xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFastISel.cpp (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
40 
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 //   fastLowerArguments: Handle simple cases.
45 //   PPCMaterializeGV: Handle TLS.
46 //   SelectCall: Handle function pointers.
47 //   SelectCall: Handle multi-register return values.
48 //   SelectCall: Optimize away nops for local calls.
49 //   processCallArgs: Handle bit-converted arguments.
50 //   finishCall: Handle multi-register return values.
51 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
52 //   PPCEmitCmp: Handle immediate as operand 1.
53 //   SelectCall: Handle small byval arguments.
54 //   SelectIntrinsicCall: Implement.
55 //   SelectSelect: Implement.
56 //   Consider factoring isTypeLegal into the base class.
57 //   Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "ppcfastisel"
63 
64 namespace {
65 
66 typedef struct Address {
67   enum {
68     RegBase,
69     FrameIndexBase
70   } BaseType;
71 
72   union {
73     unsigned Reg;
74     int FI;
75   } Base;
76 
77   long Offset;
78 
79   // Innocuous defaults for our address.
80   Address()
81    : BaseType(RegBase), Offset(0) {
82      Base.Reg = 0;
83    }
84 } Address;
85 
86 class PPCFastISel final : public FastISel {
87 
88   const TargetMachine &TM;
89   const PPCSubtarget *PPCSubTarget;
90   const PPCSubtarget *Subtarget;
91   PPCFunctionInfo *PPCFuncInfo;
92   const TargetInstrInfo &TII;
93   const TargetLowering &TLI;
94   LLVMContext *Context;
95 
96   public:
97     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
98                          const TargetLibraryInfo *LibInfo)
99         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
100           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
101           Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
102           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
103           TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
104           Context(&FuncInfo.Fn->getContext()) {}
105 
106     // Backend specific FastISel code.
107   private:
108     bool fastSelectInstruction(const Instruction *I) override;
109     unsigned fastMaterializeConstant(const Constant *C) override;
110     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
111     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
112                              const LoadInst *LI) override;
113     bool fastLowerArguments() override;
114     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
115     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
116                              const TargetRegisterClass *RC,
117                              unsigned Op0, bool Op0IsKill,
118                              uint64_t Imm);
119     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
120                             const TargetRegisterClass *RC,
121                             unsigned Op0, bool Op0IsKill);
122     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
123                              const TargetRegisterClass *RC,
124                              unsigned Op0, bool Op0IsKill,
125                              unsigned Op1, bool Op1IsKill);
126 
127     bool fastLowerCall(CallLoweringInfo &CLI) override;
128 
129   // Instruction selection routines.
130   private:
131     bool SelectLoad(const Instruction *I);
132     bool SelectStore(const Instruction *I);
133     bool SelectBranch(const Instruction *I);
134     bool SelectIndirectBr(const Instruction *I);
135     bool SelectFPExt(const Instruction *I);
136     bool SelectFPTrunc(const Instruction *I);
137     bool SelectIToFP(const Instruction *I, bool IsSigned);
138     bool SelectFPToI(const Instruction *I, bool IsSigned);
139     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
140     bool SelectRet(const Instruction *I);
141     bool SelectTrunc(const Instruction *I);
142     bool SelectIntExt(const Instruction *I);
143 
144   // Utility routines.
145   private:
146     bool isTypeLegal(Type *Ty, MVT &VT);
147     bool isLoadTypeLegal(Type *Ty, MVT &VT);
148     bool isValueAvailable(const Value *V) const;
149     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
150       return RC->getID() == PPC::VSFRCRegClassID;
151     }
152     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
153       return RC->getID() == PPC::VSSRCRegClassID;
154     }
155     unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
156                                unsigned SrcReg, unsigned Flag = 0,
157                                unsigned SubReg = 0) {
158       unsigned TmpReg = createResultReg(ToRC);
159       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
160               TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
161       return TmpReg;
162     }
163     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
164                     bool isZExt, unsigned DestReg,
165                     const PPC::Predicate Pred);
166     bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
167                      const TargetRegisterClass *RC, bool IsZExt = true,
168                      unsigned FP64LoadOpc = PPC::LFD);
169     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
170     bool PPCComputeAddress(const Value *Obj, Address &Addr);
171     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
172                             unsigned &IndexReg);
173     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
174                            unsigned DestReg, bool IsZExt);
175     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
176     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
177     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
178                                bool UseSExt = true);
179     unsigned PPCMaterialize32BitInt(int64_t Imm,
180                                     const TargetRegisterClass *RC);
181     unsigned PPCMaterialize64BitInt(int64_t Imm,
182                                     const TargetRegisterClass *RC);
183     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
184                              unsigned SrcReg, bool IsSigned);
185     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
186 
187   // Call handling routines.
