xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFastISel.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
40 
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 //   fastLowerArguments: Handle simple cases.
45 //   PPCMaterializeGV: Handle TLS.
46 //   SelectCall: Handle function pointers.
47 //   SelectCall: Handle multi-register return values.
48 //   SelectCall: Optimize away nops for local calls.
49 //   processCallArgs: Handle bit-converted arguments.
50 //   finishCall: Handle multi-register return values.
51 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
52 //   PPCEmitCmp: Handle immediate as operand 1.
53 //   SelectCall: Handle small byval arguments.
54 //   SelectIntrinsicCall: Implement.
55 //   SelectSelect: Implement.
56 //   Consider factoring isTypeLegal into the base class.
57 //   Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "ppcfastisel"
63 
64 namespace {
65 
66 typedef struct Address {
67   enum {
68     RegBase,
69     FrameIndexBase
70   } BaseType;
71 
72   union {
73     unsigned Reg;
74     int FI;
75   } Base;
76 
77   long Offset;
78 
79   // Innocuous defaults for our address.
80   Address()
81    : BaseType(RegBase), Offset(0) {
82      Base.Reg = 0;
83    }
84 } Address;
85 
86 class PPCFastISel final : public FastISel {
87 
88   const TargetMachine &TM;
89   const PPCSubtarget *Subtarget;
90   PPCFunctionInfo *PPCFuncInfo;
91   const TargetInstrInfo &TII;
92   const TargetLowering &TLI;
93   LLVMContext *Context;
94 
95   public:
96     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97                          const TargetLibraryInfo *LibInfo)
98         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99           Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101           TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
102           Context(&FuncInfo.Fn->getContext()) {}
103 
104     // Backend specific FastISel code.
105   private:
106     bool fastSelectInstruction(const Instruction *I) override;
107     unsigned fastMaterializeConstant(const Constant *C) override;
108     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
109     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
110                              const LoadInst *LI) override;
111     bool fastLowerArguments() override;
112     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
113     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
114                              const TargetRegisterClass *RC,
115                              unsigned Op0, bool Op0IsKill,
116                              uint64_t Imm);
117     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
118                             const TargetRegisterClass *RC,
119                             unsigned Op0, bool Op0IsKill);
120     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
121                              const TargetRegisterClass *RC,
122                              unsigned Op0, bool Op0IsKill,
123                              unsigned Op1, bool Op1IsKill);
124 
125     bool fastLowerCall(CallLoweringInfo &CLI) override;
126 
127   // Instruction selection routines.
128   private:
129     bool SelectLoad(const Instruction *I);
130     bool SelectStore(const Instruction *I);
131     bool SelectBranch(const Instruction *I);
132     bool SelectIndirectBr(const Instruction *I);
133     bool SelectFPExt(const Instruction *I);
134     bool SelectFPTrunc(const Instruction *I);
135     bool SelectIToFP(const Instruction *I, bool IsSigned);
136     bool SelectFPToI(const Instruction *I, bool IsSigned);
137     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
138     bool SelectRet(const Instruction *I);
139     bool SelectTrunc(const Instruction *I);
140     bool SelectIntExt(const Instruction *I);
141 
142   // Utility routines.
143   private:
144     bool isTypeLegal(Type *Ty, MVT &VT);
145     bool isLoadTypeLegal(Type *Ty, MVT &VT);
146     bool isValueAvailable(const Value *V) const;
147     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
148       return RC->getID() == PPC::VSFRCRegClassID;
149     }
150     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
151       return RC->getID() == PPC::VSSRCRegClassID;
152     }
153     unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
154                                unsigned SrcReg, unsigned Flag = 0,
155                                unsigned SubReg = 0) {
156       unsigned TmpReg = createResultReg(ToRC);
157       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
158               TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
159       return TmpReg;
160     }
161     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
162                     bool isZExt, unsigned DestReg,
163                     const PPC::Predicate Pred);
164     bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
165                      const TargetRegisterClass *RC, bool IsZExt = true,
166                      unsigned FP64LoadOpc = PPC::LFD);
167     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
168     bool PPCComputeAddress(const Value *Obj, Address &Addr);
169     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
170                             unsigned &IndexReg);
171     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
172                            unsigned DestReg, bool IsZExt);
173     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
174     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
175     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
176                                bool UseSExt = true);
177     unsigned PPCMaterialize32BitInt(int64_t Imm,
178                                     const TargetRegisterClass *RC);
179     unsigned PPCMaterialize64BitInt(int64_t Imm,
180                                     const TargetRegisterClass *RC);
181     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
182                              unsigned SrcReg, bool IsSigned);
183     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
184 
185   // Call handling routines.
186   private:
187     bool processCallArgs(SmallVectorImpl<Value*> &Args,
188                          SmallVectorImpl<unsigned> &ArgRegs,
189                          SmallVectorImpl<MVT> &ArgVTs,
190                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
191                          SmallVectorImpl<unsigned> &RegArgs,
192                          CallingConv::ID CC,
193                          unsigned &NumBytes,
194                          bool IsVarArg);
195     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
196 
197   private:
198   #include "PPCGenFastISel.inc"
199 
200 };
201 
202 } // end anonymous namespace
203 
204 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
205   switch (Pred) {
206     // These are not representable with any single compare.
207     case CmpInst::FCMP_FALSE:
208     case CmpInst::FCMP_TRUE:
209     // Major concern about the following 6 cases is NaN result. The comparison
210     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
211     // only one of which will be set. The result is generated by fcmpu
212     // instruction. However, bc instruction only inspects one of the first 3
213     // bits, so when un is set, bc instruction may jump to an undesired
214     // place.
215     //
216     // More specifically, if we expect an unordered comparison and un is set, we
217     // expect to always go to true branch; in such case UEQ, UGT and ULT still
218     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
219     // since they are tested by inspecting !eq, !lt, !gt, respectively.
220     //
221     // Similarly, for ordered comparison, when un is set, we always expect the
222     // result to be false. In such case OGT, OLT and OEQ is good, since they are
223     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
224     // and ONE are tested through !lt, !gt and !eq, and these are true.
225     case CmpInst::FCMP_UEQ:
226     case CmpInst::FCMP_UGT:
227     case CmpInst::FCMP_ULT:
228     case CmpInst::FCMP_OGE:
229     case CmpInst::FCMP_OLE:
230     case CmpInst::FCMP_ONE:
231     default:
232       return Optional<PPC::Predicate>();
233 
234     case CmpInst::FCMP_OEQ:
235     case CmpInst::ICMP_EQ:
236       return PPC::PRED_EQ;
237 
238     case CmpInst::FCMP_OGT:
239     case CmpInst::ICMP_UGT:
240     case CmpInst::ICMP_SGT:
241       return PPC::PRED_GT;
242 
243     case CmpInst::FCMP_UGE:
244     case CmpInst::ICMP_UGE:
245     case CmpInst::ICMP_SGE:
246       return PPC::PRED_GE;
247 
248     case CmpInst::FCMP_OLT:
249     case CmpInst::ICMP_ULT:
250     case CmpInst::ICMP_SLT:
251       return PPC::PRED_LT;
252 
253     case CmpInst::FCMP_ULE:
254     case CmpInst::ICMP_ULE:
255     case CmpInst::ICMP_SLE:
256       return PPC::PRED_LE;
257 
258     case CmpInst::FCMP_UNE:
259     case CmpInst::ICMP_NE:
260       return PPC::PRED_NE;
261 
262     case CmpInst::FCMP_ORD:
263       return PPC::PRED_NU;
264 
265     case CmpInst::FCMP_UNO:
266       return PPC::PRED_UN;
267   }
268 }
269 
270 // Determine whether the type Ty is simple enough to be handled by
271 // fast-isel, and return its equivalent machine type in VT.
272 // FIXME: Copied directly from ARM -- factor into base class?
273 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
274   EVT Evt = TLI.getValueType(DL, Ty, true);
275 
276   // Only handle simple types.
277   if (Evt == MVT::Other || !Evt.isSimple()) return false;
278   VT = Evt.getSimpleVT();
279 
280   // Handle all legal types, i.e. a register that will directly hold this
281   // value.
282   return TLI.isTypeLegal(VT);
283 }
284 
285 // Determine whether the type Ty is simple enough to be handled by
286 // fast-isel as a load target, and return its equivalent machine type in VT.
287 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
288   if (isTypeLegal(Ty, VT)) return true;
289 
290   // If this is a type than can be sign or zero-extended to a basic operation
291   // go ahead and accept it now.
292   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
293     return true;
294   }
295 
296   return false;
297 }
298 
299 bool PPCFastISel::isValueAvailable(const Value *V) const {
300   if (!isa<Instruction>(V))
301     return true;
302 
303   const auto *I = cast<Instruction>(V);
304   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
305 }
306 
307 // Given a value Obj, create an Address object Addr that represents its
308 // address.  Return false if we can't handle it.
309 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
310   const User *U = nullptr;
311   unsigned Opcode = Instruction::UserOp1;
312   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
313     // Don't walk into other basic blocks unless the object is an alloca from
314     // another block, otherwise it may not have a virtual register assigned.
315     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
316         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
317       Opcode = I->getOpcode();
318       U = I;
319     }
320   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
321     Opcode = C->getOpcode();
322     U = C;
323   }
324 
325   switch (Opcode) {
326     default:
327       break;
328     case Instruction::BitCast:
329       // Look through bitcasts.
