // if frame pointer elimination is disabled. 370 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 371 const MachineFrameInfo &MFI = MF.getFrameInfo(); 372 373 // Naked functions have no stack frame pushed, so we don't have a frame 374 // pointer. 375 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 376 return false; 377 378 return MF.getTarget().Options.DisableFramePointerElim(MF) || 379 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 380 MF.exposesReturnsTwice() || 381 (MF.getTarget().Options.GuaranteedTailCallOpt && 382 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 383 } 384 385 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 386 bool is31 = needsFP(MF); 387 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 388 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 389 390 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 391 bool HasBP = RegInfo->hasBasePointer(MF); 392 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 393 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 394 395 for (MachineBasicBlock &MBB : MF) 396 for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) { 397 --MBBI; 398 for (MachineOperand &MO : MBBI->operands()) { 399 if (!MO.isReg()) 400 continue; 401 402 switch (MO.getReg()) { 403 case PPC::FP: 404 MO.setReg(FPReg); 405 break; 406 case PPC::FP8: 407 MO.setReg(FP8Reg); 408 break; 409 case PPC::BP: 410 MO.setReg(BPReg); 411 break; 412 case PPC::BP8: 413 MO.setReg(BP8Reg); 414 break; 415 416 } 417 } 418 } 419 } 420 421 /* This function will do the following: 422 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 423 respectively (defaults recommended by the ABI) and return true 424 - If MBB is not an entry block, initialize the register scavenger and look 425 for available registers. 426 - If the defaults (R0/R12) are available, return true 427 - If TwoUniqueRegsRequired is set to true, it looks for two unique 428 registers. Otherwise, look for a single available register. 429 - If the required registers are found, set SR1 and SR2 and return true. 430 - If the required registers are not found, set SR2 or both SR1 and SR2 to 431 PPC::NoRegister and return false. 432 433 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 434 is not set, this function will attempt to find two different registers, but 435 still return true if only one register is available (and set SR1 == SR2). 436 */ 437 bool 438 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 439 bool UseAtEnd, 440 bool TwoUniqueRegsRequired, 441 Register *SR1, 442 Register *SR2) const { 443 RegScavenger RS; 444 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 445 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 446 447 // Set the defaults for the two scratch registers. 448 if (SR1) 449 *SR1 = R0; 450 451 if (SR2) { 452 assert (SR1 && "Asking for the second scratch register but not the first?"); 453 *SR2 = R12; 454 } 455 456 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 457 if ((UseAtEnd && MBB->isReturnBlock()) || 458 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 459 return true; 460 461 if (UseAtEnd) { 462 // The scratch register will be used before the first terminator (or at the 463 // end of the block if there are no terminators). 464 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 465 if (MBBI == MBB->begin()) { 466 RS.enterBasicBlock(*MBB); 467 } else { 468 RS.enterBasicBlockEnd(*MBB); 469 RS.backward(MBBI); 470 } 471 } else { 472 // The scratch register will be used at the start of the block. 473 RS.enterBasicBlock(*MBB); 474 } 475 476 // If the two registers are available, we're all good. 477 // Note that we only return here if both R0 and R12 are available because 478 // although the function may not require two unique registers, it may benefit 479 // from having two so we should try to provide them. 480 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 481 return true; 482 483 // Get the list of callee-saved registers for the target. 484 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 485 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 486 487 // Get all the available registers in the block. 488 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 489 &PPC::GPRCRegClass); 490 491 // We shouldn't use callee-saved registers as scratch registers as they may be 492 // available when looking for a candidate block for shrink wrapping but not 493 // available when the actual prologue/epilogue is being emitted because they 494 // were added as live-in to the prologue block by PrologueEpilogueInserter. 495 for (int i = 0; CSRegs[i]; ++i) 496 BV.reset(CSRegs[i]); 497 498 // Set the first scratch register to the first available one. 499 if (SR1) { 500 int FirstScratchReg = BV.find_first(); 501 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 502 } 503 504 // If there is another one available, set the second scratch register to that. 505 // Otherwise, set it to either PPC::NoRegister if this function requires two 506 // or to whatever SR1 is set to if this function doesn't require two. 507 if (SR2) { 508 int SecondScratchReg = BV.find_next(*SR1); 509 if (SecondScratchReg != -1) 510 *SR2 = SecondScratchReg; 511 else 512 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 513 } 514 515 // Now that we've done our best to provide both registers, double check 516 // whether we were unable to provide enough. 517 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 518 return false; 519 520 return true; 521 } 522 523 // We need a scratch register for spilling LR and for spilling CR. By default, 524 // we use two scratch registers to hide latency. However, if only one scratch 525 // register is available, we can adjust for that by not overlapping the spill 526 // code. However, if we need to realign the stack (i.e. have a base pointer) 527 // and the stack frame is large, we need two scratch registers. 528 // Also, stack probe requires two scratch registers, one for old sp, one for 529 // large frame and large probe size. 530 bool 531 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 532 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 533 MachineFunction &MF = *(MBB->getParent()); 534 bool HasBP = RegInfo->hasBasePointer(MF); 535 unsigned FrameSize = determineFrameLayout(MF); 536 int NegFrameSize = -FrameSize; 537 bool IsLargeFrame = !isInt<16>(NegFrameSize); 538 MachineFrameInfo &MFI = MF.getFrameInfo(); 539 Align MaxAlign = MFI.getMaxAlign(); 540 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 541 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 542 543 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) || 544 TLI.hasInlineStackProbe(MF); 545 } 546 547 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 548 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 549 550 return findScratchRegister(TmpMBB, false, 551 twoUniqueScratchRegsRequired(TmpMBB)); 552 } 553 554 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 555 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 556 557 return findScratchRegister(TmpMBB, true); 558 } 559 560 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 561 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 562 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 563 564 // Abort if there is no register info or function info. 565 if (!RegInfo || !FI) 566 return false; 567 568 // Only move the stack update on ELFv2 ABI and PPC64. 569 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 570 return false; 571 572 // Check the frame size first and return false if it does not fit the 573 // requirements. 574 // We need a non-zero frame size as well as a frame that will fit in the red 575 // zone. This is because by moving the stack pointer update we are now storing 576 // to the red zone until the stack pointer is updated. If we get an interrupt 577 // inside the prologue but before the stack update we now have a number of 578 // stores to the red zone and those stores must all fit. 579 MachineFrameInfo &MFI = MF.getFrameInfo(); 580 unsigned FrameSize = MFI.getStackSize(); 581 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 582 return false; 583 584 // Frame pointers and base pointers complicate matters so don't do anything 585 // if we have them. For example having a frame pointer will sometimes require 586 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 587 // difficult. Similar situation exists with setjmp. 588 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice()) 589 return false; 590 591 // Calls to fast_cc functions use different rules for passing parameters on 592 // the stack from the ABI and using PIC base in the function imposes 593 // similar restrictions to using the base pointer. It is not generally safe 594 // to move the stack pointer update in these situations. 595 if (FI->hasFastCall() || FI->usesPICBase()) 596 return false; 597 598 // Finally we can move the stack update if we do not require register 599 // scavenging. Register scavenging can introduce more spills and so 600 // may make the frame size larger than we have computed. 601 return !RegInfo->requiresFrameIndexScavenging(MF); 602 } 603 604 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 605 MachineBasicBlock &MBB) const { 606 MachineBasicBlock::iterator MBBI = MBB.begin(); 607 MachineFrameInfo &MFI = MF.getFrameInfo(); 608 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 609 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 610 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 611 612 MachineModuleInfo &MMI = MF.getMMI(); 613 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 614 DebugLoc dl; 615 // AIX assembler does not support cfi directives. 616 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 617 618 const bool HasFastMFLR = Subtarget.hasFastMFLR(); 619 620 // Get processor type. 621 bool isPPC64 = Subtarget.isPPC64(); 622 // Get the ABI. 623 bool isSVR4ABI = Subtarget.isSVR4ABI(); 624 bool isELFv2ABI = Subtarget.isELFv2ABI(); 625 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI."); 626 627 // Work out frame sizes. 628 uint64_t FrameSize = determineFrameLayoutAndUpdate(MF); 629 int64_t NegFrameSize = -FrameSize; 630 if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize))) 631 llvm_unreachable("Unhandled stack size!"); 632 633 if (MFI.isFrameAddressTaken()) 634 replaceFPWithRealFP(MF); 635 636 // Check if the link register (LR) must be saved. 637 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 638 bool MustSaveLR = FI->mustSaveLR(); 639 bool MustSaveTOC = FI->mustSaveTOC(); 640 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 641 bool MustSaveCR = !MustSaveCRs.empty(); 642 // Do we have a frame pointer and/or base pointer for this function? 