xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PPC implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCFrameLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPCInstrBuilder.h"
16 #include "PPCInstrInfo.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterScavenging.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Target/TargetOptions.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "framelowering"
34 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
35 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
36 STATISTIC(NumPrologProbed, "Number of prologues probed");
37 
38 static cl::opt<bool>
39 EnablePEVectorSpills("ppc-enable-pe-vector-spills",
40                      cl::desc("Enable spills in prologue to vector registers."),
41                      cl::init(false), cl::Hidden);
42 
43 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
44   if (STI.isAIXABI())
45     return STI.isPPC64() ? 16 : 8;
46   // SVR4 ABI:
47   return STI.isPPC64() ? 16 : 4;
48 }
49 
50 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
51   if (STI.isAIXABI())
52     return STI.isPPC64() ? 40 : 20;
53   return STI.isELFv2ABI() ? 24 : 40;
54 }
55 
56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
57   // First slot in the general register save area.
58   return STI.isPPC64() ? -8U : -4U;
59 }
60 
61 static unsigned computeLinkageSize(const PPCSubtarget &STI) {
62   if (STI.isAIXABI() || STI.isPPC64())
63     return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
64 
65   // 32-bit SVR4 ABI:
66   return 8;
67 }
68 
69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
70   // Third slot in the general purpose register save area.
71   if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
72     return -12U;
73 
74   // Second slot in the general purpose register save area.
75   return STI.isPPC64() ? -16U : -8U;
76 }
77 
78 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
79   return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
80 }
81 
82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
83     : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
84                           STI.getPlatformStackAlignment(), 0),
85       Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
86       TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
87       FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
88       LinkageSize(computeLinkageSize(Subtarget)),
89       BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
90       CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
91 
92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
93 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
94     unsigned &NumEntries) const {
95 
96 // Floating-point register save area offsets.
97 #define CALLEE_SAVED_FPRS \
98       {PPC::F31, -8},     \
99       {PPC::F30, -16},    \
100       {PPC::F29, -24},    \
101       {PPC::F28, -32},    \
102       {PPC::F27, -40},    \
103       {PPC::F26, -48},    \
104       {PPC::F25, -56},    \
105       {PPC::F24, -64},    \
106       {PPC::F23, -72},    \
107       {PPC::F22, -80},    \
108       {PPC::F21, -88},    \
109       {PPC::F20, -96},    \
110       {PPC::F19, -104},   \
111       {PPC::F18, -112},   \
112       {PPC::F17, -120},   \
113       {PPC::F16, -128},   \
114       {PPC::F15, -136},   \
115       {PPC::F14, -144}
116 
117 // 32-bit general purpose register save area offsets shared by ELF and
118 // AIX. AIX has an extra CSR with r13.
119 #define CALLEE_SAVED_GPRS32 \
120       {PPC::R31, -4},       \
121       {PPC::R30, -8},       \
122       {PPC::R29, -12},      \
123       {PPC::R28, -16},      \
124       {PPC::R27, -20},      \
125       {PPC::R26, -24},      \
126       {PPC::R25, -28},      \
127       {PPC::R24, -32},      \
128       {PPC::R23, -36},      \
129       {PPC::R22, -40},      \
130       {PPC::R21, -44},      \
131       {PPC::R20, -48},      \
132       {PPC::R19, -52},      \
133       {PPC::R18, -56},      \
134       {PPC::R17, -60},      \
135       {PPC::R16, -64},      \
136       {PPC::R15, -68},      \
137       {PPC::R14, -72}
138 
139 // 64-bit general purpose register save area offsets.
140 #define CALLEE_SAVED_GPRS64 \
141       {PPC::X31, -8},       \
142       {PPC::X30, -16},      \
143       {PPC::X29, -24},      \
144       {PPC::X28, -32},      \
145       {PPC::X27, -40},      \
146       {PPC::X26, -48},      \
147       {PPC::X25, -56},      \
148       {PPC::X24, -64},      \
149       {PPC::X23, -72},      \
150       {PPC::X22, -80},      \
151       {PPC::X21, -88},      \
152       {PPC::X20, -96},      \
153       {PPC::X19, -104},     \
154       {PPC::X18, -112},     \
155       {PPC::X17, -120},     \
156       {PPC::X16, -128},     \
157       {PPC::X15, -136},     \
158       {PPC::X14, -144}
159 
160 // Vector register save area offsets.
161 #define CALLEE_SAVED_VRS \
162       {PPC::V31, -16},   \
163       {PPC::V30, -32},   \
164       {PPC::V29, -48},   \
165       {PPC::V28, -64},   \
166       {PPC::V27, -80},   \
167       {PPC::V26, -96},   \
168       {PPC::V25, -112},  \
169       {PPC::V24, -128},  \
170       {PPC::V23, -144},  \
171       {PPC::V22, -160},  \
172       {PPC::V21, -176},  \
173       {PPC::V20, -192}
174 
175   // Note that the offsets here overlap, but this is fixed up in
176   // processFunctionBeforeFrameFinalized.
177 
178   static const SpillSlot ELFOffsets32[] = {
179       CALLEE_SAVED_FPRS,
180       CALLEE_SAVED_GPRS32,
181 
182       // CR save area offset.  We map each of the nonvolatile CR fields
183       // to the slot for CR2, which is the first of the nonvolatile CR
184       // fields to be assigned, so that we only allocate one save slot.
185       // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
186       {PPC::CR2, -4},
187 
188       // VRSAVE save area offset.
189       {PPC::VRSAVE, -4},
190 
191       CALLEE_SAVED_VRS,
192 
193       // SPE register save area (overlaps Vector save area).
194       {PPC::S31, -8},
195       {PPC::S30, -16},
196       {PPC::S29, -24},
197       {PPC::S28, -32},
198       {PPC::S27, -40},
199       {PPC::S26, -48},
200       {PPC::S25, -56},
201       {PPC::S24, -64},
202       {PPC::S23, -72},
203       {PPC::S22, -80},
204       {PPC::S21, -88},
205       {PPC::S20, -96},
206       {PPC::S19, -104},
207       {PPC::S18, -112},
208       {PPC::S17, -120},
209       {PPC::S16, -128},
210       {PPC::S15, -136},
211       {PPC::S14, -144}};
212 
213   static const SpillSlot ELFOffsets64[] = {
214       CALLEE_SAVED_FPRS,
215       CALLEE_SAVED_GPRS64,
216 
217       // VRSAVE save area offset.
218       {PPC::VRSAVE, -4},
219       CALLEE_SAVED_VRS
220   };
221 
222   static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
223                                            CALLEE_SAVED_GPRS32,
224                                            // Add AIX's extra CSR.
225                                            {PPC::R13, -76},
226                                            CALLEE_SAVED_VRS};
227 
228   static const SpillSlot AIXOffsets64[] = {
229       CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
230 
231   if (Subtarget.is64BitELFABI()) {
232     NumEntries = std::size(ELFOffsets64);
233     return ELFOffsets64;
234   }
235 
236   if (Subtarget.is32BitELFABI()) {
237     NumEntries = std::size(ELFOffsets32);
238     return ELFOffsets32;
239   }
240 
241   assert(Subtarget.isAIXABI() && "Unexpected ABI.");
242 
243   if (Subtarget.isPPC64()) {
244     NumEntries = std::size(AIXOffsets64);
245     return AIXOffsets64;
246   }
247 
248   NumEntries = std::size(AIXOffsets32);
249   return AIXOffsets32;
250 }
251 
252 static bool spillsCR(const MachineFunction &MF) {
253   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
254   return FuncInfo->isCRSpilled();
255 }
256 
257 static bool hasSpills(const MachineFunction &MF) {
258   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
259   return FuncInfo->hasSpills();
260 }
261 
262 static bool hasNonRISpills(const MachineFunction &MF) {
263   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
264   return FuncInfo->hasNonRISpills();
265 }
266 
267 /// MustSaveLR - Return true if this function requires that we save the LR
268 /// register onto the stack in the prolog and restore it in the epilog of the
269 /// function.
270 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
271   const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
272 
273   // We need a save/restore of LR if there is any def of LR (which is
274   // defined by calls, including the PIC setup sequence), or if there is
275   // some use of the LR stack slot (e.g. for builtin_return_address).
276   // (LR comes in 32 and 64 bit versions.)
277   MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
278   return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
279 }
280 
281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
282 /// call frame size. Update the MachineFunction object with the stack size.
283 uint64_t
284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
285                                                 bool UseEstimate) const {
286   unsigned NewMaxCallFrameSize = 0;
287   uint64_t FrameSize = determineFrameLayout(MF, UseEstimate,
288                                             &NewMaxCallFrameSize);
289   MF.getFrameInfo().setStackSize(FrameSize);
290   MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
291   return FrameSize;
292 }
293 
294 /// determineFrameLayout - Determine the size of the frame and maximum call
295 /// frame size.
296 uint64_t
297 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
298                                        bool UseEstimate,
299                                        unsigned *NewMaxCallFrameSize) const {
300   const MachineFrameInfo &MFI = MF.getFrameInfo();
301   const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
302 
303   // Get the number of bytes to allocate from the FrameInfo
304   uint64_t FrameSize =
305     UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
306 
307   // Get stack alignments. The frame must be aligned to the greatest of these:
308   Align TargetAlign = getStackAlign(); // alignment required per the ABI
309   Align MaxAlign = MFI.getMaxAlign();  // algmt required by data in frame
310   Align Alignment = std::max(TargetAlign, MaxAlign);
311 
312   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
313 
314   unsigned LR = RegInfo->getRARegister();
315   bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
316   bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
317                        !MFI.adjustsStack() &&       // No calls.
318                        !MustSaveLR(MF, LR) &&       // No need to save LR.
319                        !FI->mustSaveTOC() &&        // No need to save TOC.
320                        !RegInfo->hasBasePointer(MF); // No special alignment.
321 
322   // Note: for PPC32 SVR4ABI, we can still generate stackless
323   // code if all local vars are reg-allocated.
324   bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
325 
326   // Check whether we can skip adjusting the stack pointer (by using red zone)
327   if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
328     // No need for frame
329     return 0;
330   }
331 
332   // Get the maximum call frame size of all the calls.
333   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
334 
335   // Maximum call frame needs to be at least big enough for linkage area.
336   unsigned minCallFrameSize = getLinkageSize();
337   maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
338 
339   // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
340   // that allocations will be aligned.
341   if (MFI.hasVarSizedObjects())
342     maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
343 
344   // Update the new max call frame size if the caller passes in a valid pointer.
345   if (NewMaxCallFrameSize)
346     *NewMaxCallFrameSize = maxCallFrameSize;
347 
348   // Include call frame size in total.
349   FrameSize += maxCallFrameSize;
350 
351   // Make sure the frame is aligned.
352   FrameSize = alignTo(FrameSize, Alignment);
353 
354   return FrameSize;
355 }
356 
357 // hasFP - Return true if the specified function actually has a dedicated frame
358 // pointer register.
359 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
360   const MachineFrameInfo &MFI = MF.getFrameInfo();
361   // FIXME: This is pretty much broken by design: hasFP() might be called really
362   // early, before the stack layout was calculated and thus hasFP() might return
363   // true or false here depending on the time of call.
364   return (MFI.getStackSize()) && needsFP(MF);
365 }
366 
367 // needsFP - Return true if the specified function should have a dedicated frame
368 // pointer register.  This is true if the function has variable sized allocas or
369 // if frame pointer elimination is disabled.
370 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
371   const MachineFrameInfo &MFI = MF.getFrameInfo();
372 
373   // Naked functions have no stack frame pushed, so we don't have a frame
374   // pointer.