330       return PPCComputeAddress(U->getOperand(0), Addr);
331     case Instruction::IntToPtr:
332       // Look past no-op inttoptrs.
333       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
334           TLI.getPointerTy(DL))
335         return PPCComputeAddress(U->getOperand(0), Addr);
336       break;
337     case Instruction::PtrToInt:
338       // Look past no-op ptrtoints.
339       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
340         return PPCComputeAddress(U->getOperand(0), Addr);
341       break;
342     case Instruction::GetElementPtr: {
343       Address SavedAddr = Addr;
344       long TmpOffset = Addr.Offset;
345 
346       // Iterate through the GEP folding the constants into offsets where
347       // we can.
348       gep_type_iterator GTI = gep_type_begin(U);
349       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
350            II != IE; ++II, ++GTI) {
351         const Value *Op = *II;
352         if (StructType *STy = GTI.getStructTypeOrNull()) {
353           const StructLayout *SL = DL.getStructLayout(STy);
354           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
355           TmpOffset += SL->getElementOffset(Idx);
356         } else {
357           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
358           for (;;) {
359             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
360               // Constant-offset addressing.
361               TmpOffset += CI->getSExtValue() * S;
362               break;
363             }
364             if (canFoldAddIntoGEP(U, Op)) {
365               // A compatible add with a constant operand. Fold the constant.
366               ConstantInt *CI =
367               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
368               TmpOffset += CI->getSExtValue() * S;
369               // Iterate on the other operand.
370               Op = cast<AddOperator>(Op)->getOperand(0);
371               continue;
372             }
373             // Unsupported
374             goto unsupported_gep;
375           }
376         }
377       }
378 
379       // Try to grab the base operand now.
380       Addr.Offset = TmpOffset;
381       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
382 
383       // We failed, restore everything and try the other options.
384       Addr = SavedAddr;
385 
386       unsupported_gep:
387       break;
388     }
389     case Instruction::Alloca: {
390       const AllocaInst *AI = cast<AllocaInst>(Obj);
391       DenseMap<const AllocaInst*, int>::iterator SI =
392         FuncInfo.StaticAllocaMap.find(AI);
393       if (SI != FuncInfo.StaticAllocaMap.end()) {
394         Addr.BaseType = Address::FrameIndexBase;
395         Addr.Base.FI = SI->second;
396         return true;
397       }
398       break;
399     }
400   }
401 
402   // FIXME: References to parameters fall through to the behavior
403   // below.  They should be able to reference a frame index since
404   // they are stored to the stack, so we can get "ld rx, offset(r1)"
405   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
406   // just contain the parameter.  Try to handle this with a FI.
407 
408   // Try to get this in a register if nothing else has worked.
409   if (Addr.Base.Reg == 0)
410     Addr.Base.Reg = getRegForValue(Obj);
411 
412   // Prevent assignment of base register to X0, which is inappropriate
413   // for loads and stores alike.
414   if (Addr.Base.Reg != 0)
415     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
416 
417   return Addr.Base.Reg != 0;
418 }
419 
420 // Fix up some addresses that can't be used directly.  For example, if
421 // an offset won't fit in an instruction field, we may need to move it
422 // into an index register.
423 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
424                                      unsigned &IndexReg) {
425 
426   // Check whether the offset fits in the instruction field.
427   if (!isInt<16>(Addr.Offset))
428     UseOffset = false;
429 
430   // If this is a stack pointer and the offset needs to be simplified then
431   // put the alloca address into a register, set the base type back to
432   // register and continue. This should almost never happen.
433   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
434     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
435     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
436             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
437     Addr.Base.Reg = ResultReg;
438     Addr.BaseType = Address::RegBase;
439   }
440 
441   if (!UseOffset) {
442     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
443     const ConstantInt *Offset =
444       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
445     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
446     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
447   }
448 }
449 
450 // Emit a load instruction if possible, returning true if we succeeded,
451 // otherwise false.  See commentary below for how the register class of
452 // the load is determined.
453 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
454                               const TargetRegisterClass *RC,
455                               bool IsZExt, unsigned FP64LoadOpc) {
456   unsigned Opc;
457   bool UseOffset = true;
458   bool HasSPE = Subtarget->hasSPE();
459 
460   // If ResultReg is given, it determines the register class of the load.
461   // Otherwise, RC is the register class to use.  If the result of the
462   // load isn't anticipated in this block, both may be zero, in which
463   // case we must make a conservative guess.  In particular, don't assign
464   // R0 or X0 to the result register, as the result may be used in a load,
465   // store, add-immediate, or isel that won't permit this.  (Though
466   // perhaps the spill and reload of live-exit values would handle this?)
467   const TargetRegisterClass *UseRC =
468     (ResultReg ? MRI.getRegClass(ResultReg) :
469      (RC ? RC :
470       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
471        (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
472         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
473          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
474 
475   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
476 
477   switch (VT.SimpleTy) {
478     default: // e.g., vector types not handled
479       return false;
480     case MVT::i8:
481       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
482       break;
483     case MVT::i16:
484       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
485                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
486       break;
487     case MVT::i32:
488       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
489                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
490       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
491         UseOffset = false;
492       break;
493     case MVT::i64:
494       Opc = PPC::LD;
495       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
496              "64-bit load with 32-bit target??");
497       UseOffset = ((Addr.Offset & 3) == 0);
498       break;
499     case MVT::f32:
500       Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
501       break;
502     case MVT::f64:
503       Opc = FP64LoadOpc;
504       break;
505   }
506 
507   // If necessary, materialize the offset into a register and use
508   // the indexed form.  Also handle stack pointers with special needs.
509   unsigned IndexReg = 0;
510   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
511 
512   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
513   // be used.
514   bool IsVSSRC = isVSSRCRegClass(UseRC);
515   bool IsVSFRC = isVSFRCRegClass(UseRC);
516   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
517   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
518   if ((Is32VSXLoad || Is64VSXLoad) &&
519       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
520       (Addr.Offset == 0)) {
521     UseOffset = false;
522   }
523 
524   if (ResultReg == 0)
525     ResultReg = createResultReg(UseRC);
526 
527   // Note: If we still have a frame index here, we know the offset is
528   // in range, as otherwise PPCSimplifyAddress would have converted it
529   // into a RegBase.
530   if (Addr.BaseType == Address::FrameIndexBase) {
531     // VSX only provides an indexed load.
532     if (Is32VSXLoad || Is64VSXLoad) return false;
533 
534     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
535         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
536                                           Addr.Offset),
537         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
538         MFI.getObjectAlign(Addr.Base.FI));
539 
540     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
541       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
542 
543   // Base reg with offset in range.
544   } else if (UseOffset) {
545     // VSX only provides an indexed load.
546     if (Is32VSXLoad || Is64VSXLoad) return false;
547 
548     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
549       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
550 
551   // Indexed form.
552   } else {
553     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
554     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
555     // is hard to get at.
556     switch (Opc) {
557       default:        llvm_unreachable("Unexpected opcode!");
558       case PPC::LBZ:    Opc = PPC::LBZX;    break;
559       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
560       case PPC::LHZ:    Opc = PPC::LHZX;    break;
561       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
562       case PPC::LHA:    Opc = PPC::LHAX;    break;
563       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
564       case PPC::LWZ:    Opc = PPC::LWZX;    break;
565       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
566       case PPC::LWA:    Opc = PPC::LWAX;    break;
567       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
568       case PPC::LD:     Opc = PPC::LDX;     break;
569       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
570       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
571       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
572       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
573     }
574 
575     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
576                        ResultReg);
577 
578     // If we have an index register defined we use it in the store inst,
579     // otherwise we use X0 as base as it makes the vector instructions to
580     // use zero in the computation of the effective address regardless the
581     // content of the register.
582     if (IndexReg)
583       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
584     else
585       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
586   }
587 
588   return true;
589 }
590 
591 // Attempt to fast-select a load instruction.
592 bool PPCFastISel::SelectLoad(const Instruction *I) {
593   // FIXME: No atomic loads are supported.
594   if (cast<LoadInst>(I)->isAtomic())
595     return false;
596 
597   // Verify we have a legal type before going any further.
598   MVT VT;
599   if (!isLoadTypeLegal(I->getType(), VT))
600     return false;
601 
602   // See if we can handle this address.
603   Address Addr;
604   if (!PPCComputeAddress(I->getOperand(0), Addr))
605     return false;
606 
607   // Look at the currently assigned register for this instruction
608   // to determine the required register class.  This is necessary
609   // to constrain RA from using R0/X0 when this is not legal.
610   unsigned AssignedReg = FuncInfo.ValueMap[I];
611   const TargetRegisterClass *RC =
612     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
613 
614   Register ResultReg = 0;
615   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
616                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
617     return false;
618   updateValueMap(I, ResultReg);
619   return true;
620 }
621 
622 // Emit a store instruction to store SrcReg at Addr.
623 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
624   assert(SrcReg && "Nothing to store!");
625   unsigned Opc;
626   bool UseOffset = true;
627 
628   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
629   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
630 
631   switch (VT.SimpleTy) {
632     default: // e.g., vector types not handled
633       return false;
634     case MVT::i8:
635       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
636       break;
637     case MVT::i16:
638       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
639       break;
640     case MVT::i32:
641       assert(Is32BitInt && "Not GPRC for i32??");
642       Opc = PPC::STW;
643       break;
644     case MVT::i64:
645       Opc = PPC::STD;
646       UseOffset = ((Addr.Offset & 3) == 0);
647       break;
648     case MVT::f32:
649       Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
650       break;
651     case MVT::f64:
652       Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
653       break;
654   }
655 
656   // If necessary, materialize the offset into a register and use
657   // the indexed form.  Also handle stack pointers with special needs.
