1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/PPCPredicates.h" 14 #include "PPCFrameLowering.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/Target/TargetOptions.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "framelowering" 33 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 34 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 35 STATISTIC(NumPrologProbed, "Number of prologues probed"); 36 37 static cl::opt<bool> 38 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 39 cl::desc("Enable spills in prologue to vector registers."), 40 cl::init(false), cl::Hidden); 41 42 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 43 if (STI.isAIXABI()) 44 return STI.isPPC64() ? 16 : 8; 45 // SVR4 ABI: 46 return STI.isPPC64() ? 16 : 4; 47 } 48 49 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 50 if (STI.isAIXABI()) 51 return STI.isPPC64() ? 40 : 20; 52 return STI.isELFv2ABI() ? 24 : 40; 53 } 54 55 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 56 // First slot in the general register save area. 57 return STI.isPPC64() ? -8U : -4U; 58 } 59 60 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 61 if (STI.isAIXABI() || STI.isPPC64()) 62 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 63 64 // 32-bit SVR4 ABI: 65 return 8; 66 } 67 68 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 69 // Third slot in the general purpose register save area. 70 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 71 return -12U; 72 73 // Second slot in the general purpose register save area. 74 return STI.isPPC64() ? -16U : -8U; 75 } 76 77 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 78 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 79 } 80 81 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 82 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 83 STI.getPlatformStackAlignment(), 0), 84 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 85 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 86 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 87 LinkageSize(computeLinkageSize(Subtarget)), 88 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 89 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 90 91 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 92 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 93 unsigned &NumEntries) const { 94 95 // Floating-point register save area offsets. 96 #define CALLEE_SAVED_FPRS \ 97 {PPC::F31, -8}, \ 98 {PPC::F30, -16}, \ 99 {PPC::F29, -24}, \ 100 {PPC::F28, -32}, \ 101 {PPC::F27, -40}, \ 102 {PPC::F26, -48}, \ 103 {PPC::F25, -56}, \ 104 {PPC::F24, -64}, \ 105 {PPC::F23, -72}, \ 106 {PPC::F22, -80}, \ 107 {PPC::F21, -88}, \ 108 {PPC::F20, -96}, \ 109 {PPC::F19, -104}, \ 110 {PPC::F18, -112}, \ 111 {PPC::F17, -120}, \ 112 {PPC::F16, -128}, \ 113 {PPC::F15, -136}, \ 114 {PPC::F14, -144} 115 116 // 32-bit general purpose register save area offsets shared by ELF and 117 // AIX. AIX has an extra CSR with r13. 118 #define CALLEE_SAVED_GPRS32 \ 119 {PPC::R31, -4}, \ 120 {PPC::R30, -8}, \ 121 {PPC::R29, -12}, \ 122 {PPC::R28, -16}, \ 123 {PPC::R27, -20}, \ 124 {PPC::R26, -24}, \ 125 {PPC::R25, -28}, \ 126 {PPC::R24, -32}, \ 127 {PPC::R23, -36}, \ 128 {PPC::R22, -40}, \ 129 {PPC::R21, -44}, \ 130 {PPC::R20, -48}, \ 131 {PPC::R19, -52}, \ 132 {PPC::R18, -56}, \ 133 {PPC::R17, -60}, \ 134 {PPC::R16, -64}, \ 135 {PPC::R15, -68}, \ 136 {PPC::R14, -72} 137 138 // 64-bit general purpose register save area offsets. 139 #define CALLEE_SAVED_GPRS64 \ 140 {PPC::X31, -8}, \ 141 {PPC::X30, -16}, \ 142 {PPC::X29, -24}, \ 143 {PPC::X28, -32}, \ 144 {PPC::X27, -40}, \ 145 {PPC::X26, -48}, \ 146 {PPC::X25, -56}, \ 147 {PPC::X24, -64}, \ 148 {PPC::X23, -72}, \ 149 {PPC::X22, -80}, \ 150 {PPC::X21, -88}, \ 151 {PPC::X20, -96}, \ 152 {PPC::X19, -104}, \ 153 {PPC::X18, -112}, \ 154 {PPC::X17, -120}, \ 155 {PPC::X16, -128}, \ 156 {PPC::X15, -136}, \ 157 {PPC::X14, -144} 158 159 // Vector register save area offsets. 160 #define CALLEE_SAVED_VRS \ 161 {PPC::V31, -16}, \ 162 {PPC::V30, -32}, \ 163 {PPC::V29, -48}, \ 164 {PPC::V28, -64}, \ 165 {PPC::V27, -80}, \ 166 {PPC::V26, -96}, \ 167 {PPC::V25, -112}, \ 168 {PPC::V24, -128}, \ 169 {PPC::V23, -144}, \ 170 {PPC::V22, -160}, \ 171 {PPC::V21, -176}, \ 172 {PPC::V20, -192} 173 174 // Note that the offsets here overlap, but this is fixed up in 175 // processFunctionBeforeFrameFinalized. 176 177 static const SpillSlot ELFOffsets32[] = { 178 CALLEE_SAVED_FPRS, 179 CALLEE_SAVED_GPRS32, 180 181 // CR save area offset. We map each of the nonvolatile CR fields 182 // to the slot for CR2, which is the first of the nonvolatile CR 183 // fields to be assigned, so that we only allocate one save slot. 184 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 185 {PPC::CR2, -4}, 186 187 // VRSAVE save area offset. 188 {PPC::VRSAVE, -4}, 189 190 CALLEE_SAVED_VRS, 191 192 // SPE register save area (overlaps Vector save area). 193 {PPC::S31, -8}, 194 {PPC::S30, -16}, 195 {PPC::S29, -24}, 196 {PPC::S28, -32}, 197 {PPC::S27, -40}, 198 {PPC::S26, -48}, 199 {PPC::S25, -56}, 200 {PPC::S24, -64}, 201 {PPC::S23, -72}, 202 {PPC::S22, -80}, 203 {PPC::S21, -88}, 204 {PPC::S20, -96}, 205 {PPC::S19, -104}, 206 {PPC::S18, -112}, 207 {PPC::S17, -120}, 208 {PPC::S16, -128}, 209 {PPC::S15, -136}, 210 {PPC::S14, -144}}; 211 212 static const SpillSlot ELFOffsets64[] = { 213 CALLEE_SAVED_FPRS, 214 CALLEE_SAVED_GPRS64, 215 216 // VRSAVE save area offset. 217 {PPC::VRSAVE, -4}, 218 CALLEE_SAVED_VRS 219 }; 220 221 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS, 222 CALLEE_SAVED_GPRS32, 223 // Add AIX's extra CSR. 224 {PPC::R13, -76}, 225 CALLEE_SAVED_VRS}; 226 227 static const SpillSlot AIXOffsets64[] = { 228 CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS}; 229 230 if (Subtarget.is64BitELFABI()) { 231 NumEntries = array_lengthof(ELFOffsets64); 232 return ELFOffsets64; 233 } 234 235 if (Subtarget.is32BitELFABI()) { 236 NumEntries = array_lengthof(ELFOffsets32); 237 return ELFOffsets32; 238 } 239 240 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 241 242 if (Subtarget.isPPC64()) { 243 NumEntries = array_lengthof(AIXOffsets64); 244 return AIXOffsets64; 245 } 246 247 NumEntries = array_lengthof(AIXOffsets32); 248 return AIXOffsets32; 249 } 250 251 static bool spillsCR(const MachineFunction &MF) { 252 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 253 return FuncInfo->isCRSpilled(); 254 } 255 256 static bool hasSpills(const MachineFunction &MF) { 257 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 258 return FuncInfo->hasSpills(); 259 } 260 261 static bool hasNonRISpills(const MachineFunction &MF) { 262 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 263 return FuncInfo->hasNonRISpills(); 264 } 265 266 /// MustSaveLR - Return true if this function requires that we save the LR 267 /// register onto the stack in the prolog and restore it in the epilog of the 268 /// function. 269 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 270 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 271 272 // We need a save/restore of LR if there is any def of LR (which is 273 // defined by calls, including the PIC setup sequence), or if there is 274 // some use of the LR stack slot (e.g. for builtin_return_address). 275 // (LR comes in 32 and 64 bit versions.) 276 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 277 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 278 } 279 280 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 281 /// call frame size. Update the MachineFunction object with the stack size. 282 uint64_t 283 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 284 bool UseEstimate) const { 285 unsigned NewMaxCallFrameSize = 0; 286 uint64_t FrameSize = determineFrameLayout(MF, UseEstimate, 287 &NewMaxCallFrameSize); 288 MF.getFrameInfo().setStackSize(FrameSize); 289 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 290 return FrameSize; 291 } 292 293 /// determineFrameLayout - Determine the size of the frame and maximum call 294 /// frame size. 295 uint64_t 296 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 297 bool UseEstimate, 298 unsigned *NewMaxCallFrameSize) const { 299 const MachineFrameInfo &MFI = MF.getFrameInfo(); 300 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 301 302 // Get the number of bytes to allocate from the FrameInfo 303 uint64_t FrameSize = 304 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 305 306 // Get stack alignments. The frame must be aligned to the greatest of these: 307 Align TargetAlign = getStackAlign(); // alignment required per the ABI 308 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 309 Align Alignment = std::max(TargetAlign, MaxAlign); 310 311 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 312 313 unsigned LR = RegInfo->getRARegister(); 314 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 315 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 316 !MFI.adjustsStack() && // No calls. 317 !MustSaveLR(MF, LR) && // No need to save LR. 318 !FI->mustSaveTOC() && // No need to save TOC. 319 !RegInfo->hasBasePointer(MF); // No special alignment. 320 321 // Note: for PPC32 SVR4ABI, we can still generate stackless 322 // code if all local vars are reg-allocated. 323 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 324 325 // Check whether we can skip adjusting the stack pointer (by using red zone) 326 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 327 // No need for frame 328 return 0; 329 } 330 331 // Get the maximum call frame size of all the calls. 332 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 333 334 // Maximum call frame needs to be at least big enough for linkage area. 335 unsigned minCallFrameSize = getLinkageSize(); 336 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 337 338 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 339 // that allocations will be aligned. 340 if (MFI.hasVarSizedObjects()) 341 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 342 343 // Update the new max call frame size if the caller passes in a valid pointer. 344 if (NewMaxCallFrameSize) 345 *NewMaxCallFrameSize = maxCallFrameSize; 346 347 // Include call frame size in total. 348 FrameSize += maxCallFrameSize; 349 350 // Make sure the frame is aligned. 351 FrameSize = alignTo(FrameSize, Alignment); 352 353 return FrameSize; 354 } 355 356 // hasFP - Return true if the specified function actually has a dedicated frame 357 // pointer register. 358 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 359 const MachineFrameInfo &MFI = MF.getFrameInfo(); 360 // FIXME: This is pretty much broken by design: hasFP() might be called really 361 // early, before the stack layout was calculated and thus hasFP() might return 362 // true or false here depending on the time of call. 363 return (MFI.getStackSize()) && needsFP(MF); 364 } 365 366 // needsFP - Return true if the specified function should have a dedicated frame 367 // pointer register. This is true if the function has variable sized allocas or 368 // if frame pointer elimination is disabled. 369 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 370 const MachineFrameInfo &MFI = MF.getFrameInfo(); 371 372 // Naked functions have no stack frame pushed, so we don't have a frame 373 // pointer. 374 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 375 return false; 376 377 return MF.getTarget().Options.DisableFramePointerElim(MF) || 378 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 379 MF.exposesReturnsTwice() || 380 (MF.getTarget().Options.GuaranteedTailCallOpt && 381 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 382 } 383 384 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 385 bool is31 = needsFP(MF); 386 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 387 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 388 389 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 390 bool HasBP = RegInfo->hasBasePointer(MF); 391 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 392 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 393 394 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 395 BI != BE; ++BI) 396 for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) { 397 --MBBI; 398 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 399 MachineOperand &MO = MBBI->getOperand(I); 400 if (!MO.isReg()) 401 continue; 402 403 switch (MO.getReg()) { 404 case PPC::FP: 405 MO.setReg(FPReg); 406 break; 407 case PPC::FP8: 408 MO.setReg(FP8Reg); 409 break; 410 case PPC::BP: 411 MO.setReg(BPReg); 412 break; 413 case PPC::BP8: 414 MO.setReg(BP8Reg); 415 break; 416 417 } 418 } 419 } 420 } 421 422 /* This function will do the following: 423 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 424 respectively (defaults recommended by the ABI) and return true 425 - If MBB is not an entry block, initialize the register scavenger and look 426 for available registers. 