643 bool HasFP = hasFP(MF); 644 bool HasBP = RegInfo->hasBasePointer(MF); 645 bool HasRedZone = isPPC64 || !isSVR4ABI; 646 bool HasROPProtect = Subtarget.hasROPProtect(); 647 bool HasPrivileged = Subtarget.hasPrivileged(); 648 649 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 650 Register BPReg = RegInfo->getBaseRegister(MF); 651 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 652 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 653 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 654 Register ScratchReg; 655 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 656 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 657 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 658 : PPC::MFLR ); 659 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 660 : PPC::STW ); 661 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 662 : PPC::STWU ); 663 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 664 : PPC::STWUX); 665 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 666 : PPC::OR ); 667 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 668 : PPC::SUBFC); 669 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 670 : PPC::SUBFIC); 671 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 672 : PPC::MFCR); 673 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 674 const MCInstrDesc &HashST = 675 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8) 676 : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST)); 677 678 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 679 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 680 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 681 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 682 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 683 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 684 685 // Using the same bool variable as below to suppress compiler warnings. 686 bool SingleScratchReg = findScratchRegister( 687 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg); 688 assert(SingleScratchReg && 689 "Required number of registers not available in this block"); 690 691 SingleScratchReg = ScratchReg == TempReg; 692 693 int64_t LROffset = getReturnSaveOffset(); 694 695 int64_t FPOffset = 0; 696 if (HasFP) { 697 MachineFrameInfo &MFI = MF.getFrameInfo(); 698 int FPIndex = FI->getFramePointerSaveIndex(); 699 assert(FPIndex && "No Frame Pointer Save Slot!"); 700 FPOffset = MFI.getObjectOffset(FPIndex); 701 } 702 703 int64_t BPOffset = 0; 704 if (HasBP) { 705 MachineFrameInfo &MFI = MF.getFrameInfo(); 706 int BPIndex = FI->getBasePointerSaveIndex(); 707 assert(BPIndex && "No Base Pointer Save Slot!"); 708 BPOffset = MFI.getObjectOffset(BPIndex); 709 } 710 711 int64_t PBPOffset = 0; 712 if (FI->usesPICBase()) { 713 MachineFrameInfo &MFI = MF.getFrameInfo(); 714 int PBPIndex = FI->getPICBasePointerSaveIndex(); 715 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 716 PBPOffset = MFI.getObjectOffset(PBPIndex); 717 } 718 719 // Get stack alignments. 720 Align MaxAlign = MFI.getMaxAlign(); 721 if (HasBP && MaxAlign > 1) 722 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 723 724 // Frames of 32KB & larger require special handling because they cannot be 725 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 726 bool isLargeFrame = !isInt<16>(NegFrameSize); 727 728 // Check if we can move the stack update instruction (stdu) down the prologue 729 // past the callee saves. Hopefully this will avoid the situation where the 730 // saves are waiting for the update on the store with update to complete. 731 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 732 bool MovingStackUpdateDown = false; 733 734 // Check if we can move the stack update. 735 if (stackUpdateCanBeMoved(MF)) { 736 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 737 for (CalleeSavedInfo CSI : Info) { 738 // If the callee saved register is spilled to a register instead of the 739 // stack then the spill no longer uses the stack pointer. 740 // This can lead to two consequences: 741 // 1) We no longer need to update the stack because the function does not 742 // spill any callee saved registers to stack. 743 // 2) We have a situation where we still have to update the stack pointer 744 // even though some registers are spilled to other registers. In 745 // this case the current code moves the stack update to an incorrect 746 // position. 747 // In either case we should abort moving the stack update operation. 748 if (CSI.isSpilledToReg()) { 749 StackUpdateLoc = MBBI; 750 MovingStackUpdateDown = false; 751 break; 752 } 753 754 int FrIdx = CSI.getFrameIdx(); 755 // If the frame index is not negative the callee saved info belongs to a 756 // stack object that is not a fixed stack object. We ignore non-fixed 757 // stack objects because we won't move the stack update pointer past them. 758 if (FrIdx >= 0) 759 continue; 760 761 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 762 StackUpdateLoc++; 763 MovingStackUpdateDown = true; 764 } else { 765 // We need all of the Frame Indices to meet these conditions. 766 // If they do not, abort the whole operation. 767 StackUpdateLoc = MBBI; 768 MovingStackUpdateDown = false; 769 break; 770 } 771 } 772 773 // If the operation was not aborted then update the object offset. 774 if (MovingStackUpdateDown) { 775 for (CalleeSavedInfo CSI : Info) { 776 int FrIdx = CSI.getFrameIdx(); 777 if (FrIdx < 0) 778 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 779 } 780 } 781 } 782 783 // Where in the prologue we move the CR fields depends on how many scratch 784 // registers we have, and if we need to save the link register or not. This 785 // lambda is to avoid duplicating the logic in 2 places. 786 auto BuildMoveFromCR = [&]() { 787 if (isELFv2ABI && MustSaveCRs.size() == 1) { 788 // In the ELFv2 ABI, we are not required to save all CR fields. 789 // If only one CR field is clobbered, it is more efficient to use 790 // mfocrf to selectively save just that field, because mfocrf has short 791 // latency compares to mfcr. 792 assert(isPPC64 && "V2 ABI is 64-bit only."); 793 MachineInstrBuilder MIB = 794 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 795 MIB.addReg(MustSaveCRs[0], RegState::Kill); 796 } else { 797 MachineInstrBuilder MIB = 798 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 799 for (unsigned CRfield : MustSaveCRs) 800 MIB.addReg(CRfield, RegState::ImplicitKill); 801 } 802 }; 803 804 // If we need to spill the CR and the LR but we don't have two separate 805 // registers available, we must spill them one at a time 806 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 807 BuildMoveFromCR(); 808 BuildMI(MBB, MBBI, dl, StoreWordInst) 809 .addReg(TempReg, getKillRegState(true)) 810 .addImm(CRSaveOffset) 811 .addReg(SPReg); 812 } 813 814 if (MustSaveLR) 815 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 816 817 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 818 BuildMoveFromCR(); 819 820 if (HasRedZone) { 821 if (HasFP) 822 BuildMI(MBB, MBBI, dl, StoreInst) 823 .addReg(FPReg) 824 .addImm(FPOffset) 825 .addReg(SPReg); 826 if (FI->usesPICBase()) 827 BuildMI(MBB, MBBI, dl, StoreInst) 828 .addReg(PPC::R30) 829 .addImm(PBPOffset) 830 .addReg(SPReg); 831 if (HasBP) 832 BuildMI(MBB, MBBI, dl, StoreInst) 833 .addReg(BPReg) 834 .addImm(BPOffset) 835 .addReg(SPReg); 836 } 837 838 // Generate the instruction to store the LR. In the case where ROP protection 839 // is required the register holding the LR should not be killed as it will be 840 // used by the hash store instruction. 841 auto SaveLR = [&](int64_t Offset) { 842 assert(MustSaveLR && "LR is not required to be saved!"); 843 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 844 .addReg(ScratchReg, getKillRegState(!HasROPProtect)) 845 .addImm(Offset) 846 .addReg(SPReg); 847 848 // Add the ROP protection Hash Store instruction. 849 // NOTE: This is technically a violation of the ABI. The hash can be saved 850 // up to 512 bytes into the Protected Zone. This can be outside of the 851 // initial 288 byte volatile program storage region in the Protected Zone. 852 // However, this restriction will be removed in an upcoming revision of the 853 // ABI. 854 if (HasROPProtect) { 855 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 856 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 857 assert((ImmOffset <= -8 && ImmOffset >= -512) && 858 "ROP hash save offset out of range."); 859 assert(((ImmOffset & 0x7) == 0) && 860 "ROP hash save offset must be 8 byte aligned."); 861 BuildMI(MBB, StackUpdateLoc, dl, HashST) 862 .addReg(ScratchReg, getKillRegState(true)) 863 .addImm(ImmOffset) 864 .addReg(SPReg); 865 } 866 }; 867 868 if (MustSaveLR && HasFastMFLR) 869 SaveLR(LROffset); 870 871 if (MustSaveCR && 872 !(SingleScratchReg && MustSaveLR)) { 873 assert(HasRedZone && "A red zone is always available on PPC64"); 874 BuildMI(MBB, MBBI, dl, StoreWordInst) 875 .addReg(TempReg, getKillRegState(true)) 876 .addImm(CRSaveOffset) 877 .addReg(SPReg); 878 } 879 880 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 881 if (!FrameSize) { 882 if (MustSaveLR && !HasFastMFLR) 883 SaveLR(LROffset); 884 return; 885 } 886 887 // Adjust stack pointer: r1 += NegFrameSize. 888 // If there is a preferred stack alignment, align R1 now 889 890 if (HasBP && HasRedZone) { 891 // Save a copy of r1 as the base pointer. 892 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 893 .addReg(SPReg) 894 .addReg(SPReg); 895 } 896 897 // Have we generated a STUX instruction to claim stack frame? If so, 898 // the negated frame size will be placed in ScratchReg. 899 bool HasSTUX = 900 (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) || 901 (HasBP && MaxAlign > 1) || isLargeFrame; 902 903 // If we use STUX to update the stack pointer, we need the two scratch 904 // registers TempReg and ScratchReg, we have to save LR here which is stored 905 // in ScratchReg. 906 // If the offset can not be encoded into the store instruction, we also have 907 // to save LR here. 908 if (MustSaveLR && !HasFastMFLR && 909 (HasSTUX || !isInt<16>(FrameSize + LROffset))) 910 SaveLR(LROffset); 911 912 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 913 // pointer is always stored at SP, we will get a free probe due to an essential 914 // STU(X) instruction. 915 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 916 // To be consistent with other targets, a pseudo instruction is emitted and 917 // will be later expanded in `inlineStackProbe`. 918 BuildMI(MBB, MBBI, dl, 919 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 920 : PPC::PROBED_STACKALLOC_32)) 921 .addDef(TempReg) 922 .addDef(ScratchReg) // ScratchReg stores the old sp. 923 .addImm(NegFrameSize); 924 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 925 // update the ScratchReg to meet the assumption that ScratchReg contains 926 // the NegFrameSize. This solution is rather tricky. 927 if (!HasRedZone) { 928 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 929 .addReg(ScratchReg) 930 .addReg(SPReg); 931 } 932 } else { 933 // This condition must be kept in sync with canUseAsPrologue. 934 if (HasBP && MaxAlign > 1) { 935 if (isPPC64) 936 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 937 .addReg(SPReg) 938 .addImm(0) 939 .addImm(64 - Log2(MaxAlign)); 940 else // PPC32... 