658   unsigned IndexReg = 0;
659   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
660 
661   // If this is a potential VSX store with an offset of 0, a VSX indexed store
662   // can be used.
663   bool IsVSSRC = isVSSRCRegClass(RC);
664   bool IsVSFRC = isVSFRCRegClass(RC);
665   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
666   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
667   if ((Is32VSXStore || Is64VSXStore) &&
668       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
669       (Addr.Offset == 0)) {
670     UseOffset = false;
671   }
672 
673   // Note: If we still have a frame index here, we know the offset is
674   // in range, as otherwise PPCSimplifyAddress would have converted it
675   // into a RegBase.
676   if (Addr.BaseType == Address::FrameIndexBase) {
677     // VSX only provides an indexed store.
678     if (Is32VSXStore || Is64VSXStore) return false;
679 
680     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
681         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
682                                           Addr.Offset),
683         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
684         MFI.getObjectAlign(Addr.Base.FI));
685 
686     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
687         .addReg(SrcReg)
688         .addImm(Addr.Offset)
689         .addFrameIndex(Addr.Base.FI)
690         .addMemOperand(MMO);
691 
692   // Base reg with offset in range.
693   } else if (UseOffset) {
694     // VSX only provides an indexed store.
695     if (Is32VSXStore || Is64VSXStore)
696       return false;
697 
698     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
699       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
700 
701   // Indexed form.
702   } else {
703     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
704     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
705     // is hard to get at.
706     switch (Opc) {
707       default:        llvm_unreachable("Unexpected opcode!");
708       case PPC::STB:  Opc = PPC::STBX;  break;
709       case PPC::STH : Opc = PPC::STHX;  break;
710       case PPC::STW : Opc = PPC::STWX;  break;
711       case PPC::STB8: Opc = PPC::STBX8; break;
712       case PPC::STH8: Opc = PPC::STHX8; break;
713       case PPC::STW8: Opc = PPC::STWX8; break;
714       case PPC::STD:  Opc = PPC::STDX;  break;
715       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
716       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
717       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
718       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
719     }
720 
721     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
722         .addReg(SrcReg);
723 
724     // If we have an index register defined we use it in the store inst,
725     // otherwise we use X0 as base as it makes the vector instructions to
726     // use zero in the computation of the effective address regardless the
727     // content of the register.
728     if (IndexReg)
729       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
730     else
731       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
732   }
733 
734   return true;
735 }
736 
737 // Attempt to fast-select a store instruction.
738 bool PPCFastISel::SelectStore(const Instruction *I) {
739   Value *Op0 = I->getOperand(0);
740   unsigned SrcReg = 0;
741 
742   // FIXME: No atomics loads are supported.
743   if (cast<StoreInst>(I)->isAtomic())
744     return false;
745 
746   // Verify we have a legal type before going any further.
747   MVT VT;
748   if (!isLoadTypeLegal(Op0->getType(), VT))
749     return false;
750 
751   // Get the value to be stored into a register.
752   SrcReg = getRegForValue(Op0);
753   if (SrcReg == 0)
754     return false;
755 
756   // See if we can handle this address.
757   Address Addr;
758   if (!PPCComputeAddress(I->getOperand(1), Addr))
759     return false;
760 
761   if (!PPCEmitStore(VT, SrcReg, Addr))
762     return false;
763 
764   return true;
765 }
766 
767 // Attempt to fast-select a branch instruction.
768 bool PPCFastISel::SelectBranch(const Instruction *I) {
769   const BranchInst *BI = cast<BranchInst>(I);
770   MachineBasicBlock *BrBB = FuncInfo.MBB;
771   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
772   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
773 
774   // For now, just try the simplest case where it's fed by a compare.
775   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
776     if (isValueAvailable(CI)) {
777       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
778       if (!OptPPCPred)
779         return false;
780 
781       PPC::Predicate PPCPred = OptPPCPred.getValue();
782 
783       // Take advantage of fall-through opportunities.
784       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
785         std::swap(TBB, FBB);
786         PPCPred = PPC::InvertPredicate(PPCPred);
787       }
788 
789       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
790 
791       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
792                       CondReg, PPCPred))
793         return false;
794 
795       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
796           .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
797           .addReg(CondReg)
798           .addMBB(TBB);
799       finishCondBranch(BI->getParent(), TBB, FBB);
800       return true;
801     }
802   } else if (const ConstantInt *CI =
803              dyn_cast<ConstantInt>(BI->getCondition())) {
804     uint64_t Imm = CI->getZExtValue();
805     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
806     fastEmitBranch(Target, DbgLoc);
807     return true;
808   }
809 
810   // FIXME: ARM looks for a case where the block containing the compare
811   // has been split from the block containing the branch.  If this happens,
812   // there is a vreg available containing the result of the compare.  I'm
813   // not sure we can do much, as we've lost the predicate information with
814   // the compare instruction -- we have a 4-bit CR but don't know which bit
815   // to test here.
816   return false;
817 }
818 
819 // Attempt to emit a compare of the two source values.  Signed and unsigned
820 // comparisons are supported.  Return false if we can't handle it.
821 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
822                              bool IsZExt, unsigned DestReg,
823                              const PPC::Predicate Pred) {
824   Type *Ty = SrcValue1->getType();
825   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
826   if (!SrcEVT.isSimple())
827     return false;
828   MVT SrcVT = SrcEVT.getSimpleVT();
829 
830   if (SrcVT == MVT::i1 && Subtarget->useCRBits())
831     return false;
832 
833   // See if operand 2 is an immediate encodeable in the compare.
834   // FIXME: Operands are not in canonical order at -O0, so an immediate
835   // operand in position 1 is a lost opportunity for now.  We are
836   // similar to ARM in this regard.
837   long Imm = 0;
838   bool UseImm = false;
839   const bool HasSPE = Subtarget->hasSPE();
840 
841   // Only 16-bit integer constants can be represented in compares for
842   // PowerPC.  Others will be materialized into a register.
843   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
844     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
845         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
846       const APInt &CIVal = ConstInt->getValue();
847       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
848       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
849         UseImm = true;
850     }
851   }
852 
853   unsigned SrcReg1 = getRegForValue(SrcValue1);
854   if (SrcReg1 == 0)
855     return false;
856 
857   unsigned SrcReg2 = 0;
858   if (!UseImm) {
859     SrcReg2 = getRegForValue(SrcValue2);
860     if (SrcReg2 == 0)
861       return false;
862   }
863 
864   unsigned CmpOpc;
865   bool NeedsExt = false;
866 
867   auto RC1 = MRI.getRegClass(SrcReg1);
868   auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
869 
870   switch (SrcVT.SimpleTy) {
871     default: return false;
872     case MVT::f32:
873       if (HasSPE) {
874         switch (Pred) {
875           default: return false;
876           case PPC::PRED_EQ:
877             CmpOpc = PPC::EFSCMPEQ;
878             break;
879           case PPC::PRED_LT:
880             CmpOpc = PPC::EFSCMPLT;
881             break;
882           case PPC::PRED_GT:
883             CmpOpc = PPC::EFSCMPGT;
884             break;
885         }
886       } else {
887         CmpOpc = PPC::FCMPUS;
888         if (isVSSRCRegClass(RC1))
889           SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
890         if (RC2 && isVSSRCRegClass(RC2))
891           SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
892       }
893       break;
894     case MVT::f64:
895       if (HasSPE) {
896         switch (Pred) {
897           default: return false;
898           case PPC::PRED_EQ:
899             CmpOpc = PPC::EFDCMPEQ;
900             break;
901           case PPC::PRED_LT:
902             CmpOpc = PPC::EFDCMPLT;
903             break;
904           case PPC::PRED_GT:
905             CmpOpc = PPC::EFDCMPGT;
906             break;
907         }
908       } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
909         CmpOpc = PPC::XSCMPUDP;
910       } else {
911         CmpOpc = PPC::FCMPUD;
912       }
913       break;
914     case MVT::i1:
915     case MVT::i8:
916     case MVT::i16:
917       NeedsExt = true;
918       LLVM_FALLTHROUGH;
919     case MVT::i32:
920       if (!UseImm)
921         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
922       else
923         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
924       break;
925     case MVT::i64:
926       if (!UseImm)
927         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
928       else
929         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
930       break;
931   }
932 
933   if (NeedsExt) {
934     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
935     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
936       return false;
937     SrcReg1 = ExtReg;
938 
939     if (!UseImm) {
940       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
941       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
942         return false;
943       SrcReg2 = ExtReg;
944     }
945   }
946 
947   if (!UseImm)
948     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
949       .addReg(SrcReg1).addReg(SrcReg2);
950   else
951     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
952       .addReg(SrcReg1).addImm(Imm);
953 
954   return true;
955 }
956 
957 // Attempt to fast-select a floating-point extend instruction.
958 bool PPCFastISel::SelectFPExt(const Instruction *I) {
959   Value *Src  = I->getOperand(0);
960   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
961   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
962 
963   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
964     return false;
965 
966   unsigned SrcReg = getRegForValue(Src);
967   if (!SrcReg)
968     return false;
969 
970   // No code is generated for a FP extend.