427 - If the defaults (R0/R12) are available, return true 428 - If TwoUniqueRegsRequired is set to true, it looks for two unique 429 registers. Otherwise, look for a single available register. 430 - If the required registers are found, set SR1 and SR2 and return true. 431 - If the required registers are not found, set SR2 or both SR1 and SR2 to 432 PPC::NoRegister and return false. 433 434 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 435 is not set, this function will attempt to find two different registers, but 436 still return true if only one register is available (and set SR1 == SR2). 437 */ 438 bool 439 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 440 bool UseAtEnd, 441 bool TwoUniqueRegsRequired, 442 Register *SR1, 443 Register *SR2) const { 444 RegScavenger RS; 445 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 446 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 447 448 // Set the defaults for the two scratch registers. 449 if (SR1) 450 *SR1 = R0; 451 452 if (SR2) { 453 assert (SR1 && "Asking for the second scratch register but not the first?"); 454 *SR2 = R12; 455 } 456 457 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 458 if ((UseAtEnd && MBB->isReturnBlock()) || 459 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 460 return true; 461 462 RS.enterBasicBlock(*MBB); 463 464 if (UseAtEnd && !MBB->empty()) { 465 // The scratch register will be used at the end of the block, so must 466 // consider all registers used within the block 467 468 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 469 // If no terminator, back iterator up to previous instruction. 470 if (MBBI == MBB->end()) 471 MBBI = std::prev(MBBI); 472 473 if (MBBI != MBB->begin()) 474 RS.forward(MBBI); 475 } 476 477 // If the two registers are available, we're all good. 478 // Note that we only return here if both R0 and R12 are available because 479 // although the function may not require two unique registers, it may benefit 480 // from having two so we should try to provide them. 481 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 482 return true; 483 484 // Get the list of callee-saved registers for the target. 485 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 486 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 487 488 // Get all the available registers in the block. 489 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 490 &PPC::GPRCRegClass); 491 492 // We shouldn't use callee-saved registers as scratch registers as they may be 493 // available when looking for a candidate block for shrink wrapping but not 494 // available when the actual prologue/epilogue is being emitted because they 495 // were added as live-in to the prologue block by PrologueEpilogueInserter. 496 for (int i = 0; CSRegs[i]; ++i) 497 BV.reset(CSRegs[i]); 498 499 // Set the first scratch register to the first available one. 500 if (SR1) { 501 int FirstScratchReg = BV.find_first(); 502 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 503 } 504 505 // If there is another one available, set the second scratch register to that. 506 // Otherwise, set it to either PPC::NoRegister if this function requires two 507 // or to whatever SR1 is set to if this function doesn't require two. 508 if (SR2) { 509 int SecondScratchReg = BV.find_next(*SR1); 510 if (SecondScratchReg != -1) 511 *SR2 = SecondScratchReg; 512 else 513 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 514 } 515 516 // Now that we've done our best to provide both registers, double check 517 // whether we were unable to provide enough. 518 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 519 return false; 520 521 return true; 522 } 523 524 // We need a scratch register for spilling LR and for spilling CR. By default, 525 // we use two scratch registers to hide latency. However, if only one scratch 526 // register is available, we can adjust for that by not overlapping the spill 527 // code. However, if we need to realign the stack (i.e. have a base pointer) 528 // and the stack frame is large, we need two scratch registers. 529 // Also, stack probe requires two scratch registers, one for old sp, one for 530 // large frame and large probe size. 531 bool 532 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 533 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 534 MachineFunction &MF = *(MBB->getParent()); 535 bool HasBP = RegInfo->hasBasePointer(MF); 536 unsigned FrameSize = determineFrameLayout(MF); 537 int NegFrameSize = -FrameSize; 538 bool IsLargeFrame = !isInt<16>(NegFrameSize); 539 MachineFrameInfo &MFI = MF.getFrameInfo(); 540 Align MaxAlign = MFI.getMaxAlign(); 541 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 542 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 543 544 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) || 545 TLI.hasInlineStackProbe(MF); 546 } 547 548 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 549 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 550 551 return findScratchRegister(TmpMBB, false, 552 twoUniqueScratchRegsRequired(TmpMBB)); 553 } 554 555 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 556 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 557 558 return findScratchRegister(TmpMBB, true); 559 } 560 561 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 562 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 563 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 564 565 // Abort if there is no register info or function info. 566 if (!RegInfo || !FI) 567 return false; 568 569 // Only move the stack update on ELFv2 ABI and PPC64. 570 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 571 return false; 572 573 // Check the frame size first and return false if it does not fit the 574 // requirements. 575 // We need a non-zero frame size as well as a frame that will fit in the red 576 // zone. This is because by moving the stack pointer update we are now storing 577 // to the red zone until the stack pointer is updated. If we get an interrupt 578 // inside the prologue but before the stack update we now have a number of 579 // stores to the red zone and those stores must all fit. 580 MachineFrameInfo &MFI = MF.getFrameInfo(); 581 unsigned FrameSize = MFI.getStackSize(); 582 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 583 return false; 584 585 // Frame pointers and base pointers complicate matters so don't do anything 586 // if we have them. For example having a frame pointer will sometimes require 587 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 588 // difficult. Similar situation exists with setjmp. 589 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice()) 590 return false; 591 592 // Calls to fast_cc functions use different rules for passing parameters on 593 // the stack from the ABI and using PIC base in the function imposes 594 // similar restrictions to using the base pointer. It is not generally safe 595 // to move the stack pointer update in these situations. 596 if (FI->hasFastCall() || FI->usesPICBase()) 597 return false; 598 599 // Finally we can move the stack update if we do not require register 600 // scavenging. Register scavenging can introduce more spills and so 601 // may make the frame size larger than we have computed. 602 return !RegInfo->requiresFrameIndexScavenging(MF); 603 } 604 605 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 606 MachineBasicBlock &MBB) const { 607 MachineBasicBlock::iterator MBBI = MBB.begin(); 608 MachineFrameInfo &MFI = MF.getFrameInfo(); 609 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 610 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 611 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 612 613 MachineModuleInfo &MMI = MF.getMMI(); 614 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 615 DebugLoc dl; 616 // AIX assembler does not support cfi directives. 617 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 618 619 // Get processor type. 620 bool isPPC64 = Subtarget.isPPC64(); 621 // Get the ABI. 622 bool isSVR4ABI = Subtarget.isSVR4ABI(); 623 bool isELFv2ABI = Subtarget.isELFv2ABI(); 624 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI."); 625 626 // Work out frame sizes. 627 uint64_t FrameSize = determineFrameLayoutAndUpdate(MF); 628 int64_t NegFrameSize = -FrameSize; 629 if (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize)) 630 llvm_unreachable("Unhandled stack size!"); 631 632 if (MFI.isFrameAddressTaken()) 633 replaceFPWithRealFP(MF); 634 635 // Check if the link register (LR) must be saved. 636 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 637 bool MustSaveLR = FI->mustSaveLR(); 638 bool MustSaveTOC = FI->mustSaveTOC(); 639 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 640 bool MustSaveCR = !MustSaveCRs.empty(); 641 // Do we have a frame pointer and/or base pointer for this function? 642 bool HasFP = hasFP(MF); 643 bool HasBP = RegInfo->hasBasePointer(MF); 644 bool HasRedZone = isPPC64 || !isSVR4ABI; 645 bool HasROPProtect = Subtarget.hasROPProtect(); 646 bool HasPrivileged = Subtarget.hasPrivileged(); 647 648 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 649 Register BPReg = RegInfo->getBaseRegister(MF); 650 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 651 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 652 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 653 Register ScratchReg; 654 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 655 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 656 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 657 : PPC::MFLR ); 658 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 659 : PPC::STW ); 660 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 661 : PPC::STWU ); 662 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 663 : PPC::STWUX); 664 const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8 665 : PPC::LIS ); 666 const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8 667 : PPC::ORI ); 668 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 669 : PPC::OR ); 670 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 671 : PPC::SUBFC); 672 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 673 : PPC::SUBFIC); 674 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 675 : PPC::MFCR); 676 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 677 const MCInstrDesc &HashST = 678 TII.get(HasPrivileged ? PPC::HASHSTP : PPC::HASHST); 679 680 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 681 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 682 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 683 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 684 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 685 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 686 687 // Using the same bool variable as below to suppress compiler warnings. 688 bool SingleScratchReg = findScratchRegister( 689 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg); 690 assert(SingleScratchReg && 691 "Required number of registers not available in this block"); 692 693 SingleScratchReg = ScratchReg == TempReg; 694 695 int64_t LROffset = getReturnSaveOffset(); 696 697 int64_t FPOffset = 0; 698 if (HasFP) { 699 MachineFrameInfo &MFI = MF.getFrameInfo(); 700 int FPIndex = FI->getFramePointerSaveIndex(); 701 assert(FPIndex && "No Frame Pointer Save Slot!"); 702 FPOffset = MFI.getObjectOffset(FPIndex); 703 } 704 705 int64_t BPOffset = 0; 706 if (HasBP) { 707 MachineFrameInfo &MFI = MF.getFrameInfo(); 708 int BPIndex = FI->getBasePointerSaveIndex(); 709 assert(BPIndex && "No Base Pointer Save Slot!"); 710 BPOffset = MFI.getObjectOffset(BPIndex); 711 } 712 713 int64_t PBPOffset = 0; 714 if (FI->usesPICBase()) { 715 MachineFrameInfo &MFI = MF.getFrameInfo(); 716 int PBPIndex = FI->getPICBasePointerSaveIndex(); 717 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 718 PBPOffset = MFI.getObjectOffset(PBPIndex); 719 } 720 721 // Get stack alignments. 