941 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 942 .addReg(SPReg) 943 .addImm(0) 944 .addImm(32 - Log2(MaxAlign)) 945 .addImm(31); 946 if (!isLargeFrame) { 947 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 948 .addReg(ScratchReg, RegState::Kill) 949 .addImm(NegFrameSize); 950 } else { 951 assert(!SingleScratchReg && "Only a single scratch reg available"); 952 TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize); 953 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 954 .addReg(ScratchReg, RegState::Kill) 955 .addReg(TempReg, RegState::Kill); 956 } 957 958 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 959 .addReg(SPReg, RegState::Kill) 960 .addReg(SPReg) 961 .addReg(ScratchReg); 962 } else if (!isLargeFrame) { 963 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 964 .addReg(SPReg) 965 .addImm(NegFrameSize) 966 .addReg(SPReg); 967 } else { 968 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize); 969 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 970 .addReg(SPReg, RegState::Kill) 971 .addReg(SPReg) 972 .addReg(ScratchReg); 973 } 974 } 975 976 // Save the TOC register after the stack pointer update if a prologue TOC 977 // save is required for the function. 978 if (MustSaveTOC) { 979 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 980 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 981 .addReg(TOCReg, getKillRegState(true)) 982 .addImm(TOCSaveOffset) 983 .addReg(SPReg); 984 } 985 986 if (!HasRedZone) { 987 assert(!isPPC64 && "A red zone is always available on PPC64"); 988 if (HasSTUX) { 989 // The negated frame size is in ScratchReg, and the SPReg has been 990 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 991 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 992 // the stack frame (i.e. the old SP), ideally, we would put the old 993 // SP into a register and use it as the base for the stores. The 994 // problem is that the only available register may be ScratchReg, 995 // which could be R0, and R0 cannot be used as a base address. 996 997 // First, set ScratchReg to the old SP. This may need to be modified 998 // later. 999 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 1000 .addReg(ScratchReg, RegState::Kill) 1001 .addReg(SPReg); 1002 1003 if (ScratchReg == PPC::R0) { 1004 // R0 cannot be used as a base register, but it can be used as an 1005 // index in a store-indexed. 1006 int LastOffset = 0; 1007 if (HasFP) { 1008 // R0 += (FPOffset-LastOffset). 1009 // Need addic, since addi treats R0 as 0. 1010 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1011 .addReg(ScratchReg) 1012 .addImm(FPOffset-LastOffset); 1013 LastOffset = FPOffset; 1014 // Store FP into *R0. 1015 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1016 .addReg(FPReg, RegState::Kill) // Save FP. 1017 .addReg(PPC::ZERO) 1018 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1019 } 1020 if (FI->usesPICBase()) { 1021 // R0 += (PBPOffset-LastOffset). 1022 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1023 .addReg(ScratchReg) 1024 .addImm(PBPOffset-LastOffset); 1025 LastOffset = PBPOffset; 1026 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1027 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1028 .addReg(PPC::ZERO) 1029 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1030 } 1031 if (HasBP) { 1032 // R0 += (BPOffset-LastOffset). 1033 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1034 .addReg(ScratchReg) 1035 .addImm(BPOffset-LastOffset); 1036 LastOffset = BPOffset; 1037 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1038 .addReg(BPReg, RegState::Kill) // Save BP. 1039 .addReg(PPC::ZERO) 1040 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1041 // BP = R0-LastOffset 1042 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1043 .addReg(ScratchReg, RegState::Kill) 1044 .addImm(-LastOffset); 1045 } 1046 } else { 1047 // ScratchReg is not R0, so use it as the base register. It is 1048 // already set to the old SP, so we can use the offsets directly. 1049 1050 // Now that the stack frame has been allocated, save all the necessary 1051 // registers using ScratchReg as the base address. 1052 if (HasFP) 1053 BuildMI(MBB, MBBI, dl, StoreInst) 1054 .addReg(FPReg) 1055 .addImm(FPOffset) 1056 .addReg(ScratchReg); 1057 if (FI->usesPICBase()) 1058 BuildMI(MBB, MBBI, dl, StoreInst) 1059 .addReg(PPC::R30) 1060 .addImm(PBPOffset) 1061 .addReg(ScratchReg); 1062 if (HasBP) { 1063 BuildMI(MBB, MBBI, dl, StoreInst) 1064 .addReg(BPReg) 1065 .addImm(BPOffset) 1066 .addReg(ScratchReg); 1067 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1068 .addReg(ScratchReg, RegState::Kill) 1069 .addReg(ScratchReg); 1070 } 1071 } 1072 } else { 1073 // The frame size is a known 16-bit constant (fitting in the immediate 1074 // field of STWU). To be here we have to be compiling for PPC32. 1075 // Since the SPReg has been decreased by FrameSize, add it back to each 1076 // offset. 1077 if (HasFP) 1078 BuildMI(MBB, MBBI, dl, StoreInst) 1079 .addReg(FPReg) 1080 .addImm(FrameSize + FPOffset) 1081 .addReg(SPReg); 1082 if (FI->usesPICBase()) 1083 BuildMI(MBB, MBBI, dl, StoreInst) 1084 .addReg(PPC::R30) 1085 .addImm(FrameSize + PBPOffset) 1086 .addReg(SPReg); 1087 if (HasBP) { 1088 BuildMI(MBB, MBBI, dl, StoreInst) 1089 .addReg(BPReg) 1090 .addImm(FrameSize + BPOffset) 1091 .addReg(SPReg); 1092 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1093 .addReg(SPReg) 1094 .addImm(FrameSize); 1095 } 1096 } 1097 } 1098 1099 // Save the LR now. 1100 if (!HasSTUX && MustSaveLR && !HasFastMFLR && isInt<16>(FrameSize + LROffset)) 1101 SaveLR(LROffset + FrameSize); 1102 1103 // Add Call Frame Information for the instructions we generated above. 1104 if (needsCFI) { 1105 unsigned CFIIndex; 1106 1107 if (HasBP) { 1108 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1109 // because if the stack needed aligning then CFA won't be at a fixed 1110 // offset from FP/SP. 1111 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1112 CFIIndex = MF.addFrameInst( 1113 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1114 } else { 1115 // Adjust the definition of CFA to account for the change in SP. 1116 assert(NegFrameSize); 1117 CFIIndex = MF.addFrameInst( 1118 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1119 } 1120 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1121 .addCFIIndex(CFIIndex); 1122 1123 if (HasFP) { 1124 // Describe where FP was saved, at a fixed offset from CFA. 1125 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1126 CFIIndex = MF.addFrameInst( 1127 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1128 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1129 .addCFIIndex(CFIIndex); 1130 } 1131 1132 if (FI->usesPICBase()) { 1133 // Describe where FP was saved, at a fixed offset from CFA. 1134 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1135 CFIIndex = MF.addFrameInst( 1136 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1137 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1138 .addCFIIndex(CFIIndex); 1139 } 1140 1141 if (HasBP) { 1142 // Describe where BP was saved, at a fixed offset from CFA. 1143 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1144 CFIIndex = MF.addFrameInst( 1145 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1146 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1147 .addCFIIndex(CFIIndex); 1148 } 1149 1150 if (MustSaveLR) { 1151 // Describe where LR was saved, at a fixed offset from CFA. 1152 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1153 CFIIndex = MF.addFrameInst( 1154 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1155 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1156 .addCFIIndex(CFIIndex); 1157 } 1158 } 1159 1160 // If there is a frame pointer, copy R1 into R31 1161 if (HasFP) { 1162 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1163 .addReg(SPReg) 1164 .addReg(SPReg); 1165 1166 if (!HasBP && needsCFI) { 1167 // Change the definition of CFA from SP+offset to FP+offset, because SP 1168 // will change at every alloca. 1169 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1170 unsigned CFIIndex = MF.addFrameInst( 1171 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1172 1173 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1174 .addCFIIndex(CFIIndex); 1175 } 1176 } 1177 1178 if (needsCFI) { 1179 // Describe where callee saved registers were saved, at fixed offsets from 1180 // CFA. 1181 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1182 for (const CalleeSavedInfo &I : CSI) { 1183 Register Reg = I.getReg(); 1184 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1185 1186 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1187 // subregisters of CR2. We just need to emit a move of CR2. 1188 if (PPC::CRBITRCRegClass.contains(Reg)) 1189 continue; 1190 1191 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1192 continue; 1193 1194 // For 64-bit SVR4 when we have spilled CRs, the spill location 1195 // is SP+8, not a frame-relative slot. 1196 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1197 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1198 // the whole CR word. In the ELFv2 ABI, every CR that was 1199 // actually saved gets its own CFI record. 1200 Register CRReg = isELFv2ABI? Reg : PPC::CR2; 1201 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1202 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1203 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1204 .addCFIIndex(CFIIndex); 1205 continue; 1206 } 1207 1208 if (I.isSpilledToReg()) { 1209 unsigned SpilledReg = I.getDstReg(); 1210 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1211 nullptr, MRI->getDwarfRegNum(Reg, true), 1212 MRI->getDwarfRegNum(SpilledReg, true))); 1213 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1214 .addCFIIndex(CFIRegister); 1215 } else { 1216 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 1217 // We have changed the object offset above but we do not want to change 1218 // the actual offsets in the CFI instruction so we have to undo the 1219 // offset change here. 1220 if (MovingStackUpdateDown) 1221 Offset -= NegFrameSize; 1222 1223 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1224 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1225 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1226 .addCFIIndex(CFIIndex); 1227 } 1228 } 1229 } 1230 } 1231 1232 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1233 MachineBasicBlock &PrologMBB) const { 1234 bool isPPC64 = Subtarget.isPPC64(); 1235 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1236 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1237 MachineFrameInfo &MFI = MF.getFrameInfo(); 1238 MachineModuleInfo &MMI = MF.getMMI(); 1239 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1240 // AIX assembler does not support cfi directives. 1241 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1242 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1243 int Opc = MI.getOpcode(); 1244 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1245 }); 1246 if (StackAllocMIPos == PrologMBB.end()) 1247 return; 1248 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1249 MachineBasicBlock *CurrentMBB = &PrologMBB; 1250 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1251 MachineInstr &MI = *StackAllocMIPos; 1252 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1253 unsigned ProbeSize = TLI.getStackProbeSize(MF); 1254 int64_t NegProbeSize = -(int64_t)ProbeSize; 1255 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1256 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1257 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1258 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1259 Register ScratchReg = MI.getOperand(0).getReg(); 1260 Register FPReg = MI.getOperand(1).getReg(); 1261 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1262 bool HasBP = RegInfo->hasBasePointer(MF); 1263 Register BPReg = RegInfo->getBaseRegister(MF); 1264 Align MaxAlign = MFI.getMaxAlign(); 1265 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1266 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1267 // Subroutines to generate .cfi_* directives. 