1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCFrameLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/RegisterScavenging.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Target/TargetOptions.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "framelowering" 34 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 35 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 36 STATISTIC(NumPrologProbed, "Number of prologues probed"); 37 38 static cl::opt<bool> 39 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 40 cl::desc("Enable spills in prologue to vector registers."), 41 cl::init(false), cl::Hidden); 42 43 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 44 if (STI.isAIXABI()) 45 return STI.isPPC64() ? 16 : 8; 46 // SVR4 ABI: 47 return STI.isPPC64() ? 16 : 4; 48 } 49 50 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 51 if (STI.isAIXABI()) 52 return STI.isPPC64() ? 40 : 20; 53 return STI.isELFv2ABI() ? 24 : 40; 54 } 55 56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 57 // First slot in the general register save area. 58 return STI.isPPC64() ? -8U : -4U; 59 } 60 61 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 62 if (STI.isAIXABI() || STI.isPPC64()) 63 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 64 65 // 32-bit SVR4 ABI: 66 return 8; 67 } 68 69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 70 // Third slot in the general purpose register save area. 71 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 72 return -12U; 73 74 // Second slot in the general purpose register save area. 75 return STI.isPPC64() ? -16U : -8U; 76 } 77 78 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 79 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 80 } 81 82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 83 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 84 STI.getPlatformStackAlignment(), 0), 85 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 86 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 87 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 88 LinkageSize(computeLinkageSize(Subtarget)), 89 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 90 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 91 92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 93 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 94 unsigned &NumEntries) const { 95 96 // Floating-point register save area offsets. 97 #define CALLEE_SAVED_FPRS \ 98 {PPC::F31, -8}, \ 99 {PPC::F30, -16}, \ 100 {PPC::F29, -24}, \ 101 {PPC::F28, -32}, \ 102 {PPC::F27, -40}, \ 103 {PPC::F26, -48}, \ 104 {PPC::F25, -56}, \ 105 {PPC::F24, -64}, \ 106 {PPC::F23, -72}, \ 107 {PPC::F22, -80}, \ 108 {PPC::F21, -88}, \ 109 {PPC::F20, -96}, \ 110 {PPC::F19, -104}, \ 111 {PPC::F18, -112}, \ 112 {PPC::F17, -120}, \ 113 {PPC::F16, -128}, \ 114 {PPC::F15, -136}, \ 115 {PPC::F14, -144} 116 117 // 32-bit general purpose register save area offsets shared by ELF and 118 // AIX. AIX has an extra CSR with r13. 119 #define CALLEE_SAVED_GPRS32 \ 120 {PPC::R31, -4}, \ 121 {PPC::R30, -8}, \ 122 {PPC::R29, -12}, \ 123 {PPC::R28, -16}, \ 124 {PPC::R27, -20}, \ 125 {PPC::R26, -24}, \ 126 {PPC::R25, -28}, \ 127 {PPC::R24, -32}, \ 128 {PPC::R23, -36}, \ 129 {PPC::R22, -40}, \ 130 {PPC::R21, -44}, \ 131 {PPC::R20, -48}, \ 132 {PPC::R19, -52}, \ 133 {PPC::R18, -56}, \ 134 {PPC::R17, -60}, \ 135 {PPC::R16, -64}, \ 136 {PPC::R15, -68}, \ 137 {PPC::R14, -72} 138 139 // 64-bit general purpose register save area offsets. 140 #define CALLEE_SAVED_GPRS64 \ 141 {PPC::X31, -8}, \ 142 {PPC::X30, -16}, \ 143 {PPC::X29, -24}, \ 144 {PPC::X28, -32}, \ 145 {PPC::X27, -40}, \ 146 {PPC::X26, -48}, \ 147 {PPC::X25, -56}, \ 148 {PPC::X24, -64}, \ 149 {PPC::X23, -72}, \ 150 {PPC::X22, -80}, \ 151 {PPC::X21, -88}, \ 152 {PPC::X20, -96}, \ 153 {PPC::X19, -104}, \ 154 {PPC::X18, -112}, \ 155 {PPC::X17, -120}, \ 156 {PPC::X16, -128}, \ 157 {PPC::X15, -136}, \ 158 {PPC::X14, -144} 159 160 // Vector register save area offsets. 161 #define CALLEE_SAVED_VRS \ 162 {PPC::V31, -16}, \ 163 {PPC::V30, -32}, \ 164 {PPC::V29, -48}, \ 165 {PPC::V28, -64}, \ 166 {PPC::V27, -80}, \ 167 {PPC::V26, -96}, \ 168 {PPC::V25, -112}, \ 169 {PPC::V24, -128}, \ 170 {PPC::V23, -144}, \ 171 {PPC::V22, -160}, \ 172 {PPC::V21, -176}, \ 173 {PPC::V20, -192} 174 175 // Note that the offsets here overlap, but this is fixed up in 176 // processFunctionBeforeFrameFinalized. 177 178 static const SpillSlot ELFOffsets32[] = { 179 CALLEE_SAVED_FPRS, 180 CALLEE_SAVED_GPRS32, 181 182 // CR save area offset. We map each of the nonvolatile CR fields 183 // to the slot for CR2, which is the first of the nonvolatile CR 184 // fields to be assigned, so that we only allocate one save slot. 185 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 186 {PPC::CR2, -4}, 187 188 // VRSAVE save area offset. 189 {PPC::VRSAVE, -4}, 190 191 CALLEE_SAVED_VRS, 192 193 // SPE register save area (overlaps Vector save area). 194 {PPC::S31, -8}, 195 {PPC::S30, -16}, 196 {PPC::S29, -24}, 197 {PPC::S28, -32}, 198 {PPC::S27, -40}, 199 {PPC::S26, -48}, 200 {PPC::S25, -56}, 201 {PPC::S24, -64}, 202 {PPC::S23, -72}, 203 {PPC::S22, -80}, 204 {PPC::S21, -88}, 205 {PPC::S20, -96}, 206 {PPC::S19, -104}, 207 {PPC::S18, -112}, 208 {PPC::S17, -120}, 209 {PPC::S16, -128}, 210 {PPC::S15, -136}, 211 {PPC::S14, -144}}; 212 213 static const SpillSlot ELFOffsets64[] = { 214 CALLEE_SAVED_FPRS, 215 CALLEE_SAVED_GPRS64, 216 217 // VRSAVE save area offset. 218 {PPC::VRSAVE, -4}, 219 CALLEE_SAVED_VRS 220 }; 221 222 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS, 223 CALLEE_SAVED_GPRS32, 224 // Add AIX's extra CSR. 225 {PPC::R13, -76}, 226 CALLEE_SAVED_VRS}; 227 228 static const SpillSlot AIXOffsets64[] = { 229 CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS}; 230 231 if (Subtarget.is64BitELFABI()) { 232 NumEntries = std::size(ELFOffsets64); 233 return ELFOffsets64; 234 } 235 236 if (Subtarget.is32BitELFABI()) { 237 NumEntries = std::size(ELFOffsets32); 238 return ELFOffsets32; 239 } 240 241 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 242 243 if (Subtarget.isPPC64()) { 244 NumEntries = std::size(AIXOffsets64); 245 return AIXOffsets64; 246 } 247 248 NumEntries = std::size(AIXOffsets32); 249 return AIXOffsets32; 250 } 251 252 static bool spillsCR(const MachineFunction &MF) { 253 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 254 return FuncInfo->isCRSpilled(); 255 } 256 257 static bool hasSpills(const MachineFunction &MF) { 258 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 259 return FuncInfo->hasSpills(); 260 } 261 262 static bool hasNonRISpills(const MachineFunction &MF) { 263 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 264 return FuncInfo->hasNonRISpills(); 265 } 266 267 /// MustSaveLR - Return true if this function requires that we save the LR 268 /// register onto the stack in the prolog and restore it in the epilog of the 269 /// function. 270 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 271 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 272 273 // We need a save/restore of LR if there is any def of LR (which is 274 // defined by calls, including the PIC setup sequence), or if there is 275 // some use of the LR stack slot (e.g. for builtin_return_address). 276 // (LR comes in 32 and 64 bit versions.) 277 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 278 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 279 } 280 281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 282 /// call frame size. Update the MachineFunction object with the stack size. 283 uint64_t 284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 285 bool UseEstimate) const { 286 unsigned NewMaxCallFrameSize = 0; 287 uint64_t FrameSize = determineFrameLayout(MF, UseEstimate, 288 &NewMaxCallFrameSize); 289 MF.getFrameInfo().setStackSize(FrameSize); 290 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 291 return FrameSize; 292 } 293 294 /// determineFrameLayout - Determine the size of the frame and maximum call 295 /// frame size. 296 uint64_t 297 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 298 bool UseEstimate, 299 unsigned *NewMaxCallFrameSize) const { 300 const MachineFrameInfo &MFI = MF.getFrameInfo(); 301 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 302 303 // Get the number of bytes to allocate from the FrameInfo 304 uint64_t FrameSize = 305 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 306 307 // Get stack alignments. The frame must be aligned to the greatest of these: 308 Align TargetAlign = getStackAlign(); // alignment required per the ABI 309 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 310 Align Alignment = std::max(TargetAlign, MaxAlign); 311 312 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 313 314 unsigned LR = RegInfo->getRARegister(); 315 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 316 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 317 !MFI.adjustsStack() && // No calls. 318 !MustSaveLR(MF, LR) && // No need to save LR. 319 !FI->mustSaveTOC() && // No need to save TOC. 320 !RegInfo->hasBasePointer(MF); // No special alignment. 321 322 // Note: for PPC32 SVR4ABI, we can still generate stackless 323 // code if all local vars are reg-allocated. 324 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 325 326 // Check whether we can skip adjusting the stack pointer (by using red zone) 327 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 328 // No need for frame 329 return 0; 330 } 331 332 // Get the maximum call frame size of all the calls. 333 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 334 335 // Maximum call frame needs to be at least big enough for linkage area. 336 unsigned minCallFrameSize = getLinkageSize(); 337 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 338 339 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 340 // that allocations will be aligned. 341 if (MFI.hasVarSizedObjects()) 342 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 343 344 // Update the new max call frame size if the caller passes in a valid pointer. 345 if (NewMaxCallFrameSize) 346 *NewMaxCallFrameSize = maxCallFrameSize; 347 348 // Include call frame size in total. 349 FrameSize += maxCallFrameSize; 350 351 // Make sure the frame is aligned. 352 FrameSize = alignTo(FrameSize, Alignment); 353 354 return FrameSize; 355 } 356 357 // hasFP - Return true if the specified function actually has a dedicated frame 358 // pointer register. 359 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 360 const MachineFrameInfo &MFI = MF.getFrameInfo(); 361 // FIXME: This is pretty much broken by design: hasFP() might be called really 362 // early, before the stack layout was calculated and thus hasFP() might return 363 // true or false here depending on the time of call. 364 return (MFI.getStackSize()) && needsFP(MF); 365 } 366 367 // needsFP - Return true if the specified function should have a dedicated frame 368 // pointer register. This is true if the function has variable sized allocas or 369 // if frame pointer elimination is disabled. 370 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 371 const MachineFrameInfo &MFI = MF.getFrameInfo(); 372 373 // Naked functions have no stack frame pushed, so we don't have a frame 374 // pointer. 375 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 376 return false; 377 378 return MF.getTarget().Options.DisableFramePointerElim(MF) || 379 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 380 MF.exposesReturnsTwice() || 381 (MF.getTarget().Options.GuaranteedTailCallOpt && 382 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 383 } 384 385 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 386 bool is31 = needsFP(MF); 387 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 388 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 389 390 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 391 bool HasBP = RegInfo->hasBasePointer(MF); 392 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 393 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 394 395 for (MachineBasicBlock &MBB : MF) 396 for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) { 397 --MBBI; 398 for (MachineOperand &MO : MBBI->operands()) { 399 if (!MO.isReg()) 400 continue; 401 402 switch (MO.getReg()) { 403 case PPC::FP: 404 MO.setReg(FPReg); 405 break; 406 case PPC::FP8: 407 MO.setReg(FP8Reg); 408 break; 409 case PPC::BP: 410 MO.setReg(BPReg); 411 break; 412 case PPC::BP8: 413 MO.setReg(BP8Reg); 414 break; 415 416 } 417 } 418 } 419 } 420 421 /* This function will do the following: 422 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 423 respectively (defaults recommended by the ABI) and return true 424 - If MBB is not an entry block, initialize the register scavenger and look 425 for available registers. 