1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PowerPC-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // PPCGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 }; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *Subtarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()), 102 Context(&FuncInfo.Fn->getContext()) {} 103 104 // Backend specific FastISel code. 105 private: 106 bool fastSelectInstruction(const Instruction *I) override; 107 unsigned fastMaterializeConstant(const Constant *C) override; 108 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 109 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 110 const LoadInst *LI) override; 111 bool fastLowerArguments() override; 112 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 113 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 114 const TargetRegisterClass *RC, 115 unsigned Op0, uint64_t Imm); 116 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, unsigned Op0); 118 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, unsigned Op1); 121 122 bool fastLowerCall(CallLoweringInfo &CLI) override; 123 124 // Instruction selection routines. 125 private: 126 bool SelectLoad(const Instruction *I); 127 bool SelectStore(const Instruction *I); 128 bool SelectBranch(const Instruction *I); 129 bool SelectIndirectBr(const Instruction *I); 130 bool SelectFPExt(const Instruction *I); 131 bool SelectFPTrunc(const Instruction *I); 132 bool SelectIToFP(const Instruction *I, bool IsSigned); 133 bool SelectFPToI(const Instruction *I, bool IsSigned); 134 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 135 bool SelectRet(const Instruction *I); 136 bool SelectTrunc(const Instruction *I); 137 bool SelectIntExt(const Instruction *I); 138 139 // Utility routines. 140 private: 141 bool isTypeLegal(Type *Ty, MVT &VT); 142 bool isLoadTypeLegal(Type *Ty, MVT &VT); 143 bool isValueAvailable(const Value *V) const; 144 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 145 return RC->getID() == PPC::VSFRCRegClassID; 146 } 147 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 148 return RC->getID() == PPC::VSSRCRegClassID; 149 } 150 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC, 151 unsigned SrcReg, unsigned Flag = 0, 152 unsigned SubReg = 0) { 153 Register TmpReg = createResultReg(ToRC); 154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 155 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg); 156 return TmpReg; 157 } 158 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 159 bool isZExt, unsigned DestReg, 160 const PPC::Predicate Pred); 161 bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 162 const TargetRegisterClass *RC, bool IsZExt = true, 163 unsigned FP64LoadOpc = PPC::LFD); 164 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 165 bool PPCComputeAddress(const Value *Obj, Address &Addr); 166 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 167 unsigned &IndexReg); 168 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 169 unsigned DestReg, bool IsZExt); 170 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 171 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 172 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 173 bool UseSExt = true); 174 unsigned PPCMaterialize32BitInt(int64_t Imm, 175 const TargetRegisterClass *RC); 176 unsigned PPCMaterialize64BitInt(int64_t Imm, 177 const TargetRegisterClass *RC); 178 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 179 unsigned SrcReg, bool IsSigned); 180 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 181 182 // Call handling routines. 183 private: 184 bool processCallArgs(SmallVectorImpl<Value*> &Args, 185 SmallVectorImpl<unsigned> &ArgRegs, 186 SmallVectorImpl<MVT> &ArgVTs, 187 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 188 SmallVectorImpl<unsigned> &RegArgs, 189 CallingConv::ID CC, 190 unsigned &NumBytes, 191 bool IsVarArg); 192 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 193 194 private: 195 #include "PPCGenFastISel.inc" 196 197 }; 198 199 } // end anonymous namespace 200 201 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 202 switch (Pred) { 203 // These are not representable with any single compare. 204 case CmpInst::FCMP_FALSE: 205 case CmpInst::FCMP_TRUE: 206 // Major concern about the following 6 cases is NaN result. The comparison 207 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 208 // only one of which will be set. The result is generated by fcmpu 209 // instruction. However, bc instruction only inspects one of the first 3 210 // bits, so when un is set, bc instruction may jump to an undesired 211 // place. 212 // 213 // More specifically, if we expect an unordered comparison and un is set, we 214 // expect to always go to true branch; in such case UEQ, UGT and ULT still 215 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 216 // since they are tested by inspecting !eq, !lt, !gt, respectively. 217 // 218 // Similarly, for ordered comparison, when un is set, we always expect the 219 // result to be false. In such case OGT, OLT and OEQ is good, since they are 220 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 221 // and ONE are tested through !lt, !gt and !eq, and these are true. 222 case CmpInst::FCMP_UEQ: 223 case CmpInst::FCMP_UGT: 224 case CmpInst::FCMP_ULT: 225 case CmpInst::FCMP_OGE: 226 case CmpInst::FCMP_OLE: 227 case CmpInst::FCMP_ONE: 228 default: 229 return Optional<PPC::Predicate>(); 230 231 case CmpInst::FCMP_OEQ: 232 case CmpInst::ICMP_EQ: 233 return PPC::PRED_EQ; 234 235 case CmpInst::FCMP_OGT: 236 case CmpInst::ICMP_UGT: 237 case CmpInst::ICMP_SGT: 238 return PPC::PRED_GT; 239 240 case CmpInst::FCMP_UGE: 241 case CmpInst::ICMP_UGE: 242 case CmpInst::ICMP_SGE: 243 return PPC::PRED_GE; 244 245 case CmpInst::FCMP_OLT: 246 case CmpInst::ICMP_ULT: 247 case CmpInst::ICMP_SLT: 248 return PPC::PRED_LT; 249 250 case CmpInst::FCMP_ULE: 251 case CmpInst::ICMP_ULE: 252 case CmpInst::ICMP_SLE: 253 return PPC::PRED_LE; 254 255 case CmpInst::FCMP_UNE: 256 case CmpInst::ICMP_NE: 257 return PPC::PRED_NE; 258 259 case CmpInst::FCMP_ORD: 260 return PPC::PRED_NU; 261 262 case CmpInst::FCMP_UNO: 263 return PPC::PRED_UN; 264 } 265 } 266 267 // Determine whether the type Ty is simple enough to be handled by 268 // fast-isel, and return its equivalent machine type in VT. 269 // FIXME: Copied directly from ARM -- factor into base class? 270 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 271 EVT Evt = TLI.getValueType(DL, Ty, true); 272 273 // Only handle simple types. 274 if (Evt == MVT::Other || !Evt.isSimple()) return false; 275 VT = Evt.getSimpleVT(); 276 277 // Handle all legal types, i.e. a register that will directly hold this 278 // value. 279 return TLI.isTypeLegal(VT); 280 } 281 282 // Determine whether the type Ty is simple enough to be handled by 283 // fast-isel as a load target, and return its equivalent machine type in VT. 284 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 285 if (isTypeLegal(Ty, VT)) return true; 286 287 // If this is a type than can be sign or zero-extended to a basic operation 288 // go ahead and accept it now. 289 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 290 return true; 291 } 292 293 return false; 294 } 295 296 bool PPCFastISel::isValueAvailable(const Value *V) const { 297 if (!isa<Instruction>(V)) 298 return true; 299 300 const auto *I = cast<Instruction>(V); 301 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 302 } 303 304 // Given a value Obj, create an Address object Addr that represents its 305 // address. Return false if we can't handle it. 306 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 307 const User *U = nullptr; 308 unsigned Opcode = Instruction::UserOp1; 309 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 310 // Don't walk into other basic blocks unless the object is an alloca from 311 // another block, otherwise it may not have a virtual register assigned. 312 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 313 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 314 Opcode = I->getOpcode(); 315 U = I; 316 } 317 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 318 Opcode = C->getOpcode(); 319 U = C; 320 } 321 322 switch (Opcode) { 323 default: 324 break; 325 case Instruction::BitCast: 326 // Look through bitcasts. 327 return PPCComputeAddress(U->getOperand(0), Addr); 328 case Instruction::IntToPtr: 329 // Look past no-op inttoptrs. 330 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 331 TLI.getPointerTy(DL)) 332 return PPCComputeAddress(U->getOperand(0), Addr); 333 break; 334 case Instruction::PtrToInt: 335 // Look past no-op ptrtoints. 336 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 337 return PPCComputeAddress(U->getOperand(0), Addr); 338 break; 339 case Instruction::GetElementPtr: { 340 Address SavedAddr = Addr; 341 long TmpOffset = Addr.Offset; 342 343 // Iterate through the GEP folding the constants into offsets where 344 // we can. 345 gep_type_iterator GTI = gep_type_begin(U); 346 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 347 II != IE; ++II, ++GTI) { 348 const Value *Op = *II; 349 if (StructType *STy = GTI.getStructTypeOrNull()) { 350 const StructLayout *SL = DL.getStructLayout(STy); 351 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 352 TmpOffset += SL->getElementOffset(Idx); 353 } else { 354 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 355 for (;;) { 356 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 357 // Constant-offset addressing. 358 TmpOffset += CI->getSExtValue() * S; 359 break; 360 } 361 if (canFoldAddIntoGEP(U, Op)) { 362 // A compatible add with a constant operand. Fold the constant. 363 ConstantInt *CI = 364 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 365 TmpOffset += CI->getSExtValue() * S; 366 // Iterate on the other operand. 367 Op = cast<AddOperator>(Op)->getOperand(0); 368 continue; 369 } 370 // Unsupported 371 goto unsupported_gep; 372 } 373 } 374 } 375 376 // Try to grab the base operand now. 377 Addr.Offset = TmpOffset; 378 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 379 380 // We failed, restore everything and try the other options. 