1268 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1269 MachineBasicBlock::iterator MBBI, Register Reg) { 1270 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1271 unsigned CFIIndex = MF.addFrameInst( 1272 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1273 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1274 .addCFIIndex(CFIIndex); 1275 }; 1276 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1277 MachineBasicBlock::iterator MBBI, Register Reg, 1278 int Offset) { 1279 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1280 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1281 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1282 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1283 .addCFIIndex(CFIIndex); 1284 }; 1285 // Subroutine to determine if we can use the Imm as part of d-form. 1286 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1287 // Subroutine to materialize the Imm into TempReg. 1288 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1289 MachineBasicBlock::iterator MBBI, int64_t Imm, 1290 Register &TempReg) { 1291 assert(isInt<32>(Imm) && "Unhandled imm"); 1292 if (isInt<16>(Imm)) 1293 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1294 .addImm(Imm); 1295 else { 1296 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1297 .addImm(Imm >> 16); 1298 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1299 .addReg(TempReg) 1300 .addImm(Imm & 0xFFFF); 1301 } 1302 }; 1303 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1304 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1305 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1306 Register NegSizeReg, bool UseDForm, 1307 Register StoreReg) { 1308 if (UseDForm) 1309 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1310 .addReg(StoreReg) 1311 .addImm(NegSize) 1312 .addReg(SPReg); 1313 else 1314 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1315 .addReg(StoreReg) 1316 .addReg(SPReg) 1317 .addReg(NegSizeReg); 1318 }; 1319 // Used to probe stack when realignment is required. 1320 // Note that, according to ABI's requirement, *sp must always equals the 1321 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp. 1322 // Following is pseudo code: 1323 // final_sp = (sp & align) + negframesize; 1324 // neg_gap = final_sp - sp; 1325 // while (neg_gap < negprobesize) { 1326 // stdu fp, negprobesize(sp); 1327 // neg_gap -= negprobesize; 1328 // } 1329 // stdux fp, sp, neg_gap 1330 // 1331 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg 1332 // before probe code, we don't need to save it, so we get one additional reg 1333 // that can be used to materialize the probeside if needed to use xform. 1334 // Otherwise, we can NOT materialize probeside, so we can only use Dform for 1335 // now. 1336 // 1337 // The allocations are: 1338 // if (HasBP && HasRedzone) { 1339 // r0: materialize the probesize if needed so that we can use xform. 1340 // r12: `neg_gap` 1341 // } else { 1342 // r0: back-chain pointer 1343 // r12: `neg_gap`. 1344 // } 1345 auto probeRealignedStack = [&](MachineBasicBlock &MBB, 1346 MachineBasicBlock::iterator MBBI, 1347 Register ScratchReg, Register TempReg) { 1348 assert(HasBP && "The function is supposed to have base pointer when its " 1349 "stack is realigned."); 1350 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2"); 1351 1352 // FIXME: We can eliminate this limitation if we get more infomation about 1353 // which part of redzone are already used. Used redzone can be treated 1354 // probed. But there might be `holes' in redzone probed, this could 1355 // complicate the implementation. 1356 assert(ProbeSize >= Subtarget.getRedZoneSize() && 1357 "Probe size should be larger or equal to the size of red-zone so " 1358 "that red-zone is not clobbered by probing."); 1359 1360 Register &FinalStackPtr = TempReg; 1361 // FIXME: We only support NegProbeSize materializable by DForm currently. 1362 // When HasBP && HasRedzone, we can use xform if we have an additional idle 1363 // register. 1364 NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15)); 1365 assert(isInt<16>(NegProbeSize) && 1366 "NegProbeSize should be materializable by DForm"); 1367 Register CRReg = PPC::CR0; 1368 // Layout of output assembly kinda like: 1369 // bb.0: 1370 // ... 1371 // sub $scratchreg, $finalsp, r1 1372 // cmpdi $scratchreg, <negprobesize> 1373 // bge bb.2 1374 // bb.1: 1375 // stdu <backchain>, <negprobesize>(r1) 1376 // sub $scratchreg, $scratchreg, negprobesize 1377 // cmpdi $scratchreg, <negprobesize> 1378 // blt bb.1 1379 // bb.2: 1380 // stdux <backchain>, r1, $scratchreg 1381 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 1382 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB); 1383 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB); 1384 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1385 MF.insert(MBBInsertPoint, ProbeExitMBB); 1386 // bb.2 1387 { 1388 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1389 allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false, 1390 BackChainPointer); 1391 if (HasRedZone) 1392 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg 1393 // to TempReg to satisfy it. 1394 BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg) 1395 .addReg(BPReg) 1396 .addReg(BPReg); 1397 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end()); 1398 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 1399 } 1400 // bb.0 1401 { 1402 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg) 1403 .addReg(SPReg) 1404 .addReg(FinalStackPtr); 1405 if (!HasRedZone) 1406 BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg); 1407 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg) 1408 .addReg(ScratchReg) 1409 .addImm(NegProbeSize); 1410 BuildMI(&MBB, DL, TII.get(PPC::BCC)) 1411 .addImm(PPC::PRED_GE) 1412 .addReg(CRReg) 1413 .addMBB(ProbeExitMBB); 1414 MBB.addSuccessor(ProbeLoopBodyMBB); 1415 MBB.addSuccessor(ProbeExitMBB); 1416 } 1417 // bb.1 1418 { 1419 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1420 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize, 1421 0, true /*UseDForm*/, BackChainPointer); 1422 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI), 1423 ScratchReg) 1424 .addReg(ScratchReg) 1425 .addImm(-NegProbeSize); 1426 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), 1427 CRReg) 1428 .addReg(ScratchReg) 1429 .addImm(NegProbeSize); 1430 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC)) 1431 .addImm(PPC::PRED_LT) 1432 .addReg(CRReg) 1433 .addMBB(ProbeLoopBodyMBB); 1434 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB); 1435 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB); 1436 } 1437 // Update liveins. 1438 bool anyChange = false; 1439 do { 1440 anyChange = recomputeLiveIns(*ProbeExitMBB) || 1441 recomputeLiveIns(*ProbeLoopBodyMBB); 1442 } while (anyChange); 1443 return ProbeExitMBB; 1444 }; 1445 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing 1446 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since 1447 // the offset subtracted from SP is determined by SP's runtime value. 1448 if (HasBP && MaxAlign > 1) { 1449 // Calculate final stack pointer. 1450 if (isPPC64) 1451 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg) 1452 .addReg(SPReg) 1453 .addImm(0) 1454 .addImm(64 - Log2(MaxAlign)); 1455 else 1456 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1457 .addReg(SPReg) 1458 .addImm(0) 1459 .addImm(32 - Log2(MaxAlign)) 1460 .addImm(31); 1461 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), 1462 FPReg) 1463 .addReg(ScratchReg) 1464 .addReg(SPReg); 1465 MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg); 1466 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 1467 FPReg) 1468 .addReg(ScratchReg) 1469 .addReg(FPReg); 1470 CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg); 1471 if (needsCFI) 1472 buildDefCFAReg(*CurrentMBB, {MI}, FPReg); 1473 } else { 1474 // Initialize current frame pointer. 1475 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1476 // Use FPReg to calculate CFA. 1477 if (needsCFI) 1478 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1479 // Probe residual part. 1480 if (NegResidualSize) { 1481 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1482 if (!ResidualUseDForm) 1483 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg); 1484 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg, 1485 ResidualUseDForm, FPReg); 1486 } 1487 bool UseDForm = CanUseDForm(NegProbeSize); 1488 // If number of blocks is small, just probe them directly. 1489 if (NumBlocks < 3) { 1490 if (!UseDForm) 1491 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1492 for (int i = 0; i < NumBlocks; ++i) 1493 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm, 1494 FPReg); 1495 if (needsCFI) { 1496 // Restore using SPReg to calculate CFA. 1497 buildDefCFAReg(*CurrentMBB, {MI}, SPReg); 1498 } 1499 } else { 1500 // Since CTR is a volatile register and current shrinkwrap implementation 1501 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1502 // CTR loop to probe. 1503 // Calculate trip count and stores it in CTRReg. 1504 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg); 1505 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1506 .addReg(ScratchReg, RegState::Kill); 1507 if (!UseDForm) 1508 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1509 // Create MBBs of the loop. 1510 MachineFunction::iterator MBBInsertPoint = 1511 std::next(CurrentMBB->getIterator()); 1512 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1513 MF.insert(MBBInsertPoint, LoopMBB); 1514 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1515 MF.insert(MBBInsertPoint, ExitMBB); 1516 // Synthesize the loop body. 1517 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1518 UseDForm, FPReg); 1519 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1520 .addMBB(LoopMBB); 1521 LoopMBB->addSuccessor(ExitMBB); 1522 LoopMBB->addSuccessor(LoopMBB); 1523 // Synthesize the exit MBB. 1524 ExitMBB->splice(ExitMBB->end(), CurrentMBB, 1525 std::next(MachineBasicBlock::iterator(MI)), 1526 CurrentMBB->end()); 1527 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB); 1528 CurrentMBB->addSuccessor(LoopMBB); 1529 if (needsCFI) { 1530 // Restore using SPReg to calculate CFA. 1531 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1532 } 1533 // Update liveins. 