188   private:
189     bool processCallArgs(SmallVectorImpl<Value*> &Args,
190                          SmallVectorImpl<unsigned> &ArgRegs,
191                          SmallVectorImpl<MVT> &ArgVTs,
192                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
193                          SmallVectorImpl<unsigned> &RegArgs,
194                          CallingConv::ID CC,
195                          unsigned &NumBytes,
196                          bool IsVarArg);
197     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
198 
199   private:
200   #include "PPCGenFastISel.inc"
201 
202 };
203 
204 } // end anonymous namespace
205 
206 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
207   switch (Pred) {
208     // These are not representable with any single compare.
209     case CmpInst::FCMP_FALSE:
210     case CmpInst::FCMP_TRUE:
211     // Major concern about the following 6 cases is NaN result. The comparison
212     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
213     // only one of which will be set. The result is generated by fcmpu
214     // instruction. However, bc instruction only inspects one of the first 3
215     // bits, so when un is set, bc instruction may jump to an undesired
216     // place.
217     //
218     // More specifically, if we expect an unordered comparison and un is set, we
219     // expect to always go to true branch; in such case UEQ, UGT and ULT still
220     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
221     // since they are tested by inspecting !eq, !lt, !gt, respectively.
222     //
223     // Similarly, for ordered comparison, when un is set, we always expect the
224     // result to be false. In such case OGT, OLT and OEQ is good, since they are
225     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
226     // and ONE are tested through !lt, !gt and !eq, and these are true.
227     case CmpInst::FCMP_UEQ:
228     case CmpInst::FCMP_UGT:
229     case CmpInst::FCMP_ULT:
230     case CmpInst::FCMP_OGE:
231     case CmpInst::FCMP_OLE:
232     case CmpInst::FCMP_ONE:
233     default:
234       return Optional<PPC::Predicate>();
235 
236     case CmpInst::FCMP_OEQ:
237     case CmpInst::ICMP_EQ:
238       return PPC::PRED_EQ;
239 
240     case CmpInst::FCMP_OGT:
241     case CmpInst::ICMP_UGT:
242     case CmpInst::ICMP_SGT:
243       return PPC::PRED_GT;
244 
245     case CmpInst::FCMP_UGE:
246     case CmpInst::ICMP_UGE:
247     case CmpInst::ICMP_SGE:
248       return PPC::PRED_GE;
249 
250     case CmpInst::FCMP_OLT:
251     case CmpInst::ICMP_ULT:
252     case CmpInst::ICMP_SLT:
253       return PPC::PRED_LT;
254 
255     case CmpInst::FCMP_ULE:
256     case CmpInst::ICMP_ULE:
257     case CmpInst::ICMP_SLE:
258       return PPC::PRED_LE;
259 
260     case CmpInst::FCMP_UNE:
261     case CmpInst::ICMP_NE:
262       return PPC::PRED_NE;
263 
264     case CmpInst::FCMP_ORD:
265       return PPC::PRED_NU;
266 
267     case CmpInst::FCMP_UNO:
268       return PPC::PRED_UN;
269   }
270 }
271 
272 // Determine whether the type Ty is simple enough to be handled by
273 // fast-isel, and return its equivalent machine type in VT.
274 // FIXME: Copied directly from ARM -- factor into base class?
275 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
276   EVT Evt = TLI.getValueType(DL, Ty, true);
277 
278   // Only handle simple types.
279   if (Evt == MVT::Other || !Evt.isSimple()) return false;
280   VT = Evt.getSimpleVT();
281 
282   // Handle all legal types, i.e. a register that will directly hold this
283   // value.
284   return TLI.isTypeLegal(VT);
285 }
286 
287 // Determine whether the type Ty is simple enough to be handled by
288 // fast-isel as a load target, and return its equivalent machine type in VT.
289 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
290   if (isTypeLegal(Ty, VT)) return true;
291 
292   // If this is a type than can be sign or zero-extended to a basic operation
293   // go ahead and accept it now.
294   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
295     return true;
296   }
297 
298   return false;
299 }
300 
301 bool PPCFastISel::isValueAvailable(const Value *V) const {
302   if (!isa<Instruction>(V))
303     return true;
304 
305   const auto *I = cast<Instruction>(V);
306   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
307 }
308 
309 // Given a value Obj, create an Address object Addr that represents its
310 // address.  Return false if we can't handle it.