375   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
376     return false;
377 
378   return MF.getTarget().Options.DisableFramePointerElim(MF) ||
379          MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
380          MF.exposesReturnsTwice() ||
381          (MF.getTarget().Options.GuaranteedTailCallOpt &&
382           MF.getInfo<PPCFunctionInfo>()->hasFastCall());
383 }
384 
385 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
386   bool is31 = needsFP(MF);
387   unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
388   unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
389 
390   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
391   bool HasBP = RegInfo->hasBasePointer(MF);
392   unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
393   unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
394 
395   for (MachineBasicBlock &MBB : MF)
396     for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) {
397       --MBBI;
398       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
399         MachineOperand &MO = MBBI->getOperand(I);
400         if (!MO.isReg())
401           continue;
402 
403         switch (MO.getReg()) {
404         case PPC::FP:
405           MO.setReg(FPReg);
406           break;
407         case PPC::FP8:
408           MO.setReg(FP8Reg);
409           break;
410         case PPC::BP:
411           MO.setReg(BPReg);
412           break;
413         case PPC::BP8:
414           MO.setReg(BP8Reg);
415           break;
416 
417         }
418       }
419     }
420 }
421 
422 /*  This function will do the following:
423     - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
424       respectively (defaults recommended by the ABI) and return true
425     - If MBB is not an entry block, initialize the register scavenger and look
426       for available registers.
427     - If the defaults (R0/R12) are available, return true
428     - If TwoUniqueRegsRequired is set to true, it looks for two unique
429       registers. Otherwise, look for a single available register.
430       - If the required registers are found, set SR1 and SR2 and return true.
431       - If the required registers are not found, set SR2 or both SR1 and SR2 to
432         PPC::NoRegister and return false.
433 
434     Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
435     is not set, this function will attempt to find two different registers, but
436     still return true if only one register is available (and set SR1 == SR2).
437 */
438 bool
439 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
440                                       bool UseAtEnd,
441                                       bool TwoUniqueRegsRequired,
442                                       Register *SR1,
443                                       Register *SR2) const {
444   RegScavenger RS;
445   Register R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
446   Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
447 
448   // Set the defaults for the two scratch registers.
449   if (SR1)
450     *SR1 = R0;
451 
452   if (SR2) {
453     assert (SR1 && "Asking for the second scratch register but not the first?");
454     *SR2 = R12;
455   }
456 
457   // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
458   if ((UseAtEnd && MBB->isReturnBlock()) ||
459       (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
460     return true;
461 
462   RS.enterBasicBlock(*MBB);
463 
464   if (UseAtEnd && !MBB->empty()) {
465     // The scratch register will be used at the end of the block, so must
466     // consider all registers used within the block
467 
468     MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
469     // If no terminator, back iterator up to previous instruction.
470     if (MBBI == MBB->end())
471       MBBI = std::prev(MBBI);
472 
473     if (MBBI != MBB->begin())
474       RS.forward(MBBI);
475   }
476 
477   // If the two registers are available, we're all good.
478   // Note that we only return here if both R0 and R12 are available because
479   // although the function may not require two unique registers, it may benefit
480   // from having two so we should try to provide them.
481   if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
482     return true;
483 
484   // Get the list of callee-saved registers for the target.
485   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
486   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
487 
488   // Get all the available registers in the block.
489   BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
490                                      &PPC::GPRCRegClass);
491 
492   // We shouldn't use callee-saved registers as scratch registers as they may be
493   // available when looking for a candidate block for shrink wrapping but not
494   // available when the actual prologue/epilogue is being emitted because they
495   // were added as live-in to the prologue block by PrologueEpilogueInserter.
496   for (int i = 0; CSRegs[i]; ++i)
497     BV.reset(CSRegs[i]);
498 
499   // Set the first scratch register to the first available one.
500   if (SR1) {
501     int FirstScratchReg = BV.find_first();
502     *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
503   }
504 
505   // If there is another one available, set the second scratch register to that.
506   // Otherwise, set it to either PPC::NoRegister if this function requires two
507   // or to whatever SR1 is set to if this function doesn't require two.
508   if (SR2) {
509     int SecondScratchReg = BV.find_next(*SR1);
510     if (SecondScratchReg != -1)
511       *SR2 = SecondScratchReg;
512     else
513       *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
514   }
515 
516   // Now that we've done our best to provide both registers, double check
517   // whether we were unable to provide enough.
518   if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
519     return false;
520 
521   return true;
522 }
523 
524 // We need a scratch register for spilling LR and for spilling CR. By default,
525 // we use two scratch registers to hide latency. However, if only one scratch
526 // register is available, we can adjust for that by not overlapping the spill
527 // code. However, if we need to realign the stack (i.e. have a base pointer)
528 // and the stack frame is large, we need two scratch registers.
529 // Also, stack probe requires two scratch registers, one for old sp, one for
530 // large frame and large probe size.
531 bool
532 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
533   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
534   MachineFunction &MF = *(MBB->getParent());
535   bool HasBP = RegInfo->hasBasePointer(MF);
536   unsigned FrameSize = determineFrameLayout(MF);
537   int NegFrameSize = -FrameSize;
538   bool IsLargeFrame = !isInt<16>(NegFrameSize);
539   MachineFrameInfo &MFI = MF.getFrameInfo();
540   Align MaxAlign = MFI.getMaxAlign();
541   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
542   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
543 
544   return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
545          TLI.hasInlineStackProbe(MF);
546 }
547 
548 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
549   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
550 
551   return findScratchRegister(TmpMBB, false,
552                              twoUniqueScratchRegsRequired(TmpMBB));
553 }
554 
555 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
556   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
557 
558   return findScratchRegister(TmpMBB, true);
559 }
560 
561 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
562   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
563   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
564 
565   // Abort if there is no register info or function info.
566   if (!RegInfo || !FI)
567     return false;
568 
569   // Only move the stack update on ELFv2 ABI and PPC64.
570   if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
571     return false;
572 
573   // Check the frame size first and return false if it does not fit the
574   // requirements.
575   // We need a non-zero frame size as well as a frame that will fit in the red
576   // zone. This is because by moving the stack pointer update we are now storing
577   // to the red zone until the stack pointer is updated. If we get an interrupt
578   // inside the prologue but before the stack update we now have a number of
579   // stores to the red zone and those stores must all fit.
580   MachineFrameInfo &MFI = MF.getFrameInfo();
581   unsigned FrameSize = MFI.getStackSize();
582   if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
583     return false;
584 
585   // Frame pointers and base pointers complicate matters so don't do anything
586   // if we have them. For example having a frame pointer will sometimes require
587   // a copy of r1 into r31 and that makes keeping track of updates to r1 more
588   // difficult. Similar situation exists with setjmp.
589   if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
590     return false;
591 
592   // Calls to fast_cc functions use different rules for passing parameters on
593   // the stack from the ABI and using PIC base in the function imposes
594   // similar restrictions to using the base pointer. It is not generally safe
595   // to move the stack pointer update in these situations.
596   if (FI->hasFastCall() || FI->usesPICBase())
597     return false;
598 
599   // Finally we can move the stack update if we do not require register
600   // scavenging. Register scavenging can introduce more spills and so
601   // may make the frame size larger than we have computed.
602   return !RegInfo->requiresFrameIndexScavenging(MF);
603 }
604 
605 void PPCFrameLowering::emitPrologue(MachineFunction &MF,
606                                     MachineBasicBlock &MBB) const {
607   MachineBasicBlock::iterator MBBI = MBB.begin();
608   MachineFrameInfo &MFI = MF.getFrameInfo();
609   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
610   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
611   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
612 
613   MachineModuleInfo &MMI = MF.getMMI();
614   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
615   DebugLoc dl;
616   // AIX assembler does not support cfi directives.
617   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
618 
619   const bool HasFastMFLR = Subtarget.hasFastMFLR();
620 
621   // Get processor type.
622   bool isPPC64 = Subtarget.isPPC64();
623   // Get the ABI.
624   bool isSVR4ABI = Subtarget.isSVR4ABI();
625   bool isELFv2ABI = Subtarget.isELFv2ABI();
626   assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
627 
628   // Work out frame sizes.
629   uint64_t FrameSize = determineFrameLayoutAndUpdate(MF);
630   int64_t NegFrameSize = -FrameSize;
631   if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize)))
632     llvm_unreachable("Unhandled stack size!");
633 
634   if (MFI.isFrameAddressTaken())
635     replaceFPWithRealFP(MF);
636 
637   // Check if the link register (LR) must be saved.
638   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
639   bool MustSaveLR = FI->mustSaveLR();
640   bool MustSaveTOC = FI->mustSaveTOC();
641   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
642   bool MustSaveCR = !MustSaveCRs.empty();
643   // Do we have a frame pointer and/or base pointer for this function?
644   bool HasFP = hasFP(MF);
645   bool HasBP = RegInfo->hasBasePointer(MF);
646   bool HasRedZone = isPPC64 || !isSVR4ABI;
647   bool HasROPProtect = Subtarget.hasROPProtect();
648   bool HasPrivileged = Subtarget.hasPrivileged();
649 
650   Register SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
651   Register BPReg = RegInfo->getBaseRegister(MF);
652   Register FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
653   Register LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
654   Register TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
655   Register ScratchReg;
656   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
657   //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
658   const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
659                                                 : PPC::MFLR );
660   const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
661                                                  : PPC::STW );
662   const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
663                                                      : PPC::STWU );
664   const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
665                                                         : PPC::STWUX);
666   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
667                                               : PPC::OR );
668   const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
669                                                             : PPC::SUBFC);
670   const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
671                                                                : PPC::SUBFIC);
672   const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
673                                                            : PPC::MFCR);
674   const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
675   const MCInstrDesc &HashST =
676       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8)
677                       : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST));
678 
679   // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
680   // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
681   // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
682   // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
683   assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
684          "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
685 
686   // Using the same bool variable as below to suppress compiler warnings.
687   bool SingleScratchReg = findScratchRegister(
688       &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
689   assert(SingleScratchReg &&
690          "Required number of registers not available in this block");
691 
692   SingleScratchReg = ScratchReg == TempReg;
693 
694   int64_t LROffset = getReturnSaveOffset();
695 
696   int64_t FPOffset = 0;
697   if (HasFP) {
698     MachineFrameInfo &MFI = MF.getFrameInfo();
699     int FPIndex = FI->getFramePointerSaveIndex();
700     assert(FPIndex && "No Frame Pointer Save Slot!");
701     FPOffset = MFI.getObjectOffset(FPIndex);
702   }
703 
704   int64_t BPOffset = 0;
705   if (HasBP) {
706     MachineFrameInfo &MFI = MF.getFrameInfo();
707     int BPIndex = FI->getBasePointerSaveIndex();
708     assert(BPIndex && "No Base Pointer Save Slot!");
709     BPOffset = MFI.getObjectOffset(BPIndex);
710   }
711 
712   int64_t PBPOffset = 0;
713   if (FI->usesPICBase()) {
714     MachineFrameInfo &MFI = MF.getFrameInfo();
715     int PBPIndex = FI->getPICBasePointerSaveIndex();
716     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
717     PBPOffset = MFI.getObjectOffset(PBPIndex);
718   }
719 
720   // Get stack alignments.
721   Align MaxAlign = MFI.getMaxAlign();
722   if (HasBP && MaxAlign > 1)
723     assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
724 
725   // Frames of 32KB & larger require special handling because they cannot be
726   // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
727   bool isLargeFrame = !isInt<16>(NegFrameSize);
728 
729   // Check if we can move the stack update instruction (stdu) down the prologue
730   // past the callee saves. Hopefully this will avoid the situation where the
731   // saves are waiting for the update on the store with update to complete.
732   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
733   bool MovingStackUpdateDown = false;
734 
735   // Check if we can move the stack update.