1534 bool anyChange = false; 1535 do { 1536 anyChange = recomputeLiveIns(*ExitMBB) || recomputeLiveIns(*LoopMBB); 1537 } while (anyChange); 1538 } 1539 } 1540 ++NumPrologProbed; 1541 MI.eraseFromParent(); 1542 } 1543 1544 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1545 MachineBasicBlock &MBB) const { 1546 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1547 DebugLoc dl; 1548 1549 if (MBBI != MBB.end()) 1550 dl = MBBI->getDebugLoc(); 1551 1552 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1553 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1554 1555 // Get alignment info so we know how to restore the SP. 1556 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1557 1558 // Get the number of bytes allocated from the FrameInfo. 1559 int64_t FrameSize = MFI.getStackSize(); 1560 1561 // Get processor type. 1562 bool isPPC64 = Subtarget.isPPC64(); 1563 1564 // Check if the link register (LR) has been saved. 1565 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1566 bool MustSaveLR = FI->mustSaveLR(); 1567 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1568 bool MustSaveCR = !MustSaveCRs.empty(); 1569 // Do we have a frame pointer and/or base pointer for this function? 1570 bool HasFP = hasFP(MF); 1571 bool HasBP = RegInfo->hasBasePointer(MF); 1572 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1573 bool HasROPProtect = Subtarget.hasROPProtect(); 1574 bool HasPrivileged = Subtarget.hasPrivileged(); 1575 1576 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1577 Register BPReg = RegInfo->getBaseRegister(MF); 1578 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1579 Register ScratchReg; 1580 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1581 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1582 : PPC::MTLR ); 1583 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1584 : PPC::LWZ ); 1585 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1586 : PPC::LIS ); 1587 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1588 : PPC::OR ); 1589 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1590 : PPC::ORI ); 1591 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1592 : PPC::ADDI ); 1593 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1594 : PPC::ADD4 ); 1595 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1596 : PPC::LWZ); 1597 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1598 : PPC::MTOCRF); 1599 const MCInstrDesc &HashChk = 1600 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8) 1601 : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK)); 1602 int64_t LROffset = getReturnSaveOffset(); 1603 1604 int64_t FPOffset = 0; 1605 1606 // Using the same bool variable as below to suppress compiler warnings. 1607 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1608 &TempReg); 1609 assert(SingleScratchReg && 1610 "Could not find an available scratch register"); 1611 1612 SingleScratchReg = ScratchReg == TempReg; 1613 1614 if (HasFP) { 1615 int FPIndex = FI->getFramePointerSaveIndex(); 1616 assert(FPIndex && "No Frame Pointer Save Slot!"); 1617 FPOffset = MFI.getObjectOffset(FPIndex); 1618 } 1619 1620 int64_t BPOffset = 0; 1621 if (HasBP) { 1622 int BPIndex = FI->getBasePointerSaveIndex(); 1623 assert(BPIndex && "No Base Pointer Save Slot!"); 1624 BPOffset = MFI.getObjectOffset(BPIndex); 1625 } 1626 1627 int64_t PBPOffset = 0; 1628 if (FI->usesPICBase()) { 1629 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1630 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1631 PBPOffset = MFI.getObjectOffset(PBPIndex); 1632 } 1633 1634 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1635 1636 if (IsReturnBlock) { 1637 unsigned RetOpcode = MBBI->getOpcode(); 1638 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1639 RetOpcode == PPC::TCRETURNdi || 1640 RetOpcode == PPC::TCRETURNai || 1641 RetOpcode == PPC::TCRETURNri8 || 1642 RetOpcode == PPC::TCRETURNdi8 || 1643 RetOpcode == PPC::TCRETURNai8; 1644 1645 if (UsesTCRet) { 1646 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1647 MachineOperand &StackAdjust = MBBI->getOperand(1); 1648 assert(StackAdjust.isImm() && "Expecting immediate value."); 1649 // Adjust stack pointer. 1650 int StackAdj = StackAdjust.getImm(); 1651 int Delta = StackAdj - MaxTCRetDelta; 1652 assert((Delta >= 0) && "Delta must be positive"); 1653 if (MaxTCRetDelta>0) 1654 FrameSize += (StackAdj +Delta); 1655 else 1656 FrameSize += StackAdj; 1657 } 1658 } 1659 1660 // Frames of 32KB & larger require special handling because they cannot be 1661 // indexed into with a simple LD/LWZ immediate offset operand. 1662 bool isLargeFrame = !isInt<16>(FrameSize); 1663 1664 // On targets without red zone, the SP needs to be restored last, so that 1665 // all live contents of the stack frame are upwards of the SP. This means 1666 // that we cannot restore SP just now, since there may be more registers 1667 // to restore from the stack frame (e.g. R31). If the frame size is not 1668 // a simple immediate value, we will need a spare register to hold the 1669 // restored SP. If the frame size is known and small, we can simply adjust 1670 // the offsets of the registers to be restored, and still use SP to restore 1671 // them. In such case, the final update of SP will be to add the frame 1672 // size to it. 1673 // To simplify the code, set RBReg to the base register used to restore 1674 // values from the stack, and set SPAdd to the value that needs to be added 1675 // to the SP at the end. The default values are as if red zone was present. 1676 unsigned RBReg = SPReg; 1677 uint64_t SPAdd = 0; 1678 1679 // Check if we can move the stack update instruction up the epilogue 1680 // past the callee saves. This will allow the move to LR instruction 1681 // to be executed before the restores of the callee saves which means 1682 // that the callee saves can hide the latency from the MTLR instrcution. 1683 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1684 if (stackUpdateCanBeMoved(MF)) { 1685 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1686 for (CalleeSavedInfo CSI : Info) { 1687 // If the callee saved register is spilled to another register abort the 1688 // stack update movement. 1689 if (CSI.isSpilledToReg()) { 1690 StackUpdateLoc = MBBI; 1691 break; 1692 } 1693 int FrIdx = CSI.getFrameIdx(); 1694 // If the frame index is not negative the callee saved info belongs to a 1695 // stack object that is not a fixed stack object. We ignore non-fixed 1696 // stack objects because we won't move the update of the stack pointer 1697 // past them. 1698 if (FrIdx >= 0) 1699 continue; 1700 1701 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1702 StackUpdateLoc--; 1703 else { 1704 // Abort the operation as we can't update all CSR restores. 1705 StackUpdateLoc = MBBI; 1706 break; 1707 } 1708 } 1709 } 1710 1711 if (FrameSize) { 1712 // In the prologue, the loaded (or persistent) stack pointer value is 1713 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1714 // zone add this offset back now. 1715 1716 // If the function has a base pointer, the stack pointer has been copied 1717 // to it so we can restore it by copying in the other direction. 1718 if (HasRedZone && HasBP) { 1719 BuildMI(MBB, MBBI, dl, OrInst, RBReg). 1720 addReg(BPReg). 1721 addReg(BPReg); 1722 } 1723 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1724 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1725 // call which invalidates the stack pointer value in SP(0). So we use the 1726 // value of R31 in this case. Similar situation exists with setjmp. 1727 else if (FI->hasFastCall() || MF.exposesReturnsTwice()) { 1728 assert(HasFP && "Expecting a valid frame pointer."); 1729 if (!HasRedZone) 1730 RBReg = FPReg; 1731 if (!isLargeFrame) { 1732 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1733 .addReg(FPReg).addImm(FrameSize); 1734 } else { 1735 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize); 1736 BuildMI(MBB, MBBI, dl, AddInst) 1737 .addReg(RBReg) 1738 .addReg(FPReg) 1739 .addReg(ScratchReg); 1740 } 1741 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1742 if (HasRedZone) { 1743 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1744 .addReg(SPReg) 1745 .addImm(FrameSize); 1746 } else { 1747 // Make sure that adding FrameSize will not overflow the max offset 1748 // size. 1749 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1750 "Local offsets should be negative"); 1751 SPAdd = FrameSize; 1752 FPOffset += FrameSize; 1753 BPOffset += FrameSize; 1754 PBPOffset += FrameSize; 1755 } 1756 } else { 1757 // We don't want to use ScratchReg as a base register, because it 1758 // could happen to be R0. Use FP instead, but make sure to preserve it. 1759 if (!HasRedZone) { 1760 // If FP is not saved, copy it to ScratchReg. 1761 if (!HasFP) 1762 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1763 .addReg(FPReg) 1764 .addReg(FPReg); 1765 RBReg = FPReg; 1766 } 1767 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1768 .addImm(0) 1769 .addReg(SPReg); 1770 } 1771 } 1772 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1773 // If there is no red zone, ScratchReg may be needed for holding a useful 1774 // value (although not the base register). Make sure it is not overwritten 1775 // too early. 1776 1777 // If we need to restore both the LR and the CR and we only have one 1778 // available scratch register, we must do them one at a time. 1779 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1780 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1781 // is live here. 1782 assert(HasRedZone && "Expecting red zone"); 1783 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1784 .addImm(CRSaveOffset) 1785 .addReg(SPReg); 1786 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1787 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1788 .addReg(TempReg, getKillRegState(i == e-1)); 1789 } 1790 1791 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1792 // LR is stored in the caller's stack frame. ScratchReg will be needed 1793 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1794 // a base register anyway, because it may happen to be R0. 1795 bool LoadedLR = false; 1796 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1797 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1798 .addImm(LROffset+SPAdd) 1799 .addReg(RBReg); 1800 LoadedLR = true; 1801 } 1802 1803 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1804 assert(RBReg == SPReg && "Should be using SP as a base register"); 1805 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1806 .addImm(CRSaveOffset) 1807 .addReg(RBReg); 1808 } 1809 1810 if (HasFP) { 1811 // If there is red zone, restore FP directly, since SP has already been 1812 // restored. Otherwise, restore the value of FP into ScratchReg. 1813 if (HasRedZone || RBReg == SPReg) 1814 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1815 .addImm(FPOffset) 1816 .addReg(SPReg); 1817 else 1818 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1819 .addImm(FPOffset) 1820 .addReg(RBReg); 1821 } 1822 1823 if (FI->usesPICBase()) 1824 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1825 .addImm(PBPOffset) 1826 .addReg(RBReg); 1827 1828 if (HasBP) 1829 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1830 .addImm(BPOffset) 1831 .addReg(RBReg); 1832 1833 // There is nothing more to be loaded from the stack, so now we can 1834 // restore SP: SP = RBReg + SPAdd. 