1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/PPCPredicates.h" 14 #include "PPCFrameLowering.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/Target/TargetOptions.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "framelowering" 33 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 34 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 35 STATISTIC(NumPrologProbed, "Number of prologues probed"); 36 37 static cl::opt<bool> 38 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 39 cl::desc("Enable spills in prologue to vector registers."), 40 cl::init(false), cl::Hidden); 41 42 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 43 if (STI.isAIXABI()) 44 return STI.isPPC64() ? 16 : 8; 45 // SVR4 ABI: 46 return STI.isPPC64() ? 16 : 4; 47 } 48 49 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 50 if (STI.isAIXABI()) 51 return STI.isPPC64() ? 40 : 20; 52 return STI.isELFv2ABI() ? 24 : 40; 53 } 54 55 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 56 // First slot in the general register save area. 57 return STI.isPPC64() ? -8U : -4U; 58 } 59 60 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 61 if (STI.isAIXABI() || STI.isPPC64()) 62 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 63 64 // 32-bit SVR4 ABI: 65 return 8; 66 } 67 68 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 69 // Third slot in the general purpose register save area. 70 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 71 return -12U; 72 73 // Second slot in the general purpose register save area. 74 return STI.isPPC64() ? -16U : -8U; 75 } 76 77 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 78 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 79 } 80 81 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 82 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 83 STI.getPlatformStackAlignment(), 0), 84 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 85 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 86 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 87 LinkageSize(computeLinkageSize(Subtarget)), 88 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 89 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 90 91 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 92 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 93 unsigned &NumEntries) const { 94 95 // Floating-point register save area offsets. 96 #define CALLEE_SAVED_FPRS \ 97 {PPC::F31, -8}, \ 98 {PPC::F30, -16}, \ 99 {PPC::F29, -24}, \ 100 {PPC::F28, -32}, \ 101 {PPC::F27, -40}, \ 102 {PPC::F26, -48}, \ 103 {PPC::F25, -56}, \ 104 {PPC::F24, -64}, \ 105 {PPC::F23, -72}, \ 106 {PPC::F22, -80}, \ 107 {PPC::F21, -88}, \ 108 {PPC::F20, -96}, \ 109 {PPC::F19, -104}, \ 110 {PPC::F18, -112}, \ 111 {PPC::F17, -120}, \ 112 {PPC::F16, -128}, \ 113 {PPC::F15, -136}, \ 114 {PPC::F14, -144} 115 116 // 32-bit general purpose register save area offsets shared by ELF and 117 // AIX. AIX has an extra CSR with r13. 118 #define CALLEE_SAVED_GPRS32 \ 119 {PPC::R31, -4}, \ 120 {PPC::R30, -8}, \ 121 {PPC::R29, -12}, \ 122 {PPC::R28, -16}, \ 123 {PPC::R27, -20}, \ 124 {PPC::R26, -24}, \ 125 {PPC::R25, -28}, \ 126 {PPC::R24, -32}, \ 127 {PPC::R23, -36}, \ 128 {PPC::R22, -40}, \ 129 {PPC::R21, -44}, \ 130 {PPC::R20, -48}, \ 131 {PPC::R19, -52}, \ 132 {PPC::R18, -56}, \ 133 {PPC::R17, -60}, \ 134 {PPC::R16, -64}, \ 135 {PPC::R15, -68}, \ 136 {PPC::R14, -72} 137 138 // 64-bit general purpose register save area offsets. 139 #define CALLEE_SAVED_GPRS64 \ 140 {PPC::X31, -8}, \ 141 {PPC::X30, -16}, \ 142 {PPC::X29, -24}, \ 143 {PPC::X28, -32}, \ 144 {PPC::X27, -40}, \ 145 {PPC::X26, -48}, \ 146 {PPC::X25, -56}, \ 147 {PPC::X24, -64}, \ 148 {PPC::X23, -72}, \ 149 {PPC::X22, -80}, \ 150 {PPC::X21, -88}, \ 151 {PPC::X20, -96}, \ 152 {PPC::X19, -104}, \ 153 {PPC::X18, -112}, \ 154 {PPC::X17, -120}, \ 155 {PPC::X16, -128}, \ 156 {PPC::X15, -136}, \ 157 {PPC::X14, -144} 158 159 // Vector register save area offsets. 160 #define CALLEE_SAVED_VRS \ 161 {PPC::V31, -16}, \ 162 {PPC::V30, -32}, \ 163 {PPC::V29, -48}, \ 164 {PPC::V28, -64}, \ 165 {PPC::V27, -80}, \ 166 {PPC::V26, -96}, \ 167 {PPC::V25, -112}, \ 168 {PPC::V24, -128}, \ 169 {PPC::V23, -144}, \ 170 {PPC::V22, -160}, \ 171 {PPC::V21, -176}, \ 172 {PPC::V20, -192} 173 174 // Note that the offsets here overlap, but this is fixed up in 175 // processFunctionBeforeFrameFinalized. 176 177 static const SpillSlot ELFOffsets32[] = { 178 CALLEE_SAVED_FPRS, 179 CALLEE_SAVED_GPRS32, 180 181 // CR save area offset. We map each of the nonvolatile CR fields 182 // to the slot for CR2, which is the first of the nonvolatile CR 183 // fields to be assigned, so that we only allocate one save slot. 184 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 185 {PPC::CR2, -4}, 186 187 // VRSAVE save area offset. 188 {PPC::VRSAVE, -4}, 189 190 CALLEE_SAVED_VRS, 191 192 // SPE register save area (overlaps Vector save area). 193 {PPC::S31, -8}, 194 {PPC::S30, -16}, 195 {PPC::S29, -24}, 196 {PPC::S28, -32}, 197 {PPC::S27, -40}, 198 {PPC::S26, -48}, 199 {PPC::S25, -56}, 200 {PPC::S24, -64}, 201 {PPC::S23, -72}, 202 {PPC::S22, -80}, 203 {PPC::S21, -88}, 204 {PPC::S20, -96}, 205 {PPC::S19, -104}, 206 {PPC::S18, -112}, 207 {PPC::S17, -120}, 208 {PPC::S16, -128}, 209 {PPC::S15, -136}, 210 {PPC::S14, -144}}; 211 212 static const SpillSlot ELFOffsets64[] = { 213 CALLEE_SAVED_FPRS, 214 CALLEE_SAVED_GPRS64, 215 216 // VRSAVE save area offset. 217 {PPC::VRSAVE, -4}, 218 CALLEE_SAVED_VRS 219 }; 220 221 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS, 222 CALLEE_SAVED_GPRS32, 223 // Add AIX's extra CSR. 224 {PPC::R13, -76}, 225 CALLEE_SAVED_VRS}; 226 227 static const SpillSlot AIXOffsets64[] = { 228 CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS}; 229 230 if (Subtarget.is64BitELFABI()) { 231 NumEntries = array_lengthof(ELFOffsets64); 232 return ELFOffsets64; 233 } 234 235 if (Subtarget.is32BitELFABI()) { 236 NumEntries = array_lengthof(ELFOffsets32); 237 return ELFOffsets32; 238 } 239 240 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 241 242 if (Subtarget.isPPC64()) { 243 NumEntries = array_lengthof(AIXOffsets64); 244 return AIXOffsets64; 245 } 246 247 NumEntries = array_lengthof(AIXOffsets32); 248 return AIXOffsets32; 249 } 250 251 static bool spillsCR(const MachineFunction &MF) { 252 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 253 return FuncInfo->isCRSpilled(); 254 } 255 256 static bool hasSpills(const MachineFunction &MF) { 257 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 258 return FuncInfo->hasSpills(); 259 } 260 261 static bool hasNonRISpills(const MachineFunction &MF) { 262 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 263 return FuncInfo->hasNonRISpills(); 264 } 265 266 /// MustSaveLR - Return true if this function requires that we save the LR 267 /// register onto the stack in the prolog and restore it in the epilog of the 268 /// function. 269 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 270 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 271 272 // We need a save/restore of LR if there is any def of LR (which is 273 // defined by calls, including the PIC setup sequence), or if there is 274 // some use of the LR stack slot (e.g. for builtin_return_address). 275 // (LR comes in 32 and 64 bit versions.) 276 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 277 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 278 } 279 280 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 281 /// call frame size. Update the MachineFunction object with the stack size. 282 uint64_t 283 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 284 bool UseEstimate) const { 285 unsigned NewMaxCallFrameSize = 0; 286 uint64_t FrameSize = determineFrameLayout(MF, UseEstimate, 287 &NewMaxCallFrameSize); 288 MF.getFrameInfo().setStackSize(FrameSize); 289 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 290 return FrameSize; 291 } 292 293 /// determineFrameLayout - Determine the size of the frame and maximum call 294 /// frame size. 295 uint64_t 296 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 297 bool UseEstimate, 298 unsigned *NewMaxCallFrameSize) const { 299 const MachineFrameInfo &MFI = MF.getFrameInfo(); 300 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 301 302 // Get the number of bytes to allocate from the FrameInfo 303 uint64_t FrameSize = 304 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 305 306 // Get stack alignments. The frame must be aligned to the greatest of these: 307 Align TargetAlign = getStackAlign(); // alignment required per the ABI 308 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 309 Align Alignment = std::max(TargetAlign, MaxAlign); 310 311 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 312 313 unsigned LR = RegInfo->getRARegister(); 314 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 315 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 316 !MFI.adjustsStack() && // No calls. 317 !MustSaveLR(MF, LR) && // No need to save LR. 318 !FI->mustSaveTOC() && // No need to save TOC. 319 !RegInfo->hasBasePointer(MF); // No special alignment. 320 321 // Note: for PPC32 SVR4ABI, we can still generate stackless 322 // code if all local vars are reg-allocated. 323 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 324 325 // Check whether we can skip adjusting the stack pointer (by using red zone) 326 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 327 // No need for frame 328 return 0; 329 } 330 331 // Get the maximum call frame size of all the calls. 332 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 333 334 // Maximum call frame needs to be at least big enough for linkage area. 335 unsigned minCallFrameSize = getLinkageSize(); 336 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 337 338 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 339 // that allocations will be aligned. 340 if (MFI.hasVarSizedObjects()) 341 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 342 343 // Update the new max call frame size if the caller passes in a valid pointer. 344 if (NewMaxCallFrameSize) 345 *NewMaxCallFrameSize = maxCallFrameSize; 346 347 // Include call frame size in total. 348 FrameSize += maxCallFrameSize; 349 350 // Make sure the frame is aligned. 351 FrameSize = alignTo(FrameSize, Alignment); 352 353 return FrameSize; 354 } 355 356 // hasFP - Return true if the specified function actually has a dedicated frame 357 // pointer register. 358 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 359 const MachineFrameInfo &MFI = MF.getFrameInfo(); 360 // FIXME: This is pretty much broken by design: hasFP() might be called really 361 // early, before the stack layout was calculated and thus hasFP() might return 362 // true or false here depending on the time of call. 363 return (MFI.getStackSize()) && needsFP(MF); 364 } 365 366 // needsFP - Return true if the specified function should have a dedicated frame 367 // pointer register. This is true if the function has variable sized allocas or 368 // if frame pointer elimination is disabled. 369 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 370 const MachineFrameInfo &MFI = MF.getFrameInfo(); 371 372 // Naked functions have no stack frame pushed, so we don't have a frame 373 // pointer. 374 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 375 return false; 376 377 return MF.getTarget().Options.DisableFramePointerElim(MF) || 378 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 379 MF.exposesReturnsTwice() || 380 (MF.getTarget().Options.GuaranteedTailCallOpt && 381 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 382 } 383 384 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 385 bool is31 = needsFP(MF); 386 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 387 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 388 389 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 390 bool HasBP = RegInfo->hasBasePointer(MF); 391 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 392 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 393 394 for (MachineBasicBlock &MBB : MF) 395 for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) { 396 --MBBI; 397 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 398 MachineOperand &MO = MBBI->getOperand(I); 399 if (!MO.isReg()) 400 continue; 401 402 switch (MO.getReg()) { 403 case PPC::FP: 404 MO.setReg(FPReg); 405 break; 406 case PPC::FP8: 407 MO.setReg(FP8Reg); 408 break; 409 case PPC::BP: 410 MO.setReg(BPReg); 411 break; 412 case PPC::BP8: 413 MO.setReg(BP8Reg); 414 break; 415 416 } 417 } 418 } 419 } 420 421 /* This function will do the following: 422 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 423 respectively (defaults recommended by the ABI) and return true 424 - If MBB is not an entry block, initialize the register scavenger and look 425 for available registers. 