xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PPC implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MCTargetDesc/PPCPredicates.h"
14 #include "PPCFrameLowering.h"
15 #include "PPCInstrBuilder.h"
16 #include "PPCInstrInfo.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterScavenging.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/Target/TargetOptions.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "framelowering"
33 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
34 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
35 STATISTIC(NumPrologProbed, "Number of prologues probed");
36 
37 static cl::opt<bool>
38 EnablePEVectorSpills("ppc-enable-pe-vector-spills",
39                      cl::desc("Enable spills in prologue to vector registers."),
40                      cl::init(false), cl::Hidden);
41 
42 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
43   if (STI.isAIXABI())
44     return STI.isPPC64() ? 16 : 8;
45   // SVR4 ABI:
46   return STI.isPPC64() ? 16 : 4;
47 }
48 
49 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
50   if (STI.isAIXABI())
51     return STI.isPPC64() ? 40 : 20;
52   return STI.isELFv2ABI() ? 24 : 40;
53 }
54 
55 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
56   // First slot in the general register save area.
57   return STI.isPPC64() ? -8U : -4U;
58 }
59 
60 static unsigned computeLinkageSize(const PPCSubtarget &STI) {
61   if (STI.isAIXABI() || STI.isPPC64())
62     return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
63 
64   // 32-bit SVR4 ABI:
65   return 8;
66 }
67 
68 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
69   // Third slot in the general purpose register save area.
70   if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
71     return -12U;
72 
73   // Second slot in the general purpose register save area.
74   return STI.isPPC64() ? -16U : -8U;
75 }
76 
77 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
78   return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
79 }
80 
81 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
82     : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
83                           STI.getPlatformStackAlignment(), 0),
84       Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
85       TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
86       FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
87       LinkageSize(computeLinkageSize(Subtarget)),
88       BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
89       CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
90 
91 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
92 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
93     unsigned &NumEntries) const {
94 
95 // Floating-point register save area offsets.
96 #define CALLEE_SAVED_FPRS \
97       {PPC::F31, -8},     \
98       {PPC::F30, -16},    \
99       {PPC::F29, -24},    \
100       {PPC::F28, -32},    \
101       {PPC::F27, -40},    \
102       {PPC::F26, -48},    \
103       {PPC::F25, -56},    \
104       {PPC::F24, -64},    \
105       {PPC::F23, -72},    \
106       {PPC::F22, -80},    \
107       {PPC::F21, -88},    \
108       {PPC::F20, -96},    \
109       {PPC::F19, -104},   \
110       {PPC::F18, -112},   \
111       {PPC::F17, -120},   \
112       {PPC::F16, -128},   \
113       {PPC::F15, -136},   \
114       {PPC::F14, -144}
115 
116 // 32-bit general purpose register save area offsets shared by ELF and
117 // AIX. AIX has an extra CSR with r13.
118 #define CALLEE_SAVED_GPRS32 \
119       {PPC::R31, -4},       \
120       {PPC::R30, -8},       \
121       {PPC::R29, -12},      \
122       {PPC::R28, -16},      \
123       {PPC::R27, -20},      \
124       {PPC::R26, -24},      \
125       {PPC::R25, -28},      \
126       {PPC::R24, -32},      \
127       {PPC::R23, -36},      \
128       {PPC::R22, -40},      \
129       {PPC::R21, -44},      \
130       {PPC::R20, -48},      \
131       {PPC::R19, -52},      \
132       {PPC::R18, -56},      \
133       {PPC::R17, -60},      \
134       {PPC::R16, -64},      \
135       {PPC::R15, -68},      \
136       {PPC::R14, -72}
137 
138 // 64-bit general purpose register save area offsets.
139 #define CALLEE_SAVED_GPRS64 \
140       {PPC::X31, -8},       \
141       {PPC::X30, -16},      \
142       {PPC::X29, -24},      \
143       {PPC::X28, -32},      \
144       {PPC::X27, -40},      \
145       {PPC::X26, -48},      \
146       {PPC::X25, -56},      \
147       {PPC::X24, -64},      \
148       {PPC::X23, -72},      \
149       {PPC::X22, -80},      \
150       {PPC::X21, -88},      \
151       {PPC::X20, -96},      \
152       {PPC::X19, -104},     \
153       {PPC::X18, -112},     \
154       {PPC::X17, -120},     \
155       {PPC::X16, -128},     \
156       {PPC::X15, -136},     \
157       {PPC::X14, -144}
158 
159 // Vector register save area offsets.
160 #define CALLEE_SAVED_VRS \
161       {PPC::V31, -16},   \
162       {PPC::V30, -32},   \
163       {PPC::V29, -48},   \
164       {PPC::V28, -64},   \
165       {PPC::V27, -80},   \
166       {PPC::V26, -96},   \
167       {PPC::V25, -112},  \
168       {PPC::V24, -128},  \
169       {PPC::V23, -144},  \
170       {PPC::V22, -160},  \
171       {PPC::V21, -176},  \
172       {PPC::V20, -192}
173 
174   // Note that the offsets here overlap, but this is fixed up in
175   // processFunctionBeforeFrameFinalized.
176 
177   static const SpillSlot ELFOffsets32[] = {
178       CALLEE_SAVED_FPRS,
179       CALLEE_SAVED_GPRS32,
180 
181       // CR save area offset.  We map each of the nonvolatile CR fields
182       // to the slot for CR2, which is the first of the nonvolatile CR
183       // fields to be assigned, so that we only allocate one save slot.
184       // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
185       {PPC::CR2, -4},
186 
187       // VRSAVE save area offset.
188       {PPC::VRSAVE, -4},
189 
190       CALLEE_SAVED_VRS,
191 
192       // SPE register save area (overlaps Vector save area).
193       {PPC::S31, -8},
194       {PPC::S30, -16},
195       {PPC::S29, -24},
196       {PPC::S28, -32},
197       {PPC::S27, -40},
198       {PPC::S26, -48},
199       {PPC::S25, -56},
200       {PPC::S24, -64},
201       {PPC::S23, -72},
202       {PPC::S22, -80},
203       {PPC::S21, -88},
204       {PPC::S20, -96},
205       {PPC::S19, -104},
206       {PPC::S18, -112},
207       {PPC::S17, -120},
208       {PPC::S16, -128},
209       {PPC::S15, -136},
210       {PPC::S14, -144}};
211 
212   static const SpillSlot ELFOffsets64[] = {
213       CALLEE_SAVED_FPRS,
214       CALLEE_SAVED_GPRS64,
215 
216       // VRSAVE save area offset.
217       {PPC::VRSAVE, -4},
218       CALLEE_SAVED_VRS
219   };
220 
221   static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
222                                            CALLEE_SAVED_GPRS32,
223                                            // Add AIX's extra CSR.
224                                            {PPC::R13, -76},
225                                            CALLEE_SAVED_VRS};
226 
227   static const SpillSlot AIXOffsets64[] = {
228       CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
229 
230   if (Subtarget.is64BitELFABI()) {
231     NumEntries = array_lengthof(ELFOffsets64);
232     return ELFOffsets64;
233   }
234 
235   if (Subtarget.is32BitELFABI()) {
236     NumEntries = array_lengthof(ELFOffsets32);
237     return ELFOffsets32;
238   }
239 
240   assert(Subtarget.isAIXABI() && "Unexpected ABI.");
241 
242   if (Subtarget.isPPC64()) {
243     NumEntries = array_lengthof(AIXOffsets64);
244     return AIXOffsets64;
245   }
246 
247   NumEntries = array_lengthof(AIXOffsets32);
248   return AIXOffsets32;
249 }
250 
251 static bool spillsCR(const MachineFunction &MF) {
252   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
253   return FuncInfo->isCRSpilled();
254 }
255 
256 static bool hasSpills(const MachineFunction &MF) {
257   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
258   return FuncInfo->hasSpills();
259 }
260 
261 static bool hasNonRISpills(const MachineFunction &MF) {
262   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
263   return FuncInfo->hasNonRISpills();
264 }
265 
266 /// MustSaveLR - Return true if this function requires that we save the LR
267 /// register onto the stack in the prolog and restore it in the epilog of the
268 /// function.
269 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
270   const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
271 
272   // We need a save/restore of LR if there is any def of LR (which is
273   // defined by calls, including the PIC setup sequence), or if there is
274   // some use of the LR stack slot (e.g. for builtin_return_address).
275   // (LR comes in 32 and 64 bit versions.)
276   MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
277   return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
278 }
279 
280 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
281 /// call frame size. Update the MachineFunction object with the stack size.
282 uint64_t
283 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
284                                                 bool UseEstimate) const {
285   unsigned NewMaxCallFrameSize = 0;
286   uint64_t FrameSize = determineFrameLayout(MF, UseEstimate,
287                                             &NewMaxCallFrameSize);
288   MF.getFrameInfo().setStackSize(FrameSize);
289   MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
290   return FrameSize;
291 }
292 
293 /// determineFrameLayout - Determine the size of the frame and maximum call
294 /// frame size.
295 uint64_t
296 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
297                                        bool UseEstimate,
298                                        unsigned *NewMaxCallFrameSize) const {
299   const MachineFrameInfo &MFI = MF.getFrameInfo();
300   const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
301 
302   // Get the number of bytes to allocate from the FrameInfo
303   uint64_t FrameSize =
304     UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
305 
306   // Get stack alignments. The frame must be aligned to the greatest of these:
307   Align TargetAlign = getStackAlign(); // alignment required per the ABI
308   Align MaxAlign = MFI.getMaxAlign();  // algmt required by data in frame
309   Align Alignment = std::max(TargetAlign, MaxAlign);
310 
311   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
312 
313   unsigned LR = RegInfo->getRARegister();
314   bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
315   bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
316                        !MFI.adjustsStack() &&       // No calls.
317                        !MustSaveLR(MF, LR) &&       // No need to save LR.
318                        !FI->mustSaveTOC() &&        // No need to save TOC.
319                        !RegInfo->hasBasePointer(MF); // No special alignment.
320 
321   // Note: for PPC32 SVR4ABI, we can still generate stackless
322   // code if all local vars are reg-allocated.
323   bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
324 
325   // Check whether we can skip adjusting the stack pointer (by using red zone)
326   if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
327     // No need for frame
328     return 0;
329   }
330 
331   // Get the maximum call frame size of all the calls.
332   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
333 
334   // Maximum call frame needs to be at least big enough for linkage area.
335   unsigned minCallFrameSize = getLinkageSize();
336   maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
337 
338   // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
339   // that allocations will be aligned.
340   if (MFI.hasVarSizedObjects())
341     maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
342 
343   // Update the new max call frame size if the caller passes in a valid pointer.
344   if (NewMaxCallFrameSize)
345     *NewMaxCallFrameSize = maxCallFrameSize;
346 
347   // Include call frame size in total.
348   FrameSize += maxCallFrameSize;
349 
350   // Make sure the frame is aligned.
351   FrameSize = alignTo(FrameSize, Alignment);
352 
353   return FrameSize;
354 }
355 
356 // hasFP - Return true if the specified function actually has a dedicated frame
357 // pointer register.
358 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
359   const MachineFrameInfo &MFI = MF.getFrameInfo();
360   // FIXME: This is pretty much broken by design: hasFP() might be called really
361   // early, before the stack layout was calculated and thus hasFP() might return
362   // true or false here depending on the time of call.
363   return (MFI.getStackSize()) && needsFP(MF);
364 }
365 
366 // needsFP - Return true if the specified function should have a dedicated frame
367 // pointer register.  This is true if the function has variable sized allocas or
368 // if frame pointer elimination is disabled.