381 Addr = SavedAddr; 382 383 unsupported_gep: 384 break; 385 } 386 case Instruction::Alloca: { 387 const AllocaInst *AI = cast<AllocaInst>(Obj); 388 DenseMap<const AllocaInst*, int>::iterator SI = 389 FuncInfo.StaticAllocaMap.find(AI); 390 if (SI != FuncInfo.StaticAllocaMap.end()) { 391 Addr.BaseType = Address::FrameIndexBase; 392 Addr.Base.FI = SI->second; 393 return true; 394 } 395 break; 396 } 397 } 398 399 // FIXME: References to parameters fall through to the behavior 400 // below. They should be able to reference a frame index since 401 // they are stored to the stack, so we can get "ld rx, offset(r1)" 402 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 403 // just contain the parameter. Try to handle this with a FI. 404 405 // Try to get this in a register if nothing else has worked. 406 if (Addr.Base.Reg == 0) 407 Addr.Base.Reg = getRegForValue(Obj); 408 409 // Prevent assignment of base register to X0, which is inappropriate 410 // for loads and stores alike. 411 if (Addr.Base.Reg != 0) 412 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 413 414 return Addr.Base.Reg != 0; 415 } 416 417 // Fix up some addresses that can't be used directly. For example, if 418 // an offset won't fit in an instruction field, we may need to move it 419 // into an index register. 420 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 421 unsigned &IndexReg) { 422 423 // Check whether the offset fits in the instruction field. 424 if (!isInt<16>(Addr.Offset)) 425 UseOffset = false; 426 427 // If this is a stack pointer and the offset needs to be simplified then 428 // put the alloca address into a register, set the base type back to 429 // register and continue. This should almost never happen. 430 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 431 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 432 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 433 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 434 Addr.Base.Reg = ResultReg; 435 Addr.BaseType = Address::RegBase; 436 } 437 438 if (!UseOffset) { 439 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 440 const ConstantInt *Offset = 441 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 442 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 443 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 444 } 445 } 446 447 // Emit a load instruction if possible, returning true if we succeeded, 448 // otherwise false. See commentary below for how the register class of 449 // the load is determined. 450 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 451 const TargetRegisterClass *RC, 452 bool IsZExt, unsigned FP64LoadOpc) { 453 unsigned Opc; 454 bool UseOffset = true; 455 bool HasSPE = Subtarget->hasSPE(); 456 457 // If ResultReg is given, it determines the register class of the load. 458 // Otherwise, RC is the register class to use. If the result of the 459 // load isn't anticipated in this block, both may be zero, in which 460 // case we must make a conservative guess. In particular, don't assign 461 // R0 or X0 to the result register, as the result may be used in a load, 462 // store, add-immediate, or isel that won't permit this. (Though 463 // perhaps the spill and reload of live-exit values would handle this?) 464 const TargetRegisterClass *UseRC = 465 (ResultReg ? MRI.getRegClass(ResultReg) : 466 (RC ? RC : 467 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : 468 (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) : 469 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 470 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 471 472 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 473 474 switch (VT.SimpleTy) { 475 default: // e.g., vector types not handled 476 return false; 477 case MVT::i8: 478 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 479 break; 480 case MVT::i16: 481 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 482 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 483 break; 484 case MVT::i32: 485 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 486 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 487 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 488 UseOffset = false; 489 break; 490 case MVT::i64: 491 Opc = PPC::LD; 492 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 493 "64-bit load with 32-bit target??"); 494 UseOffset = ((Addr.Offset & 3) == 0); 495 break; 496 case MVT::f32: 497 Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; 498 break; 499 case MVT::f64: 500 Opc = FP64LoadOpc; 501 break; 502 } 503 504 // If necessary, materialize the offset into a register and use 505 // the indexed form. Also handle stack pointers with special needs. 506 unsigned IndexReg = 0; 507 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 508 509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 510 // be used. 511 bool IsVSSRC = isVSSRCRegClass(UseRC); 512 bool IsVSFRC = isVSFRCRegClass(UseRC); 513 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 514 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 515 if ((Is32VSXLoad || Is64VSXLoad) && 516 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 517 (Addr.Offset == 0)) { 518 UseOffset = false; 519 } 520 521 if (ResultReg == 0) 522 ResultReg = createResultReg(UseRC); 523 524 // Note: If we still have a frame index here, we know the offset is 525 // in range, as otherwise PPCSimplifyAddress would have converted it 526 // into a RegBase. 527 if (Addr.BaseType == Address::FrameIndexBase) { 528 // VSX only provides an indexed load. 529 if (Is32VSXLoad || Is64VSXLoad) return false; 530 531 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 532 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 533 Addr.Offset), 534 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 535 MFI.getObjectAlign(Addr.Base.FI)); 536 537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 538 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 539 540 // Base reg with offset in range. 541 } else if (UseOffset) { 542 // VSX only provides an indexed load. 543 if (Is32VSXLoad || Is64VSXLoad) return false; 544 545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 546 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 547 548 // Indexed form. 549 } else { 550 // Get the RR opcode corresponding to the RI one. FIXME: It would be 551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 552 // is hard to get at. 553 switch (Opc) { 554 default: llvm_unreachable("Unexpected opcode!"); 555 case PPC::LBZ: Opc = PPC::LBZX; break; 556 case PPC::LBZ8: Opc = PPC::LBZX8; break; 557 case PPC::LHZ: Opc = PPC::LHZX; break; 558 case PPC::LHZ8: Opc = PPC::LHZX8; break; 559 case PPC::LHA: Opc = PPC::LHAX; break; 560 case PPC::LHA8: Opc = PPC::LHAX8; break; 561 case PPC::LWZ: Opc = PPC::LWZX; break; 562 case PPC::LWZ8: Opc = PPC::LWZX8; break; 563 case PPC::LWA: Opc = PPC::LWAX; break; 564 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 565 case PPC::LD: Opc = PPC::LDX; break; 566 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 567 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 568 case PPC::EVLDD: Opc = PPC::EVLDDX; break; 569 case PPC::SPELWZ: Opc = PPC::SPELWZX; break; 570 } 571 572 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 573 ResultReg); 574 575 // If we have an index register defined we use it in the store inst, 576 // otherwise we use X0 as base as it makes the vector instructions to 577 // use zero in the computation of the effective address regardless the 578 // content of the register. 579 if (IndexReg) 580 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 581 else 582 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 583 } 584 585 return true; 586 } 587 588 // Attempt to fast-select a load instruction. 589 bool PPCFastISel::SelectLoad(const Instruction *I) { 590 // FIXME: No atomic loads are supported. 591 if (cast<LoadInst>(I)->isAtomic()) 592 return false; 593 594 // Verify we have a legal type before going any further. 595 MVT VT; 596 if (!isLoadTypeLegal(I->getType(), VT)) 597 return false; 598 599 // See if we can handle this address. 600 Address Addr; 601 if (!PPCComputeAddress(I->getOperand(0), Addr)) 602 return false; 603 604 // Look at the currently assigned register for this instruction 605 // to determine the required register class. This is necessary 606 // to constrain RA from using R0/X0 when this is not legal. 607 Register AssignedReg = FuncInfo.ValueMap[I]; 608 const TargetRegisterClass *RC = 609 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 610 611 Register ResultReg = 0; 612 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true, 613 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 614 return false; 615 updateValueMap(I, ResultReg); 616 return true; 617 } 618 619 // Emit a store instruction to store SrcReg at Addr. 620 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 621 assert(SrcReg && "Nothing to store!"); 622 unsigned Opc; 623 bool UseOffset = true; 624 625 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 626 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 627 628 switch (VT.SimpleTy) { 629 default: // e.g., vector types not handled 630 return false; 631 case MVT::i8: 632 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 633 break; 634 case MVT::i16: 635 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 636 break; 637 case MVT::i32: 638 assert(Is32BitInt && "Not GPRC for i32??"); 639 Opc = PPC::STW; 640 break; 641 case MVT::i64: 642 Opc = PPC::STD; 643 UseOffset = ((Addr.Offset & 3) == 0); 644 break; 645 case MVT::f32: 646 Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS; 647 break; 648 case MVT::f64: 649 Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; 650 break; 651 } 652 653 // If necessary, materialize the offset into a register and use 654 // the indexed form. Also handle stack pointers with special needs. 655 unsigned IndexReg = 0; 656 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 657 658 // If this is a potential VSX store with an offset of 0, a VSX indexed store 659 // can be used. 660 bool IsVSSRC = isVSSRCRegClass(RC); 661 bool IsVSFRC = isVSFRCRegClass(RC); 662 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 663 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 664 if ((Is32VSXStore || Is64VSXStore) && 665 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 666 (Addr.Offset == 0)) { 667 UseOffset = false; 668 } 669 670 // Note: If we still have a frame index here, we know the offset is 671 // in range, as otherwise PPCSimplifyAddress would have converted it 672 // into a RegBase. 