1835 if (RBReg != SPReg || SPAdd != 0) { 1836 assert(!HasRedZone && "This should not happen with red zone"); 1837 // If SPAdd is 0, generate a copy. 1838 if (SPAdd == 0) 1839 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1840 .addReg(RBReg) 1841 .addReg(RBReg); 1842 else 1843 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1844 .addReg(RBReg) 1845 .addImm(SPAdd); 1846 1847 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1848 if (RBReg == FPReg) 1849 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1850 .addReg(ScratchReg) 1851 .addReg(ScratchReg); 1852 1853 // Now load the LR from the caller's stack frame. 1854 if (MustSaveLR && !LoadedLR) 1855 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1856 .addImm(LROffset) 1857 .addReg(SPReg); 1858 } 1859 1860 if (MustSaveCR && 1861 !(SingleScratchReg && MustSaveLR)) 1862 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1863 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1864 .addReg(TempReg, getKillRegState(i == e-1)); 1865 1866 if (MustSaveLR) { 1867 // If ROP protection is required, an extra instruction is added to compute a 1868 // hash and then compare it to the hash stored in the prologue. 1869 if (HasROPProtect) { 1870 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 1871 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 1872 assert((ImmOffset <= -8 && ImmOffset >= -512) && 1873 "ROP hash check location offset out of range."); 1874 assert(((ImmOffset & 0x7) == 0) && 1875 "ROP hash check location offset must be 8 byte aligned."); 1876 BuildMI(MBB, StackUpdateLoc, dl, HashChk) 1877 .addReg(ScratchReg) 1878 .addImm(ImmOffset) 1879 .addReg(SPReg); 1880 } 1881 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1882 } 1883 1884 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1885 // call optimization 1886 if (IsReturnBlock) { 1887 unsigned RetOpcode = MBBI->getOpcode(); 1888 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1889 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1890 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1891 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1892 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1893 1894 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1895 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1896 .addReg(SPReg).addImm(CallerAllocatedAmt); 1897 } else { 1898 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1899 .addImm(CallerAllocatedAmt >> 16); 1900 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1901 .addReg(ScratchReg, RegState::Kill) 1902 .addImm(CallerAllocatedAmt & 0xFFFF); 1903 BuildMI(MBB, MBBI, dl, AddInst) 1904 .addReg(SPReg) 1905 .addReg(FPReg) 1906 .addReg(ScratchReg); 1907 } 1908 } else { 1909 createTailCallBranchInstr(MBB); 1910 } 1911 } 1912 } 1913 1914 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1915 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1916 1917 // If we got this far a first terminator should exist. 1918 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1919 1920 DebugLoc dl = MBBI->getDebugLoc(); 1921 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1922 1923 // Create branch instruction for pseudo tail call return instruction. 1924 // The TCRETURNdi variants are direct calls. Valid targets for those are 1925 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1926 // since we can tail call external functions with PC-Rel (i.e. we don't need 1927 // to worry about different TOC pointers). Some of the external functions will 1928 // be MO_GlobalAddress while others like memcpy for example, are going to 1929 // be MO_ExternalSymbol. 1930 unsigned RetOpcode = MBBI->getOpcode(); 1931 if (RetOpcode == PPC::TCRETURNdi) { 1932 MBBI = MBB.getLastNonDebugInstr(); 1933 MachineOperand &JumpTarget = MBBI->getOperand(0); 1934 if (JumpTarget.isGlobal()) 1935 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1936 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1937 else if (JumpTarget.isSymbol()) 1938 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1939 addExternalSymbol(JumpTarget.getSymbolName()); 1940 else 1941 llvm_unreachable("Expecting Global or External Symbol"); 1942 } else if (RetOpcode == PPC::TCRETURNri) { 1943 MBBI = MBB.getLastNonDebugInstr(); 1944 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1945 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1946 } else if (RetOpcode == PPC::TCRETURNai) { 1947 MBBI = MBB.getLastNonDebugInstr(); 1948 MachineOperand &JumpTarget = MBBI->getOperand(0); 1949 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1950 } else if (RetOpcode == PPC::TCRETURNdi8) { 1951 MBBI = MBB.getLastNonDebugInstr(); 1952 MachineOperand &JumpTarget = MBBI->getOperand(0); 1953 if (JumpTarget.isGlobal()) 1954 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1955 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1956 else if (JumpTarget.isSymbol()) 1957 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1958 addExternalSymbol(JumpTarget.getSymbolName()); 1959 else 1960 llvm_unreachable("Expecting Global or External Symbol"); 1961 } else if (RetOpcode == PPC::TCRETURNri8) { 1962 MBBI = MBB.getLastNonDebugInstr(); 1963 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1964 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1965 } else if (RetOpcode == PPC::TCRETURNai8) { 1966 MBBI = MBB.getLastNonDebugInstr(); 1967 MachineOperand &JumpTarget = MBBI->getOperand(0); 1968 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1969 } 1970 } 1971 1972 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1973 BitVector &SavedRegs, 1974 RegScavenger *RS) const { 1975 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1976 1977 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1978 1979 // Do not explicitly save the callee saved VSRp registers. 1980 // The individual VSR subregisters will be saved instead. 1981 SavedRegs.reset(PPC::VSRp26); 1982 SavedRegs.reset(PPC::VSRp27); 1983 SavedRegs.reset(PPC::VSRp28); 1984 SavedRegs.reset(PPC::VSRp29); 1985 SavedRegs.reset(PPC::VSRp30); 1986 SavedRegs.reset(PPC::VSRp31); 1987 1988 // Save and clear the LR state. 1989 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1990 unsigned LR = RegInfo->getRARegister(); 1991 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1992 SavedRegs.reset(LR); 1993 1994 // Save R31 if necessary 1995 int FPSI = FI->getFramePointerSaveIndex(); 1996 const bool isPPC64 = Subtarget.isPPC64(); 1997 MachineFrameInfo &MFI = MF.getFrameInfo(); 1998 1999 // If the frame pointer save index hasn't been defined yet. 2000 if (!FPSI && needsFP(MF)) { 2001 // Find out what the fix offset of the frame pointer save area. 2002 int FPOffset = getFramePointerSaveOffset(); 2003 // Allocate the frame index for frame pointer save area. 2004 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 2005 // Save the result. 2006 FI->setFramePointerSaveIndex(FPSI); 2007 } 2008 2009 int BPSI = FI->getBasePointerSaveIndex(); 2010 if (!BPSI && RegInfo->hasBasePointer(MF)) { 2011 int BPOffset = getBasePointerSaveOffset(); 2012 // Allocate the frame index for the base pointer save area. 2013 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 2014 // Save the result. 2015 FI->setBasePointerSaveIndex(BPSI); 2016 } 2017 2018 // Reserve stack space for the PIC Base register (R30). 2019 // Only used in SVR4 32-bit. 2020 if (FI->usesPICBase()) { 2021 int PBPSI = MFI.CreateFixedObject(4, -8, true); 2022 FI->setPICBasePointerSaveIndex(PBPSI); 2023 } 2024 2025 // Make sure we don't explicitly spill r31, because, for example, we have 2026 // some inline asm which explicitly clobbers it, when we otherwise have a 2027 // frame pointer and are using r31's spill slot for the prologue/epilogue 2028 // code. Same goes for the base pointer and the PIC base register. 2029 if (needsFP(MF)) 2030 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 2031 if (RegInfo->hasBasePointer(MF)) 2032 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 2033 if (FI->usesPICBase()) 2034 SavedRegs.reset(PPC::R30); 2035 2036 // Reserve stack space to move the linkage area to in case of a tail call. 2037 int TCSPDelta = 0; 2038 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2039 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 2040 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 2041 } 2042 2043 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 2044 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 2045 // object at the offset of the CR-save slot in the linkage area. The actual 2046 // save and restore of the condition register will be created as part of the 2047 // prologue and epilogue insertion, but the FixedStack object is needed to 2048 // keep the CalleSavedInfo valid. 2049 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 2050 SavedRegs.test(PPC::CR4))) { 2051 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 2052 const int64_t SpillOffset = 2053 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 2054 int FrameIdx = 2055 MFI.CreateFixedObject(SpillSize, SpillOffset, 2056 /* IsImmutable */ true, /* IsAliased */ false); 2057 FI->setCRSpillFrameIndex(FrameIdx); 2058 } 2059 } 2060 2061 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 2062 RegScavenger *RS) const { 2063 // Get callee saved register information. 2064 MachineFrameInfo &MFI = MF.getFrameInfo(); 2065 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2066 2067 // If the function is shrink-wrapped, and if the function has a tail call, the 2068 // tail call might not be in the new RestoreBlock, so real branch instruction 2069 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 2070 // RestoreBlock. So we handle this case here. 2071 if (MFI.getSavePoint() && MFI.hasTailCall()) { 2072 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 2073 for (MachineBasicBlock &MBB : MF) { 2074 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 2075 createTailCallBranchInstr(MBB); 2076 } 2077 } 2078 2079 // Early exit if no callee saved registers are modified! 2080 if (CSI.empty() && !needsFP(MF)) { 2081 addScavengingSpillSlot(MF, RS); 2082 return; 2083 } 2084 2085 unsigned MinGPR = PPC::R31; 2086 unsigned MinG8R = PPC::X31; 2087 unsigned MinFPR = PPC::F31; 2088 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 2089 2090 bool HasGPSaveArea = false; 2091 bool HasG8SaveArea = false; 2092 bool HasFPSaveArea = false; 2093 bool HasVRSaveArea = false; 2094 2095 SmallVector<CalleeSavedInfo, 18> GPRegs; 2096 SmallVector<CalleeSavedInfo, 18> G8Regs; 2097 SmallVector<CalleeSavedInfo, 18> FPRegs; 2098 SmallVector<CalleeSavedInfo, 18> VRegs; 2099 2100 for (const CalleeSavedInfo &I : CSI) { 2101 Register Reg = I.getReg(); 2102 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2103 (Reg != PPC::X2 && Reg != PPC::R2)) && 2104 "Not expecting to try to spill R2 in a function that must save TOC"); 2105 if (PPC::GPRCRegClass.contains(Reg)) { 2106 HasGPSaveArea = true; 2107 2108 GPRegs.push_back(I); 2109 2110 if (Reg < MinGPR) { 2111 MinGPR = Reg; 2112 } 2113 } else if (PPC::G8RCRegClass.contains(Reg)) { 2114 HasG8SaveArea = true; 2115 2116 G8Regs.push_back(I); 2117 2118 if (Reg < MinG8R) { 2119 MinG8R = Reg; 2120 } 2121 } else if (PPC::F8RCRegClass.contains(Reg)) { 2122 HasFPSaveArea = true; 2123 2124 FPRegs.push_back(I); 2125 2126 if (Reg < MinFPR) { 2127 MinFPR = Reg; 2128 } 2129 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2130 PPC::CRRCRegClass.contains(Reg)) { 2131 ; // do nothing, as we already know whether CRs are spilled 2132 } else if (PPC::VRRCRegClass.contains(Reg) || 2133 PPC::SPERCRegClass.contains(Reg)) { 2134 // Altivec and SPE are mutually exclusive, but have the same stack 2135 // alignment requirements, so overload the save area for both cases. 