369 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
370   const MachineFrameInfo &MFI = MF.getFrameInfo();
371 
372   // Naked functions have no stack frame pushed, so we don't have a frame
373   // pointer.
374   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
375     return false;
376 
377   return MF.getTarget().Options.DisableFramePointerElim(MF) ||
378          MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
379          MF.exposesReturnsTwice() ||
380          (MF.getTarget().Options.GuaranteedTailCallOpt &&
381           MF.getInfo<PPCFunctionInfo>()->hasFastCall());
382 }
383 
384 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
385   bool is31 = needsFP(MF);
386   unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
387   unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
388 
389   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
390   bool HasBP = RegInfo->hasBasePointer(MF);
391   unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
392   unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
393 
394   for (MachineBasicBlock &MBB : MF)
395     for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) {
396       --MBBI;
397       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
398         MachineOperand &MO = MBBI->getOperand(I);
399         if (!MO.isReg())
400           continue;
401 
402         switch (MO.getReg()) {
403         case PPC::FP:
404           MO.setReg(FPReg);
405           break;
406         case PPC::FP8:
407           MO.setReg(FP8Reg);
408           break;
409         case PPC::BP:
410           MO.setReg(BPReg);
411           break;
412         case PPC::BP8:
413           MO.setReg(BP8Reg);
414           break;
415 
416         }
417       }
418     }
419 }
420 
421 /*  This function will do the following:
422     - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
423       respectively (defaults recommended by the ABI) and return true
424     - If MBB is not an entry block, initialize the register scavenger and look
425       for available registers.
426     - If the defaults (R0/R12) are available, return true
427     - If TwoUniqueRegsRequired is set to true, it looks for two unique
428       registers. Otherwise, look for a single available register.
429       - If the required registers are found, set SR1 and SR2 and return true.
430       - If the required registers are not found, set SR2 or both SR1 and SR2 to
431         PPC::NoRegister and return false.
432 
433     Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
434     is not set, this function will attempt to find two different registers, but
435     still return true if only one register is available (and set SR1 == SR2).
436 */
437 bool
438 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
439                                       bool UseAtEnd,
440                                       bool TwoUniqueRegsRequired,
441                                       Register *SR1,
442                                       Register *SR2) const {
443   RegScavenger RS;
444   Register R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
445   Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
446 
447   // Set the defaults for the two scratch registers.
448   if (SR1)
449     *SR1 = R0;
450 
451   if (SR2) {
452     assert (SR1 && "Asking for the second scratch register but not the first?");
453     *SR2 = R12;
454   }
455 
456   // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
457   if ((UseAtEnd && MBB->isReturnBlock()) ||
458       (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
459     return true;
460 
461   RS.enterBasicBlock(*MBB);
462 
463   if (UseAtEnd && !MBB->empty()) {
464     // The scratch register will be used at the end of the block, so must
465     // consider all registers used within the block
466 
467     MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
468     // If no terminator, back iterator up to previous instruction.
469     if (MBBI == MBB->end())
470       MBBI = std::prev(MBBI);
471 
472     if (MBBI != MBB->begin())
473       RS.forward(MBBI);
474   }
475 
476   // If the two registers are available, we're all good.
477   // Note that we only return here if both R0 and R12 are available because
478   // although the function may not require two unique registers, it may benefit
479   // from having two so we should try to provide them.
480   if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
481     return true;
482 
483   // Get the list of callee-saved registers for the target.
484   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
485   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
486 
487   // Get all the available registers in the block.
488   BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
489                                      &PPC::GPRCRegClass);
490 
491   // We shouldn't use callee-saved registers as scratch registers as they may be
492   // available when looking for a candidate block for shrink wrapping but not
493   // available when the actual prologue/epilogue is being emitted because they
494   // were added as live-in to the prologue block by PrologueEpilogueInserter.
495   for (int i = 0; CSRegs[i]; ++i)
496     BV.reset(CSRegs[i]);
497 
498   // Set the first scratch register to the first available one.
499   if (SR1) {
500     int FirstScratchReg = BV.find_first();
501     *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
502   }
503 
504   // If there is another one available, set the second scratch register to that.
505   // Otherwise, set it to either PPC::NoRegister if this function requires two
506   // or to whatever SR1 is set to if this function doesn't require two.
507   if (SR2) {
508     int SecondScratchReg = BV.find_next(*SR1);
509     if (SecondScratchReg != -1)
510       *SR2 = SecondScratchReg;
511     else
512       *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
513   }
514 
515   // Now that we've done our best to provide both registers, double check
516   // whether we were unable to provide enough.
517   if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
518     return false;
519 
520   return true;
521 }
522 
523 // We need a scratch register for spilling LR and for spilling CR. By default,
524 // we use two scratch registers to hide latency. However, if only one scratch
525 // register is available, we can adjust for that by not overlapping the spill
526 // code. However, if we need to realign the stack (i.e. have a base pointer)
527 // and the stack frame is large, we need two scratch registers.
528 // Also, stack probe requires two scratch registers, one for old sp, one for
529 // large frame and large probe size.
530 bool
531 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
532   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
533   MachineFunction &MF = *(MBB->getParent());
534   bool HasBP = RegInfo->hasBasePointer(MF);
535   unsigned FrameSize = determineFrameLayout(MF);
536   int NegFrameSize = -FrameSize;
537   bool IsLargeFrame = !isInt<16>(NegFrameSize);
538   MachineFrameInfo &MFI = MF.getFrameInfo();
539   Align MaxAlign = MFI.getMaxAlign();
540   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
541   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
542 
543   return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
544          TLI.hasInlineStackProbe(MF);
545 }
546 
547 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
548   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
549 
550   return findScratchRegister(TmpMBB, false,
551                              twoUniqueScratchRegsRequired(TmpMBB));
552 }
553 
554 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
555   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
556 
557   return findScratchRegister(TmpMBB, true);
558 }
559 
560 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
561   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
562   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
563 
564   // Abort if there is no register info or function info.
565   if (!RegInfo || !FI)
566     return false;
567 
568   // Only move the stack update on ELFv2 ABI and PPC64.
569   if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
570     return false;
571 
572   // Check the frame size first and return false if it does not fit the
573   // requirements.
574   // We need a non-zero frame size as well as a frame that will fit in the red
575   // zone. This is because by moving the stack pointer update we are now storing
576   // to the red zone until the stack pointer is updated. If we get an interrupt
577   // inside the prologue but before the stack update we now have a number of
578   // stores to the red zone and those stores must all fit.
579   MachineFrameInfo &MFI = MF.getFrameInfo();
580   unsigned FrameSize = MFI.getStackSize();
581   if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
582     return false;
583 
584   // Frame pointers and base pointers complicate matters so don't do anything
585   // if we have them. For example having a frame pointer will sometimes require
586   // a copy of r1 into r31 and that makes keeping track of updates to r1 more
587   // difficult. Similar situation exists with setjmp.
588   if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
589     return false;
590 
591   // Calls to fast_cc functions use different rules for passing parameters on
592   // the stack from the ABI and using PIC base in the function imposes
593   // similar restrictions to using the base pointer. It is not generally safe
594   // to move the stack pointer update in these situations.
595   if (FI->hasFastCall() || FI->usesPICBase())
596     return false;
597 
598   // Finally we can move the stack update if we do not require register
599   // scavenging. Register scavenging can introduce more spills and so
600   // may make the frame size larger than we have computed.
601   return !RegInfo->requiresFrameIndexScavenging(MF);
602 }
603 
604 void PPCFrameLowering::emitPrologue(MachineFunction &MF,
605                                     MachineBasicBlock &MBB) const {
606   MachineBasicBlock::iterator MBBI = MBB.begin();
607   MachineFrameInfo &MFI = MF.getFrameInfo();
608   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
609   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
610   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
611 
612   MachineModuleInfo &MMI = MF.getMMI();
613   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
614   DebugLoc dl;
615   // AIX assembler does not support cfi directives.
616   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
617 
618   // Get processor type.
619   bool isPPC64 = Subtarget.isPPC64();
620   // Get the ABI.
621   bool isSVR4ABI = Subtarget.isSVR4ABI();
622   bool isELFv2ABI = Subtarget.isELFv2ABI();
623   assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
624 
625   // Work out frame sizes.
626   uint64_t FrameSize = determineFrameLayoutAndUpdate(MF);
627   int64_t NegFrameSize = -FrameSize;
628   if (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize))
629     llvm_unreachable("Unhandled stack size!");
630 
631   if (MFI.isFrameAddressTaken())
632     replaceFPWithRealFP(MF);
633 
634   // Check if the link register (LR) must be saved.
635   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
636   bool MustSaveLR = FI->mustSaveLR();
637   bool MustSaveTOC = FI->mustSaveTOC();
638   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
639   bool MustSaveCR = !MustSaveCRs.empty();
640   // Do we have a frame pointer and/or base pointer for this function?
641   bool HasFP = hasFP(MF);
642   bool HasBP = RegInfo->hasBasePointer(MF);
643   bool HasRedZone = isPPC64 || !isSVR4ABI;
644   bool HasROPProtect = Subtarget.hasROPProtect();
645   bool HasPrivileged = Subtarget.hasPrivileged();
646 
647   Register SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
648   Register BPReg = RegInfo->getBaseRegister(MF);
649   Register FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
650   Register LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
651   Register TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
652   Register ScratchReg;
653   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
654   //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
655   const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
656                                                 : PPC::MFLR );
657   const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
658                                                  : PPC::STW );
659   const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
660                                                      : PPC::STWU );
661   const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
662                                                         : PPC::STWUX);
663   const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8
664                                                           : PPC::LIS );
665   const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8
666                                                  : PPC::ORI );
667   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
668                                               : PPC::OR );
669   const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
670                                                             : PPC::SUBFC);
671   const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
672                                                                : PPC::SUBFIC);
673   const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
674                                                            : PPC::MFCR);
675   const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
676   const MCInstrDesc &HashST =
677       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8)
678                       : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST));
679 
680   // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
681   // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
682   // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
683   // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
684   assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
685          "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
686 
687   // Using the same bool variable as below to suppress compiler warnings.
688   bool SingleScratchReg = findScratchRegister(
689       &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
690   assert(SingleScratchReg &&
691          "Required number of registers not available in this block");
692 
693   SingleScratchReg = ScratchReg == TempReg;
694 
695   int64_t LROffset = getReturnSaveOffset();
696 
697   int64_t FPOffset = 0;
698   if (HasFP) {
699     MachineFrameInfo &MFI = MF.getFrameInfo();
700     int FPIndex = FI->getFramePointerSaveIndex();
701     assert(FPIndex && "No Frame Pointer Save Slot!");
702     FPOffset = MFI.getObjectOffset(FPIndex);
703   }
704 
705   int64_t BPOffset = 0;
706   if (HasBP) {
707     MachineFrameInfo &MFI = MF.getFrameInfo();
708     int BPIndex = FI->getBasePointerSaveIndex();
709     assert(BPIndex && "No Base Pointer Save Slot!");
710     BPOffset = MFI.getObjectOffset(BPIndex);
711   }
712 
713   int64_t PBPOffset = 0;
714   if (FI->usesPICBase()) {
715     MachineFrameInfo &MFI = MF.getFrameInfo();
716     int PBPIndex = FI->getPICBasePointerSaveIndex();
717     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
718     PBPOffset = MFI.getObjectOffset(PBPIndex);
719   }
720 
721   // Get stack alignments.
722   Align MaxAlign = MFI.getMaxAlign();
723   if (HasBP && MaxAlign > 1)
724     assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
725 
726   // Frames of 32KB & larger require special handling because they cannot be
727   // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
728   bool isLargeFrame = !isInt<16>(NegFrameSize);
729 
730   // Check if we can move the stack update instruction (stdu) down the prologue
731   // past the callee saves. Hopefully this will avoid the situation where the
732   // saves are waiting for the update on the store with update to complete.