722 Align MaxAlign = MFI.getMaxAlign(); 723 if (HasBP && MaxAlign > 1) 724 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 725 726 // Frames of 32KB & larger require special handling because they cannot be 727 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 728 bool isLargeFrame = !isInt<16>(NegFrameSize); 729 730 // Check if we can move the stack update instruction (stdu) down the prologue 731 // past the callee saves. Hopefully this will avoid the situation where the 732 // saves are waiting for the update on the store with update to complete. 733 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 734 bool MovingStackUpdateDown = false; 735 736 // Check if we can move the stack update. 737 if (stackUpdateCanBeMoved(MF)) { 738 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 739 for (CalleeSavedInfo CSI : Info) { 740 // If the callee saved register is spilled to a register instead of the 741 // stack then the spill no longer uses the stack pointer. 742 // This can lead to two consequences: 743 // 1) We no longer need to update the stack because the function does not 744 // spill any callee saved registers to stack. 745 // 2) We have a situation where we still have to update the stack pointer 746 // even though some registers are spilled to other registers. In 747 // this case the current code moves the stack update to an incorrect 748 // position. 749 // In either case we should abort moving the stack update operation. 750 if (CSI.isSpilledToReg()) { 751 StackUpdateLoc = MBBI; 752 MovingStackUpdateDown = false; 753 break; 754 } 755 756 int FrIdx = CSI.getFrameIdx(); 757 // If the frame index is not negative the callee saved info belongs to a 758 // stack object that is not a fixed stack object. We ignore non-fixed 759 // stack objects because we won't move the stack update pointer past them. 760 if (FrIdx >= 0) 761 continue; 762 763 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 764 StackUpdateLoc++; 765 MovingStackUpdateDown = true; 766 } else { 767 // We need all of the Frame Indices to meet these conditions. 768 // If they do not, abort the whole operation. 769 StackUpdateLoc = MBBI; 770 MovingStackUpdateDown = false; 771 break; 772 } 773 } 774 775 // If the operation was not aborted then update the object offset. 776 if (MovingStackUpdateDown) { 777 for (CalleeSavedInfo CSI : Info) { 778 int FrIdx = CSI.getFrameIdx(); 779 if (FrIdx < 0) 780 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 781 } 782 } 783 } 784 785 // Where in the prologue we move the CR fields depends on how many scratch 786 // registers we have, and if we need to save the link register or not. This 787 // lambda is to avoid duplicating the logic in 2 places. 788 auto BuildMoveFromCR = [&]() { 789 if (isELFv2ABI && MustSaveCRs.size() == 1) { 790 // In the ELFv2 ABI, we are not required to save all CR fields. 791 // If only one CR field is clobbered, it is more efficient to use 792 // mfocrf to selectively save just that field, because mfocrf has short 793 // latency compares to mfcr. 794 assert(isPPC64 && "V2 ABI is 64-bit only."); 795 MachineInstrBuilder MIB = 796 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 797 MIB.addReg(MustSaveCRs[0], RegState::Kill); 798 } else { 799 MachineInstrBuilder MIB = 800 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 801 for (unsigned CRfield : MustSaveCRs) 802 MIB.addReg(CRfield, RegState::ImplicitKill); 803 } 804 }; 805 806 // If we need to spill the CR and the LR but we don't have two separate 807 // registers available, we must spill them one at a time 808 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 809 BuildMoveFromCR(); 810 BuildMI(MBB, MBBI, dl, StoreWordInst) 811 .addReg(TempReg, getKillRegState(true)) 812 .addImm(CRSaveOffset) 813 .addReg(SPReg); 814 } 815 816 if (MustSaveLR) 817 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 818 819 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 820 BuildMoveFromCR(); 821 822 if (HasRedZone) { 823 if (HasFP) 824 BuildMI(MBB, MBBI, dl, StoreInst) 825 .addReg(FPReg) 826 .addImm(FPOffset) 827 .addReg(SPReg); 828 if (FI->usesPICBase()) 829 BuildMI(MBB, MBBI, dl, StoreInst) 830 .addReg(PPC::R30) 831 .addImm(PBPOffset) 832 .addReg(SPReg); 833 if (HasBP) 834 BuildMI(MBB, MBBI, dl, StoreInst) 835 .addReg(BPReg) 836 .addImm(BPOffset) 837 .addReg(SPReg); 838 } 839 840 // Generate the instruction to store the LR. In the case where ROP protection 841 // is required the register holding the LR should not be killed as it will be 842 // used by the hash store instruction. 843 if (MustSaveLR) { 844 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 845 .addReg(ScratchReg, getKillRegState(!HasROPProtect)) 846 .addImm(LROffset) 847 .addReg(SPReg); 848 849 // Add the ROP protection Hash Store instruction. 850 // NOTE: This is technically a violation of the ABI. The hash can be saved 851 // up to 512 bytes into the Protected Zone. This can be outside of the 852 // initial 288 byte volatile program storage region in the Protected Zone. 853 // However, this restriction will be removed in an upcoming revision of the 854 // ABI. 855 if (HasROPProtect) { 856 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 857 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 858 assert((ImmOffset <= -8 && ImmOffset >= -512) && 859 "ROP hash save offset out of range."); 860 assert(((ImmOffset & 0x7) == 0) && 861 "ROP hash save offset must be 8 byte aligned."); 862 BuildMI(MBB, StackUpdateLoc, dl, HashST) 863 .addReg(ScratchReg, getKillRegState(true)) 864 .addImm(ImmOffset) 865 .addReg(SPReg); 866 } 867 } 868 869 if (MustSaveCR && 870 !(SingleScratchReg && MustSaveLR)) { 871 assert(HasRedZone && "A red zone is always available on PPC64"); 872 BuildMI(MBB, MBBI, dl, StoreWordInst) 873 .addReg(TempReg, getKillRegState(true)) 874 .addImm(CRSaveOffset) 875 .addReg(SPReg); 876 } 877 878 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 879 if (!FrameSize) 880 return; 881 882 // Adjust stack pointer: r1 += NegFrameSize. 883 // If there is a preferred stack alignment, align R1 now 884 885 if (HasBP && HasRedZone) { 886 // Save a copy of r1 as the base pointer. 887 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 888 .addReg(SPReg) 889 .addReg(SPReg); 890 } 891 892 // Have we generated a STUX instruction to claim stack frame? If so, 893 // the negated frame size will be placed in ScratchReg. 894 bool HasSTUX = false; 895 896 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 897 // pointer is always stored at SP, we will get a free probe due to an essential 898 // STU(X) instruction. 899 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 900 // To be consistent with other targets, a pseudo instruction is emitted and 901 // will be later expanded in `inlineStackProbe`. 902 BuildMI(MBB, MBBI, dl, 903 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 904 : PPC::PROBED_STACKALLOC_32)) 905 .addDef(TempReg) 906 .addDef(ScratchReg) // ScratchReg stores the old sp. 907 .addImm(NegFrameSize); 908 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 909 // update the ScratchReg to meet the assumption that ScratchReg contains 910 // the NegFrameSize. This solution is rather tricky. 911 if (!HasRedZone) { 912 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 913 .addReg(ScratchReg) 914 .addReg(SPReg); 915 HasSTUX = true; 916 } 917 } else { 918 // This condition must be kept in sync with canUseAsPrologue. 919 if (HasBP && MaxAlign > 1) { 920 if (isPPC64) 921 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 922 .addReg(SPReg) 923 .addImm(0) 924 .addImm(64 - Log2(MaxAlign)); 925 else // PPC32... 926 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 927 .addReg(SPReg) 928 .addImm(0) 929 .addImm(32 - Log2(MaxAlign)) 930 .addImm(31); 931 if (!isLargeFrame) { 932 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 933 .addReg(ScratchReg, RegState::Kill) 934 .addImm(NegFrameSize); 935 } else { 936 assert(!SingleScratchReg && "Only a single scratch reg available"); 937 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg) 938 .addImm(NegFrameSize >> 16); 939 BuildMI(MBB, MBBI, dl, OrImmInst, TempReg) 940 .addReg(TempReg, RegState::Kill) 941 .addImm(NegFrameSize & 0xFFFF); 942 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 943 .addReg(ScratchReg, RegState::Kill) 944 .addReg(TempReg, RegState::Kill); 945 } 946 947 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 948 .addReg(SPReg, RegState::Kill) 949 .addReg(SPReg) 950 .addReg(ScratchReg); 951 HasSTUX = true; 952 953 } else if (!isLargeFrame) { 954 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 955 .addReg(SPReg) 956 .addImm(NegFrameSize) 957 .addReg(SPReg); 958 959 } else { 960 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 961 .addImm(NegFrameSize >> 16); 962 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 963 .addReg(ScratchReg, RegState::Kill) 964 .addImm(NegFrameSize & 0xFFFF); 965 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 966 .addReg(SPReg, RegState::Kill) 967 .addReg(SPReg) 968 .addReg(ScratchReg); 969 HasSTUX = true; 970 } 971 } 972 973 // Save the TOC register after the stack pointer update if a prologue TOC 974 // save is required for the function. 975 if (MustSaveTOC) { 976 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 977 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 978 .addReg(TOCReg, getKillRegState(true)) 979 .addImm(TOCSaveOffset) 980 .addReg(SPReg); 981 } 982 983 if (!HasRedZone) { 984 assert(!isPPC64 && "A red zone is always available on PPC64"); 985 if (HasSTUX) { 986 // The negated frame size is in ScratchReg, and the SPReg has been 987 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 988 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 989 // the stack frame (i.e. the old SP), ideally, we would put the old 990 // SP into a register and use it as the base for the stores. The 991 // problem is that the only available register may be ScratchReg, 992 // which could be R0, and R0 cannot be used as a base address. 993 994 // First, set ScratchReg to the old SP. This may need to be modified 995 // later. 996 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 997 .addReg(ScratchReg, RegState::Kill) 998 .addReg(SPReg); 999 1000 if (ScratchReg == PPC::R0) { 1001 // R0 cannot be used as a base register, but it can be used as an 1002 // index in a store-indexed. 1003 int LastOffset = 0; 1004 if (HasFP) { 1005 // R0 += (FPOffset-LastOffset). 1006 // Need addic, since addi treats R0 as 0. 1007 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1008 .addReg(ScratchReg) 1009 .addImm(FPOffset-LastOffset); 1010 LastOffset = FPOffset; 1011 // Store FP into *R0. 1012 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1013 .addReg(FPReg, RegState::Kill) // Save FP. 1014 .addReg(PPC::ZERO) 1015 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1016 } 1017 if (FI->usesPICBase()) { 1018 // R0 += (PBPOffset-LastOffset). 1019 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1020 .addReg(ScratchReg) 1021 .addImm(PBPOffset-LastOffset); 1022 LastOffset = PBPOffset; 1023 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1024 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1025 .addReg(PPC::ZERO) 1026 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1027 } 1028 if (HasBP) { 1029 // R0 += (BPOffset-LastOffset). 1030 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1031 .addReg(ScratchReg) 1032 .addImm(BPOffset-LastOffset); 1033 LastOffset = BPOffset; 1034 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1035 .addReg(BPReg, RegState::Kill) // Save BP. 1036 .addReg(PPC::ZERO) 1037 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1038 // BP = R0-LastOffset 1039 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1040 .addReg(ScratchReg, RegState::Kill) 1041 .addImm(-LastOffset); 1042 } 1043 } else { 1044 // ScratchReg is not R0, so use it as the base register. It is 1045 // already set to the old SP, so we can use the offsets directly. 1046 1047 // Now that the stack frame has been allocated, save all the necessary 1048 // registers using ScratchReg as the base address. 