311 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
312   const User *U = nullptr;
313   unsigned Opcode = Instruction::UserOp1;
314   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
315     // Don't walk into other basic blocks unless the object is an alloca from
316     // another block, otherwise it may not have a virtual register assigned.
317     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
318         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
319       Opcode = I->getOpcode();
320       U = I;
321     }
322   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
323     Opcode = C->getOpcode();
324     U = C;
325   }
326 
327   switch (Opcode) {
328     default:
329       break;
330     case Instruction::BitCast:
331       // Look through bitcasts.
332       return PPCComputeAddress(U->getOperand(0), Addr);
333     case Instruction::IntToPtr:
334       // Look past no-op inttoptrs.
335       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
336           TLI.getPointerTy(DL))
337         return PPCComputeAddress(U->getOperand(0), Addr);
338       break;
339     case Instruction::PtrToInt:
340       // Look past no-op ptrtoints.
341       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
342         return PPCComputeAddress(U->getOperand(0), Addr);
343       break;
344     case Instruction::GetElementPtr: {
345       Address SavedAddr = Addr;
346       long TmpOffset = Addr.Offset;
347 
348       // Iterate through the GEP folding the constants into offsets where
349       // we can.
350       gep_type_iterator GTI = gep_type_begin(U);
351       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
352            II != IE; ++II, ++GTI) {
353         const Value *Op = *II;
354         if (StructType *STy = GTI.getStructTypeOrNull()) {
355           const StructLayout *SL = DL.getStructLayout(STy);
356           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
357           TmpOffset += SL->getElementOffset(Idx);
358         } else {
359           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
360           for (;;) {
361             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
362               // Constant-offset addressing.
363               TmpOffset += CI->getSExtValue() * S;
364               break;
365             }
366             if (canFoldAddIntoGEP(U, Op)) {
367               // A compatible add with a constant operand. Fold the constant.
368               ConstantInt *CI =
369               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
370               TmpOffset += CI->getSExtValue() * S;
371               // Iterate on the other operand.
372               Op = cast<AddOperator>(Op)->getOperand(0);
373               continue;
374             }
375             // Unsupported
376             goto unsupported_gep;
377           }
378         }
379       }
380 
381       // Try to grab the base operand now.
382       Addr.Offset = TmpOffset;
383       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
384 
385       // We failed, restore everything and try the other options.
386       Addr = SavedAddr;
387 
388       unsupported_gep:
389       break;
390     }
391     case Instruction::Alloca: {
392       const AllocaInst *AI = cast<AllocaInst>(Obj);
393       DenseMap<const AllocaInst*, int>::iterator SI =
394         FuncInfo.StaticAllocaMap.find(AI);
395       if (SI != FuncInfo.StaticAllocaMap.end()) {
396         Addr.BaseType = Address::FrameIndexBase;
397         Addr.Base.FI = SI->second;
398         return true;
399       }
400       break;
401     }
402   }
403 
404   // FIXME: References to parameters fall through to the behavior
405   // below.  They should be able to reference a frame index since
406   // they are stored to the stack, so we can get "ld rx, offset(r1)"
407   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
408   // just contain the parameter.  Try to handle this with a FI.
409 
410   // Try to get this in a register if nothing else has worked.
411   if (Addr.Base.Reg == 0)
412     Addr.Base.Reg = getRegForValue(Obj);
413 
414   // Prevent assignment of base register to X0, which is inappropriate
415   // for loads and stores alike.
416   if (Addr.Base.Reg != 0)
417     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
418 
419   return Addr.Base.Reg != 0;
420 }
421 
422 // Fix up some addresses that can't be used directly.  For example, if
423 // an offset won't fit in an instruction field, we may need to move it
424 // into an index register.
425 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
426                                      unsigned &IndexReg) {
427 
428   // Check whether the offset fits in the instruction field.
429   if (!isInt<16>(Addr.Offset))
430     UseOffset = false;
431 
432   // If this is a stack pointer and the offset needs to be simplified then
433   // put the alloca address into a register, set the base type back to
434   // register and continue. This should almost never happen.
435   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
436     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
437     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
438             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
439     Addr.Base.Reg = ResultReg;
440     Addr.BaseType = Address::RegBase;
441   }
442 
443   if (!UseOffset) {
444     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
445     const ConstantInt *Offset =
446       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
447     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
448     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
449   }
450 }
451 
452 // Emit a load instruction if possible, returning true if we succeeded,
453 // otherwise false.  See commentary below for how the register class of
454 // the load is determined.