426 - If the defaults (R0/R12) are available, return true 427 - If TwoUniqueRegsRequired is set to true, it looks for two unique 428 registers. Otherwise, look for a single available register. 429 - If the required registers are found, set SR1 and SR2 and return true. 430 - If the required registers are not found, set SR2 or both SR1 and SR2 to 431 PPC::NoRegister and return false. 432 433 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 434 is not set, this function will attempt to find two different registers, but 435 still return true if only one register is available (and set SR1 == SR2). 436 */ 437 bool 438 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 439 bool UseAtEnd, 440 bool TwoUniqueRegsRequired, 441 Register *SR1, 442 Register *SR2) const { 443 RegScavenger RS; 444 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 445 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 446 447 // Set the defaults for the two scratch registers. 448 if (SR1) 449 *SR1 = R0; 450 451 if (SR2) { 452 assert (SR1 && "Asking for the second scratch register but not the first?"); 453 *SR2 = R12; 454 } 455 456 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 457 if ((UseAtEnd && MBB->isReturnBlock()) || 458 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 459 return true; 460 461 if (UseAtEnd) { 462 // The scratch register will be used before the first terminator (or at the 463 // end of the block if there are no terminators). 464 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 465 if (MBBI == MBB->begin()) { 466 RS.enterBasicBlock(*MBB); 467 } else { 468 RS.enterBasicBlockEnd(*MBB); 469 RS.backward(std::prev(MBBI)); 470 } 471 } else { 472 // The scratch register will be used at the start of the block. 473 RS.enterBasicBlock(*MBB); 474 } 475 476 // If the two registers are available, we're all good. 477 // Note that we only return here if both R0 and R12 are available because 478 // although the function may not require two unique registers, it may benefit 479 // from having two so we should try to provide them. 480 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 481 return true; 482 483 // Get the list of callee-saved registers for the target. 484 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 485 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 486 487 // Get all the available registers in the block. 488 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 489 &PPC::GPRCRegClass); 490 491 // We shouldn't use callee-saved registers as scratch registers as they may be 492 // available when looking for a candidate block for shrink wrapping but not 493 // available when the actual prologue/epilogue is being emitted because they 494 // were added as live-in to the prologue block by PrologueEpilogueInserter. 495 for (int i = 0; CSRegs[i]; ++i) 496 BV.reset(CSRegs[i]); 497 498 // Set the first scratch register to the first available one. 499 if (SR1) { 500 int FirstScratchReg = BV.find_first(); 501 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 502 } 503 504 // If there is another one available, set the second scratch register to that. 505 // Otherwise, set it to either PPC::NoRegister if this function requires two 506 // or to whatever SR1 is set to if this function doesn't require two. 507 if (SR2) { 508 int SecondScratchReg = BV.find_next(*SR1); 509 if (SecondScratchReg != -1) 510 *SR2 = SecondScratchReg; 511 else 512 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 513 } 514 515 // Now that we've done our best to provide both registers, double check 516 // whether we were unable to provide enough. 517 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 518 return false; 519 520 return true; 521 } 522 523 // We need a scratch register for spilling LR and for spilling CR. By default, 524 // we use two scratch registers to hide latency. However, if only one scratch 525 // register is available, we can adjust for that by not overlapping the spill 526 // code. However, if we need to realign the stack (i.e. have a base pointer) 527 // and the stack frame is large, we need two scratch registers. 528 // Also, stack probe requires two scratch registers, one for old sp, one for 529 // large frame and large probe size. 530 bool 531 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 532 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 533 MachineFunction &MF = *(MBB->getParent()); 534 bool HasBP = RegInfo->hasBasePointer(MF); 535 unsigned FrameSize = determineFrameLayout(MF); 536 int NegFrameSize = -FrameSize; 537 bool IsLargeFrame = !isInt<16>(NegFrameSize); 538 MachineFrameInfo &MFI = MF.getFrameInfo(); 539 Align MaxAlign = MFI.getMaxAlign(); 540 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 541 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 542 543 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) || 544 TLI.hasInlineStackProbe(MF); 545 } 546 547 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 548 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 549 550 return findScratchRegister(TmpMBB, false, 551 twoUniqueScratchRegsRequired(TmpMBB)); 552 } 553 554 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 555 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 556 557 return findScratchRegister(TmpMBB, true); 558 } 559 560 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 561 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 562 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 563 564 // Abort if there is no register info or function info. 565 if (!RegInfo || !FI) 566 return false; 567 568 // Only move the stack update on ELFv2 ABI and PPC64. 569 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 570 return false; 571 572 // Check the frame size first and return false if it does not fit the 573 // requirements. 574 // We need a non-zero frame size as well as a frame that will fit in the red 575 // zone. This is because by moving the stack pointer update we are now storing 576 // to the red zone until the stack pointer is updated. If we get an interrupt 577 // inside the prologue but before the stack update we now have a number of 578 // stores to the red zone and those stores must all fit. 579 MachineFrameInfo &MFI = MF.getFrameInfo(); 580 unsigned FrameSize = MFI.getStackSize(); 581 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 582 return false; 583 584 // Frame pointers and base pointers complicate matters so don't do anything 585 // if we have them. For example having a frame pointer will sometimes require 586 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 587 // difficult. Similar situation exists with setjmp. 588 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice()) 589 return false; 590 591 // Calls to fast_cc functions use different rules for passing parameters on 592 // the stack from the ABI and using PIC base in the function imposes 593 // similar restrictions to using the base pointer. It is not generally safe 594 // to move the stack pointer update in these situations. 595 if (FI->hasFastCall() || FI->usesPICBase()) 596 return false; 597 598 // Finally we can move the stack update if we do not require register 599 // scavenging. Register scavenging can introduce more spills and so 600 // may make the frame size larger than we have computed. 601 return !RegInfo->requiresFrameIndexScavenging(MF); 602 } 603 604 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 605 MachineBasicBlock &MBB) const { 606 MachineBasicBlock::iterator MBBI = MBB.begin(); 607 MachineFrameInfo &MFI = MF.getFrameInfo(); 608 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 609 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 610 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 611 612 MachineModuleInfo &MMI = MF.getMMI(); 613 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 614 DebugLoc dl; 615 // AIX assembler does not support cfi directives. 616 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 617 618 const bool HasFastMFLR = Subtarget.hasFastMFLR(); 619 620 // Get processor type. 621 bool isPPC64 = Subtarget.isPPC64(); 622 // Get the ABI. 623 bool isSVR4ABI = Subtarget.isSVR4ABI(); 624 bool isELFv2ABI = Subtarget.isELFv2ABI(); 625 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI."); 626 627 // Work out frame sizes. 628 uint64_t FrameSize = determineFrameLayoutAndUpdate(MF); 629 int64_t NegFrameSize = -FrameSize; 630 if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize))) 631 llvm_unreachable("Unhandled stack size!"); 632 633 if (MFI.isFrameAddressTaken()) 634 replaceFPWithRealFP(MF); 635 636 // Check if the link register (LR) must be saved. 637 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 638 bool MustSaveLR = FI->mustSaveLR(); 639 bool MustSaveTOC = FI->mustSaveTOC(); 640 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 641 bool MustSaveCR = !MustSaveCRs.empty(); 642 // Do we have a frame pointer and/or base pointer for this function? 643 bool HasFP = hasFP(MF); 644 bool HasBP = RegInfo->hasBasePointer(MF); 645 bool HasRedZone = isPPC64 || !isSVR4ABI; 646 bool HasROPProtect = Subtarget.hasROPProtect(); 647 bool HasPrivileged = Subtarget.hasPrivileged(); 648 649 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 650 Register BPReg = RegInfo->getBaseRegister(MF); 651 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 652 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 653 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 654 Register ScratchReg; 655 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 656 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 657 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 658 : PPC::MFLR ); 659 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 660 : PPC::STW ); 661 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 662 : PPC::STWU ); 663 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 664 : PPC::STWUX); 665 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 666 : PPC::OR ); 667 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 668 : PPC::SUBFC); 669 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 670 : PPC::SUBFIC); 671 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 672 : PPC::MFCR); 673 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 674 const MCInstrDesc &HashST = 675 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8) 676 : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST)); 677 678 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 679 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 680 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 681 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 682 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 683 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 684 685 // Using the same bool variable as below to suppress compiler warnings. 686 bool SingleScratchReg = findScratchRegister( 687 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg); 688 assert(SingleScratchReg && 689 "Required number of registers not available in this block"); 690 691 SingleScratchReg = ScratchReg == TempReg; 692 693 int64_t LROffset = getReturnSaveOffset(); 694 695 int64_t FPOffset = 0; 696 if (HasFP) { 697 MachineFrameInfo &MFI = MF.getFrameInfo(); 698 int FPIndex = FI->getFramePointerSaveIndex(); 699 assert(FPIndex && "No Frame Pointer Save Slot!"); 700 FPOffset = MFI.getObjectOffset(FPIndex); 701 } 702 703 int64_t BPOffset = 0; 704 if (HasBP) { 705 MachineFrameInfo &MFI = MF.getFrameInfo(); 706 int BPIndex = FI->getBasePointerSaveIndex(); 707 assert(BPIndex && "No Base Pointer Save Slot!"); 708 BPOffset = MFI.getObjectOffset(BPIndex); 709 } 710 711 int64_t PBPOffset = 0; 712 if (FI->usesPICBase()) { 713 MachineFrameInfo &MFI = MF.getFrameInfo(); 714 int PBPIndex = FI->getPICBasePointerSaveIndex(); 715 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 716 PBPOffset = MFI.getObjectOffset(PBPIndex); 717 } 718 719 // Get stack alignments. 