426 - If the defaults (R0/R12) are available, return true 427 - If TwoUniqueRegsRequired is set to true, it looks for two unique 428 registers. Otherwise, look for a single available register. 429 - If the required registers are found, set SR1 and SR2 and return true. 430 - If the required registers are not found, set SR2 or both SR1 and SR2 to 431 PPC::NoRegister and return false. 432 433 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 434 is not set, this function will attempt to find two different registers, but 435 still return true if only one register is available (and set SR1 == SR2). 436 */ 437 bool 438 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 439 bool UseAtEnd, 440 bool TwoUniqueRegsRequired, 441 Register *SR1, 442 Register *SR2) const { 443 RegScavenger RS; 444 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 445 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 446 447 // Set the defaults for the two scratch registers. 448 if (SR1) 449 *SR1 = R0; 450 451 if (SR2) { 452 assert (SR1 && "Asking for the second scratch register but not the first?"); 453 *SR2 = R12; 454 } 455 456 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 457 if ((UseAtEnd && MBB->isReturnBlock()) || 458 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 459 return true; 460 461 RS.enterBasicBlock(*MBB); 462 463 if (UseAtEnd && !MBB->empty()) { 464 // The scratch register will be used at the end of the block, so must 465 // consider all registers used within the block 466 467 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 468 // If no terminator, back iterator up to previous instruction. 469 if (MBBI == MBB->end()) 470 MBBI = std::prev(MBBI); 471 472 if (MBBI != MBB->begin()) 473 RS.forward(MBBI); 474 } 475 476 // If the two registers are available, we're all good. 477 // Note that we only return here if both R0 and R12 are available because 478 // although the function may not require two unique registers, it may benefit 479 // from having two so we should try to provide them. 480 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 481 return true; 482 483 // Get the list of callee-saved registers for the target. 484 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 485 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 486 487 // Get all the available registers in the block. 488 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 489 &PPC::GPRCRegClass); 490 491 // We shouldn't use callee-saved registers as scratch registers as they may be 492 // available when looking for a candidate block for shrink wrapping but not 493 // available when the actual prologue/epilogue is being emitted because they 494 // were added as live-in to the prologue block by PrologueEpilogueInserter. 495 for (int i = 0; CSRegs[i]; ++i) 496 BV.reset(CSRegs[i]); 497 498 // Set the first scratch register to the first available one. 499 if (SR1) { 500 int FirstScratchReg = BV.find_first(); 501 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 502 } 503 504 // If there is another one available, set the second scratch register to that. 505 // Otherwise, set it to either PPC::NoRegister if this function requires two 506 // or to whatever SR1 is set to if this function doesn't require two. 507 if (SR2) { 508 int SecondScratchReg = BV.find_next(*SR1); 509 if (SecondScratchReg != -1) 510 *SR2 = SecondScratchReg; 511 else 512 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 513 } 514 515 // Now that we've done our best to provide both registers, double check 516 // whether we were unable to provide enough. 517 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 518 return false; 519 520 return true; 521 } 522 523 // We need a scratch register for spilling LR and for spilling CR. By default, 524 // we use two scratch registers to hide latency. However, if only one scratch 525 // register is available, we can adjust for that by not overlapping the spill 526 // code. However, if we need to realign the stack (i.e. have a base pointer) 527 // and the stack frame is large, we need two scratch registers. 528 // Also, stack probe requires two scratch registers, one for old sp, one for 529 // large frame and large probe size. 530 bool 531 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 532 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 533 MachineFunction &MF = *(MBB->getParent()); 534 bool HasBP = RegInfo->hasBasePointer(MF); 535 unsigned FrameSize = determineFrameLayout(MF); 536 int NegFrameSize = -FrameSize; 537 bool IsLargeFrame = !isInt<16>(NegFrameSize); 538 MachineFrameInfo &MFI = MF.getFrameInfo(); 539 Align MaxAlign = MFI.getMaxAlign(); 540 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 541 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 542 543 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) || 544 TLI.hasInlineStackProbe(MF); 545 } 546 547 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 548 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 549 550 return findScratchRegister(TmpMBB, false, 551 twoUniqueScratchRegsRequired(TmpMBB)); 552 } 553 554 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 555 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 556 557 return findScratchRegister(TmpMBB, true); 558 } 559 560 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 561 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 562 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 563 564 // Abort if there is no register info or function info. 565 if (!RegInfo || !FI) 566 return false; 567 568 // Only move the stack update on ELFv2 ABI and PPC64. 569 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 570 return false; 571 572 // Check the frame size first and return false if it does not fit the 573 // requirements. 574 // We need a non-zero frame size as well as a frame that will fit in the red 575 // zone. This is because by moving the stack pointer update we are now storing 576 // to the red zone until the stack pointer is updated. If we get an interrupt 577 // inside the prologue but before the stack update we now have a number of 578 // stores to the red zone and those stores must all fit. 579 MachineFrameInfo &MFI = MF.getFrameInfo(); 580 unsigned FrameSize = MFI.getStackSize(); 581 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 582 return false; 583 584 // Frame pointers and base pointers complicate matters so don't do anything 585 // if we have them. For example having a frame pointer will sometimes require 586 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 587 // difficult. Similar situation exists with setjmp. 588 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice()) 589 return false; 590 591 // Calls to fast_cc functions use different rules for passing parameters on 592 // the stack from the ABI and using PIC base in the function imposes 593 // similar restrictions to using the base pointer. It is not generally safe 594 // to move the stack pointer update in these situations. 595 if (FI->hasFastCall() || FI->usesPICBase()) 596 return false; 597 598 // Finally we can move the stack update if we do not require register 599 // scavenging. Register scavenging can introduce more spills and so 600 // may make the frame size larger than we have computed. 601 return !RegInfo->requiresFrameIndexScavenging(MF); 602 } 603 604 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 605 MachineBasicBlock &MBB) const { 606 MachineBasicBlock::iterator MBBI = MBB.begin(); 607 MachineFrameInfo &MFI = MF.getFrameInfo(); 608 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 609 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 610 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 611 612 MachineModuleInfo &MMI = MF.getMMI(); 613 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 614 DebugLoc dl; 615 // AIX assembler does not support cfi directives. 616 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 617 618 // Get processor type. 619 bool isPPC64 = Subtarget.isPPC64(); 620 // Get the ABI. 621 bool isSVR4ABI = Subtarget.isSVR4ABI(); 622 bool isELFv2ABI = Subtarget.isELFv2ABI(); 623 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI."); 624 625 // Work out frame sizes. 626 uint64_t FrameSize = determineFrameLayoutAndUpdate(MF); 627 int64_t NegFrameSize = -FrameSize; 628 if (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize)) 629 llvm_unreachable("Unhandled stack size!"); 630 631 if (MFI.isFrameAddressTaken()) 632 replaceFPWithRealFP(MF); 633 634 // Check if the link register (LR) must be saved. 635 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 636 bool MustSaveLR = FI->mustSaveLR(); 637 bool MustSaveTOC = FI->mustSaveTOC(); 638 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 639 bool MustSaveCR = !MustSaveCRs.empty(); 640 // Do we have a frame pointer and/or base pointer for this function? 641 bool HasFP = hasFP(MF); 642 bool HasBP = RegInfo->hasBasePointer(MF); 643 bool HasRedZone = isPPC64 || !isSVR4ABI; 644 bool HasROPProtect = Subtarget.hasROPProtect(); 645 bool HasPrivileged = Subtarget.hasPrivileged(); 646 647 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 648 Register BPReg = RegInfo->getBaseRegister(MF); 649 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 650 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 651 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 652 Register ScratchReg; 653 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 654 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 655 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 656 : PPC::MFLR ); 657 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 658 : PPC::STW ); 659 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 660 : PPC::STWU ); 661 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 662 : PPC::STWUX); 663 const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8 664 : PPC::LIS ); 665 const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8 666 : PPC::ORI ); 667 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 668 : PPC::OR ); 669 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 670 : PPC::SUBFC); 671 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 672 : PPC::SUBFIC); 673 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 674 : PPC::MFCR); 675 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 676 const MCInstrDesc &HashST = 677 TII.get(HasPrivileged ? PPC::HASHSTP : PPC::HASHST); 678 679 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 680 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 681 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 682 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 683 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 684 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 685 686 // Using the same bool variable as below to suppress compiler warnings. 687 bool SingleScratchReg = findScratchRegister( 688 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg); 689 assert(SingleScratchReg && 690 "Required number of registers not available in this block"); 691 692 SingleScratchReg = ScratchReg == TempReg; 693 694 int64_t LROffset = getReturnSaveOffset(); 695 696 int64_t FPOffset = 0; 697 if (HasFP) { 698 MachineFrameInfo &MFI = MF.getFrameInfo(); 699 int FPIndex = FI->getFramePointerSaveIndex(); 700 assert(FPIndex && "No Frame Pointer Save Slot!"); 701 FPOffset = MFI.getObjectOffset(FPIndex); 702 } 703 704 int64_t BPOffset = 0; 705 if (HasBP) { 706 MachineFrameInfo &MFI = MF.getFrameInfo(); 707 int BPIndex = FI->getBasePointerSaveIndex(); 708 assert(BPIndex && "No Base Pointer Save Slot!"); 709 BPOffset = MFI.getObjectOffset(BPIndex); 710 } 711 712 int64_t PBPOffset = 0; 713 if (FI->usesPICBase()) { 714 MachineFrameInfo &MFI = MF.getFrameInfo(); 715 int PBPIndex = FI->getPICBasePointerSaveIndex(); 716 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 717 PBPOffset = MFI.getObjectOffset(PBPIndex); 718 } 719 720 // Get stack alignments. 