xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp (revision 03a88e3de9c68182d21df94b1c8c7ced930dbd1f)
1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PPC implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MCTargetDesc/PPCPredicates.h"
14 #include "PPCFrameLowering.h"
15 #include "PPCInstrBuilder.h"
16 #include "PPCInstrInfo.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterScavenging.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/Target/TargetOptions.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "framelowering"
33 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
34 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
35 STATISTIC(NumPrologProbed, "Number of prologues probed");
36 
37 static cl::opt<bool>
38 EnablePEVectorSpills("ppc-enable-pe-vector-spills",
39                      cl::desc("Enable spills in prologue to vector registers."),
40                      cl::init(false), cl::Hidden);
41 
42 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
43   if (STI.isAIXABI())
44     return STI.isPPC64() ? 16 : 8;
45   // SVR4 ABI:
46   return STI.isPPC64() ? 16 : 4;
47 }
48 
49 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
50   if (STI.isAIXABI())
51     return STI.isPPC64() ? 40 : 20;
52   return STI.isELFv2ABI() ? 24 : 40;
53 }
54 
55 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
56   // First slot in the general register save area.
57   return STI.isPPC64() ? -8U : -4U;
58 }
59 
60 static unsigned computeLinkageSize(const PPCSubtarget &STI) {
61   if (STI.isAIXABI() || STI.isPPC64())
62     return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
63 
64   // 32-bit SVR4 ABI:
65   return 8;
66 }
67 
68 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
69   // Third slot in the general purpose register save area.
70   if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
71     return -12U;
72 
73   // Second slot in the general purpose register save area.
74   return STI.isPPC64() ? -16U : -8U;
75 }
76 
77 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
78   return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
79 }
80 
81 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
82     : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
83                           STI.getPlatformStackAlignment(), 0),
84       Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
85       TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
86       FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
87       LinkageSize(computeLinkageSize(Subtarget)),
88       BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
89       CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
90 
91 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
92 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
93     unsigned &NumEntries) const {
94 
95 // Floating-point register save area offsets.
96 #define CALLEE_SAVED_FPRS \
97       {PPC::F31, -8},     \
98       {PPC::F30, -16},    \
99       {PPC::F29, -24},    \
100       {PPC::F28, -32},    \
101       {PPC::F27, -40},    \
102       {PPC::F26, -48},    \
103       {PPC::F25, -56},    \
104       {PPC::F24, -64},    \
105       {PPC::F23, -72},    \
106       {PPC::F22, -80},    \
107       {PPC::F21, -88},    \
108       {PPC::F20, -96},    \
109       {PPC::F19, -104},   \
110       {PPC::F18, -112},   \
111       {PPC::F17, -120},   \
112       {PPC::F16, -128},   \
113       {PPC::F15, -136},   \
114       {PPC::F14, -144}
115 
116 // 32-bit general purpose register save area offsets shared by ELF and
117 // AIX. AIX has an extra CSR with r13.
118 #define CALLEE_SAVED_GPRS32 \
119       {PPC::R31, -4},       \
120       {PPC::R30, -8},       \
121       {PPC::R29, -12},      \
122       {PPC::R28, -16},      \
123       {PPC::R27, -20},      \
124       {PPC::R26, -24},      \
125       {PPC::R25, -28},      \
126       {PPC::R24, -32},      \
127       {PPC::R23, -36},      \
128       {PPC::R22, -40},      \
129       {PPC::R21, -44},      \
130       {PPC::R20, -48},      \
131       {PPC::R19, -52},      \
132       {PPC::R18, -56},      \
133       {PPC::R17, -60},      \
134       {PPC::R16, -64},      \
135       {PPC::R15, -68},      \
136       {PPC::R14, -72}
137 
138 // 64-bit general purpose register save area offsets.
139 #define CALLEE_SAVED_GPRS64 \
140       {PPC::X31, -8},       \
141       {PPC::X30, -16},      \
142       {PPC::X29, -24},      \
143       {PPC::X28, -32},      \
144       {PPC::X27, -40},      \
145       {PPC::X26, -48},      \
146       {PPC::X25, -56},      \
147       {PPC::X24, -64},      \
148       {PPC::X23, -72},      \
149       {PPC::X22, -80},      \
150       {PPC::X21, -88},      \
151       {PPC::X20, -96},      \
152       {PPC::X19, -104},     \
153       {PPC::X18, -112},     \
154       {PPC::X17, -120},     \
155       {PPC::X16, -128},     \
156       {PPC::X15, -136},     \
157       {PPC::X14, -144}
158 
159 // Vector register save area offsets.
160 #define CALLEE_SAVED_VRS \
161       {PPC::V31, -16},   \
162       {PPC::V30, -32},   \
163       {PPC::V29, -48},   \
164       {PPC::V28, -64},   \
165       {PPC::V27, -80},   \
166       {PPC::V26, -96},   \
167       {PPC::V25, -112},  \
168       {PPC::V24, -128},  \
169       {PPC::V23, -144},  \
170       {PPC::V22, -160},  \
171       {PPC::V21, -176},  \
172       {PPC::V20, -192}
173 
174   // Note that the offsets here overlap, but this is fixed up in
175   // processFunctionBeforeFrameFinalized.
176 
177   static const SpillSlot ELFOffsets32[] = {
178       CALLEE_SAVED_FPRS,
179       CALLEE_SAVED_GPRS32,
180 
181       // CR save area offset.  We map each of the nonvolatile CR fields
182       // to the slot for CR2, which is the first of the nonvolatile CR
183       // fields to be assigned, so that we only allocate one save slot.
184       // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
185       {PPC::CR2, -4},
186 
187       // VRSAVE save area offset.
188       {PPC::VRSAVE, -4},
189 
190       CALLEE_SAVED_VRS,
191 
192       // SPE register save area (overlaps Vector save area).
193       {PPC::S31, -8},
194       {PPC::S30, -16},
195       {PPC::S29, -24},
196       {PPC::S28, -32},
197       {PPC::S27, -40},
198       {PPC::S26, -48},
199       {PPC::S25, -56},
200       {PPC::S24, -64},
201       {PPC::S23, -72},
202       {PPC::S22, -80},
203       {PPC::S21, -88},
204       {PPC::S20, -96},
205       {PPC::S19, -104},
206       {PPC::S18, -112},
207       {PPC::S17, -120},
208       {PPC::S16, -128},
209       {PPC::S15, -136},
210       {PPC::S14, -144}};
211 
212   static const SpillSlot ELFOffsets64[] = {
213       CALLEE_SAVED_FPRS,
214       CALLEE_SAVED_GPRS64,
215 
216       // VRSAVE save area offset.
217       {PPC::VRSAVE, -4},
218       CALLEE_SAVED_VRS
219   };
220 
221   static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
222                                            CALLEE_SAVED_GPRS32,
223                                            // Add AIX's extra CSR.
224                                            {PPC::R13, -76},
225                                            CALLEE_SAVED_VRS};
226 
227   static const SpillSlot AIXOffsets64[] = {
228       CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
229 
230   if (Subtarget.is64BitELFABI()) {
231     NumEntries = array_lengthof(ELFOffsets64);
232     return ELFOffsets64;
233   }
234 
235   if (Subtarget.is32BitELFABI()) {
236     NumEntries = array_lengthof(ELFOffsets32);
237     return ELFOffsets32;
238   }
239 
240   assert(Subtarget.isAIXABI() && "Unexpected ABI.");
241 
242   if (Subtarget.isPPC64()) {
243     NumEntries = array_lengthof(AIXOffsets64);
244     return AIXOffsets64;
245   }
246 
247   NumEntries = array_lengthof(AIXOffsets32);
248   return AIXOffsets32;
249 }
250 
251 static bool spillsCR(const MachineFunction &MF) {
252   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
253   return FuncInfo->isCRSpilled();
254 }
255 
256 static bool hasSpills(const MachineFunction &MF) {
257   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
258   return FuncInfo->hasSpills();
259 }
260 
261 static bool hasNonRISpills(const MachineFunction &MF) {
262   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
263   return FuncInfo->hasNonRISpills();
264 }
265 
266 /// MustSaveLR - Return true if this function requires that we save the LR
267 /// register onto the stack in the prolog and restore it in the epilog of the
268 /// function.
269 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
270   const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
271 
272   // We need a save/restore of LR if there is any def of LR (which is
273   // defined by calls, including the PIC setup sequence), or if there is
274   // some use of the LR stack slot (e.g. for builtin_return_address).
275   // (LR comes in 32 and 64 bit versions.)
276   MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
277   return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
278 }
279 
280 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
281 /// call frame size. Update the MachineFunction object with the stack size.
282 unsigned
283 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
284                                                 bool UseEstimate) const {
285   unsigned NewMaxCallFrameSize = 0;
286   unsigned FrameSize = determineFrameLayout(MF, UseEstimate,
287                                             &NewMaxCallFrameSize);
288   MF.getFrameInfo().setStackSize(FrameSize);
289   MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
290   return FrameSize;
291 }
292 
293 /// determineFrameLayout - Determine the size of the frame and maximum call
294 /// frame size.
295 unsigned
296 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
297                                        bool UseEstimate,
298                                        unsigned *NewMaxCallFrameSize) const {
299   const MachineFrameInfo &MFI = MF.getFrameInfo();
300   const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
301 
302   // Get the number of bytes to allocate from the FrameInfo
303   unsigned FrameSize =
304     UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
305 
306   // Get stack alignments. The frame must be aligned to the greatest of these:
307   Align TargetAlign = getStackAlign(); // alignment required per the ABI
308   Align MaxAlign = MFI.getMaxAlign();  // algmt required by data in frame
309   Align Alignment = std::max(TargetAlign, MaxAlign);
310 
311   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
312 
313   unsigned LR = RegInfo->getRARegister();
314   bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
315   bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
316                        !MFI.adjustsStack() &&       // No calls.
317                        !MustSaveLR(MF, LR) &&       // No need to save LR.
318                        !FI->mustSaveTOC() &&        // No need to save TOC.
319                        !RegInfo->hasBasePointer(MF); // No special alignment.
320 
321   // Note: for PPC32 SVR4ABI, we can still generate stackless
322   // code if all local vars are reg-allocated.
323   bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
324 
325   // Check whether we can skip adjusting the stack pointer (by using red zone)
326   if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
327     // No need for frame
328     return 0;
329   }
330 
331   // Get the maximum call frame size of all the calls.
332   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
333 
334   // Maximum call frame needs to be at least big enough for linkage area.
335   unsigned minCallFrameSize = getLinkageSize();
336   maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
337 
338   // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
339   // that allocations will be aligned.
340   if (MFI.hasVarSizedObjects())
341     maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
342 
343   // Update the new max call frame size if the caller passes in a valid pointer.
344   if (NewMaxCallFrameSize)
345     *NewMaxCallFrameSize = maxCallFrameSize;
346 
347   // Include call frame size in total.
348   FrameSize += maxCallFrameSize;
349 
350   // Make sure the frame is aligned.
351   FrameSize = alignTo(FrameSize, Alignment);
352 
353   return FrameSize;
354 }
355 
356 // hasFP - Return true if the specified function actually has a dedicated frame
357 // pointer register.
358 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
359   const MachineFrameInfo &MFI = MF.getFrameInfo();
360   // FIXME: This is pretty much broken by design: hasFP() might be called really
361   // early, before the stack layout was calculated and thus hasFP() might return
362   // true or false here depending on the time of call.
363   return (MFI.getStackSize()) && needsFP(MF);
364 }
365 
366 // needsFP - Return true if the specified function should have a dedicated frame
367 // pointer register.  This is true if the function has variable sized allocas or
368 // if frame pointer elimination is disabled.