720 Align MaxAlign = MFI.getMaxAlign(); 721 if (HasBP && MaxAlign > 1) 722 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 723 724 // Frames of 32KB & larger require special handling because they cannot be 725 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 726 bool isLargeFrame = !isInt<16>(NegFrameSize); 727 728 // Check if we can move the stack update instruction (stdu) down the prologue 729 // past the callee saves. Hopefully this will avoid the situation where the 730 // saves are waiting for the update on the store with update to complete. 731 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 732 bool MovingStackUpdateDown = false; 733 734 // Check if we can move the stack update. 735 if (stackUpdateCanBeMoved(MF)) { 736 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 737 for (CalleeSavedInfo CSI : Info) { 738 // If the callee saved register is spilled to a register instead of the 739 // stack then the spill no longer uses the stack pointer. 740 // This can lead to two consequences: 741 // 1) We no longer need to update the stack because the function does not 742 // spill any callee saved registers to stack. 743 // 2) We have a situation where we still have to update the stack pointer 744 // even though some registers are spilled to other registers. In 745 // this case the current code moves the stack update to an incorrect 746 // position. 747 // In either case we should abort moving the stack update operation. 748 if (CSI.isSpilledToReg()) { 749 StackUpdateLoc = MBBI; 750 MovingStackUpdateDown = false; 751 break; 752 } 753 754 int FrIdx = CSI.getFrameIdx(); 755 // If the frame index is not negative the callee saved info belongs to a 756 // stack object that is not a fixed stack object. We ignore non-fixed 757 // stack objects because we won't move the stack update pointer past them. 758 if (FrIdx >= 0) 759 continue; 760 761 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 762 StackUpdateLoc++; 763 MovingStackUpdateDown = true; 764 } else { 765 // We need all of the Frame Indices to meet these conditions. 766 // If they do not, abort the whole operation. 767 StackUpdateLoc = MBBI; 768 MovingStackUpdateDown = false; 769 break; 770 } 771 } 772 773 // If the operation was not aborted then update the object offset. 774 if (MovingStackUpdateDown) { 775 for (CalleeSavedInfo CSI : Info) { 776 int FrIdx = CSI.getFrameIdx(); 777 if (FrIdx < 0) 778 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 779 } 780 } 781 } 782 783 // Where in the prologue we move the CR fields depends on how many scratch 784 // registers we have, and if we need to save the link register or not. This 785 // lambda is to avoid duplicating the logic in 2 places. 786 auto BuildMoveFromCR = [&]() { 787 if (isELFv2ABI && MustSaveCRs.size() == 1) { 788 // In the ELFv2 ABI, we are not required to save all CR fields. 789 // If only one CR field is clobbered, it is more efficient to use 790 // mfocrf to selectively save just that field, because mfocrf has short 791 // latency compares to mfcr. 792 assert(isPPC64 && "V2 ABI is 64-bit only."); 793 MachineInstrBuilder MIB = 794 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 795 MIB.addReg(MustSaveCRs[0], RegState::Kill); 796 } else { 797 MachineInstrBuilder MIB = 798 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 799 for (unsigned CRfield : MustSaveCRs) 800 MIB.addReg(CRfield, RegState::ImplicitKill); 801 } 802 }; 803 804 // If we need to spill the CR and the LR but we don't have two separate 805 // registers available, we must spill them one at a time 806 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 807 BuildMoveFromCR(); 808 BuildMI(MBB, MBBI, dl, StoreWordInst) 809 .addReg(TempReg, getKillRegState(true)) 810 .addImm(CRSaveOffset) 811 .addReg(SPReg); 812 } 813 814 if (MustSaveLR) 815 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 816 817 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 818 BuildMoveFromCR(); 819 820 if (HasRedZone) { 821 if (HasFP) 822 BuildMI(MBB, MBBI, dl, StoreInst) 823 .addReg(FPReg) 824 .addImm(FPOffset) 825 .addReg(SPReg); 826 if (FI->usesPICBase()) 827 BuildMI(MBB, MBBI, dl, StoreInst) 828 .addReg(PPC::R30) 829 .addImm(PBPOffset) 830 .addReg(SPReg); 831 if (HasBP) 832 BuildMI(MBB, MBBI, dl, StoreInst) 833 .addReg(BPReg) 834 .addImm(BPOffset) 835 .addReg(SPReg); 836 } 837 838 // Generate the instruction to store the LR. In the case where ROP protection 839 // is required the register holding the LR should not be killed as it will be 840 // used by the hash store instruction. 841 auto SaveLR = [&](int64_t Offset) { 842 assert(MustSaveLR && "LR is not required to be saved!"); 843 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 844 .addReg(ScratchReg, getKillRegState(!HasROPProtect)) 845 .addImm(Offset) 846 .addReg(SPReg); 847 848 // Add the ROP protection Hash Store instruction. 849 // NOTE: This is technically a violation of the ABI. The hash can be saved 850 // up to 512 bytes into the Protected Zone. This can be outside of the 851 // initial 288 byte volatile program storage region in the Protected Zone. 852 // However, this restriction will be removed in an upcoming revision of the 853 // ABI. 854 if (HasROPProtect) { 855 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 856 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 857 assert((ImmOffset <= -8 && ImmOffset >= -512) && 858 "ROP hash save offset out of range."); 859 assert(((ImmOffset & 0x7) == 0) && 860 "ROP hash save offset must be 8 byte aligned."); 861 BuildMI(MBB, StackUpdateLoc, dl, HashST) 862 .addReg(ScratchReg, getKillRegState(true)) 863 .addImm(ImmOffset) 864 .addReg(SPReg); 865 } 866 }; 867 868 if (MustSaveLR && HasFastMFLR) 869 SaveLR(LROffset); 870 871 if (MustSaveCR && 872 !(SingleScratchReg && MustSaveLR)) { 873 assert(HasRedZone && "A red zone is always available on PPC64"); 874 BuildMI(MBB, MBBI, dl, StoreWordInst) 875 .addReg(TempReg, getKillRegState(true)) 876 .addImm(CRSaveOffset) 877 .addReg(SPReg); 878 } 879 880 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 881 if (!FrameSize) { 882 if (MustSaveLR && !HasFastMFLR) 883 SaveLR(LROffset); 884 return; 885 } 886 887 // Adjust stack pointer: r1 += NegFrameSize. 888 // If there is a preferred stack alignment, align R1 now 889 890 if (HasBP && HasRedZone) { 891 // Save a copy of r1 as the base pointer. 892 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 893 .addReg(SPReg) 894 .addReg(SPReg); 895 } 896 897 // Have we generated a STUX instruction to claim stack frame? If so, 898 // the negated frame size will be placed in ScratchReg. 899 bool HasSTUX = 900 (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) || 901 (HasBP && MaxAlign > 1) || isLargeFrame; 902 903 // If we use STUX to update the stack pointer, we need the two scratch 904 // registers TempReg and ScratchReg, we have to save LR here which is stored 905 // in ScratchReg. 906 // If the offset can not be encoded into the store instruction, we also have 907 // to save LR here. 908 if (MustSaveLR && !HasFastMFLR && 909 (HasSTUX || !isInt<16>(FrameSize + LROffset))) 910 SaveLR(LROffset); 911 912 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 913 // pointer is always stored at SP, we will get a free probe due to an essential 914 // STU(X) instruction. 915 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 916 // To be consistent with other targets, a pseudo instruction is emitted and 917 // will be later expanded in `inlineStackProbe`. 918 BuildMI(MBB, MBBI, dl, 919 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 920 : PPC::PROBED_STACKALLOC_32)) 921 .addDef(TempReg) 922 .addDef(ScratchReg) // ScratchReg stores the old sp. 923 .addImm(NegFrameSize); 924 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 925 // update the ScratchReg to meet the assumption that ScratchReg contains 926 // the NegFrameSize. This solution is rather tricky. 927 if (!HasRedZone) { 928 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 929 .addReg(ScratchReg) 930 .addReg(SPReg); 931 } 932 } else { 933 // This condition must be kept in sync with canUseAsPrologue. 934 if (HasBP && MaxAlign > 1) { 935 if (isPPC64) 936 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 937 .addReg(SPReg) 938 .addImm(0) 939 .addImm(64 - Log2(MaxAlign)); 940 else // PPC32... 941 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 942 .addReg(SPReg) 943 .addImm(0) 944 .addImm(32 - Log2(MaxAlign)) 945 .addImm(31); 946 if (!isLargeFrame) { 947 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 948 .addReg(ScratchReg, RegState::Kill) 949 .addImm(NegFrameSize); 950 } else { 951 assert(!SingleScratchReg && "Only a single scratch reg available"); 952 TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize); 953 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 954 .addReg(ScratchReg, RegState::Kill) 955 .addReg(TempReg, RegState::Kill); 956 } 957 958 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 959 .addReg(SPReg, RegState::Kill) 960 .addReg(SPReg) 961 .addReg(ScratchReg); 962 } else if (!isLargeFrame) { 963 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 964 .addReg(SPReg) 965 .addImm(NegFrameSize) 966 .addReg(SPReg); 967 } else { 968 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize); 969 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 970 .addReg(SPReg, RegState::Kill) 971 .addReg(SPReg) 972 .addReg(ScratchReg); 973 } 974 } 975 976 // Save the TOC register after the stack pointer update if a prologue TOC 977 // save is required for the function. 978 if (MustSaveTOC) { 979 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 980 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 981 .addReg(TOCReg, getKillRegState(true)) 982 .addImm(TOCSaveOffset) 983 .addReg(SPReg); 984 } 985 986 if (!HasRedZone) { 987 assert(!isPPC64 && "A red zone is always available on PPC64"); 988 if (HasSTUX) { 989 // The negated frame size is in ScratchReg, and the SPReg has been 990 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 991 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 992 // the stack frame (i.e. the old SP), ideally, we would put the old 993 // SP into a register and use it as the base for the stores. The 994 // problem is that the only available register may be ScratchReg, 995 // which could be R0, and R0 cannot be used as a base address. 996 997 // First, set ScratchReg to the old SP. This may need to be modified 998 // later. 999 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 1000 .addReg(ScratchReg, RegState::Kill) 1001 .addReg(SPReg); 1002 1003 if (ScratchReg == PPC::R0) { 1004 // R0 cannot be used as a base register, but it can be used as an 1005 // index in a store-indexed. 1006 int LastOffset = 0; 1007 if (HasFP) { 1008 // R0 += (FPOffset-LastOffset). 1009 // Need addic, since addi treats R0 as 0. 1010 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1011 .addReg(ScratchReg) 1012 .addImm(FPOffset-LastOffset); 1013 LastOffset = FPOffset; 1014 // Store FP into *R0. 1015 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1016 .addReg(FPReg, RegState::Kill) // Save FP. 1017 .addReg(PPC::ZERO) 1018 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1019 } 1020 if (FI->usesPICBase()) { 1021 // R0 += (PBPOffset-LastOffset). 1022 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1023 .addReg(ScratchReg) 1024 .addImm(PBPOffset-LastOffset); 1025 LastOffset = PBPOffset; 1026 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1027 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1028 .addReg(PPC::ZERO) 1029 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1030 } 1031 if (HasBP) { 1032 // R0 += (BPOffset-LastOffset). 1033 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1034 .addReg(ScratchReg) 1035 .addImm(BPOffset-LastOffset); 1036 LastOffset = BPOffset; 1037 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1038 .addReg(BPReg, RegState::Kill) // Save BP. 1039 .addReg(PPC::ZERO) 1040 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1041 // BP = R0-LastOffset 1042 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1043 .addReg(ScratchReg, RegState::Kill) 1044 .addImm(-LastOffset); 1045 } 1046 } else { 1047 // ScratchReg is not R0, so use it as the base register. It is 1048 // already set to the old SP, so we can use the offsets directly. 1049 1050 // Now that the stack frame has been allocated, save all the necessary 1051 // registers using ScratchReg as the base address. 