673 if (Addr.BaseType == Address::FrameIndexBase) { 674 // VSX only provides an indexed store. 675 if (Is32VSXStore || Is64VSXStore) return false; 676 677 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 678 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 679 Addr.Offset), 680 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 681 MFI.getObjectAlign(Addr.Base.FI)); 682 683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 684 .addReg(SrcReg) 685 .addImm(Addr.Offset) 686 .addFrameIndex(Addr.Base.FI) 687 .addMemOperand(MMO); 688 689 // Base reg with offset in range. 690 } else if (UseOffset) { 691 // VSX only provides an indexed store. 692 if (Is32VSXStore || Is64VSXStore) 693 return false; 694 695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 696 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 697 698 // Indexed form. 699 } else { 700 // Get the RR opcode corresponding to the RI one. FIXME: It would be 701 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 702 // is hard to get at. 703 switch (Opc) { 704 default: llvm_unreachable("Unexpected opcode!"); 705 case PPC::STB: Opc = PPC::STBX; break; 706 case PPC::STH : Opc = PPC::STHX; break; 707 case PPC::STW : Opc = PPC::STWX; break; 708 case PPC::STB8: Opc = PPC::STBX8; break; 709 case PPC::STH8: Opc = PPC::STHX8; break; 710 case PPC::STW8: Opc = PPC::STWX8; break; 711 case PPC::STD: Opc = PPC::STDX; break; 712 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 713 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 714 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; 715 case PPC::SPESTW: Opc = PPC::SPESTWX; break; 716 } 717 718 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 719 .addReg(SrcReg); 720 721 // If we have an index register defined we use it in the store inst, 722 // otherwise we use X0 as base as it makes the vector instructions to 723 // use zero in the computation of the effective address regardless the 724 // content of the register. 725 if (IndexReg) 726 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 727 else 728 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 729 } 730 731 return true; 732 } 733 734 // Attempt to fast-select a store instruction. 735 bool PPCFastISel::SelectStore(const Instruction *I) { 736 Value *Op0 = I->getOperand(0); 737 unsigned SrcReg = 0; 738 739 // FIXME: No atomics loads are supported. 740 if (cast<StoreInst>(I)->isAtomic()) 741 return false; 742 743 // Verify we have a legal type before going any further. 744 MVT VT; 745 if (!isLoadTypeLegal(Op0->getType(), VT)) 746 return false; 747 748 // Get the value to be stored into a register. 749 SrcReg = getRegForValue(Op0); 750 if (SrcReg == 0) 751 return false; 752 753 // See if we can handle this address. 754 Address Addr; 755 if (!PPCComputeAddress(I->getOperand(1), Addr)) 756 return false; 757 758 if (!PPCEmitStore(VT, SrcReg, Addr)) 759 return false; 760 761 return true; 762 } 763 764 // Attempt to fast-select a branch instruction. 765 bool PPCFastISel::SelectBranch(const Instruction *I) { 766 const BranchInst *BI = cast<BranchInst>(I); 767 MachineBasicBlock *BrBB = FuncInfo.MBB; 768 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 769 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 770 771 // For now, just try the simplest case where it's fed by a compare. 772 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 773 if (isValueAvailable(CI)) { 774 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 775 if (!OptPPCPred) 776 return false; 777 778 PPC::Predicate PPCPred = *OptPPCPred; 779 780 // Take advantage of fall-through opportunities. 781 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 782 std::swap(TBB, FBB); 783 PPCPred = PPC::InvertPredicate(PPCPred); 784 } 785 786 Register CondReg = createResultReg(&PPC::CRRCRegClass); 787 788 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 789 CondReg, PPCPred)) 790 return false; 791 792 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 793 .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred) 794 .addReg(CondReg) 795 .addMBB(TBB); 796 finishCondBranch(BI->getParent(), TBB, FBB); 797 return true; 798 } 799 } else if (const ConstantInt *CI = 800 dyn_cast<ConstantInt>(BI->getCondition())) { 801 uint64_t Imm = CI->getZExtValue(); 802 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 803 fastEmitBranch(Target, DbgLoc); 804 return true; 805 } 806 807 // FIXME: ARM looks for a case where the block containing the compare 808 // has been split from the block containing the branch. If this happens, 809 // there is a vreg available containing the result of the compare. I'm 810 // not sure we can do much, as we've lost the predicate information with 811 // the compare instruction -- we have a 4-bit CR but don't know which bit 812 // to test here. 813 return false; 814 } 815 816 // Attempt to emit a compare of the two source values. Signed and unsigned 817 // comparisons are supported. Return false if we can't handle it. 818 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 819 bool IsZExt, unsigned DestReg, 820 const PPC::Predicate Pred) { 821 Type *Ty = SrcValue1->getType(); 822 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 823 if (!SrcEVT.isSimple()) 824 return false; 825 MVT SrcVT = SrcEVT.getSimpleVT(); 826 827 if (SrcVT == MVT::i1 && Subtarget->useCRBits()) 828 return false; 829 830 // See if operand 2 is an immediate encodeable in the compare. 831 // FIXME: Operands are not in canonical order at -O0, so an immediate 832 // operand in position 1 is a lost opportunity for now. We are 833 // similar to ARM in this regard. 834 int64_t Imm = 0; 835 bool UseImm = false; 836 const bool HasSPE = Subtarget->hasSPE(); 837 838 // Only 16-bit integer constants can be represented in compares for 839 // PowerPC. Others will be materialized into a register. 840 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 841 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 842 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 843 const APInt &CIVal = ConstInt->getValue(); 844 Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() : 845 (int64_t)CIVal.getSExtValue(); 846 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 847 UseImm = true; 848 } 849 } 850 851 Register SrcReg1 = getRegForValue(SrcValue1); 852 if (SrcReg1 == 0) 853 return false; 854 855 unsigned SrcReg2 = 0; 856 if (!UseImm) { 857 SrcReg2 = getRegForValue(SrcValue2); 858 if (SrcReg2 == 0) 859 return false; 860 } 861 862 unsigned CmpOpc; 863 bool NeedsExt = false; 864 865 auto RC1 = MRI.getRegClass(SrcReg1); 866 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr; 867 868 switch (SrcVT.SimpleTy) { 869 default: return false; 870 case MVT::f32: 871 if (HasSPE) { 872 switch (Pred) { 873 default: return false; 874 case PPC::PRED_EQ: 875 CmpOpc = PPC::EFSCMPEQ; 876 break; 877 case PPC::PRED_LT: 878 CmpOpc = PPC::EFSCMPLT; 879 break; 880 case PPC::PRED_GT: 881 CmpOpc = PPC::EFSCMPGT; 882 break; 883 } 884 } else { 885 CmpOpc = PPC::FCMPUS; 886 if (isVSSRCRegClass(RC1)) 887 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1); 888 if (RC2 && isVSSRCRegClass(RC2)) 889 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2); 890 } 891 break; 892 case MVT::f64: 893 if (HasSPE) { 894 switch (Pred) { 895 default: return false; 896 case PPC::PRED_EQ: 897 CmpOpc = PPC::EFDCMPEQ; 898 break; 899 case PPC::PRED_LT: 900 CmpOpc = PPC::EFDCMPLT; 901 break; 902 case PPC::PRED_GT: 903 CmpOpc = PPC::EFDCMPGT; 904 break; 905 } 906 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) { 907 CmpOpc = PPC::XSCMPUDP; 908 } else { 909 CmpOpc = PPC::FCMPUD; 910 } 911 break; 912 case MVT::i1: 913 case MVT::i8: 914 case MVT::i16: 915 NeedsExt = true; 916 LLVM_FALLTHROUGH; 917 case MVT::i32: 918 if (!UseImm) 919 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 920 else 921 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 922 break; 923 case MVT::i64: 924 if (!UseImm) 925 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 926 else 927 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 928 break; 929 } 930 931 if (NeedsExt) { 932 Register ExtReg = createResultReg(&PPC::GPRCRegClass); 933 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 934 return false; 935 SrcReg1 = ExtReg; 936 937 if (!UseImm) { 938 Register ExtReg = createResultReg(&PPC::GPRCRegClass); 939 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 940 return false; 941 SrcReg2 = ExtReg; 942 } 943 } 944 945 if (!UseImm) 946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 947 .addReg(SrcReg1).addReg(SrcReg2); 948 else 949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 950 .addReg(SrcReg1).addImm(Imm); 951 952 return true; 953 } 954 955 // Attempt to fast-select a floating-point extend instruction. 956 bool PPCFastISel::SelectFPExt(const Instruction *I) { 957 Value *Src = I->getOperand(0); 958 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 959 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 960 961 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 962 return false; 963 964 Register SrcReg = getRegForValue(Src); 965 if (!SrcReg) 966 return false; 967 968 // No code is generated for a FP extend. 969 updateValueMap(I, SrcReg); 970 return true; 971 } 972 973 // Attempt to fast-select a floating-point truncate instruction. 974 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 975 Value *Src = I->getOperand(0); 976 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 977 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 978 979 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 980 return false; 981 982 Register SrcReg = getRegForValue(Src); 983 if (!SrcReg) 984 return false; 985 986 // Round the result to single precision. 