455 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
456                               const TargetRegisterClass *RC,
457                               bool IsZExt, unsigned FP64LoadOpc) {
458   unsigned Opc;
459   bool UseOffset = true;
460   bool HasSPE = Subtarget->hasSPE();
461 
462   // If ResultReg is given, it determines the register class of the load.
463   // Otherwise, RC is the register class to use.  If the result of the
464   // load isn't anticipated in this block, both may be zero, in which
465   // case we must make a conservative guess.  In particular, don't assign
466   // R0 or X0 to the result register, as the result may be used in a load,
467   // store, add-immediate, or isel that won't permit this.  (Though
468   // perhaps the spill and reload of live-exit values would handle this?)
469   const TargetRegisterClass *UseRC =
470     (ResultReg ? MRI.getRegClass(ResultReg) :
471      (RC ? RC :
472       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
473        (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
474         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
475          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
476 
477   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
478 
479   switch (VT.SimpleTy) {
480     default: // e.g., vector types not handled
481       return false;
482     case MVT::i8:
483       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
484       break;
485     case MVT::i16:
486       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
487                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
488       break;
489     case MVT::i32:
490       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
491                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
492       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
493         UseOffset = false;
494       break;
495     case MVT::i64:
496       Opc = PPC::LD;
497       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
498              "64-bit load with 32-bit target??");
499       UseOffset = ((Addr.Offset & 3) == 0);
500       break;
501     case MVT::f32:
502       Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
503       break;
504     case MVT::f64:
505       Opc = FP64LoadOpc;
506       break;
507   }
508 
509   // If necessary, materialize the offset into a register and use
510   // the indexed form.  Also handle stack pointers with special needs.
511   unsigned IndexReg = 0;
512   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
513 
514   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
515   // be used.
516   bool IsVSSRC = isVSSRCRegClass(UseRC);
517   bool IsVSFRC = isVSFRCRegClass(UseRC);
518   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
519   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
520   if ((Is32VSXLoad || Is64VSXLoad) &&
521       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
522       (Addr.Offset == 0)) {
523     UseOffset = false;
524   }
525 
526   if (ResultReg == 0)
527     ResultReg = createResultReg(UseRC);
528 
529   // Note: If we still have a frame index here, we know the offset is
530   // in range, as otherwise PPCSimplifyAddress would have converted it
531   // into a RegBase.
532   if (Addr.BaseType == Address::FrameIndexBase) {
533     // VSX only provides an indexed load.
534     if (Is32VSXLoad || Is64VSXLoad) return false;
535 
536     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
537         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
538                                           Addr.Offset),
539         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
540         MFI.getObjectAlign(Addr.Base.FI));
541 
542     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
543       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
544 
545   // Base reg with offset in range.
546   } else if (UseOffset) {
547     // VSX only provides an indexed load.
548     if (Is32VSXLoad || Is64VSXLoad) return false;
549 
550     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
551       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
552 
553   // Indexed form.
554   } else {
555     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
556     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
557     // is hard to get at.
558     switch (Opc) {
559       default:        llvm_unreachable("Unexpected opcode!");
560       case PPC::LBZ:    Opc = PPC::LBZX;    break;
561       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
562       case PPC::LHZ:    Opc = PPC::LHZX;    break;
563       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
564       case PPC::LHA:    Opc = PPC::LHAX;    break;
565       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
566       case PPC::LWZ:    Opc = PPC::LWZX;    break;
567       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
568       case PPC::LWA:    Opc = PPC::LWAX;    break;
569       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
570       case PPC::LD:     Opc = PPC::LDX;     break;
571       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
572       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
573       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
574       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
575     }
576 
577     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
578                        ResultReg);
579 
580     // If we have an index register defined we use it in the store inst,
581     // otherwise we use X0 as base as it makes the vector instructions to
582     // use zero in the computation of the effective address regardless the
583     // content of the register.
584     if (IndexReg)
585       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
586     else
587       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
588   }
589 
590   return true;
591 }
592 
593 // Attempt to fast-select a load instruction.
594 bool PPCFastISel::SelectLoad(const Instruction *I) {
595   // FIXME: No atomic loads are supported.
596   if (cast<LoadInst>(I)->isAtomic())
597     return false;
598 
599   // Verify we have a legal type before going any further.
600   MVT VT;
601   if (!isLoadTypeLegal(I->getType(), VT))
602     return false;
603 
604   // See if we can handle this address.
605   Address Addr;
606   if (!PPCComputeAddress(I->getOperand(0), Addr))
607     return false;
608 
609   // Look at the currently assigned register for this instruction
610   // to determine the required register class.  This is necessary
611   // to constrain RA from using R0/X0 when this is not legal.