733   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
734   bool MovingStackUpdateDown = false;
735 
736   // Check if we can move the stack update.
737   if (stackUpdateCanBeMoved(MF)) {
738     const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
739     for (CalleeSavedInfo CSI : Info) {
740       // If the callee saved register is spilled to a register instead of the
741       // stack then the spill no longer uses the stack pointer.
742       // This can lead to two consequences:
743       // 1) We no longer need to update the stack because the function does not
744       //    spill any callee saved registers to stack.
745       // 2) We have a situation where we still have to update the stack pointer
746       //    even though some registers are spilled to other registers. In
747       //    this case the current code moves the stack update to an incorrect
748       //    position.
749       // In either case we should abort moving the stack update operation.
750       if (CSI.isSpilledToReg()) {
751         StackUpdateLoc = MBBI;
752         MovingStackUpdateDown = false;
753         break;
754       }
755 
756       int FrIdx = CSI.getFrameIdx();
757       // If the frame index is not negative the callee saved info belongs to a
758       // stack object that is not a fixed stack object. We ignore non-fixed
759       // stack objects because we won't move the stack update pointer past them.
760       if (FrIdx >= 0)
761         continue;
762 
763       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
764         StackUpdateLoc++;
765         MovingStackUpdateDown = true;
766       } else {
767         // We need all of the Frame Indices to meet these conditions.
768         // If they do not, abort the whole operation.
769         StackUpdateLoc = MBBI;
770         MovingStackUpdateDown = false;
771         break;
772       }
773     }
774 
775     // If the operation was not aborted then update the object offset.
776     if (MovingStackUpdateDown) {
777       for (CalleeSavedInfo CSI : Info) {
778         int FrIdx = CSI.getFrameIdx();
779         if (FrIdx < 0)
780           MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
781       }
782     }
783   }
784 
785   // Where in the prologue we move the CR fields depends on how many scratch
786   // registers we have, and if we need to save the link register or not. This
787   // lambda is to avoid duplicating the logic in 2 places.
788   auto BuildMoveFromCR = [&]() {
789     if (isELFv2ABI && MustSaveCRs.size() == 1) {
790     // In the ELFv2 ABI, we are not required to save all CR fields.
791     // If only one CR field is clobbered, it is more efficient to use
792     // mfocrf to selectively save just that field, because mfocrf has short
793     // latency compares to mfcr.
794       assert(isPPC64 && "V2 ABI is 64-bit only.");
795       MachineInstrBuilder MIB =
796           BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
797       MIB.addReg(MustSaveCRs[0], RegState::Kill);
798     } else {
799       MachineInstrBuilder MIB =
800           BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
801       for (unsigned CRfield : MustSaveCRs)
802         MIB.addReg(CRfield, RegState::ImplicitKill);
803     }
804   };
805 
806   // If we need to spill the CR and the LR but we don't have two separate
807   // registers available, we must spill them one at a time
808   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
809     BuildMoveFromCR();
810     BuildMI(MBB, MBBI, dl, StoreWordInst)
811         .addReg(TempReg, getKillRegState(true))
812         .addImm(CRSaveOffset)
813         .addReg(SPReg);
814   }
815 
816   if (MustSaveLR)
817     BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
818 
819   if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
820     BuildMoveFromCR();
821 
822   if (HasRedZone) {
823     if (HasFP)
824       BuildMI(MBB, MBBI, dl, StoreInst)
825         .addReg(FPReg)
826         .addImm(FPOffset)
827         .addReg(SPReg);
828     if (FI->usesPICBase())
829       BuildMI(MBB, MBBI, dl, StoreInst)
830         .addReg(PPC::R30)
831         .addImm(PBPOffset)
832         .addReg(SPReg);
833     if (HasBP)
834       BuildMI(MBB, MBBI, dl, StoreInst)
835         .addReg(BPReg)
836         .addImm(BPOffset)
837         .addReg(SPReg);
838   }
839 
840   // Generate the instruction to store the LR. In the case where ROP protection
841   // is required the register holding the LR should not be killed as it will be
842   // used by the hash store instruction.
843   if (MustSaveLR) {
844     BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
845         .addReg(ScratchReg, getKillRegState(!HasROPProtect))
846         .addImm(LROffset)
847         .addReg(SPReg);
848 
849     // Add the ROP protection Hash Store instruction.
850     // NOTE: This is technically a violation of the ABI. The hash can be saved
851     // up to 512 bytes into the Protected Zone. This can be outside of the
852     // initial 288 byte volatile program storage region in the Protected Zone.
853     // However, this restriction will be removed in an upcoming revision of the
854     // ABI.
855     if (HasROPProtect) {
856       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
857       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
858       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
859              "ROP hash save offset out of range.");
860       assert(((ImmOffset & 0x7) == 0) &&
861              "ROP hash save offset must be 8 byte aligned.");
862       BuildMI(MBB, StackUpdateLoc, dl, HashST)
863           .addReg(ScratchReg, getKillRegState(true))
864           .addImm(ImmOffset)
865           .addReg(SPReg);
866     }
867   }
868 
869   if (MustSaveCR &&
870       !(SingleScratchReg && MustSaveLR)) {
871     assert(HasRedZone && "A red zone is always available on PPC64");
872     BuildMI(MBB, MBBI, dl, StoreWordInst)
873       .addReg(TempReg, getKillRegState(true))
874       .addImm(CRSaveOffset)
875       .addReg(SPReg);
876   }
877 
878   // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
879   if (!FrameSize)
880     return;
881 
882   // Adjust stack pointer: r1 += NegFrameSize.
883   // If there is a preferred stack alignment, align R1 now
884 
885   if (HasBP && HasRedZone) {
886     // Save a copy of r1 as the base pointer.
887     BuildMI(MBB, MBBI, dl, OrInst, BPReg)
888       .addReg(SPReg)
889       .addReg(SPReg);
890   }
891 
892   // Have we generated a STUX instruction to claim stack frame? If so,
893   // the negated frame size will be placed in ScratchReg.
894   bool HasSTUX = false;
895 
896   // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
897   // pointer is always stored at SP, we will get a free probe due to an essential
898   // STU(X) instruction.
899   if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
900     // To be consistent with other targets, a pseudo instruction is emitted and
901     // will be later expanded in `inlineStackProbe`.
902     BuildMI(MBB, MBBI, dl,
903             TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
904                             : PPC::PROBED_STACKALLOC_32))
905         .addDef(TempReg)
906         .addDef(ScratchReg) // ScratchReg stores the old sp.
907         .addImm(NegFrameSize);
908     // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
909     // update the ScratchReg to meet the assumption that ScratchReg contains
910     // the NegFrameSize. This solution is rather tricky.
911     if (!HasRedZone) {
912       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
913           .addReg(ScratchReg)
914           .addReg(SPReg);
915       HasSTUX = true;
916     }
917   } else {
918     // This condition must be kept in sync with canUseAsPrologue.
919     if (HasBP && MaxAlign > 1) {
920       if (isPPC64)
921         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
922             .addReg(SPReg)
923             .addImm(0)
924             .addImm(64 - Log2(MaxAlign));
925       else // PPC32...
926         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
927             .addReg(SPReg)
928             .addImm(0)
929             .addImm(32 - Log2(MaxAlign))
930             .addImm(31);
931       if (!isLargeFrame) {
932         BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
933             .addReg(ScratchReg, RegState::Kill)
934             .addImm(NegFrameSize);
935       } else {
936         assert(!SingleScratchReg && "Only a single scratch reg available");
937         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg)
938             .addImm(NegFrameSize >> 16);
939         BuildMI(MBB, MBBI, dl, OrImmInst, TempReg)
940             .addReg(TempReg, RegState::Kill)
941             .addImm(NegFrameSize & 0xFFFF);
942         BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
943             .addReg(ScratchReg, RegState::Kill)
944             .addReg(TempReg, RegState::Kill);
945       }
946 
947       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
948           .addReg(SPReg, RegState::Kill)
949           .addReg(SPReg)
950           .addReg(ScratchReg);
951       HasSTUX = true;
952 
953     } else if (!isLargeFrame) {
954       BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
955           .addReg(SPReg)
956           .addImm(NegFrameSize)
957           .addReg(SPReg);
958 
959     } else {
960       BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
961           .addImm(NegFrameSize >> 16);
962       BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
963           .addReg(ScratchReg, RegState::Kill)
964           .addImm(NegFrameSize & 0xFFFF);
965       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
966           .addReg(SPReg, RegState::Kill)
967           .addReg(SPReg)
968           .addReg(ScratchReg);
969       HasSTUX = true;
970     }
971   }
972 
973   // Save the TOC register after the stack pointer update if a prologue TOC
974   // save is required for the function.
975   if (MustSaveTOC) {
976     assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
977     BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
978       .addReg(TOCReg, getKillRegState(true))
979       .addImm(TOCSaveOffset)
980       .addReg(SPReg);
981   }
982 
983   if (!HasRedZone) {
984     assert(!isPPC64 && "A red zone is always available on PPC64");
985     if (HasSTUX) {
986       // The negated frame size is in ScratchReg, and the SPReg has been
987       // decremented by the frame size: SPReg = old SPReg + ScratchReg.
988       // Since FPOffset, PBPOffset, etc. are relative to the beginning of
989       // the stack frame (i.e. the old SP), ideally, we would put the old
990       // SP into a register and use it as the base for the stores. The
991       // problem is that the only available register may be ScratchReg,
992       // which could be R0, and R0 cannot be used as a base address.
993 
994       // First, set ScratchReg to the old SP. This may need to be modified
995       // later.
996       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
997         .addReg(ScratchReg, RegState::Kill)
998         .addReg(SPReg);
999 
1000       if (ScratchReg == PPC::R0) {
1001         // R0 cannot be used as a base register, but it can be used as an
1002         // index in a store-indexed.
1003         int LastOffset = 0;
1004         if (HasFP)  {
1005           // R0 += (FPOffset-LastOffset).
1006           // Need addic, since addi treats R0 as 0.
1007           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1008             .addReg(ScratchReg)
1009             .addImm(FPOffset-LastOffset);
1010           LastOffset = FPOffset;
1011           // Store FP into *R0.
1012           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1013             .addReg(FPReg, RegState::Kill)  // Save FP.
1014             .addReg(PPC::ZERO)
1015             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1016         }
1017         if (FI->usesPICBase()) {
1018           // R0 += (PBPOffset-LastOffset).
1019           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1020             .addReg(ScratchReg)
1021             .addImm(PBPOffset-LastOffset);
1022           LastOffset = PBPOffset;
1023           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1024             .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
1025             .addReg(PPC::ZERO)
1026             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1027         }
1028         if (HasBP) {
1029           // R0 += (BPOffset-LastOffset).
1030           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1031             .addReg(ScratchReg)
1032             .addImm(BPOffset-LastOffset);
1033           LastOffset = BPOffset;
1034           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1035             .addReg(BPReg, RegState::Kill)  // Save BP.
1036             .addReg(PPC::ZERO)
1037             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1038           // BP = R0-LastOffset
1039           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
1040             .addReg(ScratchReg, RegState::Kill)
1041             .addImm(-LastOffset);
1042         }
1043       } else {
1044         // ScratchReg is not R0, so use it as the base register. It is
1045         // already set to the old SP, so we can use the offsets directly.
1046 
1047         // Now that the stack frame has been allocated, save all the necessary
1048         // registers using ScratchReg as the base address.