987 unsigned DestReg; 988 auto RC = MRI.getRegClass(SrcReg); 989 if (Subtarget->hasSPE()) { 990 DestReg = createResultReg(&PPC::GPRCRegClass); 991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::EFSCFD), 992 DestReg) 993 .addReg(SrcReg); 994 } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) { 995 DestReg = createResultReg(&PPC::VSSRCRegClass); 996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::XSRSP), 997 DestReg) 998 .addReg(SrcReg); 999 } else { 1000 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg); 1001 DestReg = createResultReg(&PPC::F4RCRegClass); 1002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1003 TII.get(PPC::FRSP), DestReg) 1004 .addReg(SrcReg); 1005 } 1006 1007 updateValueMap(I, DestReg); 1008 return true; 1009 } 1010 1011 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 1012 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1013 // those should be used instead of moving via a stack slot when the 1014 // subtarget permits. 1015 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 1016 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 1017 // case to 8 bytes which produces tighter code but wastes stack space. 1018 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 1019 bool IsSigned) { 1020 1021 // If necessary, extend 32-bit int to 64-bit. 1022 if (SrcVT == MVT::i32) { 1023 Register TmpReg = createResultReg(&PPC::G8RCRegClass); 1024 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1025 return 0; 1026 SrcReg = TmpReg; 1027 } 1028 1029 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1030 Address Addr; 1031 Addr.BaseType = Address::FrameIndexBase; 1032 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1033 1034 // Store the value from the GPR. 1035 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 1036 return 0; 1037 1038 // Load the integer value into an FPR. The kind of load used depends 1039 // on a number of conditions. 1040 unsigned LoadOpc = PPC::LFD; 1041 1042 if (SrcVT == MVT::i32) { 1043 if (!IsSigned) { 1044 LoadOpc = PPC::LFIWZX; 1045 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1046 } else if (Subtarget->hasLFIWAX()) { 1047 LoadOpc = PPC::LFIWAX; 1048 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1049 } 1050 } 1051 1052 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1053 Register ResultReg = 0; 1054 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1055 return 0; 1056 1057 return ResultReg; 1058 } 1059 1060 // Attempt to fast-select an integer-to-floating-point conversion. 1061 // FIXME: Once fast-isel has better support for VSX, conversions using 1062 // direct moves should be implemented. 1063 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1064 MVT DstVT; 1065 Type *DstTy = I->getType(); 1066 if (!isTypeLegal(DstTy, DstVT)) 1067 return false; 1068 1069 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1070 return false; 1071 1072 Value *Src = I->getOperand(0); 1073 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1074 if (!SrcEVT.isSimple()) 1075 return false; 1076 1077 MVT SrcVT = SrcEVT.getSimpleVT(); 1078 1079 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1080 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1081 return false; 1082 1083 Register SrcReg = getRegForValue(Src); 1084 if (SrcReg == 0) 1085 return false; 1086 1087 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs 1088 if (Subtarget->hasSPE()) { 1089 unsigned Opc; 1090 if (DstVT == MVT::f32) 1091 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; 1092 else 1093 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; 1094 1095 Register DestReg = createResultReg(&PPC::SPERCRegClass); 1096 // Generate the convert. 1097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1098 .addReg(SrcReg); 1099 updateValueMap(I, DestReg); 1100 return true; 1101 } 1102 1103 // We can only lower an unsigned convert if we have the newer 1104 // floating-point conversion operations. 1105 if (!IsSigned && !Subtarget->hasFPCVT()) 1106 return false; 1107 1108 // FIXME: For now we require the newer floating-point conversion operations 1109 // (which are present only on P7 and A2 server models) when converting 1110 // to single-precision float. Otherwise we have to generate a lot of 1111 // fiddly code to avoid double rounding. If necessary, the fiddly code 1112 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1113 if (DstVT == MVT::f32 && !Subtarget->hasFPCVT()) 1114 return false; 1115 1116 // Extend the input if necessary. 1117 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1118 Register TmpReg = createResultReg(&PPC::G8RCRegClass); 1119 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1120 return false; 1121 SrcVT = MVT::i64; 1122 SrcReg = TmpReg; 1123 } 1124 1125 // Move the integer value to an FPR. 1126 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1127 if (FPReg == 0) 1128 return false; 1129 1130 // Determine the opcode for the conversion. 1131 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1132 Register DestReg = createResultReg(RC); 1133 unsigned Opc; 1134 1135 if (DstVT == MVT::f32) 1136 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1137 else 1138 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1139 1140 // Generate the convert. 1141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1142 .addReg(FPReg); 1143 1144 updateValueMap(I, DestReg); 1145 return true; 1146 } 1147 1148 // Move the floating-point value in SrcReg into an integer destination 1149 // register, and return the register (or zero if we can't handle it). 1150 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1151 // those should be used instead of moving via a stack slot when the 1152 // subtarget permits. 1153 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1154 unsigned SrcReg, bool IsSigned) { 1155 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1156 // Note that if have STFIWX available, we could use a 4-byte stack 1157 // slot for i32, but this being fast-isel we'll just go with the 1158 // easiest code gen possible. 1159 Address Addr; 1160 Addr.BaseType = Address::FrameIndexBase; 1161 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1162 1163 // Store the value from the FPR. 1164 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1165 return 0; 1166 1167 // Reload it into a GPR. If we want an i32 on big endian, modify the 1168 // address to have a 4-byte offset so we load from the right place. 1169 if (VT == MVT::i32) 1170 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1171 1172 // Look at the currently assigned register for this instruction 1173 // to determine the required register class. 1174 Register AssignedReg = FuncInfo.ValueMap[I]; 1175 const TargetRegisterClass *RC = 1176 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1177 1178 Register ResultReg = 0; 1179 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1180 return 0; 1181 1182 return ResultReg; 1183 } 1184 1185 // Attempt to fast-select a floating-point-to-integer conversion. 1186 // FIXME: Once fast-isel has better support for VSX, conversions using 1187 // direct moves should be implemented. 1188 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1189 MVT DstVT, SrcVT; 1190 Type *DstTy = I->getType(); 1191 if (!isTypeLegal(DstTy, DstVT)) 1192 return false; 1193 1194 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1195 return false; 1196 1197 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. 1198 if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() && 1199 !Subtarget->hasSPE()) 1200 return false; 1201 1202 Value *Src = I->getOperand(0); 1203 Type *SrcTy = Src->getType(); 1204 if (!isTypeLegal(SrcTy, SrcVT)) 1205 return false; 1206 1207 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1208 return false; 1209 1210 Register SrcReg = getRegForValue(Src); 1211 if (SrcReg == 0) 1212 return false; 1213 1214 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a 1215 // meaningless copy to get the register class right. 1216 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1217 if (InRC == &PPC::F4RCRegClass) 1218 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg); 1219 else if (InRC == &PPC::VSSRCRegClass) 1220 SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg); 1221 1222 // Determine the opcode for the conversion, which takes place 1223 // entirely within FPRs or VSRs. 1224 unsigned DestReg; 1225 unsigned Opc; 1226 auto RC = MRI.getRegClass(SrcReg); 1227 1228 if (Subtarget->hasSPE()) { 1229 DestReg = createResultReg(&PPC::GPRCRegClass); 1230 if (IsSigned) 1231 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; 1232 else 1233 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; 1234 } else if (isVSFRCRegClass(RC)) { 1235 DestReg = createResultReg(&PPC::VSFRCRegClass); 1236 if (DstVT == MVT::i32) 1237 Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS; 1238 else 1239 Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS; 1240 } else { 1241 DestReg = createResultReg(&PPC::F8RCRegClass); 1242 if (DstVT == MVT::i32) 1243 if (IsSigned) 1244 Opc = PPC::FCTIWZ; 1245 else 1246 Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1247 else 1248 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1249 } 1250 1251 // Generate the convert. 1252 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1253 .addReg(SrcReg); 1254 1255 // Now move the integer value from a float register to an integer register. 1256 unsigned IntReg = Subtarget->hasSPE() 1257 ? DestReg 1258 : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1259 1260 if (IntReg == 0) 1261 return false; 1262 1263 updateValueMap(I, IntReg); 1264 return true; 1265 } 1266 1267 // Attempt to fast-select a binary integer operation that isn't already 1268 // handled automatically. 1269 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1270 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1271 1272 // We can get here in the case when we have a binary operation on a non-legal 1273 // type and the target independent selector doesn't know how to handle it. 1274 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1275 return false; 1276 1277 // Look at the currently assigned register for this instruction 1278 // to determine the required register class. If there is no register, 1279 // make a conservative choice (don't assign R0). 