1052 if (HasFP) 1053 BuildMI(MBB, MBBI, dl, StoreInst) 1054 .addReg(FPReg) 1055 .addImm(FPOffset) 1056 .addReg(ScratchReg); 1057 if (FI->usesPICBase()) 1058 BuildMI(MBB, MBBI, dl, StoreInst) 1059 .addReg(PPC::R30) 1060 .addImm(PBPOffset) 1061 .addReg(ScratchReg); 1062 if (HasBP) { 1063 BuildMI(MBB, MBBI, dl, StoreInst) 1064 .addReg(BPReg) 1065 .addImm(BPOffset) 1066 .addReg(ScratchReg); 1067 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1068 .addReg(ScratchReg, RegState::Kill) 1069 .addReg(ScratchReg); 1070 } 1071 } 1072 } else { 1073 // The frame size is a known 16-bit constant (fitting in the immediate 1074 // field of STWU). To be here we have to be compiling for PPC32. 1075 // Since the SPReg has been decreased by FrameSize, add it back to each 1076 // offset. 1077 if (HasFP) 1078 BuildMI(MBB, MBBI, dl, StoreInst) 1079 .addReg(FPReg) 1080 .addImm(FrameSize + FPOffset) 1081 .addReg(SPReg); 1082 if (FI->usesPICBase()) 1083 BuildMI(MBB, MBBI, dl, StoreInst) 1084 .addReg(PPC::R30) 1085 .addImm(FrameSize + PBPOffset) 1086 .addReg(SPReg); 1087 if (HasBP) { 1088 BuildMI(MBB, MBBI, dl, StoreInst) 1089 .addReg(BPReg) 1090 .addImm(FrameSize + BPOffset) 1091 .addReg(SPReg); 1092 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1093 .addReg(SPReg) 1094 .addImm(FrameSize); 1095 } 1096 } 1097 } 1098 1099 // Save the LR now. 1100 if (!HasSTUX && MustSaveLR && !HasFastMFLR && isInt<16>(FrameSize + LROffset)) 1101 SaveLR(LROffset + FrameSize); 1102 1103 // Add Call Frame Information for the instructions we generated above. 1104 if (needsCFI) { 1105 unsigned CFIIndex; 1106 1107 if (HasBP) { 1108 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1109 // because if the stack needed aligning then CFA won't be at a fixed 1110 // offset from FP/SP. 1111 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1112 CFIIndex = MF.addFrameInst( 1113 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1114 } else { 1115 // Adjust the definition of CFA to account for the change in SP. 1116 assert(NegFrameSize); 1117 CFIIndex = MF.addFrameInst( 1118 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1119 } 1120 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1121 .addCFIIndex(CFIIndex); 1122 1123 if (HasFP) { 1124 // Describe where FP was saved, at a fixed offset from CFA. 1125 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1126 CFIIndex = MF.addFrameInst( 1127 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1128 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1129 .addCFIIndex(CFIIndex); 1130 } 1131 1132 if (FI->usesPICBase()) { 1133 // Describe where FP was saved, at a fixed offset from CFA. 1134 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1135 CFIIndex = MF.addFrameInst( 1136 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1137 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1138 .addCFIIndex(CFIIndex); 1139 } 1140 1141 if (HasBP) { 1142 // Describe where BP was saved, at a fixed offset from CFA. 1143 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1144 CFIIndex = MF.addFrameInst( 1145 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1146 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1147 .addCFIIndex(CFIIndex); 1148 } 1149 1150 if (MustSaveLR) { 1151 // Describe where LR was saved, at a fixed offset from CFA. 1152 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1153 CFIIndex = MF.addFrameInst( 1154 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1155 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1156 .addCFIIndex(CFIIndex); 1157 } 1158 } 1159 1160 // If there is a frame pointer, copy R1 into R31 1161 if (HasFP) { 1162 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1163 .addReg(SPReg) 1164 .addReg(SPReg); 1165 1166 if (!HasBP && needsCFI) { 1167 // Change the definition of CFA from SP+offset to FP+offset, because SP 1168 // will change at every alloca. 1169 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1170 unsigned CFIIndex = MF.addFrameInst( 1171 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1172 1173 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1174 .addCFIIndex(CFIIndex); 1175 } 1176 } 1177 1178 if (needsCFI) { 1179 // Describe where callee saved registers were saved, at fixed offsets from 1180 // CFA. 1181 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1182 for (const CalleeSavedInfo &I : CSI) { 1183 Register Reg = I.getReg(); 1184 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1185 1186 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1187 // subregisters of CR2. We just need to emit a move of CR2. 1188 if (PPC::CRBITRCRegClass.contains(Reg)) 1189 continue; 1190 1191 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1192 continue; 1193 1194 // For SVR4, don't emit a move for the CR spill slot if we haven't 1195 // spilled CRs. 1196 if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4) 1197 && !MustSaveCR) 1198 continue; 1199 1200 // For 64-bit SVR4 when we have spilled CRs, the spill location 1201 // is SP+8, not a frame-relative slot. 1202 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1203 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1204 // the whole CR word. In the ELFv2 ABI, every CR that was 1205 // actually saved gets its own CFI record. 1206 Register CRReg = isELFv2ABI? Reg : PPC::CR2; 1207 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1208 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1209 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1210 .addCFIIndex(CFIIndex); 1211 continue; 1212 } 1213 1214 if (I.isSpilledToReg()) { 1215 unsigned SpilledReg = I.getDstReg(); 1216 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1217 nullptr, MRI->getDwarfRegNum(Reg, true), 1218 MRI->getDwarfRegNum(SpilledReg, true))); 1219 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1220 .addCFIIndex(CFIRegister); 1221 } else { 1222 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 1223 // We have changed the object offset above but we do not want to change 1224 // the actual offsets in the CFI instruction so we have to undo the 1225 // offset change here. 1226 if (MovingStackUpdateDown) 1227 Offset -= NegFrameSize; 1228 1229 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1230 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1231 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1232 .addCFIIndex(CFIIndex); 1233 } 1234 } 1235 } 1236 } 1237 1238 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1239 MachineBasicBlock &PrologMBB) const { 1240 bool isPPC64 = Subtarget.isPPC64(); 1241 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1242 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1243 MachineFrameInfo &MFI = MF.getFrameInfo(); 1244 MachineModuleInfo &MMI = MF.getMMI(); 1245 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1246 // AIX assembler does not support cfi directives. 1247 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1248 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1249 int Opc = MI.getOpcode(); 1250 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1251 }); 1252 if (StackAllocMIPos == PrologMBB.end()) 1253 return; 1254 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1255 MachineBasicBlock *CurrentMBB = &PrologMBB; 1256 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1257 MachineInstr &MI = *StackAllocMIPos; 1258 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1259 unsigned ProbeSize = TLI.getStackProbeSize(MF); 1260 int64_t NegProbeSize = -(int64_t)ProbeSize; 1261 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1262 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1263 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1264 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1265 Register ScratchReg = MI.getOperand(0).getReg(); 1266 Register FPReg = MI.getOperand(1).getReg(); 1267 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1268 bool HasBP = RegInfo->hasBasePointer(MF); 1269 Register BPReg = RegInfo->getBaseRegister(MF); 1270 Align MaxAlign = MFI.getMaxAlign(); 1271 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1272 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1273 // Subroutines to generate .cfi_* directives. 1274 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1275 MachineBasicBlock::iterator MBBI, Register Reg) { 1276 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1277 unsigned CFIIndex = MF.addFrameInst( 1278 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1279 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1280 .addCFIIndex(CFIIndex); 1281 }; 1282 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1283 MachineBasicBlock::iterator MBBI, Register Reg, 1284 int Offset) { 1285 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1286 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1287 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1288 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1289 .addCFIIndex(CFIIndex); 1290 }; 1291 // Subroutine to determine if we can use the Imm as part of d-form. 1292 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1293 // Subroutine to materialize the Imm into TempReg. 1294 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1295 MachineBasicBlock::iterator MBBI, int64_t Imm, 1296 Register &TempReg) { 1297 assert(isInt<32>(Imm) && "Unhandled imm"); 1298 if (isInt<16>(Imm)) 1299 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1300 .addImm(Imm); 1301 else { 1302 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1303 .addImm(Imm >> 16); 1304 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1305 .addReg(TempReg) 1306 .addImm(Imm & 0xFFFF); 1307 } 1308 }; 1309 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1310 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1311 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1312 Register NegSizeReg, bool UseDForm, 1313 Register StoreReg) { 1314 if (UseDForm) 1315 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1316 .addReg(StoreReg) 1317 .addImm(NegSize) 1318 .addReg(SPReg); 1319 else 1320 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1321 .addReg(StoreReg) 1322 .addReg(SPReg) 1323 .addReg(NegSizeReg); 1324 }; 1325 // Used to probe stack when realignment is required. 1326 // Note that, according to ABI's requirement, *sp must always equals the 1327 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp. 1328 // Following is pseudo code: 1329 // final_sp = (sp & align) + negframesize; 1330 // neg_gap = final_sp - sp; 1331 // while (neg_gap < negprobesize) { 1332 // stdu fp, negprobesize(sp); 1333 // neg_gap -= negprobesize; 1334 // } 1335 // stdux fp, sp, neg_gap 1336 // 1337 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg 1338 // before probe code, we don't need to save it, so we get one additional reg 1339 // that can be used to materialize the probeside if needed to use xform. 1340 // Otherwise, we can NOT materialize probeside, so we can only use Dform for 1341 // now. 1342 // 1343 // The allocations are: 1344 // if (HasBP && HasRedzone) { 1345 // r0: materialize the probesize if needed so that we can use xform. 1346 // r12: `neg_gap` 1347 // } else { 1348 // r0: back-chain pointer 1349 // r12: `neg_gap`. 1350 // } 1351 auto probeRealignedStack = [&](MachineBasicBlock &MBB, 1352 MachineBasicBlock::iterator MBBI, 1353 Register ScratchReg, Register TempReg) { 1354 assert(HasBP && "The function is supposed to have base pointer when its " 1355 "stack is realigned."); 1356 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2"); 1357 1358 // FIXME: We can eliminate this limitation if we get more infomation about 1359 // which part of redzone are already used. Used redzone can be treated 1360 // probed. But there might be `holes' in redzone probed, this could 1361 // complicate the implementation. 1362 assert(ProbeSize >= Subtarget.getRedZoneSize() && 1363 "Probe size should be larger or equal to the size of red-zone so " 1364 "that red-zone is not clobbered by probing."); 1365 1366 Register &FinalStackPtr = TempReg; 1367 // FIXME: We only support NegProbeSize materializable by DForm currently. 1368 // When HasBP && HasRedzone, we can use xform if we have an additional idle 1369 // register. 1370 NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15)); 1371 assert(isInt<16>(NegProbeSize) && 1372 "NegProbeSize should be materializable by DForm"); 1373 Register CRReg = PPC::CR0; 1374 // Layout of output assembly kinda like: 1375 // bb.0: 1376 // ... 