1049 if (HasFP) 1050 BuildMI(MBB, MBBI, dl, StoreInst) 1051 .addReg(FPReg) 1052 .addImm(FPOffset) 1053 .addReg(ScratchReg); 1054 if (FI->usesPICBase()) 1055 BuildMI(MBB, MBBI, dl, StoreInst) 1056 .addReg(PPC::R30) 1057 .addImm(PBPOffset) 1058 .addReg(ScratchReg); 1059 if (HasBP) { 1060 BuildMI(MBB, MBBI, dl, StoreInst) 1061 .addReg(BPReg) 1062 .addImm(BPOffset) 1063 .addReg(ScratchReg); 1064 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1065 .addReg(ScratchReg, RegState::Kill) 1066 .addReg(ScratchReg); 1067 } 1068 } 1069 } else { 1070 // The frame size is a known 16-bit constant (fitting in the immediate 1071 // field of STWU). To be here we have to be compiling for PPC32. 1072 // Since the SPReg has been decreased by FrameSize, add it back to each 1073 // offset. 1074 if (HasFP) 1075 BuildMI(MBB, MBBI, dl, StoreInst) 1076 .addReg(FPReg) 1077 .addImm(FrameSize + FPOffset) 1078 .addReg(SPReg); 1079 if (FI->usesPICBase()) 1080 BuildMI(MBB, MBBI, dl, StoreInst) 1081 .addReg(PPC::R30) 1082 .addImm(FrameSize + PBPOffset) 1083 .addReg(SPReg); 1084 if (HasBP) { 1085 BuildMI(MBB, MBBI, dl, StoreInst) 1086 .addReg(BPReg) 1087 .addImm(FrameSize + BPOffset) 1088 .addReg(SPReg); 1089 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1090 .addReg(SPReg) 1091 .addImm(FrameSize); 1092 } 1093 } 1094 } 1095 1096 // Add Call Frame Information for the instructions we generated above. 1097 if (needsCFI) { 1098 unsigned CFIIndex; 1099 1100 if (HasBP) { 1101 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1102 // because if the stack needed aligning then CFA won't be at a fixed 1103 // offset from FP/SP. 1104 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1105 CFIIndex = MF.addFrameInst( 1106 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1107 } else { 1108 // Adjust the definition of CFA to account for the change in SP. 1109 assert(NegFrameSize); 1110 CFIIndex = MF.addFrameInst( 1111 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1112 } 1113 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1114 .addCFIIndex(CFIIndex); 1115 1116 if (HasFP) { 1117 // Describe where FP was saved, at a fixed offset from CFA. 1118 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1119 CFIIndex = MF.addFrameInst( 1120 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1121 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1122 .addCFIIndex(CFIIndex); 1123 } 1124 1125 if (FI->usesPICBase()) { 1126 // Describe where FP was saved, at a fixed offset from CFA. 1127 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1128 CFIIndex = MF.addFrameInst( 1129 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1130 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1131 .addCFIIndex(CFIIndex); 1132 } 1133 1134 if (HasBP) { 1135 // Describe where BP was saved, at a fixed offset from CFA. 1136 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1137 CFIIndex = MF.addFrameInst( 1138 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1139 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1140 .addCFIIndex(CFIIndex); 1141 } 1142 1143 if (MustSaveLR) { 1144 // Describe where LR was saved, at a fixed offset from CFA. 1145 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1146 CFIIndex = MF.addFrameInst( 1147 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1148 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1149 .addCFIIndex(CFIIndex); 1150 } 1151 } 1152 1153 // If there is a frame pointer, copy R1 into R31 1154 if (HasFP) { 1155 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1156 .addReg(SPReg) 1157 .addReg(SPReg); 1158 1159 if (!HasBP && needsCFI) { 1160 // Change the definition of CFA from SP+offset to FP+offset, because SP 1161 // will change at every alloca. 1162 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1163 unsigned CFIIndex = MF.addFrameInst( 1164 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1165 1166 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1167 .addCFIIndex(CFIIndex); 1168 } 1169 } 1170 1171 if (needsCFI) { 1172 // Describe where callee saved registers were saved, at fixed offsets from 1173 // CFA. 1174 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1175 for (unsigned I = 0, E = CSI.size(); I != E; ++I) { 1176 unsigned Reg = CSI[I].getReg(); 1177 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1178 1179 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1180 // subregisters of CR2. We just need to emit a move of CR2. 1181 if (PPC::CRBITRCRegClass.contains(Reg)) 1182 continue; 1183 1184 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1185 continue; 1186 1187 // For SVR4, don't emit a move for the CR spill slot if we haven't 1188 // spilled CRs. 1189 if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4) 1190 && !MustSaveCR) 1191 continue; 1192 1193 // For 64-bit SVR4 when we have spilled CRs, the spill location 1194 // is SP+8, not a frame-relative slot. 1195 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1196 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1197 // the whole CR word. In the ELFv2 ABI, every CR that was 1198 // actually saved gets its own CFI record. 1199 unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2; 1200 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1201 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1202 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1203 .addCFIIndex(CFIIndex); 1204 continue; 1205 } 1206 1207 if (CSI[I].isSpilledToReg()) { 1208 unsigned SpilledReg = CSI[I].getDstReg(); 1209 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1210 nullptr, MRI->getDwarfRegNum(Reg, true), 1211 MRI->getDwarfRegNum(SpilledReg, true))); 1212 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1213 .addCFIIndex(CFIRegister); 1214 } else { 1215 int64_t Offset = MFI.getObjectOffset(CSI[I].getFrameIdx()); 1216 // We have changed the object offset above but we do not want to change 1217 // the actual offsets in the CFI instruction so we have to undo the 1218 // offset change here. 1219 if (MovingStackUpdateDown) 1220 Offset -= NegFrameSize; 1221 1222 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1223 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1224 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1225 .addCFIIndex(CFIIndex); 1226 } 1227 } 1228 } 1229 } 1230 1231 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1232 MachineBasicBlock &PrologMBB) const { 1233 bool isPPC64 = Subtarget.isPPC64(); 1234 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1235 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1236 MachineFrameInfo &MFI = MF.getFrameInfo(); 1237 MachineModuleInfo &MMI = MF.getMMI(); 1238 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1239 // AIX assembler does not support cfi directives. 1240 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1241 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1242 int Opc = MI.getOpcode(); 1243 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1244 }); 1245 if (StackAllocMIPos == PrologMBB.end()) 1246 return; 1247 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1248 MachineBasicBlock *CurrentMBB = &PrologMBB; 1249 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1250 MachineInstr &MI = *StackAllocMIPos; 1251 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1252 unsigned ProbeSize = TLI.getStackProbeSize(MF); 1253 int64_t NegProbeSize = -(int64_t)ProbeSize; 1254 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1255 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1256 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1257 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1258 Register ScratchReg = MI.getOperand(0).getReg(); 1259 Register FPReg = MI.getOperand(1).getReg(); 1260 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1261 bool HasBP = RegInfo->hasBasePointer(MF); 1262 Register BPReg = RegInfo->getBaseRegister(MF); 1263 Align MaxAlign = MFI.getMaxAlign(); 1264 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1265 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1266 // Subroutines to generate .cfi_* directives. 1267 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1268 MachineBasicBlock::iterator MBBI, Register Reg) { 1269 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1270 unsigned CFIIndex = MF.addFrameInst( 1271 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1272 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1273 .addCFIIndex(CFIIndex); 1274 }; 1275 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1276 MachineBasicBlock::iterator MBBI, Register Reg, 1277 int Offset) { 1278 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1279 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1280 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1281 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1282 .addCFIIndex(CFIIndex); 1283 }; 1284 // Subroutine to determine if we can use the Imm as part of d-form. 1285 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1286 // Subroutine to materialize the Imm into TempReg. 1287 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1288 MachineBasicBlock::iterator MBBI, int64_t Imm, 1289 Register &TempReg) { 1290 assert(isInt<32>(Imm) && "Unhandled imm"); 1291 if (isInt<16>(Imm)) 1292 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1293 .addImm(Imm); 1294 else { 1295 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1296 .addImm(Imm >> 16); 1297 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1298 .addReg(TempReg) 1299 .addImm(Imm & 0xFFFF); 1300 } 1301 }; 1302 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1303 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1304 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1305 Register NegSizeReg, bool UseDForm, 1306 Register StoreReg) { 1307 if (UseDForm) 1308 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1309 .addReg(StoreReg) 1310 .addImm(NegSize) 1311 .addReg(SPReg); 1312 else 1313 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1314 .addReg(StoreReg) 1315 .addReg(SPReg) 1316 .addReg(NegSizeReg); 1317 }; 1318 // Used to probe stack when realignment is required. 1319 // Note that, according to ABI's requirement, *sp must always equals the 1320 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp. 1321 // Following is pseudo code: 1322 // final_sp = (sp & align) + negframesize; 1323 // neg_gap = final_sp - sp; 1324 // while (neg_gap < negprobesize) { 1325 // stdu fp, negprobesize(sp); 1326 // neg_gap -= negprobesize; 1327 // } 1328 // stdux fp, sp, neg_gap 1329 // 1330 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg 1331 // before probe code, we don't need to save it, so we get one additional reg 1332 // that can be used to materialize the probeside if needed to use xform. 1333 // Otherwise, we can NOT materialize probeside, so we can only use Dform for 1334 // now. 1335 // 1336 // The allocations are: 1337 // if (HasBP && HasRedzone) { 1338 // r0: materialize the probesize if needed so that we can use xform. 1339 // r12: `neg_gap` 1340 // } else { 1341 // r0: back-chain pointer 1342 // r12: `neg_gap`. 1343 // } 1344 auto probeRealignedStack = [&](MachineBasicBlock &MBB, 1345 MachineBasicBlock::iterator MBBI, 1346 Register ScratchReg, Register TempReg) { 1347 assert(HasBP && "The function is supposed to have base pointer when its " 1348 "stack is realigned."); 1349 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2"); 1350 1351 // FIXME: We can eliminate this limitation if we get more infomation about 1352 // which part of redzone are already used. Used redzone can be treated 1353 // probed. But there might be `holes' in redzone probed, this could 1354 // complicate the implementation. 1355 assert(ProbeSize >= Subtarget.getRedZoneSize() && 1356 "Probe size should be larger or equal to the size of red-zone so " 1357 "that red-zone is not clobbered by probing."); 1358 1359 Register &FinalStackPtr = TempReg; 1360 // FIXME: We only support NegProbeSize materializable by DForm currently. 1361 // When HasBP && HasRedzone, we can use xform if we have an additional idle 1362 // register. 1363 NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15)); 1364 assert(isInt<16>(NegProbeSize) && 1365 "NegProbeSize should be materializable by DForm"); 1366 Register CRReg = PPC::CR0; 1367 // Layout of output assembly kinda like: 1368 // bb.0: 1369 // ... 