736   if (stackUpdateCanBeMoved(MF)) {
737     const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
738     for (CalleeSavedInfo CSI : Info) {
739       // If the callee saved register is spilled to a register instead of the
740       // stack then the spill no longer uses the stack pointer.
741       // This can lead to two consequences:
742       // 1) We no longer need to update the stack because the function does not
743       //    spill any callee saved registers to stack.
744       // 2) We have a situation where we still have to update the stack pointer
745       //    even though some registers are spilled to other registers. In
746       //    this case the current code moves the stack update to an incorrect
747       //    position.
748       // In either case we should abort moving the stack update operation.
749       if (CSI.isSpilledToReg()) {
750         StackUpdateLoc = MBBI;
751         MovingStackUpdateDown = false;
752         break;
753       }
754 
755       int FrIdx = CSI.getFrameIdx();
756       // If the frame index is not negative the callee saved info belongs to a
757       // stack object that is not a fixed stack object. We ignore non-fixed
758       // stack objects because we won't move the stack update pointer past them.
759       if (FrIdx >= 0)
760         continue;
761 
762       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
763         StackUpdateLoc++;
764         MovingStackUpdateDown = true;
765       } else {
766         // We need all of the Frame Indices to meet these conditions.
767         // If they do not, abort the whole operation.
768         StackUpdateLoc = MBBI;
769         MovingStackUpdateDown = false;
770         break;
771       }
772     }
773 
774     // If the operation was not aborted then update the object offset.
775     if (MovingStackUpdateDown) {
776       for (CalleeSavedInfo CSI : Info) {
777         int FrIdx = CSI.getFrameIdx();
778         if (FrIdx < 0)
779           MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
780       }
781     }
782   }
783 
784   // Where in the prologue we move the CR fields depends on how many scratch
785   // registers we have, and if we need to save the link register or not. This
786   // lambda is to avoid duplicating the logic in 2 places.
787   auto BuildMoveFromCR = [&]() {
788     if (isELFv2ABI && MustSaveCRs.size() == 1) {
789     // In the ELFv2 ABI, we are not required to save all CR fields.
790     // If only one CR field is clobbered, it is more efficient to use
791     // mfocrf to selectively save just that field, because mfocrf has short
792     // latency compares to mfcr.
793       assert(isPPC64 && "V2 ABI is 64-bit only.");
794       MachineInstrBuilder MIB =
795           BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
796       MIB.addReg(MustSaveCRs[0], RegState::Kill);
797     } else {
798       MachineInstrBuilder MIB =
799           BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
800       for (unsigned CRfield : MustSaveCRs)
801         MIB.addReg(CRfield, RegState::ImplicitKill);
802     }
803   };
804 
805   // If we need to spill the CR and the LR but we don't have two separate
806   // registers available, we must spill them one at a time
807   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
808     BuildMoveFromCR();
809     BuildMI(MBB, MBBI, dl, StoreWordInst)
810         .addReg(TempReg, getKillRegState(true))
811         .addImm(CRSaveOffset)
812         .addReg(SPReg);
813   }
814 
815   if (MustSaveLR)
816     BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
817 
818   if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
819     BuildMoveFromCR();
820 
821   if (HasRedZone) {
822     if (HasFP)
823       BuildMI(MBB, MBBI, dl, StoreInst)
824         .addReg(FPReg)
825         .addImm(FPOffset)
826         .addReg(SPReg);
827     if (FI->usesPICBase())
828       BuildMI(MBB, MBBI, dl, StoreInst)
829         .addReg(PPC::R30)
830         .addImm(PBPOffset)
831         .addReg(SPReg);
832     if (HasBP)
833       BuildMI(MBB, MBBI, dl, StoreInst)
834         .addReg(BPReg)
835         .addImm(BPOffset)
836         .addReg(SPReg);
837   }
838 
839   // Generate the instruction to store the LR. In the case where ROP protection
840   // is required the register holding the LR should not be killed as it will be
841   // used by the hash store instruction.
842   auto SaveLR = [&](int64_t Offset) {
843     assert(MustSaveLR && "LR is not required to be saved!");
844     BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
845         .addReg(ScratchReg, getKillRegState(!HasROPProtect))
846         .addImm(Offset)
847         .addReg(SPReg);
848 
849     // Add the ROP protection Hash Store instruction.
850     // NOTE: This is technically a violation of the ABI. The hash can be saved
851     // up to 512 bytes into the Protected Zone. This can be outside of the
852     // initial 288 byte volatile program storage region in the Protected Zone.
853     // However, this restriction will be removed in an upcoming revision of the
854     // ABI.
855     if (HasROPProtect) {
856       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
857       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
858       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
859              "ROP hash save offset out of range.");
860       assert(((ImmOffset & 0x7) == 0) &&
861              "ROP hash save offset must be 8 byte aligned.");
862       BuildMI(MBB, StackUpdateLoc, dl, HashST)
863           .addReg(ScratchReg, getKillRegState(true))
864           .addImm(ImmOffset)
865           .addReg(SPReg);
866     }
867   };
868 
869   if (MustSaveLR && HasFastMFLR)
870       SaveLR(LROffset);
871 
872   if (MustSaveCR &&
873       !(SingleScratchReg && MustSaveLR)) {
874     assert(HasRedZone && "A red zone is always available on PPC64");
875     BuildMI(MBB, MBBI, dl, StoreWordInst)
876       .addReg(TempReg, getKillRegState(true))
877       .addImm(CRSaveOffset)
878       .addReg(SPReg);
879   }
880 
881   // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
882   if (!FrameSize) {
883     if (MustSaveLR && !HasFastMFLR)
884       SaveLR(LROffset);
885     return;
886   }
887 
888   // Adjust stack pointer: r1 += NegFrameSize.
889   // If there is a preferred stack alignment, align R1 now
890 
891   if (HasBP && HasRedZone) {
892     // Save a copy of r1 as the base pointer.
893     BuildMI(MBB, MBBI, dl, OrInst, BPReg)
894       .addReg(SPReg)
895       .addReg(SPReg);
896   }
897 
898   // Have we generated a STUX instruction to claim stack frame? If so,
899   // the negated frame size will be placed in ScratchReg.
900   bool HasSTUX =
901       (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) ||
902       (HasBP && MaxAlign > 1) || isLargeFrame;
903 
904   // If we use STUX to update the stack pointer, we need the two scratch
905   // registers TempReg and ScratchReg, we have to save LR here which is stored
906   // in ScratchReg.
907   // If the offset can not be encoded into the store instruction, we also have
908   // to save LR here.
909   if (MustSaveLR && !HasFastMFLR &&
910       (HasSTUX || !isInt<16>(FrameSize + LROffset)))
911     SaveLR(LROffset);
912 
913   // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
914   // pointer is always stored at SP, we will get a free probe due to an essential
915   // STU(X) instruction.
916   if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
917     // To be consistent with other targets, a pseudo instruction is emitted and
918     // will be later expanded in `inlineStackProbe`.
919     BuildMI(MBB, MBBI, dl,
920             TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
921                             : PPC::PROBED_STACKALLOC_32))
922         .addDef(TempReg)
923         .addDef(ScratchReg) // ScratchReg stores the old sp.
924         .addImm(NegFrameSize);
925     // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
926     // update the ScratchReg to meet the assumption that ScratchReg contains
927     // the NegFrameSize. This solution is rather tricky.
928     if (!HasRedZone) {
929       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
930           .addReg(ScratchReg)
931           .addReg(SPReg);
932     }
933   } else {
934     // This condition must be kept in sync with canUseAsPrologue.
935     if (HasBP && MaxAlign > 1) {
936       if (isPPC64)
937         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
938             .addReg(SPReg)
939             .addImm(0)
940             .addImm(64 - Log2(MaxAlign));
941       else // PPC32...
942         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
943             .addReg(SPReg)
944             .addImm(0)
945             .addImm(32 - Log2(MaxAlign))
946             .addImm(31);
947       if (!isLargeFrame) {
948         BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
949             .addReg(ScratchReg, RegState::Kill)
950             .addImm(NegFrameSize);
951       } else {
952         assert(!SingleScratchReg && "Only a single scratch reg available");
953         TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize);
954         BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
955             .addReg(ScratchReg, RegState::Kill)
956             .addReg(TempReg, RegState::Kill);
957       }
958 
959       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
960           .addReg(SPReg, RegState::Kill)
961           .addReg(SPReg)
962           .addReg(ScratchReg);
963     } else if (!isLargeFrame) {
964       BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
965           .addReg(SPReg)
966           .addImm(NegFrameSize)
967           .addReg(SPReg);
968     } else {
969       TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize);
970       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
971           .addReg(SPReg, RegState::Kill)
972           .addReg(SPReg)
973           .addReg(ScratchReg);
974     }
975   }
976 
977   // Save the TOC register after the stack pointer update if a prologue TOC
978   // save is required for the function.
979   if (MustSaveTOC) {
980     assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
981     BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
982       .addReg(TOCReg, getKillRegState(true))
983       .addImm(TOCSaveOffset)
984       .addReg(SPReg);
985   }
986 
987   if (!HasRedZone) {
988     assert(!isPPC64 && "A red zone is always available on PPC64");
989     if (HasSTUX) {
990       // The negated frame size is in ScratchReg, and the SPReg has been
991       // decremented by the frame size: SPReg = old SPReg + ScratchReg.
992       // Since FPOffset, PBPOffset, etc. are relative to the beginning of
993       // the stack frame (i.e. the old SP), ideally, we would put the old
994       // SP into a register and use it as the base for the stores. The
995       // problem is that the only available register may be ScratchReg,
996       // which could be R0, and R0 cannot be used as a base address.
997 
998       // First, set ScratchReg to the old SP. This may need to be modified
999       // later.
1000       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
1001         .addReg(ScratchReg, RegState::Kill)
1002         .addReg(SPReg);
1003 
1004       if (ScratchReg == PPC::R0) {
1005         // R0 cannot be used as a base register, but it can be used as an
1006         // index in a store-indexed.
1007         int LastOffset = 0;
1008         if (HasFP)  {
1009           // R0 += (FPOffset-LastOffset).
1010           // Need addic, since addi treats R0 as 0.
1011           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1012             .addReg(ScratchReg)
1013             .addImm(FPOffset-LastOffset);
1014           LastOffset = FPOffset;
1015           // Store FP into *R0.
1016           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1017             .addReg(FPReg, RegState::Kill)  // Save FP.
1018             .addReg(PPC::ZERO)
1019             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1020         }
1021         if (FI->usesPICBase()) {
1022           // R0 += (PBPOffset-LastOffset).
1023           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1024             .addReg(ScratchReg)
1025             .addImm(PBPOffset-LastOffset);
1026           LastOffset = PBPOffset;
1027           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1028             .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
1029             .addReg(PPC::ZERO)
1030             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1031         }
1032         if (HasBP) {
1033           // R0 += (BPOffset-LastOffset).
1034           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1035             .addReg(ScratchReg)
1036             .addImm(BPOffset-LastOffset);
1037           LastOffset = BPOffset;
1038           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1039             .addReg(BPReg, RegState::Kill)  // Save BP.
1040             .addReg(PPC::ZERO)
1041             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1042           // BP = R0-LastOffset
1043           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
1044             .addReg(ScratchReg, RegState::Kill)
1045             .addImm(-LastOffset);
1046         }
1047       } else {
1048         // ScratchReg is not R0, so use it as the base register. It is
1049         // already set to the old SP, so we can use the offsets directly.
1050 
1051         // Now that the stack frame has been allocated, save all the necessary
1052         // registers using ScratchReg as the base address.