1280 Register AssignedReg = FuncInfo.ValueMap[I]; 1281 const TargetRegisterClass *RC = 1282 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1283 &PPC::GPRC_and_GPRC_NOR0RegClass); 1284 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1285 1286 unsigned Opc; 1287 switch (ISDOpcode) { 1288 default: return false; 1289 case ISD::ADD: 1290 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1291 break; 1292 case ISD::OR: 1293 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1294 break; 1295 case ISD::SUB: 1296 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1297 break; 1298 } 1299 1300 Register ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1301 Register SrcReg1 = getRegForValue(I->getOperand(0)); 1302 if (SrcReg1 == 0) return false; 1303 1304 // Handle case of small immediate operand. 1305 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1306 const APInt &CIVal = ConstInt->getValue(); 1307 int Imm = (int)CIVal.getSExtValue(); 1308 bool UseImm = true; 1309 if (isInt<16>(Imm)) { 1310 switch (Opc) { 1311 default: 1312 llvm_unreachable("Missing case!"); 1313 case PPC::ADD4: 1314 Opc = PPC::ADDI; 1315 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1316 break; 1317 case PPC::ADD8: 1318 Opc = PPC::ADDI8; 1319 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1320 break; 1321 case PPC::OR: 1322 Opc = PPC::ORI; 1323 break; 1324 case PPC::OR8: 1325 Opc = PPC::ORI8; 1326 break; 1327 case PPC::SUBF: 1328 if (Imm == -32768) 1329 UseImm = false; 1330 else { 1331 Opc = PPC::ADDI; 1332 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1333 Imm = -Imm; 1334 } 1335 break; 1336 case PPC::SUBF8: 1337 if (Imm == -32768) 1338 UseImm = false; 1339 else { 1340 Opc = PPC::ADDI8; 1341 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1342 Imm = -Imm; 1343 } 1344 break; 1345 } 1346 1347 if (UseImm) { 1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1349 ResultReg) 1350 .addReg(SrcReg1) 1351 .addImm(Imm); 1352 updateValueMap(I, ResultReg); 1353 return true; 1354 } 1355 } 1356 } 1357 1358 // Reg-reg case. 1359 Register SrcReg2 = getRegForValue(I->getOperand(1)); 1360 if (SrcReg2 == 0) return false; 1361 1362 // Reverse operands for subtract-from. 1363 if (ISDOpcode == ISD::SUB) 1364 std::swap(SrcReg1, SrcReg2); 1365 1366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1367 .addReg(SrcReg1).addReg(SrcReg2); 1368 updateValueMap(I, ResultReg); 1369 return true; 1370 } 1371 1372 // Handle arguments to a call that we're attempting to fast-select. 1373 // Return false if the arguments are too complex for us at the moment. 1374 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1375 SmallVectorImpl<unsigned> &ArgRegs, 1376 SmallVectorImpl<MVT> &ArgVTs, 1377 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1378 SmallVectorImpl<unsigned> &RegArgs, 1379 CallingConv::ID CC, 1380 unsigned &NumBytes, 1381 bool IsVarArg) { 1382 SmallVector<CCValAssign, 16> ArgLocs; 1383 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1384 1385 // Reserve space for the linkage area on the stack. 1386 unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize(); 1387 CCInfo.AllocateStack(LinkageSize, Align(8)); 1388 1389 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1390 1391 // Bail out if we can't handle any of the arguments. 1392 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1393 CCValAssign &VA = ArgLocs[I]; 1394 MVT ArgVT = ArgVTs[VA.getValNo()]; 1395 1396 // Skip vector arguments for now, as well as long double and 1397 // uint128_t, and anything that isn't passed in a register. 1398 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1399 !VA.isRegLoc() || VA.needsCustom()) 1400 return false; 1401 1402 // Skip bit-converted arguments for now. 1403 if (VA.getLocInfo() == CCValAssign::BCvt) 1404 return false; 1405 } 1406 1407 // Get a count of how many bytes are to be pushed onto the stack. 1408 NumBytes = CCInfo.getNextStackOffset(); 1409 1410 // The prolog code of the callee may store up to 8 GPR argument registers to 1411 // the stack, allowing va_start to index over them in memory if its varargs. 1412 // Because we cannot tell if this is needed on the caller side, we have to 1413 // conservatively assume that it is needed. As such, make sure we have at 1414 // least enough stack space for the caller to store the 8 GPRs. 1415 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1416 NumBytes = std::max(NumBytes, LinkageSize + 64); 1417 1418 // Issue CALLSEQ_START. 1419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1420 TII.get(TII.getCallFrameSetupOpcode())) 1421 .addImm(NumBytes).addImm(0); 1422 1423 // Prepare to assign register arguments. Every argument uses up a 1424 // GPR protocol register even if it's passed in a floating-point 1425 // register (unless we're using the fast calling convention). 1426 unsigned NextGPR = PPC::X3; 1427 unsigned NextFPR = PPC::F1; 1428 1429 // Process arguments. 1430 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1431 CCValAssign &VA = ArgLocs[I]; 1432 unsigned Arg = ArgRegs[VA.getValNo()]; 1433 MVT ArgVT = ArgVTs[VA.getValNo()]; 1434 1435 // Handle argument promotion and bitcasts. 1436 switch (VA.getLocInfo()) { 1437 default: 1438 llvm_unreachable("Unknown loc info!"); 1439 case CCValAssign::Full: 1440 break; 1441 case CCValAssign::SExt: { 1442 MVT DestVT = VA.getLocVT(); 1443 const TargetRegisterClass *RC = 1444 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1445 Register TmpReg = createResultReg(RC); 1446 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1447 llvm_unreachable("Failed to emit a sext!"); 1448 ArgVT = DestVT; 1449 Arg = TmpReg; 1450 break; 1451 } 1452 case CCValAssign::AExt: 1453 case CCValAssign::ZExt: { 1454 MVT DestVT = VA.getLocVT(); 1455 const TargetRegisterClass *RC = 1456 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1457 Register TmpReg = createResultReg(RC); 1458 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1459 llvm_unreachable("Failed to emit a zext!"); 1460 ArgVT = DestVT; 1461 Arg = TmpReg; 1462 break; 1463 } 1464 case CCValAssign::BCvt: { 1465 // FIXME: Not yet handled. 1466 llvm_unreachable("Should have bailed before getting here!"); 1467 break; 1468 } 1469 } 1470 1471 // Copy this argument to the appropriate register. 1472 unsigned ArgReg; 1473 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1474 ArgReg = NextFPR++; 1475 if (CC != CallingConv::Fast) 1476 ++NextGPR; 1477 } else 1478 ArgReg = NextGPR++; 1479 1480 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1481 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1482 RegArgs.push_back(ArgReg); 1483 } 1484 1485 return true; 1486 } 1487 1488 // For a call that we've determined we can fast-select, finish the 1489 // call sequence and generate a copy to obtain the return value (if any). 1490 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1491 CallingConv::ID CC = CLI.CallConv; 1492 1493 // Issue CallSEQ_END. 1494 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1495 TII.get(TII.getCallFrameDestroyOpcode())) 1496 .addImm(NumBytes).addImm(0); 1497 1498 // Next, generate a copy to obtain the return value. 1499 // FIXME: No multi-register return values yet, though I don't foresee 1500 // any real difficulties there. 1501 if (RetVT != MVT::isVoid) { 1502 SmallVector<CCValAssign, 16> RVLocs; 1503 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1504 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1505 CCValAssign &VA = RVLocs[0]; 1506 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1507 assert(VA.isRegLoc() && "Can only return in registers!"); 1508 1509 MVT DestVT = VA.getValVT(); 1510 MVT CopyVT = DestVT; 1511 1512 // Ints smaller than a register still arrive in a full 64-bit 1513 // register, so make sure we recognize this. 1514 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1515 CopyVT = MVT::i64; 1516 1517 unsigned SourcePhysReg = VA.getLocReg(); 1518 unsigned ResultReg = 0; 1519 1520 if (RetVT == CopyVT) { 1521 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1522 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg); 1523 1524 // If necessary, round the floating result to single precision. 1525 } else if (CopyVT == MVT::f64) { 1526 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1527 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1528 ResultReg).addReg(SourcePhysReg); 1529 1530 // If only the low half of a general register is needed, generate 1531 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1532 // used along the fast-isel path (not lowered), and downstream logic 1533 // also doesn't like a direct subreg copy on a physical reg.) 1534 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1535 // Convert physical register from G8RC to GPRC. 1536 SourcePhysReg -= PPC::X0 - PPC::R0; 1537 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg); 1538 } 1539 1540 assert(ResultReg && "ResultReg unset!"); 1541 CLI.InRegs.push_back(SourcePhysReg); 1542 CLI.ResultReg = ResultReg; 1543 CLI.NumResultRegs = 1; 1544 } 1545 1546 return true; 1547 } 1548 1549 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1550 CallingConv::ID CC = CLI.CallConv; 1551 bool IsTailCall = CLI.IsTailCall; 1552 bool IsVarArg = CLI.IsVarArg; 1553 const Value *Callee = CLI.Callee; 1554 const MCSymbol *Symbol = CLI.Symbol; 1555 1556 if (!Callee && !Symbol) 1557 return false; 1558 1559 // Allow SelectionDAG isel to handle tail calls. 1560 if (IsTailCall) 1561 return false; 1562 1563 // Let SDISel handle vararg functions. 1564 if (IsVarArg) 1565 return false; 1566 1567 // If this is a PC-Rel function, let SDISel handle the call. 1568 if (Subtarget->isUsingPCRelativeCalls()) 1569 return false; 1570 1571 // Handle simple calls for now, with legal return types and 1572 // those that can be extended. 1573 Type *RetTy = CLI.RetTy; 1574 MVT RetVT; 1575 if (RetTy->isVoidTy()) 1576 RetVT = MVT::isVoid; 1577 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1578 RetVT != MVT::i8) 1579 return false; 1580 else if (RetVT == MVT::i1 && Subtarget->useCRBits()) 1581 // We can't handle boolean returns when CR bits are in use. 1582 return false; 1583 1584 // FIXME: No multi-register return values yet. 1585 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1586 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1587 RetVT != MVT::f64) { 1588 SmallVector<CCValAssign, 16> RVLocs; 1589 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1590 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1591 if (RVLocs.size() > 1) 1592 return false; 1593 } 1594 1595 // Bail early if more than 8 arguments, as we only currently 1596 // handle arguments passed in registers. 