971   updateValueMap(I, SrcReg);
972   return true;
973 }
974 
975 // Attempt to fast-select a floating-point truncate instruction.
976 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
977   Value *Src  = I->getOperand(0);
978   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
979   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
980 
981   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
982     return false;
983 
984   unsigned SrcReg = getRegForValue(Src);
985   if (!SrcReg)
986     return false;
987 
988   // Round the result to single precision.
989   unsigned DestReg;
990   auto RC = MRI.getRegClass(SrcReg);
991   if (Subtarget->hasSPE()) {
992     DestReg = createResultReg(&PPC::GPRCRegClass);
993     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
994       TII.get(PPC::EFSCFD), DestReg)
995       .addReg(SrcReg);
996   } else if (isVSFRCRegClass(RC)) {
997     DestReg = createResultReg(&PPC::VSSRCRegClass);
998     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
999       TII.get(PPC::XSRSP), DestReg)
1000       .addReg(SrcReg);
1001   } else {
1002     DestReg = createResultReg(&PPC::F4RCRegClass);
1003     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1004       TII.get(PPC::FRSP), DestReg)
1005       .addReg(SrcReg);
1006   }
1007 
1008   updateValueMap(I, DestReg);
1009   return true;
1010 }
1011 
1012 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1013 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1014 // those should be used instead of moving via a stack slot when the
1015 // subtarget permits.
1016 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1017 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1018 // case to 8 bytes which produces tighter code but wastes stack space.
1019 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1020                                      bool IsSigned) {
1021 
1022   // If necessary, extend 32-bit int to 64-bit.
1023   if (SrcVT == MVT::i32) {
1024     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1025     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1026       return 0;
1027     SrcReg = TmpReg;
1028   }
1029 
1030   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1031   Address Addr;
1032   Addr.BaseType = Address::FrameIndexBase;
1033   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1034 
1035   // Store the value from the GPR.
1036   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1037     return 0;
1038 
1039   // Load the integer value into an FPR.  The kind of load used depends
1040   // on a number of conditions.
1041   unsigned LoadOpc = PPC::LFD;
1042 
1043   if (SrcVT == MVT::i32) {
1044     if (!IsSigned) {
1045       LoadOpc = PPC::LFIWZX;
1046       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1047     } else if (Subtarget->hasLFIWAX()) {
1048       LoadOpc = PPC::LFIWAX;
1049       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1050     }
1051   }
1052 
1053   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1054   Register ResultReg = 0;
1055   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1056     return 0;
1057 
1058   return ResultReg;
1059 }
1060 
1061 // Attempt to fast-select an integer-to-floating-point conversion.
1062 // FIXME: Once fast-isel has better support for VSX, conversions using
1063 //        direct moves should be implemented.
1064 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1065   MVT DstVT;
1066   Type *DstTy = I->getType();
1067   if (!isTypeLegal(DstTy, DstVT))
1068     return false;
1069 
1070   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1071     return false;
1072 
1073   Value *Src = I->getOperand(0);
1074   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1075   if (!SrcEVT.isSimple())
1076     return false;
1077 
1078   MVT SrcVT = SrcEVT.getSimpleVT();
1079 
1080   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1081       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1082     return false;
1083 
1084   unsigned SrcReg = getRegForValue(Src);
1085   if (SrcReg == 0)
1086     return false;
1087 
1088   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1089   if (Subtarget->hasSPE()) {
1090     unsigned Opc;
1091     if (DstVT == MVT::f32)
1092       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1093     else
1094       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1095 
1096     unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1097     // Generate the convert.
1098     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1099       .addReg(SrcReg);
1100     updateValueMap(I, DestReg);
1101     return true;
1102   }
1103 
1104   // We can only lower an unsigned convert if we have the newer
1105   // floating-point conversion operations.
1106   if (!IsSigned && !Subtarget->hasFPCVT())
1107     return false;
1108 
1109   // FIXME: For now we require the newer floating-point conversion operations
1110   // (which are present only on P7 and A2 server models) when converting
1111   // to single-precision float.  Otherwise we have to generate a lot of
1112   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1113   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1114   if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1115     return false;
1116 
1117   // Extend the input if necessary.
1118   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1119     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1120     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1121       return false;
1122     SrcVT = MVT::i64;
1123     SrcReg = TmpReg;
1124   }
1125 
1126   // Move the integer value to an FPR.
1127   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1128   if (FPReg == 0)
1129     return false;
1130 
1131   // Determine the opcode for the conversion.
1132   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1133   unsigned DestReg = createResultReg(RC);
1134   unsigned Opc;
1135 
1136   if (DstVT == MVT::f32)
1137     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1138   else
1139     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1140 
1141   // Generate the convert.
1142   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1143     .addReg(FPReg);
1144 
1145   updateValueMap(I, DestReg);
1146   return true;
1147 }
1148 
1149 // Move the floating-point value in SrcReg into an integer destination
1150 // register, and return the register (or zero if we can't handle it).
1151 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1152 // those should be used instead of moving via a stack slot when the
1153 // subtarget permits.
1154 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1155                                       unsigned SrcReg, bool IsSigned) {
1156   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1157   // Note that if have STFIWX available, we could use a 4-byte stack
1158   // slot for i32, but this being fast-isel we'll just go with the
1159   // easiest code gen possible.
1160   Address Addr;
1161   Addr.BaseType = Address::FrameIndexBase;
1162   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1163 
1164   // Store the value from the FPR.
1165   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1166     return 0;
1167 
1168   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1169   // address to have a 4-byte offset so we load from the right place.
1170   if (VT == MVT::i32)
1171     Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1172 
1173   // Look at the currently assigned register for this instruction
1174   // to determine the required register class.
1175   unsigned AssignedReg = FuncInfo.ValueMap[I];
1176   const TargetRegisterClass *RC =
1177     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1178 
1179   Register ResultReg = 0;
1180   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1181     return 0;
1182 
1183   return ResultReg;
1184 }
1185 
1186 // Attempt to fast-select a floating-point-to-integer conversion.
1187 // FIXME: Once fast-isel has better support for VSX, conversions using
1188 //        direct moves should be implemented.
1189 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1190   MVT DstVT, SrcVT;
1191   Type *DstTy = I->getType();
1192   if (!isTypeLegal(DstTy, DstVT))
1193     return false;
1194 
1195   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1196     return false;
1197 
1198   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1199   if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1200       !Subtarget->hasSPE())
1201     return false;
1202 
1203   Value *Src = I->getOperand(0);
1204   Type *SrcTy = Src->getType();
1205   if (!isTypeLegal(SrcTy, SrcVT))
1206     return false;
1207 
1208   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1209     return false;
1210 
1211   unsigned SrcReg = getRegForValue(Src);
1212   if (SrcReg == 0)
1213     return false;
1214 
1215   // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1216   // meaningless copy to get the register class right.
1217   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1218   if (InRC == &PPC::F4RCRegClass)
1219     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1220   else if (InRC == &PPC::VSSRCRegClass)
1221     SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1222 
1223   // Determine the opcode for the conversion, which takes place
1224   // entirely within FPRs or VSRs.
1225   unsigned DestReg;
1226   unsigned Opc;
1227   auto RC = MRI.getRegClass(SrcReg);
1228 
1229   if (Subtarget->hasSPE()) {
1230     DestReg = createResultReg(&PPC::GPRCRegClass);
1231     if (IsSigned)
1232       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1233     else
1234       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1235   } else if (isVSFRCRegClass(RC)) {
1236     DestReg = createResultReg(&PPC::VSFRCRegClass);
1237     if (DstVT == MVT::i32)
1238       Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1239     else
1240       Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1241   } else {
1242     DestReg = createResultReg(&PPC::F8RCRegClass);
1243     if (DstVT == MVT::i32)
1244       if (IsSigned)
1245         Opc = PPC::FCTIWZ;
1246       else
1247         Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1248     else
1249       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1250   }
1251 
1252   // Generate the convert.
1253   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1254     .addReg(SrcReg);
1255 
1256   // Now move the integer value from a float register to an integer register.
1257   unsigned IntReg = Subtarget->hasSPE()
1258                         ? DestReg
1259                         : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1260 
1261   if (IntReg == 0)
1262     return false;
1263 
1264   updateValueMap(I, IntReg);
1265   return true;
1266 }
1267 
1268 // Attempt to fast-select a binary integer operation that isn't already
1269 // handled automatically.
1270 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1271   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1272 
1273   // We can get here in the case when we have a binary operation on a non-legal
1274   // type and the target independent selector doesn't know how to handle it.
1275   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1276     return false;
1277 
1278   // Look at the currently assigned register for this instruction
1279   // to determine the required register class.  If there is no register,
1280   // make a conservative choice (don't assign R0).
1281   unsigned AssignedReg = FuncInfo.ValueMap[I];
1282   const TargetRegisterClass *RC =
1283     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1284      &PPC::GPRC_and_GPRC_NOR0RegClass);
1285   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1286 
1287   unsigned Opc;
1288   switch (ISDOpcode) {
1289     default: return false;
1290     case ISD::ADD:
1291       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1292       break;
1293     case ISD::OR:
1294       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1295       break;
1296     case ISD::SUB:
1297       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1298       break;
1299   }
1300 
1301   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1302   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1303   if (SrcReg1 == 0) return false;
1304 
1305   // Handle case of small immediate operand.