1053         if (HasFP)
1054           BuildMI(MBB, MBBI, dl, StoreInst)
1055             .addReg(FPReg)
1056             .addImm(FPOffset)
1057             .addReg(ScratchReg);
1058         if (FI->usesPICBase())
1059           BuildMI(MBB, MBBI, dl, StoreInst)
1060             .addReg(PPC::R30)
1061             .addImm(PBPOffset)
1062             .addReg(ScratchReg);
1063         if (HasBP) {
1064           BuildMI(MBB, MBBI, dl, StoreInst)
1065             .addReg(BPReg)
1066             .addImm(BPOffset)
1067             .addReg(ScratchReg);
1068           BuildMI(MBB, MBBI, dl, OrInst, BPReg)
1069             .addReg(ScratchReg, RegState::Kill)
1070             .addReg(ScratchReg);
1071         }
1072       }
1073     } else {
1074       // The frame size is a known 16-bit constant (fitting in the immediate
1075       // field of STWU). To be here we have to be compiling for PPC32.
1076       // Since the SPReg has been decreased by FrameSize, add it back to each
1077       // offset.
1078       if (HasFP)
1079         BuildMI(MBB, MBBI, dl, StoreInst)
1080           .addReg(FPReg)
1081           .addImm(FrameSize + FPOffset)
1082           .addReg(SPReg);
1083       if (FI->usesPICBase())
1084         BuildMI(MBB, MBBI, dl, StoreInst)
1085           .addReg(PPC::R30)
1086           .addImm(FrameSize + PBPOffset)
1087           .addReg(SPReg);
1088       if (HasBP) {
1089         BuildMI(MBB, MBBI, dl, StoreInst)
1090           .addReg(BPReg)
1091           .addImm(FrameSize + BPOffset)
1092           .addReg(SPReg);
1093         BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
1094           .addReg(SPReg)
1095           .addImm(FrameSize);
1096       }
1097     }
1098   }
1099 
1100   // Save the LR now.
1101   if (!HasSTUX && MustSaveLR && !HasFastMFLR && isInt<16>(FrameSize + LROffset))
1102     SaveLR(LROffset + FrameSize);
1103 
1104   // Add Call Frame Information for the instructions we generated above.
1105   if (needsCFI) {
1106     unsigned CFIIndex;
1107 
1108     if (HasBP) {
1109       // Define CFA in terms of BP. Do this in preference to using FP/SP,
1110       // because if the stack needed aligning then CFA won't be at a fixed
1111       // offset from FP/SP.
1112       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1113       CFIIndex = MF.addFrameInst(
1114           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1115     } else {
1116       // Adjust the definition of CFA to account for the change in SP.
1117       assert(NegFrameSize);
1118       CFIIndex = MF.addFrameInst(
1119           MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
1120     }
1121     BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1122         .addCFIIndex(CFIIndex);
1123 
1124     if (HasFP) {
1125       // Describe where FP was saved, at a fixed offset from CFA.
1126       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1127       CFIIndex = MF.addFrameInst(
1128           MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
1129       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1130           .addCFIIndex(CFIIndex);
1131     }
1132 
1133     if (FI->usesPICBase()) {
1134       // Describe where FP was saved, at a fixed offset from CFA.
1135       unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
1136       CFIIndex = MF.addFrameInst(
1137           MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
1138       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1139           .addCFIIndex(CFIIndex);
1140     }
1141 
1142     if (HasBP) {
1143       // Describe where BP was saved, at a fixed offset from CFA.
1144       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1145       CFIIndex = MF.addFrameInst(
1146           MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
1147       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1148           .addCFIIndex(CFIIndex);
1149     }
1150 
1151     if (MustSaveLR) {
1152       // Describe where LR was saved, at a fixed offset from CFA.
1153       unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
1154       CFIIndex = MF.addFrameInst(
1155           MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
1156       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1157           .addCFIIndex(CFIIndex);
1158     }
1159   }
1160 
1161   // If there is a frame pointer, copy R1 into R31
1162   if (HasFP) {
1163     BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1164       .addReg(SPReg)
1165       .addReg(SPReg);
1166 
1167     if (!HasBP && needsCFI) {
1168       // Change the definition of CFA from SP+offset to FP+offset, because SP
1169       // will change at every alloca.
1170       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1171       unsigned CFIIndex = MF.addFrameInst(
1172           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1173 
1174       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1175           .addCFIIndex(CFIIndex);
1176     }
1177   }
1178 
1179   if (needsCFI) {
1180     // Describe where callee saved registers were saved, at fixed offsets from
1181     // CFA.
1182     const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1183     for (const CalleeSavedInfo &I : CSI) {
1184       Register Reg = I.getReg();
1185       if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
1186 
1187       // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1188       // subregisters of CR2. We just need to emit a move of CR2.
1189       if (PPC::CRBITRCRegClass.contains(Reg))
1190         continue;
1191 
1192       if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
1193         continue;
1194 
1195       // For SVR4, don't emit a move for the CR spill slot if we haven't
1196       // spilled CRs.
1197       if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
1198           && !MustSaveCR)
1199         continue;
1200 
1201       // For 64-bit SVR4 when we have spilled CRs, the spill location
1202       // is SP+8, not a frame-relative slot.
1203       if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
1204         // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1205         // the whole CR word.  In the ELFv2 ABI, every CR that was
1206         // actually saved gets its own CFI record.
1207         Register CRReg = isELFv2ABI? Reg : PPC::CR2;
1208         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1209             nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
1210         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1211             .addCFIIndex(CFIIndex);
1212         continue;
1213       }
1214 
1215       if (I.isSpilledToReg()) {
1216         unsigned SpilledReg = I.getDstReg();
1217         unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
1218             nullptr, MRI->getDwarfRegNum(Reg, true),
1219             MRI->getDwarfRegNum(SpilledReg, true)));
1220         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1221           .addCFIIndex(CFIRegister);
1222       } else {
1223         int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
1224         // We have changed the object offset above but we do not want to change
1225         // the actual offsets in the CFI instruction so we have to undo the
1226         // offset change here.
1227         if (MovingStackUpdateDown)
1228           Offset -= NegFrameSize;
1229 
1230         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1231             nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
1232         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1233             .addCFIIndex(CFIIndex);
1234       }
1235     }
1236   }
1237 }
1238 
1239 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
1240                                         MachineBasicBlock &PrologMBB) const {
1241   bool isPPC64 = Subtarget.isPPC64();
1242   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
1243   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1244   MachineFrameInfo &MFI = MF.getFrameInfo();
1245   MachineModuleInfo &MMI = MF.getMMI();
1246   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
1247   // AIX assembler does not support cfi directives.
1248   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
1249   auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
1250     int Opc = MI.getOpcode();
1251     return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
1252   });
1253   if (StackAllocMIPos == PrologMBB.end())
1254     return;
1255   const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
1256   MachineBasicBlock *CurrentMBB = &PrologMBB;
1257   DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
1258   MachineInstr &MI = *StackAllocMIPos;
1259   int64_t NegFrameSize = MI.getOperand(2).getImm();
1260   unsigned ProbeSize = TLI.getStackProbeSize(MF);
1261   int64_t NegProbeSize = -(int64_t)ProbeSize;
1262   assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
1263   int64_t NumBlocks = NegFrameSize / NegProbeSize;
1264   int64_t NegResidualSize = NegFrameSize % NegProbeSize;
1265   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1266   Register ScratchReg = MI.getOperand(0).getReg();
1267   Register FPReg = MI.getOperand(1).getReg();
1268   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1269   bool HasBP = RegInfo->hasBasePointer(MF);
1270   Register BPReg = RegInfo->getBaseRegister(MF);
1271   Align MaxAlign = MFI.getMaxAlign();
1272   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1273   const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
1274   // Subroutines to generate .cfi_* directives.
1275   auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
1276                             MachineBasicBlock::iterator MBBI, Register Reg) {
1277     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1278     unsigned CFIIndex = MF.addFrameInst(
1279         MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
1280     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1281         .addCFIIndex(CFIIndex);
1282   };
1283   auto buildDefCFA = [&](MachineBasicBlock &MBB,
1284                          MachineBasicBlock::iterator MBBI, Register Reg,
1285                          int Offset) {
1286     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1287     unsigned CFIIndex = MBB.getParent()->addFrameInst(
1288         MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
1289     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1290         .addCFIIndex(CFIIndex);
1291   };
1292   // Subroutine to determine if we can use the Imm as part of d-form.
1293   auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
1294   // Subroutine to materialize the Imm into TempReg.
1295   auto MaterializeImm = [&](MachineBasicBlock &MBB,
1296                             MachineBasicBlock::iterator MBBI, int64_t Imm,
1297                             Register &TempReg) {
1298     assert(isInt<32>(Imm) && "Unhandled imm");
1299     if (isInt<16>(Imm))
1300       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
1301           .addImm(Imm);
1302     else {
1303       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
1304           .addImm(Imm >> 16);
1305       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
1306           .addReg(TempReg)
1307           .addImm(Imm & 0xFFFF);
1308     }
1309   };
1310   // Subroutine to store frame pointer and decrease stack pointer by probe size.
1311   auto allocateAndProbe = [&](MachineBasicBlock &MBB,
1312                               MachineBasicBlock::iterator MBBI, int64_t NegSize,
1313                               Register NegSizeReg, bool UseDForm,
1314                               Register StoreReg) {
1315     if (UseDForm)
1316       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
1317           .addReg(StoreReg)
1318           .addImm(NegSize)
1319           .addReg(SPReg);
1320     else
1321       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
1322           .addReg(StoreReg)
1323           .addReg(SPReg)
1324           .addReg(NegSizeReg);
1325   };
1326   // Used to probe stack when realignment is required.
1327   // Note that, according to ABI's requirement, *sp must always equals the
1328   // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
1329   // Following is pseudo code:
1330   // final_sp = (sp & align) + negframesize;
1331   // neg_gap = final_sp - sp;
1332   // while (neg_gap < negprobesize) {
1333   //   stdu fp, negprobesize(sp);
1334   //   neg_gap -= negprobesize;
1335   // }
1336   // stdux fp, sp, neg_gap
1337   //
1338   // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
1339   // before probe code, we don't need to save it, so we get one additional reg
1340   // that can be used to materialize the probeside if needed to use xform.
1341   // Otherwise, we can NOT materialize probeside, so we can only use Dform for
1342   // now.
1343   //
1344   // The allocations are:
1345   // if (HasBP && HasRedzone) {
1346   //   r0: materialize the probesize if needed so that we can use xform.
1347   //   r12: `neg_gap`
1348   // } else {
1349   //   r0: back-chain pointer
1350   //   r12: `neg_gap`.
1351   // }
1352   auto probeRealignedStack = [&](MachineBasicBlock &MBB,
1353                                  MachineBasicBlock::iterator MBBI,
1354                                  Register ScratchReg, Register TempReg) {
1355     assert(HasBP && "The function is supposed to have base pointer when its "
1356                     "stack is realigned.");
1357     assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
1358 
1359     // FIXME: We can eliminate this limitation if we get more infomation about
1360     // which part of redzone are already used. Used redzone can be treated
1361     // probed. But there might be `holes' in redzone probed, this could
1362     // complicate the implementation.
1363     assert(ProbeSize >= Subtarget.getRedZoneSize() &&
1364            "Probe size should be larger or equal to the size of red-zone so "
1365            "that red-zone is not clobbered by probing.");
1366 
1367     Register &FinalStackPtr = TempReg;
1368     // FIXME: We only support NegProbeSize materializable by DForm currently.
1369     // When HasBP && HasRedzone, we can use xform if we have an additional idle
1370     // register.
1371     NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
1372     assert(isInt<16>(NegProbeSize) &&
1373            "NegProbeSize should be materializable by DForm");
1374     Register CRReg = PPC::CR0;
1375     // Layout of output assembly kinda like:
1376     // bb.0:
1377     //   ...