1370 // sub $scratchreg, $finalsp, r1 1371 // cmpdi $scratchreg, <negprobesize> 1372 // bge bb.2 1373 // bb.1: 1374 // stdu <backchain>, <negprobesize>(r1) 1375 // sub $scratchreg, $scratchreg, negprobesize 1376 // cmpdi $scratchreg, <negprobesize> 1377 // blt bb.1 1378 // bb.2: 1379 // stdux <backchain>, r1, $scratchreg 1380 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 1381 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB); 1382 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB); 1383 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1384 MF.insert(MBBInsertPoint, ProbeExitMBB); 1385 // bb.2 1386 { 1387 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1388 allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false, 1389 BackChainPointer); 1390 if (HasRedZone) 1391 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg 1392 // to TempReg to satisfy it. 1393 BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg) 1394 .addReg(BPReg) 1395 .addReg(BPReg); 1396 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end()); 1397 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 1398 } 1399 // bb.0 1400 { 1401 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg) 1402 .addReg(SPReg) 1403 .addReg(FinalStackPtr); 1404 if (!HasRedZone) 1405 BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg); 1406 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg) 1407 .addReg(ScratchReg) 1408 .addImm(NegProbeSize); 1409 BuildMI(&MBB, DL, TII.get(PPC::BCC)) 1410 .addImm(PPC::PRED_GE) 1411 .addReg(CRReg) 1412 .addMBB(ProbeExitMBB); 1413 MBB.addSuccessor(ProbeLoopBodyMBB); 1414 MBB.addSuccessor(ProbeExitMBB); 1415 } 1416 // bb.1 1417 { 1418 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1419 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize, 1420 0, true /*UseDForm*/, BackChainPointer); 1421 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI), 1422 ScratchReg) 1423 .addReg(ScratchReg) 1424 .addImm(-NegProbeSize); 1425 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), 1426 CRReg) 1427 .addReg(ScratchReg) 1428 .addImm(NegProbeSize); 1429 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC)) 1430 .addImm(PPC::PRED_LT) 1431 .addReg(CRReg) 1432 .addMBB(ProbeLoopBodyMBB); 1433 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB); 1434 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB); 1435 } 1436 // Update liveins. 1437 recomputeLiveIns(*ProbeLoopBodyMBB); 1438 recomputeLiveIns(*ProbeExitMBB); 1439 return ProbeExitMBB; 1440 }; 1441 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing 1442 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since 1443 // the offset subtracted from SP is determined by SP's runtime value. 1444 if (HasBP && MaxAlign > 1) { 1445 // Calculate final stack pointer. 1446 if (isPPC64) 1447 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg) 1448 .addReg(SPReg) 1449 .addImm(0) 1450 .addImm(64 - Log2(MaxAlign)); 1451 else 1452 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1453 .addReg(SPReg) 1454 .addImm(0) 1455 .addImm(32 - Log2(MaxAlign)) 1456 .addImm(31); 1457 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), 1458 FPReg) 1459 .addReg(ScratchReg) 1460 .addReg(SPReg); 1461 MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg); 1462 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 1463 FPReg) 1464 .addReg(ScratchReg) 1465 .addReg(FPReg); 1466 CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg); 1467 if (needsCFI) 1468 buildDefCFAReg(*CurrentMBB, {MI}, FPReg); 1469 } else { 1470 // Initialize current frame pointer. 1471 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1472 // Use FPReg to calculate CFA. 1473 if (needsCFI) 1474 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1475 // Probe residual part. 1476 if (NegResidualSize) { 1477 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1478 if (!ResidualUseDForm) 1479 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg); 1480 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg, 1481 ResidualUseDForm, FPReg); 1482 } 1483 bool UseDForm = CanUseDForm(NegProbeSize); 1484 // If number of blocks is small, just probe them directly. 1485 if (NumBlocks < 3) { 1486 if (!UseDForm) 1487 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1488 for (int i = 0; i < NumBlocks; ++i) 1489 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm, 1490 FPReg); 1491 if (needsCFI) { 1492 // Restore using SPReg to calculate CFA. 1493 buildDefCFAReg(*CurrentMBB, {MI}, SPReg); 1494 } 1495 } else { 1496 // Since CTR is a volatile register and current shrinkwrap implementation 1497 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1498 // CTR loop to probe. 1499 // Calculate trip count and stores it in CTRReg. 1500 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg); 1501 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1502 .addReg(ScratchReg, RegState::Kill); 1503 if (!UseDForm) 1504 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1505 // Create MBBs of the loop. 1506 MachineFunction::iterator MBBInsertPoint = 1507 std::next(CurrentMBB->getIterator()); 1508 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1509 MF.insert(MBBInsertPoint, LoopMBB); 1510 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1511 MF.insert(MBBInsertPoint, ExitMBB); 1512 // Synthesize the loop body. 1513 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1514 UseDForm, FPReg); 1515 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1516 .addMBB(LoopMBB); 1517 LoopMBB->addSuccessor(ExitMBB); 1518 LoopMBB->addSuccessor(LoopMBB); 1519 // Synthesize the exit MBB. 1520 ExitMBB->splice(ExitMBB->end(), CurrentMBB, 1521 std::next(MachineBasicBlock::iterator(MI)), 1522 CurrentMBB->end()); 1523 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB); 1524 CurrentMBB->addSuccessor(LoopMBB); 1525 if (needsCFI) { 1526 // Restore using SPReg to calculate CFA. 1527 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1528 } 1529 // Update liveins. 1530 recomputeLiveIns(*LoopMBB); 1531 recomputeLiveIns(*ExitMBB); 1532 } 1533 } 1534 ++NumPrologProbed; 1535 MI.eraseFromParent(); 1536 } 1537 1538 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1539 MachineBasicBlock &MBB) const { 1540 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1541 DebugLoc dl; 1542 1543 if (MBBI != MBB.end()) 1544 dl = MBBI->getDebugLoc(); 1545 1546 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1547 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1548 1549 // Get alignment info so we know how to restore the SP. 1550 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1551 1552 // Get the number of bytes allocated from the FrameInfo. 1553 int64_t FrameSize = MFI.getStackSize(); 1554 1555 // Get processor type. 1556 bool isPPC64 = Subtarget.isPPC64(); 1557 1558 // Check if the link register (LR) has been saved. 1559 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1560 bool MustSaveLR = FI->mustSaveLR(); 1561 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1562 bool MustSaveCR = !MustSaveCRs.empty(); 1563 // Do we have a frame pointer and/or base pointer for this function? 1564 bool HasFP = hasFP(MF); 1565 bool HasBP = RegInfo->hasBasePointer(MF); 1566 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1567 bool HasROPProtect = Subtarget.hasROPProtect(); 1568 bool HasPrivileged = Subtarget.hasPrivileged(); 1569 1570 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1571 Register BPReg = RegInfo->getBaseRegister(MF); 1572 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1573 Register ScratchReg; 1574 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1575 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1576 : PPC::MTLR ); 1577 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1578 : PPC::LWZ ); 1579 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1580 : PPC::LIS ); 1581 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1582 : PPC::OR ); 1583 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1584 : PPC::ORI ); 1585 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1586 : PPC::ADDI ); 1587 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1588 : PPC::ADD4 ); 1589 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1590 : PPC::LWZ); 1591 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1592 : PPC::MTOCRF); 1593 const MCInstrDesc &HashChk = 1594 TII.get(HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK); 1595 int64_t LROffset = getReturnSaveOffset(); 1596 1597 int64_t FPOffset = 0; 1598 1599 // Using the same bool variable as below to suppress compiler warnings. 1600 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1601 &TempReg); 1602 assert(SingleScratchReg && 1603 "Could not find an available scratch register"); 1604 1605 SingleScratchReg = ScratchReg == TempReg; 1606 1607 if (HasFP) { 1608 int FPIndex = FI->getFramePointerSaveIndex(); 1609 assert(FPIndex && "No Frame Pointer Save Slot!"); 1610 FPOffset = MFI.getObjectOffset(FPIndex); 1611 } 1612 1613 int64_t BPOffset = 0; 1614 if (HasBP) { 1615 int BPIndex = FI->getBasePointerSaveIndex(); 1616 assert(BPIndex && "No Base Pointer Save Slot!"); 1617 BPOffset = MFI.getObjectOffset(BPIndex); 1618 } 1619 1620 int64_t PBPOffset = 0; 1621 if (FI->usesPICBase()) { 1622 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1623 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1624 PBPOffset = MFI.getObjectOffset(PBPIndex); 1625 } 1626 1627 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1628 1629 if (IsReturnBlock) { 1630 unsigned RetOpcode = MBBI->getOpcode(); 1631 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1632 RetOpcode == PPC::TCRETURNdi || 1633 RetOpcode == PPC::TCRETURNai || 1634 RetOpcode == PPC::TCRETURNri8 || 1635 RetOpcode == PPC::TCRETURNdi8 || 1636 RetOpcode == PPC::TCRETURNai8; 1637 1638 if (UsesTCRet) { 1639 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1640 MachineOperand &StackAdjust = MBBI->getOperand(1); 1641 assert(StackAdjust.isImm() && "Expecting immediate value."); 1642 // Adjust stack pointer. 1643 int StackAdj = StackAdjust.getImm(); 1644 int Delta = StackAdj - MaxTCRetDelta; 1645 assert((Delta >= 0) && "Delta must be positive"); 1646 if (MaxTCRetDelta>0) 1647 FrameSize += (StackAdj +Delta); 1648 else 1649 FrameSize += StackAdj; 1650 } 1651 } 1652 1653 // Frames of 32KB & larger require special handling because they cannot be 1654 // indexed into with a simple LD/LWZ immediate offset operand. 1655 bool isLargeFrame = !isInt<16>(FrameSize); 1656 1657 // On targets without red zone, the SP needs to be restored last, so that 1658 // all live contents of the stack frame are upwards of the SP. This means 1659 // that we cannot restore SP just now, since there may be more registers 1660 // to restore from the stack frame (e.g. R31). If the frame size is not 1661 // a simple immediate value, we will need a spare register to hold the 1662 // restored SP. If the frame size is known and small, we can simply adjust 1663 // the offsets of the registers to be restored, and still use SP to restore 1664 // them. In such case, the final update of SP will be to add the frame 1665 // size to it. 1666 // To simplify the code, set RBReg to the base register used to restore 1667 // values from the stack, and set SPAdd to the value that needs to be added 1668 // to the SP at the end. The default values are as if red zone was present. 1669 unsigned RBReg = SPReg; 1670 unsigned SPAdd = 0; 1671 1672 // Check if we can move the stack update instruction up the epilogue 1673 // past the callee saves. This will allow the move to LR instruction 1674 // to be executed before the restores of the callee saves which means 1675 // that the callee saves can hide the latency from the MTLR instrcution. 1676 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1677 if (stackUpdateCanBeMoved(MF)) { 1678 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1679 for (CalleeSavedInfo CSI : Info) { 1680 // If the callee saved register is spilled to another register abort the 1681 // stack update movement. 