1377 // sub $scratchreg, $finalsp, r1 1378 // cmpdi $scratchreg, <negprobesize> 1379 // bge bb.2 1380 // bb.1: 1381 // stdu <backchain>, <negprobesize>(r1) 1382 // sub $scratchreg, $scratchreg, negprobesize 1383 // cmpdi $scratchreg, <negprobesize> 1384 // blt bb.1 1385 // bb.2: 1386 // stdux <backchain>, r1, $scratchreg 1387 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 1388 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB); 1389 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB); 1390 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1391 MF.insert(MBBInsertPoint, ProbeExitMBB); 1392 // bb.2 1393 { 1394 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1395 allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false, 1396 BackChainPointer); 1397 if (HasRedZone) 1398 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg 1399 // to TempReg to satisfy it. 1400 BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg) 1401 .addReg(BPReg) 1402 .addReg(BPReg); 1403 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end()); 1404 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 1405 } 1406 // bb.0 1407 { 1408 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg) 1409 .addReg(SPReg) 1410 .addReg(FinalStackPtr); 1411 if (!HasRedZone) 1412 BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg); 1413 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg) 1414 .addReg(ScratchReg) 1415 .addImm(NegProbeSize); 1416 BuildMI(&MBB, DL, TII.get(PPC::BCC)) 1417 .addImm(PPC::PRED_GE) 1418 .addReg(CRReg) 1419 .addMBB(ProbeExitMBB); 1420 MBB.addSuccessor(ProbeLoopBodyMBB); 1421 MBB.addSuccessor(ProbeExitMBB); 1422 } 1423 // bb.1 1424 { 1425 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1426 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize, 1427 0, true /*UseDForm*/, BackChainPointer); 1428 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI), 1429 ScratchReg) 1430 .addReg(ScratchReg) 1431 .addImm(-NegProbeSize); 1432 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), 1433 CRReg) 1434 .addReg(ScratchReg) 1435 .addImm(NegProbeSize); 1436 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC)) 1437 .addImm(PPC::PRED_LT) 1438 .addReg(CRReg) 1439 .addMBB(ProbeLoopBodyMBB); 1440 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB); 1441 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB); 1442 } 1443 // Update liveins. 1444 recomputeLiveIns(*ProbeLoopBodyMBB); 1445 recomputeLiveIns(*ProbeExitMBB); 1446 return ProbeExitMBB; 1447 }; 1448 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing 1449 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since 1450 // the offset subtracted from SP is determined by SP's runtime value. 1451 if (HasBP && MaxAlign > 1) { 1452 // Calculate final stack pointer. 1453 if (isPPC64) 1454 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg) 1455 .addReg(SPReg) 1456 .addImm(0) 1457 .addImm(64 - Log2(MaxAlign)); 1458 else 1459 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1460 .addReg(SPReg) 1461 .addImm(0) 1462 .addImm(32 - Log2(MaxAlign)) 1463 .addImm(31); 1464 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), 1465 FPReg) 1466 .addReg(ScratchReg) 1467 .addReg(SPReg); 1468 MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg); 1469 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 1470 FPReg) 1471 .addReg(ScratchReg) 1472 .addReg(FPReg); 1473 CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg); 1474 if (needsCFI) 1475 buildDefCFAReg(*CurrentMBB, {MI}, FPReg); 1476 } else { 1477 // Initialize current frame pointer. 1478 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1479 // Use FPReg to calculate CFA. 1480 if (needsCFI) 1481 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1482 // Probe residual part. 1483 if (NegResidualSize) { 1484 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1485 if (!ResidualUseDForm) 1486 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg); 1487 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg, 1488 ResidualUseDForm, FPReg); 1489 } 1490 bool UseDForm = CanUseDForm(NegProbeSize); 1491 // If number of blocks is small, just probe them directly. 1492 if (NumBlocks < 3) { 1493 if (!UseDForm) 1494 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1495 for (int i = 0; i < NumBlocks; ++i) 1496 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm, 1497 FPReg); 1498 if (needsCFI) { 1499 // Restore using SPReg to calculate CFA. 1500 buildDefCFAReg(*CurrentMBB, {MI}, SPReg); 1501 } 1502 } else { 1503 // Since CTR is a volatile register and current shrinkwrap implementation 1504 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1505 // CTR loop to probe. 1506 // Calculate trip count and stores it in CTRReg. 1507 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg); 1508 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1509 .addReg(ScratchReg, RegState::Kill); 1510 if (!UseDForm) 1511 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1512 // Create MBBs of the loop. 1513 MachineFunction::iterator MBBInsertPoint = 1514 std::next(CurrentMBB->getIterator()); 1515 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1516 MF.insert(MBBInsertPoint, LoopMBB); 1517 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1518 MF.insert(MBBInsertPoint, ExitMBB); 1519 // Synthesize the loop body. 1520 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1521 UseDForm, FPReg); 1522 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1523 .addMBB(LoopMBB); 1524 LoopMBB->addSuccessor(ExitMBB); 1525 LoopMBB->addSuccessor(LoopMBB); 1526 // Synthesize the exit MBB. 1527 ExitMBB->splice(ExitMBB->end(), CurrentMBB, 1528 std::next(MachineBasicBlock::iterator(MI)), 1529 CurrentMBB->end()); 1530 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB); 1531 CurrentMBB->addSuccessor(LoopMBB); 1532 if (needsCFI) { 1533 // Restore using SPReg to calculate CFA. 1534 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1535 } 1536 // Update liveins. 1537 recomputeLiveIns(*LoopMBB); 1538 recomputeLiveIns(*ExitMBB); 1539 } 1540 } 1541 ++NumPrologProbed; 1542 MI.eraseFromParent(); 1543 } 1544 1545 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1546 MachineBasicBlock &MBB) const { 1547 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1548 DebugLoc dl; 1549 1550 if (MBBI != MBB.end()) 1551 dl = MBBI->getDebugLoc(); 1552 1553 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1554 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1555 1556 // Get alignment info so we know how to restore the SP. 1557 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1558 1559 // Get the number of bytes allocated from the FrameInfo. 1560 int64_t FrameSize = MFI.getStackSize(); 1561 1562 // Get processor type. 1563 bool isPPC64 = Subtarget.isPPC64(); 1564 1565 // Check if the link register (LR) has been saved. 1566 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1567 bool MustSaveLR = FI->mustSaveLR(); 1568 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1569 bool MustSaveCR = !MustSaveCRs.empty(); 1570 // Do we have a frame pointer and/or base pointer for this function? 1571 bool HasFP = hasFP(MF); 1572 bool HasBP = RegInfo->hasBasePointer(MF); 1573 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1574 bool HasROPProtect = Subtarget.hasROPProtect(); 1575 bool HasPrivileged = Subtarget.hasPrivileged(); 1576 1577 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1578 Register BPReg = RegInfo->getBaseRegister(MF); 1579 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1580 Register ScratchReg; 1581 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1582 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1583 : PPC::MTLR ); 1584 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1585 : PPC::LWZ ); 1586 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1587 : PPC::LIS ); 1588 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1589 : PPC::OR ); 1590 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1591 : PPC::ORI ); 1592 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1593 : PPC::ADDI ); 1594 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1595 : PPC::ADD4 ); 1596 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1597 : PPC::LWZ); 1598 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1599 : PPC::MTOCRF); 1600 const MCInstrDesc &HashChk = 1601 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8) 1602 : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK)); 1603 int64_t LROffset = getReturnSaveOffset(); 1604 1605 int64_t FPOffset = 0; 1606 1607 // Using the same bool variable as below to suppress compiler warnings. 1608 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1609 &TempReg); 1610 assert(SingleScratchReg && 1611 "Could not find an available scratch register"); 1612 1613 SingleScratchReg = ScratchReg == TempReg; 1614 1615 if (HasFP) { 1616 int FPIndex = FI->getFramePointerSaveIndex(); 1617 assert(FPIndex && "No Frame Pointer Save Slot!"); 1618 FPOffset = MFI.getObjectOffset(FPIndex); 1619 } 1620 1621 int64_t BPOffset = 0; 1622 if (HasBP) { 1623 int BPIndex = FI->getBasePointerSaveIndex(); 1624 assert(BPIndex && "No Base Pointer Save Slot!"); 1625 BPOffset = MFI.getObjectOffset(BPIndex); 1626 } 1627 1628 int64_t PBPOffset = 0; 1629 if (FI->usesPICBase()) { 1630 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1631 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1632 PBPOffset = MFI.getObjectOffset(PBPIndex); 1633 } 1634 1635 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1636 1637 if (IsReturnBlock) { 1638 unsigned RetOpcode = MBBI->getOpcode(); 1639 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1640 RetOpcode == PPC::TCRETURNdi || 1641 RetOpcode == PPC::TCRETURNai || 1642 RetOpcode == PPC::TCRETURNri8 || 1643 RetOpcode == PPC::TCRETURNdi8 || 1644 RetOpcode == PPC::TCRETURNai8; 1645 1646 if (UsesTCRet) { 1647 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1648 MachineOperand &StackAdjust = MBBI->getOperand(1); 1649 assert(StackAdjust.isImm() && "Expecting immediate value."); 1650 // Adjust stack pointer. 1651 int StackAdj = StackAdjust.getImm(); 1652 int Delta = StackAdj - MaxTCRetDelta; 1653 assert((Delta >= 0) && "Delta must be positive"); 1654 if (MaxTCRetDelta>0) 1655 FrameSize += (StackAdj +Delta); 1656 else 1657 FrameSize += StackAdj; 1658 } 1659 } 1660 1661 // Frames of 32KB & larger require special handling because they cannot be 1662 // indexed into with a simple LD/LWZ immediate offset operand. 1663 bool isLargeFrame = !isInt<16>(FrameSize); 1664 1665 // On targets without red zone, the SP needs to be restored last, so that 1666 // all live contents of the stack frame are upwards of the SP. This means 1667 // that we cannot restore SP just now, since there may be more registers 1668 // to restore from the stack frame (e.g. R31). If the frame size is not 1669 // a simple immediate value, we will need a spare register to hold the 1670 // restored SP. If the frame size is known and small, we can simply adjust 1671 // the offsets of the registers to be restored, and still use SP to restore 1672 // them. In such case, the final update of SP will be to add the frame 1673 // size to it. 1674 // To simplify the code, set RBReg to the base register used to restore 1675 // values from the stack, and set SPAdd to the value that needs to be added 1676 // to the SP at the end. The default values are as if red zone was present. 1677 unsigned RBReg = SPReg; 1678 uint64_t SPAdd = 0; 1679 1680 // Check if we can move the stack update instruction up the epilogue 1681 // past the callee saves. This will allow the move to LR instruction 1682 // to be executed before the restores of the callee saves which means 1683 // that the callee saves can hide the latency from the MTLR instrcution. 1684 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1685 if (stackUpdateCanBeMoved(MF)) { 1686 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1687 for (CalleeSavedInfo CSI : Info) { 1688 // If the callee saved register is spilled to another register abort the 1689 // stack update movement. 1690 if (CSI.isSpilledToReg()) { 1691 StackUpdateLoc = MBBI; 1692 break; 1693 } 1694 int FrIdx = CSI.getFrameIdx(); 1695 // If the frame index is not negative the callee saved info belongs to a 1696 // stack object that is not a fixed stack object. We ignore non-fixed 1697 // stack objects because we won't move the update of the stack pointer 1698 // past them. 1699 if (FrIdx >= 0) 1700 continue; 1701 1702 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1703 StackUpdateLoc--; 1704 else { 1705 // Abort the operation as we can't update all CSR restores. 