1378     //   sub $scratchreg, $finalsp, r1
1379     //   cmpdi $scratchreg, <negprobesize>
1380     //   bge bb.2
1381     // bb.1:
1382     //   stdu <backchain>, <negprobesize>(r1)
1383     //   sub $scratchreg, $scratchreg, negprobesize
1384     //   cmpdi $scratchreg, <negprobesize>
1385     //   blt bb.1
1386     // bb.2:
1387     //   stdux <backchain>, r1, $scratchreg
1388     MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
1389     MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
1390     MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
1391     MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1392     MF.insert(MBBInsertPoint, ProbeExitMBB);
1393     // bb.2
1394     {
1395       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1396       allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
1397                        BackChainPointer);
1398       if (HasRedZone)
1399         // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
1400         // to TempReg to satisfy it.
1401         BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
1402             .addReg(BPReg)
1403             .addReg(BPReg);
1404       ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
1405       ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
1406     }
1407     // bb.0
1408     {
1409       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
1410           .addReg(SPReg)
1411           .addReg(FinalStackPtr);
1412       if (!HasRedZone)
1413         BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
1414       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
1415           .addReg(ScratchReg)
1416           .addImm(NegProbeSize);
1417       BuildMI(&MBB, DL, TII.get(PPC::BCC))
1418           .addImm(PPC::PRED_GE)
1419           .addReg(CRReg)
1420           .addMBB(ProbeExitMBB);
1421       MBB.addSuccessor(ProbeLoopBodyMBB);
1422       MBB.addSuccessor(ProbeExitMBB);
1423     }
1424     // bb.1
1425     {
1426       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1427       allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
1428                        0, true /*UseDForm*/, BackChainPointer);
1429       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
1430               ScratchReg)
1431           .addReg(ScratchReg)
1432           .addImm(-NegProbeSize);
1433       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
1434               CRReg)
1435           .addReg(ScratchReg)
1436           .addImm(NegProbeSize);
1437       BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
1438           .addImm(PPC::PRED_LT)
1439           .addReg(CRReg)
1440           .addMBB(ProbeLoopBodyMBB);
1441       ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
1442       ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
1443     }
1444     // Update liveins.
1445     recomputeLiveIns(*ProbeLoopBodyMBB);
1446     recomputeLiveIns(*ProbeExitMBB);
1447     return ProbeExitMBB;
1448   };
1449   // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1450   // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
1451   // the offset subtracted from SP is determined by SP's runtime value.
1452   if (HasBP && MaxAlign > 1) {
1453     // Calculate final stack pointer.
1454     if (isPPC64)
1455       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
1456           .addReg(SPReg)
1457           .addImm(0)
1458           .addImm(64 - Log2(MaxAlign));
1459     else
1460       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
1461           .addReg(SPReg)
1462           .addImm(0)
1463           .addImm(32 - Log2(MaxAlign))
1464           .addImm(31);
1465     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
1466             FPReg)
1467         .addReg(ScratchReg)
1468         .addReg(SPReg);
1469     MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
1470     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
1471             FPReg)
1472         .addReg(ScratchReg)
1473         .addReg(FPReg);
1474     CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
1475     if (needsCFI)
1476       buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
1477   } else {
1478     // Initialize current frame pointer.
1479     BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
1480     // Use FPReg to calculate CFA.
1481     if (needsCFI)
1482       buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1483     // Probe residual part.
1484     if (NegResidualSize) {
1485       bool ResidualUseDForm = CanUseDForm(NegResidualSize);
1486       if (!ResidualUseDForm)
1487         MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
1488       allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
1489                        ResidualUseDForm, FPReg);
1490     }
1491     bool UseDForm = CanUseDForm(NegProbeSize);
1492     // If number of blocks is small, just probe them directly.
1493     if (NumBlocks < 3) {
1494       if (!UseDForm)
1495         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1496       for (int i = 0; i < NumBlocks; ++i)
1497         allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
1498                          FPReg);
1499       if (needsCFI) {
1500         // Restore using SPReg to calculate CFA.
1501         buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
1502       }
1503     } else {
1504       // Since CTR is a volatile register and current shrinkwrap implementation
1505       // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1506       // CTR loop to probe.
1507       // Calculate trip count and stores it in CTRReg.
1508       MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
1509       BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
1510           .addReg(ScratchReg, RegState::Kill);
1511       if (!UseDForm)
1512         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1513       // Create MBBs of the loop.
1514       MachineFunction::iterator MBBInsertPoint =
1515           std::next(CurrentMBB->getIterator());
1516       MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
1517       MF.insert(MBBInsertPoint, LoopMBB);
1518       MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1519       MF.insert(MBBInsertPoint, ExitMBB);
1520       // Synthesize the loop body.
1521       allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
1522                        UseDForm, FPReg);
1523       BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
1524           .addMBB(LoopMBB);
1525       LoopMBB->addSuccessor(ExitMBB);
1526       LoopMBB->addSuccessor(LoopMBB);
1527       // Synthesize the exit MBB.
1528       ExitMBB->splice(ExitMBB->end(), CurrentMBB,
1529                       std::next(MachineBasicBlock::iterator(MI)),
1530                       CurrentMBB->end());
1531       ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
1532       CurrentMBB->addSuccessor(LoopMBB);
1533       if (needsCFI) {
1534         // Restore using SPReg to calculate CFA.
1535         buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
1536       }
1537       // Update liveins.
1538       recomputeLiveIns(*LoopMBB);
1539       recomputeLiveIns(*ExitMBB);
1540     }
1541   }
1542   ++NumPrologProbed;
1543   MI.eraseFromParent();
1544 }
1545 
1546 void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
1547                                     MachineBasicBlock &MBB) const {
1548   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1549   DebugLoc dl;
1550 
1551   if (MBBI != MBB.end())
1552     dl = MBBI->getDebugLoc();
1553 
1554   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1555   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1556 
1557   // Get alignment info so we know how to restore the SP.
1558   const MachineFrameInfo &MFI = MF.getFrameInfo();
1559 
1560   // Get the number of bytes allocated from the FrameInfo.
1561   int64_t FrameSize = MFI.getStackSize();
1562 
1563   // Get processor type.
1564   bool isPPC64 = Subtarget.isPPC64();
1565 
1566   // Check if the link register (LR) has been saved.
1567   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1568   bool MustSaveLR = FI->mustSaveLR();
1569   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
1570   bool MustSaveCR = !MustSaveCRs.empty();
1571   // Do we have a frame pointer and/or base pointer for this function?
1572   bool HasFP = hasFP(MF);
1573   bool HasBP = RegInfo->hasBasePointer(MF);
1574   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1575   bool HasROPProtect = Subtarget.hasROPProtect();
1576   bool HasPrivileged = Subtarget.hasPrivileged();
1577 
1578   Register SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
1579   Register BPReg = RegInfo->getBaseRegister(MF);
1580   Register FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
1581   Register ScratchReg;
1582   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
1583   const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
1584                                                  : PPC::MTLR );
1585   const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
1586                                                  : PPC::LWZ );
1587   const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
1588                                                            : PPC::LIS );
1589   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
1590                                               : PPC::OR );
1591   const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
1592                                                   : PPC::ORI );
1593   const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
1594                                                    : PPC::ADDI );
1595   const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
1596                                                 : PPC::ADD4 );
1597   const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
1598                                                      : PPC::LWZ);
1599   const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
1600                                                      : PPC::MTOCRF);
1601   const MCInstrDesc &HashChk =
1602       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8)
1603                       : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK));
1604   int64_t LROffset = getReturnSaveOffset();
1605 
1606   int64_t FPOffset = 0;
1607 
1608   // Using the same bool variable as below to suppress compiler warnings.
1609   bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
1610                                               &TempReg);
1611   assert(SingleScratchReg &&
1612          "Could not find an available scratch register");
1613 
1614   SingleScratchReg = ScratchReg == TempReg;
1615 
1616   if (HasFP) {
1617     int FPIndex = FI->getFramePointerSaveIndex();
1618     assert(FPIndex && "No Frame Pointer Save Slot!");
1619     FPOffset = MFI.getObjectOffset(FPIndex);
1620   }
1621 
1622   int64_t BPOffset = 0;
1623   if (HasBP) {
1624       int BPIndex = FI->getBasePointerSaveIndex();
1625       assert(BPIndex && "No Base Pointer Save Slot!");
1626       BPOffset = MFI.getObjectOffset(BPIndex);
1627   }
1628 
1629   int64_t PBPOffset = 0;
1630   if (FI->usesPICBase()) {
1631     int PBPIndex = FI->getPICBasePointerSaveIndex();
1632     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
1633     PBPOffset = MFI.getObjectOffset(PBPIndex);
1634   }
1635 
1636   bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
1637 
1638   if (IsReturnBlock) {
1639     unsigned RetOpcode = MBBI->getOpcode();
1640     bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
1641                       RetOpcode == PPC::TCRETURNdi ||
1642                       RetOpcode == PPC::TCRETURNai ||
1643                       RetOpcode == PPC::TCRETURNri8 ||
1644                       RetOpcode == PPC::TCRETURNdi8 ||
1645                       RetOpcode == PPC::TCRETURNai8;
1646 
1647     if (UsesTCRet) {
1648       int MaxTCRetDelta = FI->getTailCallSPDelta();
1649       MachineOperand &StackAdjust = MBBI->getOperand(1);
1650       assert(StackAdjust.isImm() && "Expecting immediate value.");
1651       // Adjust stack pointer.
1652       int StackAdj = StackAdjust.getImm();
1653       int Delta = StackAdj - MaxTCRetDelta;
1654       assert((Delta >= 0) && "Delta must be positive");
1655       if (MaxTCRetDelta>0)
1656         FrameSize += (StackAdj +Delta);
1657       else
1658         FrameSize += StackAdj;
1659     }
1660   }
1661 
1662   // Frames of 32KB & larger require special handling because they cannot be
1663   // indexed into with a simple LD/LWZ immediate offset operand.
1664   bool isLargeFrame = !isInt<16>(FrameSize);
1665 
1666   // On targets without red zone, the SP needs to be restored last, so that
1667   // all live contents of the stack frame are upwards of the SP. This means
1668   // that we cannot restore SP just now, since there may be more registers
1669   // to restore from the stack frame (e.g. R31). If the frame size is not
1670   // a simple immediate value, we will need a spare register to hold the
1671   // restored SP. If the frame size is known and small, we can simply adjust
1672   // the offsets of the registers to be restored, and still use SP to restore
1673   // them. In such case, the final update of SP will be to add the frame
1674   // size to it.
1675   // To simplify the code, set RBReg to the base register used to restore
1676   // values from the stack, and set SPAdd to the value that needs to be added
1677   // to the SP at the end. The default values are as if red zone was present.
1678   unsigned RBReg = SPReg;
1679   uint64_t SPAdd = 0;
1680 
1681   // Check if we can move the stack update instruction up the epilogue
1682   // past the callee saves. This will allow the move to LR instruction
1683   // to be executed before the restores of the callee saves which means
1684   // that the callee saves can hide the latency from the MTLR instrcution.
1685   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
1686   if (stackUpdateCanBeMoved(MF)) {
1687     const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
1688     for (CalleeSavedInfo CSI : Info) {
1689       // If the callee saved register is spilled to another register abort the
1690       // stack update movement.
1691       if (CSI.isSpilledToReg()) {
1692         StackUpdateLoc = MBBI;
1693         break;
1694       }
1695       int FrIdx = CSI.getFrameIdx();
1696       // If the frame index is not negative the callee saved info belongs to a
1697       // stack object that is not a fixed stack object. We ignore non-fixed
1698       // stack objects because we won't move the update of the stack pointer
1699       // past them.
1700       if (FrIdx >= 0)
1701         continue;
1702 
1703       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
1704         StackUpdateLoc--;
1705       else {
1706         // Abort the operation as we can't update all CSR restores.