1049         if (HasFP)
1050           BuildMI(MBB, MBBI, dl, StoreInst)
1051             .addReg(FPReg)
1052             .addImm(FPOffset)
1053             .addReg(ScratchReg);
1054         if (FI->usesPICBase())
1055           BuildMI(MBB, MBBI, dl, StoreInst)
1056             .addReg(PPC::R30)
1057             .addImm(PBPOffset)
1058             .addReg(ScratchReg);
1059         if (HasBP) {
1060           BuildMI(MBB, MBBI, dl, StoreInst)
1061             .addReg(BPReg)
1062             .addImm(BPOffset)
1063             .addReg(ScratchReg);
1064           BuildMI(MBB, MBBI, dl, OrInst, BPReg)
1065             .addReg(ScratchReg, RegState::Kill)
1066             .addReg(ScratchReg);
1067         }
1068       }
1069     } else {
1070       // The frame size is a known 16-bit constant (fitting in the immediate
1071       // field of STWU). To be here we have to be compiling for PPC32.
1072       // Since the SPReg has been decreased by FrameSize, add it back to each
1073       // offset.
1074       if (HasFP)
1075         BuildMI(MBB, MBBI, dl, StoreInst)
1076           .addReg(FPReg)
1077           .addImm(FrameSize + FPOffset)
1078           .addReg(SPReg);
1079       if (FI->usesPICBase())
1080         BuildMI(MBB, MBBI, dl, StoreInst)
1081           .addReg(PPC::R30)
1082           .addImm(FrameSize + PBPOffset)
1083           .addReg(SPReg);
1084       if (HasBP) {
1085         BuildMI(MBB, MBBI, dl, StoreInst)
1086           .addReg(BPReg)
1087           .addImm(FrameSize + BPOffset)
1088           .addReg(SPReg);
1089         BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
1090           .addReg(SPReg)
1091           .addImm(FrameSize);
1092       }
1093     }
1094   }
1095 
1096   // Add Call Frame Information for the instructions we generated above.
1097   if (needsCFI) {
1098     unsigned CFIIndex;
1099 
1100     if (HasBP) {
1101       // Define CFA in terms of BP. Do this in preference to using FP/SP,
1102       // because if the stack needed aligning then CFA won't be at a fixed
1103       // offset from FP/SP.
1104       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1105       CFIIndex = MF.addFrameInst(
1106           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1107     } else {
1108       // Adjust the definition of CFA to account for the change in SP.
1109       assert(NegFrameSize);
1110       CFIIndex = MF.addFrameInst(
1111           MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
1112     }
1113     BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1114         .addCFIIndex(CFIIndex);
1115 
1116     if (HasFP) {
1117       // Describe where FP was saved, at a fixed offset from CFA.
1118       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1119       CFIIndex = MF.addFrameInst(
1120           MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
1121       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1122           .addCFIIndex(CFIIndex);
1123     }
1124 
1125     if (FI->usesPICBase()) {
1126       // Describe where FP was saved, at a fixed offset from CFA.
1127       unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
1128       CFIIndex = MF.addFrameInst(
1129           MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
1130       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1131           .addCFIIndex(CFIIndex);
1132     }
1133 
1134     if (HasBP) {
1135       // Describe where BP was saved, at a fixed offset from CFA.
1136       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1137       CFIIndex = MF.addFrameInst(
1138           MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
1139       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1140           .addCFIIndex(CFIIndex);
1141     }
1142 
1143     if (MustSaveLR) {
1144       // Describe where LR was saved, at a fixed offset from CFA.
1145       unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
1146       CFIIndex = MF.addFrameInst(
1147           MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
1148       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1149           .addCFIIndex(CFIIndex);
1150     }
1151   }
1152 
1153   // If there is a frame pointer, copy R1 into R31
1154   if (HasFP) {
1155     BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1156       .addReg(SPReg)
1157       .addReg(SPReg);
1158 
1159     if (!HasBP && needsCFI) {
1160       // Change the definition of CFA from SP+offset to FP+offset, because SP
1161       // will change at every alloca.
1162       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1163       unsigned CFIIndex = MF.addFrameInst(
1164           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1165 
1166       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1167           .addCFIIndex(CFIIndex);
1168     }
1169   }
1170 
1171   if (needsCFI) {
1172     // Describe where callee saved registers were saved, at fixed offsets from
1173     // CFA.
1174     const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1175     for (const CalleeSavedInfo &I : CSI) {
1176       Register Reg = I.getReg();
1177       if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
1178 
1179       // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1180       // subregisters of CR2. We just need to emit a move of CR2.
1181       if (PPC::CRBITRCRegClass.contains(Reg))
1182         continue;
1183 
1184       if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
1185         continue;
1186 
1187       // For SVR4, don't emit a move for the CR spill slot if we haven't
1188       // spilled CRs.
1189       if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
1190           && !MustSaveCR)
1191         continue;
1192 
1193       // For 64-bit SVR4 when we have spilled CRs, the spill location
1194       // is SP+8, not a frame-relative slot.
1195       if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
1196         // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1197         // the whole CR word.  In the ELFv2 ABI, every CR that was
1198         // actually saved gets its own CFI record.
1199         Register CRReg = isELFv2ABI? Reg : PPC::CR2;
1200         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1201             nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
1202         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1203             .addCFIIndex(CFIIndex);
1204         continue;
1205       }
1206 
1207       if (I.isSpilledToReg()) {
1208         unsigned SpilledReg = I.getDstReg();
1209         unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
1210             nullptr, MRI->getDwarfRegNum(Reg, true),
1211             MRI->getDwarfRegNum(SpilledReg, true)));
1212         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1213           .addCFIIndex(CFIRegister);
1214       } else {
1215         int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
1216         // We have changed the object offset above but we do not want to change
1217         // the actual offsets in the CFI instruction so we have to undo the
1218         // offset change here.
1219         if (MovingStackUpdateDown)
1220           Offset -= NegFrameSize;
1221 
1222         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1223             nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
1224         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1225             .addCFIIndex(CFIIndex);
1226       }
1227     }
1228   }
1229 }
1230 
1231 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
1232                                         MachineBasicBlock &PrologMBB) const {
1233   bool isPPC64 = Subtarget.isPPC64();
1234   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
1235   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1236   MachineFrameInfo &MFI = MF.getFrameInfo();
1237   MachineModuleInfo &MMI = MF.getMMI();
1238   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
1239   // AIX assembler does not support cfi directives.
1240   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
1241   auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
1242     int Opc = MI.getOpcode();
1243     return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
1244   });
1245   if (StackAllocMIPos == PrologMBB.end())
1246     return;
1247   const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
1248   MachineBasicBlock *CurrentMBB = &PrologMBB;
1249   DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
1250   MachineInstr &MI = *StackAllocMIPos;
1251   int64_t NegFrameSize = MI.getOperand(2).getImm();
1252   unsigned ProbeSize = TLI.getStackProbeSize(MF);
1253   int64_t NegProbeSize = -(int64_t)ProbeSize;
1254   assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
1255   int64_t NumBlocks = NegFrameSize / NegProbeSize;
1256   int64_t NegResidualSize = NegFrameSize % NegProbeSize;
1257   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1258   Register ScratchReg = MI.getOperand(0).getReg();
1259   Register FPReg = MI.getOperand(1).getReg();
1260   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1261   bool HasBP = RegInfo->hasBasePointer(MF);
1262   Register BPReg = RegInfo->getBaseRegister(MF);
1263   Align MaxAlign = MFI.getMaxAlign();
1264   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1265   const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
1266   // Subroutines to generate .cfi_* directives.
1267   auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
1268                             MachineBasicBlock::iterator MBBI, Register Reg) {
1269     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1270     unsigned CFIIndex = MF.addFrameInst(
1271         MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
1272     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1273         .addCFIIndex(CFIIndex);
1274   };
1275   auto buildDefCFA = [&](MachineBasicBlock &MBB,
1276                          MachineBasicBlock::iterator MBBI, Register Reg,
1277                          int Offset) {
1278     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1279     unsigned CFIIndex = MBB.getParent()->addFrameInst(
1280         MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
1281     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1282         .addCFIIndex(CFIIndex);
1283   };
1284   // Subroutine to determine if we can use the Imm as part of d-form.
1285   auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
1286   // Subroutine to materialize the Imm into TempReg.
1287   auto MaterializeImm = [&](MachineBasicBlock &MBB,
1288                             MachineBasicBlock::iterator MBBI, int64_t Imm,
1289                             Register &TempReg) {
1290     assert(isInt<32>(Imm) && "Unhandled imm");
1291     if (isInt<16>(Imm))
1292       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
1293           .addImm(Imm);
1294     else {
1295       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
1296           .addImm(Imm >> 16);
1297       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
1298           .addReg(TempReg)
1299           .addImm(Imm & 0xFFFF);
1300     }
1301   };
1302   // Subroutine to store frame pointer and decrease stack pointer by probe size.
1303   auto allocateAndProbe = [&](MachineBasicBlock &MBB,
1304                               MachineBasicBlock::iterator MBBI, int64_t NegSize,
1305                               Register NegSizeReg, bool UseDForm,
1306                               Register StoreReg) {
1307     if (UseDForm)
1308       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
1309           .addReg(StoreReg)
1310           .addImm(NegSize)
1311           .addReg(SPReg);
1312     else
1313       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
1314           .addReg(StoreReg)
1315           .addReg(SPReg)
1316           .addReg(NegSizeReg);
1317   };
1318   // Used to probe stack when realignment is required.
1319   // Note that, according to ABI's requirement, *sp must always equals the
1320   // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
1321   // Following is pseudo code:
1322   // final_sp = (sp & align) + negframesize;
1323   // neg_gap = final_sp - sp;
1324   // while (neg_gap < negprobesize) {
1325   //   stdu fp, negprobesize(sp);
1326   //   neg_gap -= negprobesize;
1327   // }
1328   // stdux fp, sp, neg_gap
1329   //
1330   // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
1331   // before probe code, we don't need to save it, so we get one additional reg
1332   // that can be used to materialize the probeside if needed to use xform.
1333   // Otherwise, we can NOT materialize probeside, so we can only use Dform for
1334   // now.
1335   //
1336   // The allocations are:
1337   // if (HasBP && HasRedzone) {
1338   //   r0: materialize the probesize if needed so that we can use xform.
1339   //   r12: `neg_gap`
1340   // } else {
1341   //   r0: back-chain pointer
1342   //   r12: `neg_gap`.
1343   // }
1344   auto probeRealignedStack = [&](MachineBasicBlock &MBB,
1345                                  MachineBasicBlock::iterator MBBI,
1346                                  Register ScratchReg, Register TempReg) {
1347     assert(HasBP && "The function is supposed to have base pointer when its "
1348                     "stack is realigned.");
1349     assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
1350 
1351     // FIXME: We can eliminate this limitation if we get more infomation about
1352     // which part of redzone are already used. Used redzone can be treated
1353     // probed. But there might be `holes' in redzone probed, this could
1354     // complicate the implementation.
1355     assert(ProbeSize >= Subtarget.getRedZoneSize() &&
1356            "Probe size should be larger or equal to the size of red-zone so "
1357            "that red-zone is not clobbered by probing.");
1358 
1359     Register &FinalStackPtr = TempReg;
1360     // FIXME: We only support NegProbeSize materializable by DForm currently.
1361     // When HasBP && HasRedzone, we can use xform if we have an additional idle
1362     // register.
1363     NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
1364     assert(isInt<16>(NegProbeSize) &&
1365            "NegProbeSize should be materializable by DForm");
1366     Register CRReg = PPC::CR0;
1367     // Layout of output assembly kinda like:
1368     // bb.0:
1369     //   ...