1706 StackUpdateLoc = MBBI; 1707 break; 1708 } 1709 } 1710 } 1711 1712 if (FrameSize) { 1713 // In the prologue, the loaded (or persistent) stack pointer value is 1714 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1715 // zone add this offset back now. 1716 1717 // If the function has a base pointer, the stack pointer has been copied 1718 // to it so we can restore it by copying in the other direction. 1719 if (HasRedZone && HasBP) { 1720 BuildMI(MBB, MBBI, dl, OrInst, RBReg). 1721 addReg(BPReg). 1722 addReg(BPReg); 1723 } 1724 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1725 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1726 // call which invalidates the stack pointer value in SP(0). So we use the 1727 // value of R31 in this case. Similar situation exists with setjmp. 1728 else if (FI->hasFastCall() || MF.exposesReturnsTwice()) { 1729 assert(HasFP && "Expecting a valid frame pointer."); 1730 if (!HasRedZone) 1731 RBReg = FPReg; 1732 if (!isLargeFrame) { 1733 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1734 .addReg(FPReg).addImm(FrameSize); 1735 } else { 1736 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize); 1737 BuildMI(MBB, MBBI, dl, AddInst) 1738 .addReg(RBReg) 1739 .addReg(FPReg) 1740 .addReg(ScratchReg); 1741 } 1742 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1743 if (HasRedZone) { 1744 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1745 .addReg(SPReg) 1746 .addImm(FrameSize); 1747 } else { 1748 // Make sure that adding FrameSize will not overflow the max offset 1749 // size. 1750 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1751 "Local offsets should be negative"); 1752 SPAdd = FrameSize; 1753 FPOffset += FrameSize; 1754 BPOffset += FrameSize; 1755 PBPOffset += FrameSize; 1756 } 1757 } else { 1758 // We don't want to use ScratchReg as a base register, because it 1759 // could happen to be R0. Use FP instead, but make sure to preserve it. 1760 if (!HasRedZone) { 1761 // If FP is not saved, copy it to ScratchReg. 1762 if (!HasFP) 1763 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1764 .addReg(FPReg) 1765 .addReg(FPReg); 1766 RBReg = FPReg; 1767 } 1768 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1769 .addImm(0) 1770 .addReg(SPReg); 1771 } 1772 } 1773 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1774 // If there is no red zone, ScratchReg may be needed for holding a useful 1775 // value (although not the base register). Make sure it is not overwritten 1776 // too early. 1777 1778 // If we need to restore both the LR and the CR and we only have one 1779 // available scratch register, we must do them one at a time. 1780 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1781 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1782 // is live here. 1783 assert(HasRedZone && "Expecting red zone"); 1784 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1785 .addImm(CRSaveOffset) 1786 .addReg(SPReg); 1787 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1788 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1789 .addReg(TempReg, getKillRegState(i == e-1)); 1790 } 1791 1792 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1793 // LR is stored in the caller's stack frame. ScratchReg will be needed 1794 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1795 // a base register anyway, because it may happen to be R0. 1796 bool LoadedLR = false; 1797 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1798 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1799 .addImm(LROffset+SPAdd) 1800 .addReg(RBReg); 1801 LoadedLR = true; 1802 } 1803 1804 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1805 assert(RBReg == SPReg && "Should be using SP as a base register"); 1806 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1807 .addImm(CRSaveOffset) 1808 .addReg(RBReg); 1809 } 1810 1811 if (HasFP) { 1812 // If there is red zone, restore FP directly, since SP has already been 1813 // restored. Otherwise, restore the value of FP into ScratchReg. 1814 if (HasRedZone || RBReg == SPReg) 1815 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1816 .addImm(FPOffset) 1817 .addReg(SPReg); 1818 else 1819 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1820 .addImm(FPOffset) 1821 .addReg(RBReg); 1822 } 1823 1824 if (FI->usesPICBase()) 1825 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1826 .addImm(PBPOffset) 1827 .addReg(RBReg); 1828 1829 if (HasBP) 1830 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1831 .addImm(BPOffset) 1832 .addReg(RBReg); 1833 1834 // There is nothing more to be loaded from the stack, so now we can 1835 // restore SP: SP = RBReg + SPAdd. 1836 if (RBReg != SPReg || SPAdd != 0) { 1837 assert(!HasRedZone && "This should not happen with red zone"); 1838 // If SPAdd is 0, generate a copy. 1839 if (SPAdd == 0) 1840 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1841 .addReg(RBReg) 1842 .addReg(RBReg); 1843 else 1844 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1845 .addReg(RBReg) 1846 .addImm(SPAdd); 1847 1848 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1849 if (RBReg == FPReg) 1850 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1851 .addReg(ScratchReg) 1852 .addReg(ScratchReg); 1853 1854 // Now load the LR from the caller's stack frame. 1855 if (MustSaveLR && !LoadedLR) 1856 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1857 .addImm(LROffset) 1858 .addReg(SPReg); 1859 } 1860 1861 if (MustSaveCR && 1862 !(SingleScratchReg && MustSaveLR)) 1863 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1864 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1865 .addReg(TempReg, getKillRegState(i == e-1)); 1866 1867 if (MustSaveLR) { 1868 // If ROP protection is required, an extra instruction is added to compute a 1869 // hash and then compare it to the hash stored in the prologue. 1870 if (HasROPProtect) { 1871 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 1872 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 1873 assert((ImmOffset <= -8 && ImmOffset >= -512) && 1874 "ROP hash check location offset out of range."); 1875 assert(((ImmOffset & 0x7) == 0) && 1876 "ROP hash check location offset must be 8 byte aligned."); 1877 BuildMI(MBB, StackUpdateLoc, dl, HashChk) 1878 .addReg(ScratchReg) 1879 .addImm(ImmOffset) 1880 .addReg(SPReg); 1881 } 1882 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1883 } 1884 1885 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1886 // call optimization 1887 if (IsReturnBlock) { 1888 unsigned RetOpcode = MBBI->getOpcode(); 1889 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1890 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1891 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1892 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1893 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1894 1895 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1896 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1897 .addReg(SPReg).addImm(CallerAllocatedAmt); 1898 } else { 1899 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1900 .addImm(CallerAllocatedAmt >> 16); 1901 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1902 .addReg(ScratchReg, RegState::Kill) 1903 .addImm(CallerAllocatedAmt & 0xFFFF); 1904 BuildMI(MBB, MBBI, dl, AddInst) 1905 .addReg(SPReg) 1906 .addReg(FPReg) 1907 .addReg(ScratchReg); 1908 } 1909 } else { 1910 createTailCallBranchInstr(MBB); 1911 } 1912 } 1913 } 1914 1915 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1916 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1917 1918 // If we got this far a first terminator should exist. 1919 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1920 1921 DebugLoc dl = MBBI->getDebugLoc(); 1922 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1923 1924 // Create branch instruction for pseudo tail call return instruction. 1925 // The TCRETURNdi variants are direct calls. Valid targets for those are 1926 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1927 // since we can tail call external functions with PC-Rel (i.e. we don't need 1928 // to worry about different TOC pointers). Some of the external functions will 1929 // be MO_GlobalAddress while others like memcpy for example, are going to 1930 // be MO_ExternalSymbol. 1931 unsigned RetOpcode = MBBI->getOpcode(); 1932 if (RetOpcode == PPC::TCRETURNdi) { 1933 MBBI = MBB.getLastNonDebugInstr(); 1934 MachineOperand &JumpTarget = MBBI->getOperand(0); 1935 if (JumpTarget.isGlobal()) 1936 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1937 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1938 else if (JumpTarget.isSymbol()) 1939 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1940 addExternalSymbol(JumpTarget.getSymbolName()); 1941 else 1942 llvm_unreachable("Expecting Global or External Symbol"); 1943 } else if (RetOpcode == PPC::TCRETURNri) { 1944 MBBI = MBB.getLastNonDebugInstr(); 1945 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1946 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1947 } else if (RetOpcode == PPC::TCRETURNai) { 1948 MBBI = MBB.getLastNonDebugInstr(); 1949 MachineOperand &JumpTarget = MBBI->getOperand(0); 1950 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1951 } else if (RetOpcode == PPC::TCRETURNdi8) { 1952 MBBI = MBB.getLastNonDebugInstr(); 1953 MachineOperand &JumpTarget = MBBI->getOperand(0); 1954 if (JumpTarget.isGlobal()) 1955 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1956 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1957 else if (JumpTarget.isSymbol()) 1958 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1959 addExternalSymbol(JumpTarget.getSymbolName()); 1960 else 1961 llvm_unreachable("Expecting Global or External Symbol"); 1962 } else if (RetOpcode == PPC::TCRETURNri8) { 1963 MBBI = MBB.getLastNonDebugInstr(); 1964 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1965 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1966 } else if (RetOpcode == PPC::TCRETURNai8) { 1967 MBBI = MBB.getLastNonDebugInstr(); 1968 MachineOperand &JumpTarget = MBBI->getOperand(0); 1969 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1970 } 1971 } 1972 1973 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1974 BitVector &SavedRegs, 1975 RegScavenger *RS) const { 1976 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1977 1978 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1979 1980 // Do not explicitly save the callee saved VSRp registers. 1981 // The individual VSR subregisters will be saved instead. 1982 SavedRegs.reset(PPC::VSRp26); 1983 SavedRegs.reset(PPC::VSRp27); 1984 SavedRegs.reset(PPC::VSRp28); 1985 SavedRegs.reset(PPC::VSRp29); 1986 SavedRegs.reset(PPC::VSRp30); 1987 SavedRegs.reset(PPC::VSRp31); 1988 1989 // Save and clear the LR state. 1990 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1991 unsigned LR = RegInfo->getRARegister(); 1992 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1993 SavedRegs.reset(LR); 1994 1995 // Save R31 if necessary 1996 int FPSI = FI->getFramePointerSaveIndex(); 1997 const bool isPPC64 = Subtarget.isPPC64(); 1998 MachineFrameInfo &MFI = MF.getFrameInfo(); 1999 2000 // If the frame pointer save index hasn't been defined yet. 2001 if (!FPSI && needsFP(MF)) { 2002 // Find out what the fix offset of the frame pointer save area. 2003 int FPOffset = getFramePointerSaveOffset(); 2004 // Allocate the frame index for frame pointer save area. 2005 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 2006 // Save the result. 2007 FI->setFramePointerSaveIndex(FPSI); 2008 } 2009 2010 int BPSI = FI->getBasePointerSaveIndex(); 2011 if (!BPSI && RegInfo->hasBasePointer(MF)) { 2012 int BPOffset = getBasePointerSaveOffset(); 2013 // Allocate the frame index for the base pointer save area. 2014 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 2015 // Save the result. 2016 FI->setBasePointerSaveIndex(BPSI); 2017 } 2018 2019 // Reserve stack space for the PIC Base register (R30). 2020 // Only used in SVR4 32-bit. 2021 if (FI->usesPICBase()) { 2022 int PBPSI = MFI.CreateFixedObject(4, -8, true); 2023 FI->setPICBasePointerSaveIndex(PBPSI); 2024 } 2025 2026 // Make sure we don't explicitly spill r31, because, for example, we have 2027 // some inline asm which explicitly clobbers it, when we otherwise have a 2028 // frame pointer and are using r31's spill slot for the prologue/epilogue 2029 // code. Same goes for the base pointer and the PIC base register. 