1306   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1307     const APInt &CIVal = ConstInt->getValue();
1308     int Imm = (int)CIVal.getSExtValue();
1309     bool UseImm = true;
1310     if (isInt<16>(Imm)) {
1311       switch (Opc) {
1312         default:
1313           llvm_unreachable("Missing case!");
1314         case PPC::ADD4:
1315           Opc = PPC::ADDI;
1316           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1317           break;
1318         case PPC::ADD8:
1319           Opc = PPC::ADDI8;
1320           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1321           break;
1322         case PPC::OR:
1323           Opc = PPC::ORI;
1324           break;
1325         case PPC::OR8:
1326           Opc = PPC::ORI8;
1327           break;
1328         case PPC::SUBF:
1329           if (Imm == -32768)
1330             UseImm = false;
1331           else {
1332             Opc = PPC::ADDI;
1333             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1334             Imm = -Imm;
1335           }
1336           break;
1337         case PPC::SUBF8:
1338           if (Imm == -32768)
1339             UseImm = false;
1340           else {
1341             Opc = PPC::ADDI8;
1342             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1343             Imm = -Imm;
1344           }
1345           break;
1346       }
1347 
1348       if (UseImm) {
1349         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1350                 ResultReg)
1351             .addReg(SrcReg1)
1352             .addImm(Imm);
1353         updateValueMap(I, ResultReg);
1354         return true;
1355       }
1356     }
1357   }
1358 
1359   // Reg-reg case.
1360   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1361   if (SrcReg2 == 0) return false;
1362 
1363   // Reverse operands for subtract-from.
1364   if (ISDOpcode == ISD::SUB)
1365     std::swap(SrcReg1, SrcReg2);
1366 
1367   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1368     .addReg(SrcReg1).addReg(SrcReg2);
1369   updateValueMap(I, ResultReg);
1370   return true;
1371 }
1372 
1373 // Handle arguments to a call that we're attempting to fast-select.
1374 // Return false if the arguments are too complex for us at the moment.
1375 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1376                                   SmallVectorImpl<unsigned> &ArgRegs,
1377                                   SmallVectorImpl<MVT> &ArgVTs,
1378                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1379                                   SmallVectorImpl<unsigned> &RegArgs,
1380                                   CallingConv::ID CC,
1381                                   unsigned &NumBytes,
1382                                   bool IsVarArg) {
1383   SmallVector<CCValAssign, 16> ArgLocs;
1384   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1385 
1386   // Reserve space for the linkage area on the stack.
1387   unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1388   CCInfo.AllocateStack(LinkageSize, Align(8));
1389 
1390   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1391 
1392   // Bail out if we can't handle any of the arguments.
1393   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1394     CCValAssign &VA = ArgLocs[I];
1395     MVT ArgVT = ArgVTs[VA.getValNo()];
1396 
1397     // Skip vector arguments for now, as well as long double and
1398     // uint128_t, and anything that isn't passed in a register.
1399     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1400         !VA.isRegLoc() || VA.needsCustom())
1401       return false;
1402 
1403     // Skip bit-converted arguments for now.
1404     if (VA.getLocInfo() == CCValAssign::BCvt)
1405       return false;
1406   }
1407 
1408   // Get a count of how many bytes are to be pushed onto the stack.
1409   NumBytes = CCInfo.getNextStackOffset();
1410 
1411   // The prolog code of the callee may store up to 8 GPR argument registers to
1412   // the stack, allowing va_start to index over them in memory if its varargs.
1413   // Because we cannot tell if this is needed on the caller side, we have to
1414   // conservatively assume that it is needed.  As such, make sure we have at
1415   // least enough stack space for the caller to store the 8 GPRs.
1416   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1417   NumBytes = std::max(NumBytes, LinkageSize + 64);
1418 
1419   // Issue CALLSEQ_START.
1420   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1421           TII.get(TII.getCallFrameSetupOpcode()))
1422     .addImm(NumBytes).addImm(0);
1423 
1424   // Prepare to assign register arguments.  Every argument uses up a
1425   // GPR protocol register even if it's passed in a floating-point
1426   // register (unless we're using the fast calling convention).
1427   unsigned NextGPR = PPC::X3;
1428   unsigned NextFPR = PPC::F1;
1429 
1430   // Process arguments.
1431   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1432     CCValAssign &VA = ArgLocs[I];
1433     unsigned Arg = ArgRegs[VA.getValNo()];
1434     MVT ArgVT = ArgVTs[VA.getValNo()];
1435 
1436     // Handle argument promotion and bitcasts.
1437     switch (VA.getLocInfo()) {
1438       default:
1439         llvm_unreachable("Unknown loc info!");
1440       case CCValAssign::Full:
1441         break;
1442       case CCValAssign::SExt: {
1443         MVT DestVT = VA.getLocVT();
1444         const TargetRegisterClass *RC =
1445           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1446         unsigned TmpReg = createResultReg(RC);
1447         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1448           llvm_unreachable("Failed to emit a sext!");
1449         ArgVT = DestVT;
1450         Arg = TmpReg;
1451         break;
1452       }
1453       case CCValAssign::AExt:
1454       case CCValAssign::ZExt: {
1455         MVT DestVT = VA.getLocVT();
1456         const TargetRegisterClass *RC =
1457           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1458         unsigned TmpReg = createResultReg(RC);
1459         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1460           llvm_unreachable("Failed to emit a zext!");
1461         ArgVT = DestVT;
1462         Arg = TmpReg;
1463         break;
1464       }
1465       case CCValAssign::BCvt: {
1466         // FIXME: Not yet handled.
1467         llvm_unreachable("Should have bailed before getting here!");
1468         break;
1469       }
1470     }
1471 
1472     // Copy this argument to the appropriate register.
1473     unsigned ArgReg;
1474     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1475       ArgReg = NextFPR++;
1476       if (CC != CallingConv::Fast)
1477         ++NextGPR;
1478     } else
1479       ArgReg = NextGPR++;
1480 
1481     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1482             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1483     RegArgs.push_back(ArgReg);
1484   }
1485 
1486   return true;
1487 }
1488 
1489 // For a call that we've determined we can fast-select, finish the
1490 // call sequence and generate a copy to obtain the return value (if any).
1491 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1492   CallingConv::ID CC = CLI.CallConv;
1493 
1494   // Issue CallSEQ_END.
1495   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1496           TII.get(TII.getCallFrameDestroyOpcode()))
1497     .addImm(NumBytes).addImm(0);
1498 
1499   // Next, generate a copy to obtain the return value.
1500   // FIXME: No multi-register return values yet, though I don't foresee
1501   // any real difficulties there.
1502   if (RetVT != MVT::isVoid) {
1503     SmallVector<CCValAssign, 16> RVLocs;
1504     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1505     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1506     CCValAssign &VA = RVLocs[0];
1507     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1508     assert(VA.isRegLoc() && "Can only return in registers!");
1509 
1510     MVT DestVT = VA.getValVT();
1511     MVT CopyVT = DestVT;
1512 
1513     // Ints smaller than a register still arrive in a full 64-bit
1514     // register, so make sure we recognize this.
1515     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1516       CopyVT = MVT::i64;
1517 
1518     unsigned SourcePhysReg = VA.getLocReg();
1519     unsigned ResultReg = 0;
1520 
1521     if (RetVT == CopyVT) {
1522       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1523       ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1524 
1525     // If necessary, round the floating result to single precision.
1526     } else if (CopyVT == MVT::f64) {
1527       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1528       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1529               ResultReg).addReg(SourcePhysReg);
1530 
1531     // If only the low half of a general register is needed, generate
1532     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1533     // used along the fast-isel path (not lowered), and downstream logic
1534     // also doesn't like a direct subreg copy on a physical reg.)
1535     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1536       // Convert physical register from G8RC to GPRC.
1537       SourcePhysReg -= PPC::X0 - PPC::R0;
1538       ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1539     }
1540 
1541     assert(ResultReg && "ResultReg unset!");
1542     CLI.InRegs.push_back(SourcePhysReg);
1543     CLI.ResultReg = ResultReg;
1544     CLI.NumResultRegs = 1;
1545   }
1546 
1547   return true;
1548 }
1549 
1550 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1551   CallingConv::ID CC  = CLI.CallConv;
1552   bool IsTailCall     = CLI.IsTailCall;
1553   bool IsVarArg       = CLI.IsVarArg;
1554   const Value *Callee = CLI.Callee;
1555   const MCSymbol *Symbol = CLI.Symbol;
1556 
1557   if (!Callee && !Symbol)
1558     return false;
1559 
1560   // Allow SelectionDAG isel to handle tail calls.
1561   if (IsTailCall)
1562     return false;
1563 
1564   // Let SDISel handle vararg functions.
1565   if (IsVarArg)
1566     return false;
1567 
1568   // If this is a PC-Rel function, let SDISel handle the call.
1569   if (Subtarget->isUsingPCRelativeCalls())
1570     return false;
1571 
1572   // Handle simple calls for now, with legal return types and
1573   // those that can be extended.
1574   Type *RetTy = CLI.RetTy;
1575   MVT RetVT;
1576   if (RetTy->isVoidTy())
1577     RetVT = MVT::isVoid;
1578   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1579            RetVT != MVT::i8)
1580     return false;
1581   else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1582     // We can't handle boolean returns when CR bits are in use.
1583     return false;
1584 
1585   // FIXME: No multi-register return values yet.