1682 if (CSI.isSpilledToReg()) { 1683 StackUpdateLoc = MBBI; 1684 break; 1685 } 1686 int FrIdx = CSI.getFrameIdx(); 1687 // If the frame index is not negative the callee saved info belongs to a 1688 // stack object that is not a fixed stack object. We ignore non-fixed 1689 // stack objects because we won't move the update of the stack pointer 1690 // past them. 1691 if (FrIdx >= 0) 1692 continue; 1693 1694 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1695 StackUpdateLoc--; 1696 else { 1697 // Abort the operation as we can't update all CSR restores. 1698 StackUpdateLoc = MBBI; 1699 break; 1700 } 1701 } 1702 } 1703 1704 if (FrameSize) { 1705 // In the prologue, the loaded (or persistent) stack pointer value is 1706 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1707 // zone add this offset back now. 1708 1709 // If the function has a base pointer, the stack pointer has been copied 1710 // to it so we can restore it by copying in the other direction. 1711 if (HasRedZone && HasBP) { 1712 BuildMI(MBB, MBBI, dl, OrInst, RBReg). 1713 addReg(BPReg). 1714 addReg(BPReg); 1715 } 1716 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1717 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1718 // call which invalidates the stack pointer value in SP(0). So we use the 1719 // value of R31 in this case. Similar situation exists with setjmp. 1720 else if (FI->hasFastCall() || MF.exposesReturnsTwice()) { 1721 assert(HasFP && "Expecting a valid frame pointer."); 1722 if (!HasRedZone) 1723 RBReg = FPReg; 1724 if (!isLargeFrame) { 1725 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1726 .addReg(FPReg).addImm(FrameSize); 1727 } else { 1728 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1729 .addImm(FrameSize >> 16); 1730 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1731 .addReg(ScratchReg, RegState::Kill) 1732 .addImm(FrameSize & 0xFFFF); 1733 BuildMI(MBB, MBBI, dl, AddInst) 1734 .addReg(RBReg) 1735 .addReg(FPReg) 1736 .addReg(ScratchReg); 1737 } 1738 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1739 if (HasRedZone) { 1740 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1741 .addReg(SPReg) 1742 .addImm(FrameSize); 1743 } else { 1744 // Make sure that adding FrameSize will not overflow the max offset 1745 // size. 1746 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1747 "Local offsets should be negative"); 1748 SPAdd = FrameSize; 1749 FPOffset += FrameSize; 1750 BPOffset += FrameSize; 1751 PBPOffset += FrameSize; 1752 } 1753 } else { 1754 // We don't want to use ScratchReg as a base register, because it 1755 // could happen to be R0. Use FP instead, but make sure to preserve it. 1756 if (!HasRedZone) { 1757 // If FP is not saved, copy it to ScratchReg. 1758 if (!HasFP) 1759 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1760 .addReg(FPReg) 1761 .addReg(FPReg); 1762 RBReg = FPReg; 1763 } 1764 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1765 .addImm(0) 1766 .addReg(SPReg); 1767 } 1768 } 1769 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1770 // If there is no red zone, ScratchReg may be needed for holding a useful 1771 // value (although not the base register). Make sure it is not overwritten 1772 // too early. 1773 1774 // If we need to restore both the LR and the CR and we only have one 1775 // available scratch register, we must do them one at a time. 1776 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1777 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1778 // is live here. 1779 assert(HasRedZone && "Expecting red zone"); 1780 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1781 .addImm(CRSaveOffset) 1782 .addReg(SPReg); 1783 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1784 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1785 .addReg(TempReg, getKillRegState(i == e-1)); 1786 } 1787 1788 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1789 // LR is stored in the caller's stack frame. ScratchReg will be needed 1790 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1791 // a base register anyway, because it may happen to be R0. 1792 bool LoadedLR = false; 1793 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1794 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1795 .addImm(LROffset+SPAdd) 1796 .addReg(RBReg); 1797 LoadedLR = true; 1798 } 1799 1800 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1801 assert(RBReg == SPReg && "Should be using SP as a base register"); 1802 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1803 .addImm(CRSaveOffset) 1804 .addReg(RBReg); 1805 } 1806 1807 if (HasFP) { 1808 // If there is red zone, restore FP directly, since SP has already been 1809 // restored. Otherwise, restore the value of FP into ScratchReg. 1810 if (HasRedZone || RBReg == SPReg) 1811 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1812 .addImm(FPOffset) 1813 .addReg(SPReg); 1814 else 1815 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1816 .addImm(FPOffset) 1817 .addReg(RBReg); 1818 } 1819 1820 if (FI->usesPICBase()) 1821 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1822 .addImm(PBPOffset) 1823 .addReg(RBReg); 1824 1825 if (HasBP) 1826 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1827 .addImm(BPOffset) 1828 .addReg(RBReg); 1829 1830 // There is nothing more to be loaded from the stack, so now we can 1831 // restore SP: SP = RBReg + SPAdd. 1832 if (RBReg != SPReg || SPAdd != 0) { 1833 assert(!HasRedZone && "This should not happen with red zone"); 1834 // If SPAdd is 0, generate a copy. 1835 if (SPAdd == 0) 1836 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1837 .addReg(RBReg) 1838 .addReg(RBReg); 1839 else 1840 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1841 .addReg(RBReg) 1842 .addImm(SPAdd); 1843 1844 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1845 if (RBReg == FPReg) 1846 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1847 .addReg(ScratchReg) 1848 .addReg(ScratchReg); 1849 1850 // Now load the LR from the caller's stack frame. 1851 if (MustSaveLR && !LoadedLR) 1852 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1853 .addImm(LROffset) 1854 .addReg(SPReg); 1855 } 1856 1857 if (MustSaveCR && 1858 !(SingleScratchReg && MustSaveLR)) 1859 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1860 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1861 .addReg(TempReg, getKillRegState(i == e-1)); 1862 1863 if (MustSaveLR) { 1864 // If ROP protection is required, an extra instruction is added to compute a 1865 // hash and then compare it to the hash stored in the prologue. 1866 if (HasROPProtect) { 1867 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 1868 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 1869 assert((ImmOffset <= -8 && ImmOffset >= -512) && 1870 "ROP hash check location offset out of range."); 1871 assert(((ImmOffset & 0x7) == 0) && 1872 "ROP hash check location offset must be 8 byte aligned."); 1873 BuildMI(MBB, StackUpdateLoc, dl, HashChk) 1874 .addReg(ScratchReg) 1875 .addImm(ImmOffset) 1876 .addReg(SPReg); 1877 } 1878 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1879 } 1880 1881 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1882 // call optimization 1883 if (IsReturnBlock) { 1884 unsigned RetOpcode = MBBI->getOpcode(); 1885 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1886 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1887 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1888 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1889 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1890 1891 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1892 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1893 .addReg(SPReg).addImm(CallerAllocatedAmt); 1894 } else { 1895 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1896 .addImm(CallerAllocatedAmt >> 16); 1897 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1898 .addReg(ScratchReg, RegState::Kill) 1899 .addImm(CallerAllocatedAmt & 0xFFFF); 1900 BuildMI(MBB, MBBI, dl, AddInst) 1901 .addReg(SPReg) 1902 .addReg(FPReg) 1903 .addReg(ScratchReg); 1904 } 1905 } else { 1906 createTailCallBranchInstr(MBB); 1907 } 1908 } 1909 } 1910 1911 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1912 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1913 1914 // If we got this far a first terminator should exist. 1915 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1916 1917 DebugLoc dl = MBBI->getDebugLoc(); 1918 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1919 1920 // Create branch instruction for pseudo tail call return instruction. 1921 // The TCRETURNdi variants are direct calls. Valid targets for those are 1922 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1923 // since we can tail call external functions with PC-Rel (i.e. we don't need 1924 // to worry about different TOC pointers). Some of the external functions will 1925 // be MO_GlobalAddress while others like memcpy for example, are going to 1926 // be MO_ExternalSymbol. 1927 unsigned RetOpcode = MBBI->getOpcode(); 1928 if (RetOpcode == PPC::TCRETURNdi) { 1929 MBBI = MBB.getLastNonDebugInstr(); 1930 MachineOperand &JumpTarget = MBBI->getOperand(0); 1931 if (JumpTarget.isGlobal()) 1932 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1933 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1934 else if (JumpTarget.isSymbol()) 1935 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1936 addExternalSymbol(JumpTarget.getSymbolName()); 1937 else 1938 llvm_unreachable("Expecting Global or External Symbol"); 1939 } else if (RetOpcode == PPC::TCRETURNri) { 1940 MBBI = MBB.getLastNonDebugInstr(); 1941 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1942 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1943 } else if (RetOpcode == PPC::TCRETURNai) { 1944 MBBI = MBB.getLastNonDebugInstr(); 1945 MachineOperand &JumpTarget = MBBI->getOperand(0); 1946 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1947 } else if (RetOpcode == PPC::TCRETURNdi8) { 1948 MBBI = MBB.getLastNonDebugInstr(); 1949 MachineOperand &JumpTarget = MBBI->getOperand(0); 1950 if (JumpTarget.isGlobal()) 1951 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1952 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1953 else if (JumpTarget.isSymbol()) 1954 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1955 addExternalSymbol(JumpTarget.getSymbolName()); 1956 else 1957 llvm_unreachable("Expecting Global or External Symbol"); 1958 } else if (RetOpcode == PPC::TCRETURNri8) { 1959 MBBI = MBB.getLastNonDebugInstr(); 1960 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1961 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1962 } else if (RetOpcode == PPC::TCRETURNai8) { 1963 MBBI = MBB.getLastNonDebugInstr(); 1964 MachineOperand &JumpTarget = MBBI->getOperand(0); 1965 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1966 } 1967 } 1968 1969 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1970 BitVector &SavedRegs, 1971 RegScavenger *RS) const { 1972 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1973 1974 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1975 1976 // Save and clear the LR state. 1977 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1978 unsigned LR = RegInfo->getRARegister(); 1979 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1980 SavedRegs.reset(LR); 1981 1982 // Save R31 if necessary 1983 int FPSI = FI->getFramePointerSaveIndex(); 1984 const bool isPPC64 = Subtarget.isPPC64(); 1985 MachineFrameInfo &MFI = MF.getFrameInfo(); 1986 1987 // If the frame pointer save index hasn't been defined yet. 1988 if (!FPSI && needsFP(MF)) { 1989 // Find out what the fix offset of the frame pointer save area. 1990 int FPOffset = getFramePointerSaveOffset(); 1991 // Allocate the frame index for frame pointer save area. 1992 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 1993 // Save the result. 1994 FI->setFramePointerSaveIndex(FPSI); 1995 } 1996 1997 int BPSI = FI->getBasePointerSaveIndex(); 1998 if (!BPSI && RegInfo->hasBasePointer(MF)) { 1999 int BPOffset = getBasePointerSaveOffset(); 2000 // Allocate the frame index for the base pointer save area. 2001 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 2002 // Save the result. 2003 FI->setBasePointerSaveIndex(BPSI); 2004 } 2005 2006 // Reserve stack space for the PIC Base register (R30). 