612   unsigned AssignedReg = FuncInfo.ValueMap[I];
613   const TargetRegisterClass *RC =
614     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
615 
616   Register ResultReg = 0;
617   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
618                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
619     return false;
620   updateValueMap(I, ResultReg);
621   return true;
622 }
623 
624 // Emit a store instruction to store SrcReg at Addr.
625 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
626   assert(SrcReg && "Nothing to store!");
627   unsigned Opc;
628   bool UseOffset = true;
629 
630   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
631   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
632 
633   switch (VT.SimpleTy) {
634     default: // e.g., vector types not handled
635       return false;
636     case MVT::i8:
637       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
638       break;
639     case MVT::i16:
640       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
641       break;
642     case MVT::i32:
643       assert(Is32BitInt && "Not GPRC for i32??");
644       Opc = PPC::STW;
645       break;
646     case MVT::i64:
647       Opc = PPC::STD;
648       UseOffset = ((Addr.Offset & 3) == 0);
649       break;
650     case MVT::f32:
651       Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
652       break;
653     case MVT::f64:
654       Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
655       break;
656   }
657 
658   // If necessary, materialize the offset into a register and use
659   // the indexed form.  Also handle stack pointers with special needs.
660   unsigned IndexReg = 0;
661   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
662 
663   // If this is a potential VSX store with an offset of 0, a VSX indexed store
664   // can be used.
665   bool IsVSSRC = isVSSRCRegClass(RC);
666   bool IsVSFRC = isVSFRCRegClass(RC);
667   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
668   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
669   if ((Is32VSXStore || Is64VSXStore) &&
670       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
671       (Addr.Offset == 0)) {
672     UseOffset = false;
673   }
674 
675   // Note: If we still have a frame index here, we know the offset is
676   // in range, as otherwise PPCSimplifyAddress would have converted it
677   // into a RegBase.
678   if (Addr.BaseType == Address::FrameIndexBase) {
679     // VSX only provides an indexed store.
680     if (Is32VSXStore || Is64VSXStore) return false;
681 
682     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
683         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
684                                           Addr.Offset),
685         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
686         MFI.getObjectAlign(Addr.Base.FI));
687 
688     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
689         .addReg(SrcReg)
690         .addImm(Addr.Offset)
691         .addFrameIndex(Addr.Base.FI)
692         .addMemOperand(MMO);
693 
694   // Base reg with offset in range.
695   } else if (UseOffset) {
696     // VSX only provides an indexed store.
697     if (Is32VSXStore || Is64VSXStore)
698       return false;
699 
700     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
701       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
702 
703   // Indexed form.
704   } else {
705     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
706     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
707     // is hard to get at.
708     switch (Opc) {
709       default:        llvm_unreachable("Unexpected opcode!");
710       case PPC::STB:  Opc = PPC::STBX;  break;
711       case PPC::STH : Opc = PPC::STHX;  break;
712       case PPC::STW : Opc = PPC::STWX;  break;
713       case PPC::STB8: Opc = PPC::STBX8; break;
714       case PPC::STH8: Opc = PPC::STHX8; break;
715       case PPC::STW8: Opc = PPC::STWX8; break;
716       case PPC::STD:  Opc = PPC::STDX;  break;
717       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
718       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
719       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
720       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
721     }
722 
723     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
724         .addReg(SrcReg);
725 
726     // If we have an index register defined we use it in the store inst,
727     // otherwise we use X0 as base as it makes the vector instructions to
728     // use zero in the computation of the effective address regardless the
729     // content of the register.
730     if (IndexReg)
731       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
732     else
733       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
734   }
735 
736   return true;
737 }
738 
739 // Attempt to fast-select a store instruction.
740 bool PPCFastISel::SelectStore(const Instruction *I) {
741   Value *Op0 = I->getOperand(0);
742   unsigned SrcReg = 0;
743 
744   // FIXME: No atomics loads are supported.
745   if (cast<StoreInst>(I)->isAtomic())
746     return false;
747 
748   // Verify we have a legal type before going any further.
749   MVT VT;
750   if (!isLoadTypeLegal(Op0->getType(), VT))
751     return false;
752 
753   // Get the value to be stored into a register.
754   SrcReg = getRegForValue(Op0);
755   if (SrcReg == 0)
756     return false;
757 
758   // See if we can handle this address.