721 Align MaxAlign = MFI.getMaxAlign(); 722 if (HasBP && MaxAlign > 1) 723 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 724 725 // Frames of 32KB & larger require special handling because they cannot be 726 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 727 bool isLargeFrame = !isInt<16>(NegFrameSize); 728 729 // Check if we can move the stack update instruction (stdu) down the prologue 730 // past the callee saves. Hopefully this will avoid the situation where the 731 // saves are waiting for the update on the store with update to complete. 732 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 733 bool MovingStackUpdateDown = false; 734 735 // Check if we can move the stack update. 736 if (stackUpdateCanBeMoved(MF)) { 737 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 738 for (CalleeSavedInfo CSI : Info) { 739 // If the callee saved register is spilled to a register instead of the 740 // stack then the spill no longer uses the stack pointer. 741 // This can lead to two consequences: 742 // 1) We no longer need to update the stack because the function does not 743 // spill any callee saved registers to stack. 744 // 2) We have a situation where we still have to update the stack pointer 745 // even though some registers are spilled to other registers. In 746 // this case the current code moves the stack update to an incorrect 747 // position. 748 // In either case we should abort moving the stack update operation. 749 if (CSI.isSpilledToReg()) { 750 StackUpdateLoc = MBBI; 751 MovingStackUpdateDown = false; 752 break; 753 } 754 755 int FrIdx = CSI.getFrameIdx(); 756 // If the frame index is not negative the callee saved info belongs to a 757 // stack object that is not a fixed stack object. We ignore non-fixed 758 // stack objects because we won't move the stack update pointer past them. 759 if (FrIdx >= 0) 760 continue; 761 762 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 763 StackUpdateLoc++; 764 MovingStackUpdateDown = true; 765 } else { 766 // We need all of the Frame Indices to meet these conditions. 767 // If they do not, abort the whole operation. 768 StackUpdateLoc = MBBI; 769 MovingStackUpdateDown = false; 770 break; 771 } 772 } 773 774 // If the operation was not aborted then update the object offset. 775 if (MovingStackUpdateDown) { 776 for (CalleeSavedInfo CSI : Info) { 777 int FrIdx = CSI.getFrameIdx(); 778 if (FrIdx < 0) 779 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 780 } 781 } 782 } 783 784 // Where in the prologue we move the CR fields depends on how many scratch 785 // registers we have, and if we need to save the link register or not. This 786 // lambda is to avoid duplicating the logic in 2 places. 787 auto BuildMoveFromCR = [&]() { 788 if (isELFv2ABI && MustSaveCRs.size() == 1) { 789 // In the ELFv2 ABI, we are not required to save all CR fields. 790 // If only one CR field is clobbered, it is more efficient to use 791 // mfocrf to selectively save just that field, because mfocrf has short 792 // latency compares to mfcr. 793 assert(isPPC64 && "V2 ABI is 64-bit only."); 794 MachineInstrBuilder MIB = 795 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 796 MIB.addReg(MustSaveCRs[0], RegState::Kill); 797 } else { 798 MachineInstrBuilder MIB = 799 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 800 for (unsigned CRfield : MustSaveCRs) 801 MIB.addReg(CRfield, RegState::ImplicitKill); 802 } 803 }; 804 805 // If we need to spill the CR and the LR but we don't have two separate 806 // registers available, we must spill them one at a time 807 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 808 BuildMoveFromCR(); 809 BuildMI(MBB, MBBI, dl, StoreWordInst) 810 .addReg(TempReg, getKillRegState(true)) 811 .addImm(CRSaveOffset) 812 .addReg(SPReg); 813 } 814 815 if (MustSaveLR) 816 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 817 818 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 819 BuildMoveFromCR(); 820 821 if (HasRedZone) { 822 if (HasFP) 823 BuildMI(MBB, MBBI, dl, StoreInst) 824 .addReg(FPReg) 825 .addImm(FPOffset) 826 .addReg(SPReg); 827 if (FI->usesPICBase()) 828 BuildMI(MBB, MBBI, dl, StoreInst) 829 .addReg(PPC::R30) 830 .addImm(PBPOffset) 831 .addReg(SPReg); 832 if (HasBP) 833 BuildMI(MBB, MBBI, dl, StoreInst) 834 .addReg(BPReg) 835 .addImm(BPOffset) 836 .addReg(SPReg); 837 } 838 839 // Generate the instruction to store the LR. In the case where ROP protection 840 // is required the register holding the LR should not be killed as it will be 841 // used by the hash store instruction. 842 if (MustSaveLR) { 843 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 844 .addReg(ScratchReg, getKillRegState(!HasROPProtect)) 845 .addImm(LROffset) 846 .addReg(SPReg); 847 848 // Add the ROP protection Hash Store instruction. 849 // NOTE: This is technically a violation of the ABI. The hash can be saved 850 // up to 512 bytes into the Protected Zone. This can be outside of the 851 // initial 288 byte volatile program storage region in the Protected Zone. 852 // However, this restriction will be removed in an upcoming revision of the 853 // ABI. 854 if (HasROPProtect) { 855 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 856 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 857 assert((ImmOffset <= -8 && ImmOffset >= -512) && 858 "ROP hash save offset out of range."); 859 assert(((ImmOffset & 0x7) == 0) && 860 "ROP hash save offset must be 8 byte aligned."); 861 BuildMI(MBB, StackUpdateLoc, dl, HashST) 862 .addReg(ScratchReg, getKillRegState(true)) 863 .addImm(ImmOffset) 864 .addReg(SPReg); 865 } 866 } 867 868 if (MustSaveCR && 869 !(SingleScratchReg && MustSaveLR)) { 870 assert(HasRedZone && "A red zone is always available on PPC64"); 871 BuildMI(MBB, MBBI, dl, StoreWordInst) 872 .addReg(TempReg, getKillRegState(true)) 873 .addImm(CRSaveOffset) 874 .addReg(SPReg); 875 } 876 877 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 878 if (!FrameSize) 879 return; 880 881 // Adjust stack pointer: r1 += NegFrameSize. 882 // If there is a preferred stack alignment, align R1 now 883 884 if (HasBP && HasRedZone) { 885 // Save a copy of r1 as the base pointer. 886 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 887 .addReg(SPReg) 888 .addReg(SPReg); 889 } 890 891 // Have we generated a STUX instruction to claim stack frame? If so, 892 // the negated frame size will be placed in ScratchReg. 893 bool HasSTUX = false; 894 895 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 896 // pointer is always stored at SP, we will get a free probe due to an essential 897 // STU(X) instruction. 898 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 899 // To be consistent with other targets, a pseudo instruction is emitted and 900 // will be later expanded in `inlineStackProbe`. 901 BuildMI(MBB, MBBI, dl, 902 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 903 : PPC::PROBED_STACKALLOC_32)) 904 .addDef(TempReg) 905 .addDef(ScratchReg) // ScratchReg stores the old sp. 906 .addImm(NegFrameSize); 907 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 908 // update the ScratchReg to meet the assumption that ScratchReg contains 909 // the NegFrameSize. This solution is rather tricky. 910 if (!HasRedZone) { 911 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 912 .addReg(ScratchReg) 913 .addReg(SPReg); 914 HasSTUX = true; 915 } 916 } else { 917 // This condition must be kept in sync with canUseAsPrologue. 918 if (HasBP && MaxAlign > 1) { 919 if (isPPC64) 920 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 921 .addReg(SPReg) 922 .addImm(0) 923 .addImm(64 - Log2(MaxAlign)); 924 else // PPC32... 925 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 926 .addReg(SPReg) 927 .addImm(0) 928 .addImm(32 - Log2(MaxAlign)) 929 .addImm(31); 930 if (!isLargeFrame) { 931 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 932 .addReg(ScratchReg, RegState::Kill) 933 .addImm(NegFrameSize); 934 } else { 935 assert(!SingleScratchReg && "Only a single scratch reg available"); 936 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg) 937 .addImm(NegFrameSize >> 16); 938 BuildMI(MBB, MBBI, dl, OrImmInst, TempReg) 939 .addReg(TempReg, RegState::Kill) 940 .addImm(NegFrameSize & 0xFFFF); 941 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 942 .addReg(ScratchReg, RegState::Kill) 943 .addReg(TempReg, RegState::Kill); 944 } 945 946 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 947 .addReg(SPReg, RegState::Kill) 948 .addReg(SPReg) 949 .addReg(ScratchReg); 950 HasSTUX = true; 951 952 } else if (!isLargeFrame) { 953 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 954 .addReg(SPReg) 955 .addImm(NegFrameSize) 956 .addReg(SPReg); 957 958 } else { 959 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 960 .addImm(NegFrameSize >> 16); 961 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 962 .addReg(ScratchReg, RegState::Kill) 963 .addImm(NegFrameSize & 0xFFFF); 964 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 965 .addReg(SPReg, RegState::Kill) 966 .addReg(SPReg) 967 .addReg(ScratchReg); 968 HasSTUX = true; 969 } 970 } 971 972 // Save the TOC register after the stack pointer update if a prologue TOC 973 // save is required for the function. 974 if (MustSaveTOC) { 975 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 976 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 977 .addReg(TOCReg, getKillRegState(true)) 978 .addImm(TOCSaveOffset) 979 .addReg(SPReg); 980 } 981 982 if (!HasRedZone) { 983 assert(!isPPC64 && "A red zone is always available on PPC64"); 984 if (HasSTUX) { 985 // The negated frame size is in ScratchReg, and the SPReg has been 986 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 987 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 988 // the stack frame (i.e. the old SP), ideally, we would put the old 989 // SP into a register and use it as the base for the stores. The 990 // problem is that the only available register may be ScratchReg, 991 // which could be R0, and R0 cannot be used as a base address. 992 993 // First, set ScratchReg to the old SP. This may need to be modified 994 // later. 995 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 996 .addReg(ScratchReg, RegState::Kill) 997 .addReg(SPReg); 998 999 if (ScratchReg == PPC::R0) { 1000 // R0 cannot be used as a base register, but it can be used as an 1001 // index in a store-indexed. 1002 int LastOffset = 0; 1003 if (HasFP) { 1004 // R0 += (FPOffset-LastOffset). 1005 // Need addic, since addi treats R0 as 0. 1006 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1007 .addReg(ScratchReg) 1008 .addImm(FPOffset-LastOffset); 1009 LastOffset = FPOffset; 1010 // Store FP into *R0. 1011 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1012 .addReg(FPReg, RegState::Kill) // Save FP. 1013 .addReg(PPC::ZERO) 1014 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1015 } 1016 if (FI->usesPICBase()) { 1017 // R0 += (PBPOffset-LastOffset). 1018 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1019 .addReg(ScratchReg) 1020 .addImm(PBPOffset-LastOffset); 1021 LastOffset = PBPOffset; 1022 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1023 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1024 .addReg(PPC::ZERO) 1025 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1026 } 1027 if (HasBP) { 1028 // R0 += (BPOffset-LastOffset). 1029 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1030 .addReg(ScratchReg) 1031 .addImm(BPOffset-LastOffset); 1032 LastOffset = BPOffset; 1033 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1034 .addReg(BPReg, RegState::Kill) // Save BP. 1035 .addReg(PPC::ZERO) 1036 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1037 // BP = R0-LastOffset 1038 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1039 .addReg(ScratchReg, RegState::Kill) 1040 .addImm(-LastOffset); 1041 } 1042 } else { 1043 // ScratchReg is not R0, so use it as the base register. It is 1044 // already set to the old SP, so we can use the offsets directly. 1045 1046 // Now that the stack frame has been allocated, save all the necessary 1047 // registers using ScratchReg as the base address. 