2030 if (needsFP(MF)) 2031 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 2032 if (RegInfo->hasBasePointer(MF)) 2033 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 2034 if (FI->usesPICBase()) 2035 SavedRegs.reset(PPC::R30); 2036 2037 // Reserve stack space to move the linkage area to in case of a tail call. 2038 int TCSPDelta = 0; 2039 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2040 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 2041 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 2042 } 2043 2044 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 2045 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 2046 // object at the offset of the CR-save slot in the linkage area. The actual 2047 // save and restore of the condition register will be created as part of the 2048 // prologue and epilogue insertion, but the FixedStack object is needed to 2049 // keep the CalleSavedInfo valid. 2050 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 2051 SavedRegs.test(PPC::CR4))) { 2052 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 2053 const int64_t SpillOffset = 2054 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 2055 int FrameIdx = 2056 MFI.CreateFixedObject(SpillSize, SpillOffset, 2057 /* IsImmutable */ true, /* IsAliased */ false); 2058 FI->setCRSpillFrameIndex(FrameIdx); 2059 } 2060 } 2061 2062 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 2063 RegScavenger *RS) const { 2064 // Get callee saved register information. 2065 MachineFrameInfo &MFI = MF.getFrameInfo(); 2066 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2067 2068 // If the function is shrink-wrapped, and if the function has a tail call, the 2069 // tail call might not be in the new RestoreBlock, so real branch instruction 2070 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 2071 // RestoreBlock. So we handle this case here. 2072 if (MFI.getSavePoint() && MFI.hasTailCall()) { 2073 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 2074 for (MachineBasicBlock &MBB : MF) { 2075 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 2076 createTailCallBranchInstr(MBB); 2077 } 2078 } 2079 2080 // Early exit if no callee saved registers are modified! 2081 if (CSI.empty() && !needsFP(MF)) { 2082 addScavengingSpillSlot(MF, RS); 2083 return; 2084 } 2085 2086 unsigned MinGPR = PPC::R31; 2087 unsigned MinG8R = PPC::X31; 2088 unsigned MinFPR = PPC::F31; 2089 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 2090 2091 bool HasGPSaveArea = false; 2092 bool HasG8SaveArea = false; 2093 bool HasFPSaveArea = false; 2094 bool HasVRSaveArea = false; 2095 2096 SmallVector<CalleeSavedInfo, 18> GPRegs; 2097 SmallVector<CalleeSavedInfo, 18> G8Regs; 2098 SmallVector<CalleeSavedInfo, 18> FPRegs; 2099 SmallVector<CalleeSavedInfo, 18> VRegs; 2100 2101 for (const CalleeSavedInfo &I : CSI) { 2102 Register Reg = I.getReg(); 2103 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2104 (Reg != PPC::X2 && Reg != PPC::R2)) && 2105 "Not expecting to try to spill R2 in a function that must save TOC"); 2106 if (PPC::GPRCRegClass.contains(Reg)) { 2107 HasGPSaveArea = true; 2108 2109 GPRegs.push_back(I); 2110 2111 if (Reg < MinGPR) { 2112 MinGPR = Reg; 2113 } 2114 } else if (PPC::G8RCRegClass.contains(Reg)) { 2115 HasG8SaveArea = true; 2116 2117 G8Regs.push_back(I); 2118 2119 if (Reg < MinG8R) { 2120 MinG8R = Reg; 2121 } 2122 } else if (PPC::F8RCRegClass.contains(Reg)) { 2123 HasFPSaveArea = true; 2124 2125 FPRegs.push_back(I); 2126 2127 if (Reg < MinFPR) { 2128 MinFPR = Reg; 2129 } 2130 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2131 PPC::CRRCRegClass.contains(Reg)) { 2132 ; // do nothing, as we already know whether CRs are spilled 2133 } else if (PPC::VRRCRegClass.contains(Reg) || 2134 PPC::SPERCRegClass.contains(Reg)) { 2135 // Altivec and SPE are mutually exclusive, but have the same stack 2136 // alignment requirements, so overload the save area for both cases. 2137 HasVRSaveArea = true; 2138 2139 VRegs.push_back(I); 2140 2141 if (Reg < MinVR) { 2142 MinVR = Reg; 2143 } 2144 } else { 2145 llvm_unreachable("Unknown RegisterClass!"); 2146 } 2147 } 2148 2149 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2150 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2151 2152 int64_t LowerBound = 0; 2153 2154 // Take into account stack space reserved for tail calls. 2155 int TCSPDelta = 0; 2156 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2157 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2158 LowerBound = TCSPDelta; 2159 } 2160 2161 // The Floating-point register save area is right below the back chain word 2162 // of the previous stack frame. 2163 if (HasFPSaveArea) { 2164 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2165 int FI = FPRegs[i].getFrameIdx(); 2166 2167 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2168 } 2169 2170 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2171 } 2172 2173 // Check whether the frame pointer register is allocated. If so, make sure it 2174 // is spilled to the correct offset. 2175 if (needsFP(MF)) { 2176 int FI = PFI->getFramePointerSaveIndex(); 2177 assert(FI && "No Frame Pointer Save Slot!"); 2178 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2179 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2180 HasGPSaveArea = true; 2181 } 2182 2183 if (PFI->usesPICBase()) { 2184 int FI = PFI->getPICBasePointerSaveIndex(); 2185 assert(FI && "No PIC Base Pointer Save Slot!"); 2186 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2187 2188 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2189 HasGPSaveArea = true; 2190 } 2191 2192 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2193 if (RegInfo->hasBasePointer(MF)) { 2194 int FI = PFI->getBasePointerSaveIndex(); 2195 assert(FI && "No Base Pointer Save Slot!"); 2196 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2197 2198 Register BP = RegInfo->getBaseRegister(MF); 2199 if (PPC::G8RCRegClass.contains(BP)) { 2200 MinG8R = std::min<unsigned>(MinG8R, BP); 2201 HasG8SaveArea = true; 2202 } else if (PPC::GPRCRegClass.contains(BP)) { 2203 MinGPR = std::min<unsigned>(MinGPR, BP); 2204 HasGPSaveArea = true; 2205 } 2206 } 2207 2208 // General register save area starts right below the Floating-point 2209 // register save area. 2210 if (HasGPSaveArea || HasG8SaveArea) { 2211 // Move general register save area spill slots down, taking into account 2212 // the size of the Floating-point register save area. 2213 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2214 if (!GPRegs[i].isSpilledToReg()) { 2215 int FI = GPRegs[i].getFrameIdx(); 2216 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2217 } 2218 } 2219 2220 // Move general register save area spill slots down, taking into account 2221 // the size of the Floating-point register save area. 2222 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2223 if (!G8Regs[i].isSpilledToReg()) { 2224 int FI = G8Regs[i].getFrameIdx(); 2225 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2226 } 2227 } 2228 2229 unsigned MinReg = 2230 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2231 TRI->getEncodingValue(MinG8R)); 2232 2233 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2234 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2235 } 2236 2237 // For 32-bit only, the CR save area is below the general register 2238 // save area. For 64-bit SVR4, the CR save area is addressed relative 2239 // to the stack pointer and hence does not need an adjustment here. 2240 // Only CR2 (the first nonvolatile spilled) has an associated frame 2241 // index so that we have a single uniform save area. 2242 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2243 // Adjust the frame index of the CR spill slot. 2244 for (const auto &CSInfo : CSI) { 2245 if (CSInfo.getReg() == PPC::CR2) { 2246 int FI = CSInfo.getFrameIdx(); 2247 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2248 break; 2249 } 2250 } 2251 2252 LowerBound -= 4; // The CR save area is always 4 bytes long. 2253 } 2254 2255 // Both Altivec and SPE have the same alignment and padding requirements 2256 // within the stack frame. 2257 if (HasVRSaveArea) { 2258 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2259 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2260 // we are using negative number here (the stack grows downward). We should 2261 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2262 // is the alignment size ( n = 16 here) and y is the size after aligning. 2263 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2264 LowerBound &= ~(15); 2265 2266 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2267 int FI = VRegs[i].getFrameIdx(); 2268 2269 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2270 } 2271 } 2272 2273 addScavengingSpillSlot(MF, RS); 2274 } 2275 2276 void 2277 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2278 RegScavenger *RS) const { 2279 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2280 // a large stack, which will require scavenging a register to materialize a 2281 // large offset. 2282 2283 // We need to have a scavenger spill slot for spills if the frame size is 2284 // large. In case there is no free register for large-offset addressing, 2285 // this slot is used for the necessary emergency spill. Also, we need the 2286 // slot for dynamic stack allocations. 2287 2288 // The scavenger might be invoked if the frame offset does not fit into 2289 // the 16-bit immediate in case of not SPE and 8-bit in case of SPE. 2290 // We don't know the complete frame size here because we've not yet computed 2291 // callee-saved register spills or the needed alignment padding. 2292 unsigned StackSize = determineFrameLayout(MF, true); 2293 MachineFrameInfo &MFI = MF.getFrameInfo(); 2294 bool NeedSpills = Subtarget.hasSPE() ? !isInt<8>(StackSize) : !isInt<16>(StackSize); 2295 2296 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) || 2297 (hasSpills(MF) && NeedSpills)) { 2298 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2299 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2300 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2301 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2302 unsigned Size = TRI.getSpillSize(RC); 2303 Align Alignment = TRI.getSpillAlign(RC); 2304 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2305 2306 // Might we have over-aligned allocas? 2307 bool HasAlVars = 2308 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2309 2310 // These kinds of spills might need two registers. 2311 if (spillsCR(MF) || HasAlVars) 2312 RS->addScavengingFrameIndex( 2313 MFI.CreateStackObject(Size, Alignment, false)); 2314 } 2315 } 2316 2317 // This function checks if a callee saved gpr can be spilled to a volatile 2318 // vector register. This occurs for leaf functions when the option 2319 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2320 // which were not spilled to vectors, return false so the target independent 2321 // code can handle them by assigning a FrameIdx to a stack slot. 2322 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2323 MachineFunction &MF, const TargetRegisterInfo *TRI, 2324 std::vector<CalleeSavedInfo> &CSI) const { 2325 2326 if (CSI.empty()) 2327 return true; // Early exit if no callee saved registers are modified! 2328 2329 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2330 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2331 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2332 2333 if (Subtarget.hasSPE()) { 2334 // In case of SPE we only have SuperRegs and CRs 2335 // in our CalleSaveInfo vector. 2336 2337 unsigned Idx = 0; 2338 for (auto &CalleeSaveReg : CSI) { 2339 const MCPhysReg &Reg = CalleeSaveReg.getReg(); 2340 const MCPhysReg &Lower = RegInfo->getSubReg(Reg, 1); 2341 const MCPhysReg &Higher = RegInfo->getSubReg(Reg, 2); 2342 2343 // Check only for SuperRegs. 2344 if (Lower) { 2345 if (MRI.isPhysRegModified(Higher)) { 2346 Idx++; 2347 continue; 2348 } else { 2349 // Replace Reg if only lower-32 bits modified 2350 CSI.erase(CSI.begin() + Idx); 2351 CSI.insert(CSI.begin() + Idx, CalleeSavedInfo(Lower)); 2352 } 2353 } 2354 Idx++; 2355 } 2356 } 2357 2358 // Early exit if cannot spill gprs to volatile vector registers. 2359 MachineFrameInfo &MFI = MF.getFrameInfo(); 2360 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2361 return false; 2362 2363 // Build a BitVector of VSRs that can be used for spilling GPRs. 2364 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2365 BitVector BVCalleeSaved(TRI->getNumRegs()); 2366 for (unsigned i = 0; CSRegs[i]; ++i) 2367 BVCalleeSaved.set(CSRegs[i]); 2368 2369 for (unsigned Reg : BVAllocatable.set_bits()) { 2370 // Set to 0 if the register is not a volatile VSX register, or if it is 2371 // used in the function. 