369 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
370   const MachineFrameInfo &MFI = MF.getFrameInfo();
371 
372   // Naked functions have no stack frame pushed, so we don't have a frame
373   // pointer.
374   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
375     return false;
376 
377   return MF.getTarget().Options.DisableFramePointerElim(MF) ||
378          MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
379          MF.exposesReturnsTwice() ||
380          (MF.getTarget().Options.GuaranteedTailCallOpt &&
381           MF.getInfo<PPCFunctionInfo>()->hasFastCall());
382 }
383 
384 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
385   bool is31 = needsFP(MF);
386   unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
387   unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
388 
389   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
390   bool HasBP = RegInfo->hasBasePointer(MF);
391   unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
392   unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
393 
394   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
395        BI != BE; ++BI)
396     for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) {
397       --MBBI;
398       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
399         MachineOperand &MO = MBBI->getOperand(I);
400         if (!MO.isReg())
401           continue;
402 
403         switch (MO.getReg()) {
404         case PPC::FP:
405           MO.setReg(FPReg);
406           break;
407         case PPC::FP8:
408           MO.setReg(FP8Reg);
409           break;
410         case PPC::BP:
411           MO.setReg(BPReg);
412           break;
413         case PPC::BP8:
414           MO.setReg(BP8Reg);
415           break;
416 
417         }
418       }
419     }
420 }
421 
422 /*  This function will do the following:
423     - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
424       respectively (defaults recommended by the ABI) and return true
425     - If MBB is not an entry block, initialize the register scavenger and look
426       for available registers.
427     - If the defaults (R0/R12) are available, return true
428     - If TwoUniqueRegsRequired is set to true, it looks for two unique
429       registers. Otherwise, look for a single available register.
430       - If the required registers are found, set SR1 and SR2 and return true.
431       - If the required registers are not found, set SR2 or both SR1 and SR2 to
432         PPC::NoRegister and return false.
433 
434     Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
435     is not set, this function will attempt to find two different registers, but
436     still return true if only one register is available (and set SR1 == SR2).
437 */
438 bool
439 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
440                                       bool UseAtEnd,
441                                       bool TwoUniqueRegsRequired,
442                                       Register *SR1,
443                                       Register *SR2) const {
444   RegScavenger RS;
445   Register R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
446   Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
447 
448   // Set the defaults for the two scratch registers.
449   if (SR1)
450     *SR1 = R0;
451 
452   if (SR2) {
453     assert (SR1 && "Asking for the second scratch register but not the first?");
454     *SR2 = R12;
455   }
456 
457   // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
458   if ((UseAtEnd && MBB->isReturnBlock()) ||
459       (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
460     return true;
461 
462   RS.enterBasicBlock(*MBB);
463 
464   if (UseAtEnd && !MBB->empty()) {
465     // The scratch register will be used at the end of the block, so must
466     // consider all registers used within the block
467 
468     MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
469     // If no terminator, back iterator up to previous instruction.
470     if (MBBI == MBB->end())
471       MBBI = std::prev(MBBI);
472 
473     if (MBBI != MBB->begin())
474       RS.forward(MBBI);
475   }
476 
477   // If the two registers are available, we're all good.
478   // Note that we only return here if both R0 and R12 are available because
479   // although the function may not require two unique registers, it may benefit
480   // from having two so we should try to provide them.
481   if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
482     return true;
483 
484   // Get the list of callee-saved registers for the target.
485   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
486   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
487 
488   // Get all the available registers in the block.
489   BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
490                                      &PPC::GPRCRegClass);
491 
492   // We shouldn't use callee-saved registers as scratch registers as they may be
493   // available when looking for a candidate block for shrink wrapping but not
494   // available when the actual prologue/epilogue is being emitted because they
495   // were added as live-in to the prologue block by PrologueEpilogueInserter.
496   for (int i = 0; CSRegs[i]; ++i)
497     BV.reset(CSRegs[i]);
498 
499   // Set the first scratch register to the first available one.
500   if (SR1) {
501     int FirstScratchReg = BV.find_first();
502     *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
503   }
504 
505   // If there is another one available, set the second scratch register to that.
506   // Otherwise, set it to either PPC::NoRegister if this function requires two
507   // or to whatever SR1 is set to if this function doesn't require two.
508   if (SR2) {
509     int SecondScratchReg = BV.find_next(*SR1);
510     if (SecondScratchReg != -1)
511       *SR2 = SecondScratchReg;
512     else
513       *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
514   }
515 
516   // Now that we've done our best to provide both registers, double check
517   // whether we were unable to provide enough.
518   if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
519     return false;
520 
521   return true;
522 }
523 
524 // We need a scratch register for spilling LR and for spilling CR. By default,
525 // we use two scratch registers to hide latency. However, if only one scratch
526 // register is available, we can adjust for that by not overlapping the spill
527 // code. However, if we need to realign the stack (i.e. have a base pointer)
528 // and the stack frame is large, we need two scratch registers.
529 // Also, stack probe requires two scratch registers, one for old sp, one for
530 // large frame and large probe size.
531 bool
532 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
533   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
534   MachineFunction &MF = *(MBB->getParent());
535   bool HasBP = RegInfo->hasBasePointer(MF);
536   unsigned FrameSize = determineFrameLayout(MF);
537   int NegFrameSize = -FrameSize;
538   bool IsLargeFrame = !isInt<16>(NegFrameSize);
539   MachineFrameInfo &MFI = MF.getFrameInfo();
540   Align MaxAlign = MFI.getMaxAlign();
541   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
542   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
543 
544   return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
545          TLI.hasInlineStackProbe(MF);
546 }
547 
548 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
549   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
550 
551   return findScratchRegister(TmpMBB, false,
552                              twoUniqueScratchRegsRequired(TmpMBB));
553 }
554 
555 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
556   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
557 
558   return findScratchRegister(TmpMBB, true);
559 }
560 
561 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
562   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
563   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
564 
565   // Abort if there is no register info or function info.
566   if (!RegInfo || !FI)
567     return false;
568 
569   // Only move the stack update on ELFv2 ABI and PPC64.
570   if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
571     return false;
572 
573   // Check the frame size first and return false if it does not fit the
574   // requirements.
575   // We need a non-zero frame size as well as a frame that will fit in the red
576   // zone. This is because by moving the stack pointer update we are now storing
577   // to the red zone until the stack pointer is updated. If we get an interrupt
578   // inside the prologue but before the stack update we now have a number of
579   // stores to the red zone and those stores must all fit.
580   MachineFrameInfo &MFI = MF.getFrameInfo();
581   unsigned FrameSize = MFI.getStackSize();
582   if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
583     return false;
584 
585   // Frame pointers and base pointers complicate matters so don't do anything
586   // if we have them. For example having a frame pointer will sometimes require
587   // a copy of r1 into r31 and that makes keeping track of updates to r1 more
588   // difficult. Similar situation exists with setjmp.
589   if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
590     return false;
591 
592   // Calls to fast_cc functions use different rules for passing parameters on
593   // the stack from the ABI and using PIC base in the function imposes
594   // similar restrictions to using the base pointer. It is not generally safe
595   // to move the stack pointer update in these situations.
596   if (FI->hasFastCall() || FI->usesPICBase())
597     return false;
598 
599   // Finally we can move the stack update if we do not require register
600   // scavenging. Register scavenging can introduce more spills and so
601   // may make the frame size larger than we have computed.
602   return !RegInfo->requiresFrameIndexScavenging(MF);
603 }
604 
605 void PPCFrameLowering::emitPrologue(MachineFunction &MF,
606                                     MachineBasicBlock &MBB) const {
607   MachineBasicBlock::iterator MBBI = MBB.begin();
608   MachineFrameInfo &MFI = MF.getFrameInfo();
609   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
610   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
611   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
612 
613   MachineModuleInfo &MMI = MF.getMMI();
614   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
615   DebugLoc dl;
616   // AIX assembler does not support cfi directives.
617   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
618 
619   // Get processor type.
620   bool isPPC64 = Subtarget.isPPC64();
621   // Get the ABI.
622   bool isSVR4ABI = Subtarget.isSVR4ABI();
623   bool isELFv2ABI = Subtarget.isELFv2ABI();
624   assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
625 
626   // Work out frame sizes.
627   unsigned FrameSize = determineFrameLayoutAndUpdate(MF);
628   int NegFrameSize = -FrameSize;
629   if (!isInt<32>(NegFrameSize))
630     llvm_unreachable("Unhandled stack size!");
631 
632   if (MFI.isFrameAddressTaken())
633     replaceFPWithRealFP(MF);
634 
635   // Check if the link register (LR) must be saved.
636   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
637   bool MustSaveLR = FI->mustSaveLR();
638   bool MustSaveTOC = FI->mustSaveTOC();
639   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
640   bool MustSaveCR = !MustSaveCRs.empty();
641   // Do we have a frame pointer and/or base pointer for this function?
642   bool HasFP = hasFP(MF);
643   bool HasBP = RegInfo->hasBasePointer(MF);
644   bool HasRedZone = isPPC64 || !isSVR4ABI;
645   bool HasROPProtect = Subtarget.hasROPProtect();
646   bool HasPrivileged = Subtarget.hasPrivileged();
647 
648   Register SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
649   Register BPReg = RegInfo->getBaseRegister(MF);
650   Register FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
651   Register LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
652   Register TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
653   Register ScratchReg;
654   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
655   //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
656   const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
657                                                 : PPC::MFLR );
658   const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
659                                                  : PPC::STW );
660   const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
661                                                      : PPC::STWU );
662   const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
663                                                         : PPC::STWUX);
664   const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8
665                                                           : PPC::LIS );
666   const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8
667                                                  : PPC::ORI );
668   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
669                                               : PPC::OR );
670   const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
671                                                             : PPC::SUBFC);
672   const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
673                                                                : PPC::SUBFIC);
674   const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
675                                                            : PPC::MFCR);
676   const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
677   const MCInstrDesc &HashST =
678       TII.get(HasPrivileged ? PPC::HASHSTP : PPC::HASHST);
679 
680   // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
681   // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
682   // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
683   // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
684   assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
685          "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
686 
687   // Using the same bool variable as below to suppress compiler warnings.
688   bool SingleScratchReg = findScratchRegister(
689       &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
690   assert(SingleScratchReg &&
691          "Required number of registers not available in this block");
692 
693   SingleScratchReg = ScratchReg == TempReg;
694 
695   int LROffset = getReturnSaveOffset();
696 
697   int FPOffset = 0;
698   if (HasFP) {
699     MachineFrameInfo &MFI = MF.getFrameInfo();
700     int FPIndex = FI->getFramePointerSaveIndex();
701     assert(FPIndex && "No Frame Pointer Save Slot!");
702     FPOffset = MFI.getObjectOffset(FPIndex);
703   }
704 
705   int BPOffset = 0;
706   if (HasBP) {
707     MachineFrameInfo &MFI = MF.getFrameInfo();
708     int BPIndex = FI->getBasePointerSaveIndex();
709     assert(BPIndex && "No Base Pointer Save Slot!");
710     BPOffset = MFI.getObjectOffset(BPIndex);
711   }
712 
713   int PBPOffset = 0;
714   if (FI->usesPICBase()) {
715     MachineFrameInfo &MFI = MF.getFrameInfo();
716     int PBPIndex = FI->getPICBasePointerSaveIndex();
717     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
718     PBPOffset = MFI.getObjectOffset(PBPIndex);
719   }
720 
721   // Get stack alignments.
722   Align MaxAlign = MFI.getMaxAlign();
723   if (HasBP && MaxAlign > 1)
724     assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
725 
726   // Frames of 32KB & larger require special handling because they cannot be
727   // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
728   bool isLargeFrame = !isInt<16>(NegFrameSize);
729 
730   // Check if we can move the stack update instruction (stdu) down the prologue
731   // past the callee saves. Hopefully this will avoid the situation where the
732   // saves are waiting for the update on the store with update to complete.