1048 if (HasFP) 1049 BuildMI(MBB, MBBI, dl, StoreInst) 1050 .addReg(FPReg) 1051 .addImm(FPOffset) 1052 .addReg(ScratchReg); 1053 if (FI->usesPICBase()) 1054 BuildMI(MBB, MBBI, dl, StoreInst) 1055 .addReg(PPC::R30) 1056 .addImm(PBPOffset) 1057 .addReg(ScratchReg); 1058 if (HasBP) { 1059 BuildMI(MBB, MBBI, dl, StoreInst) 1060 .addReg(BPReg) 1061 .addImm(BPOffset) 1062 .addReg(ScratchReg); 1063 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1064 .addReg(ScratchReg, RegState::Kill) 1065 .addReg(ScratchReg); 1066 } 1067 } 1068 } else { 1069 // The frame size is a known 16-bit constant (fitting in the immediate 1070 // field of STWU). To be here we have to be compiling for PPC32. 1071 // Since the SPReg has been decreased by FrameSize, add it back to each 1072 // offset. 1073 if (HasFP) 1074 BuildMI(MBB, MBBI, dl, StoreInst) 1075 .addReg(FPReg) 1076 .addImm(FrameSize + FPOffset) 1077 .addReg(SPReg); 1078 if (FI->usesPICBase()) 1079 BuildMI(MBB, MBBI, dl, StoreInst) 1080 .addReg(PPC::R30) 1081 .addImm(FrameSize + PBPOffset) 1082 .addReg(SPReg); 1083 if (HasBP) { 1084 BuildMI(MBB, MBBI, dl, StoreInst) 1085 .addReg(BPReg) 1086 .addImm(FrameSize + BPOffset) 1087 .addReg(SPReg); 1088 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1089 .addReg(SPReg) 1090 .addImm(FrameSize); 1091 } 1092 } 1093 } 1094 1095 // Add Call Frame Information for the instructions we generated above. 1096 if (needsCFI) { 1097 unsigned CFIIndex; 1098 1099 if (HasBP) { 1100 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1101 // because if the stack needed aligning then CFA won't be at a fixed 1102 // offset from FP/SP. 1103 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1104 CFIIndex = MF.addFrameInst( 1105 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1106 } else { 1107 // Adjust the definition of CFA to account for the change in SP. 1108 assert(NegFrameSize); 1109 CFIIndex = MF.addFrameInst( 1110 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1111 } 1112 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1113 .addCFIIndex(CFIIndex); 1114 1115 if (HasFP) { 1116 // Describe where FP was saved, at a fixed offset from CFA. 1117 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1118 CFIIndex = MF.addFrameInst( 1119 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1120 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1121 .addCFIIndex(CFIIndex); 1122 } 1123 1124 if (FI->usesPICBase()) { 1125 // Describe where FP was saved, at a fixed offset from CFA. 1126 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1127 CFIIndex = MF.addFrameInst( 1128 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1129 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1130 .addCFIIndex(CFIIndex); 1131 } 1132 1133 if (HasBP) { 1134 // Describe where BP was saved, at a fixed offset from CFA. 1135 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1136 CFIIndex = MF.addFrameInst( 1137 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1138 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1139 .addCFIIndex(CFIIndex); 1140 } 1141 1142 if (MustSaveLR) { 1143 // Describe where LR was saved, at a fixed offset from CFA. 1144 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1145 CFIIndex = MF.addFrameInst( 1146 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1147 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1148 .addCFIIndex(CFIIndex); 1149 } 1150 } 1151 1152 // If there is a frame pointer, copy R1 into R31 1153 if (HasFP) { 1154 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1155 .addReg(SPReg) 1156 .addReg(SPReg); 1157 1158 if (!HasBP && needsCFI) { 1159 // Change the definition of CFA from SP+offset to FP+offset, because SP 1160 // will change at every alloca. 1161 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1162 unsigned CFIIndex = MF.addFrameInst( 1163 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1164 1165 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1166 .addCFIIndex(CFIIndex); 1167 } 1168 } 1169 1170 if (needsCFI) { 1171 // Describe where callee saved registers were saved, at fixed offsets from 1172 // CFA. 1173 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1174 for (const CalleeSavedInfo &I : CSI) { 1175 unsigned Reg = I.getReg(); 1176 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1177 1178 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1179 // subregisters of CR2. We just need to emit a move of CR2. 1180 if (PPC::CRBITRCRegClass.contains(Reg)) 1181 continue; 1182 1183 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1184 continue; 1185 1186 // For SVR4, don't emit a move for the CR spill slot if we haven't 1187 // spilled CRs. 1188 if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4) 1189 && !MustSaveCR) 1190 continue; 1191 1192 // For 64-bit SVR4 when we have spilled CRs, the spill location 1193 // is SP+8, not a frame-relative slot. 1194 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1195 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1196 // the whole CR word. In the ELFv2 ABI, every CR that was 1197 // actually saved gets its own CFI record. 1198 unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2; 1199 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1200 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1201 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1202 .addCFIIndex(CFIIndex); 1203 continue; 1204 } 1205 1206 if (I.isSpilledToReg()) { 1207 unsigned SpilledReg = I.getDstReg(); 1208 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1209 nullptr, MRI->getDwarfRegNum(Reg, true), 1210 MRI->getDwarfRegNum(SpilledReg, true))); 1211 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1212 .addCFIIndex(CFIRegister); 1213 } else { 1214 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 1215 // We have changed the object offset above but we do not want to change 1216 // the actual offsets in the CFI instruction so we have to undo the 1217 // offset change here. 1218 if (MovingStackUpdateDown) 1219 Offset -= NegFrameSize; 1220 1221 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1222 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1223 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1224 .addCFIIndex(CFIIndex); 1225 } 1226 } 1227 } 1228 } 1229 1230 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1231 MachineBasicBlock &PrologMBB) const { 1232 bool isPPC64 = Subtarget.isPPC64(); 1233 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1234 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1235 MachineFrameInfo &MFI = MF.getFrameInfo(); 1236 MachineModuleInfo &MMI = MF.getMMI(); 1237 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1238 // AIX assembler does not support cfi directives. 1239 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1240 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1241 int Opc = MI.getOpcode(); 1242 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1243 }); 1244 if (StackAllocMIPos == PrologMBB.end()) 1245 return; 1246 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1247 MachineBasicBlock *CurrentMBB = &PrologMBB; 1248 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1249 MachineInstr &MI = *StackAllocMIPos; 1250 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1251 unsigned ProbeSize = TLI.getStackProbeSize(MF); 1252 int64_t NegProbeSize = -(int64_t)ProbeSize; 1253 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1254 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1255 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1256 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1257 Register ScratchReg = MI.getOperand(0).getReg(); 1258 Register FPReg = MI.getOperand(1).getReg(); 1259 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1260 bool HasBP = RegInfo->hasBasePointer(MF); 1261 Register BPReg = RegInfo->getBaseRegister(MF); 1262 Align MaxAlign = MFI.getMaxAlign(); 1263 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1264 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1265 // Subroutines to generate .cfi_* directives. 1266 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1267 MachineBasicBlock::iterator MBBI, Register Reg) { 1268 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1269 unsigned CFIIndex = MF.addFrameInst( 1270 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1271 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1272 .addCFIIndex(CFIIndex); 1273 }; 1274 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1275 MachineBasicBlock::iterator MBBI, Register Reg, 1276 int Offset) { 1277 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1278 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1279 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1280 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1281 .addCFIIndex(CFIIndex); 1282 }; 1283 // Subroutine to determine if we can use the Imm as part of d-form. 1284 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1285 // Subroutine to materialize the Imm into TempReg. 1286 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1287 MachineBasicBlock::iterator MBBI, int64_t Imm, 1288 Register &TempReg) { 1289 assert(isInt<32>(Imm) && "Unhandled imm"); 1290 if (isInt<16>(Imm)) 1291 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1292 .addImm(Imm); 1293 else { 1294 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1295 .addImm(Imm >> 16); 1296 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1297 .addReg(TempReg) 1298 .addImm(Imm & 0xFFFF); 1299 } 1300 }; 1301 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1302 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1303 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1304 Register NegSizeReg, bool UseDForm, 1305 Register StoreReg) { 1306 if (UseDForm) 1307 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1308 .addReg(StoreReg) 1309 .addImm(NegSize) 1310 .addReg(SPReg); 1311 else 1312 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1313 .addReg(StoreReg) 1314 .addReg(SPReg) 1315 .addReg(NegSizeReg); 1316 }; 1317 // Used to probe stack when realignment is required. 1318 // Note that, according to ABI's requirement, *sp must always equals the 1319 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp. 1320 // Following is pseudo code: 1321 // final_sp = (sp & align) + negframesize; 1322 // neg_gap = final_sp - sp; 1323 // while (neg_gap < negprobesize) { 1324 // stdu fp, negprobesize(sp); 1325 // neg_gap -= negprobesize; 1326 // } 1327 // stdux fp, sp, neg_gap 1328 // 1329 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg 1330 // before probe code, we don't need to save it, so we get one additional reg 1331 // that can be used to materialize the probeside if needed to use xform. 1332 // Otherwise, we can NOT materialize probeside, so we can only use Dform for 1333 // now. 1334 // 1335 // The allocations are: 1336 // if (HasBP && HasRedzone) { 1337 // r0: materialize the probesize if needed so that we can use xform. 1338 // r12: `neg_gap` 1339 // } else { 1340 // r0: back-chain pointer 1341 // r12: `neg_gap`. 1342 // } 1343 auto probeRealignedStack = [&](MachineBasicBlock &MBB, 1344 MachineBasicBlock::iterator MBBI, 1345 Register ScratchReg, Register TempReg) { 1346 assert(HasBP && "The function is supposed to have base pointer when its " 1347 "stack is realigned."); 1348 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2"); 1349 1350 // FIXME: We can eliminate this limitation if we get more infomation about 1351 // which part of redzone are already used. Used redzone can be treated 1352 // probed. But there might be `holes' in redzone probed, this could 1353 // complicate the implementation. 1354 assert(ProbeSize >= Subtarget.getRedZoneSize() && 1355 "Probe size should be larger or equal to the size of red-zone so " 1356 "that red-zone is not clobbered by probing."); 1357 1358 Register &FinalStackPtr = TempReg; 1359 // FIXME: We only support NegProbeSize materializable by DForm currently. 1360 // When HasBP && HasRedzone, we can use xform if we have an additional idle 1361 // register. 1362 NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15)); 1363 assert(isInt<16>(NegProbeSize) && 1364 "NegProbeSize should be materializable by DForm"); 1365 Register CRReg = PPC::CR0; 1366 // Layout of output assembly kinda like: 1367 // bb.0: 1368 // ... 