2007 // Only used in SVR4 32-bit. 2008 if (FI->usesPICBase()) { 2009 int PBPSI = MFI.CreateFixedObject(4, -8, true); 2010 FI->setPICBasePointerSaveIndex(PBPSI); 2011 } 2012 2013 // Make sure we don't explicitly spill r31, because, for example, we have 2014 // some inline asm which explicitly clobbers it, when we otherwise have a 2015 // frame pointer and are using r31's spill slot for the prologue/epilogue 2016 // code. Same goes for the base pointer and the PIC base register. 2017 if (needsFP(MF)) 2018 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 2019 if (RegInfo->hasBasePointer(MF)) 2020 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 2021 if (FI->usesPICBase()) 2022 SavedRegs.reset(PPC::R30); 2023 2024 // Reserve stack space to move the linkage area to in case of a tail call. 2025 int TCSPDelta = 0; 2026 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2027 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 2028 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 2029 } 2030 2031 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 2032 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 2033 // object at the offset of the CR-save slot in the linkage area. The actual 2034 // save and restore of the condition register will be created as part of the 2035 // prologue and epilogue insertion, but the FixedStack object is needed to 2036 // keep the CalleSavedInfo valid. 2037 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 2038 SavedRegs.test(PPC::CR4))) { 2039 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 2040 const int64_t SpillOffset = 2041 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 2042 int FrameIdx = 2043 MFI.CreateFixedObject(SpillSize, SpillOffset, 2044 /* IsImmutable */ true, /* IsAliased */ false); 2045 FI->setCRSpillFrameIndex(FrameIdx); 2046 } 2047 } 2048 2049 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 2050 RegScavenger *RS) const { 2051 // Get callee saved register information. 2052 MachineFrameInfo &MFI = MF.getFrameInfo(); 2053 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2054 2055 // If the function is shrink-wrapped, and if the function has a tail call, the 2056 // tail call might not be in the new RestoreBlock, so real branch instruction 2057 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 2058 // RestoreBlock. So we handle this case here. 2059 if (MFI.getSavePoint() && MFI.hasTailCall()) { 2060 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 2061 for (MachineBasicBlock &MBB : MF) { 2062 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 2063 createTailCallBranchInstr(MBB); 2064 } 2065 } 2066 2067 // Early exit if no callee saved registers are modified! 2068 if (CSI.empty() && !needsFP(MF)) { 2069 addScavengingSpillSlot(MF, RS); 2070 return; 2071 } 2072 2073 unsigned MinGPR = PPC::R31; 2074 unsigned MinG8R = PPC::X31; 2075 unsigned MinFPR = PPC::F31; 2076 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 2077 2078 bool HasGPSaveArea = false; 2079 bool HasG8SaveArea = false; 2080 bool HasFPSaveArea = false; 2081 bool HasVRSaveArea = false; 2082 2083 SmallVector<CalleeSavedInfo, 18> GPRegs; 2084 SmallVector<CalleeSavedInfo, 18> G8Regs; 2085 SmallVector<CalleeSavedInfo, 18> FPRegs; 2086 SmallVector<CalleeSavedInfo, 18> VRegs; 2087 2088 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2089 unsigned Reg = CSI[i].getReg(); 2090 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2091 (Reg != PPC::X2 && Reg != PPC::R2)) && 2092 "Not expecting to try to spill R2 in a function that must save TOC"); 2093 if (PPC::GPRCRegClass.contains(Reg)) { 2094 HasGPSaveArea = true; 2095 2096 GPRegs.push_back(CSI[i]); 2097 2098 if (Reg < MinGPR) { 2099 MinGPR = Reg; 2100 } 2101 } else if (PPC::G8RCRegClass.contains(Reg)) { 2102 HasG8SaveArea = true; 2103 2104 G8Regs.push_back(CSI[i]); 2105 2106 if (Reg < MinG8R) { 2107 MinG8R = Reg; 2108 } 2109 } else if (PPC::F8RCRegClass.contains(Reg)) { 2110 HasFPSaveArea = true; 2111 2112 FPRegs.push_back(CSI[i]); 2113 2114 if (Reg < MinFPR) { 2115 MinFPR = Reg; 2116 } 2117 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2118 PPC::CRRCRegClass.contains(Reg)) { 2119 ; // do nothing, as we already know whether CRs are spilled 2120 } else if (PPC::VRRCRegClass.contains(Reg) || 2121 PPC::SPERCRegClass.contains(Reg)) { 2122 // Altivec and SPE are mutually exclusive, but have the same stack 2123 // alignment requirements, so overload the save area for both cases. 2124 HasVRSaveArea = true; 2125 2126 VRegs.push_back(CSI[i]); 2127 2128 if (Reg < MinVR) { 2129 MinVR = Reg; 2130 } 2131 } else { 2132 llvm_unreachable("Unknown RegisterClass!"); 2133 } 2134 } 2135 2136 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2137 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2138 2139 int64_t LowerBound = 0; 2140 2141 // Take into account stack space reserved for tail calls. 2142 int TCSPDelta = 0; 2143 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2144 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2145 LowerBound = TCSPDelta; 2146 } 2147 2148 // The Floating-point register save area is right below the back chain word 2149 // of the previous stack frame. 2150 if (HasFPSaveArea) { 2151 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2152 int FI = FPRegs[i].getFrameIdx(); 2153 2154 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2155 } 2156 2157 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2158 } 2159 2160 // Check whether the frame pointer register is allocated. If so, make sure it 2161 // is spilled to the correct offset. 2162 if (needsFP(MF)) { 2163 int FI = PFI->getFramePointerSaveIndex(); 2164 assert(FI && "No Frame Pointer Save Slot!"); 2165 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2166 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2167 HasGPSaveArea = true; 2168 } 2169 2170 if (PFI->usesPICBase()) { 2171 int FI = PFI->getPICBasePointerSaveIndex(); 2172 assert(FI && "No PIC Base Pointer Save Slot!"); 2173 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2174 2175 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2176 HasGPSaveArea = true; 2177 } 2178 2179 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2180 if (RegInfo->hasBasePointer(MF)) { 2181 int FI = PFI->getBasePointerSaveIndex(); 2182 assert(FI && "No Base Pointer Save Slot!"); 2183 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2184 2185 Register BP = RegInfo->getBaseRegister(MF); 2186 if (PPC::G8RCRegClass.contains(BP)) { 2187 MinG8R = std::min<unsigned>(MinG8R, BP); 2188 HasG8SaveArea = true; 2189 } else if (PPC::GPRCRegClass.contains(BP)) { 2190 MinGPR = std::min<unsigned>(MinGPR, BP); 2191 HasGPSaveArea = true; 2192 } 2193 } 2194 2195 // General register save area starts right below the Floating-point 2196 // register save area. 2197 if (HasGPSaveArea || HasG8SaveArea) { 2198 // Move general register save area spill slots down, taking into account 2199 // the size of the Floating-point register save area. 2200 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2201 if (!GPRegs[i].isSpilledToReg()) { 2202 int FI = GPRegs[i].getFrameIdx(); 2203 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2204 } 2205 } 2206 2207 // Move general register save area spill slots down, taking into account 2208 // the size of the Floating-point register save area. 2209 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2210 if (!G8Regs[i].isSpilledToReg()) { 2211 int FI = G8Regs[i].getFrameIdx(); 2212 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2213 } 2214 } 2215 2216 unsigned MinReg = 2217 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2218 TRI->getEncodingValue(MinG8R)); 2219 2220 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2221 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2222 } 2223 2224 // For 32-bit only, the CR save area is below the general register 2225 // save area. For 64-bit SVR4, the CR save area is addressed relative 2226 // to the stack pointer and hence does not need an adjustment here. 2227 // Only CR2 (the first nonvolatile spilled) has an associated frame 2228 // index so that we have a single uniform save area. 2229 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2230 // Adjust the frame index of the CR spill slot. 2231 for (const auto &CSInfo : CSI) { 2232 if (CSInfo.getReg() == PPC::CR2) { 2233 int FI = CSInfo.getFrameIdx(); 2234 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2235 break; 2236 } 2237 } 2238 2239 LowerBound -= 4; // The CR save area is always 4 bytes long. 2240 } 2241 2242 // Both Altivec and SPE have the same alignment and padding requirements 2243 // within the stack frame. 2244 if (HasVRSaveArea) { 2245 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2246 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2247 // we are using negative number here (the stack grows downward). We should 2248 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2249 // is the alignment size ( n = 16 here) and y is the size after aligning. 2250 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2251 LowerBound &= ~(15); 2252 2253 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2254 int FI = VRegs[i].getFrameIdx(); 2255 2256 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2257 } 2258 } 2259 2260 addScavengingSpillSlot(MF, RS); 2261 } 2262 2263 void 2264 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2265 RegScavenger *RS) const { 2266 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2267 // a large stack, which will require scavenging a register to materialize a 2268 // large offset. 2269 2270 // We need to have a scavenger spill slot for spills if the frame size is 2271 // large. In case there is no free register for large-offset addressing, 2272 // this slot is used for the necessary emergency spill. Also, we need the 2273 // slot for dynamic stack allocations. 2274 2275 // The scavenger might be invoked if the frame offset does not fit into 2276 // the 16-bit immediate. We don't know the complete frame size here 2277 // because we've not yet computed callee-saved register spills or the 2278 // needed alignment padding. 2279 unsigned StackSize = determineFrameLayout(MF, true); 2280 MachineFrameInfo &MFI = MF.getFrameInfo(); 2281 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) || 2282 (hasSpills(MF) && !isInt<16>(StackSize))) { 2283 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2284 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2285 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2286 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2287 unsigned Size = TRI.getSpillSize(RC); 2288 Align Alignment = TRI.getSpillAlign(RC); 2289 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2290 2291 // Might we have over-aligned allocas? 2292 bool HasAlVars = 2293 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2294 2295 // These kinds of spills might need two registers. 2296 if (spillsCR(MF) || HasAlVars) 2297 RS->addScavengingFrameIndex( 2298 MFI.CreateStackObject(Size, Alignment, false)); 2299 } 2300 } 2301 2302 // This function checks if a callee saved gpr can be spilled to a volatile 2303 // vector register. This occurs for leaf functions when the option 2304 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2305 // which were not spilled to vectors, return false so the target independent 2306 // code can handle them by assigning a FrameIdx to a stack slot. 2307 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2308 MachineFunction &MF, const TargetRegisterInfo *TRI, 2309 std::vector<CalleeSavedInfo> &CSI) const { 2310 2311 if (CSI.empty()) 2312 return true; // Early exit if no callee saved registers are modified! 2313 2314 // Early exit if cannot spill gprs to volatile vector registers. 2315 MachineFrameInfo &MFI = MF.getFrameInfo(); 2316 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2317 return false; 2318 2319 // Build a BitVector of VSRs that can be used for spilling GPRs. 2320 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2321 BitVector BVCalleeSaved(TRI->getNumRegs()); 2322 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2323 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2324 for (unsigned i = 0; CSRegs[i]; ++i) 2325 BVCalleeSaved.set(CSRegs[i]); 2326 2327 for (unsigned Reg : BVAllocatable.set_bits()) { 2328 // Set to 0 if the register is not a volatile VSX register, or if it is 2329 // used in the function. 