733   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
734   bool MovingStackUpdateDown = false;
735 
736   // Check if we can move the stack update.
737   if (stackUpdateCanBeMoved(MF)) {
738     const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
739     for (CalleeSavedInfo CSI : Info) {
740       // If the callee saved register is spilled to a register instead of the
741       // stack then the spill no longer uses the stack pointer.
742       // This can lead to two consequences:
743       // 1) We no longer need to update the stack because the function does not
744       //    spill any callee saved registers to stack.
745       // 2) We have a situation where we still have to update the stack pointer
746       //    even though some registers are spilled to other registers. In
747       //    this case the current code moves the stack update to an incorrect
748       //    position.
749       // In either case we should abort moving the stack update operation.
750       if (CSI.isSpilledToReg()) {
751         StackUpdateLoc = MBBI;
752         MovingStackUpdateDown = false;
753         break;
754       }
755 
756       int FrIdx = CSI.getFrameIdx();
757       // If the frame index is not negative the callee saved info belongs to a
758       // stack object that is not a fixed stack object. We ignore non-fixed
759       // stack objects because we won't move the stack update pointer past them.
760       if (FrIdx >= 0)
761         continue;
762 
763       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
764         StackUpdateLoc++;
765         MovingStackUpdateDown = true;
766       } else {
767         // We need all of the Frame Indices to meet these conditions.
768         // If they do not, abort the whole operation.
769         StackUpdateLoc = MBBI;
770         MovingStackUpdateDown = false;
771         break;
772       }
773     }
774 
775     // If the operation was not aborted then update the object offset.
776     if (MovingStackUpdateDown) {
777       for (CalleeSavedInfo CSI : Info) {
778         int FrIdx = CSI.getFrameIdx();
779         if (FrIdx < 0)
780           MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
781       }
782     }
783   }
784 
785   // Where in the prologue we move the CR fields depends on how many scratch
786   // registers we have, and if we need to save the link register or not. This
787   // lambda is to avoid duplicating the logic in 2 places.
788   auto BuildMoveFromCR = [&]() {
789     if (isELFv2ABI && MustSaveCRs.size() == 1) {
790     // In the ELFv2 ABI, we are not required to save all CR fields.
791     // If only one CR field is clobbered, it is more efficient to use
792     // mfocrf to selectively save just that field, because mfocrf has short
793     // latency compares to mfcr.
794       assert(isPPC64 && "V2 ABI is 64-bit only.");
795       MachineInstrBuilder MIB =
796           BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
797       MIB.addReg(MustSaveCRs[0], RegState::Kill);
798     } else {
799       MachineInstrBuilder MIB =
800           BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
801       for (unsigned CRfield : MustSaveCRs)
802         MIB.addReg(CRfield, RegState::ImplicitKill);
803     }
804   };
805 
806   // If we need to spill the CR and the LR but we don't have two separate
807   // registers available, we must spill them one at a time
808   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
809     BuildMoveFromCR();
810     BuildMI(MBB, MBBI, dl, StoreWordInst)
811         .addReg(TempReg, getKillRegState(true))
812         .addImm(CRSaveOffset)
813         .addReg(SPReg);
814   }
815 
816   if (MustSaveLR)
817     BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
818 
819   if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
820     BuildMoveFromCR();
821 
822   if (HasRedZone) {
823     if (HasFP)
824       BuildMI(MBB, MBBI, dl, StoreInst)
825         .addReg(FPReg)
826         .addImm(FPOffset)
827         .addReg(SPReg);
828     if (FI->usesPICBase())
829       BuildMI(MBB, MBBI, dl, StoreInst)
830         .addReg(PPC::R30)
831         .addImm(PBPOffset)
832         .addReg(SPReg);
833     if (HasBP)
834       BuildMI(MBB, MBBI, dl, StoreInst)
835         .addReg(BPReg)
836         .addImm(BPOffset)
837         .addReg(SPReg);
838   }
839 
840   // Generate the instruction to store the LR. In the case where ROP protection
841   // is required the register holding the LR should not be killed as it will be
842   // used by the hash store instruction.
843   if (MustSaveLR) {
844     BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
845         .addReg(ScratchReg, getKillRegState(!HasROPProtect))
846         .addImm(LROffset)
847         .addReg(SPReg);
848 
849     // Add the ROP protection Hash Store instruction.
850     // NOTE: This is technically a violation of the ABI. The hash can be saved
851     // up to 512 bytes into the Protected Zone. This can be outside of the
852     // initial 288 byte volatile program storage region in the Protected Zone.
853     // However, this restriction will be removed in an upcoming revision of the
854     // ABI.
855     if (HasROPProtect) {
856       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
857       const int ImmOffset = MFI.getObjectOffset(SaveIndex);
858       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
859              "ROP hash save offset out of range.");
860       assert(((ImmOffset & 0x7) == 0) &&
861              "ROP hash save offset must be 8 byte aligned.");
862       BuildMI(MBB, StackUpdateLoc, dl, HashST)
863           .addReg(ScratchReg, getKillRegState(true))
864           .addImm(ImmOffset)
865           .addReg(SPReg);
866     }
867   }
868 
869   if (MustSaveCR &&
870       !(SingleScratchReg && MustSaveLR)) {
871     assert(HasRedZone && "A red zone is always available on PPC64");
872     BuildMI(MBB, MBBI, dl, StoreWordInst)
873       .addReg(TempReg, getKillRegState(true))
874       .addImm(CRSaveOffset)
875       .addReg(SPReg);
876   }
877 
878   // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
879   if (!FrameSize)
880     return;
881 
882   // Adjust stack pointer: r1 += NegFrameSize.
883   // If there is a preferred stack alignment, align R1 now
884 
885   if (HasBP && HasRedZone) {
886     // Save a copy of r1 as the base pointer.
887     BuildMI(MBB, MBBI, dl, OrInst, BPReg)
888       .addReg(SPReg)
889       .addReg(SPReg);
890   }
891 
892   // Have we generated a STUX instruction to claim stack frame? If so,
893   // the negated frame size will be placed in ScratchReg.
894   bool HasSTUX = false;
895 
896   // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
897   // pointer is always stored at SP, we will get a free probe due to an essential
898   // STU(X) instruction.
899   if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
900     // To be consistent with other targets, a pseudo instruction is emitted and
901     // will be later expanded in `inlineStackProbe`.
902     BuildMI(MBB, MBBI, dl,
903             TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
904                             : PPC::PROBED_STACKALLOC_32))
905         .addDef(TempReg)
906         .addDef(ScratchReg) // ScratchReg stores the old sp.
907         .addImm(NegFrameSize);
908     // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
909     // update the ScratchReg to meet the assumption that ScratchReg contains
910     // the NegFrameSize. This solution is rather tricky.
911     if (!HasRedZone) {
912       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
913           .addReg(ScratchReg)
914           .addReg(SPReg);
915       HasSTUX = true;
916     }
917   } else {
918     // This condition must be kept in sync with canUseAsPrologue.
919     if (HasBP && MaxAlign > 1) {
920       if (isPPC64)
921         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
922             .addReg(SPReg)
923             .addImm(0)
924             .addImm(64 - Log2(MaxAlign));
925       else // PPC32...
926         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
927             .addReg(SPReg)
928             .addImm(0)
929             .addImm(32 - Log2(MaxAlign))
930             .addImm(31);
931       if (!isLargeFrame) {
932         BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
933             .addReg(ScratchReg, RegState::Kill)
934             .addImm(NegFrameSize);
935       } else {
936         assert(!SingleScratchReg && "Only a single scratch reg available");
937         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg)
938             .addImm(NegFrameSize >> 16);
939         BuildMI(MBB, MBBI, dl, OrImmInst, TempReg)
940             .addReg(TempReg, RegState::Kill)
941             .addImm(NegFrameSize & 0xFFFF);
942         BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
943             .addReg(ScratchReg, RegState::Kill)
944             .addReg(TempReg, RegState::Kill);
945       }
946 
947       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
948           .addReg(SPReg, RegState::Kill)
949           .addReg(SPReg)
950           .addReg(ScratchReg);
951       HasSTUX = true;
952 
953     } else if (!isLargeFrame) {
954       BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
955           .addReg(SPReg)
956           .addImm(NegFrameSize)
957           .addReg(SPReg);
958 
959     } else {
960       BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
961           .addImm(NegFrameSize >> 16);
962       BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
963           .addReg(ScratchReg, RegState::Kill)
964           .addImm(NegFrameSize & 0xFFFF);
965       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
966           .addReg(SPReg, RegState::Kill)
967           .addReg(SPReg)
968           .addReg(ScratchReg);
969       HasSTUX = true;
970     }
971   }
972 
973   // Save the TOC register after the stack pointer update if a prologue TOC
974   // save is required for the function.
975   if (MustSaveTOC) {
976     assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
977     BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
978       .addReg(TOCReg, getKillRegState(true))
979       .addImm(TOCSaveOffset)
980       .addReg(SPReg);
981   }
982 
983   if (!HasRedZone) {
984     assert(!isPPC64 && "A red zone is always available on PPC64");
985     if (HasSTUX) {
986       // The negated frame size is in ScratchReg, and the SPReg has been
987       // decremented by the frame size: SPReg = old SPReg + ScratchReg.
988       // Since FPOffset, PBPOffset, etc. are relative to the beginning of
989       // the stack frame (i.e. the old SP), ideally, we would put the old
990       // SP into a register and use it as the base for the stores. The
991       // problem is that the only available register may be ScratchReg,
992       // which could be R0, and R0 cannot be used as a base address.
993 
994       // First, set ScratchReg to the old SP. This may need to be modified
995       // later.
996       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
997         .addReg(ScratchReg, RegState::Kill)
998         .addReg(SPReg);
999 
1000       if (ScratchReg == PPC::R0) {
1001         // R0 cannot be used as a base register, but it can be used as an
1002         // index in a store-indexed.
1003         int LastOffset = 0;
1004         if (HasFP)  {
1005           // R0 += (FPOffset-LastOffset).
1006           // Need addic, since addi treats R0 as 0.
1007           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1008             .addReg(ScratchReg)
1009             .addImm(FPOffset-LastOffset);
1010           LastOffset = FPOffset;
1011           // Store FP into *R0.
1012           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1013             .addReg(FPReg, RegState::Kill)  // Save FP.
1014             .addReg(PPC::ZERO)
1015             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1016         }
1017         if (FI->usesPICBase()) {
1018           // R0 += (PBPOffset-LastOffset).
1019           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1020             .addReg(ScratchReg)
1021             .addImm(PBPOffset-LastOffset);
1022           LastOffset = PBPOffset;
1023           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1024             .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
1025             .addReg(PPC::ZERO)
1026             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1027         }
1028         if (HasBP) {
1029           // R0 += (BPOffset-LastOffset).
1030           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1031             .addReg(ScratchReg)
1032             .addImm(BPOffset-LastOffset);
1033           LastOffset = BPOffset;
1034           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1035             .addReg(BPReg, RegState::Kill)  // Save BP.
1036             .addReg(PPC::ZERO)
1037             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1038           // BP = R0-LastOffset
1039           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
1040             .addReg(ScratchReg, RegState::Kill)
1041             .addImm(-LastOffset);
1042         }
1043       } else {
1044         // ScratchReg is not R0, so use it as the base register. It is
1045         // already set to the old SP, so we can use the offsets directly.
1046 
1047         // Now that the stack frame has been allocated, save all the necessary
1048         // registers using ScratchReg as the base address.