1369 // sub $scratchreg, $finalsp, r1 1370 // cmpdi $scratchreg, <negprobesize> 1371 // bge bb.2 1372 // bb.1: 1373 // stdu <backchain>, <negprobesize>(r1) 1374 // sub $scratchreg, $scratchreg, negprobesize 1375 // cmpdi $scratchreg, <negprobesize> 1376 // blt bb.1 1377 // bb.2: 1378 // stdux <backchain>, r1, $scratchreg 1379 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 1380 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB); 1381 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB); 1382 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1383 MF.insert(MBBInsertPoint, ProbeExitMBB); 1384 // bb.2 1385 { 1386 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1387 allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false, 1388 BackChainPointer); 1389 if (HasRedZone) 1390 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg 1391 // to TempReg to satisfy it. 1392 BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg) 1393 .addReg(BPReg) 1394 .addReg(BPReg); 1395 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end()); 1396 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 1397 } 1398 // bb.0 1399 { 1400 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg) 1401 .addReg(SPReg) 1402 .addReg(FinalStackPtr); 1403 if (!HasRedZone) 1404 BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg); 1405 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg) 1406 .addReg(ScratchReg) 1407 .addImm(NegProbeSize); 1408 BuildMI(&MBB, DL, TII.get(PPC::BCC)) 1409 .addImm(PPC::PRED_GE) 1410 .addReg(CRReg) 1411 .addMBB(ProbeExitMBB); 1412 MBB.addSuccessor(ProbeLoopBodyMBB); 1413 MBB.addSuccessor(ProbeExitMBB); 1414 } 1415 // bb.1 1416 { 1417 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1418 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize, 1419 0, true /*UseDForm*/, BackChainPointer); 1420 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI), 1421 ScratchReg) 1422 .addReg(ScratchReg) 1423 .addImm(-NegProbeSize); 1424 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), 1425 CRReg) 1426 .addReg(ScratchReg) 1427 .addImm(NegProbeSize); 1428 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC)) 1429 .addImm(PPC::PRED_LT) 1430 .addReg(CRReg) 1431 .addMBB(ProbeLoopBodyMBB); 1432 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB); 1433 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB); 1434 } 1435 // Update liveins. 1436 recomputeLiveIns(*ProbeLoopBodyMBB); 1437 recomputeLiveIns(*ProbeExitMBB); 1438 return ProbeExitMBB; 1439 }; 1440 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing 1441 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since 1442 // the offset subtracted from SP is determined by SP's runtime value. 1443 if (HasBP && MaxAlign > 1) { 1444 // Calculate final stack pointer. 1445 if (isPPC64) 1446 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg) 1447 .addReg(SPReg) 1448 .addImm(0) 1449 .addImm(64 - Log2(MaxAlign)); 1450 else 1451 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1452 .addReg(SPReg) 1453 .addImm(0) 1454 .addImm(32 - Log2(MaxAlign)) 1455 .addImm(31); 1456 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), 1457 FPReg) 1458 .addReg(ScratchReg) 1459 .addReg(SPReg); 1460 MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg); 1461 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 1462 FPReg) 1463 .addReg(ScratchReg) 1464 .addReg(FPReg); 1465 CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg); 1466 if (needsCFI) 1467 buildDefCFAReg(*CurrentMBB, {MI}, FPReg); 1468 } else { 1469 // Initialize current frame pointer. 1470 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1471 // Use FPReg to calculate CFA. 1472 if (needsCFI) 1473 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1474 // Probe residual part. 1475 if (NegResidualSize) { 1476 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1477 if (!ResidualUseDForm) 1478 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg); 1479 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg, 1480 ResidualUseDForm, FPReg); 1481 } 1482 bool UseDForm = CanUseDForm(NegProbeSize); 1483 // If number of blocks is small, just probe them directly. 1484 if (NumBlocks < 3) { 1485 if (!UseDForm) 1486 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1487 for (int i = 0; i < NumBlocks; ++i) 1488 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm, 1489 FPReg); 1490 if (needsCFI) { 1491 // Restore using SPReg to calculate CFA. 1492 buildDefCFAReg(*CurrentMBB, {MI}, SPReg); 1493 } 1494 } else { 1495 // Since CTR is a volatile register and current shrinkwrap implementation 1496 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1497 // CTR loop to probe. 1498 // Calculate trip count and stores it in CTRReg. 1499 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg); 1500 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1501 .addReg(ScratchReg, RegState::Kill); 1502 if (!UseDForm) 1503 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1504 // Create MBBs of the loop. 1505 MachineFunction::iterator MBBInsertPoint = 1506 std::next(CurrentMBB->getIterator()); 1507 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1508 MF.insert(MBBInsertPoint, LoopMBB); 1509 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1510 MF.insert(MBBInsertPoint, ExitMBB); 1511 // Synthesize the loop body. 1512 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1513 UseDForm, FPReg); 1514 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1515 .addMBB(LoopMBB); 1516 LoopMBB->addSuccessor(ExitMBB); 1517 LoopMBB->addSuccessor(LoopMBB); 1518 // Synthesize the exit MBB. 1519 ExitMBB->splice(ExitMBB->end(), CurrentMBB, 1520 std::next(MachineBasicBlock::iterator(MI)), 1521 CurrentMBB->end()); 1522 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB); 1523 CurrentMBB->addSuccessor(LoopMBB); 1524 if (needsCFI) { 1525 // Restore using SPReg to calculate CFA. 1526 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1527 } 1528 // Update liveins. 1529 recomputeLiveIns(*LoopMBB); 1530 recomputeLiveIns(*ExitMBB); 1531 } 1532 } 1533 ++NumPrologProbed; 1534 MI.eraseFromParent(); 1535 } 1536 1537 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1538 MachineBasicBlock &MBB) const { 1539 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1540 DebugLoc dl; 1541 1542 if (MBBI != MBB.end()) 1543 dl = MBBI->getDebugLoc(); 1544 1545 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1546 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1547 1548 // Get alignment info so we know how to restore the SP. 1549 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1550 1551 // Get the number of bytes allocated from the FrameInfo. 1552 int64_t FrameSize = MFI.getStackSize(); 1553 1554 // Get processor type. 1555 bool isPPC64 = Subtarget.isPPC64(); 1556 1557 // Check if the link register (LR) has been saved. 1558 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1559 bool MustSaveLR = FI->mustSaveLR(); 1560 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1561 bool MustSaveCR = !MustSaveCRs.empty(); 1562 // Do we have a frame pointer and/or base pointer for this function? 1563 bool HasFP = hasFP(MF); 1564 bool HasBP = RegInfo->hasBasePointer(MF); 1565 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1566 bool HasROPProtect = Subtarget.hasROPProtect(); 1567 bool HasPrivileged = Subtarget.hasPrivileged(); 1568 1569 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1570 Register BPReg = RegInfo->getBaseRegister(MF); 1571 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1572 Register ScratchReg; 1573 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1574 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1575 : PPC::MTLR ); 1576 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1577 : PPC::LWZ ); 1578 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1579 : PPC::LIS ); 1580 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1581 : PPC::OR ); 1582 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1583 : PPC::ORI ); 1584 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1585 : PPC::ADDI ); 1586 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1587 : PPC::ADD4 ); 1588 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1589 : PPC::LWZ); 1590 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1591 : PPC::MTOCRF); 1592 const MCInstrDesc &HashChk = 1593 TII.get(HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK); 1594 int64_t LROffset = getReturnSaveOffset(); 1595 1596 int64_t FPOffset = 0; 1597 1598 // Using the same bool variable as below to suppress compiler warnings. 1599 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1600 &TempReg); 1601 assert(SingleScratchReg && 1602 "Could not find an available scratch register"); 1603 1604 SingleScratchReg = ScratchReg == TempReg; 1605 1606 if (HasFP) { 1607 int FPIndex = FI->getFramePointerSaveIndex(); 1608 assert(FPIndex && "No Frame Pointer Save Slot!"); 1609 FPOffset = MFI.getObjectOffset(FPIndex); 1610 } 1611 1612 int64_t BPOffset = 0; 1613 if (HasBP) { 1614 int BPIndex = FI->getBasePointerSaveIndex(); 1615 assert(BPIndex && "No Base Pointer Save Slot!"); 1616 BPOffset = MFI.getObjectOffset(BPIndex); 1617 } 1618 1619 int64_t PBPOffset = 0; 1620 if (FI->usesPICBase()) { 1621 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1622 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1623 PBPOffset = MFI.getObjectOffset(PBPIndex); 1624 } 1625 1626 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1627 1628 if (IsReturnBlock) { 1629 unsigned RetOpcode = MBBI->getOpcode(); 1630 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1631 RetOpcode == PPC::TCRETURNdi || 1632 RetOpcode == PPC::TCRETURNai || 1633 RetOpcode == PPC::TCRETURNri8 || 1634 RetOpcode == PPC::TCRETURNdi8 || 1635 RetOpcode == PPC::TCRETURNai8; 1636 1637 if (UsesTCRet) { 1638 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1639 MachineOperand &StackAdjust = MBBI->getOperand(1); 1640 assert(StackAdjust.isImm() && "Expecting immediate value."); 1641 // Adjust stack pointer. 1642 int StackAdj = StackAdjust.getImm(); 1643 int Delta = StackAdj - MaxTCRetDelta; 1644 assert((Delta >= 0) && "Delta must be positive"); 1645 if (MaxTCRetDelta>0) 1646 FrameSize += (StackAdj +Delta); 1647 else 1648 FrameSize += StackAdj; 1649 } 1650 } 1651 1652 // Frames of 32KB & larger require special handling because they cannot be 1653 // indexed into with a simple LD/LWZ immediate offset operand. 1654 bool isLargeFrame = !isInt<16>(FrameSize); 1655 1656 // On targets without red zone, the SP needs to be restored last, so that 1657 // all live contents of the stack frame are upwards of the SP. This means 1658 // that we cannot restore SP just now, since there may be more registers 1659 // to restore from the stack frame (e.g. R31). If the frame size is not 1660 // a simple immediate value, we will need a spare register to hold the 1661 // restored SP. If the frame size is known and small, we can simply adjust 1662 // the offsets of the registers to be restored, and still use SP to restore 1663 // them. In such case, the final update of SP will be to add the frame 1664 // size to it. 1665 // To simplify the code, set RBReg to the base register used to restore 1666 // values from the stack, and set SPAdd to the value that needs to be added 1667 // to the SP at the end. The default values are as if red zone was present. 1668 unsigned RBReg = SPReg; 1669 unsigned SPAdd = 0; 1670 1671 // Check if we can move the stack update instruction up the epilogue 1672 // past the callee saves. This will allow the move to LR instruction 1673 // to be executed before the restores of the callee saves which means 1674 // that the callee saves can hide the latency from the MTLR instrcution. 1675 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1676 if (stackUpdateCanBeMoved(MF)) { 1677 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1678 for (CalleeSavedInfo CSI : Info) { 1679 // If the callee saved register is spilled to another register abort the 1680 // stack update movement. 