1586   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1587       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1588       RetVT != MVT::f64) {
1589     SmallVector<CCValAssign, 16> RVLocs;
1590     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1591     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1592     if (RVLocs.size() > 1)
1593       return false;
1594   }
1595 
1596   // Bail early if more than 8 arguments, as we only currently
1597   // handle arguments passed in registers.
1598   unsigned NumArgs = CLI.OutVals.size();
1599   if (NumArgs > 8)
1600     return false;
1601 
1602   // Set up the argument vectors.
1603   SmallVector<Value*, 8> Args;
1604   SmallVector<unsigned, 8> ArgRegs;
1605   SmallVector<MVT, 8> ArgVTs;
1606   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1607 
1608   Args.reserve(NumArgs);
1609   ArgRegs.reserve(NumArgs);
1610   ArgVTs.reserve(NumArgs);
1611   ArgFlags.reserve(NumArgs);
1612 
1613   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1614     // Only handle easy calls for now.  It would be reasonably easy
1615     // to handle <= 8-byte structures passed ByVal in registers, but we
1616     // have to ensure they are right-justified in the register.
1617     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1618     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1619       return false;
1620 
1621     Value *ArgValue = CLI.OutVals[i];
1622     Type *ArgTy = ArgValue->getType();
1623     MVT ArgVT;
1624     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1625       return false;
1626 
1627     // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1628     // types, which is passed through vector register. Skip these types and
1629     // fallback to default SelectionDAG based selection.
1630     if (ArgVT.isVector() || ArgVT == MVT::f128)
1631       return false;
1632 
1633     unsigned Arg = getRegForValue(ArgValue);
1634     if (Arg == 0)
1635       return false;
1636 
1637     Args.push_back(ArgValue);
1638     ArgRegs.push_back(Arg);
1639     ArgVTs.push_back(ArgVT);
1640     ArgFlags.push_back(Flags);
1641   }
1642 
1643   // Process the arguments.
1644   SmallVector<unsigned, 8> RegArgs;
1645   unsigned NumBytes;
1646 
1647   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1648                        RegArgs, CC, NumBytes, IsVarArg))
1649     return false;
1650 
1651   MachineInstrBuilder MIB;
1652   // FIXME: No handling for function pointers yet.  This requires
1653   // implementing the function descriptor (OPD) setup.
1654   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1655   if (!GV) {
1656     // patchpoints are a special case; they always dispatch to a pointer value.
1657     // However, we don't actually want to generate the indirect call sequence
1658     // here (that will be generated, as necessary, during asm printing), and
1659     // the call we generate here will be erased by FastISel::selectPatchpoint,
1660     // so don't try very hard...
1661     if (CLI.IsPatchPoint)
1662       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1663     else
1664       return false;
1665   } else {
1666     // Build direct call with NOP for TOC restore.
1667     // FIXME: We can and should optimize away the NOP for local calls.
1668     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1669                   TII.get(PPC::BL8_NOP));
1670     // Add callee.
1671     MIB.addGlobalAddress(GV);
1672   }
1673 
1674   // Add implicit physical register uses to the call.
1675   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1676     MIB.addReg(RegArgs[II], RegState::Implicit);
1677 
1678   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1679   // into the call.
1680   PPCFuncInfo->setUsesTOCBasePtr();
1681   MIB.addReg(PPC::X2, RegState::Implicit);
1682 
1683   // Add a register mask with the call-preserved registers.  Proper
1684   // defs for return values will be added by setPhysRegsDeadExcept().
1685   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1686 
1687   CLI.Call = MIB;
1688 
1689   // Finish off the call including any return values.
1690   return finishCall(RetVT, CLI, NumBytes);
1691 }
1692 
1693 // Attempt to fast-select a return instruction.
1694 bool PPCFastISel::SelectRet(const Instruction *I) {
1695 
1696   if (!FuncInfo.CanLowerReturn)
1697     return false;
1698 
1699   const ReturnInst *Ret = cast<ReturnInst>(I);
1700   const Function &F = *I->getParent()->getParent();
1701 
1702   // Build a list of return value registers.
1703   SmallVector<unsigned, 4> RetRegs;
1704   CallingConv::ID CC = F.getCallingConv();
1705 
1706   if (Ret->getNumOperands() > 0) {
1707     SmallVector<ISD::OutputArg, 4> Outs;
1708     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1709 
1710     // Analyze operands of the call, assigning locations to each operand.
1711     SmallVector<CCValAssign, 16> ValLocs;
1712     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1713     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1714     const Value *RV = Ret->getOperand(0);
1715 
1716     // FIXME: Only one output register for now.
1717     if (ValLocs.size() > 1)
1718       return false;
1719 
1720     // Special case for returning a constant integer of any size - materialize
1721     // the constant as an i64 and copy it to the return register.
1722     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1723       CCValAssign &VA = ValLocs[0];
1724 
1725       Register RetReg = VA.getLocReg();
1726       // We still need to worry about properly extending the sign. For example,
1727       // we could have only a single bit or a constant that needs zero
1728       // extension rather than sign extension. Make sure we pass the return
1729       // value extension property to integer materialization.
1730       unsigned SrcReg =
1731           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1732 
1733       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1734             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1735 
1736       RetRegs.push_back(RetReg);
1737 
1738     } else {
1739       unsigned Reg = getRegForValue(RV);
1740 
1741       if (Reg == 0)
1742         return false;
1743 
1744       // Copy the result values into the output registers.
1745       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1746 
1747         CCValAssign &VA = ValLocs[i];
1748         assert(VA.isRegLoc() && "Can only return in registers!");
1749         RetRegs.push_back(VA.getLocReg());
1750         unsigned SrcReg = Reg + VA.getValNo();
1751 
1752         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1753         if (!RVEVT.isSimple())
1754           return false;
1755         MVT RVVT = RVEVT.getSimpleVT();
1756         MVT DestVT = VA.getLocVT();
1757 
1758         if (RVVT != DestVT && RVVT != MVT::i8 &&
1759             RVVT != MVT::i16 && RVVT != MVT::i32)
1760           return false;
1761 
1762         if (RVVT != DestVT) {
1763           switch (VA.getLocInfo()) {
1764             default:
1765               llvm_unreachable("Unknown loc info!");
1766             case CCValAssign::Full:
1767               llvm_unreachable("Full value assign but types don't match?");
1768             case CCValAssign::AExt:
1769             case CCValAssign::ZExt: {
1770               const TargetRegisterClass *RC =
1771                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1772               unsigned TmpReg = createResultReg(RC);
1773               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1774                 return false;
1775               SrcReg = TmpReg;
1776               break;
1777             }
1778             case CCValAssign::SExt: {
1779               const TargetRegisterClass *RC =
1780                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1781               unsigned TmpReg = createResultReg(RC);
1782               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1783                 return false;
1784               SrcReg = TmpReg;
1785               break;
1786             }
1787           }
1788         }
1789 
1790         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1791                 TII.get(TargetOpcode::COPY), RetRegs[i])
1792           .addReg(SrcReg);
1793       }
1794     }
1795   }
1796 
1797   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1798                                     TII.get(PPC::BLR8));
1799 
1800   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1801     MIB.addReg(RetRegs[i], RegState::Implicit);
1802 
1803   return true;
1804 }
1805 
1806 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1807 // signed and zero extensions are supported.  Return false if we
1808 // can't handle it.
1809 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1810                                 unsigned DestReg, bool IsZExt) {
1811   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1812     return false;
1813   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1814     return false;
1815 
1816   // Signed extensions use EXTSB, EXTSH, EXTSW.
1817   if (!IsZExt) {
1818     unsigned Opc;
1819     if (SrcVT == MVT::i8)
1820       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1821     else if (SrcVT == MVT::i16)
1822       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1823     else {
1824       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1825       Opc = PPC::EXTSW_32_64;
1826     }
1827     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1828       .addReg(SrcReg);
1829 
1830   // Unsigned 32-bit extensions use RLWINM.
1831   } else if (DestVT == MVT::i32) {
1832     unsigned MB;
1833     if (SrcVT == MVT::i8)
1834       MB = 24;
1835     else {
1836       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1837       MB = 16;
1838     }
1839     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1840             DestReg)
1841       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1842 
1843   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1844   } else {
1845     unsigned MB;
1846     if (SrcVT == MVT::i8)
1847       MB = 56;
1848     else if (SrcVT == MVT::i16)
1849       MB = 48;
1850     else
1851       MB = 32;
1852     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1853             TII.get(PPC::RLDICL_32_64), DestReg)
1854       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1855   }
1856 
1857   return true;
1858 }
1859 
1860 // Attempt to fast-select an indirect branch instruction.
1861 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1862   unsigned AddrReg = getRegForValue(I->getOperand(0));
1863   if (AddrReg == 0)
1864     return false;
1865 
1866   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1867     .addReg(AddrReg);
1868   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1869 
1870   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1871   for (const BasicBlock *SuccBB : IB->successors())
1872     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1873 
1874   return true;
1875 }
1876 
1877 // Attempt to fast-select an integer truncate instruction.
1878 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1879   Value *Src  = I->getOperand(0);
1880   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1881   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1882 
1883   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1884     return false;
1885 
1886   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1887     return false;
1888 
1889   unsigned SrcReg = getRegForValue(Src);
1890   if (!SrcReg)
1891     return false;
1892 
1893   // The only interesting case is when we need to switch register classes.