1049         if (HasFP)
1050           BuildMI(MBB, MBBI, dl, StoreInst)
1051             .addReg(FPReg)
1052             .addImm(FPOffset)
1053             .addReg(ScratchReg);
1054         if (FI->usesPICBase())
1055           BuildMI(MBB, MBBI, dl, StoreInst)
1056             .addReg(PPC::R30)
1057             .addImm(PBPOffset)
1058             .addReg(ScratchReg);
1059         if (HasBP) {
1060           BuildMI(MBB, MBBI, dl, StoreInst)
1061             .addReg(BPReg)
1062             .addImm(BPOffset)
1063             .addReg(ScratchReg);
1064           BuildMI(MBB, MBBI, dl, OrInst, BPReg)
1065             .addReg(ScratchReg, RegState::Kill)
1066             .addReg(ScratchReg);
1067         }
1068       }
1069     } else {
1070       // The frame size is a known 16-bit constant (fitting in the immediate
1071       // field of STWU). To be here we have to be compiling for PPC32.
1072       // Since the SPReg has been decreased by FrameSize, add it back to each
1073       // offset.
1074       if (HasFP)
1075         BuildMI(MBB, MBBI, dl, StoreInst)
1076           .addReg(FPReg)
1077           .addImm(FrameSize + FPOffset)
1078           .addReg(SPReg);
1079       if (FI->usesPICBase())
1080         BuildMI(MBB, MBBI, dl, StoreInst)
1081           .addReg(PPC::R30)
1082           .addImm(FrameSize + PBPOffset)
1083           .addReg(SPReg);
1084       if (HasBP) {
1085         BuildMI(MBB, MBBI, dl, StoreInst)
1086           .addReg(BPReg)
1087           .addImm(FrameSize + BPOffset)
1088           .addReg(SPReg);
1089         BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
1090           .addReg(SPReg)
1091           .addImm(FrameSize);
1092       }
1093     }
1094   }
1095 
1096   // Add Call Frame Information for the instructions we generated above.
1097   if (needsCFI) {
1098     unsigned CFIIndex;
1099 
1100     if (HasBP) {
1101       // Define CFA in terms of BP. Do this in preference to using FP/SP,
1102       // because if the stack needed aligning then CFA won't be at a fixed
1103       // offset from FP/SP.
1104       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1105       CFIIndex = MF.addFrameInst(
1106           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1107     } else {
1108       // Adjust the definition of CFA to account for the change in SP.
1109       assert(NegFrameSize);
1110       CFIIndex = MF.addFrameInst(
1111           MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
1112     }
1113     BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1114         .addCFIIndex(CFIIndex);
1115 
1116     if (HasFP) {
1117       // Describe where FP was saved, at a fixed offset from CFA.
1118       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1119       CFIIndex = MF.addFrameInst(
1120           MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
1121       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1122           .addCFIIndex(CFIIndex);
1123     }
1124 
1125     if (FI->usesPICBase()) {
1126       // Describe where FP was saved, at a fixed offset from CFA.
1127       unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
1128       CFIIndex = MF.addFrameInst(
1129           MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
1130       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1131           .addCFIIndex(CFIIndex);
1132     }
1133 
1134     if (HasBP) {
1135       // Describe where BP was saved, at a fixed offset from CFA.
1136       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1137       CFIIndex = MF.addFrameInst(
1138           MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
1139       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1140           .addCFIIndex(CFIIndex);
1141     }
1142 
1143     if (MustSaveLR) {
1144       // Describe where LR was saved, at a fixed offset from CFA.
1145       unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
1146       CFIIndex = MF.addFrameInst(
1147           MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
1148       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1149           .addCFIIndex(CFIIndex);
1150     }
1151   }
1152 
1153   // If there is a frame pointer, copy R1 into R31
1154   if (HasFP) {
1155     BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1156       .addReg(SPReg)
1157       .addReg(SPReg);
1158 
1159     if (!HasBP && needsCFI) {
1160       // Change the definition of CFA from SP+offset to FP+offset, because SP
1161       // will change at every alloca.
1162       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1163       unsigned CFIIndex = MF.addFrameInst(
1164           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1165 
1166       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1167           .addCFIIndex(CFIIndex);
1168     }
1169   }
1170 
1171   if (needsCFI) {
1172     // Describe where callee saved registers were saved, at fixed offsets from
1173     // CFA.
1174     const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1175     for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
1176       unsigned Reg = CSI[I].getReg();
1177       if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
1178 
1179       // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1180       // subregisters of CR2. We just need to emit a move of CR2.
1181       if (PPC::CRBITRCRegClass.contains(Reg))
1182         continue;
1183 
1184       if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
1185         continue;
1186 
1187       // For SVR4, don't emit a move for the CR spill slot if we haven't
1188       // spilled CRs.
1189       if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
1190           && !MustSaveCR)
1191         continue;
1192 
1193       // For 64-bit SVR4 when we have spilled CRs, the spill location
1194       // is SP+8, not a frame-relative slot.
1195       if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
1196         // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1197         // the whole CR word.  In the ELFv2 ABI, every CR that was
1198         // actually saved gets its own CFI record.
1199         unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2;
1200         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1201             nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
1202         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1203             .addCFIIndex(CFIIndex);
1204         continue;
1205       }
1206 
1207       if (CSI[I].isSpilledToReg()) {
1208         unsigned SpilledReg = CSI[I].getDstReg();
1209         unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
1210             nullptr, MRI->getDwarfRegNum(Reg, true),
1211             MRI->getDwarfRegNum(SpilledReg, true)));
1212         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1213           .addCFIIndex(CFIRegister);
1214       } else {
1215         int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx());
1216         // We have changed the object offset above but we do not want to change
1217         // the actual offsets in the CFI instruction so we have to undo the
1218         // offset change here.
1219         if (MovingStackUpdateDown)
1220           Offset -= NegFrameSize;
1221 
1222         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1223             nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
1224         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1225             .addCFIIndex(CFIIndex);
1226       }
1227     }
1228   }
1229 }
1230 
1231 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
1232                                         MachineBasicBlock &PrologMBB) const {
1233   bool isPPC64 = Subtarget.isPPC64();
1234   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
1235   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1236   MachineFrameInfo &MFI = MF.getFrameInfo();
1237   MachineModuleInfo &MMI = MF.getMMI();
1238   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
1239   // AIX assembler does not support cfi directives.
1240   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
1241   auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
1242     int Opc = MI.getOpcode();
1243     return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
1244   });
1245   if (StackAllocMIPos == PrologMBB.end())
1246     return;
1247   const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
1248   MachineBasicBlock *CurrentMBB = &PrologMBB;
1249   DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
1250   MachineInstr &MI = *StackAllocMIPos;
1251   int64_t NegFrameSize = MI.getOperand(2).getImm();
1252   unsigned ProbeSize = TLI.getStackProbeSize(MF);
1253   int64_t NegProbeSize = -(int64_t)ProbeSize;
1254   assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
1255   int64_t NumBlocks = NegFrameSize / NegProbeSize;
1256   int64_t NegResidualSize = NegFrameSize % NegProbeSize;
1257   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1258   Register ScratchReg = MI.getOperand(0).getReg();
1259   Register FPReg = MI.getOperand(1).getReg();
1260   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1261   bool HasBP = RegInfo->hasBasePointer(MF);
1262   Register BPReg = RegInfo->getBaseRegister(MF);
1263   Align MaxAlign = MFI.getMaxAlign();
1264   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1265   const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
1266   // Subroutines to generate .cfi_* directives.
1267   auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
1268                             MachineBasicBlock::iterator MBBI, Register Reg) {
1269     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1270     unsigned CFIIndex = MF.addFrameInst(
1271         MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
1272     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1273         .addCFIIndex(CFIIndex);
1274   };
1275   auto buildDefCFA = [&](MachineBasicBlock &MBB,
1276                          MachineBasicBlock::iterator MBBI, Register Reg,
1277                          int Offset) {
1278     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1279     unsigned CFIIndex = MBB.getParent()->addFrameInst(
1280         MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
1281     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1282         .addCFIIndex(CFIIndex);
1283   };
1284   // Subroutine to determine if we can use the Imm as part of d-form.
1285   auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
1286   // Subroutine to materialize the Imm into TempReg.
1287   auto MaterializeImm = [&](MachineBasicBlock &MBB,
1288                             MachineBasicBlock::iterator MBBI, int64_t Imm,
1289                             Register &TempReg) {
1290     assert(isInt<32>(Imm) && "Unhandled imm");
1291     if (isInt<16>(Imm))
1292       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
1293           .addImm(Imm);
1294     else {
1295       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
1296           .addImm(Imm >> 16);
1297       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
1298           .addReg(TempReg)
1299           .addImm(Imm & 0xFFFF);
1300     }
1301   };
1302   // Subroutine to store frame pointer and decrease stack pointer by probe size.
1303   auto allocateAndProbe = [&](MachineBasicBlock &MBB,
1304                               MachineBasicBlock::iterator MBBI, int64_t NegSize,
1305                               Register NegSizeReg, bool UseDForm,
1306                               Register StoreReg) {
1307     if (UseDForm)
1308       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
1309           .addReg(StoreReg)
1310           .addImm(NegSize)
1311           .addReg(SPReg);
1312     else
1313       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
1314           .addReg(StoreReg)
1315           .addReg(SPReg)
1316           .addReg(NegSizeReg);
1317   };
1318   // Used to probe stack when realignment is required.
1319   // Note that, according to ABI's requirement, *sp must always equals the
1320   // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
1321   // Following is pseudo code:
1322   // final_sp = (sp & align) + negframesize;
1323   // neg_gap = final_sp - sp;
1324   // while (neg_gap < negprobesize) {
1325   //   stdu fp, negprobesize(sp);
1326   //   neg_gap -= negprobesize;
1327   // }
1328   // stdux fp, sp, neg_gap
1329   //
1330   // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
1331   // before probe code, we don't need to save it, so we get one additional reg
1332   // that can be used to materialize the probeside if needed to use xform.
1333   // Otherwise, we can NOT materialize probeside, so we can only use Dform for
1334   // now.
1335   //
1336   // The allocations are:
1337   // if (HasBP && HasRedzone) {
1338   //   r0: materialize the probesize if needed so that we can use xform.
1339   //   r12: `neg_gap`
1340   // } else {
1341   //   r0: back-chain pointer
1342   //   r12: `neg_gap`.
1343   // }
1344   auto probeRealignedStack = [&](MachineBasicBlock &MBB,
1345                                  MachineBasicBlock::iterator MBBI,
1346                                  Register ScratchReg, Register TempReg) {
1347     assert(HasBP && "The function is supposed to have base pointer when its "
1348                     "stack is realigned.");
1349     assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
1350 
1351     // FIXME: We can eliminate this limitation if we get more infomation about
1352     // which part of redzone are already used. Used redzone can be treated
1353     // probed. But there might be `holes' in redzone probed, this could
1354     // complicate the implementation.
1355     assert(ProbeSize >= Subtarget.getRedZoneSize() &&
1356            "Probe size should be larger or equal to the size of red-zone so "
1357            "that red-zone is not clobbered by probing.");
1358 
1359     Register &FinalStackPtr = TempReg;
1360     // FIXME: We only support NegProbeSize materializable by DForm currently.
1361     // When HasBP && HasRedzone, we can use xform if we have an additional idle
1362     // register.
1363     NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
1364     assert(isInt<16>(NegProbeSize) &&
1365            "NegProbeSize should be materializable by DForm");
1366     Register CRReg = PPC::CR0;
1367     // Layout of output assembly kinda like:
1368     // bb.0:
1369     //   ...