1681 if (CSI.isSpilledToReg()) { 1682 StackUpdateLoc = MBBI; 1683 break; 1684 } 1685 int FrIdx = CSI.getFrameIdx(); 1686 // If the frame index is not negative the callee saved info belongs to a 1687 // stack object that is not a fixed stack object. We ignore non-fixed 1688 // stack objects because we won't move the update of the stack pointer 1689 // past them. 1690 if (FrIdx >= 0) 1691 continue; 1692 1693 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1694 StackUpdateLoc--; 1695 else { 1696 // Abort the operation as we can't update all CSR restores. 1697 StackUpdateLoc = MBBI; 1698 break; 1699 } 1700 } 1701 } 1702 1703 if (FrameSize) { 1704 // In the prologue, the loaded (or persistent) stack pointer value is 1705 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1706 // zone add this offset back now. 1707 1708 // If the function has a base pointer, the stack pointer has been copied 1709 // to it so we can restore it by copying in the other direction. 1710 if (HasRedZone && HasBP) { 1711 BuildMI(MBB, MBBI, dl, OrInst, RBReg). 1712 addReg(BPReg). 1713 addReg(BPReg); 1714 } 1715 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1716 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1717 // call which invalidates the stack pointer value in SP(0). So we use the 1718 // value of R31 in this case. Similar situation exists with setjmp. 1719 else if (FI->hasFastCall() || MF.exposesReturnsTwice()) { 1720 assert(HasFP && "Expecting a valid frame pointer."); 1721 if (!HasRedZone) 1722 RBReg = FPReg; 1723 if (!isLargeFrame) { 1724 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1725 .addReg(FPReg).addImm(FrameSize); 1726 } else { 1727 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1728 .addImm(FrameSize >> 16); 1729 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1730 .addReg(ScratchReg, RegState::Kill) 1731 .addImm(FrameSize & 0xFFFF); 1732 BuildMI(MBB, MBBI, dl, AddInst) 1733 .addReg(RBReg) 1734 .addReg(FPReg) 1735 .addReg(ScratchReg); 1736 } 1737 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1738 if (HasRedZone) { 1739 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1740 .addReg(SPReg) 1741 .addImm(FrameSize); 1742 } else { 1743 // Make sure that adding FrameSize will not overflow the max offset 1744 // size. 1745 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1746 "Local offsets should be negative"); 1747 SPAdd = FrameSize; 1748 FPOffset += FrameSize; 1749 BPOffset += FrameSize; 1750 PBPOffset += FrameSize; 1751 } 1752 } else { 1753 // We don't want to use ScratchReg as a base register, because it 1754 // could happen to be R0. Use FP instead, but make sure to preserve it. 1755 if (!HasRedZone) { 1756 // If FP is not saved, copy it to ScratchReg. 1757 if (!HasFP) 1758 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1759 .addReg(FPReg) 1760 .addReg(FPReg); 1761 RBReg = FPReg; 1762 } 1763 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1764 .addImm(0) 1765 .addReg(SPReg); 1766 } 1767 } 1768 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1769 // If there is no red zone, ScratchReg may be needed for holding a useful 1770 // value (although not the base register). Make sure it is not overwritten 1771 // too early. 1772 1773 // If we need to restore both the LR and the CR and we only have one 1774 // available scratch register, we must do them one at a time. 1775 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1776 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1777 // is live here. 1778 assert(HasRedZone && "Expecting red zone"); 1779 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1780 .addImm(CRSaveOffset) 1781 .addReg(SPReg); 1782 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1783 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1784 .addReg(TempReg, getKillRegState(i == e-1)); 1785 } 1786 1787 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1788 // LR is stored in the caller's stack frame. ScratchReg will be needed 1789 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1790 // a base register anyway, because it may happen to be R0. 1791 bool LoadedLR = false; 1792 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1793 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1794 .addImm(LROffset+SPAdd) 1795 .addReg(RBReg); 1796 LoadedLR = true; 1797 } 1798 1799 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1800 assert(RBReg == SPReg && "Should be using SP as a base register"); 1801 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1802 .addImm(CRSaveOffset) 1803 .addReg(RBReg); 1804 } 1805 1806 if (HasFP) { 1807 // If there is red zone, restore FP directly, since SP has already been 1808 // restored. Otherwise, restore the value of FP into ScratchReg. 1809 if (HasRedZone || RBReg == SPReg) 1810 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1811 .addImm(FPOffset) 1812 .addReg(SPReg); 1813 else 1814 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1815 .addImm(FPOffset) 1816 .addReg(RBReg); 1817 } 1818 1819 if (FI->usesPICBase()) 1820 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1821 .addImm(PBPOffset) 1822 .addReg(RBReg); 1823 1824 if (HasBP) 1825 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1826 .addImm(BPOffset) 1827 .addReg(RBReg); 1828 1829 // There is nothing more to be loaded from the stack, so now we can 1830 // restore SP: SP = RBReg + SPAdd. 1831 if (RBReg != SPReg || SPAdd != 0) { 1832 assert(!HasRedZone && "This should not happen with red zone"); 1833 // If SPAdd is 0, generate a copy. 1834 if (SPAdd == 0) 1835 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1836 .addReg(RBReg) 1837 .addReg(RBReg); 1838 else 1839 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1840 .addReg(RBReg) 1841 .addImm(SPAdd); 1842 1843 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1844 if (RBReg == FPReg) 1845 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1846 .addReg(ScratchReg) 1847 .addReg(ScratchReg); 1848 1849 // Now load the LR from the caller's stack frame. 1850 if (MustSaveLR && !LoadedLR) 1851 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1852 .addImm(LROffset) 1853 .addReg(SPReg); 1854 } 1855 1856 if (MustSaveCR && 1857 !(SingleScratchReg && MustSaveLR)) 1858 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1859 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1860 .addReg(TempReg, getKillRegState(i == e-1)); 1861 1862 if (MustSaveLR) { 1863 // If ROP protection is required, an extra instruction is added to compute a 1864 // hash and then compare it to the hash stored in the prologue. 1865 if (HasROPProtect) { 1866 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 1867 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 1868 assert((ImmOffset <= -8 && ImmOffset >= -512) && 1869 "ROP hash check location offset out of range."); 1870 assert(((ImmOffset & 0x7) == 0) && 1871 "ROP hash check location offset must be 8 byte aligned."); 1872 BuildMI(MBB, StackUpdateLoc, dl, HashChk) 1873 .addReg(ScratchReg) 1874 .addImm(ImmOffset) 1875 .addReg(SPReg); 1876 } 1877 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1878 } 1879 1880 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1881 // call optimization 1882 if (IsReturnBlock) { 1883 unsigned RetOpcode = MBBI->getOpcode(); 1884 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1885 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1886 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1887 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1888 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1889 1890 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1891 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1892 .addReg(SPReg).addImm(CallerAllocatedAmt); 1893 } else { 1894 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1895 .addImm(CallerAllocatedAmt >> 16); 1896 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1897 .addReg(ScratchReg, RegState::Kill) 1898 .addImm(CallerAllocatedAmt & 0xFFFF); 1899 BuildMI(MBB, MBBI, dl, AddInst) 1900 .addReg(SPReg) 1901 .addReg(FPReg) 1902 .addReg(ScratchReg); 1903 } 1904 } else { 1905 createTailCallBranchInstr(MBB); 1906 } 1907 } 1908 } 1909 1910 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1911 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1912 1913 // If we got this far a first terminator should exist. 1914 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1915 1916 DebugLoc dl = MBBI->getDebugLoc(); 1917 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1918 1919 // Create branch instruction for pseudo tail call return instruction. 1920 // The TCRETURNdi variants are direct calls. Valid targets for those are 1921 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1922 // since we can tail call external functions with PC-Rel (i.e. we don't need 1923 // to worry about different TOC pointers). Some of the external functions will 1924 // be MO_GlobalAddress while others like memcpy for example, are going to 1925 // be MO_ExternalSymbol. 1926 unsigned RetOpcode = MBBI->getOpcode(); 1927 if (RetOpcode == PPC::TCRETURNdi) { 1928 MBBI = MBB.getLastNonDebugInstr(); 1929 MachineOperand &JumpTarget = MBBI->getOperand(0); 1930 if (JumpTarget.isGlobal()) 1931 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1932 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1933 else if (JumpTarget.isSymbol()) 1934 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1935 addExternalSymbol(JumpTarget.getSymbolName()); 1936 else 1937 llvm_unreachable("Expecting Global or External Symbol"); 1938 } else if (RetOpcode == PPC::TCRETURNri) { 1939 MBBI = MBB.getLastNonDebugInstr(); 1940 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1941 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1942 } else if (RetOpcode == PPC::TCRETURNai) { 1943 MBBI = MBB.getLastNonDebugInstr(); 1944 MachineOperand &JumpTarget = MBBI->getOperand(0); 1945 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1946 } else if (RetOpcode == PPC::TCRETURNdi8) { 1947 MBBI = MBB.getLastNonDebugInstr(); 1948 MachineOperand &JumpTarget = MBBI->getOperand(0); 1949 if (JumpTarget.isGlobal()) 1950 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1951 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1952 else if (JumpTarget.isSymbol()) 1953 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1954 addExternalSymbol(JumpTarget.getSymbolName()); 1955 else 1956 llvm_unreachable("Expecting Global or External Symbol"); 1957 } else if (RetOpcode == PPC::TCRETURNri8) { 1958 MBBI = MBB.getLastNonDebugInstr(); 1959 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1960 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1961 } else if (RetOpcode == PPC::TCRETURNai8) { 1962 MBBI = MBB.getLastNonDebugInstr(); 1963 MachineOperand &JumpTarget = MBBI->getOperand(0); 1964 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1965 } 1966 } 1967 1968 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1969 BitVector &SavedRegs, 1970 RegScavenger *RS) const { 1971 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1972 1973 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1974 1975 // Save and clear the LR state. 1976 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1977 unsigned LR = RegInfo->getRARegister(); 1978 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1979 SavedRegs.reset(LR); 1980 1981 // Save R31 if necessary 1982 int FPSI = FI->getFramePointerSaveIndex(); 1983 const bool isPPC64 = Subtarget.isPPC64(); 1984 MachineFrameInfo &MFI = MF.getFrameInfo(); 1985 1986 // If the frame pointer save index hasn't been defined yet. 1987 if (!FPSI && needsFP(MF)) { 1988 // Find out what the fix offset of the frame pointer save area. 1989 int FPOffset = getFramePointerSaveOffset(); 1990 // Allocate the frame index for frame pointer save area. 1991 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 1992 // Save the result. 1993 FI->setFramePointerSaveIndex(FPSI); 1994 } 1995 1996 int BPSI = FI->getBasePointerSaveIndex(); 1997 if (!BPSI && RegInfo->hasBasePointer(MF)) { 1998 int BPOffset = getBasePointerSaveOffset(); 1999 // Allocate the frame index for the base pointer save area. 2000 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 2001 // Save the result. 2002 FI->setBasePointerSaveIndex(BPSI); 2003 } 2004 2005 // Reserve stack space for the PIC Base register (R30). 