1370     //   sub $scratchreg, $finalsp, r1
1371     //   cmpdi $scratchreg, <negprobesize>
1372     //   bge bb.2
1373     // bb.1:
1374     //   stdu <backchain>, <negprobesize>(r1)
1375     //   sub $scratchreg, $scratchreg, negprobesize
1376     //   cmpdi $scratchreg, <negprobesize>
1377     //   blt bb.1
1378     // bb.2:
1379     //   stdux <backchain>, r1, $scratchreg
1380     MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
1381     MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
1382     MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
1383     MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1384     MF.insert(MBBInsertPoint, ProbeExitMBB);
1385     // bb.2
1386     {
1387       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1388       allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
1389                        BackChainPointer);
1390       if (HasRedZone)
1391         // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
1392         // to TempReg to satisfy it.
1393         BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
1394             .addReg(BPReg)
1395             .addReg(BPReg);
1396       ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
1397       ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
1398     }
1399     // bb.0
1400     {
1401       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
1402           .addReg(SPReg)
1403           .addReg(FinalStackPtr);
1404       if (!HasRedZone)
1405         BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
1406       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
1407           .addReg(ScratchReg)
1408           .addImm(NegProbeSize);
1409       BuildMI(&MBB, DL, TII.get(PPC::BCC))
1410           .addImm(PPC::PRED_GE)
1411           .addReg(CRReg)
1412           .addMBB(ProbeExitMBB);
1413       MBB.addSuccessor(ProbeLoopBodyMBB);
1414       MBB.addSuccessor(ProbeExitMBB);
1415     }
1416     // bb.1
1417     {
1418       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1419       allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
1420                        0, true /*UseDForm*/, BackChainPointer);
1421       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
1422               ScratchReg)
1423           .addReg(ScratchReg)
1424           .addImm(-NegProbeSize);
1425       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
1426               CRReg)
1427           .addReg(ScratchReg)
1428           .addImm(NegProbeSize);
1429       BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
1430           .addImm(PPC::PRED_LT)
1431           .addReg(CRReg)
1432           .addMBB(ProbeLoopBodyMBB);
1433       ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
1434       ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
1435     }
1436     // Update liveins.
1437     recomputeLiveIns(*ProbeLoopBodyMBB);
1438     recomputeLiveIns(*ProbeExitMBB);
1439     return ProbeExitMBB;
1440   };
1441   // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1442   // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
1443   // the offset subtracted from SP is determined by SP's runtime value.
1444   if (HasBP && MaxAlign > 1) {
1445     // Calculate final stack pointer.
1446     if (isPPC64)
1447       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
1448           .addReg(SPReg)
1449           .addImm(0)
1450           .addImm(64 - Log2(MaxAlign));
1451     else
1452       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
1453           .addReg(SPReg)
1454           .addImm(0)
1455           .addImm(32 - Log2(MaxAlign))
1456           .addImm(31);
1457     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
1458             FPReg)
1459         .addReg(ScratchReg)
1460         .addReg(SPReg);
1461     MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
1462     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
1463             FPReg)
1464         .addReg(ScratchReg)
1465         .addReg(FPReg);
1466     CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
1467     if (needsCFI)
1468       buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
1469   } else {
1470     // Initialize current frame pointer.
1471     BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
1472     // Use FPReg to calculate CFA.
1473     if (needsCFI)
1474       buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1475     // Probe residual part.
1476     if (NegResidualSize) {
1477       bool ResidualUseDForm = CanUseDForm(NegResidualSize);
1478       if (!ResidualUseDForm)
1479         MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
1480       allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
1481                        ResidualUseDForm, FPReg);
1482     }
1483     bool UseDForm = CanUseDForm(NegProbeSize);
1484     // If number of blocks is small, just probe them directly.
1485     if (NumBlocks < 3) {
1486       if (!UseDForm)
1487         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1488       for (int i = 0; i < NumBlocks; ++i)
1489         allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
1490                          FPReg);
1491       if (needsCFI) {
1492         // Restore using SPReg to calculate CFA.
1493         buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
1494       }
1495     } else {
1496       // Since CTR is a volatile register and current shrinkwrap implementation
1497       // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1498       // CTR loop to probe.
1499       // Calculate trip count and stores it in CTRReg.
1500       MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
1501       BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
1502           .addReg(ScratchReg, RegState::Kill);
1503       if (!UseDForm)
1504         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1505       // Create MBBs of the loop.
1506       MachineFunction::iterator MBBInsertPoint =
1507           std::next(CurrentMBB->getIterator());
1508       MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
1509       MF.insert(MBBInsertPoint, LoopMBB);
1510       MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1511       MF.insert(MBBInsertPoint, ExitMBB);
1512       // Synthesize the loop body.
1513       allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
1514                        UseDForm, FPReg);
1515       BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
1516           .addMBB(LoopMBB);
1517       LoopMBB->addSuccessor(ExitMBB);
1518       LoopMBB->addSuccessor(LoopMBB);
1519       // Synthesize the exit MBB.
1520       ExitMBB->splice(ExitMBB->end(), CurrentMBB,
1521                       std::next(MachineBasicBlock::iterator(MI)),
1522                       CurrentMBB->end());
1523       ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
1524       CurrentMBB->addSuccessor(LoopMBB);
1525       if (needsCFI) {
1526         // Restore using SPReg to calculate CFA.
1527         buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
1528       }
1529       // Update liveins.
1530       recomputeLiveIns(*LoopMBB);
1531       recomputeLiveIns(*ExitMBB);
1532     }
1533   }
1534   ++NumPrologProbed;
1535   MI.eraseFromParent();
1536 }
1537 
1538 void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
1539                                     MachineBasicBlock &MBB) const {
1540   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1541   DebugLoc dl;
1542 
1543   if (MBBI != MBB.end())
1544     dl = MBBI->getDebugLoc();
1545 
1546   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1547   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1548 
1549   // Get alignment info so we know how to restore the SP.
1550   const MachineFrameInfo &MFI = MF.getFrameInfo();
1551 
1552   // Get the number of bytes allocated from the FrameInfo.
1553   int64_t FrameSize = MFI.getStackSize();
1554 
1555   // Get processor type.
1556   bool isPPC64 = Subtarget.isPPC64();
1557 
1558   // Check if the link register (LR) has been saved.
1559   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1560   bool MustSaveLR = FI->mustSaveLR();
1561   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
1562   bool MustSaveCR = !MustSaveCRs.empty();
1563   // Do we have a frame pointer and/or base pointer for this function?
1564   bool HasFP = hasFP(MF);
1565   bool HasBP = RegInfo->hasBasePointer(MF);
1566   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1567   bool HasROPProtect = Subtarget.hasROPProtect();
1568   bool HasPrivileged = Subtarget.hasPrivileged();
1569 
1570   Register SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
1571   Register BPReg = RegInfo->getBaseRegister(MF);
1572   Register FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
1573   Register ScratchReg;
1574   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
1575   const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
1576                                                  : PPC::MTLR );
1577   const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
1578                                                  : PPC::LWZ );
1579   const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
1580                                                            : PPC::LIS );
1581   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
1582                                               : PPC::OR );
1583   const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
1584                                                   : PPC::ORI );
1585   const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
1586                                                    : PPC::ADDI );
1587   const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
1588                                                 : PPC::ADD4 );
1589   const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
1590                                                      : PPC::LWZ);
1591   const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
1592                                                      : PPC::MTOCRF);
1593   const MCInstrDesc &HashChk =
1594       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8)
1595                       : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK));
1596   int64_t LROffset = getReturnSaveOffset();
1597 
1598   int64_t FPOffset = 0;
1599 
1600   // Using the same bool variable as below to suppress compiler warnings.
1601   bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
1602                                               &TempReg);
1603   assert(SingleScratchReg &&
1604          "Could not find an available scratch register");
1605 
1606   SingleScratchReg = ScratchReg == TempReg;
1607 
1608   if (HasFP) {
1609     int FPIndex = FI->getFramePointerSaveIndex();
1610     assert(FPIndex && "No Frame Pointer Save Slot!");
1611     FPOffset = MFI.getObjectOffset(FPIndex);
1612   }
1613 
1614   int64_t BPOffset = 0;
1615   if (HasBP) {
1616       int BPIndex = FI->getBasePointerSaveIndex();
1617       assert(BPIndex && "No Base Pointer Save Slot!");
1618       BPOffset = MFI.getObjectOffset(BPIndex);
1619   }
1620 
1621   int64_t PBPOffset = 0;
1622   if (FI->usesPICBase()) {
1623     int PBPIndex = FI->getPICBasePointerSaveIndex();
1624     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
1625     PBPOffset = MFI.getObjectOffset(PBPIndex);
1626   }
1627 
1628   bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
1629 
1630   if (IsReturnBlock) {
1631     unsigned RetOpcode = MBBI->getOpcode();
1632     bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
1633                       RetOpcode == PPC::TCRETURNdi ||
1634                       RetOpcode == PPC::TCRETURNai ||
1635                       RetOpcode == PPC::TCRETURNri8 ||
1636                       RetOpcode == PPC::TCRETURNdi8 ||
1637                       RetOpcode == PPC::TCRETURNai8;
1638 
1639     if (UsesTCRet) {
1640       int MaxTCRetDelta = FI->getTailCallSPDelta();
1641       MachineOperand &StackAdjust = MBBI->getOperand(1);
1642       assert(StackAdjust.isImm() && "Expecting immediate value.");
1643       // Adjust stack pointer.
1644       int StackAdj = StackAdjust.getImm();
1645       int Delta = StackAdj - MaxTCRetDelta;
1646       assert((Delta >= 0) && "Delta must be positive");
1647       if (MaxTCRetDelta>0)
1648         FrameSize += (StackAdj +Delta);
1649       else
1650         FrameSize += StackAdj;
1651     }
1652   }
1653 
1654   // Frames of 32KB & larger require special handling because they cannot be
1655   // indexed into with a simple LD/LWZ immediate offset operand.
1656   bool isLargeFrame = !isInt<16>(FrameSize);
1657 
1658   // On targets without red zone, the SP needs to be restored last, so that
1659   // all live contents of the stack frame are upwards of the SP. This means
1660   // that we cannot restore SP just now, since there may be more registers
1661   // to restore from the stack frame (e.g. R31). If the frame size is not
1662   // a simple immediate value, we will need a spare register to hold the
1663   // restored SP. If the frame size is known and small, we can simply adjust
1664   // the offsets of the registers to be restored, and still use SP to restore
1665   // them. In such case, the final update of SP will be to add the frame
1666   // size to it.
1667   // To simplify the code, set RBReg to the base register used to restore
1668   // values from the stack, and set SPAdd to the value that needs to be added
1669   // to the SP at the end. The default values are as if red zone was present.
1670   unsigned RBReg = SPReg;
1671   unsigned SPAdd = 0;
1672 
1673   // Check if we can move the stack update instruction up the epilogue
1674   // past the callee saves. This will allow the move to LR instruction
1675   // to be executed before the restores of the callee saves which means
1676   // that the callee saves can hide the latency from the MTLR instrcution.
1677   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
1678   if (stackUpdateCanBeMoved(MF)) {
1679     const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
1680     for (CalleeSavedInfo CSI : Info) {
1681       // If the callee saved register is spilled to another register abort the
1682       // stack update movement.
1683       if (CSI.isSpilledToReg()) {
1684         StackUpdateLoc = MBBI;
1685         break;
1686       }
1687       int FrIdx = CSI.getFrameIdx();
1688       // If the frame index is not negative the callee saved info belongs to a
1689       // stack object that is not a fixed stack object. We ignore non-fixed
1690       // stack objects because we won't move the update of the stack pointer
1691       // past them.
1692       if (FrIdx >= 0)
1693         continue;
1694 
1695       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
1696         StackUpdateLoc--;
1697       else {
1698         // Abort the operation as we can't update all CSR restores.