2136 HasVRSaveArea = true; 2137 2138 VRegs.push_back(I); 2139 2140 if (Reg < MinVR) { 2141 MinVR = Reg; 2142 } 2143 } else { 2144 llvm_unreachable("Unknown RegisterClass!"); 2145 } 2146 } 2147 2148 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2149 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2150 2151 int64_t LowerBound = 0; 2152 2153 // Take into account stack space reserved for tail calls. 2154 int TCSPDelta = 0; 2155 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2156 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2157 LowerBound = TCSPDelta; 2158 } 2159 2160 // The Floating-point register save area is right below the back chain word 2161 // of the previous stack frame. 2162 if (HasFPSaveArea) { 2163 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2164 int FI = FPRegs[i].getFrameIdx(); 2165 2166 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2167 } 2168 2169 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2170 } 2171 2172 // Check whether the frame pointer register is allocated. If so, make sure it 2173 // is spilled to the correct offset. 2174 if (needsFP(MF)) { 2175 int FI = PFI->getFramePointerSaveIndex(); 2176 assert(FI && "No Frame Pointer Save Slot!"); 2177 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2178 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2179 HasGPSaveArea = true; 2180 } 2181 2182 if (PFI->usesPICBase()) { 2183 int FI = PFI->getPICBasePointerSaveIndex(); 2184 assert(FI && "No PIC Base Pointer Save Slot!"); 2185 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2186 2187 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2188 HasGPSaveArea = true; 2189 } 2190 2191 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2192 if (RegInfo->hasBasePointer(MF)) { 2193 int FI = PFI->getBasePointerSaveIndex(); 2194 assert(FI && "No Base Pointer Save Slot!"); 2195 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2196 2197 Register BP = RegInfo->getBaseRegister(MF); 2198 if (PPC::G8RCRegClass.contains(BP)) { 2199 MinG8R = std::min<unsigned>(MinG8R, BP); 2200 HasG8SaveArea = true; 2201 } else if (PPC::GPRCRegClass.contains(BP)) { 2202 MinGPR = std::min<unsigned>(MinGPR, BP); 2203 HasGPSaveArea = true; 2204 } 2205 } 2206 2207 // General register save area starts right below the Floating-point 2208 // register save area. 2209 if (HasGPSaveArea || HasG8SaveArea) { 2210 // Move general register save area spill slots down, taking into account 2211 // the size of the Floating-point register save area. 2212 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2213 if (!GPRegs[i].isSpilledToReg()) { 2214 int FI = GPRegs[i].getFrameIdx(); 2215 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2216 } 2217 } 2218 2219 // Move general register save area spill slots down, taking into account 2220 // the size of the Floating-point register save area. 2221 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2222 if (!G8Regs[i].isSpilledToReg()) { 2223 int FI = G8Regs[i].getFrameIdx(); 2224 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2225 } 2226 } 2227 2228 unsigned MinReg = 2229 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2230 TRI->getEncodingValue(MinG8R)); 2231 2232 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2233 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2234 } 2235 2236 // For 32-bit only, the CR save area is below the general register 2237 // save area. For 64-bit SVR4, the CR save area is addressed relative 2238 // to the stack pointer and hence does not need an adjustment here. 2239 // Only CR2 (the first nonvolatile spilled) has an associated frame 2240 // index so that we have a single uniform save area. 2241 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2242 // Adjust the frame index of the CR spill slot. 2243 for (const auto &CSInfo : CSI) { 2244 if (CSInfo.getReg() == PPC::CR2) { 2245 int FI = CSInfo.getFrameIdx(); 2246 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2247 break; 2248 } 2249 } 2250 2251 LowerBound -= 4; // The CR save area is always 4 bytes long. 2252 } 2253 2254 // Both Altivec and SPE have the same alignment and padding requirements 2255 // within the stack frame. 2256 if (HasVRSaveArea) { 2257 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2258 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2259 // we are using negative number here (the stack grows downward). We should 2260 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2261 // is the alignment size ( n = 16 here) and y is the size after aligning. 2262 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2263 LowerBound &= ~(15); 2264 2265 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2266 int FI = VRegs[i].getFrameIdx(); 2267 2268 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2269 } 2270 } 2271 2272 addScavengingSpillSlot(MF, RS); 2273 } 2274 2275 void 2276 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2277 RegScavenger *RS) const { 2278 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2279 // a large stack, which will require scavenging a register to materialize a 2280 // large offset. 2281 2282 // We need to have a scavenger spill slot for spills if the frame size is 2283 // large. In case there is no free register for large-offset addressing, 2284 // this slot is used for the necessary emergency spill. Also, we need the 2285 // slot for dynamic stack allocations. 2286 2287 // The scavenger might be invoked if the frame offset does not fit into 2288 // the 16-bit immediate in case of not SPE and 8-bit in case of SPE. 2289 // We don't know the complete frame size here because we've not yet computed 2290 // callee-saved register spills or the needed alignment padding. 2291 unsigned StackSize = determineFrameLayout(MF, true); 2292 MachineFrameInfo &MFI = MF.getFrameInfo(); 2293 bool NeedSpills = Subtarget.hasSPE() ? !isInt<8>(StackSize) : !isInt<16>(StackSize); 2294 2295 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) || 2296 (hasSpills(MF) && NeedSpills)) { 2297 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2298 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2299 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2300 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2301 unsigned Size = TRI.getSpillSize(RC); 2302 Align Alignment = TRI.getSpillAlign(RC); 2303 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2304 2305 // Might we have over-aligned allocas? 2306 bool HasAlVars = 2307 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2308 2309 // These kinds of spills might need two registers. 2310 if (spillsCR(MF) || HasAlVars) 2311 RS->addScavengingFrameIndex( 2312 MFI.CreateStackObject(Size, Alignment, false)); 2313 } 2314 } 2315 2316 // This function checks if a callee saved gpr can be spilled to a volatile 2317 // vector register. This occurs for leaf functions when the option 2318 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2319 // which were not spilled to vectors, return false so the target independent 2320 // code can handle them by assigning a FrameIdx to a stack slot. 2321 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2322 MachineFunction &MF, const TargetRegisterInfo *TRI, 2323 std::vector<CalleeSavedInfo> &CSI) const { 2324 2325 if (CSI.empty()) 2326 return true; // Early exit if no callee saved registers are modified! 2327 2328 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2329 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2330 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2331 2332 if (Subtarget.hasSPE()) { 2333 // In case of SPE we only have SuperRegs and CRs 2334 // in our CalleSaveInfo vector. 2335 2336 for (auto &CalleeSaveReg : CSI) { 2337 MCPhysReg Reg = CalleeSaveReg.getReg(); 2338 MCPhysReg Lower = RegInfo->getSubReg(Reg, 1); 2339 MCPhysReg Higher = RegInfo->getSubReg(Reg, 2); 2340 2341 if ( // Check only for SuperRegs. 2342 Lower && 2343 // Replace Reg if only lower-32 bits modified 2344 !MRI.isPhysRegModified(Higher)) 2345 CalleeSaveReg = CalleeSavedInfo(Lower); 2346 } 2347 } 2348 2349 // Early exit if cannot spill gprs to volatile vector registers. 2350 MachineFrameInfo &MFI = MF.getFrameInfo(); 2351 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2352 return false; 2353 2354 // Build a BitVector of VSRs that can be used for spilling GPRs. 2355 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2356 BitVector BVCalleeSaved(TRI->getNumRegs()); 2357 for (unsigned i = 0; CSRegs[i]; ++i) 2358 BVCalleeSaved.set(CSRegs[i]); 2359 2360 for (unsigned Reg : BVAllocatable.set_bits()) { 2361 // Set to 0 if the register is not a volatile VSX register, or if it is 2362 // used in the function. 2363 if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) || 2364 MRI.isPhysRegUsed(Reg)) 2365 BVAllocatable.reset(Reg); 2366 } 2367 2368 bool AllSpilledToReg = true; 2369 unsigned LastVSRUsedForSpill = 0; 2370 for (auto &CS : CSI) { 2371 if (BVAllocatable.none()) 2372 return false; 2373 2374 Register Reg = CS.getReg(); 2375 2376 if (!PPC::G8RCRegClass.contains(Reg)) { 2377 AllSpilledToReg = false; 2378 continue; 2379 } 2380 2381 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs 2382 // into one VSR using the mtvsrdd instruction. 2383 if (LastVSRUsedForSpill != 0) { 2384 CS.setDstReg(LastVSRUsedForSpill); 2385 BVAllocatable.reset(LastVSRUsedForSpill); 2386 LastVSRUsedForSpill = 0; 2387 continue; 2388 } 2389 2390 unsigned VolatileVFReg = BVAllocatable.find_first(); 2391 if (VolatileVFReg < BVAllocatable.size()) { 2392 CS.setDstReg(VolatileVFReg); 2393 LastVSRUsedForSpill = VolatileVFReg; 2394 } else { 2395 AllSpilledToReg = false; 2396 } 2397 } 2398 return AllSpilledToReg; 2399 } 2400 2401 bool PPCFrameLowering::spillCalleeSavedRegisters( 2402 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2403 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2404 2405 MachineFunction *MF = MBB.getParent(); 2406 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2407 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2408 bool MustSaveTOC = FI->mustSaveTOC(); 2409 DebugLoc DL; 2410 bool CRSpilled = false; 2411 MachineInstrBuilder CRMIB; 2412 BitVector Spilled(TRI->getNumRegs()); 2413 2414 VSRContainingGPRs.clear(); 2415 2416 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one 2417 // or two GPRs, so we need table to record information for later save/restore. 