2006 // Only used in SVR4 32-bit. 2007 if (FI->usesPICBase()) { 2008 int PBPSI = MFI.CreateFixedObject(4, -8, true); 2009 FI->setPICBasePointerSaveIndex(PBPSI); 2010 } 2011 2012 // Make sure we don't explicitly spill r31, because, for example, we have 2013 // some inline asm which explicitly clobbers it, when we otherwise have a 2014 // frame pointer and are using r31's spill slot for the prologue/epilogue 2015 // code. Same goes for the base pointer and the PIC base register. 2016 if (needsFP(MF)) 2017 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 2018 if (RegInfo->hasBasePointer(MF)) 2019 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 2020 if (FI->usesPICBase()) 2021 SavedRegs.reset(PPC::R30); 2022 2023 // Reserve stack space to move the linkage area to in case of a tail call. 2024 int TCSPDelta = 0; 2025 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2026 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 2027 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 2028 } 2029 2030 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 2031 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 2032 // object at the offset of the CR-save slot in the linkage area. The actual 2033 // save and restore of the condition register will be created as part of the 2034 // prologue and epilogue insertion, but the FixedStack object is needed to 2035 // keep the CalleSavedInfo valid. 2036 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 2037 SavedRegs.test(PPC::CR4))) { 2038 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 2039 const int64_t SpillOffset = 2040 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 2041 int FrameIdx = 2042 MFI.CreateFixedObject(SpillSize, SpillOffset, 2043 /* IsImmutable */ true, /* IsAliased */ false); 2044 FI->setCRSpillFrameIndex(FrameIdx); 2045 } 2046 } 2047 2048 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 2049 RegScavenger *RS) const { 2050 // Get callee saved register information. 2051 MachineFrameInfo &MFI = MF.getFrameInfo(); 2052 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2053 2054 // If the function is shrink-wrapped, and if the function has a tail call, the 2055 // tail call might not be in the new RestoreBlock, so real branch instruction 2056 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 2057 // RestoreBlock. So we handle this case here. 2058 if (MFI.getSavePoint() && MFI.hasTailCall()) { 2059 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 2060 for (MachineBasicBlock &MBB : MF) { 2061 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 2062 createTailCallBranchInstr(MBB); 2063 } 2064 } 2065 2066 // Early exit if no callee saved registers are modified! 2067 if (CSI.empty() && !needsFP(MF)) { 2068 addScavengingSpillSlot(MF, RS); 2069 return; 2070 } 2071 2072 unsigned MinGPR = PPC::R31; 2073 unsigned MinG8R = PPC::X31; 2074 unsigned MinFPR = PPC::F31; 2075 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 2076 2077 bool HasGPSaveArea = false; 2078 bool HasG8SaveArea = false; 2079 bool HasFPSaveArea = false; 2080 bool HasVRSaveArea = false; 2081 2082 SmallVector<CalleeSavedInfo, 18> GPRegs; 2083 SmallVector<CalleeSavedInfo, 18> G8Regs; 2084 SmallVector<CalleeSavedInfo, 18> FPRegs; 2085 SmallVector<CalleeSavedInfo, 18> VRegs; 2086 2087 for (const CalleeSavedInfo &I : CSI) { 2088 unsigned Reg = I.getReg(); 2089 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2090 (Reg != PPC::X2 && Reg != PPC::R2)) && 2091 "Not expecting to try to spill R2 in a function that must save TOC"); 2092 if (PPC::GPRCRegClass.contains(Reg)) { 2093 HasGPSaveArea = true; 2094 2095 GPRegs.push_back(I); 2096 2097 if (Reg < MinGPR) { 2098 MinGPR = Reg; 2099 } 2100 } else if (PPC::G8RCRegClass.contains(Reg)) { 2101 HasG8SaveArea = true; 2102 2103 G8Regs.push_back(I); 2104 2105 if (Reg < MinG8R) { 2106 MinG8R = Reg; 2107 } 2108 } else if (PPC::F8RCRegClass.contains(Reg)) { 2109 HasFPSaveArea = true; 2110 2111 FPRegs.push_back(I); 2112 2113 if (Reg < MinFPR) { 2114 MinFPR = Reg; 2115 } 2116 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2117 PPC::CRRCRegClass.contains(Reg)) { 2118 ; // do nothing, as we already know whether CRs are spilled 2119 } else if (PPC::VRRCRegClass.contains(Reg) || 2120 PPC::SPERCRegClass.contains(Reg)) { 2121 // Altivec and SPE are mutually exclusive, but have the same stack 2122 // alignment requirements, so overload the save area for both cases. 2123 HasVRSaveArea = true; 2124 2125 VRegs.push_back(I); 2126 2127 if (Reg < MinVR) { 2128 MinVR = Reg; 2129 } 2130 } else { 2131 llvm_unreachable("Unknown RegisterClass!"); 2132 } 2133 } 2134 2135 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2136 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2137 2138 int64_t LowerBound = 0; 2139 2140 // Take into account stack space reserved for tail calls. 2141 int TCSPDelta = 0; 2142 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2143 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2144 LowerBound = TCSPDelta; 2145 } 2146 2147 // The Floating-point register save area is right below the back chain word 2148 // of the previous stack frame. 2149 if (HasFPSaveArea) { 2150 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2151 int FI = FPRegs[i].getFrameIdx(); 2152 2153 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2154 } 2155 2156 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2157 } 2158 2159 // Check whether the frame pointer register is allocated. If so, make sure it 2160 // is spilled to the correct offset. 2161 if (needsFP(MF)) { 2162 int FI = PFI->getFramePointerSaveIndex(); 2163 assert(FI && "No Frame Pointer Save Slot!"); 2164 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2165 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2166 HasGPSaveArea = true; 2167 } 2168 2169 if (PFI->usesPICBase()) { 2170 int FI = PFI->getPICBasePointerSaveIndex(); 2171 assert(FI && "No PIC Base Pointer Save Slot!"); 2172 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2173 2174 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2175 HasGPSaveArea = true; 2176 } 2177 2178 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2179 if (RegInfo->hasBasePointer(MF)) { 2180 int FI = PFI->getBasePointerSaveIndex(); 2181 assert(FI && "No Base Pointer Save Slot!"); 2182 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2183 2184 Register BP = RegInfo->getBaseRegister(MF); 2185 if (PPC::G8RCRegClass.contains(BP)) { 2186 MinG8R = std::min<unsigned>(MinG8R, BP); 2187 HasG8SaveArea = true; 2188 } else if (PPC::GPRCRegClass.contains(BP)) { 2189 MinGPR = std::min<unsigned>(MinGPR, BP); 2190 HasGPSaveArea = true; 2191 } 2192 } 2193 2194 // General register save area starts right below the Floating-point 2195 // register save area. 2196 if (HasGPSaveArea || HasG8SaveArea) { 2197 // Move general register save area spill slots down, taking into account 2198 // the size of the Floating-point register save area. 2199 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2200 if (!GPRegs[i].isSpilledToReg()) { 2201 int FI = GPRegs[i].getFrameIdx(); 2202 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2203 } 2204 } 2205 2206 // Move general register save area spill slots down, taking into account 2207 // the size of the Floating-point register save area. 2208 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2209 if (!G8Regs[i].isSpilledToReg()) { 2210 int FI = G8Regs[i].getFrameIdx(); 2211 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2212 } 2213 } 2214 2215 unsigned MinReg = 2216 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2217 TRI->getEncodingValue(MinG8R)); 2218 2219 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2220 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2221 } 2222 2223 // For 32-bit only, the CR save area is below the general register 2224 // save area. For 64-bit SVR4, the CR save area is addressed relative 2225 // to the stack pointer and hence does not need an adjustment here. 2226 // Only CR2 (the first nonvolatile spilled) has an associated frame 2227 // index so that we have a single uniform save area. 2228 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2229 // Adjust the frame index of the CR spill slot. 2230 for (const auto &CSInfo : CSI) { 2231 if (CSInfo.getReg() == PPC::CR2) { 2232 int FI = CSInfo.getFrameIdx(); 2233 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2234 break; 2235 } 2236 } 2237 2238 LowerBound -= 4; // The CR save area is always 4 bytes long. 2239 } 2240 2241 // Both Altivec and SPE have the same alignment and padding requirements 2242 // within the stack frame. 2243 if (HasVRSaveArea) { 2244 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2245 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2246 // we are using negative number here (the stack grows downward). We should 2247 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2248 // is the alignment size ( n = 16 here) and y is the size after aligning. 2249 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2250 LowerBound &= ~(15); 2251 2252 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2253 int FI = VRegs[i].getFrameIdx(); 2254 2255 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2256 } 2257 } 2258 2259 addScavengingSpillSlot(MF, RS); 2260 } 2261 2262 void 2263 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2264 RegScavenger *RS) const { 2265 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2266 // a large stack, which will require scavenging a register to materialize a 2267 // large offset. 2268 2269 // We need to have a scavenger spill slot for spills if the frame size is 2270 // large. In case there is no free register for large-offset addressing, 2271 // this slot is used for the necessary emergency spill. Also, we need the 2272 // slot for dynamic stack allocations. 2273 2274 // The scavenger might be invoked if the frame offset does not fit into 2275 // the 16-bit immediate. We don't know the complete frame size here 2276 // because we've not yet computed callee-saved register spills or the 2277 // needed alignment padding. 2278 unsigned StackSize = determineFrameLayout(MF, true); 2279 MachineFrameInfo &MFI = MF.getFrameInfo(); 2280 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) || 2281 (hasSpills(MF) && !isInt<16>(StackSize))) { 2282 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2283 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2284 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2285 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2286 unsigned Size = TRI.getSpillSize(RC); 2287 Align Alignment = TRI.getSpillAlign(RC); 2288 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2289 2290 // Might we have over-aligned allocas? 2291 bool HasAlVars = 2292 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2293 2294 // These kinds of spills might need two registers. 2295 if (spillsCR(MF) || HasAlVars) 2296 RS->addScavengingFrameIndex( 2297 MFI.CreateStackObject(Size, Alignment, false)); 2298 } 2299 } 2300 2301 // This function checks if a callee saved gpr can be spilled to a volatile 2302 // vector register. This occurs for leaf functions when the option 2303 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2304 // which were not spilled to vectors, return false so the target independent 2305 // code can handle them by assigning a FrameIdx to a stack slot. 2306 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2307 MachineFunction &MF, const TargetRegisterInfo *TRI, 2308 std::vector<CalleeSavedInfo> &CSI) const { 2309 2310 if (CSI.empty()) 2311 return true; // Early exit if no callee saved registers are modified! 2312 2313 // Early exit if cannot spill gprs to volatile vector registers. 2314 MachineFrameInfo &MFI = MF.getFrameInfo(); 2315 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2316 return false; 2317 2318 // Build a BitVector of VSRs that can be used for spilling GPRs. 2319 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2320 BitVector BVCalleeSaved(TRI->getNumRegs()); 2321 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2322 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2323 for (unsigned i = 0; CSRegs[i]; ++i) 2324 BVCalleeSaved.set(CSRegs[i]); 2325 2326 for (unsigned Reg : BVAllocatable.set_bits()) { 2327 // Set to 0 if the register is not a volatile VSX register, or if it is 2328 // used in the function. 