1707         StackUpdateLoc = MBBI;
1708         break;
1709       }
1710     }
1711   }
1712 
1713   if (FrameSize) {
1714     // In the prologue, the loaded (or persistent) stack pointer value is
1715     // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1716     // zone add this offset back now.
1717 
1718     // If the function has a base pointer, the stack pointer has been copied
1719     // to it so we can restore it by copying in the other direction.
1720     if (HasRedZone && HasBP) {
1721       BuildMI(MBB, MBBI, dl, OrInst, RBReg).
1722         addReg(BPReg).
1723         addReg(BPReg);
1724     }
1725     // If this function contained a fastcc call and GuaranteedTailCallOpt is
1726     // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1727     // call which invalidates the stack pointer value in SP(0). So we use the
1728     // value of R31 in this case. Similar situation exists with setjmp.
1729     else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
1730       assert(HasFP && "Expecting a valid frame pointer.");
1731       if (!HasRedZone)
1732         RBReg = FPReg;
1733       if (!isLargeFrame) {
1734         BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
1735           .addReg(FPReg).addImm(FrameSize);
1736       } else {
1737         TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize);
1738         BuildMI(MBB, MBBI, dl, AddInst)
1739           .addReg(RBReg)
1740           .addReg(FPReg)
1741           .addReg(ScratchReg);
1742       }
1743     } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
1744       if (HasRedZone) {
1745         BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
1746           .addReg(SPReg)
1747           .addImm(FrameSize);
1748       } else {
1749         // Make sure that adding FrameSize will not overflow the max offset
1750         // size.
1751         assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
1752                "Local offsets should be negative");
1753         SPAdd = FrameSize;
1754         FPOffset += FrameSize;
1755         BPOffset += FrameSize;
1756         PBPOffset += FrameSize;
1757       }
1758     } else {
1759       // We don't want to use ScratchReg as a base register, because it
1760       // could happen to be R0. Use FP instead, but make sure to preserve it.
1761       if (!HasRedZone) {
1762         // If FP is not saved, copy it to ScratchReg.
1763         if (!HasFP)
1764           BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
1765             .addReg(FPReg)
1766             .addReg(FPReg);
1767         RBReg = FPReg;
1768       }
1769       BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
1770         .addImm(0)
1771         .addReg(SPReg);
1772     }
1773   }
1774   assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
1775   // If there is no red zone, ScratchReg may be needed for holding a useful
1776   // value (although not the base register). Make sure it is not overwritten
1777   // too early.
1778 
1779   // If we need to restore both the LR and the CR and we only have one
1780   // available scratch register, we must do them one at a time.
1781   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
1782     // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1783     // is live here.
1784     assert(HasRedZone && "Expecting red zone");
1785     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1786       .addImm(CRSaveOffset)
1787       .addReg(SPReg);
1788     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1789       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1790         .addReg(TempReg, getKillRegState(i == e-1));
1791   }
1792 
1793   // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1794   // LR is stored in the caller's stack frame. ScratchReg will be needed
1795   // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1796   // a base register anyway, because it may happen to be R0.
1797   bool LoadedLR = false;
1798   if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
1799     BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
1800       .addImm(LROffset+SPAdd)
1801       .addReg(RBReg);
1802     LoadedLR = true;
1803   }
1804 
1805   if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
1806     assert(RBReg == SPReg && "Should be using SP as a base register");
1807     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1808       .addImm(CRSaveOffset)
1809       .addReg(RBReg);
1810   }
1811 
1812   if (HasFP) {
1813     // If there is red zone, restore FP directly, since SP has already been
1814     // restored. Otherwise, restore the value of FP into ScratchReg.
1815     if (HasRedZone || RBReg == SPReg)
1816       BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
1817         .addImm(FPOffset)
1818         .addReg(SPReg);
1819     else
1820       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1821         .addImm(FPOffset)
1822         .addReg(RBReg);
1823   }
1824 
1825   if (FI->usesPICBase())
1826     BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
1827       .addImm(PBPOffset)
1828       .addReg(RBReg);
1829 
1830   if (HasBP)
1831     BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
1832       .addImm(BPOffset)
1833       .addReg(RBReg);
1834 
1835   // There is nothing more to be loaded from the stack, so now we can
1836   // restore SP: SP = RBReg + SPAdd.
1837   if (RBReg != SPReg || SPAdd != 0) {
1838     assert(!HasRedZone && "This should not happen with red zone");
1839     // If SPAdd is 0, generate a copy.
1840     if (SPAdd == 0)
1841       BuildMI(MBB, MBBI, dl, OrInst, SPReg)
1842         .addReg(RBReg)
1843         .addReg(RBReg);
1844     else
1845       BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1846         .addReg(RBReg)
1847         .addImm(SPAdd);
1848 
1849     assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
1850     if (RBReg == FPReg)
1851       BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1852         .addReg(ScratchReg)
1853         .addReg(ScratchReg);
1854 
1855     // Now load the LR from the caller's stack frame.
1856     if (MustSaveLR && !LoadedLR)
1857       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1858         .addImm(LROffset)
1859         .addReg(SPReg);
1860   }
1861 
1862   if (MustSaveCR &&
1863       !(SingleScratchReg && MustSaveLR))
1864     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1865       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1866         .addReg(TempReg, getKillRegState(i == e-1));
1867 
1868   if (MustSaveLR) {
1869     // If ROP protection is required, an extra instruction is added to compute a
1870     // hash and then compare it to the hash stored in the prologue.
1871     if (HasROPProtect) {
1872       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
1873       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
1874       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
1875              "ROP hash check location offset out of range.");
1876       assert(((ImmOffset & 0x7) == 0) &&
1877              "ROP hash check location offset must be 8 byte aligned.");
1878       BuildMI(MBB, StackUpdateLoc, dl, HashChk)
1879           .addReg(ScratchReg)
1880           .addImm(ImmOffset)
1881           .addReg(SPReg);
1882     }
1883     BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
1884   }
1885 
1886   // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1887   // call optimization
1888   if (IsReturnBlock) {
1889     unsigned RetOpcode = MBBI->getOpcode();
1890     if (MF.getTarget().Options.GuaranteedTailCallOpt &&
1891         (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
1892         MF.getFunction().getCallingConv() == CallingConv::Fast) {
1893       PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1894       unsigned CallerAllocatedAmt = FI->getMinReservedArea();
1895 
1896       if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
1897         BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1898           .addReg(SPReg).addImm(CallerAllocatedAmt);
1899       } else {
1900         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1901           .addImm(CallerAllocatedAmt >> 16);
1902         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1903           .addReg(ScratchReg, RegState::Kill)
1904           .addImm(CallerAllocatedAmt & 0xFFFF);
1905         BuildMI(MBB, MBBI, dl, AddInst)
1906           .addReg(SPReg)
1907           .addReg(FPReg)
1908           .addReg(ScratchReg);
1909       }
1910     } else {
1911       createTailCallBranchInstr(MBB);
1912     }
1913   }
1914 }
1915 
1916 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
1917   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1918 
1919   // If we got this far a first terminator should exist.
1920   assert(MBBI != MBB.end() && "Failed to find the first terminator.");
1921 
1922   DebugLoc dl = MBBI->getDebugLoc();
1923   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1924 
1925   // Create branch instruction for pseudo tail call return instruction.
1926   // The TCRETURNdi variants are direct calls. Valid targets for those are
1927   // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1928   // since we can tail call external functions with PC-Rel (i.e. we don't need
1929   // to worry about different TOC pointers). Some of the external functions will
1930   // be MO_GlobalAddress while others like memcpy for example, are going to
1931   // be MO_ExternalSymbol.
1932   unsigned RetOpcode = MBBI->getOpcode();
1933   if (RetOpcode == PPC::TCRETURNdi) {
1934     MBBI = MBB.getLastNonDebugInstr();
1935     MachineOperand &JumpTarget = MBBI->getOperand(0);
1936     if (JumpTarget.isGlobal())
1937       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1938         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1939     else if (JumpTarget.isSymbol())
1940       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1941         addExternalSymbol(JumpTarget.getSymbolName());
1942     else
1943       llvm_unreachable("Expecting Global or External Symbol");
1944   } else if (RetOpcode == PPC::TCRETURNri) {
1945     MBBI = MBB.getLastNonDebugInstr();
1946     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1947     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
1948   } else if (RetOpcode == PPC::TCRETURNai) {
1949     MBBI = MBB.getLastNonDebugInstr();
1950     MachineOperand &JumpTarget = MBBI->getOperand(0);
1951     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
1952   } else if (RetOpcode == PPC::TCRETURNdi8) {
1953     MBBI = MBB.getLastNonDebugInstr();
1954     MachineOperand &JumpTarget = MBBI->getOperand(0);
1955     if (JumpTarget.isGlobal())
1956       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1957         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1958     else if (JumpTarget.isSymbol())
1959       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1960         addExternalSymbol(JumpTarget.getSymbolName());
1961     else
1962       llvm_unreachable("Expecting Global or External Symbol");
1963   } else if (RetOpcode == PPC::TCRETURNri8) {
1964     MBBI = MBB.getLastNonDebugInstr();
1965     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1966     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
1967   } else if (RetOpcode == PPC::TCRETURNai8) {
1968     MBBI = MBB.getLastNonDebugInstr();
1969     MachineOperand &JumpTarget = MBBI->getOperand(0);
1970     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
1971   }
1972 }
1973 
1974 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
1975                                             BitVector &SavedRegs,
1976                                             RegScavenger *RS) const {
1977   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1978 
1979   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1980 
1981   // Do not explicitly save the callee saved VSRp registers.
1982   // The individual VSR subregisters will be saved instead.
1983   SavedRegs.reset(PPC::VSRp26);
1984   SavedRegs.reset(PPC::VSRp27);
1985   SavedRegs.reset(PPC::VSRp28);
1986   SavedRegs.reset(PPC::VSRp29);
1987   SavedRegs.reset(PPC::VSRp30);
1988   SavedRegs.reset(PPC::VSRp31);
1989 
1990   //  Save and clear the LR state.
1991   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1992   unsigned LR = RegInfo->getRARegister();
1993   FI->setMustSaveLR(MustSaveLR(MF, LR));
1994   SavedRegs.reset(LR);
1995 
1996   //  Save R31 if necessary
1997   int FPSI = FI->getFramePointerSaveIndex();
1998   const bool isPPC64 = Subtarget.isPPC64();
1999   MachineFrameInfo &MFI = MF.getFrameInfo();
2000 
2001   // If the frame pointer save index hasn't been defined yet.
2002   if (!FPSI && needsFP(MF)) {
2003     // Find out what the fix offset of the frame pointer save area.
2004     int FPOffset = getFramePointerSaveOffset();
2005     // Allocate the frame index for frame pointer save area.
2006     FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
2007     // Save the result.
2008     FI->setFramePointerSaveIndex(FPSI);
2009   }
2010 
2011   int BPSI = FI->getBasePointerSaveIndex();
2012   if (!BPSI && RegInfo->hasBasePointer(MF)) {
2013     int BPOffset = getBasePointerSaveOffset();
2014     // Allocate the frame index for the base pointer save area.
2015     BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
2016     // Save the result.
2017     FI->setBasePointerSaveIndex(BPSI);
2018   }
2019 
2020   // Reserve stack space for the PIC Base register (R30).
2021   // Only used in SVR4 32-bit.
2022   if (FI->usesPICBase()) {
2023     int PBPSI = MFI.CreateFixedObject(4, -8, true);
2024     FI->setPICBasePointerSaveIndex(PBPSI);
2025   }
2026 
2027   // Make sure we don't explicitly spill r31, because, for example, we have
2028   // some inline asm which explicitly clobbers it, when we otherwise have a
2029   // frame pointer and are using r31's spill slot for the prologue/epilogue
2030   // code. Same goes for the base pointer and the PIC base register.