2418 for (const CalleeSavedInfo &Info : CSI) { 2419 if (Info.isSpilledToReg()) { 2420 auto &SpilledVSR = 2421 VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second; 2422 assert(SpilledVSR.second == 0 && 2423 "Can't spill more than two GPRs into VSR!"); 2424 if (SpilledVSR.first == 0) 2425 SpilledVSR.first = Info.getReg(); 2426 else 2427 SpilledVSR.second = Info.getReg(); 2428 } 2429 } 2430 2431 for (const CalleeSavedInfo &I : CSI) { 2432 Register Reg = I.getReg(); 2433 2434 // CR2 through CR4 are the nonvolatile CR fields. 2435 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2436 2437 // Add the callee-saved register as live-in; it's killed at the spill. 2438 // Do not do this for callee-saved registers that are live-in to the 2439 // function because they will already be marked live-in and this will be 2440 // adding it for a second time. It is an error to add the same register 2441 // to the set more than once. 2442 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2443 bool IsLiveIn = MRI.isLiveIn(Reg); 2444 if (!IsLiveIn) 2445 MBB.addLiveIn(Reg); 2446 2447 if (CRSpilled && IsCRField) { 2448 CRMIB.addReg(Reg, RegState::ImplicitKill); 2449 continue; 2450 } 2451 2452 // The actual spill will happen in the prologue. 2453 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2454 continue; 2455 2456 // Insert the spill to the stack frame. 2457 if (IsCRField) { 2458 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2459 if (!Subtarget.is32BitELFABI()) { 2460 // The actual spill will happen at the start of the prologue. 2461 FuncInfo->addMustSaveCR(Reg); 2462 } else { 2463 CRSpilled = true; 2464 FuncInfo->setSpillsCR(); 2465 2466 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2467 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2468 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2469 .addReg(Reg, RegState::ImplicitKill); 2470 2471 MBB.insert(MI, CRMIB); 2472 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2473 .addReg(PPC::R12, 2474 getKillRegState(true)), 2475 I.getFrameIdx())); 2476 } 2477 } else { 2478 if (I.isSpilledToReg()) { 2479 unsigned Dst = I.getDstReg(); 2480 2481 if (Spilled[Dst]) 2482 continue; 2483 2484 if (VSRContainingGPRs[Dst].second != 0) { 2485 assert(Subtarget.hasP9Vector() && 2486 "mtvsrdd is unavailable on pre-P9 targets."); 2487 2488 NumPESpillVSR += 2; 2489 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst) 2490 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)) 2491 .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true)); 2492 } else if (VSRContainingGPRs[Dst].second == 0) { 2493 assert(Subtarget.hasP8Vector() && 2494 "Can't move GPR to VSR on pre-P8 targets."); 2495 2496 ++NumPESpillVSR; 2497 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), 2498 TRI->getSubReg(Dst, PPC::sub_64)) 2499 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)); 2500 } else { 2501 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2502 } 2503 Spilled.set(Dst); 2504 } else { 2505 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2506 // Use !IsLiveIn for the kill flag. 2507 // We do not want to kill registers that are live in this function 2508 // before their use because they will become undefined registers. 2509 // Functions without NoUnwind need to preserve the order of elements in 2510 // saved vector registers. 2511 if (Subtarget.needsSwapsForVSXMemOps() && 2512 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2513 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2514 I.getFrameIdx(), RC, TRI); 2515 else 2516 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), RC, 2517 TRI, Register()); 2518 } 2519 } 2520 } 2521 return true; 2522 } 2523 2524 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2525 bool CR4Spilled, MachineBasicBlock &MBB, 2526 MachineBasicBlock::iterator MI, 2527 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2528 2529 MachineFunction *MF = MBB.getParent(); 2530 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2531 DebugLoc DL; 2532 unsigned MoveReg = PPC::R12; 2533 2534 // 32-bit: FP-relative 2535 MBB.insert(MI, 2536 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2537 CSI[CSIIndex].getFrameIdx())); 2538 2539 unsigned RestoreOp = PPC::MTOCRF; 2540 if (CR2Spilled) 2541 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2542 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2543 2544 if (CR3Spilled) 2545 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2546 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2547 2548 if (CR4Spilled) 2549 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2550 .addReg(MoveReg, getKillRegState(true))); 2551 } 2552 2553 MachineBasicBlock::iterator PPCFrameLowering:: 2554 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2555 MachineBasicBlock::iterator I) const { 2556 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2557 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2558 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2559 // Add (actually subtract) back the amount the callee popped on return. 2560 if (int CalleeAmt = I->getOperand(1).getImm()) { 2561 bool is64Bit = Subtarget.isPPC64(); 2562 CalleeAmt *= -1; 2563 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2564 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2565 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2566 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2567 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2568 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2569 const DebugLoc &dl = I->getDebugLoc(); 2570 2571 if (isInt<16>(CalleeAmt)) { 2572 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2573 .addReg(StackReg, RegState::Kill) 2574 .addImm(CalleeAmt); 2575 } else { 2576 MachineBasicBlock::iterator MBBI = I; 2577 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2578 .addImm(CalleeAmt >> 16); 2579 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2580 .addReg(TmpReg, RegState::Kill) 2581 .addImm(CalleeAmt & 0xFFFF); 2582 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2583 .addReg(StackReg, RegState::Kill) 2584 .addReg(TmpReg); 2585 } 2586 } 2587 } 2588 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2589 return MBB.erase(I); 2590 } 2591 2592 static bool isCalleeSavedCR(unsigned Reg) { 2593 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2594 } 2595 2596 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2597 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2598 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2599 MachineFunction *MF = MBB.getParent(); 2600 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2601 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2602 bool MustSaveTOC = FI->mustSaveTOC(); 2603 bool CR2Spilled = false; 2604 bool CR3Spilled = false; 2605 bool CR4Spilled = false; 2606 unsigned CSIIndex = 0; 2607 BitVector Restored(TRI->getNumRegs()); 2608 2609 // Initialize insertion-point logic; we will be restoring in reverse 2610 // order of spill. 2611 MachineBasicBlock::iterator I = MI, BeforeI = I; 2612 bool AtStart = I == MBB.begin(); 2613 2614 if (!AtStart) 2615 --BeforeI; 2616 2617 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2618 Register Reg = CSI[i].getReg(); 2619 2620 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2621 continue; 2622 2623 // Restore of callee saved condition register field is handled during 2624 // epilogue insertion. 2625 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2626 continue; 2627 2628 if (Reg == PPC::CR2) { 2629 CR2Spilled = true; 2630 // The spill slot is associated only with CR2, which is the 2631 // first nonvolatile spilled. Save it here. 2632 CSIIndex = i; 2633 continue; 2634 } else if (Reg == PPC::CR3) { 2635 CR3Spilled = true; 2636 continue; 2637 } else if (Reg == PPC::CR4) { 2638 CR4Spilled = true; 2639 continue; 2640 } else { 2641 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2642 // least one CR register, restore all spilled CRs together. 2643 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2644 bool is31 = needsFP(*MF); 2645 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2646 CSIIndex); 2647 CR2Spilled = CR3Spilled = CR4Spilled = false; 2648 } 2649 2650 if (CSI[i].isSpilledToReg()) { 2651 DebugLoc DL; 2652 unsigned Dst = CSI[i].getDstReg(); 2653 2654 if (Restored[Dst]) 2655 continue; 2656 2657 if (VSRContainingGPRs[Dst].second != 0) { 2658 assert(Subtarget.hasP9Vector()); 2659 NumPEReloadVSR += 2; 2660 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD), 2661 VSRContainingGPRs[Dst].second) 2662 .addReg(Dst); 2663 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2664 VSRContainingGPRs[Dst].first) 2665 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2666 } else if (VSRContainingGPRs[Dst].second == 0) { 2667 assert(Subtarget.hasP8Vector()); 2668 ++NumPEReloadVSR; 2669 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2670 VSRContainingGPRs[Dst].first) 2671 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2672 } else { 2673 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2674 } 2675 2676 Restored.set(Dst); 2677 2678 } else { 2679 // Default behavior for non-CR saves. 2680 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2681 2682 // Functions without NoUnwind need to preserve the order of elements in 2683 // saved vector registers. 2684 if (Subtarget.needsSwapsForVSXMemOps() && 2685 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2686 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2687 TRI); 2688 else 2689 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI, 2690 Register()); 2691 2692 assert(I != MBB.begin() && 2693 "loadRegFromStackSlot didn't insert any code!"); 2694 } 2695 } 2696 2697 // Insert in reverse order. 2698 if (AtStart) 2699 I = MBB.begin(); 2700 else { 2701 I = BeforeI; 2702 ++I; 2703 } 2704 } 2705 2706 // If we haven't yet spilled the CRs, do so now. 2707 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2708 assert(Subtarget.is32BitELFABI() && 2709 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2710 bool is31 = needsFP(*MF); 2711 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2712 } 2713 2714 return true; 2715 } 2716 2717 uint64_t PPCFrameLowering::getTOCSaveOffset() const { 2718 return TOCSaveOffset; 2719 } 2720 2721 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const { 2722 return FramePointerSaveOffset; 2723 } 2724 2725 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const { 2726 return BasePointerSaveOffset; 2727 } 2728 2729 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2730 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2731 return false; 2732 return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI(); 2733 } 2734 2735 uint64_t PPCFrameLowering::getStackThreshold() const { 2736 // On PPC64, we use `stux r1, r1, <scratch_reg>` to extend the stack; 2737 // use `add r1, r1, <scratch_reg>` to release the stack frame. 2738 // Scratch register contains a signed 64-bit number, which is negative 2739 // when extending the stack and is positive when releasing the stack frame. 2740 // To make `stux` and `add` paired, the absolute value of the number contained 2741 // in the scratch register should be the same. Thus the maximum stack size 2742 // is (2^63)-1, i.e., LONG_MAX. 2743 if (Subtarget.isPPC64()) 2744 return LONG_MAX; 2745 2746 return TargetFrameLowering::getStackThreshold(); 2747 } 2748