2372 if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) || 2373 MRI.isPhysRegUsed(Reg)) 2374 BVAllocatable.reset(Reg); 2375 } 2376 2377 bool AllSpilledToReg = true; 2378 unsigned LastVSRUsedForSpill = 0; 2379 for (auto &CS : CSI) { 2380 if (BVAllocatable.none()) 2381 return false; 2382 2383 Register Reg = CS.getReg(); 2384 2385 if (!PPC::G8RCRegClass.contains(Reg)) { 2386 AllSpilledToReg = false; 2387 continue; 2388 } 2389 2390 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs 2391 // into one VSR using the mtvsrdd instruction. 2392 if (LastVSRUsedForSpill != 0) { 2393 CS.setDstReg(LastVSRUsedForSpill); 2394 BVAllocatable.reset(LastVSRUsedForSpill); 2395 LastVSRUsedForSpill = 0; 2396 continue; 2397 } 2398 2399 unsigned VolatileVFReg = BVAllocatable.find_first(); 2400 if (VolatileVFReg < BVAllocatable.size()) { 2401 CS.setDstReg(VolatileVFReg); 2402 LastVSRUsedForSpill = VolatileVFReg; 2403 } else { 2404 AllSpilledToReg = false; 2405 } 2406 } 2407 return AllSpilledToReg; 2408 } 2409 2410 bool PPCFrameLowering::spillCalleeSavedRegisters( 2411 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2412 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2413 2414 MachineFunction *MF = MBB.getParent(); 2415 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2416 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2417 bool MustSaveTOC = FI->mustSaveTOC(); 2418 DebugLoc DL; 2419 bool CRSpilled = false; 2420 MachineInstrBuilder CRMIB; 2421 BitVector Spilled(TRI->getNumRegs()); 2422 2423 VSRContainingGPRs.clear(); 2424 2425 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one 2426 // or two GPRs, so we need table to record information for later save/restore. 2427 for (const CalleeSavedInfo &Info : CSI) { 2428 if (Info.isSpilledToReg()) { 2429 auto &SpilledVSR = 2430 VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second; 2431 assert(SpilledVSR.second == 0 && 2432 "Can't spill more than two GPRs into VSR!"); 2433 if (SpilledVSR.first == 0) 2434 SpilledVSR.first = Info.getReg(); 2435 else 2436 SpilledVSR.second = Info.getReg(); 2437 } 2438 } 2439 2440 for (const CalleeSavedInfo &I : CSI) { 2441 Register Reg = I.getReg(); 2442 2443 // CR2 through CR4 are the nonvolatile CR fields. 2444 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2445 2446 // Add the callee-saved register as live-in; it's killed at the spill. 2447 // Do not do this for callee-saved registers that are live-in to the 2448 // function because they will already be marked live-in and this will be 2449 // adding it for a second time. It is an error to add the same register 2450 // to the set more than once. 2451 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2452 bool IsLiveIn = MRI.isLiveIn(Reg); 2453 if (!IsLiveIn) 2454 MBB.addLiveIn(Reg); 2455 2456 if (CRSpilled && IsCRField) { 2457 CRMIB.addReg(Reg, RegState::ImplicitKill); 2458 continue; 2459 } 2460 2461 // The actual spill will happen in the prologue. 2462 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2463 continue; 2464 2465 // Insert the spill to the stack frame. 2466 if (IsCRField) { 2467 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2468 if (!Subtarget.is32BitELFABI()) { 2469 // The actual spill will happen at the start of the prologue. 2470 FuncInfo->addMustSaveCR(Reg); 2471 } else { 2472 CRSpilled = true; 2473 FuncInfo->setSpillsCR(); 2474 2475 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2476 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2477 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2478 .addReg(Reg, RegState::ImplicitKill); 2479 2480 MBB.insert(MI, CRMIB); 2481 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2482 .addReg(PPC::R12, 2483 getKillRegState(true)), 2484 I.getFrameIdx())); 2485 } 2486 } else { 2487 if (I.isSpilledToReg()) { 2488 unsigned Dst = I.getDstReg(); 2489 2490 if (Spilled[Dst]) 2491 continue; 2492 2493 if (VSRContainingGPRs[Dst].second != 0) { 2494 assert(Subtarget.hasP9Vector() && 2495 "mtvsrdd is unavailable on pre-P9 targets."); 2496 2497 NumPESpillVSR += 2; 2498 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst) 2499 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)) 2500 .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true)); 2501 } else if (VSRContainingGPRs[Dst].second == 0) { 2502 assert(Subtarget.hasP8Vector() && 2503 "Can't move GPR to VSR on pre-P8 targets."); 2504 2505 ++NumPESpillVSR; 2506 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), 2507 TRI->getSubReg(Dst, PPC::sub_64)) 2508 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)); 2509 } else { 2510 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2511 } 2512 Spilled.set(Dst); 2513 } else { 2514 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2515 // Use !IsLiveIn for the kill flag. 2516 // We do not want to kill registers that are live in this function 2517 // before their use because they will become undefined registers. 2518 // Functions without NoUnwind need to preserve the order of elements in 2519 // saved vector registers. 2520 if (Subtarget.needsSwapsForVSXMemOps() && 2521 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2522 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2523 I.getFrameIdx(), RC, TRI); 2524 else 2525 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), RC, 2526 TRI, Register()); 2527 } 2528 } 2529 } 2530 return true; 2531 } 2532 2533 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2534 bool CR4Spilled, MachineBasicBlock &MBB, 2535 MachineBasicBlock::iterator MI, 2536 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2537 2538 MachineFunction *MF = MBB.getParent(); 2539 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2540 DebugLoc DL; 2541 unsigned MoveReg = PPC::R12; 2542 2543 // 32-bit: FP-relative 2544 MBB.insert(MI, 2545 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2546 CSI[CSIIndex].getFrameIdx())); 2547 2548 unsigned RestoreOp = PPC::MTOCRF; 2549 if (CR2Spilled) 2550 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2551 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2552 2553 if (CR3Spilled) 2554 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2555 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2556 2557 if (CR4Spilled) 2558 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2559 .addReg(MoveReg, getKillRegState(true))); 2560 } 2561 2562 MachineBasicBlock::iterator PPCFrameLowering:: 2563 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2564 MachineBasicBlock::iterator I) const { 2565 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2566 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2567 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2568 // Add (actually subtract) back the amount the callee popped on return. 2569 if (int CalleeAmt = I->getOperand(1).getImm()) { 2570 bool is64Bit = Subtarget.isPPC64(); 2571 CalleeAmt *= -1; 2572 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2573 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2574 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2575 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2576 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2577 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2578 const DebugLoc &dl = I->getDebugLoc(); 2579 2580 if (isInt<16>(CalleeAmt)) { 2581 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2582 .addReg(StackReg, RegState::Kill) 2583 .addImm(CalleeAmt); 2584 } else { 2585 MachineBasicBlock::iterator MBBI = I; 2586 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2587 .addImm(CalleeAmt >> 16); 2588 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2589 .addReg(TmpReg, RegState::Kill) 2590 .addImm(CalleeAmt & 0xFFFF); 2591 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2592 .addReg(StackReg, RegState::Kill) 2593 .addReg(TmpReg); 2594 } 2595 } 2596 } 2597 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2598 return MBB.erase(I); 2599 } 2600 2601 static bool isCalleeSavedCR(unsigned Reg) { 2602 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2603 } 2604 2605 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2606 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2607 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2608 MachineFunction *MF = MBB.getParent(); 2609 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2610 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2611 bool MustSaveTOC = FI->mustSaveTOC(); 2612 bool CR2Spilled = false; 2613 bool CR3Spilled = false; 2614 bool CR4Spilled = false; 2615 unsigned CSIIndex = 0; 2616 BitVector Restored(TRI->getNumRegs()); 2617 2618 // Initialize insertion-point logic; we will be restoring in reverse 2619 // order of spill. 2620 MachineBasicBlock::iterator I = MI, BeforeI = I; 2621 bool AtStart = I == MBB.begin(); 2622 2623 if (!AtStart) 2624 --BeforeI; 2625 2626 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2627 Register Reg = CSI[i].getReg(); 2628 2629 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2630 continue; 2631 2632 // Restore of callee saved condition register field is handled during 2633 // epilogue insertion. 2634 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2635 continue; 2636 2637 if (Reg == PPC::CR2) { 2638 CR2Spilled = true; 2639 // The spill slot is associated only with CR2, which is the 2640 // first nonvolatile spilled. Save it here. 2641 CSIIndex = i; 2642 continue; 2643 } else if (Reg == PPC::CR3) { 2644 CR3Spilled = true; 2645 continue; 2646 } else if (Reg == PPC::CR4) { 2647 CR4Spilled = true; 2648 continue; 2649 } else { 2650 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2651 // least one CR register, restore all spilled CRs together. 2652 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2653 bool is31 = needsFP(*MF); 2654 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2655 CSIIndex); 2656 CR2Spilled = CR3Spilled = CR4Spilled = false; 2657 } 2658 2659 if (CSI[i].isSpilledToReg()) { 2660 DebugLoc DL; 2661 unsigned Dst = CSI[i].getDstReg(); 2662 2663 if (Restored[Dst]) 2664 continue; 2665 2666 if (VSRContainingGPRs[Dst].second != 0) { 2667 assert(Subtarget.hasP9Vector()); 2668 NumPEReloadVSR += 2; 2669 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD), 2670 VSRContainingGPRs[Dst].second) 2671 .addReg(Dst); 2672 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2673 VSRContainingGPRs[Dst].first) 2674 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2675 } else if (VSRContainingGPRs[Dst].second == 0) { 2676 assert(Subtarget.hasP8Vector()); 2677 ++NumPEReloadVSR; 2678 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2679 VSRContainingGPRs[Dst].first) 2680 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2681 } else { 2682 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2683 } 2684 2685 Restored.set(Dst); 2686 2687 } else { 2688 // Default behavior for non-CR saves. 2689 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2690 2691 // Functions without NoUnwind need to preserve the order of elements in 2692 // saved vector registers. 2693 if (Subtarget.needsSwapsForVSXMemOps() && 2694 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2695 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2696 TRI); 2697 else 2698 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI, 2699 Register()); 2700 2701 assert(I != MBB.begin() && 2702 "loadRegFromStackSlot didn't insert any code!"); 2703 } 2704 } 2705 2706 // Insert in reverse order. 2707 if (AtStart) 2708 I = MBB.begin(); 2709 else { 2710 I = BeforeI; 2711 ++I; 2712 } 2713 } 2714 2715 // If we haven't yet spilled the CRs, do so now. 2716 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2717 assert(Subtarget.is32BitELFABI() && 2718 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2719 bool is31 = needsFP(*MF); 2720 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2721 } 2722 2723 return true; 2724 } 2725 2726 uint64_t PPCFrameLowering::getTOCSaveOffset() const { 2727 return TOCSaveOffset; 2728 } 2729 2730 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const { 2731 return FramePointerSaveOffset; 2732 } 2733 2734 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const { 2735 return BasePointerSaveOffset; 2736 } 2737 2738 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2739 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2740 return false; 2741 return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI(); 2742 } 2743