2031   if (needsFP(MF))
2032     SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
2033   if (RegInfo->hasBasePointer(MF))
2034     SavedRegs.reset(RegInfo->getBaseRegister(MF));
2035   if (FI->usesPICBase())
2036     SavedRegs.reset(PPC::R30);
2037 
2038   // Reserve stack space to move the linkage area to in case of a tail call.
2039   int TCSPDelta = 0;
2040   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2041       (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
2042     MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
2043   }
2044 
2045   // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2046   // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2047   // object at the offset of the CR-save slot in the linkage area. The actual
2048   // save and restore of the condition register will be created as part of the
2049   // prologue and epilogue insertion, but the FixedStack object is needed to
2050   // keep the CalleSavedInfo valid.
2051   if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
2052        SavedRegs.test(PPC::CR4))) {
2053     const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
2054     const int64_t SpillOffset =
2055         Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
2056     int FrameIdx =
2057         MFI.CreateFixedObject(SpillSize, SpillOffset,
2058                               /* IsImmutable */ true, /* IsAliased */ false);
2059     FI->setCRSpillFrameIndex(FrameIdx);
2060   }
2061 }
2062 
2063 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
2064                                                        RegScavenger *RS) const {
2065   // Get callee saved register information.
2066   MachineFrameInfo &MFI = MF.getFrameInfo();
2067   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2068 
2069   // If the function is shrink-wrapped, and if the function has a tail call, the
2070   // tail call might not be in the new RestoreBlock, so real branch instruction
2071   // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2072   // RestoreBlock. So we handle this case here.
2073   if (MFI.getSavePoint() && MFI.hasTailCall()) {
2074     MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
2075     for (MachineBasicBlock &MBB : MF) {
2076       if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
2077         createTailCallBranchInstr(MBB);
2078     }
2079   }
2080 
2081   // Early exit if no callee saved registers are modified!
2082   if (CSI.empty() && !needsFP(MF)) {
2083     addScavengingSpillSlot(MF, RS);
2084     return;
2085   }
2086 
2087   unsigned MinGPR = PPC::R31;
2088   unsigned MinG8R = PPC::X31;
2089   unsigned MinFPR = PPC::F31;
2090   unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
2091 
2092   bool HasGPSaveArea = false;
2093   bool HasG8SaveArea = false;
2094   bool HasFPSaveArea = false;
2095   bool HasVRSaveArea = false;
2096 
2097   SmallVector<CalleeSavedInfo, 18> GPRegs;
2098   SmallVector<CalleeSavedInfo, 18> G8Regs;
2099   SmallVector<CalleeSavedInfo, 18> FPRegs;
2100   SmallVector<CalleeSavedInfo, 18> VRegs;
2101 
2102   for (const CalleeSavedInfo &I : CSI) {
2103     Register Reg = I.getReg();
2104     assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
2105             (Reg != PPC::X2 && Reg != PPC::R2)) &&
2106            "Not expecting to try to spill R2 in a function that must save TOC");
2107     if (PPC::GPRCRegClass.contains(Reg)) {
2108       HasGPSaveArea = true;
2109 
2110       GPRegs.push_back(I);
2111 
2112       if (Reg < MinGPR) {
2113         MinGPR = Reg;
2114       }
2115     } else if (PPC::G8RCRegClass.contains(Reg)) {
2116       HasG8SaveArea = true;
2117 
2118       G8Regs.push_back(I);
2119 
2120       if (Reg < MinG8R) {
2121         MinG8R = Reg;
2122       }
2123     } else if (PPC::F8RCRegClass.contains(Reg)) {
2124       HasFPSaveArea = true;
2125 
2126       FPRegs.push_back(I);
2127 
2128       if (Reg < MinFPR) {
2129         MinFPR = Reg;
2130       }
2131     } else if (PPC::CRBITRCRegClass.contains(Reg) ||
2132                PPC::CRRCRegClass.contains(Reg)) {
2133       ; // do nothing, as we already know whether CRs are spilled
2134     } else if (PPC::VRRCRegClass.contains(Reg) ||
2135                PPC::SPERCRegClass.contains(Reg)) {
2136       // Altivec and SPE are mutually exclusive, but have the same stack
2137       // alignment requirements, so overload the save area for both cases.
2138       HasVRSaveArea = true;
2139 
2140       VRegs.push_back(I);
2141 
2142       if (Reg < MinVR) {
2143         MinVR = Reg;
2144       }
2145     } else {
2146       llvm_unreachable("Unknown RegisterClass!");
2147     }
2148   }
2149 
2150   PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
2151   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2152 
2153   int64_t LowerBound = 0;
2154 
2155   // Take into account stack space reserved for tail calls.
2156   int TCSPDelta = 0;
2157   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2158       (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
2159     LowerBound = TCSPDelta;
2160   }
2161 
2162   // The Floating-point register save area is right below the back chain word
2163   // of the previous stack frame.
2164   if (HasFPSaveArea) {
2165     for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
2166       int FI = FPRegs[i].getFrameIdx();
2167 
2168       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2169     }
2170 
2171     LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
2172   }
2173 
2174   // Check whether the frame pointer register is allocated. If so, make sure it
2175   // is spilled to the correct offset.
2176   if (needsFP(MF)) {
2177     int FI = PFI->getFramePointerSaveIndex();
2178     assert(FI && "No Frame Pointer Save Slot!");
2179     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2180     // FP is R31/X31, so no need to update MinGPR/MinG8R.
2181     HasGPSaveArea = true;
2182   }
2183 
2184   if (PFI->usesPICBase()) {
2185     int FI = PFI->getPICBasePointerSaveIndex();
2186     assert(FI && "No PIC Base Pointer Save Slot!");
2187     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2188 
2189     MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
2190     HasGPSaveArea = true;
2191   }
2192 
2193   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2194   if (RegInfo->hasBasePointer(MF)) {
2195     int FI = PFI->getBasePointerSaveIndex();
2196     assert(FI && "No Base Pointer Save Slot!");
2197     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2198 
2199     Register BP = RegInfo->getBaseRegister(MF);
2200     if (PPC::G8RCRegClass.contains(BP)) {
2201       MinG8R = std::min<unsigned>(MinG8R, BP);
2202       HasG8SaveArea = true;
2203     } else if (PPC::GPRCRegClass.contains(BP)) {
2204       MinGPR = std::min<unsigned>(MinGPR, BP);
2205       HasGPSaveArea = true;
2206     }
2207   }
2208 
2209   // General register save area starts right below the Floating-point
2210   // register save area.
2211   if (HasGPSaveArea || HasG8SaveArea) {
2212     // Move general register save area spill slots down, taking into account
2213     // the size of the Floating-point register save area.
2214     for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
2215       if (!GPRegs[i].isSpilledToReg()) {
2216         int FI = GPRegs[i].getFrameIdx();
2217         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2218       }
2219     }
2220 
2221     // Move general register save area spill slots down, taking into account
2222     // the size of the Floating-point register save area.
2223     for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
2224       if (!G8Regs[i].isSpilledToReg()) {
2225         int FI = G8Regs[i].getFrameIdx();
2226         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2227       }
2228     }
2229 
2230     unsigned MinReg =
2231       std::min<unsigned>(TRI->getEncodingValue(MinGPR),
2232                          TRI->getEncodingValue(MinG8R));
2233 
2234     const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
2235     LowerBound -= (31 - MinReg + 1) * GPRegSize;
2236   }
2237 
2238   // For 32-bit only, the CR save area is below the general register
2239   // save area.  For 64-bit SVR4, the CR save area is addressed relative
2240   // to the stack pointer and hence does not need an adjustment here.
2241   // Only CR2 (the first nonvolatile spilled) has an associated frame
2242   // index so that we have a single uniform save area.
2243   if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
2244     // Adjust the frame index of the CR spill slot.
2245     for (const auto &CSInfo : CSI) {
2246       if (CSInfo.getReg() == PPC::CR2) {
2247         int FI = CSInfo.getFrameIdx();
2248         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2249         break;
2250       }
2251     }
2252 
2253     LowerBound -= 4; // The CR save area is always 4 bytes long.
2254   }
2255 
2256   // Both Altivec and SPE have the same alignment and padding requirements
2257   // within the stack frame.
2258   if (HasVRSaveArea) {
2259     // Insert alignment padding, we need 16-byte alignment. Note: for positive
2260     // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2261     // we are using negative number here (the stack grows downward). We should
2262     // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2263     // is the alignment size ( n = 16 here) and y is the size after aligning.
2264     assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
2265     LowerBound &= ~(15);
2266 
2267     for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
2268       int FI = VRegs[i].getFrameIdx();
2269 
2270       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2271     }
2272   }
2273 
2274   addScavengingSpillSlot(MF, RS);
2275 }
2276 
2277 void
2278 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
2279                                          RegScavenger *RS) const {
2280   // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2281   // a large stack, which will require scavenging a register to materialize a
2282   // large offset.
2283 
2284   // We need to have a scavenger spill slot for spills if the frame size is
2285   // large. In case there is no free register for large-offset addressing,
2286   // this slot is used for the necessary emergency spill. Also, we need the
2287   // slot for dynamic stack allocations.
2288 
2289   // The scavenger might be invoked if the frame offset does not fit into
2290   // the 16-bit immediate. We don't know the complete frame size here
2291   // because we've not yet computed callee-saved register spills or the
2292   // needed alignment padding.
2293   unsigned StackSize = determineFrameLayout(MF, true);
2294   MachineFrameInfo &MFI = MF.getFrameInfo();
2295   if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
2296       (hasSpills(MF) && !isInt<16>(StackSize))) {
2297     const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
2298     const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
2299     const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
2300     const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
2301     unsigned Size = TRI.getSpillSize(RC);
2302     Align Alignment = TRI.getSpillAlign(RC);
2303     RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false));
2304 
2305     // Might we have over-aligned allocas?
2306     bool HasAlVars =
2307         MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
2308 
2309     // These kinds of spills might need two registers.
2310     if (spillsCR(MF) || HasAlVars)
2311       RS->addScavengingFrameIndex(
2312           MFI.CreateStackObject(Size, Alignment, false));
2313   }
2314 }
2315 
2316 // This function checks if a callee saved gpr can be spilled to a volatile
2317 // vector register. This occurs for leaf functions when the option
2318 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2319 // which were not spilled to vectors, return false so the target independent
2320 // code can handle them by assigning a FrameIdx to a stack slot.
2321 bool PPCFrameLowering::assignCalleeSavedSpillSlots(
2322     MachineFunction &MF, const TargetRegisterInfo *TRI,
2323     std::vector<CalleeSavedInfo> &CSI) const {
2324 
2325   if (CSI.empty())
2326     return true; // Early exit if no callee saved registers are modified!
2327 
2328   // Early exit if cannot spill gprs to volatile vector registers.
2329   MachineFrameInfo &MFI = MF.getFrameInfo();
2330   if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
2331     return false;
2332 
2333   // Build a BitVector of VSRs that can be used for spilling GPRs.
2334   BitVector BVAllocatable = TRI->getAllocatableSet(MF);
2335   BitVector BVCalleeSaved(TRI->getNumRegs());
2336   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2337   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2338   for (unsigned i = 0; CSRegs[i]; ++i)
2339     BVCalleeSaved.set(CSRegs[i]);
2340 
2341   for (unsigned Reg : BVAllocatable.set_bits()) {
2342     // Set to 0 if the register is not a volatile VSX register, or if it is
2343     // used in the function.