1370     //   sub $scratchreg, $finalsp, r1
1371     //   cmpdi $scratchreg, <negprobesize>
1372     //   bge bb.2
1373     // bb.1:
1374     //   stdu <backchain>, <negprobesize>(r1)
1375     //   sub $scratchreg, $scratchreg, negprobesize
1376     //   cmpdi $scratchreg, <negprobesize>
1377     //   blt bb.1
1378     // bb.2:
1379     //   stdux <backchain>, r1, $scratchreg
1380     MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
1381     MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
1382     MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
1383     MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1384     MF.insert(MBBInsertPoint, ProbeExitMBB);
1385     // bb.2
1386     {
1387       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1388       allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
1389                        BackChainPointer);
1390       if (HasRedZone)
1391         // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
1392         // to TempReg to satisfy it.
1393         BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
1394             .addReg(BPReg)
1395             .addReg(BPReg);
1396       ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
1397       ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
1398     }
1399     // bb.0
1400     {
1401       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
1402           .addReg(SPReg)
1403           .addReg(FinalStackPtr);
1404       if (!HasRedZone)
1405         BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
1406       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
1407           .addReg(ScratchReg)
1408           .addImm(NegProbeSize);
1409       BuildMI(&MBB, DL, TII.get(PPC::BCC))
1410           .addImm(PPC::PRED_GE)
1411           .addReg(CRReg)
1412           .addMBB(ProbeExitMBB);
1413       MBB.addSuccessor(ProbeLoopBodyMBB);
1414       MBB.addSuccessor(ProbeExitMBB);
1415     }
1416     // bb.1
1417     {
1418       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1419       allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
1420                        0, true /*UseDForm*/, BackChainPointer);
1421       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
1422               ScratchReg)
1423           .addReg(ScratchReg)
1424           .addImm(-NegProbeSize);
1425       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
1426               CRReg)
1427           .addReg(ScratchReg)
1428           .addImm(NegProbeSize);
1429       BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
1430           .addImm(PPC::PRED_LT)
1431           .addReg(CRReg)
1432           .addMBB(ProbeLoopBodyMBB);
1433       ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
1434       ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
1435     }
1436     // Update liveins.
1437     recomputeLiveIns(*ProbeLoopBodyMBB);
1438     recomputeLiveIns(*ProbeExitMBB);
1439     return ProbeExitMBB;
1440   };
1441   // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1442   // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
1443   // the offset subtracted from SP is determined by SP's runtime value.
1444   if (HasBP && MaxAlign > 1) {
1445     // Calculate final stack pointer.
1446     if (isPPC64)
1447       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
1448           .addReg(SPReg)
1449           .addImm(0)
1450           .addImm(64 - Log2(MaxAlign));
1451     else
1452       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
1453           .addReg(SPReg)
1454           .addImm(0)
1455           .addImm(32 - Log2(MaxAlign))
1456           .addImm(31);
1457     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
1458             FPReg)
1459         .addReg(ScratchReg)
1460         .addReg(SPReg);
1461     MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
1462     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
1463             FPReg)
1464         .addReg(ScratchReg)
1465         .addReg(FPReg);
1466     CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
1467     if (needsCFI)
1468       buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
1469   } else {
1470     // Initialize current frame pointer.
1471     BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
1472     // Use FPReg to calculate CFA.
1473     if (needsCFI)
1474       buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1475     // Probe residual part.
1476     if (NegResidualSize) {
1477       bool ResidualUseDForm = CanUseDForm(NegResidualSize);
1478       if (!ResidualUseDForm)
1479         MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
1480       allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
1481                        ResidualUseDForm, FPReg);
1482     }
1483     bool UseDForm = CanUseDForm(NegProbeSize);
1484     // If number of blocks is small, just probe them directly.
1485     if (NumBlocks < 3) {
1486       if (!UseDForm)
1487         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1488       for (int i = 0; i < NumBlocks; ++i)
1489         allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
1490                          FPReg);
1491       if (needsCFI) {
1492         // Restore using SPReg to calculate CFA.
1493         buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
1494       }
1495     } else {
1496       // Since CTR is a volatile register and current shrinkwrap implementation
1497       // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1498       // CTR loop to probe.
1499       // Calculate trip count and stores it in CTRReg.
1500       MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
1501       BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
1502           .addReg(ScratchReg, RegState::Kill);
1503       if (!UseDForm)
1504         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1505       // Create MBBs of the loop.
1506       MachineFunction::iterator MBBInsertPoint =
1507           std::next(CurrentMBB->getIterator());
1508       MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
1509       MF.insert(MBBInsertPoint, LoopMBB);
1510       MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1511       MF.insert(MBBInsertPoint, ExitMBB);
1512       // Synthesize the loop body.
1513       allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
1514                        UseDForm, FPReg);
1515       BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
1516           .addMBB(LoopMBB);
1517       LoopMBB->addSuccessor(ExitMBB);
1518       LoopMBB->addSuccessor(LoopMBB);
1519       // Synthesize the exit MBB.
1520       ExitMBB->splice(ExitMBB->end(), CurrentMBB,
1521                       std::next(MachineBasicBlock::iterator(MI)),
1522                       CurrentMBB->end());
1523       ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
1524       CurrentMBB->addSuccessor(LoopMBB);
1525       if (needsCFI) {
1526         // Restore using SPReg to calculate CFA.
1527         buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
1528       }
1529       // Update liveins.
1530       recomputeLiveIns(*LoopMBB);
1531       recomputeLiveIns(*ExitMBB);
1532     }
1533   }
1534   ++NumPrologProbed;
1535   MI.eraseFromParent();
1536 }
1537 
1538 void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
1539                                     MachineBasicBlock &MBB) const {
1540   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1541   DebugLoc dl;
1542 
1543   if (MBBI != MBB.end())
1544     dl = MBBI->getDebugLoc();
1545 
1546   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1547   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1548 
1549   // Get alignment info so we know how to restore the SP.
1550   const MachineFrameInfo &MFI = MF.getFrameInfo();
1551 
1552   // Get the number of bytes allocated from the FrameInfo.
1553   int FrameSize = MFI.getStackSize();
1554 
1555   // Get processor type.
1556   bool isPPC64 = Subtarget.isPPC64();
1557 
1558   // Check if the link register (LR) has been saved.
1559   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1560   bool MustSaveLR = FI->mustSaveLR();
1561   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
1562   bool MustSaveCR = !MustSaveCRs.empty();
1563   // Do we have a frame pointer and/or base pointer for this function?
1564   bool HasFP = hasFP(MF);
1565   bool HasBP = RegInfo->hasBasePointer(MF);
1566   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1567   bool HasROPProtect = Subtarget.hasROPProtect();
1568   bool HasPrivileged = Subtarget.hasPrivileged();
1569 
1570   Register SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
1571   Register BPReg = RegInfo->getBaseRegister(MF);
1572   Register FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
1573   Register ScratchReg;
1574   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
1575   const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
1576                                                  : PPC::MTLR );
1577   const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
1578                                                  : PPC::LWZ );
1579   const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
1580                                                            : PPC::LIS );
1581   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
1582                                               : PPC::OR );
1583   const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
1584                                                   : PPC::ORI );
1585   const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
1586                                                    : PPC::ADDI );
1587   const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
1588                                                 : PPC::ADD4 );
1589   const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
1590                                                      : PPC::LWZ);
1591   const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
1592                                                      : PPC::MTOCRF);
1593   const MCInstrDesc &HashChk =
1594       TII.get(HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK);
1595   int LROffset = getReturnSaveOffset();
1596 
1597   int FPOffset = 0;
1598 
1599   // Using the same bool variable as below to suppress compiler warnings.
1600   bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
1601                                               &TempReg);
1602   assert(SingleScratchReg &&
1603          "Could not find an available scratch register");
1604 
1605   SingleScratchReg = ScratchReg == TempReg;
1606 
1607   if (HasFP) {
1608     int FPIndex = FI->getFramePointerSaveIndex();
1609     assert(FPIndex && "No Frame Pointer Save Slot!");
1610     FPOffset = MFI.getObjectOffset(FPIndex);
1611   }
1612 
1613   int BPOffset = 0;
1614   if (HasBP) {
1615       int BPIndex = FI->getBasePointerSaveIndex();
1616       assert(BPIndex && "No Base Pointer Save Slot!");
1617       BPOffset = MFI.getObjectOffset(BPIndex);
1618   }
1619 
1620   int PBPOffset = 0;
1621   if (FI->usesPICBase()) {
1622     int PBPIndex = FI->getPICBasePointerSaveIndex();
1623     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
1624     PBPOffset = MFI.getObjectOffset(PBPIndex);
1625   }
1626 
1627   bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
1628 
1629   if (IsReturnBlock) {
1630     unsigned RetOpcode = MBBI->getOpcode();
1631     bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
1632                       RetOpcode == PPC::TCRETURNdi ||
1633                       RetOpcode == PPC::TCRETURNai ||
1634                       RetOpcode == PPC::TCRETURNri8 ||
1635                       RetOpcode == PPC::TCRETURNdi8 ||
1636                       RetOpcode == PPC::TCRETURNai8;
1637 
1638     if (UsesTCRet) {
1639       int MaxTCRetDelta = FI->getTailCallSPDelta();
1640       MachineOperand &StackAdjust = MBBI->getOperand(1);
1641       assert(StackAdjust.isImm() && "Expecting immediate value.");
1642       // Adjust stack pointer.
1643       int StackAdj = StackAdjust.getImm();
1644       int Delta = StackAdj - MaxTCRetDelta;
1645       assert((Delta >= 0) && "Delta must be positive");
1646       if (MaxTCRetDelta>0)
1647         FrameSize += (StackAdj +Delta);
1648       else
1649         FrameSize += StackAdj;
1650     }
1651   }
1652 
1653   // Frames of 32KB & larger require special handling because they cannot be
1654   // indexed into with a simple LD/LWZ immediate offset operand.
1655   bool isLargeFrame = !isInt<16>(FrameSize);
1656 
1657   // On targets without red zone, the SP needs to be restored last, so that
1658   // all live contents of the stack frame are upwards of the SP. This means
1659   // that we cannot restore SP just now, since there may be more registers
1660   // to restore from the stack frame (e.g. R31). If the frame size is not
1661   // a simple immediate value, we will need a spare register to hold the
1662   // restored SP. If the frame size is known and small, we can simply adjust
1663   // the offsets of the registers to be restored, and still use SP to restore
1664   // them. In such case, the final update of SP will be to add the frame
1665   // size to it.
1666   // To simplify the code, set RBReg to the base register used to restore
1667   // values from the stack, and set SPAdd to the value that needs to be added
1668   // to the SP at the end. The default values are as if red zone was present.
1669   unsigned RBReg = SPReg;
1670   unsigned SPAdd = 0;
1671 
1672   // Check if we can move the stack update instruction up the epilogue
1673   // past the callee saves. This will allow the move to LR instruction
1674   // to be executed before the restores of the callee saves which means
1675   // that the callee saves can hide the latency from the MTLR instrcution.
1676   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
1677   if (stackUpdateCanBeMoved(MF)) {
1678     const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
1679     for (CalleeSavedInfo CSI : Info) {
1680       // If the callee saved register is spilled to another register abort the
1681       // stack update movement.
1682       if (CSI.isSpilledToReg()) {
1683         StackUpdateLoc = MBBI;
1684         break;
1685       }
1686       int FrIdx = CSI.getFrameIdx();
1687       // If the frame index is not negative the callee saved info belongs to a
1688       // stack object that is not a fixed stack object. We ignore non-fixed
1689       // stack objects because we won't move the update of the stack pointer
1690       // past them.
1691       if (FrIdx >= 0)
1692         continue;
1693 
1694       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
1695         StackUpdateLoc--;
1696       else {
1697         // Abort the operation as we can't update all CSR restores.