1597 unsigned NumArgs = CLI.OutVals.size(); 1598 if (NumArgs > 8) 1599 return false; 1600 1601 // Set up the argument vectors. 1602 SmallVector<Value*, 8> Args; 1603 SmallVector<unsigned, 8> ArgRegs; 1604 SmallVector<MVT, 8> ArgVTs; 1605 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1606 1607 Args.reserve(NumArgs); 1608 ArgRegs.reserve(NumArgs); 1609 ArgVTs.reserve(NumArgs); 1610 ArgFlags.reserve(NumArgs); 1611 1612 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1613 // Only handle easy calls for now. It would be reasonably easy 1614 // to handle <= 8-byte structures passed ByVal in registers, but we 1615 // have to ensure they are right-justified in the register. 1616 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1617 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1618 return false; 1619 1620 Value *ArgValue = CLI.OutVals[i]; 1621 Type *ArgTy = ArgValue->getType(); 1622 MVT ArgVT; 1623 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1624 return false; 1625 1626 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP 1627 // types, which is passed through vector register. Skip these types and 1628 // fallback to default SelectionDAG based selection. 1629 if (ArgVT.isVector() || ArgVT == MVT::f128) 1630 return false; 1631 1632 Register Arg = getRegForValue(ArgValue); 1633 if (Arg == 0) 1634 return false; 1635 1636 Args.push_back(ArgValue); 1637 ArgRegs.push_back(Arg); 1638 ArgVTs.push_back(ArgVT); 1639 ArgFlags.push_back(Flags); 1640 } 1641 1642 // Process the arguments. 1643 SmallVector<unsigned, 8> RegArgs; 1644 unsigned NumBytes; 1645 1646 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1647 RegArgs, CC, NumBytes, IsVarArg)) 1648 return false; 1649 1650 MachineInstrBuilder MIB; 1651 // FIXME: No handling for function pointers yet. This requires 1652 // implementing the function descriptor (OPD) setup. 1653 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1654 if (!GV) { 1655 // patchpoints are a special case; they always dispatch to a pointer value. 1656 // However, we don't actually want to generate the indirect call sequence 1657 // here (that will be generated, as necessary, during asm printing), and 1658 // the call we generate here will be erased by FastISel::selectPatchpoint, 1659 // so don't try very hard... 1660 if (CLI.IsPatchPoint) 1661 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1662 else 1663 return false; 1664 } else { 1665 // Build direct call with NOP for TOC restore. 1666 // FIXME: We can and should optimize away the NOP for local calls. 1667 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1668 TII.get(PPC::BL8_NOP)); 1669 // Add callee. 1670 MIB.addGlobalAddress(GV); 1671 } 1672 1673 // Add implicit physical register uses to the call. 1674 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1675 MIB.addReg(RegArgs[II], RegState::Implicit); 1676 1677 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1678 // into the call. 1679 PPCFuncInfo->setUsesTOCBasePtr(); 1680 MIB.addReg(PPC::X2, RegState::Implicit); 1681 1682 // Add a register mask with the call-preserved registers. Proper 1683 // defs for return values will be added by setPhysRegsDeadExcept(). 1684 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1685 1686 CLI.Call = MIB; 1687 1688 // Finish off the call including any return values. 1689 return finishCall(RetVT, CLI, NumBytes); 1690 } 1691 1692 // Attempt to fast-select a return instruction. 1693 bool PPCFastISel::SelectRet(const Instruction *I) { 1694 1695 if (!FuncInfo.CanLowerReturn) 1696 return false; 1697 1698 const ReturnInst *Ret = cast<ReturnInst>(I); 1699 const Function &F = *I->getParent()->getParent(); 1700 1701 // Build a list of return value registers. 1702 SmallVector<unsigned, 4> RetRegs; 1703 CallingConv::ID CC = F.getCallingConv(); 1704 1705 if (Ret->getNumOperands() > 0) { 1706 SmallVector<ISD::OutputArg, 4> Outs; 1707 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1708 1709 // Analyze operands of the call, assigning locations to each operand. 1710 SmallVector<CCValAssign, 16> ValLocs; 1711 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1712 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1713 const Value *RV = Ret->getOperand(0); 1714 1715 // FIXME: Only one output register for now. 1716 if (ValLocs.size() > 1) 1717 return false; 1718 1719 // Special case for returning a constant integer of any size - materialize 1720 // the constant as an i64 and copy it to the return register. 1721 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1722 CCValAssign &VA = ValLocs[0]; 1723 1724 Register RetReg = VA.getLocReg(); 1725 // We still need to worry about properly extending the sign. For example, 1726 // we could have only a single bit or a constant that needs zero 1727 // extension rather than sign extension. Make sure we pass the return 1728 // value extension property to integer materialization. 1729 unsigned SrcReg = 1730 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1731 1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1733 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1734 1735 RetRegs.push_back(RetReg); 1736 1737 } else { 1738 Register Reg = getRegForValue(RV); 1739 1740 if (Reg == 0) 1741 return false; 1742 1743 // Copy the result values into the output registers. 1744 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1745 1746 CCValAssign &VA = ValLocs[i]; 1747 assert(VA.isRegLoc() && "Can only return in registers!"); 1748 RetRegs.push_back(VA.getLocReg()); 1749 unsigned SrcReg = Reg + VA.getValNo(); 1750 1751 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1752 if (!RVEVT.isSimple()) 1753 return false; 1754 MVT RVVT = RVEVT.getSimpleVT(); 1755 MVT DestVT = VA.getLocVT(); 1756 1757 if (RVVT != DestVT && RVVT != MVT::i8 && 1758 RVVT != MVT::i16 && RVVT != MVT::i32) 1759 return false; 1760 1761 if (RVVT != DestVT) { 1762 switch (VA.getLocInfo()) { 1763 default: 1764 llvm_unreachable("Unknown loc info!"); 1765 case CCValAssign::Full: 1766 llvm_unreachable("Full value assign but types don't match?"); 1767 case CCValAssign::AExt: 1768 case CCValAssign::ZExt: { 1769 const TargetRegisterClass *RC = 1770 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1771 Register TmpReg = createResultReg(RC); 1772 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1773 return false; 1774 SrcReg = TmpReg; 1775 break; 1776 } 1777 case CCValAssign::SExt: { 1778 const TargetRegisterClass *RC = 1779 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1780 Register TmpReg = createResultReg(RC); 1781 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1782 return false; 1783 SrcReg = TmpReg; 1784 break; 1785 } 1786 } 1787 } 1788 1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1790 TII.get(TargetOpcode::COPY), RetRegs[i]) 1791 .addReg(SrcReg); 1792 } 1793 } 1794 } 1795 1796 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1797 TII.get(PPC::BLR8)); 1798 1799 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1800 MIB.addReg(RetRegs[i], RegState::Implicit); 1801 1802 return true; 1803 } 1804 1805 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1806 // signed and zero extensions are supported. Return false if we 1807 // can't handle it. 1808 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1809 unsigned DestReg, bool IsZExt) { 1810 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1811 return false; 1812 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1813 return false; 1814 1815 // Signed extensions use EXTSB, EXTSH, EXTSW. 1816 if (!IsZExt) { 1817 unsigned Opc; 1818 if (SrcVT == MVT::i8) 1819 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1820 else if (SrcVT == MVT::i16) 1821 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1822 else { 1823 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1824 Opc = PPC::EXTSW_32_64; 1825 } 1826 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1827 .addReg(SrcReg); 1828 1829 // Unsigned 32-bit extensions use RLWINM. 1830 } else if (DestVT == MVT::i32) { 1831 unsigned MB; 1832 if (SrcVT == MVT::i8) 1833 MB = 24; 1834 else { 1835 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1836 MB = 16; 1837 } 1838 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1839 DestReg) 1840 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1841 1842 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1843 } else { 1844 unsigned MB; 1845 if (SrcVT == MVT::i8) 1846 MB = 56; 1847 else if (SrcVT == MVT::i16) 1848 MB = 48; 1849 else 1850 MB = 32; 1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1852 TII.get(PPC::RLDICL_32_64), DestReg) 1853 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1854 } 1855 1856 return true; 1857 } 1858 1859 // Attempt to fast-select an indirect branch instruction. 1860 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1861 Register AddrReg = getRegForValue(I->getOperand(0)); 1862 if (AddrReg == 0) 1863 return false; 1864 1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1866 .addReg(AddrReg); 1867 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1868 1869 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1870 for (const BasicBlock *SuccBB : IB->successors()) 1871 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1872 1873 return true; 1874 } 1875 1876 // Attempt to fast-select an integer truncate instruction. 1877 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1878 Value *Src = I->getOperand(0); 1879 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1880 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1881 1882 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1883 return false; 1884 1885 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1886 return false; 1887 1888 Register SrcReg = getRegForValue(Src); 1889 if (!SrcReg) 1890 return false; 1891 1892 // The only interesting case is when we need to switch register classes. 1893 if (SrcVT == MVT::i64) 1894 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32); 1895 1896 updateValueMap(I, SrcReg); 1897 return true; 1898 } 1899 1900 // Attempt to fast-select an integer extend instruction. 