1894   if (SrcVT == MVT::i64)
1895     SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1896 
1897   updateValueMap(I, SrcReg);
1898   return true;
1899 }
1900 
1901 // Attempt to fast-select an integer extend instruction.
1902 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1903   Type *DestTy = I->getType();
1904   Value *Src = I->getOperand(0);
1905   Type *SrcTy = Src->getType();
1906 
1907   bool IsZExt = isa<ZExtInst>(I);
1908   unsigned SrcReg = getRegForValue(Src);
1909   if (!SrcReg) return false;
1910 
1911   EVT SrcEVT, DestEVT;
1912   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1913   DestEVT = TLI.getValueType(DL, DestTy, true);
1914   if (!SrcEVT.isSimple())
1915     return false;
1916   if (!DestEVT.isSimple())
1917     return false;
1918 
1919   MVT SrcVT = SrcEVT.getSimpleVT();
1920   MVT DestVT = DestEVT.getSimpleVT();
1921 
1922   // If we know the register class needed for the result of this
1923   // instruction, use it.  Otherwise pick the register class of the
1924   // correct size that does not contain X0/R0, since we don't know
1925   // whether downstream uses permit that assignment.
1926   unsigned AssignedReg = FuncInfo.ValueMap[I];
1927   const TargetRegisterClass *RC =
1928     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1929      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1930       &PPC::GPRC_and_GPRC_NOR0RegClass));
1931   unsigned ResultReg = createResultReg(RC);
1932 
1933   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1934     return false;
1935 
1936   updateValueMap(I, ResultReg);
1937   return true;
1938 }
1939 
1940 // Attempt to fast-select an instruction that wasn't handled by
1941 // the table-generated machinery.
1942 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1943 
1944   switch (I->getOpcode()) {
1945     case Instruction::Load:
1946       return SelectLoad(I);
1947     case Instruction::Store:
1948       return SelectStore(I);
1949     case Instruction::Br:
1950       return SelectBranch(I);
1951     case Instruction::IndirectBr:
1952       return SelectIndirectBr(I);
1953     case Instruction::FPExt:
1954       return SelectFPExt(I);
1955     case Instruction::FPTrunc:
1956       return SelectFPTrunc(I);
1957     case Instruction::SIToFP:
1958       return SelectIToFP(I, /*IsSigned*/ true);
1959     case Instruction::UIToFP:
1960       return SelectIToFP(I, /*IsSigned*/ false);
1961     case Instruction::FPToSI:
1962       return SelectFPToI(I, /*IsSigned*/ true);
1963     case Instruction::FPToUI:
1964       return SelectFPToI(I, /*IsSigned*/ false);
1965     case Instruction::Add:
1966       return SelectBinaryIntOp(I, ISD::ADD);
1967     case Instruction::Or:
1968       return SelectBinaryIntOp(I, ISD::OR);
1969     case Instruction::Sub:
1970       return SelectBinaryIntOp(I, ISD::SUB);
1971     case Instruction::Call:
1972       // On AIX, call lowering uses the DAG-ISEL path currently so that the
1973       // callee of the direct function call instruction will be mapped to the
1974       // symbol for the function's entry point, which is distinct from the
1975       // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1976       // name is the C-linkage name of the source level function.
1977       if (TM.getTargetTriple().isOSAIX())
1978         break;
1979       return selectCall(I);
1980     case Instruction::Ret:
1981       return SelectRet(I);
1982     case Instruction::Trunc:
1983       return SelectTrunc(I);
1984     case Instruction::ZExt:
1985     case Instruction::SExt:
1986       return SelectIntExt(I);
1987     // Here add other flavors of Instruction::XXX that automated
1988     // cases don't catch.  For example, switches are terminators
1989     // that aren't yet handled.
1990     default:
1991       break;
1992   }
1993   return false;
1994 }
1995 
1996 // Materialize a floating-point constant into a register, and return
1997 // the register number (or zero if we failed to handle it).
1998 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1999   // If this is a PC-Rel function, let SDISel handle constant pool.
2000   if (Subtarget->isUsingPCRelativeCalls())
2001     return false;
2002 
2003   // No plans to handle long double here.
2004   if (VT != MVT::f32 && VT != MVT::f64)
2005     return 0;
2006 
2007   // All FP constants are loaded from the constant pool.
2008   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
2009   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
2010   const bool HasSPE = Subtarget->hasSPE();
2011   const TargetRegisterClass *RC;
2012   if (HasSPE)
2013     RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2014   else
2015     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2016 
2017   unsigned DestReg = createResultReg(RC);
2018   CodeModel::Model CModel = TM.getCodeModel();
2019 
2020   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2021       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2022       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2023 
2024   unsigned Opc;
2025 
2026   if (HasSPE)
2027     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2028   else
2029     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2030 
2031   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2032 
2033   PPCFuncInfo->setUsesTOCBasePtr();
2034   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2035   if (CModel == CodeModel::Small) {
2036     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2037             TmpReg)
2038       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2039     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2040       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2041   } else {
2042     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2043     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2044             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2045     // But for large code model, we must generate a LDtocL followed
2046     // by the LF[SD].
2047     if (CModel == CodeModel::Large) {
2048       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2049       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2050               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2051       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2052           .addImm(0)
2053           .addReg(TmpReg2);
2054     } else
2055       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2056         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2057         .addReg(TmpReg)
2058         .addMemOperand(MMO);
2059   }
2060 
2061   return DestReg;
2062 }
2063 
2064 // Materialize the address of a global value into a register, and return
2065 // the register number (or zero if we failed to handle it).
2066 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2067   // If this is a PC-Rel function, let SDISel handle GV materialization.
2068   if (Subtarget->isUsingPCRelativeCalls())
2069     return false;
2070 
2071   assert(VT == MVT::i64 && "Non-address!");
2072   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2073   unsigned DestReg = createResultReg(RC);
2074 
2075   // Global values may be plain old object addresses, TLS object
2076   // addresses, constant pool entries, or jump tables.  How we generate
2077   // code for these may depend on small, medium, or large code model.
2078   CodeModel::Model CModel = TM.getCodeModel();
2079 
2080   // FIXME: Jump tables are not yet required because fast-isel doesn't
2081   // handle switches; if that changes, we need them as well.  For now,
2082   // what follows assumes everything's a generic (or TLS) global address.
2083 
2084   // FIXME: We don't yet handle the complexity of TLS.
2085   if (GV->isThreadLocal())
2086     return 0;
2087 
2088   PPCFuncInfo->setUsesTOCBasePtr();
2089   // For small code model, generate a simple TOC load.
2090   if (CModel == CodeModel::Small)
2091     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2092             DestReg)
2093         .addGlobalAddress(GV)
2094         .addReg(PPC::X2);
2095   else {
2096     // If the address is an externally defined symbol, a symbol with common
2097     // or externally available linkage, a non-local function address, or a
2098     // jump table address (not yet needed), or if we are generating code
2099     // for large code model, we generate:
2100     //       LDtocL(GV, ADDIStocHA8(%x2, GV))
2101     // Otherwise we generate:
2102     //       ADDItocL(ADDIStocHA8(%x2, GV), GV)
2103     // Either way, start with the ADDIStocHA8:
2104     unsigned HighPartReg = createResultReg(RC);
2105     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2106             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2107 
2108     if (Subtarget->isGVIndirectSymbol(GV)) {
2109       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2110               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2111     } else {
2112       // Otherwise generate the ADDItocL.
2113       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2114               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2115     }
2116   }
2117 
2118   return DestReg;
2119 }
2120 
2121 // Materialize a 32-bit integer constant into a register, and return
2122 // the register number (or zero if we failed to handle it).
2123 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2124                                              const TargetRegisterClass *RC) {
2125   unsigned Lo = Imm & 0xFFFF;
2126   unsigned Hi = (Imm >> 16) & 0xFFFF;
2127 
2128   unsigned ResultReg = createResultReg(RC);
2129   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2130 
2131   if (isInt<16>(Imm))
2132     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2133             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2134       .addImm(Imm);
2135   else if (Lo) {
2136     // Both Lo and Hi have nonzero bits.
2137     unsigned TmpReg = createResultReg(RC);
2138     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2139             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2140       .addImm(Hi);
2141     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2142             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2143       .addReg(TmpReg).addImm(Lo);
2144   } else
2145     // Just Hi bits.
2146     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2147             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2148         .addImm(Hi);
2149 
2150   return ResultReg;
2151 }
2152 
2153 // Materialize a 64-bit integer constant into a register, and return
2154 // the register number (or zero if we failed to handle it).
2155 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2156                                              const TargetRegisterClass *RC) {
2157   unsigned Remainder = 0;
2158   unsigned Shift = 0;
2159 
2160   // If the value doesn't fit in 32 bits, see if we can shift it
2161   // so that it fits in 32 bits.
2162   if (!isInt<32>(Imm)) {
2163     Shift = countTrailingZeros<uint64_t>(Imm);
2164     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2165 
2166     if (isInt<32>(ImmSh))
2167       Imm = ImmSh;
2168     else {
2169       Remainder = Imm;
2170       Shift = 32;
2171       Imm >>= 32;
2172     }
2173   }
2174 
2175   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2176   // (if not shifted).
2177   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2178   if (!Shift)
2179     return TmpReg1;
2180 
2181   // If upper 32 bits were not zero, we've built them and need to shift
2182   // them into place.