759   Address Addr;
760   if (!PPCComputeAddress(I->getOperand(1), Addr))
761     return false;
762 
763   if (!PPCEmitStore(VT, SrcReg, Addr))
764     return false;
765 
766   return true;
767 }
768 
769 // Attempt to fast-select a branch instruction.
770 bool PPCFastISel::SelectBranch(const Instruction *I) {
771   const BranchInst *BI = cast<BranchInst>(I);
772   MachineBasicBlock *BrBB = FuncInfo.MBB;
773   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
774   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
775 
776   // For now, just try the simplest case where it's fed by a compare.
777   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
778     if (isValueAvailable(CI)) {
779       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
780       if (!OptPPCPred)
781         return false;
782 
783       PPC::Predicate PPCPred = OptPPCPred.getValue();
784 
785       // Take advantage of fall-through opportunities.
786       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
787         std::swap(TBB, FBB);
788         PPCPred = PPC::InvertPredicate(PPCPred);
789       }
790 
791       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
792 
793       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
794                       CondReg, PPCPred))
795         return false;
796 
797       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
798           .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
799           .addReg(CondReg)
800           .addMBB(TBB);
801       finishCondBranch(BI->getParent(), TBB, FBB);
802       return true;
803     }
804   } else if (const ConstantInt *CI =
805              dyn_cast<ConstantInt>(BI->getCondition())) {
806     uint64_t Imm = CI->getZExtValue();
807     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
808     fastEmitBranch(Target, DbgLoc);
809     return true;
810   }
811 
812   // FIXME: ARM looks for a case where the block containing the compare
813   // has been split from the block containing the branch.  If this happens,
814   // there is a vreg available containing the result of the compare.  I'm
815   // not sure we can do much, as we've lost the predicate information with
816   // the compare instruction -- we have a 4-bit CR but don't know which bit
817   // to test here.
818   return false;
819 }
820 
821 // Attempt to emit a compare of the two source values.  Signed and unsigned
822 // comparisons are supported.  Return false if we can't handle it.
823 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
824                              bool IsZExt, unsigned DestReg,
825                              const PPC::Predicate Pred) {
826   Type *Ty = SrcValue1->getType();
827   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
828   if (!SrcEVT.isSimple())
829     return false;
830   MVT SrcVT = SrcEVT.getSimpleVT();
831 
832   if (SrcVT == MVT::i1 && Subtarget->useCRBits())
833     return false;
834 
835   // See if operand 2 is an immediate encodeable in the compare.
836   // FIXME: Operands are not in canonical order at -O0, so an immediate
837   // operand in position 1 is a lost opportunity for now.  We are
838   // similar to ARM in this regard.
839   long Imm = 0;
840   bool UseImm = false;
841   const bool HasSPE = Subtarget->hasSPE();
842 
843   // Only 16-bit integer constants can be represented in compares for
844   // PowerPC.  Others will be materialized into a register.
845   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
846     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
847         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
848       const APInt &CIVal = ConstInt->getValue();
849       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
850       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
851         UseImm = true;
852     }
853   }
854 
855   unsigned SrcReg1 = getRegForValue(SrcValue1);
856   if (SrcReg1 == 0)
857     return false;
858 
859   unsigned SrcReg2 = 0;
860   if (!UseImm) {
861     SrcReg2 = getRegForValue(SrcValue2);
862     if (SrcReg2 == 0)
863       return false;
864   }
865 
866   unsigned CmpOpc;
867   bool NeedsExt = false;
868 
869   auto RC1 = MRI.getRegClass(SrcReg1);
870   auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
871 
872   switch (SrcVT.SimpleTy) {
873     default: return false;
874     case MVT::f32:
875       if (HasSPE) {
876         switch (Pred) {
877           default: return false;
878           case PPC::PRED_EQ:
879             CmpOpc = PPC::EFSCMPEQ;
880             break;
881           case PPC::PRED_LT:
882             CmpOpc = PPC::EFSCMPLT;
883             break;
884           case PPC::PRED_GT:
885             CmpOpc = PPC::EFSCMPGT;
886             break;
887         }
888       } else {
889         CmpOpc = PPC::FCMPUS;
890         if (isVSSRCRegClass(RC1))
891           SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
892         if (RC2 && isVSSRCRegClass(RC2))
893           SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
894       }
895       break;
896     case MVT::f64:
897       if (HasSPE) {
898         switch (Pred) {
899           default: return false;
900           case PPC::PRED_EQ:
901             CmpOpc = PPC::EFDCMPEQ;
902             break;
903           case PPC::PRED_LT:
904             CmpOpc = PPC::EFDCMPLT;
905             break;
906           case PPC::PRED_GT:
907             CmpOpc = PPC::EFDCMPGT;
908             break;
909         }
910       } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
911         CmpOpc = PPC::XSCMPUDP;
912       } else {
913         CmpOpc = PPC::FCMPUD;
914       }
915       break;
916     case MVT::i1:
917     case MVT::i8:
918     case MVT::i16:
919       NeedsExt = true;
920       LLVM_FALLTHROUGH;
921     case MVT::i32:
922       if (!UseImm)
923         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
924       else
925         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
926       break;
927     case MVT::i64:
928       if (!UseImm)
929         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
930       else
931         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
932       break;
933   }
934 
935   if (NeedsExt) {
936     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
937     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
938       return false;
939     SrcReg1 = ExtReg;
940 
941     if (!UseImm) {
942       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
943       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
944         return false;
945       SrcReg2 = ExtReg;
946     }
947   }
948 
949   if (!UseImm)
950     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
951       .addReg(SrcReg1).addReg(SrcReg2);
952   else
953     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
954       .addReg(SrcReg1).addImm(Imm);
955 
956   return true;
957 }
958 
959 // Attempt to fast-select a floating-point extend instruction.