1698         StackUpdateLoc = MBBI;
1699         break;
1700       }
1701     }
1702   }
1703 
1704   if (FrameSize) {
1705     // In the prologue, the loaded (or persistent) stack pointer value is
1706     // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1707     // zone add this offset back now.
1708 
1709     // If the function has a base pointer, the stack pointer has been copied
1710     // to it so we can restore it by copying in the other direction.
1711     if (HasRedZone && HasBP) {
1712       BuildMI(MBB, MBBI, dl, OrInst, RBReg).
1713         addReg(BPReg).
1714         addReg(BPReg);
1715     }
1716     // If this function contained a fastcc call and GuaranteedTailCallOpt is
1717     // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1718     // call which invalidates the stack pointer value in SP(0). So we use the
1719     // value of R31 in this case. Similar situation exists with setjmp.
1720     else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
1721       assert(HasFP && "Expecting a valid frame pointer.");
1722       if (!HasRedZone)
1723         RBReg = FPReg;
1724       if (!isLargeFrame) {
1725         BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
1726           .addReg(FPReg).addImm(FrameSize);
1727       } else {
1728         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1729           .addImm(FrameSize >> 16);
1730         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1731           .addReg(ScratchReg, RegState::Kill)
1732           .addImm(FrameSize & 0xFFFF);
1733         BuildMI(MBB, MBBI, dl, AddInst)
1734           .addReg(RBReg)
1735           .addReg(FPReg)
1736           .addReg(ScratchReg);
1737       }
1738     } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
1739       if (HasRedZone) {
1740         BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
1741           .addReg(SPReg)
1742           .addImm(FrameSize);
1743       } else {
1744         // Make sure that adding FrameSize will not overflow the max offset
1745         // size.
1746         assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
1747                "Local offsets should be negative");
1748         SPAdd = FrameSize;
1749         FPOffset += FrameSize;
1750         BPOffset += FrameSize;
1751         PBPOffset += FrameSize;
1752       }
1753     } else {
1754       // We don't want to use ScratchReg as a base register, because it
1755       // could happen to be R0. Use FP instead, but make sure to preserve it.
1756       if (!HasRedZone) {
1757         // If FP is not saved, copy it to ScratchReg.
1758         if (!HasFP)
1759           BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
1760             .addReg(FPReg)
1761             .addReg(FPReg);
1762         RBReg = FPReg;
1763       }
1764       BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
1765         .addImm(0)
1766         .addReg(SPReg);
1767     }
1768   }
1769   assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
1770   // If there is no red zone, ScratchReg may be needed for holding a useful
1771   // value (although not the base register). Make sure it is not overwritten
1772   // too early.
1773 
1774   // If we need to restore both the LR and the CR and we only have one
1775   // available scratch register, we must do them one at a time.
1776   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
1777     // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1778     // is live here.
1779     assert(HasRedZone && "Expecting red zone");
1780     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1781       .addImm(CRSaveOffset)
1782       .addReg(SPReg);
1783     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1784       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1785         .addReg(TempReg, getKillRegState(i == e-1));
1786   }
1787 
1788   // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1789   // LR is stored in the caller's stack frame. ScratchReg will be needed
1790   // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1791   // a base register anyway, because it may happen to be R0.
1792   bool LoadedLR = false;
1793   if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
1794     BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
1795       .addImm(LROffset+SPAdd)
1796       .addReg(RBReg);
1797     LoadedLR = true;
1798   }
1799 
1800   if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
1801     assert(RBReg == SPReg && "Should be using SP as a base register");
1802     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1803       .addImm(CRSaveOffset)
1804       .addReg(RBReg);
1805   }
1806 
1807   if (HasFP) {
1808     // If there is red zone, restore FP directly, since SP has already been
1809     // restored. Otherwise, restore the value of FP into ScratchReg.
1810     if (HasRedZone || RBReg == SPReg)
1811       BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
1812         .addImm(FPOffset)
1813         .addReg(SPReg);
1814     else
1815       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1816         .addImm(FPOffset)
1817         .addReg(RBReg);
1818   }
1819 
1820   if (FI->usesPICBase())
1821     BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
1822       .addImm(PBPOffset)
1823       .addReg(RBReg);
1824 
1825   if (HasBP)
1826     BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
1827       .addImm(BPOffset)
1828       .addReg(RBReg);
1829 
1830   // There is nothing more to be loaded from the stack, so now we can
1831   // restore SP: SP = RBReg + SPAdd.
1832   if (RBReg != SPReg || SPAdd != 0) {
1833     assert(!HasRedZone && "This should not happen with red zone");
1834     // If SPAdd is 0, generate a copy.
1835     if (SPAdd == 0)
1836       BuildMI(MBB, MBBI, dl, OrInst, SPReg)
1837         .addReg(RBReg)
1838         .addReg(RBReg);
1839     else
1840       BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1841         .addReg(RBReg)
1842         .addImm(SPAdd);
1843 
1844     assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
1845     if (RBReg == FPReg)
1846       BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1847         .addReg(ScratchReg)
1848         .addReg(ScratchReg);
1849 
1850     // Now load the LR from the caller's stack frame.
1851     if (MustSaveLR && !LoadedLR)
1852       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1853         .addImm(LROffset)
1854         .addReg(SPReg);
1855   }
1856 
1857   if (MustSaveCR &&
1858       !(SingleScratchReg && MustSaveLR))
1859     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1860       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1861         .addReg(TempReg, getKillRegState(i == e-1));
1862 
1863   if (MustSaveLR) {
1864     // If ROP protection is required, an extra instruction is added to compute a
1865     // hash and then compare it to the hash stored in the prologue.
1866     if (HasROPProtect) {
1867       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
1868       const int ImmOffset = MFI.getObjectOffset(SaveIndex);
1869       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
1870              "ROP hash check location offset out of range.");
1871       assert(((ImmOffset & 0x7) == 0) &&
1872              "ROP hash check location offset must be 8 byte aligned.");
1873       BuildMI(MBB, StackUpdateLoc, dl, HashChk)
1874           .addReg(ScratchReg)
1875           .addImm(ImmOffset)
1876           .addReg(SPReg);
1877     }
1878     BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
1879   }
1880 
1881   // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1882   // call optimization
1883   if (IsReturnBlock) {
1884     unsigned RetOpcode = MBBI->getOpcode();
1885     if (MF.getTarget().Options.GuaranteedTailCallOpt &&
1886         (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
1887         MF.getFunction().getCallingConv() == CallingConv::Fast) {
1888       PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1889       unsigned CallerAllocatedAmt = FI->getMinReservedArea();
1890 
1891       if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
1892         BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1893           .addReg(SPReg).addImm(CallerAllocatedAmt);
1894       } else {
1895         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1896           .addImm(CallerAllocatedAmt >> 16);
1897         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1898           .addReg(ScratchReg, RegState::Kill)
1899           .addImm(CallerAllocatedAmt & 0xFFFF);
1900         BuildMI(MBB, MBBI, dl, AddInst)
1901           .addReg(SPReg)
1902           .addReg(FPReg)
1903           .addReg(ScratchReg);
1904       }
1905     } else {
1906       createTailCallBranchInstr(MBB);
1907     }
1908   }
1909 }
1910 
1911 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
1912   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1913 
1914   // If we got this far a first terminator should exist.
1915   assert(MBBI != MBB.end() && "Failed to find the first terminator.");
1916 
1917   DebugLoc dl = MBBI->getDebugLoc();
1918   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1919 
1920   // Create branch instruction for pseudo tail call return instruction.
1921   // The TCRETURNdi variants are direct calls. Valid targets for those are
1922   // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1923   // since we can tail call external functions with PC-Rel (i.e. we don't need
1924   // to worry about different TOC pointers). Some of the external functions will
1925   // be MO_GlobalAddress while others like memcpy for example, are going to
1926   // be MO_ExternalSymbol.
1927   unsigned RetOpcode = MBBI->getOpcode();
1928   if (RetOpcode == PPC::TCRETURNdi) {
1929     MBBI = MBB.getLastNonDebugInstr();
1930     MachineOperand &JumpTarget = MBBI->getOperand(0);
1931     if (JumpTarget.isGlobal())
1932       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1933         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1934     else if (JumpTarget.isSymbol())
1935       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1936         addExternalSymbol(JumpTarget.getSymbolName());
1937     else
1938       llvm_unreachable("Expecting Global or External Symbol");
1939   } else if (RetOpcode == PPC::TCRETURNri) {
1940     MBBI = MBB.getLastNonDebugInstr();
1941     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1942     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
1943   } else if (RetOpcode == PPC::TCRETURNai) {
1944     MBBI = MBB.getLastNonDebugInstr();
1945     MachineOperand &JumpTarget = MBBI->getOperand(0);
1946     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
1947   } else if (RetOpcode == PPC::TCRETURNdi8) {
1948     MBBI = MBB.getLastNonDebugInstr();
1949     MachineOperand &JumpTarget = MBBI->getOperand(0);
1950     if (JumpTarget.isGlobal())
1951       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1952         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1953     else if (JumpTarget.isSymbol())
1954       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1955         addExternalSymbol(JumpTarget.getSymbolName());
1956     else
1957       llvm_unreachable("Expecting Global or External Symbol");
1958   } else if (RetOpcode == PPC::TCRETURNri8) {
1959     MBBI = MBB.getLastNonDebugInstr();
1960     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1961     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
1962   } else if (RetOpcode == PPC::TCRETURNai8) {
1963     MBBI = MBB.getLastNonDebugInstr();
1964     MachineOperand &JumpTarget = MBBI->getOperand(0);
1965     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
1966   }
1967 }
1968 
1969 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
1970                                             BitVector &SavedRegs,
1971                                             RegScavenger *RS) const {
1972   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1973 
1974   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1975 
1976   //  Save and clear the LR state.
1977   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1978   unsigned LR = RegInfo->getRARegister();
1979   FI->setMustSaveLR(MustSaveLR(MF, LR));
1980   SavedRegs.reset(LR);
1981 
1982   //  Save R31 if necessary
1983   int FPSI = FI->getFramePointerSaveIndex();
1984   const bool isPPC64 = Subtarget.isPPC64();
1985   MachineFrameInfo &MFI = MF.getFrameInfo();
1986 
1987   // If the frame pointer save index hasn't been defined yet.
1988   if (!FPSI && needsFP(MF)) {
1989     // Find out what the fix offset of the frame pointer save area.
1990     int FPOffset = getFramePointerSaveOffset();
1991     // Allocate the frame index for frame pointer save area.
1992     FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
1993     // Save the result.
1994     FI->setFramePointerSaveIndex(FPSI);
1995   }
1996 
1997   int BPSI = FI->getBasePointerSaveIndex();
1998   if (!BPSI && RegInfo->hasBasePointer(MF)) {
1999     int BPOffset = getBasePointerSaveOffset();
2000     // Allocate the frame index for the base pointer save area.
2001     BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
2002     // Save the result.
2003     FI->setBasePointerSaveIndex(BPSI);
2004   }
2005 
2006   // Reserve stack space for the PIC Base register (R30).
2007   // Only used in SVR4 32-bit.
2008   if (FI->usesPICBase()) {
2009     int PBPSI = MFI.CreateFixedObject(4, -8, true);
2010     FI->setPICBasePointerSaveIndex(PBPSI);
2011   }
2012 
2013   // Make sure we don't explicitly spill r31, because, for example, we have
2014   // some inline asm which explicitly clobbers it, when we otherwise have a
2015   // frame pointer and are using r31's spill slot for the prologue/epilogue
2016   // code. Same goes for the base pointer and the PIC base register.
2017   if (needsFP(MF))
2018     SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
2019   if (RegInfo->hasBasePointer(MF))
2020     SavedRegs.reset(RegInfo->getBaseRegister(MF));
2021   if (FI->usesPICBase())
2022     SavedRegs.reset(PPC::R30);
2023 
2024   // Reserve stack space to move the linkage area to in case of a tail call.