1699         StackUpdateLoc = MBBI;
1700         break;
1701       }
1702     }
1703   }
1704 
1705   if (FrameSize) {
1706     // In the prologue, the loaded (or persistent) stack pointer value is
1707     // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1708     // zone add this offset back now.
1709 
1710     // If the function has a base pointer, the stack pointer has been copied
1711     // to it so we can restore it by copying in the other direction.
1712     if (HasRedZone && HasBP) {
1713       BuildMI(MBB, MBBI, dl, OrInst, RBReg).
1714         addReg(BPReg).
1715         addReg(BPReg);
1716     }
1717     // If this function contained a fastcc call and GuaranteedTailCallOpt is
1718     // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1719     // call which invalidates the stack pointer value in SP(0). So we use the
1720     // value of R31 in this case. Similar situation exists with setjmp.
1721     else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
1722       assert(HasFP && "Expecting a valid frame pointer.");
1723       if (!HasRedZone)
1724         RBReg = FPReg;
1725       if (!isLargeFrame) {
1726         BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
1727           .addReg(FPReg).addImm(FrameSize);
1728       } else {
1729         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1730           .addImm(FrameSize >> 16);
1731         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1732           .addReg(ScratchReg, RegState::Kill)
1733           .addImm(FrameSize & 0xFFFF);
1734         BuildMI(MBB, MBBI, dl, AddInst)
1735           .addReg(RBReg)
1736           .addReg(FPReg)
1737           .addReg(ScratchReg);
1738       }
1739     } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
1740       if (HasRedZone) {
1741         BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
1742           .addReg(SPReg)
1743           .addImm(FrameSize);
1744       } else {
1745         // Make sure that adding FrameSize will not overflow the max offset
1746         // size.
1747         assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
1748                "Local offsets should be negative");
1749         SPAdd = FrameSize;
1750         FPOffset += FrameSize;
1751         BPOffset += FrameSize;
1752         PBPOffset += FrameSize;
1753       }
1754     } else {
1755       // We don't want to use ScratchReg as a base register, because it
1756       // could happen to be R0. Use FP instead, but make sure to preserve it.
1757       if (!HasRedZone) {
1758         // If FP is not saved, copy it to ScratchReg.
1759         if (!HasFP)
1760           BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
1761             .addReg(FPReg)
1762             .addReg(FPReg);
1763         RBReg = FPReg;
1764       }
1765       BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
1766         .addImm(0)
1767         .addReg(SPReg);
1768     }
1769   }
1770   assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
1771   // If there is no red zone, ScratchReg may be needed for holding a useful
1772   // value (although not the base register). Make sure it is not overwritten
1773   // too early.
1774 
1775   // If we need to restore both the LR and the CR and we only have one
1776   // available scratch register, we must do them one at a time.
1777   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
1778     // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1779     // is live here.
1780     assert(HasRedZone && "Expecting red zone");
1781     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1782       .addImm(CRSaveOffset)
1783       .addReg(SPReg);
1784     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1785       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1786         .addReg(TempReg, getKillRegState(i == e-1));
1787   }
1788 
1789   // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1790   // LR is stored in the caller's stack frame. ScratchReg will be needed
1791   // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1792   // a base register anyway, because it may happen to be R0.
1793   bool LoadedLR = false;
1794   if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
1795     BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
1796       .addImm(LROffset+SPAdd)
1797       .addReg(RBReg);
1798     LoadedLR = true;
1799   }
1800 
1801   if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
1802     assert(RBReg == SPReg && "Should be using SP as a base register");
1803     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1804       .addImm(CRSaveOffset)
1805       .addReg(RBReg);
1806   }
1807 
1808   if (HasFP) {
1809     // If there is red zone, restore FP directly, since SP has already been
1810     // restored. Otherwise, restore the value of FP into ScratchReg.
1811     if (HasRedZone || RBReg == SPReg)
1812       BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
1813         .addImm(FPOffset)
1814         .addReg(SPReg);
1815     else
1816       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1817         .addImm(FPOffset)
1818         .addReg(RBReg);
1819   }
1820 
1821   if (FI->usesPICBase())
1822     BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
1823       .addImm(PBPOffset)
1824       .addReg(RBReg);
1825 
1826   if (HasBP)
1827     BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
1828       .addImm(BPOffset)
1829       .addReg(RBReg);
1830 
1831   // There is nothing more to be loaded from the stack, so now we can
1832   // restore SP: SP = RBReg + SPAdd.
1833   if (RBReg != SPReg || SPAdd != 0) {
1834     assert(!HasRedZone && "This should not happen with red zone");
1835     // If SPAdd is 0, generate a copy.
1836     if (SPAdd == 0)
1837       BuildMI(MBB, MBBI, dl, OrInst, SPReg)
1838         .addReg(RBReg)
1839         .addReg(RBReg);
1840     else
1841       BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1842         .addReg(RBReg)
1843         .addImm(SPAdd);
1844 
1845     assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
1846     if (RBReg == FPReg)
1847       BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1848         .addReg(ScratchReg)
1849         .addReg(ScratchReg);
1850 
1851     // Now load the LR from the caller's stack frame.
1852     if (MustSaveLR && !LoadedLR)
1853       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1854         .addImm(LROffset)
1855         .addReg(SPReg);
1856   }
1857 
1858   if (MustSaveCR &&
1859       !(SingleScratchReg && MustSaveLR))
1860     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1861       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1862         .addReg(TempReg, getKillRegState(i == e-1));
1863 
1864   if (MustSaveLR) {
1865     // If ROP protection is required, an extra instruction is added to compute a
1866     // hash and then compare it to the hash stored in the prologue.
1867     if (HasROPProtect) {
1868       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
1869       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
1870       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
1871              "ROP hash check location offset out of range.");
1872       assert(((ImmOffset & 0x7) == 0) &&
1873              "ROP hash check location offset must be 8 byte aligned.");
1874       BuildMI(MBB, StackUpdateLoc, dl, HashChk)
1875           .addReg(ScratchReg)
1876           .addImm(ImmOffset)
1877           .addReg(SPReg);
1878     }
1879     BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
1880   }
1881 
1882   // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1883   // call optimization
1884   if (IsReturnBlock) {
1885     unsigned RetOpcode = MBBI->getOpcode();
1886     if (MF.getTarget().Options.GuaranteedTailCallOpt &&
1887         (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
1888         MF.getFunction().getCallingConv() == CallingConv::Fast) {
1889       PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1890       unsigned CallerAllocatedAmt = FI->getMinReservedArea();
1891 
1892       if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
1893         BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1894           .addReg(SPReg).addImm(CallerAllocatedAmt);
1895       } else {
1896         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1897           .addImm(CallerAllocatedAmt >> 16);
1898         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1899           .addReg(ScratchReg, RegState::Kill)
1900           .addImm(CallerAllocatedAmt & 0xFFFF);
1901         BuildMI(MBB, MBBI, dl, AddInst)
1902           .addReg(SPReg)
1903           .addReg(FPReg)
1904           .addReg(ScratchReg);
1905       }
1906     } else {
1907       createTailCallBranchInstr(MBB);
1908     }
1909   }
1910 }
1911 
1912 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
1913   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1914 
1915   // If we got this far a first terminator should exist.
1916   assert(MBBI != MBB.end() && "Failed to find the first terminator.");
1917 
1918   DebugLoc dl = MBBI->getDebugLoc();
1919   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1920 
1921   // Create branch instruction for pseudo tail call return instruction.
1922   // The TCRETURNdi variants are direct calls. Valid targets for those are
1923   // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1924   // since we can tail call external functions with PC-Rel (i.e. we don't need
1925   // to worry about different TOC pointers). Some of the external functions will
1926   // be MO_GlobalAddress while others like memcpy for example, are going to
1927   // be MO_ExternalSymbol.
1928   unsigned RetOpcode = MBBI->getOpcode();
1929   if (RetOpcode == PPC::TCRETURNdi) {
1930     MBBI = MBB.getLastNonDebugInstr();
1931     MachineOperand &JumpTarget = MBBI->getOperand(0);
1932     if (JumpTarget.isGlobal())
1933       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1934         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1935     else if (JumpTarget.isSymbol())
1936       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1937         addExternalSymbol(JumpTarget.getSymbolName());
1938     else
1939       llvm_unreachable("Expecting Global or External Symbol");
1940   } else if (RetOpcode == PPC::TCRETURNri) {
1941     MBBI = MBB.getLastNonDebugInstr();
1942     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1943     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
1944   } else if (RetOpcode == PPC::TCRETURNai) {
1945     MBBI = MBB.getLastNonDebugInstr();
1946     MachineOperand &JumpTarget = MBBI->getOperand(0);
1947     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
1948   } else if (RetOpcode == PPC::TCRETURNdi8) {
1949     MBBI = MBB.getLastNonDebugInstr();
1950     MachineOperand &JumpTarget = MBBI->getOperand(0);
1951     if (JumpTarget.isGlobal())
1952       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1953         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1954     else if (JumpTarget.isSymbol())
1955       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1956         addExternalSymbol(JumpTarget.getSymbolName());
1957     else
1958       llvm_unreachable("Expecting Global or External Symbol");
1959   } else if (RetOpcode == PPC::TCRETURNri8) {
1960     MBBI = MBB.getLastNonDebugInstr();
1961     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1962     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
1963   } else if (RetOpcode == PPC::TCRETURNai8) {
1964     MBBI = MBB.getLastNonDebugInstr();
1965     MachineOperand &JumpTarget = MBBI->getOperand(0);
1966     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
1967   }
1968 }
1969 
1970 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
1971                                             BitVector &SavedRegs,
1972                                             RegScavenger *RS) const {
1973   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1974 
1975   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1976 
1977   //  Save and clear the LR state.
1978   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1979   unsigned LR = RegInfo->getRARegister();
1980   FI->setMustSaveLR(MustSaveLR(MF, LR));
1981   SavedRegs.reset(LR);
1982 
1983   //  Save R31 if necessary
1984   int FPSI = FI->getFramePointerSaveIndex();
1985   const bool isPPC64 = Subtarget.isPPC64();
1986   MachineFrameInfo &MFI = MF.getFrameInfo();
1987 
1988   // If the frame pointer save index hasn't been defined yet.
1989   if (!FPSI && needsFP(MF)) {
1990     // Find out what the fix offset of the frame pointer save area.
1991     int FPOffset = getFramePointerSaveOffset();
1992     // Allocate the frame index for frame pointer save area.
1993     FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
1994     // Save the result.
1995     FI->setFramePointerSaveIndex(FPSI);
1996   }
1997 
1998   int BPSI = FI->getBasePointerSaveIndex();
1999   if (!BPSI && RegInfo->hasBasePointer(MF)) {
2000     int BPOffset = getBasePointerSaveOffset();
2001     // Allocate the frame index for the base pointer save area.
2002     BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
2003     // Save the result.
2004     FI->setBasePointerSaveIndex(BPSI);
2005   }
2006 
2007   // Reserve stack space for the PIC Base register (R30).
2008   // Only used in SVR4 32-bit.
2009   if (FI->usesPICBase()) {
2010     int PBPSI = MFI.CreateFixedObject(4, -8, true);
2011     FI->setPICBasePointerSaveIndex(PBPSI);
2012   }
2013 
2014   // Make sure we don't explicitly spill r31, because, for example, we have
2015   // some inline asm which explicitly clobbers it, when we otherwise have a
2016   // frame pointer and are using r31's spill slot for the prologue/epilogue
2017   // code. Same goes for the base pointer and the PIC base register.