2344     if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
2345         MF.getRegInfo().isPhysRegUsed(Reg))
2346       BVAllocatable.reset(Reg);
2347   }
2348 
2349   bool AllSpilledToReg = true;
2350   unsigned LastVSRUsedForSpill = 0;
2351   for (auto &CS : CSI) {
2352     if (BVAllocatable.none())
2353       return false;
2354 
2355     Register Reg = CS.getReg();
2356 
2357     if (!PPC::G8RCRegClass.contains(Reg)) {
2358       AllSpilledToReg = false;
2359       continue;
2360     }
2361 
2362     // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2363     // into one VSR using the mtvsrdd instruction.
2364     if (LastVSRUsedForSpill != 0) {
2365       CS.setDstReg(LastVSRUsedForSpill);
2366       BVAllocatable.reset(LastVSRUsedForSpill);
2367       LastVSRUsedForSpill = 0;
2368       continue;
2369     }
2370 
2371     unsigned VolatileVFReg = BVAllocatable.find_first();
2372     if (VolatileVFReg < BVAllocatable.size()) {
2373       CS.setDstReg(VolatileVFReg);
2374       LastVSRUsedForSpill = VolatileVFReg;
2375     } else {
2376       AllSpilledToReg = false;
2377     }
2378   }
2379   return AllSpilledToReg;
2380 }
2381 
2382 bool PPCFrameLowering::spillCalleeSavedRegisters(
2383     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2384     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2385 
2386   MachineFunction *MF = MBB.getParent();
2387   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2388   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2389   bool MustSaveTOC = FI->mustSaveTOC();
2390   DebugLoc DL;
2391   bool CRSpilled = false;
2392   MachineInstrBuilder CRMIB;
2393   BitVector Spilled(TRI->getNumRegs());
2394 
2395   VSRContainingGPRs.clear();
2396 
2397   // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2398   // or two GPRs, so we need table to record information for later save/restore.
2399   for (const CalleeSavedInfo &Info : CSI) {
2400     if (Info.isSpilledToReg()) {
2401       auto &SpilledVSR =
2402           VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second;
2403       assert(SpilledVSR.second == 0 &&
2404              "Can't spill more than two GPRs into VSR!");
2405       if (SpilledVSR.first == 0)
2406         SpilledVSR.first = Info.getReg();
2407       else
2408         SpilledVSR.second = Info.getReg();
2409     }
2410   }
2411 
2412   for (const CalleeSavedInfo &I : CSI) {
2413     Register Reg = I.getReg();
2414 
2415     // CR2 through CR4 are the nonvolatile CR fields.
2416     bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
2417 
2418     // Add the callee-saved register as live-in; it's killed at the spill.
2419     // Do not do this for callee-saved registers that are live-in to the
2420     // function because they will already be marked live-in and this will be
2421     // adding it for a second time. It is an error to add the same register
2422     // to the set more than once.
2423     const MachineRegisterInfo &MRI = MF->getRegInfo();
2424     bool IsLiveIn = MRI.isLiveIn(Reg);
2425     if (!IsLiveIn)
2426        MBB.addLiveIn(Reg);
2427 
2428     if (CRSpilled && IsCRField) {
2429       CRMIB.addReg(Reg, RegState::ImplicitKill);
2430       continue;
2431     }
2432 
2433     // The actual spill will happen in the prologue.
2434     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2435       continue;
2436 
2437     // Insert the spill to the stack frame.
2438     if (IsCRField) {
2439       PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2440       if (!Subtarget.is32BitELFABI()) {
2441         // The actual spill will happen at the start of the prologue.
2442         FuncInfo->addMustSaveCR(Reg);
2443       } else {
2444         CRSpilled = true;
2445         FuncInfo->setSpillsCR();
2446 
2447         // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
2448         // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2449         CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
2450                   .addReg(Reg, RegState::ImplicitKill);
2451 
2452         MBB.insert(MI, CRMIB);
2453         MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
2454                                          .addReg(PPC::R12,
2455                                                  getKillRegState(true)),
2456                                          I.getFrameIdx()));
2457       }
2458     } else {
2459       if (I.isSpilledToReg()) {
2460         unsigned Dst = I.getDstReg();
2461 
2462         if (Spilled[Dst])
2463           continue;
2464 
2465         if (VSRContainingGPRs[Dst].second != 0) {
2466           assert(Subtarget.hasP9Vector() &&
2467                  "mtvsrdd is unavailable on pre-P9 targets.");
2468 
2469           NumPESpillVSR += 2;
2470           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
2471               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
2472               .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
2473         } else if (VSRContainingGPRs[Dst].second == 0) {
2474           assert(Subtarget.hasP8Vector() &&
2475                  "Can't move GPR to VSR on pre-P8 targets.");
2476 
2477           ++NumPESpillVSR;
2478           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
2479                   TRI->getSubReg(Dst, PPC::sub_64))
2480               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
2481         } else {
2482           llvm_unreachable("More than two GPRs spilled to a VSR!");
2483         }
2484         Spilled.set(Dst);
2485       } else {
2486         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2487         // Use !IsLiveIn for the kill flag.
2488         // We do not want to kill registers that are live in this function
2489         // before their use because they will become undefined registers.
2490         // Functions without NoUnwind need to preserve the order of elements in
2491         // saved vector registers.
2492         if (Subtarget.needsSwapsForVSXMemOps() &&
2493             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2494           TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
2495                                        I.getFrameIdx(), RC, TRI);
2496         else
2497           TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), RC,
2498                                   TRI, Register());
2499       }
2500     }
2501   }
2502   return true;
2503 }
2504 
2505 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
2506                        bool CR4Spilled, MachineBasicBlock &MBB,
2507                        MachineBasicBlock::iterator MI,
2508                        ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
2509 
2510   MachineFunction *MF = MBB.getParent();
2511   const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
2512   DebugLoc DL;
2513   unsigned MoveReg = PPC::R12;
2514 
2515   // 32-bit:  FP-relative
2516   MBB.insert(MI,
2517              addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
2518                                CSI[CSIIndex].getFrameIdx()));
2519 
2520   unsigned RestoreOp = PPC::MTOCRF;
2521   if (CR2Spilled)
2522     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
2523                .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
2524 
2525   if (CR3Spilled)
2526     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
2527                .addReg(MoveReg, getKillRegState(!CR4Spilled)));
2528 
2529   if (CR4Spilled)
2530     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
2531                .addReg(MoveReg, getKillRegState(true)));
2532 }
2533 
2534 MachineBasicBlock::iterator PPCFrameLowering::
2535 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2536                               MachineBasicBlock::iterator I) const {
2537   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2538   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2539       I->getOpcode() == PPC::ADJCALLSTACKUP) {
2540     // Add (actually subtract) back the amount the callee popped on return.
2541     if (int CalleeAmt =  I->getOperand(1).getImm()) {
2542       bool is64Bit = Subtarget.isPPC64();
2543       CalleeAmt *= -1;
2544       unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
2545       unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
2546       unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
2547       unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
2548       unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
2549       unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
2550       const DebugLoc &dl = I->getDebugLoc();
2551 
2552       if (isInt<16>(CalleeAmt)) {
2553         BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
2554           .addReg(StackReg, RegState::Kill)
2555           .addImm(CalleeAmt);
2556       } else {
2557         MachineBasicBlock::iterator MBBI = I;
2558         BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
2559           .addImm(CalleeAmt >> 16);
2560         BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
2561           .addReg(TmpReg, RegState::Kill)
2562           .addImm(CalleeAmt & 0xFFFF);
2563         BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
2564           .addReg(StackReg, RegState::Kill)
2565           .addReg(TmpReg);
2566       }
2567     }
2568   }
2569   // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2570   return MBB.erase(I);
2571 }
2572 
2573 static bool isCalleeSavedCR(unsigned Reg) {
2574   return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
2575 }
2576 
2577 bool PPCFrameLowering::restoreCalleeSavedRegisters(
2578     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2579     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2580   MachineFunction *MF = MBB.getParent();
2581   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2582   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2583   bool MustSaveTOC = FI->mustSaveTOC();
2584   bool CR2Spilled = false;
2585   bool CR3Spilled = false;
2586   bool CR4Spilled = false;
2587   unsigned CSIIndex = 0;
2588   BitVector Restored(TRI->getNumRegs());
2589 
2590   // Initialize insertion-point logic; we will be restoring in reverse
2591   // order of spill.
2592   MachineBasicBlock::iterator I = MI, BeforeI = I;
2593   bool AtStart = I == MBB.begin();
2594 
2595   if (!AtStart)
2596     --BeforeI;
2597 
2598   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2599     Register Reg = CSI[i].getReg();
2600 
2601     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2602       continue;
2603 
2604     // Restore of callee saved condition register field is handled during
2605     // epilogue insertion.
2606     if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
2607       continue;
2608 
2609     if (Reg == PPC::CR2) {
2610       CR2Spilled = true;
2611       // The spill slot is associated only with CR2, which is the
2612       // first nonvolatile spilled.  Save it here.
2613       CSIIndex = i;
2614       continue;
2615     } else if (Reg == PPC::CR3) {
2616       CR3Spilled = true;
2617       continue;
2618     } else if (Reg == PPC::CR4) {
2619       CR4Spilled = true;
2620       continue;
2621     } else {
2622       // On 32-bit ELF when we first encounter a non-CR register after seeing at
2623       // least one CR register, restore all spilled CRs together.
2624       if (CR2Spilled || CR3Spilled || CR4Spilled) {
2625         bool is31 = needsFP(*MF);
2626         restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
2627                    CSIIndex);
2628         CR2Spilled = CR3Spilled = CR4Spilled = false;
2629       }
2630 
2631       if (CSI[i].isSpilledToReg()) {
2632         DebugLoc DL;
2633         unsigned Dst = CSI[i].getDstReg();
2634 
2635         if (Restored[Dst])
2636           continue;
2637 
2638         if (VSRContainingGPRs[Dst].second != 0) {
2639           assert(Subtarget.hasP9Vector());
2640           NumPEReloadVSR += 2;
2641           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
2642                   VSRContainingGPRs[Dst].second)
2643               .addReg(Dst);
2644           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2645                   VSRContainingGPRs[Dst].first)
2646               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2647         } else if (VSRContainingGPRs[Dst].second == 0) {
2648           assert(Subtarget.hasP8Vector());
2649           ++NumPEReloadVSR;
2650           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2651                   VSRContainingGPRs[Dst].first)
2652               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2653         } else {
2654           llvm_unreachable("More than two GPRs spilled to a VSR!");
2655         }
2656 
2657         Restored.set(Dst);
2658 
2659       } else {
2660        // Default behavior for non-CR saves.
2661         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2662 
2663         // Functions without NoUnwind need to preserve the order of elements in
2664         // saved vector registers.
2665         if (Subtarget.needsSwapsForVSXMemOps() &&
2666             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2667           TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
2668                                         TRI);
2669         else
2670           TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI,
2671                                    Register());
2672 
2673         assert(I != MBB.begin() &&
2674                "loadRegFromStackSlot didn't insert any code!");
2675       }
2676     }
2677 
2678     // Insert in reverse order.
2679     if (AtStart)
2680       I = MBB.begin();
2681     else {
2682       I = BeforeI;
2683       ++I;
2684     }
2685   }
2686 
2687   // If we haven't yet spilled the CRs, do so now.
2688   if (CR2Spilled || CR3Spilled || CR4Spilled) {
2689     assert(Subtarget.is32BitELFABI() &&
2690            "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2691     bool is31 = needsFP(*MF);
2692     restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
2693   }
2694 
2695   return true;
2696 }
2697 
2698 uint64_t PPCFrameLowering::getTOCSaveOffset() const {
2699   return TOCSaveOffset;
2700 }
2701 
2702 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const {
2703   return FramePointerSaveOffset;
2704 }
2705 
2706 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const {
2707   return BasePointerSaveOffset;
2708 }
2709 
2710 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2711   if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
2712     return false;
2713   return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
2714 }
2715