1901 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1902 Type *DestTy = I->getType(); 1903 Value *Src = I->getOperand(0); 1904 Type *SrcTy = Src->getType(); 1905 1906 bool IsZExt = isa<ZExtInst>(I); 1907 Register SrcReg = getRegForValue(Src); 1908 if (!SrcReg) return false; 1909 1910 EVT SrcEVT, DestEVT; 1911 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1912 DestEVT = TLI.getValueType(DL, DestTy, true); 1913 if (!SrcEVT.isSimple()) 1914 return false; 1915 if (!DestEVT.isSimple()) 1916 return false; 1917 1918 MVT SrcVT = SrcEVT.getSimpleVT(); 1919 MVT DestVT = DestEVT.getSimpleVT(); 1920 1921 // If we know the register class needed for the result of this 1922 // instruction, use it. Otherwise pick the register class of the 1923 // correct size that does not contain X0/R0, since we don't know 1924 // whether downstream uses permit that assignment. 1925 Register AssignedReg = FuncInfo.ValueMap[I]; 1926 const TargetRegisterClass *RC = 1927 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1928 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1929 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1930 Register ResultReg = createResultReg(RC); 1931 1932 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1933 return false; 1934 1935 updateValueMap(I, ResultReg); 1936 return true; 1937 } 1938 1939 // Attempt to fast-select an instruction that wasn't handled by 1940 // the table-generated machinery. 1941 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1942 1943 switch (I->getOpcode()) { 1944 case Instruction::Load: 1945 return SelectLoad(I); 1946 case Instruction::Store: 1947 return SelectStore(I); 1948 case Instruction::Br: 1949 return SelectBranch(I); 1950 case Instruction::IndirectBr: 1951 return SelectIndirectBr(I); 1952 case Instruction::FPExt: 1953 return SelectFPExt(I); 1954 case Instruction::FPTrunc: 1955 return SelectFPTrunc(I); 1956 case Instruction::SIToFP: 1957 return SelectIToFP(I, /*IsSigned*/ true); 1958 case Instruction::UIToFP: 1959 return SelectIToFP(I, /*IsSigned*/ false); 1960 case Instruction::FPToSI: 1961 return SelectFPToI(I, /*IsSigned*/ true); 1962 case Instruction::FPToUI: 1963 return SelectFPToI(I, /*IsSigned*/ false); 1964 case Instruction::Add: 1965 return SelectBinaryIntOp(I, ISD::ADD); 1966 case Instruction::Or: 1967 return SelectBinaryIntOp(I, ISD::OR); 1968 case Instruction::Sub: 1969 return SelectBinaryIntOp(I, ISD::SUB); 1970 case Instruction::Ret: 1971 return SelectRet(I); 1972 case Instruction::Trunc: 1973 return SelectTrunc(I); 1974 case Instruction::ZExt: 1975 case Instruction::SExt: 1976 return SelectIntExt(I); 1977 // Here add other flavors of Instruction::XXX that automated 1978 // cases don't catch. For example, switches are terminators 1979 // that aren't yet handled. 1980 default: 1981 break; 1982 } 1983 return false; 1984 } 1985 1986 // Materialize a floating-point constant into a register, and return 1987 // the register number (or zero if we failed to handle it). 1988 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1989 // If this is a PC-Rel function, let SDISel handle constant pool. 1990 if (Subtarget->isUsingPCRelativeCalls()) 1991 return false; 1992 1993 // No plans to handle long double here. 1994 if (VT != MVT::f32 && VT != MVT::f64) 1995 return 0; 1996 1997 // All FP constants are loaded from the constant pool. 1998 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 1999 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 2000 const bool HasSPE = Subtarget->hasSPE(); 2001 const TargetRegisterClass *RC; 2002 if (HasSPE) 2003 RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass); 2004 else 2005 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); 2006 2007 Register DestReg = createResultReg(RC); 2008 CodeModel::Model CModel = TM.getCodeModel(); 2009 2010 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 2011 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 2012 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment); 2013 2014 unsigned Opc; 2015 2016 if (HasSPE) 2017 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); 2018 else 2019 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); 2020 2021 Register TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2022 2023 PPCFuncInfo->setUsesTOCBasePtr(); 2024 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 2025 if (CModel == CodeModel::Small) { 2026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 2027 TmpReg) 2028 .addConstantPoolIndex(Idx).addReg(PPC::X2); 2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2030 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 2031 } else { 2032 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)). 2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8), 2034 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 2035 // But for large code model, we must generate a LDtocL followed 2036 // by the LF[SD]. 2037 if (CModel == CodeModel::Large) { 2038 Register TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2039 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2040 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 2041 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2042 .addImm(0) 2043 .addReg(TmpReg2); 2044 } else 2045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2046 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 2047 .addReg(TmpReg) 2048 .addMemOperand(MMO); 2049 } 2050 2051 return DestReg; 2052 } 2053 2054 // Materialize the address of a global value into a register, and return 2055 // the register number (or zero if we failed to handle it). 2056 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 2057 // If this is a PC-Rel function, let SDISel handle GV materialization. 2058 if (Subtarget->isUsingPCRelativeCalls()) 2059 return false; 2060 2061 assert(VT == MVT::i64 && "Non-address!"); 2062 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 2063 Register DestReg = createResultReg(RC); 2064 2065 // Global values may be plain old object addresses, TLS object 2066 // addresses, constant pool entries, or jump tables. How we generate 2067 // code for these may depend on small, medium, or large code model. 2068 CodeModel::Model CModel = TM.getCodeModel(); 2069 2070 // FIXME: Jump tables are not yet required because fast-isel doesn't 2071 // handle switches; if that changes, we need them as well. For now, 2072 // what follows assumes everything's a generic (or TLS) global address. 2073 2074 // FIXME: We don't yet handle the complexity of TLS. 2075 if (GV->isThreadLocal()) 2076 return 0; 2077 2078 // If the global has the toc-data attribute then fallback to DAG-ISEL. 2079 if (TM.getTargetTriple().isOSAIX()) 2080 if (const GlobalVariable *Var = dyn_cast_or_null<GlobalVariable>(GV)) 2081 if (Var->hasAttribute("toc-data")) 2082 return false; 2083 2084 PPCFuncInfo->setUsesTOCBasePtr(); 2085 // For small code model, generate a simple TOC load. 2086 if (CModel == CodeModel::Small) 2087 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 2088 DestReg) 2089 .addGlobalAddress(GV) 2090 .addReg(PPC::X2); 2091 else { 2092 // If the address is an externally defined symbol, a symbol with common 2093 // or externally available linkage, a non-local function address, or a 2094 // jump table address (not yet needed), or if we are generating code 2095 // for large code model, we generate: 2096 // LDtocL(GV, ADDIStocHA8(%x2, GV)) 2097 // Otherwise we generate: 2098 // ADDItocL(ADDIStocHA8(%x2, GV), GV) 2099 // Either way, start with the ADDIStocHA8: 2100 Register HighPartReg = createResultReg(RC); 2101 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8), 2102 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2103 2104 if (Subtarget->isGVIndirectSymbol(GV)) { 2105 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2106 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2107 } else { 2108 // Otherwise generate the ADDItocL. 2109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 2110 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 2111 } 2112 } 2113 2114 return DestReg; 2115 } 2116 2117 // Materialize a 32-bit integer constant into a register, and return 2118 // the register number (or zero if we failed to handle it). 2119 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2120 const TargetRegisterClass *RC) { 2121 unsigned Lo = Imm & 0xFFFF; 2122 unsigned Hi = (Imm >> 16) & 0xFFFF; 2123 2124 Register ResultReg = createResultReg(RC); 2125 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2126 2127 if (isInt<16>(Imm)) 2128 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2129 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2130 .addImm(Imm); 2131 else if (Lo) { 2132 // Both Lo and Hi have nonzero bits. 2133 Register TmpReg = createResultReg(RC); 2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2135 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2136 .addImm(Hi); 2137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2138 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2139 .addReg(TmpReg).addImm(Lo); 2140 } else 2141 // Just Hi bits. 2142 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2143 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2144 .addImm(Hi); 2145 2146 return ResultReg; 2147 } 2148 2149 // Materialize a 64-bit integer constant into a register, and return 2150 // the register number (or zero if we failed to handle it). 2151 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2152 const TargetRegisterClass *RC) { 2153 unsigned Remainder = 0; 2154 unsigned Shift = 0; 2155 2156 // If the value doesn't fit in 32 bits, see if we can shift it 2157 // so that it fits in 32 bits. 2158 if (!isInt<32>(Imm)) { 2159 Shift = countTrailingZeros<uint64_t>(Imm); 2160 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2161 2162 if (isInt<32>(ImmSh)) 2163 Imm = ImmSh; 2164 else { 2165 Remainder = Imm; 2166 Shift = 32; 2167 Imm >>= 32; 2168 } 2169 } 2170 2171 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2172 // (if not shifted). 2173 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2174 if (!Shift) 2175 return TmpReg1; 2176 2177 // If upper 32 bits were not zero, we've built them and need to shift 2178 // them into place. 