2025   int TCSPDelta = 0;
2026   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2027       (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
2028     MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
2029   }
2030 
2031   // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2032   // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2033   // object at the offset of the CR-save slot in the linkage area. The actual
2034   // save and restore of the condition register will be created as part of the
2035   // prologue and epilogue insertion, but the FixedStack object is needed to
2036   // keep the CalleSavedInfo valid.
2037   if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
2038        SavedRegs.test(PPC::CR4))) {
2039     const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
2040     const int64_t SpillOffset =
2041         Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
2042     int FrameIdx =
2043         MFI.CreateFixedObject(SpillSize, SpillOffset,
2044                               /* IsImmutable */ true, /* IsAliased */ false);
2045     FI->setCRSpillFrameIndex(FrameIdx);
2046   }
2047 }
2048 
2049 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
2050                                                        RegScavenger *RS) const {
2051   // Get callee saved register information.
2052   MachineFrameInfo &MFI = MF.getFrameInfo();
2053   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2054 
2055   // If the function is shrink-wrapped, and if the function has a tail call, the
2056   // tail call might not be in the new RestoreBlock, so real branch instruction
2057   // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2058   // RestoreBlock. So we handle this case here.
2059   if (MFI.getSavePoint() && MFI.hasTailCall()) {
2060     MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
2061     for (MachineBasicBlock &MBB : MF) {
2062       if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
2063         createTailCallBranchInstr(MBB);
2064     }
2065   }
2066 
2067   // Early exit if no callee saved registers are modified!
2068   if (CSI.empty() && !needsFP(MF)) {
2069     addScavengingSpillSlot(MF, RS);
2070     return;
2071   }
2072 
2073   unsigned MinGPR = PPC::R31;
2074   unsigned MinG8R = PPC::X31;
2075   unsigned MinFPR = PPC::F31;
2076   unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
2077 
2078   bool HasGPSaveArea = false;
2079   bool HasG8SaveArea = false;
2080   bool HasFPSaveArea = false;
2081   bool HasVRSaveArea = false;
2082 
2083   SmallVector<CalleeSavedInfo, 18> GPRegs;
2084   SmallVector<CalleeSavedInfo, 18> G8Regs;
2085   SmallVector<CalleeSavedInfo, 18> FPRegs;
2086   SmallVector<CalleeSavedInfo, 18> VRegs;
2087 
2088   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2089     unsigned Reg = CSI[i].getReg();
2090     assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
2091             (Reg != PPC::X2 && Reg != PPC::R2)) &&
2092            "Not expecting to try to spill R2 in a function that must save TOC");
2093     if (PPC::GPRCRegClass.contains(Reg)) {
2094       HasGPSaveArea = true;
2095 
2096       GPRegs.push_back(CSI[i]);
2097 
2098       if (Reg < MinGPR) {
2099         MinGPR = Reg;
2100       }
2101     } else if (PPC::G8RCRegClass.contains(Reg)) {
2102       HasG8SaveArea = true;
2103 
2104       G8Regs.push_back(CSI[i]);
2105 
2106       if (Reg < MinG8R) {
2107         MinG8R = Reg;
2108       }
2109     } else if (PPC::F8RCRegClass.contains(Reg)) {
2110       HasFPSaveArea = true;
2111 
2112       FPRegs.push_back(CSI[i]);
2113 
2114       if (Reg < MinFPR) {
2115         MinFPR = Reg;
2116       }
2117     } else if (PPC::CRBITRCRegClass.contains(Reg) ||
2118                PPC::CRRCRegClass.contains(Reg)) {
2119       ; // do nothing, as we already know whether CRs are spilled
2120     } else if (PPC::VRRCRegClass.contains(Reg) ||
2121                PPC::SPERCRegClass.contains(Reg)) {
2122       // Altivec and SPE are mutually exclusive, but have the same stack
2123       // alignment requirements, so overload the save area for both cases.
2124       HasVRSaveArea = true;
2125 
2126       VRegs.push_back(CSI[i]);
2127 
2128       if (Reg < MinVR) {
2129         MinVR = Reg;
2130       }
2131     } else {
2132       llvm_unreachable("Unknown RegisterClass!");
2133     }
2134   }
2135 
2136   PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
2137   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2138 
2139   int64_t LowerBound = 0;
2140 
2141   // Take into account stack space reserved for tail calls.
2142   int TCSPDelta = 0;
2143   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2144       (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
2145     LowerBound = TCSPDelta;
2146   }
2147 
2148   // The Floating-point register save area is right below the back chain word
2149   // of the previous stack frame.
2150   if (HasFPSaveArea) {
2151     for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
2152       int FI = FPRegs[i].getFrameIdx();
2153 
2154       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2155     }
2156 
2157     LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
2158   }
2159 
2160   // Check whether the frame pointer register is allocated. If so, make sure it
2161   // is spilled to the correct offset.
2162   if (needsFP(MF)) {
2163     int FI = PFI->getFramePointerSaveIndex();
2164     assert(FI && "No Frame Pointer Save Slot!");
2165     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2166     // FP is R31/X31, so no need to update MinGPR/MinG8R.
2167     HasGPSaveArea = true;
2168   }
2169 
2170   if (PFI->usesPICBase()) {
2171     int FI = PFI->getPICBasePointerSaveIndex();
2172     assert(FI && "No PIC Base Pointer Save Slot!");
2173     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2174 
2175     MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
2176     HasGPSaveArea = true;
2177   }
2178 
2179   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2180   if (RegInfo->hasBasePointer(MF)) {
2181     int FI = PFI->getBasePointerSaveIndex();
2182     assert(FI && "No Base Pointer Save Slot!");
2183     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2184 
2185     Register BP = RegInfo->getBaseRegister(MF);
2186     if (PPC::G8RCRegClass.contains(BP)) {
2187       MinG8R = std::min<unsigned>(MinG8R, BP);
2188       HasG8SaveArea = true;
2189     } else if (PPC::GPRCRegClass.contains(BP)) {
2190       MinGPR = std::min<unsigned>(MinGPR, BP);
2191       HasGPSaveArea = true;
2192     }
2193   }
2194 
2195   // General register save area starts right below the Floating-point
2196   // register save area.
2197   if (HasGPSaveArea || HasG8SaveArea) {
2198     // Move general register save area spill slots down, taking into account
2199     // the size of the Floating-point register save area.
2200     for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
2201       if (!GPRegs[i].isSpilledToReg()) {
2202         int FI = GPRegs[i].getFrameIdx();
2203         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2204       }
2205     }
2206 
2207     // Move general register save area spill slots down, taking into account
2208     // the size of the Floating-point register save area.
2209     for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
2210       if (!G8Regs[i].isSpilledToReg()) {
2211         int FI = G8Regs[i].getFrameIdx();
2212         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2213       }
2214     }
2215 
2216     unsigned MinReg =
2217       std::min<unsigned>(TRI->getEncodingValue(MinGPR),
2218                          TRI->getEncodingValue(MinG8R));
2219 
2220     const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
2221     LowerBound -= (31 - MinReg + 1) * GPRegSize;
2222   }
2223 
2224   // For 32-bit only, the CR save area is below the general register
2225   // save area.  For 64-bit SVR4, the CR save area is addressed relative
2226   // to the stack pointer and hence does not need an adjustment here.
2227   // Only CR2 (the first nonvolatile spilled) has an associated frame
2228   // index so that we have a single uniform save area.
2229   if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
2230     // Adjust the frame index of the CR spill slot.
2231     for (const auto &CSInfo : CSI) {
2232       if (CSInfo.getReg() == PPC::CR2) {
2233         int FI = CSInfo.getFrameIdx();
2234         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2235         break;
2236       }
2237     }
2238 
2239     LowerBound -= 4; // The CR save area is always 4 bytes long.
2240   }
2241 
2242   // Both Altivec and SPE have the same alignment and padding requirements
2243   // within the stack frame.
2244   if (HasVRSaveArea) {
2245     // Insert alignment padding, we need 16-byte alignment. Note: for positive
2246     // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2247     // we are using negative number here (the stack grows downward). We should
2248     // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2249     // is the alignment size ( n = 16 here) and y is the size after aligning.
2250     assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
2251     LowerBound &= ~(15);
2252 
2253     for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
2254       int FI = VRegs[i].getFrameIdx();
2255 
2256       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2257     }
2258   }
2259 
2260   addScavengingSpillSlot(MF, RS);
2261 }
2262 
2263 void
2264 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
2265                                          RegScavenger *RS) const {
2266   // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2267   // a large stack, which will require scavenging a register to materialize a
2268   // large offset.
2269 
2270   // We need to have a scavenger spill slot for spills if the frame size is
2271   // large. In case there is no free register for large-offset addressing,
2272   // this slot is used for the necessary emergency spill. Also, we need the
2273   // slot for dynamic stack allocations.
2274 
2275   // The scavenger might be invoked if the frame offset does not fit into
2276   // the 16-bit immediate. We don't know the complete frame size here
2277   // because we've not yet computed callee-saved register spills or the
2278   // needed alignment padding.
2279   unsigned StackSize = determineFrameLayout(MF, true);
2280   MachineFrameInfo &MFI = MF.getFrameInfo();
2281   if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
2282       (hasSpills(MF) && !isInt<16>(StackSize))) {
2283     const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
2284     const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
2285     const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
2286     const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
2287     unsigned Size = TRI.getSpillSize(RC);
2288     Align Alignment = TRI.getSpillAlign(RC);
2289     RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false));
2290 
2291     // Might we have over-aligned allocas?
2292     bool HasAlVars =
2293         MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
2294 
2295     // These kinds of spills might need two registers.
2296     if (spillsCR(MF) || HasAlVars)
2297       RS->addScavengingFrameIndex(
2298           MFI.CreateStackObject(Size, Alignment, false));
2299   }
2300 }
2301 
2302 // This function checks if a callee saved gpr can be spilled to a volatile
2303 // vector register. This occurs for leaf functions when the option
2304 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2305 // which were not spilled to vectors, return false so the target independent
2306 // code can handle them by assigning a FrameIdx to a stack slot.
2307 bool PPCFrameLowering::assignCalleeSavedSpillSlots(
2308     MachineFunction &MF, const TargetRegisterInfo *TRI,
2309     std::vector<CalleeSavedInfo> &CSI) const {
2310 
2311   if (CSI.empty())
2312     return true; // Early exit if no callee saved registers are modified!
2313 
2314   // Early exit if cannot spill gprs to volatile vector registers.
2315   MachineFrameInfo &MFI = MF.getFrameInfo();
2316   if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
2317     return false;
2318 
2319   // Build a BitVector of VSRs that can be used for spilling GPRs.
2320   BitVector BVAllocatable = TRI->getAllocatableSet(MF);
2321   BitVector BVCalleeSaved(TRI->getNumRegs());
2322   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2323   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2324   for (unsigned i = 0; CSRegs[i]; ++i)
2325     BVCalleeSaved.set(CSRegs[i]);
2326 
2327   for (unsigned Reg : BVAllocatable.set_bits()) {
2328     // Set to 0 if the register is not a volatile VSX register, or if it is
2329     // used in the function.
2330     if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
2331         MF.getRegInfo().isPhysRegUsed(Reg))
2332       BVAllocatable.reset(Reg);
2333   }
2334 
2335   bool AllSpilledToReg = true;
2336   unsigned LastVSRUsedForSpill = 0;
2337   for (auto &CS : CSI) {
2338     if (BVAllocatable.none())
2339       return false;
2340 
2341     unsigned Reg = CS.getReg();
2342 
2343     if (!PPC::G8RCRegClass.contains(Reg)) {
2344       AllSpilledToReg = false;
2345       continue;
2346     }
2347 
2348     // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2349     // into one VSR using the mtvsrdd instruction.