2018   if (needsFP(MF))
2019     SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
2020   if (RegInfo->hasBasePointer(MF))
2021     SavedRegs.reset(RegInfo->getBaseRegister(MF));
2022   if (FI->usesPICBase())
2023     SavedRegs.reset(PPC::R30);
2024 
2025   // Reserve stack space to move the linkage area to in case of a tail call.
2026   int TCSPDelta = 0;
2027   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2028       (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
2029     MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
2030   }
2031 
2032   // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2033   // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2034   // object at the offset of the CR-save slot in the linkage area. The actual
2035   // save and restore of the condition register will be created as part of the
2036   // prologue and epilogue insertion, but the FixedStack object is needed to
2037   // keep the CalleSavedInfo valid.
2038   if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
2039        SavedRegs.test(PPC::CR4))) {
2040     const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
2041     const int64_t SpillOffset =
2042         Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
2043     int FrameIdx =
2044         MFI.CreateFixedObject(SpillSize, SpillOffset,
2045                               /* IsImmutable */ true, /* IsAliased */ false);
2046     FI->setCRSpillFrameIndex(FrameIdx);
2047   }
2048 }
2049 
2050 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
2051                                                        RegScavenger *RS) const {
2052   // Get callee saved register information.
2053   MachineFrameInfo &MFI = MF.getFrameInfo();
2054   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2055 
2056   // If the function is shrink-wrapped, and if the function has a tail call, the
2057   // tail call might not be in the new RestoreBlock, so real branch instruction
2058   // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2059   // RestoreBlock. So we handle this case here.
2060   if (MFI.getSavePoint() && MFI.hasTailCall()) {
2061     MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
2062     for (MachineBasicBlock &MBB : MF) {
2063       if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
2064         createTailCallBranchInstr(MBB);
2065     }
2066   }
2067 
2068   // Early exit if no callee saved registers are modified!
2069   if (CSI.empty() && !needsFP(MF)) {
2070     addScavengingSpillSlot(MF, RS);
2071     return;
2072   }
2073 
2074   unsigned MinGPR = PPC::R31;
2075   unsigned MinG8R = PPC::X31;
2076   unsigned MinFPR = PPC::F31;
2077   unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
2078 
2079   bool HasGPSaveArea = false;
2080   bool HasG8SaveArea = false;
2081   bool HasFPSaveArea = false;
2082   bool HasVRSaveArea = false;
2083 
2084   SmallVector<CalleeSavedInfo, 18> GPRegs;
2085   SmallVector<CalleeSavedInfo, 18> G8Regs;
2086   SmallVector<CalleeSavedInfo, 18> FPRegs;
2087   SmallVector<CalleeSavedInfo, 18> VRegs;
2088 
2089   for (const CalleeSavedInfo &I : CSI) {
2090     Register Reg = I.getReg();
2091     assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
2092             (Reg != PPC::X2 && Reg != PPC::R2)) &&
2093            "Not expecting to try to spill R2 in a function that must save TOC");
2094     if (PPC::GPRCRegClass.contains(Reg)) {
2095       HasGPSaveArea = true;
2096 
2097       GPRegs.push_back(I);
2098 
2099       if (Reg < MinGPR) {
2100         MinGPR = Reg;
2101       }
2102     } else if (PPC::G8RCRegClass.contains(Reg)) {
2103       HasG8SaveArea = true;
2104 
2105       G8Regs.push_back(I);
2106 
2107       if (Reg < MinG8R) {
2108         MinG8R = Reg;
2109       }
2110     } else if (PPC::F8RCRegClass.contains(Reg)) {
2111       HasFPSaveArea = true;
2112 
2113       FPRegs.push_back(I);
2114 
2115       if (Reg < MinFPR) {
2116         MinFPR = Reg;
2117       }
2118     } else if (PPC::CRBITRCRegClass.contains(Reg) ||
2119                PPC::CRRCRegClass.contains(Reg)) {
2120       ; // do nothing, as we already know whether CRs are spilled
2121     } else if (PPC::VRRCRegClass.contains(Reg) ||
2122                PPC::SPERCRegClass.contains(Reg)) {
2123       // Altivec and SPE are mutually exclusive, but have the same stack
2124       // alignment requirements, so overload the save area for both cases.
2125       HasVRSaveArea = true;
2126 
2127       VRegs.push_back(I);
2128 
2129       if (Reg < MinVR) {
2130         MinVR = Reg;
2131       }
2132     } else {
2133       llvm_unreachable("Unknown RegisterClass!");
2134     }
2135   }
2136 
2137   PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
2138   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2139 
2140   int64_t LowerBound = 0;
2141 
2142   // Take into account stack space reserved for tail calls.
2143   int TCSPDelta = 0;
2144   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2145       (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
2146     LowerBound = TCSPDelta;
2147   }
2148 
2149   // The Floating-point register save area is right below the back chain word
2150   // of the previous stack frame.
2151   if (HasFPSaveArea) {
2152     for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
2153       int FI = FPRegs[i].getFrameIdx();
2154 
2155       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2156     }
2157 
2158     LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
2159   }
2160 
2161   // Check whether the frame pointer register is allocated. If so, make sure it
2162   // is spilled to the correct offset.
2163   if (needsFP(MF)) {
2164     int FI = PFI->getFramePointerSaveIndex();
2165     assert(FI && "No Frame Pointer Save Slot!");
2166     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2167     // FP is R31/X31, so no need to update MinGPR/MinG8R.
2168     HasGPSaveArea = true;
2169   }
2170 
2171   if (PFI->usesPICBase()) {
2172     int FI = PFI->getPICBasePointerSaveIndex();
2173     assert(FI && "No PIC Base Pointer Save Slot!");
2174     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2175 
2176     MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
2177     HasGPSaveArea = true;
2178   }
2179 
2180   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2181   if (RegInfo->hasBasePointer(MF)) {
2182     int FI = PFI->getBasePointerSaveIndex();
2183     assert(FI && "No Base Pointer Save Slot!");
2184     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2185 
2186     Register BP = RegInfo->getBaseRegister(MF);
2187     if (PPC::G8RCRegClass.contains(BP)) {
2188       MinG8R = std::min<unsigned>(MinG8R, BP);
2189       HasG8SaveArea = true;
2190     } else if (PPC::GPRCRegClass.contains(BP)) {
2191       MinGPR = std::min<unsigned>(MinGPR, BP);
2192       HasGPSaveArea = true;
2193     }
2194   }
2195 
2196   // General register save area starts right below the Floating-point
2197   // register save area.
2198   if (HasGPSaveArea || HasG8SaveArea) {
2199     // Move general register save area spill slots down, taking into account
2200     // the size of the Floating-point register save area.
2201     for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
2202       if (!GPRegs[i].isSpilledToReg()) {
2203         int FI = GPRegs[i].getFrameIdx();
2204         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2205       }
2206     }
2207 
2208     // Move general register save area spill slots down, taking into account
2209     // the size of the Floating-point register save area.
2210     for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
2211       if (!G8Regs[i].isSpilledToReg()) {
2212         int FI = G8Regs[i].getFrameIdx();
2213         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2214       }
2215     }
2216 
2217     unsigned MinReg =
2218       std::min<unsigned>(TRI->getEncodingValue(MinGPR),
2219                          TRI->getEncodingValue(MinG8R));
2220 
2221     const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
2222     LowerBound -= (31 - MinReg + 1) * GPRegSize;
2223   }
2224 
2225   // For 32-bit only, the CR save area is below the general register
2226   // save area.  For 64-bit SVR4, the CR save area is addressed relative
2227   // to the stack pointer and hence does not need an adjustment here.
2228   // Only CR2 (the first nonvolatile spilled) has an associated frame
2229   // index so that we have a single uniform save area.
2230   if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
2231     // Adjust the frame index of the CR spill slot.
2232     for (const auto &CSInfo : CSI) {
2233       if (CSInfo.getReg() == PPC::CR2) {
2234         int FI = CSInfo.getFrameIdx();
2235         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2236         break;
2237       }
2238     }
2239 
2240     LowerBound -= 4; // The CR save area is always 4 bytes long.
2241   }
2242 
2243   // Both Altivec and SPE have the same alignment and padding requirements
2244   // within the stack frame.
2245   if (HasVRSaveArea) {
2246     // Insert alignment padding, we need 16-byte alignment. Note: for positive
2247     // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2248     // we are using negative number here (the stack grows downward). We should
2249     // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2250     // is the alignment size ( n = 16 here) and y is the size after aligning.
2251     assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
2252     LowerBound &= ~(15);
2253 
2254     for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
2255       int FI = VRegs[i].getFrameIdx();
2256 
2257       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2258     }
2259   }
2260 
2261   addScavengingSpillSlot(MF, RS);
2262 }
2263 
2264 void
2265 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
2266                                          RegScavenger *RS) const {
2267   // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2268   // a large stack, which will require scavenging a register to materialize a
2269   // large offset.
2270 
2271   // We need to have a scavenger spill slot for spills if the frame size is
2272   // large. In case there is no free register for large-offset addressing,
2273   // this slot is used for the necessary emergency spill. Also, we need the
2274   // slot for dynamic stack allocations.
2275 
2276   // The scavenger might be invoked if the frame offset does not fit into
2277   // the 16-bit immediate. We don't know the complete frame size here
2278   // because we've not yet computed callee-saved register spills or the
2279   // needed alignment padding.
2280   unsigned StackSize = determineFrameLayout(MF, true);
2281   MachineFrameInfo &MFI = MF.getFrameInfo();
2282   if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
2283       (hasSpills(MF) && !isInt<16>(StackSize))) {
2284     const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
2285     const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
2286     const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
2287     const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
2288     unsigned Size = TRI.getSpillSize(RC);
2289     Align Alignment = TRI.getSpillAlign(RC);
2290     RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false));
2291 
2292     // Might we have over-aligned allocas?
2293     bool HasAlVars =
2294         MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
2295 
2296     // These kinds of spills might need two registers.
2297     if (spillsCR(MF) || HasAlVars)
2298       RS->addScavengingFrameIndex(
2299           MFI.CreateStackObject(Size, Alignment, false));
2300   }
2301 }
2302 
2303 // This function checks if a callee saved gpr can be spilled to a volatile
2304 // vector register. This occurs for leaf functions when the option
2305 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2306 // which were not spilled to vectors, return false so the target independent
2307 // code can handle them by assigning a FrameIdx to a stack slot.
2308 bool PPCFrameLowering::assignCalleeSavedSpillSlots(
2309     MachineFunction &MF, const TargetRegisterInfo *TRI,
2310     std::vector<CalleeSavedInfo> &CSI) const {
2311 
2312   if (CSI.empty())
2313     return true; // Early exit if no callee saved registers are modified!
2314 
2315   // Early exit if cannot spill gprs to volatile vector registers.
2316   MachineFrameInfo &MFI = MF.getFrameInfo();
2317   if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
2318     return false;
2319 
2320   // Build a BitVector of VSRs that can be used for spilling GPRs.
2321   BitVector BVAllocatable = TRI->getAllocatableSet(MF);
2322   BitVector BVCalleeSaved(TRI->getNumRegs());
2323   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2324   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2325   for (unsigned i = 0; CSRegs[i]; ++i)
2326     BVCalleeSaved.set(CSRegs[i]);
2327 
2328   for (unsigned Reg : BVAllocatable.set_bits()) {
2329     // Set to 0 if the register is not a volatile VSX register, or if it is
2330     // used in the function.