2329 if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) || 2330 MF.getRegInfo().isPhysRegUsed(Reg)) 2331 BVAllocatable.reset(Reg); 2332 } 2333 2334 bool AllSpilledToReg = true; 2335 unsigned LastVSRUsedForSpill = 0; 2336 for (auto &CS : CSI) { 2337 if (BVAllocatable.none()) 2338 return false; 2339 2340 unsigned Reg = CS.getReg(); 2341 2342 if (!PPC::G8RCRegClass.contains(Reg)) { 2343 AllSpilledToReg = false; 2344 continue; 2345 } 2346 2347 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs 2348 // into one VSR using the mtvsrdd instruction. 2349 if (LastVSRUsedForSpill != 0) { 2350 CS.setDstReg(LastVSRUsedForSpill); 2351 BVAllocatable.reset(LastVSRUsedForSpill); 2352 LastVSRUsedForSpill = 0; 2353 continue; 2354 } 2355 2356 unsigned VolatileVFReg = BVAllocatable.find_first(); 2357 if (VolatileVFReg < BVAllocatable.size()) { 2358 CS.setDstReg(VolatileVFReg); 2359 LastVSRUsedForSpill = VolatileVFReg; 2360 } else { 2361 AllSpilledToReg = false; 2362 } 2363 } 2364 return AllSpilledToReg; 2365 } 2366 2367 bool PPCFrameLowering::spillCalleeSavedRegisters( 2368 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2369 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2370 2371 MachineFunction *MF = MBB.getParent(); 2372 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2373 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2374 bool MustSaveTOC = FI->mustSaveTOC(); 2375 DebugLoc DL; 2376 bool CRSpilled = false; 2377 MachineInstrBuilder CRMIB; 2378 BitVector Spilled(TRI->getNumRegs()); 2379 2380 VSRContainingGPRs.clear(); 2381 2382 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one 2383 // or two GPRs, so we need table to record information for later save/restore. 2384 llvm::for_each(CSI, [&](const CalleeSavedInfo &Info) { 2385 if (Info.isSpilledToReg()) { 2386 auto &SpilledVSR = 2387 VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second; 2388 assert(SpilledVSR.second == 0 && 2389 "Can't spill more than two GPRs into VSR!"); 2390 if (SpilledVSR.first == 0) 2391 SpilledVSR.first = Info.getReg(); 2392 else 2393 SpilledVSR.second = Info.getReg(); 2394 } 2395 }); 2396 2397 for (const CalleeSavedInfo &I : CSI) { 2398 unsigned Reg = I.getReg(); 2399 2400 // CR2 through CR4 are the nonvolatile CR fields. 2401 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2402 2403 // Add the callee-saved register as live-in; it's killed at the spill. 2404 // Do not do this for callee-saved registers that are live-in to the 2405 // function because they will already be marked live-in and this will be 2406 // adding it for a second time. It is an error to add the same register 2407 // to the set more than once. 2408 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2409 bool IsLiveIn = MRI.isLiveIn(Reg); 2410 if (!IsLiveIn) 2411 MBB.addLiveIn(Reg); 2412 2413 if (CRSpilled && IsCRField) { 2414 CRMIB.addReg(Reg, RegState::ImplicitKill); 2415 continue; 2416 } 2417 2418 // The actual spill will happen in the prologue. 2419 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2420 continue; 2421 2422 // Insert the spill to the stack frame. 2423 if (IsCRField) { 2424 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2425 if (!Subtarget.is32BitELFABI()) { 2426 // The actual spill will happen at the start of the prologue. 2427 FuncInfo->addMustSaveCR(Reg); 2428 } else { 2429 CRSpilled = true; 2430 FuncInfo->setSpillsCR(); 2431 2432 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2433 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2434 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2435 .addReg(Reg, RegState::ImplicitKill); 2436 2437 MBB.insert(MI, CRMIB); 2438 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2439 .addReg(PPC::R12, 2440 getKillRegState(true)), 2441 I.getFrameIdx())); 2442 } 2443 } else { 2444 if (I.isSpilledToReg()) { 2445 unsigned Dst = I.getDstReg(); 2446 2447 if (Spilled[Dst]) 2448 continue; 2449 2450 if (VSRContainingGPRs[Dst].second != 0) { 2451 assert(Subtarget.hasP9Vector() && 2452 "mtvsrdd is unavailable on pre-P9 targets."); 2453 2454 NumPESpillVSR += 2; 2455 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst) 2456 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)) 2457 .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true)); 2458 } else if (VSRContainingGPRs[Dst].second == 0) { 2459 assert(Subtarget.hasP8Vector() && 2460 "Can't move GPR to VSR on pre-P8 targets."); 2461 2462 ++NumPESpillVSR; 2463 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), 2464 TRI->getSubReg(Dst, PPC::sub_64)) 2465 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)); 2466 } else { 2467 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2468 } 2469 Spilled.set(Dst); 2470 } else { 2471 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2472 // Use !IsLiveIn for the kill flag. 2473 // We do not want to kill registers that are live in this function 2474 // before their use because they will become undefined registers. 2475 // Functions without NoUnwind need to preserve the order of elements in 2476 // saved vector registers. 2477 if (Subtarget.needsSwapsForVSXMemOps() && 2478 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2479 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2480 I.getFrameIdx(), RC, TRI); 2481 else 2482 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), 2483 RC, TRI); 2484 } 2485 } 2486 } 2487 return true; 2488 } 2489 2490 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2491 bool CR4Spilled, MachineBasicBlock &MBB, 2492 MachineBasicBlock::iterator MI, 2493 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2494 2495 MachineFunction *MF = MBB.getParent(); 2496 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2497 DebugLoc DL; 2498 unsigned MoveReg = PPC::R12; 2499 2500 // 32-bit: FP-relative 2501 MBB.insert(MI, 2502 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2503 CSI[CSIIndex].getFrameIdx())); 2504 2505 unsigned RestoreOp = PPC::MTOCRF; 2506 if (CR2Spilled) 2507 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2508 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2509 2510 if (CR3Spilled) 2511 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2512 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2513 2514 if (CR4Spilled) 2515 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2516 .addReg(MoveReg, getKillRegState(true))); 2517 } 2518 2519 MachineBasicBlock::iterator PPCFrameLowering:: 2520 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2521 MachineBasicBlock::iterator I) const { 2522 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2523 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2524 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2525 // Add (actually subtract) back the amount the callee popped on return. 2526 if (int CalleeAmt = I->getOperand(1).getImm()) { 2527 bool is64Bit = Subtarget.isPPC64(); 2528 CalleeAmt *= -1; 2529 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2530 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2531 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2532 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2533 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2534 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2535 const DebugLoc &dl = I->getDebugLoc(); 2536 2537 if (isInt<16>(CalleeAmt)) { 2538 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2539 .addReg(StackReg, RegState::Kill) 2540 .addImm(CalleeAmt); 2541 } else { 2542 MachineBasicBlock::iterator MBBI = I; 2543 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2544 .addImm(CalleeAmt >> 16); 2545 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2546 .addReg(TmpReg, RegState::Kill) 2547 .addImm(CalleeAmt & 0xFFFF); 2548 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2549 .addReg(StackReg, RegState::Kill) 2550 .addReg(TmpReg); 2551 } 2552 } 2553 } 2554 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2555 return MBB.erase(I); 2556 } 2557 2558 static bool isCalleeSavedCR(unsigned Reg) { 2559 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2560 } 2561 2562 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2563 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2564 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2565 MachineFunction *MF = MBB.getParent(); 2566 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2567 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2568 bool MustSaveTOC = FI->mustSaveTOC(); 2569 bool CR2Spilled = false; 2570 bool CR3Spilled = false; 2571 bool CR4Spilled = false; 2572 unsigned CSIIndex = 0; 2573 BitVector Restored(TRI->getNumRegs()); 2574 2575 // Initialize insertion-point logic; we will be restoring in reverse 2576 // order of spill. 2577 MachineBasicBlock::iterator I = MI, BeforeI = I; 2578 bool AtStart = I == MBB.begin(); 2579 2580 if (!AtStart) 2581 --BeforeI; 2582 2583 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2584 unsigned Reg = CSI[i].getReg(); 2585 2586 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2587 continue; 2588 2589 // Restore of callee saved condition register field is handled during 2590 // epilogue insertion. 2591 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2592 continue; 2593 2594 if (Reg == PPC::CR2) { 2595 CR2Spilled = true; 2596 // The spill slot is associated only with CR2, which is the 2597 // first nonvolatile spilled. Save it here. 2598 CSIIndex = i; 2599 continue; 2600 } else if (Reg == PPC::CR3) { 2601 CR3Spilled = true; 2602 continue; 2603 } else if (Reg == PPC::CR4) { 2604 CR4Spilled = true; 2605 continue; 2606 } else { 2607 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2608 // least one CR register, restore all spilled CRs together. 2609 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2610 bool is31 = needsFP(*MF); 2611 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2612 CSIIndex); 2613 CR2Spilled = CR3Spilled = CR4Spilled = false; 2614 } 2615 2616 if (CSI[i].isSpilledToReg()) { 2617 DebugLoc DL; 2618 unsigned Dst = CSI[i].getDstReg(); 2619 2620 if (Restored[Dst]) 2621 continue; 2622 2623 if (VSRContainingGPRs[Dst].second != 0) { 2624 assert(Subtarget.hasP9Vector()); 2625 NumPEReloadVSR += 2; 2626 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD), 2627 VSRContainingGPRs[Dst].second) 2628 .addReg(Dst); 2629 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2630 VSRContainingGPRs[Dst].first) 2631 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2632 } else if (VSRContainingGPRs[Dst].second == 0) { 2633 assert(Subtarget.hasP8Vector()); 2634 ++NumPEReloadVSR; 2635 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2636 VSRContainingGPRs[Dst].first) 2637 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2638 } else { 2639 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2640 } 2641 2642 Restored.set(Dst); 2643 2644 } else { 2645 // Default behavior for non-CR saves. 2646 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2647 2648 // Functions without NoUnwind need to preserve the order of elements in 2649 // saved vector registers. 2650 if (Subtarget.needsSwapsForVSXMemOps() && 2651 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2652 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2653 TRI); 2654 else 2655 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI); 2656 2657 assert(I != MBB.begin() && 2658 "loadRegFromStackSlot didn't insert any code!"); 2659 } 2660 } 2661 2662 // Insert in reverse order. 2663 if (AtStart) 2664 I = MBB.begin(); 2665 else { 2666 I = BeforeI; 2667 ++I; 2668 } 2669 } 2670 2671 // If we haven't yet spilled the CRs, do so now. 2672 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2673 assert(Subtarget.is32BitELFABI() && 2674 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2675 bool is31 = needsFP(*MF); 2676 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2677 } 2678 2679 return true; 2680 } 2681 2682 uint64_t PPCFrameLowering::getTOCSaveOffset() const { 2683 return TOCSaveOffset; 2684 } 2685 2686 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const { 2687 return FramePointerSaveOffset; 2688 } 2689 2690 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const { 2691 return BasePointerSaveOffset; 2692 } 2693 2694 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2695 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2696 return false; 2697 return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI(); 2698 } 2699