960 bool PPCFastISel::SelectFPExt(const Instruction *I) {
961   Value *Src  = I->getOperand(0);
962   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
963   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
964 
965   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
966     return false;
967 
968   unsigned SrcReg = getRegForValue(Src);
969   if (!SrcReg)
970     return false;
971 
972   // No code is generated for a FP extend.
973   updateValueMap(I, SrcReg);
974   return true;
975 }
976 
977 // Attempt to fast-select a floating-point truncate instruction.
978 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
979   Value *Src  = I->getOperand(0);
980   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
981   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
982 
983   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
984     return false;
985 
986   unsigned SrcReg = getRegForValue(Src);
987   if (!SrcReg)
988     return false;
989 
990   // Round the result to single precision.
991   unsigned DestReg;
992   auto RC = MRI.getRegClass(SrcReg);
993   if (Subtarget->hasSPE()) {
994     DestReg = createResultReg(&PPC::GPRCRegClass);
995     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
996       TII.get(PPC::EFSCFD), DestReg)
997       .addReg(SrcReg);
998   } else if (isVSFRCRegClass(RC)) {
999     DestReg = createResultReg(&PPC::VSSRCRegClass);
1000     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1001       TII.get(PPC::XSRSP), DestReg)
1002       .addReg(SrcReg);
1003   } else {
1004     DestReg = createResultReg(&PPC::F4RCRegClass);
1005     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1006       TII.get(PPC::FRSP), DestReg)
1007       .addReg(SrcReg);
1008   }
1009 
1010   updateValueMap(I, DestReg);
1011   return true;
1012 }
1013 
1014 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1015 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1016 // those should be used instead of moving via a stack slot when the
1017 // subtarget permits.
1018 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1019 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1020 // case to 8 bytes which produces tighter code but wastes stack space.
1021 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1022                                      bool IsSigned) {
1023 
1024   // If necessary, extend 32-bit int to 64-bit.
1025   if (SrcVT == MVT::i32) {
1026     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1027     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1028       return 0;
1029     SrcReg = TmpReg;
1030   }
1031 
1032   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1033   Address Addr;
1034   Addr.BaseType = Address::FrameIndexBase;
1035   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1036 
1037   // Store the value from the GPR.
1038   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1039     return 0;
1040 
1041   // Load the integer value into an FPR.  The kind of load used depends
1042   // on a number of conditions.
1043   unsigned LoadOpc = PPC::LFD;
1044 
1045   if (SrcVT == MVT::i32) {
1046     if (!IsSigned) {
1047       LoadOpc = PPC::LFIWZX;
1048       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1049     } else if (Subtarget->hasLFIWAX()) {
1050       LoadOpc = PPC::LFIWAX;
1051       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1052     }
1053   }
1054 
1055   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1056   Register ResultReg = 0;
1057   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1058     return 0;
1059 
1060   return ResultReg;
1061 }
1062 
1063 // Attempt to fast-select an integer-to-floating-point conversion.
1064 // FIXME: Once fast-isel has better support for VSX, conversions using
1065 //        direct moves should be implemented.