2183   unsigned TmpReg2;
2184   if (Imm) {
2185     TmpReg2 = createResultReg(RC);
2186     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2187             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2188   } else
2189     TmpReg2 = TmpReg1;
2190 
2191   unsigned TmpReg3, Hi, Lo;
2192   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2193     TmpReg3 = createResultReg(RC);
2194     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2195             TmpReg3).addReg(TmpReg2).addImm(Hi);
2196   } else
2197     TmpReg3 = TmpReg2;
2198 
2199   if ((Lo = Remainder & 0xFFFF)) {
2200     unsigned ResultReg = createResultReg(RC);
2201     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2202             ResultReg).addReg(TmpReg3).addImm(Lo);
2203     return ResultReg;
2204   }
2205 
2206   return TmpReg3;
2207 }
2208 
2209 // Materialize an integer constant into a register, and return
2210 // the register number (or zero if we failed to handle it).
2211 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2212                                         bool UseSExt) {
2213   // If we're using CR bit registers for i1 values, handle that as a special
2214   // case first.
2215   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2216     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2217     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2218             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2219     return ImmReg;
2220   }
2221 
2222   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2223       VT != MVT::i1)
2224     return 0;
2225 
2226   const TargetRegisterClass *RC =
2227       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2228   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2229 
2230   // If the constant is in range, use a load-immediate.
2231   // Since LI will sign extend the constant we need to make sure that for
2232   // our zeroext constants that the sign extended constant fits into 16-bits -
2233   // a range of 0..0x7fff.
2234   if (isInt<16>(Imm)) {
2235     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2236     unsigned ImmReg = createResultReg(RC);
2237     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2238         .addImm(Imm);
2239     return ImmReg;
2240   }
2241 
2242   // Construct the constant piecewise.
2243   if (VT == MVT::i64)
2244     return PPCMaterialize64BitInt(Imm, RC);
2245   else if (VT == MVT::i32)
2246     return PPCMaterialize32BitInt(Imm, RC);
2247 
2248   return 0;
2249 }
2250 
2251 // Materialize a constant into a register, and return the register
2252 // number (or zero if we failed to handle it).
2253 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2254   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2255 
2256   // Only handle simple types.
2257   if (!CEVT.isSimple()) return 0;
2258   MVT VT = CEVT.getSimpleVT();
2259 
2260   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2261     return PPCMaterializeFP(CFP, VT);
2262   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2263     return PPCMaterializeGV(GV, VT);
2264   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2265     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2266     // assumes that constant PHI operands will be zero extended, and failure to
2267     // match that assumption will cause problems if we sign extend here but
2268     // some user of a PHI is in a block for which we fall back to full SDAG
2269     // instruction selection.
2270     return PPCMaterializeInt(CI, VT, false);
2271 
2272   return 0;
2273 }
2274 
2275 // Materialize the address created by an alloca into a register, and
2276 // return the register number (or zero if we failed to handle it).
2277 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2278   // Don't handle dynamic allocas.
2279   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2280 
2281   MVT VT;
2282   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2283 
2284   DenseMap<const AllocaInst*, int>::iterator SI =
2285     FuncInfo.StaticAllocaMap.find(AI);
2286 
2287   if (SI != FuncInfo.StaticAllocaMap.end()) {
2288     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2289     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2290             ResultReg).addFrameIndex(SI->second).addImm(0);
2291     return ResultReg;
2292   }
2293 
2294   return 0;
2295 }
2296 
2297 // Fold loads into extends when possible.
2298 // FIXME: We can have multiple redundant extend/trunc instructions
2299 // following a load.  The folding only picks up one.  Extend this
2300 // to check subsequent instructions for the same pattern and remove
2301 // them.  Thus ResultReg should be the def reg for the last redundant
2302 // instruction in a chain, and all intervening instructions can be
2303 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2304 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2305 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2306                                       const LoadInst *LI) {
2307   // Verify we have a legal type before going any further.
2308   MVT VT;
2309   if (!isLoadTypeLegal(LI->getType(), VT))
2310     return false;
2311 
2312   // Combine load followed by zero- or sign-extend.
2313   bool IsZExt = false;
2314   switch(MI->getOpcode()) {
2315     default:
2316       return false;
2317 
2318     case PPC::RLDICL:
2319     case PPC::RLDICL_32_64: {
2320       IsZExt = true;
2321       unsigned MB = MI->getOperand(3).getImm();
2322       if ((VT == MVT::i8 && MB <= 56) ||
2323           (VT == MVT::i16 && MB <= 48) ||
2324           (VT == MVT::i32 && MB <= 32))
2325         break;
2326       return false;
2327     }
2328 
2329     case PPC::RLWINM:
2330     case PPC::RLWINM8: {
2331       IsZExt = true;
2332       unsigned MB = MI->getOperand(3).getImm();
2333       if ((VT == MVT::i8 && MB <= 24) ||
2334           (VT == MVT::i16 && MB <= 16))
2335         break;
2336       return false;
2337     }
2338 
2339     case PPC::EXTSB:
2340     case PPC::EXTSB8:
2341     case PPC::EXTSB8_32_64:
2342       /* There is no sign-extending load-byte instruction. */
2343       return false;
2344 
2345     case PPC::EXTSH:
2346     case PPC::EXTSH8:
2347     case PPC::EXTSH8_32_64: {
2348       if (VT != MVT::i16 && VT != MVT::i8)
2349         return false;
2350       break;
2351     }
2352 
2353     case PPC::EXTSW:
2354     case PPC::EXTSW_32:
2355     case PPC::EXTSW_32_64: {
2356       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2357         return false;
2358       break;
2359     }
2360   }
2361 
2362   // See if we can handle this address.
2363   Address Addr;
2364   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2365     return false;
2366 
2367   Register ResultReg = MI->getOperand(0).getReg();
2368 
2369   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2370                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2371     return false;
2372 
2373   MachineBasicBlock::iterator I(MI);
2374   removeDeadCode(I, std::next(I));
2375   return true;
2376 }
2377 
2378 // Attempt to lower call arguments in a faster way than done by
2379 // the selection DAG code.
2380 bool PPCFastISel::fastLowerArguments() {
2381   // Defer to normal argument lowering for now.  It's reasonably
2382   // efficient.  Consider doing something like ARM to handle the
2383   // case where all args fit in registers, no varargs, no float
2384   // or vector args.
2385   return false;
2386 }
2387 
2388 // Handle materializing integer constants into a register.  This is not
2389 // automatically generated for PowerPC, so must be explicitly created here.
2390 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2391 
2392   if (Opc != ISD::Constant)
2393     return 0;
2394 
2395   // If we're using CR bit registers for i1 values, handle that as a special
2396   // case first.
2397   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2398     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2399     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2400             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2401     return ImmReg;
2402   }
2403 
2404   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2405       VT != MVT::i1)
2406     return 0;
2407 
2408   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2409                                    &PPC::GPRCRegClass);
2410   if (VT == MVT::i64)
2411     return PPCMaterialize64BitInt(Imm, RC);
2412   else
2413     return PPCMaterialize32BitInt(Imm, RC);
2414 }
2415 
2416 // Override for ADDI and ADDI8 to set the correct register class
2417 // on RHS operand 0.  The automatic infrastructure naively assumes
2418 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2419 // for these cases.  At the moment, none of the other automatically
2420 // generated RI instructions require special treatment.  However, once
2421 // SelectSelect is implemented, "isel" requires similar handling.
2422 //
2423 // Also be conservative about the output register class.  Avoid
2424 // assigning R0 or X0 to the output register for GPRC and G8RC
2425 // register classes, as any such result could be used in ADDI, etc.,
2426 // where those regs have another meaning.
2427 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2428                                       const TargetRegisterClass *RC,
2429                                       unsigned Op0, bool Op0IsKill,
2430                                       uint64_t Imm) {
2431   if (MachineInstOpcode == PPC::ADDI)
2432     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2433   else if (MachineInstOpcode == PPC::ADDI8)
2434     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2435 
2436   const TargetRegisterClass *UseRC =
2437     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2438      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2439 
2440   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2441                                    Op0, Op0IsKill, Imm);
2442 }
2443 
2444 // Override for instructions with one register operand to avoid use of
2445 // R0/X0.  The automatic infrastructure isn't aware of the context so
2446 // we must be conservative.
2447 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2448                                      const TargetRegisterClass* RC,
2449                                      unsigned Op0, bool Op0IsKill) {
2450   const TargetRegisterClass *UseRC =
2451     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2452      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2453 
2454   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2455 }
2456 
2457 // Override for instructions with two register operands to avoid use
2458 // of R0/X0.  The automatic infrastructure isn't aware of the context
2459 // so we must be conservative.
2460 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2461                                       const TargetRegisterClass* RC,
2462                                       unsigned Op0, bool Op0IsKill,
2463                                       unsigned Op1, bool Op1IsKill) {
2464   const TargetRegisterClass *UseRC =
2465     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2466      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2467 
2468   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2469                                    Op1, Op1IsKill);
2470 }
2471 
2472 namespace llvm {
2473   // Create the fast instruction selector for PowerPC64 ELF.
2474   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2475                                 const TargetLibraryInfo *LibInfo) {
2476     // Only available on 64-bit ELF for now.
2477     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2478     if (Subtarget.is64BitELFABI())
2479       return new PPCFastISel(FuncInfo, LibInfo);
2480     return nullptr;
2481   }
2482 }
2483