2330 if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) || 2331 MF.getRegInfo().isPhysRegUsed(Reg)) 2332 BVAllocatable.reset(Reg); 2333 } 2334 2335 bool AllSpilledToReg = true; 2336 unsigned LastVSRUsedForSpill = 0; 2337 for (auto &CS : CSI) { 2338 if (BVAllocatable.none()) 2339 return false; 2340 2341 unsigned Reg = CS.getReg(); 2342 2343 if (!PPC::G8RCRegClass.contains(Reg)) { 2344 AllSpilledToReg = false; 2345 continue; 2346 } 2347 2348 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs 2349 // into one VSR using the mtvsrdd instruction. 2350 if (LastVSRUsedForSpill != 0) { 2351 CS.setDstReg(LastVSRUsedForSpill); 2352 BVAllocatable.reset(LastVSRUsedForSpill); 2353 LastVSRUsedForSpill = 0; 2354 continue; 2355 } 2356 2357 unsigned VolatileVFReg = BVAllocatable.find_first(); 2358 if (VolatileVFReg < BVAllocatable.size()) { 2359 CS.setDstReg(VolatileVFReg); 2360 LastVSRUsedForSpill = VolatileVFReg; 2361 } else { 2362 AllSpilledToReg = false; 2363 } 2364 } 2365 return AllSpilledToReg; 2366 } 2367 2368 bool PPCFrameLowering::spillCalleeSavedRegisters( 2369 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2370 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2371 2372 MachineFunction *MF = MBB.getParent(); 2373 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2374 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2375 bool MustSaveTOC = FI->mustSaveTOC(); 2376 DebugLoc DL; 2377 bool CRSpilled = false; 2378 MachineInstrBuilder CRMIB; 2379 BitVector Spilled(TRI->getNumRegs()); 2380 2381 VSRContainingGPRs.clear(); 2382 2383 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one 2384 // or two GPRs, so we need table to record information for later save/restore. 2385 llvm::for_each(CSI, [&](const CalleeSavedInfo &Info) { 2386 if (Info.isSpilledToReg()) { 2387 auto &SpilledVSR = 2388 VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second; 2389 assert(SpilledVSR.second == 0 && 2390 "Can't spill more than two GPRs into VSR!"); 2391 if (SpilledVSR.first == 0) 2392 SpilledVSR.first = Info.getReg(); 2393 else 2394 SpilledVSR.second = Info.getReg(); 2395 } 2396 }); 2397 2398 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2399 unsigned Reg = CSI[i].getReg(); 2400 2401 // CR2 through CR4 are the nonvolatile CR fields. 2402 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2403 2404 // Add the callee-saved register as live-in; it's killed at the spill. 2405 // Do not do this for callee-saved registers that are live-in to the 2406 // function because they will already be marked live-in and this will be 2407 // adding it for a second time. It is an error to add the same register 2408 // to the set more than once. 2409 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2410 bool IsLiveIn = MRI.isLiveIn(Reg); 2411 if (!IsLiveIn) 2412 MBB.addLiveIn(Reg); 2413 2414 if (CRSpilled && IsCRField) { 2415 CRMIB.addReg(Reg, RegState::ImplicitKill); 2416 continue; 2417 } 2418 2419 // The actual spill will happen in the prologue. 2420 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2421 continue; 2422 2423 // Insert the spill to the stack frame. 2424 if (IsCRField) { 2425 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2426 if (!Subtarget.is32BitELFABI()) { 2427 // The actual spill will happen at the start of the prologue. 2428 FuncInfo->addMustSaveCR(Reg); 2429 } else { 2430 CRSpilled = true; 2431 FuncInfo->setSpillsCR(); 2432 2433 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2434 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2435 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2436 .addReg(Reg, RegState::ImplicitKill); 2437 2438 MBB.insert(MI, CRMIB); 2439 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2440 .addReg(PPC::R12, 2441 getKillRegState(true)), 2442 CSI[i].getFrameIdx())); 2443 } 2444 } else { 2445 if (CSI[i].isSpilledToReg()) { 2446 unsigned Dst = CSI[i].getDstReg(); 2447 2448 if (Spilled[Dst]) 2449 continue; 2450 2451 if (VSRContainingGPRs[Dst].second != 0) { 2452 assert(Subtarget.hasP9Vector() && 2453 "mtvsrdd is unavailable on pre-P9 targets."); 2454 2455 NumPESpillVSR += 2; 2456 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst) 2457 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)) 2458 .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true)); 2459 } else if (VSRContainingGPRs[Dst].second == 0) { 2460 assert(Subtarget.hasP8Vector() && 2461 "Can't move GPR to VSR on pre-P8 targets."); 2462 2463 ++NumPESpillVSR; 2464 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), 2465 TRI->getSubReg(Dst, PPC::sub_64)) 2466 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)); 2467 } else { 2468 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2469 } 2470 Spilled.set(Dst); 2471 } else { 2472 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2473 // Use !IsLiveIn for the kill flag. 2474 // We do not want to kill registers that are live in this function 2475 // before their use because they will become undefined registers. 2476 // Functions without NoUnwind need to preserve the order of elements in 2477 // saved vector registers. 2478 if (Subtarget.needsSwapsForVSXMemOps() && 2479 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2480 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2481 CSI[i].getFrameIdx(), RC, TRI); 2482 else 2483 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, CSI[i].getFrameIdx(), 2484 RC, TRI); 2485 } 2486 } 2487 } 2488 return true; 2489 } 2490 2491 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2492 bool CR4Spilled, MachineBasicBlock &MBB, 2493 MachineBasicBlock::iterator MI, 2494 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2495 2496 MachineFunction *MF = MBB.getParent(); 2497 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2498 DebugLoc DL; 2499 unsigned MoveReg = PPC::R12; 2500 2501 // 32-bit: FP-relative 2502 MBB.insert(MI, 2503 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2504 CSI[CSIIndex].getFrameIdx())); 2505 2506 unsigned RestoreOp = PPC::MTOCRF; 2507 if (CR2Spilled) 2508 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2509 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2510 2511 if (CR3Spilled) 2512 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2513 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2514 2515 if (CR4Spilled) 2516 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2517 .addReg(MoveReg, getKillRegState(true))); 2518 } 2519 2520 MachineBasicBlock::iterator PPCFrameLowering:: 2521 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2522 MachineBasicBlock::iterator I) const { 2523 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2524 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2525 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2526 // Add (actually subtract) back the amount the callee popped on return. 2527 if (int CalleeAmt = I->getOperand(1).getImm()) { 2528 bool is64Bit = Subtarget.isPPC64(); 2529 CalleeAmt *= -1; 2530 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2531 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2532 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2533 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2534 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2535 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2536 const DebugLoc &dl = I->getDebugLoc(); 2537 2538 if (isInt<16>(CalleeAmt)) { 2539 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2540 .addReg(StackReg, RegState::Kill) 2541 .addImm(CalleeAmt); 2542 } else { 2543 MachineBasicBlock::iterator MBBI = I; 2544 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2545 .addImm(CalleeAmt >> 16); 2546 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2547 .addReg(TmpReg, RegState::Kill) 2548 .addImm(CalleeAmt & 0xFFFF); 2549 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2550 .addReg(StackReg, RegState::Kill) 2551 .addReg(TmpReg); 2552 } 2553 } 2554 } 2555 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2556 return MBB.erase(I); 2557 } 2558 2559 static bool isCalleeSavedCR(unsigned Reg) { 2560 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2561 } 2562 2563 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2564 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2565 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2566 MachineFunction *MF = MBB.getParent(); 2567 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2568 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2569 bool MustSaveTOC = FI->mustSaveTOC(); 2570 bool CR2Spilled = false; 2571 bool CR3Spilled = false; 2572 bool CR4Spilled = false; 2573 unsigned CSIIndex = 0; 2574 BitVector Restored(TRI->getNumRegs()); 2575 2576 // Initialize insertion-point logic; we will be restoring in reverse 2577 // order of spill. 2578 MachineBasicBlock::iterator I = MI, BeforeI = I; 2579 bool AtStart = I == MBB.begin(); 2580 2581 if (!AtStart) 2582 --BeforeI; 2583 2584 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2585 unsigned Reg = CSI[i].getReg(); 2586 2587 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2588 continue; 2589 2590 // Restore of callee saved condition register field is handled during 2591 // epilogue insertion. 2592 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2593 continue; 2594 2595 if (Reg == PPC::CR2) { 2596 CR2Spilled = true; 2597 // The spill slot is associated only with CR2, which is the 2598 // first nonvolatile spilled. Save it here. 2599 CSIIndex = i; 2600 continue; 2601 } else if (Reg == PPC::CR3) { 2602 CR3Spilled = true; 2603 continue; 2604 } else if (Reg == PPC::CR4) { 2605 CR4Spilled = true; 2606 continue; 2607 } else { 2608 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2609 // least one CR register, restore all spilled CRs together. 2610 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2611 bool is31 = needsFP(*MF); 2612 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2613 CSIIndex); 2614 CR2Spilled = CR3Spilled = CR4Spilled = false; 2615 } 2616 2617 if (CSI[i].isSpilledToReg()) { 2618 DebugLoc DL; 2619 unsigned Dst = CSI[i].getDstReg(); 2620 2621 if (Restored[Dst]) 2622 continue; 2623 2624 if (VSRContainingGPRs[Dst].second != 0) { 2625 assert(Subtarget.hasP9Vector()); 2626 NumPEReloadVSR += 2; 2627 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD), 2628 VSRContainingGPRs[Dst].second) 2629 .addReg(Dst); 2630 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2631 VSRContainingGPRs[Dst].first) 2632 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2633 } else if (VSRContainingGPRs[Dst].second == 0) { 2634 assert(Subtarget.hasP8Vector()); 2635 ++NumPEReloadVSR; 2636 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2637 VSRContainingGPRs[Dst].first) 2638 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2639 } else { 2640 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2641 } 2642 2643 Restored.set(Dst); 2644 2645 } else { 2646 // Default behavior for non-CR saves. 2647 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2648 2649 // Functions without NoUnwind need to preserve the order of elements in 2650 // saved vector registers. 2651 if (Subtarget.needsSwapsForVSXMemOps() && 2652 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2653 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2654 TRI); 2655 else 2656 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI); 2657 2658 assert(I != MBB.begin() && 2659 "loadRegFromStackSlot didn't insert any code!"); 2660 } 2661 } 2662 2663 // Insert in reverse order. 2664 if (AtStart) 2665 I = MBB.begin(); 2666 else { 2667 I = BeforeI; 2668 ++I; 2669 } 2670 } 2671 2672 // If we haven't yet spilled the CRs, do so now. 2673 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2674 assert(Subtarget.is32BitELFABI() && 2675 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2676 bool is31 = needsFP(*MF); 2677 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2678 } 2679 2680 return true; 2681 } 2682 2683 uint64_t PPCFrameLowering::getTOCSaveOffset() const { 2684 return TOCSaveOffset; 2685 } 2686 2687 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const { 2688 return FramePointerSaveOffset; 2689 } 2690 2691 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const { 2692 return BasePointerSaveOffset; 2693 } 2694 2695 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2696 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2697 return false; 2698 return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI(); 2699 } 2700