2331     if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
2332         MF.getRegInfo().isPhysRegUsed(Reg))
2333       BVAllocatable.reset(Reg);
2334   }
2335 
2336   bool AllSpilledToReg = true;
2337   unsigned LastVSRUsedForSpill = 0;
2338   for (auto &CS : CSI) {
2339     if (BVAllocatable.none())
2340       return false;
2341 
2342     Register Reg = CS.getReg();
2343 
2344     if (!PPC::G8RCRegClass.contains(Reg)) {
2345       AllSpilledToReg = false;
2346       continue;
2347     }
2348 
2349     // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2350     // into one VSR using the mtvsrdd instruction.
2351     if (LastVSRUsedForSpill != 0) {
2352       CS.setDstReg(LastVSRUsedForSpill);
2353       BVAllocatable.reset(LastVSRUsedForSpill);
2354       LastVSRUsedForSpill = 0;
2355       continue;
2356     }
2357 
2358     unsigned VolatileVFReg = BVAllocatable.find_first();
2359     if (VolatileVFReg < BVAllocatable.size()) {
2360       CS.setDstReg(VolatileVFReg);
2361       LastVSRUsedForSpill = VolatileVFReg;
2362     } else {
2363       AllSpilledToReg = false;
2364     }
2365   }
2366   return AllSpilledToReg;
2367 }
2368 
2369 bool PPCFrameLowering::spillCalleeSavedRegisters(
2370     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2371     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2372 
2373   MachineFunction *MF = MBB.getParent();
2374   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2375   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2376   bool MustSaveTOC = FI->mustSaveTOC();
2377   DebugLoc DL;
2378   bool CRSpilled = false;
2379   MachineInstrBuilder CRMIB;
2380   BitVector Spilled(TRI->getNumRegs());
2381 
2382   VSRContainingGPRs.clear();
2383 
2384   // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2385   // or two GPRs, so we need table to record information for later save/restore.
2386   llvm::for_each(CSI, [&](const CalleeSavedInfo &Info) {
2387     if (Info.isSpilledToReg()) {
2388       auto &SpilledVSR =
2389           VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second;
2390       assert(SpilledVSR.second == 0 &&
2391              "Can't spill more than two GPRs into VSR!");
2392       if (SpilledVSR.first == 0)
2393         SpilledVSR.first = Info.getReg();
2394       else
2395         SpilledVSR.second = Info.getReg();
2396     }
2397   });
2398 
2399   for (const CalleeSavedInfo &I : CSI) {
2400     Register Reg = I.getReg();
2401 
2402     // CR2 through CR4 are the nonvolatile CR fields.
2403     bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
2404 
2405     // Add the callee-saved register as live-in; it's killed at the spill.
2406     // Do not do this for callee-saved registers that are live-in to the
2407     // function because they will already be marked live-in and this will be
2408     // adding it for a second time. It is an error to add the same register
2409     // to the set more than once.
2410     const MachineRegisterInfo &MRI = MF->getRegInfo();
2411     bool IsLiveIn = MRI.isLiveIn(Reg);
2412     if (!IsLiveIn)
2413        MBB.addLiveIn(Reg);
2414 
2415     if (CRSpilled && IsCRField) {
2416       CRMIB.addReg(Reg, RegState::ImplicitKill);
2417       continue;
2418     }
2419 
2420     // The actual spill will happen in the prologue.
2421     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2422       continue;
2423 
2424     // Insert the spill to the stack frame.
2425     if (IsCRField) {
2426       PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2427       if (!Subtarget.is32BitELFABI()) {
2428         // The actual spill will happen at the start of the prologue.
2429         FuncInfo->addMustSaveCR(Reg);
2430       } else {
2431         CRSpilled = true;
2432         FuncInfo->setSpillsCR();
2433 
2434         // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
2435         // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2436         CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
2437                   .addReg(Reg, RegState::ImplicitKill);
2438 
2439         MBB.insert(MI, CRMIB);
2440         MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
2441                                          .addReg(PPC::R12,
2442                                                  getKillRegState(true)),
2443                                          I.getFrameIdx()));
2444       }
2445     } else {
2446       if (I.isSpilledToReg()) {
2447         unsigned Dst = I.getDstReg();
2448 
2449         if (Spilled[Dst])
2450           continue;
2451 
2452         if (VSRContainingGPRs[Dst].second != 0) {
2453           assert(Subtarget.hasP9Vector() &&
2454                  "mtvsrdd is unavailable on pre-P9 targets.");
2455 
2456           NumPESpillVSR += 2;
2457           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
2458               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
2459               .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
2460         } else if (VSRContainingGPRs[Dst].second == 0) {
2461           assert(Subtarget.hasP8Vector() &&
2462                  "Can't move GPR to VSR on pre-P8 targets.");
2463 
2464           ++NumPESpillVSR;
2465           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
2466                   TRI->getSubReg(Dst, PPC::sub_64))
2467               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
2468         } else {
2469           llvm_unreachable("More than two GPRs spilled to a VSR!");
2470         }
2471         Spilled.set(Dst);
2472       } else {
2473         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2474         // Use !IsLiveIn for the kill flag.
2475         // We do not want to kill registers that are live in this function
2476         // before their use because they will become undefined registers.
2477         // Functions without NoUnwind need to preserve the order of elements in
2478         // saved vector registers.
2479         if (Subtarget.needsSwapsForVSXMemOps() &&
2480             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2481           TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
2482                                        I.getFrameIdx(), RC, TRI);
2483         else
2484           TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(),
2485                                   RC, TRI);
2486       }
2487     }
2488   }
2489   return true;
2490 }
2491 
2492 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
2493                        bool CR4Spilled, MachineBasicBlock &MBB,
2494                        MachineBasicBlock::iterator MI,
2495                        ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
2496 
2497   MachineFunction *MF = MBB.getParent();
2498   const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
2499   DebugLoc DL;
2500   unsigned MoveReg = PPC::R12;
2501 
2502   // 32-bit:  FP-relative
2503   MBB.insert(MI,
2504              addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
2505                                CSI[CSIIndex].getFrameIdx()));
2506 
2507   unsigned RestoreOp = PPC::MTOCRF;
2508   if (CR2Spilled)
2509     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
2510                .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
2511 
2512   if (CR3Spilled)
2513     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
2514                .addReg(MoveReg, getKillRegState(!CR4Spilled)));
2515 
2516   if (CR4Spilled)
2517     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
2518                .addReg(MoveReg, getKillRegState(true)));
2519 }
2520 
2521 MachineBasicBlock::iterator PPCFrameLowering::
2522 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2523                               MachineBasicBlock::iterator I) const {
2524   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2525   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2526       I->getOpcode() == PPC::ADJCALLSTACKUP) {
2527     // Add (actually subtract) back the amount the callee popped on return.
2528     if (int CalleeAmt =  I->getOperand(1).getImm()) {
2529       bool is64Bit = Subtarget.isPPC64();
2530       CalleeAmt *= -1;
2531       unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
2532       unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
2533       unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
2534       unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
2535       unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
2536       unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
2537       const DebugLoc &dl = I->getDebugLoc();
2538 
2539       if (isInt<16>(CalleeAmt)) {
2540         BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
2541           .addReg(StackReg, RegState::Kill)
2542           .addImm(CalleeAmt);
2543       } else {
2544         MachineBasicBlock::iterator MBBI = I;
2545         BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
2546           .addImm(CalleeAmt >> 16);
2547         BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
2548           .addReg(TmpReg, RegState::Kill)
2549           .addImm(CalleeAmt & 0xFFFF);
2550         BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
2551           .addReg(StackReg, RegState::Kill)
2552           .addReg(TmpReg);
2553       }
2554     }
2555   }
2556   // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2557   return MBB.erase(I);
2558 }
2559 
2560 static bool isCalleeSavedCR(unsigned Reg) {
2561   return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
2562 }
2563 
2564 bool PPCFrameLowering::restoreCalleeSavedRegisters(
2565     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2566     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2567   MachineFunction *MF = MBB.getParent();
2568   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2569   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2570   bool MustSaveTOC = FI->mustSaveTOC();
2571   bool CR2Spilled = false;
2572   bool CR3Spilled = false;
2573   bool CR4Spilled = false;
2574   unsigned CSIIndex = 0;
2575   BitVector Restored(TRI->getNumRegs());
2576 
2577   // Initialize insertion-point logic; we will be restoring in reverse
2578   // order of spill.
2579   MachineBasicBlock::iterator I = MI, BeforeI = I;
2580   bool AtStart = I == MBB.begin();
2581 
2582   if (!AtStart)
2583     --BeforeI;
2584 
2585   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2586     Register Reg = CSI[i].getReg();
2587 
2588     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2589       continue;
2590 
2591     // Restore of callee saved condition register field is handled during
2592     // epilogue insertion.
2593     if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
2594       continue;
2595 
2596     if (Reg == PPC::CR2) {
2597       CR2Spilled = true;
2598       // The spill slot is associated only with CR2, which is the
2599       // first nonvolatile spilled.  Save it here.
2600       CSIIndex = i;
2601       continue;
2602     } else if (Reg == PPC::CR3) {
2603       CR3Spilled = true;
2604       continue;
2605     } else if (Reg == PPC::CR4) {
2606       CR4Spilled = true;
2607       continue;
2608     } else {
2609       // On 32-bit ELF when we first encounter a non-CR register after seeing at
2610       // least one CR register, restore all spilled CRs together.
2611       if (CR2Spilled || CR3Spilled || CR4Spilled) {
2612         bool is31 = needsFP(*MF);
2613         restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
2614                    CSIIndex);
2615         CR2Spilled = CR3Spilled = CR4Spilled = false;
2616       }
2617 
2618       if (CSI[i].isSpilledToReg()) {
2619         DebugLoc DL;
2620         unsigned Dst = CSI[i].getDstReg();
2621 
2622         if (Restored[Dst])
2623           continue;
2624 
2625         if (VSRContainingGPRs[Dst].second != 0) {
2626           assert(Subtarget.hasP9Vector());
2627           NumPEReloadVSR += 2;
2628           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
2629                   VSRContainingGPRs[Dst].second)
2630               .addReg(Dst);
2631           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2632                   VSRContainingGPRs[Dst].first)
2633               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2634         } else if (VSRContainingGPRs[Dst].second == 0) {
2635           assert(Subtarget.hasP8Vector());
2636           ++NumPEReloadVSR;
2637           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2638                   VSRContainingGPRs[Dst].first)
2639               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2640         } else {
2641           llvm_unreachable("More than two GPRs spilled to a VSR!");
2642         }
2643 
2644         Restored.set(Dst);
2645 
2646       } else {
2647        // Default behavior for non-CR saves.
2648         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2649 
2650         // Functions without NoUnwind need to preserve the order of elements in
2651         // saved vector registers.
2652         if (Subtarget.needsSwapsForVSXMemOps() &&
2653             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2654           TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
2655                                         TRI);
2656         else
2657           TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
2658 
2659         assert(I != MBB.begin() &&
2660                "loadRegFromStackSlot didn't insert any code!");
2661       }
2662     }
2663 
2664     // Insert in reverse order.
2665     if (AtStart)
2666       I = MBB.begin();
2667     else {
2668       I = BeforeI;
2669       ++I;
2670     }
2671   }
2672 
2673   // If we haven't yet spilled the CRs, do so now.
2674   if (CR2Spilled || CR3Spilled || CR4Spilled) {
2675     assert(Subtarget.is32BitELFABI() &&
2676            "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2677     bool is31 = needsFP(*MF);
2678     restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
2679   }
2680 
2681   return true;
2682 }
2683 
2684 uint64_t PPCFrameLowering::getTOCSaveOffset() const {
2685   return TOCSaveOffset;
2686 }
2687 
2688 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const {
2689   return FramePointerSaveOffset;
2690 }
2691 
2692 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const {
2693   return BasePointerSaveOffset;
2694 }
2695 
2696 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2697   if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
2698     return false;
2699   return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
2700 }
2701