2179 unsigned TmpReg2; 2180 if (Imm) { 2181 TmpReg2 = createResultReg(RC); 2182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2183 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2184 } else 2185 TmpReg2 = TmpReg1; 2186 2187 unsigned TmpReg3, Hi, Lo; 2188 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2189 TmpReg3 = createResultReg(RC); 2190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2191 TmpReg3).addReg(TmpReg2).addImm(Hi); 2192 } else 2193 TmpReg3 = TmpReg2; 2194 2195 if ((Lo = Remainder & 0xFFFF)) { 2196 Register ResultReg = createResultReg(RC); 2197 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2198 ResultReg).addReg(TmpReg3).addImm(Lo); 2199 return ResultReg; 2200 } 2201 2202 return TmpReg3; 2203 } 2204 2205 // Materialize an integer constant into a register, and return 2206 // the register number (or zero if we failed to handle it). 2207 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2208 bool UseSExt) { 2209 // If we're using CR bit registers for i1 values, handle that as a special 2210 // case first. 2211 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2212 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2213 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2214 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2215 return ImmReg; 2216 } 2217 2218 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2219 VT != MVT::i1) 2220 return 0; 2221 2222 const TargetRegisterClass *RC = 2223 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2224 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2225 2226 // If the constant is in range, use a load-immediate. 2227 // Since LI will sign extend the constant we need to make sure that for 2228 // our zeroext constants that the sign extended constant fits into 16-bits - 2229 // a range of 0..0x7fff. 2230 if (isInt<16>(Imm)) { 2231 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2232 Register ImmReg = createResultReg(RC); 2233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2234 .addImm(Imm); 2235 return ImmReg; 2236 } 2237 2238 // Construct the constant piecewise. 2239 if (VT == MVT::i64) 2240 return PPCMaterialize64BitInt(Imm, RC); 2241 else if (VT == MVT::i32) 2242 return PPCMaterialize32BitInt(Imm, RC); 2243 2244 return 0; 2245 } 2246 2247 // Materialize a constant into a register, and return the register 2248 // number (or zero if we failed to handle it). 2249 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2250 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2251 2252 // Only handle simple types. 2253 if (!CEVT.isSimple()) return 0; 2254 MVT VT = CEVT.getSimpleVT(); 2255 2256 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2257 return PPCMaterializeFP(CFP, VT); 2258 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2259 return PPCMaterializeGV(GV, VT); 2260 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2261 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2262 // assumes that constant PHI operands will be zero extended, and failure to 2263 // match that assumption will cause problems if we sign extend here but 2264 // some user of a PHI is in a block for which we fall back to full SDAG 2265 // instruction selection. 2266 return PPCMaterializeInt(CI, VT, false); 2267 2268 return 0; 2269 } 2270 2271 // Materialize the address created by an alloca into a register, and 2272 // return the register number (or zero if we failed to handle it). 2273 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2274 // Don't handle dynamic allocas. 2275 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2276 2277 MVT VT; 2278 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2279 2280 DenseMap<const AllocaInst*, int>::iterator SI = 2281 FuncInfo.StaticAllocaMap.find(AI); 2282 2283 if (SI != FuncInfo.StaticAllocaMap.end()) { 2284 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2286 ResultReg).addFrameIndex(SI->second).addImm(0); 2287 return ResultReg; 2288 } 2289 2290 return 0; 2291 } 2292 2293 // Fold loads into extends when possible. 2294 // FIXME: We can have multiple redundant extend/trunc instructions 2295 // following a load. The folding only picks up one. Extend this 2296 // to check subsequent instructions for the same pattern and remove 2297 // them. Thus ResultReg should be the def reg for the last redundant 2298 // instruction in a chain, and all intervening instructions can be 2299 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2300 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2301 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2302 const LoadInst *LI) { 2303 // Verify we have a legal type before going any further. 2304 MVT VT; 2305 if (!isLoadTypeLegal(LI->getType(), VT)) 2306 return false; 2307 2308 // Combine load followed by zero- or sign-extend. 2309 bool IsZExt = false; 2310 switch(MI->getOpcode()) { 2311 default: 2312 return false; 2313 2314 case PPC::RLDICL: 2315 case PPC::RLDICL_32_64: { 2316 IsZExt = true; 2317 unsigned MB = MI->getOperand(3).getImm(); 2318 if ((VT == MVT::i8 && MB <= 56) || 2319 (VT == MVT::i16 && MB <= 48) || 2320 (VT == MVT::i32 && MB <= 32)) 2321 break; 2322 return false; 2323 } 2324 2325 case PPC::RLWINM: 2326 case PPC::RLWINM8: { 2327 IsZExt = true; 2328 unsigned MB = MI->getOperand(3).getImm(); 2329 if ((VT == MVT::i8 && MB <= 24) || 2330 (VT == MVT::i16 && MB <= 16)) 2331 break; 2332 return false; 2333 } 2334 2335 case PPC::EXTSB: 2336 case PPC::EXTSB8: 2337 case PPC::EXTSB8_32_64: 2338 /* There is no sign-extending load-byte instruction. */ 2339 return false; 2340 2341 case PPC::EXTSH: 2342 case PPC::EXTSH8: 2343 case PPC::EXTSH8_32_64: { 2344 if (VT != MVT::i16 && VT != MVT::i8) 2345 return false; 2346 break; 2347 } 2348 2349 case PPC::EXTSW: 2350 case PPC::EXTSW_32: 2351 case PPC::EXTSW_32_64: { 2352 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2353 return false; 2354 break; 2355 } 2356 } 2357 2358 // See if we can handle this address. 2359 Address Addr; 2360 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2361 return false; 2362 2363 Register ResultReg = MI->getOperand(0).getReg(); 2364 2365 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt, 2366 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 2367 return false; 2368 2369 MachineBasicBlock::iterator I(MI); 2370 removeDeadCode(I, std::next(I)); 2371 return true; 2372 } 2373 2374 // Attempt to lower call arguments in a faster way than done by 2375 // the selection DAG code. 2376 bool PPCFastISel::fastLowerArguments() { 2377 // Defer to normal argument lowering for now. It's reasonably 2378 // efficient. Consider doing something like ARM to handle the 2379 // case where all args fit in registers, no varargs, no float 2380 // or vector args. 2381 return false; 2382 } 2383 2384 // Handle materializing integer constants into a register. This is not 2385 // automatically generated for PowerPC, so must be explicitly created here. 2386 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2387 2388 if (Opc != ISD::Constant) 2389 return 0; 2390 2391 // If we're using CR bit registers for i1 values, handle that as a special 2392 // case first. 2393 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2394 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2395 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2396 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2397 return ImmReg; 2398 } 2399 2400 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2401 VT != MVT::i1) 2402 return 0; 2403 2404 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2405 &PPC::GPRCRegClass); 2406 if (VT == MVT::i64) 2407 return PPCMaterialize64BitInt(Imm, RC); 2408 else 2409 return PPCMaterialize32BitInt(Imm, RC); 2410 } 2411 2412 // Override for ADDI and ADDI8 to set the correct register class 2413 // on RHS operand 0. The automatic infrastructure naively assumes 2414 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2415 // for these cases. At the moment, none of the other automatically 2416 // generated RI instructions require special treatment. However, once 2417 // SelectSelect is implemented, "isel" requires similar handling. 2418 // 2419 // Also be conservative about the output register class. Avoid 2420 // assigning R0 or X0 to the output register for GPRC and G8RC 2421 // register classes, as any such result could be used in ADDI, etc., 2422 // where those regs have another meaning. 2423 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2424 const TargetRegisterClass *RC, 2425 unsigned Op0, 2426 uint64_t Imm) { 2427 if (MachineInstOpcode == PPC::ADDI) 2428 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2429 else if (MachineInstOpcode == PPC::ADDI8) 2430 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2431 2432 const TargetRegisterClass *UseRC = 2433 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2434 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2435 2436 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm); 2437 } 2438 2439 // Override for instructions with one register operand to avoid use of 2440 // R0/X0. The automatic infrastructure isn't aware of the context so 2441 // we must be conservative. 2442 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2443 const TargetRegisterClass* RC, 2444 unsigned Op0) { 2445 const TargetRegisterClass *UseRC = 2446 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2447 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2448 2449 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0); 2450 } 2451 2452 // Override for instructions with two register operands to avoid use 2453 // of R0/X0. The automatic infrastructure isn't aware of the context 2454 // so we must be conservative. 2455 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2456 const TargetRegisterClass* RC, 2457 unsigned Op0, unsigned Op1) { 2458 const TargetRegisterClass *UseRC = 2459 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2460 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2461 2462 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1); 2463 } 2464 2465 namespace llvm { 2466 // Create the fast instruction selector for PowerPC64 ELF. 2467 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2468 const TargetLibraryInfo *LibInfo) { 2469 // Only available on 64-bit for now. 2470 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2471 if (Subtarget.isPPC64()) 2472 return new PPCFastISel(FuncInfo, LibInfo); 2473 return nullptr; 2474 } 2475 } 2476