2350     if (LastVSRUsedForSpill != 0) {
2351       CS.setDstReg(LastVSRUsedForSpill);
2352       BVAllocatable.reset(LastVSRUsedForSpill);
2353       LastVSRUsedForSpill = 0;
2354       continue;
2355     }
2356 
2357     unsigned VolatileVFReg = BVAllocatable.find_first();
2358     if (VolatileVFReg < BVAllocatable.size()) {
2359       CS.setDstReg(VolatileVFReg);
2360       LastVSRUsedForSpill = VolatileVFReg;
2361     } else {
2362       AllSpilledToReg = false;
2363     }
2364   }
2365   return AllSpilledToReg;
2366 }
2367 
2368 bool PPCFrameLowering::spillCalleeSavedRegisters(
2369     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2370     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2371 
2372   MachineFunction *MF = MBB.getParent();
2373   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2374   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2375   bool MustSaveTOC = FI->mustSaveTOC();
2376   DebugLoc DL;
2377   bool CRSpilled = false;
2378   MachineInstrBuilder CRMIB;
2379   BitVector Spilled(TRI->getNumRegs());
2380 
2381   VSRContainingGPRs.clear();
2382 
2383   // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2384   // or two GPRs, so we need table to record information for later save/restore.
2385   llvm::for_each(CSI, [&](const CalleeSavedInfo &Info) {
2386     if (Info.isSpilledToReg()) {
2387       auto &SpilledVSR =
2388           VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second;
2389       assert(SpilledVSR.second == 0 &&
2390              "Can't spill more than two GPRs into VSR!");
2391       if (SpilledVSR.first == 0)
2392         SpilledVSR.first = Info.getReg();
2393       else
2394         SpilledVSR.second = Info.getReg();
2395     }
2396   });
2397 
2398   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2399     unsigned Reg = CSI[i].getReg();
2400 
2401     // CR2 through CR4 are the nonvolatile CR fields.
2402     bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
2403 
2404     // Add the callee-saved register as live-in; it's killed at the spill.
2405     // Do not do this for callee-saved registers that are live-in to the
2406     // function because they will already be marked live-in and this will be
2407     // adding it for a second time. It is an error to add the same register
2408     // to the set more than once.
2409     const MachineRegisterInfo &MRI = MF->getRegInfo();
2410     bool IsLiveIn = MRI.isLiveIn(Reg);
2411     if (!IsLiveIn)
2412        MBB.addLiveIn(Reg);
2413 
2414     if (CRSpilled && IsCRField) {
2415       CRMIB.addReg(Reg, RegState::ImplicitKill);
2416       continue;
2417     }
2418 
2419     // The actual spill will happen in the prologue.
2420     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2421       continue;
2422 
2423     // Insert the spill to the stack frame.
2424     if (IsCRField) {
2425       PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2426       if (!Subtarget.is32BitELFABI()) {
2427         // The actual spill will happen at the start of the prologue.
2428         FuncInfo->addMustSaveCR(Reg);
2429       } else {
2430         CRSpilled = true;
2431         FuncInfo->setSpillsCR();
2432 
2433         // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
2434         // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2435         CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
2436                   .addReg(Reg, RegState::ImplicitKill);
2437 
2438         MBB.insert(MI, CRMIB);
2439         MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
2440                                          .addReg(PPC::R12,
2441                                                  getKillRegState(true)),
2442                                          CSI[i].getFrameIdx()));
2443       }
2444     } else {
2445       if (CSI[i].isSpilledToReg()) {
2446         unsigned Dst = CSI[i].getDstReg();
2447 
2448         if (Spilled[Dst])
2449           continue;
2450 
2451         if (VSRContainingGPRs[Dst].second != 0) {
2452           assert(Subtarget.hasP9Vector() &&
2453                  "mtvsrdd is unavailable on pre-P9 targets.");
2454 
2455           NumPESpillVSR += 2;
2456           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
2457               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
2458               .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
2459         } else if (VSRContainingGPRs[Dst].second == 0) {
2460           assert(Subtarget.hasP8Vector() &&
2461                  "Can't move GPR to VSR on pre-P8 targets.");
2462 
2463           ++NumPESpillVSR;
2464           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
2465                   TRI->getSubReg(Dst, PPC::sub_64))
2466               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
2467         } else {
2468           llvm_unreachable("More than two GPRs spilled to a VSR!");
2469         }
2470         Spilled.set(Dst);
2471       } else {
2472         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2473         // Use !IsLiveIn for the kill flag.
2474         // We do not want to kill registers that are live in this function
2475         // before their use because they will become undefined registers.
2476         // Functions without NoUnwind need to preserve the order of elements in
2477         // saved vector registers.
2478         if (Subtarget.needsSwapsForVSXMemOps() &&
2479             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2480           TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
2481                                        CSI[i].getFrameIdx(), RC, TRI);
2482         else
2483           TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, CSI[i].getFrameIdx(),
2484                                   RC, TRI);
2485       }
2486     }
2487   }
2488   return true;
2489 }
2490 
2491 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
2492                        bool CR4Spilled, MachineBasicBlock &MBB,
2493                        MachineBasicBlock::iterator MI,
2494                        ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
2495 
2496   MachineFunction *MF = MBB.getParent();
2497   const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
2498   DebugLoc DL;
2499   unsigned MoveReg = PPC::R12;
2500 
2501   // 32-bit:  FP-relative
2502   MBB.insert(MI,
2503              addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
2504                                CSI[CSIIndex].getFrameIdx()));
2505 
2506   unsigned RestoreOp = PPC::MTOCRF;
2507   if (CR2Spilled)
2508     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
2509                .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
2510 
2511   if (CR3Spilled)
2512     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
2513                .addReg(MoveReg, getKillRegState(!CR4Spilled)));
2514 
2515   if (CR4Spilled)
2516     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
2517                .addReg(MoveReg, getKillRegState(true)));
2518 }
2519 
2520 MachineBasicBlock::iterator PPCFrameLowering::
2521 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2522                               MachineBasicBlock::iterator I) const {
2523   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2524   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2525       I->getOpcode() == PPC::ADJCALLSTACKUP) {
2526     // Add (actually subtract) back the amount the callee popped on return.
2527     if (int CalleeAmt =  I->getOperand(1).getImm()) {
2528       bool is64Bit = Subtarget.isPPC64();
2529       CalleeAmt *= -1;
2530       unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
2531       unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
2532       unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
2533       unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
2534       unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
2535       unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
2536       const DebugLoc &dl = I->getDebugLoc();
2537 
2538       if (isInt<16>(CalleeAmt)) {
2539         BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
2540           .addReg(StackReg, RegState::Kill)
2541           .addImm(CalleeAmt);
2542       } else {
2543         MachineBasicBlock::iterator MBBI = I;
2544         BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
2545           .addImm(CalleeAmt >> 16);
2546         BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
2547           .addReg(TmpReg, RegState::Kill)
2548           .addImm(CalleeAmt & 0xFFFF);
2549         BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
2550           .addReg(StackReg, RegState::Kill)
2551           .addReg(TmpReg);
2552       }
2553     }
2554   }
2555   // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2556   return MBB.erase(I);
2557 }
2558 
2559 static bool isCalleeSavedCR(unsigned Reg) {
2560   return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
2561 }
2562 
2563 bool PPCFrameLowering::restoreCalleeSavedRegisters(
2564     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2565     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2566   MachineFunction *MF = MBB.getParent();
2567   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2568   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2569   bool MustSaveTOC = FI->mustSaveTOC();
2570   bool CR2Spilled = false;
2571   bool CR3Spilled = false;
2572   bool CR4Spilled = false;
2573   unsigned CSIIndex = 0;
2574   BitVector Restored(TRI->getNumRegs());
2575 
2576   // Initialize insertion-point logic; we will be restoring in reverse
2577   // order of spill.
2578   MachineBasicBlock::iterator I = MI, BeforeI = I;
2579   bool AtStart = I == MBB.begin();
2580 
2581   if (!AtStart)
2582     --BeforeI;
2583 
2584   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2585     unsigned Reg = CSI[i].getReg();
2586 
2587     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2588       continue;
2589 
2590     // Restore of callee saved condition register field is handled during
2591     // epilogue insertion.
2592     if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
2593       continue;
2594 
2595     if (Reg == PPC::CR2) {
2596       CR2Spilled = true;
2597       // The spill slot is associated only with CR2, which is the
2598       // first nonvolatile spilled.  Save it here.
2599       CSIIndex = i;
2600       continue;
2601     } else if (Reg == PPC::CR3) {
2602       CR3Spilled = true;
2603       continue;
2604     } else if (Reg == PPC::CR4) {
2605       CR4Spilled = true;
2606       continue;
2607     } else {
2608       // On 32-bit ELF when we first encounter a non-CR register after seeing at
2609       // least one CR register, restore all spilled CRs together.
2610       if (CR2Spilled || CR3Spilled || CR4Spilled) {
2611         bool is31 = needsFP(*MF);
2612         restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
2613                    CSIIndex);
2614         CR2Spilled = CR3Spilled = CR4Spilled = false;
2615       }
2616 
2617       if (CSI[i].isSpilledToReg()) {
2618         DebugLoc DL;
2619         unsigned Dst = CSI[i].getDstReg();
2620 
2621         if (Restored[Dst])
2622           continue;
2623 
2624         if (VSRContainingGPRs[Dst].second != 0) {
2625           assert(Subtarget.hasP9Vector());
2626           NumPEReloadVSR += 2;
2627           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
2628                   VSRContainingGPRs[Dst].second)
2629               .addReg(Dst);
2630           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2631                   VSRContainingGPRs[Dst].first)
2632               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2633         } else if (VSRContainingGPRs[Dst].second == 0) {
2634           assert(Subtarget.hasP8Vector());
2635           ++NumPEReloadVSR;
2636           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2637                   VSRContainingGPRs[Dst].first)
2638               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2639         } else {
2640           llvm_unreachable("More than two GPRs spilled to a VSR!");
2641         }
2642 
2643         Restored.set(Dst);
2644 
2645       } else {
2646        // Default behavior for non-CR saves.
2647         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2648 
2649         // Functions without NoUnwind need to preserve the order of elements in
2650         // saved vector registers.
2651         if (Subtarget.needsSwapsForVSXMemOps() &&
2652             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2653           TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
2654                                         TRI);
2655         else
2656           TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
2657 
2658         assert(I != MBB.begin() &&
2659                "loadRegFromStackSlot didn't insert any code!");
2660       }
2661     }
2662 
2663     // Insert in reverse order.
2664     if (AtStart)
2665       I = MBB.begin();
2666     else {
2667       I = BeforeI;
2668       ++I;
2669     }
2670   }
2671 
2672   // If we haven't yet spilled the CRs, do so now.
2673   if (CR2Spilled || CR3Spilled || CR4Spilled) {
2674     assert(Subtarget.is32BitELFABI() &&
2675            "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2676     bool is31 = needsFP(*MF);
2677     restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
2678   }
2679 
2680   return true;
2681 }
2682 
2683 unsigned PPCFrameLowering::getTOCSaveOffset() const {
2684   return TOCSaveOffset;
2685 }
2686 
2687 unsigned PPCFrameLowering::getFramePointerSaveOffset() const {
2688   return FramePointerSaveOffset;
2689 }
2690 
2691 unsigned PPCFrameLowering::getBasePointerSaveOffset() const {
2692   return BasePointerSaveOffset;
2693 }
2694 
2695 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2696   if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
2697     return false;
2698   return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
2699 }
2700