1066 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1067   MVT DstVT;
1068   Type *DstTy = I->getType();
1069   if (!isTypeLegal(DstTy, DstVT))
1070     return false;
1071 
1072   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1073     return false;
1074 
1075   Value *Src = I->getOperand(0);
1076   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1077   if (!SrcEVT.isSimple())
1078     return false;
1079 
1080   MVT SrcVT = SrcEVT.getSimpleVT();
1081 
1082   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1083       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1084     return false;
1085 
1086   unsigned SrcReg = getRegForValue(Src);
1087   if (SrcReg == 0)
1088     return false;
1089 
1090   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1091   if (Subtarget->hasSPE()) {
1092     unsigned Opc;
1093     if (DstVT == MVT::f32)
1094       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1095     else
1096       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1097 
1098     unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1099     // Generate the convert.
1100     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1101       .addReg(SrcReg);
1102     updateValueMap(I, DestReg);
1103     return true;
1104   }
1105 
1106   // We can only lower an unsigned convert if we have the newer
1107   // floating-point conversion operations.
1108   if (!IsSigned && !Subtarget->hasFPCVT())
1109     return false;
1110 
1111   // FIXME: For now we require the newer floating-point conversion operations
1112   // (which are present only on P7 and A2 server models) when converting
1113   // to single-precision float.  Otherwise we have to generate a lot of
1114   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1115   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1116   if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1117     return false;
1118 
1119   // Extend the input if necessary.
1120   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1121     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1122     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1123       return false;
1124     SrcVT = MVT::i64;
1125     SrcReg = TmpReg;
1126   }
1127 
1128   // Move the integer value to an FPR.
1129   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1130   if (FPReg == 0)
1131     return false;
1132 
1133   // Determine the opcode for the conversion.
1134   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1135   unsigned DestReg = createResultReg(RC);
1136   unsigned Opc;
1137 
1138   if (DstVT == MVT::f32)
1139     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1140   else
1141     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1142 
1143   // Generate the convert.
1144   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1145     .addReg(FPReg);
1146 
1147   updateValueMap(I, DestReg);
1148   return true;
1149 }
1150 
1151 // Move the floating-point value in SrcReg into an integer destination
1152 // register, and return the register (or zero if we can't handle it).
1153 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1154 // those should be used instead of moving via a stack slot when the
1155 // subtarget permits.
1156 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1157                                       unsigned SrcReg, bool IsSigned) {
1158   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1159   // Note that if have STFIWX available, we could use a 4-byte stack
1160   // slot for i32, but this being fast-isel we'll just go with the
1161   // easiest code gen possible.
1162   Address Addr;
1163   Addr.BaseType = Address::FrameIndexBase;
1164   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1165 
1166   // Store the value from the FPR.
1167   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1168     return 0;
1169 
1170   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1171   // address to have a 4-byte offset so we load from the right place.
1172   if (VT == MVT::i32)
1173     Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1174 
1175   // Look at the currently assigned register for this instruction
1176   // to determine the required register class.
1177   unsigned AssignedReg = FuncInfo.ValueMap[I];
1178   const TargetRegisterClass *RC =
1179     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1180 
1181   Register ResultReg = 0;
1182   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1183     return 0;
1184 
1185   return ResultReg;
1186 }
1187 
1188 // Attempt to fast-select a floating-point-to-integer conversion.
1189 // FIXME: Once fast-isel has better support for VSX, conversions using
1190 //        direct moves should be implemented.
1191 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1192   MVT DstVT, SrcVT;
1193   Type *DstTy = I->getType();
1194   if (!isTypeLegal(DstTy, DstVT))
1195     return false;
1196 
1197   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1198     return false;
1199 
1200   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1201   if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1202       !Subtarget->hasSPE())
1203     return false;
1204 
1205   Value *Src = I->getOperand(0);
1206   Type *SrcTy = Src->getType();
1207   if (!isTypeLegal(SrcTy, SrcVT))
1208     return false;
1209 
1210   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1211     return false;
1212 
1213   unsigned SrcReg = getRegForValue(Src);
1214   if (SrcReg == 0)
1215     return false;
1216 
1217   // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1218   // meaningless copy to get the register class right.
1219   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1220   if (InRC == &PPC::F4RCRegClass)
1221     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1222   else if (InRC == &PPC::VSSRCRegClass)
1223     SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1224 
1225   // Determine the opcode for the conversion, which takes place
1226   // entirely within FPRs or VSRs.
1227   unsigned DestReg;
1228   unsigned Opc;
1229   auto RC = MRI.getRegClass(SrcReg);
1230 
1231   if (Subtarget->hasSPE()) {
1232     DestReg = createResultReg(&PPC::GPRCRegClass);
1233     if (IsSigned)
1234       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1235     else
1236       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1237   } else if (isVSFRCRegClass(RC)) {
1238     DestReg = createResultReg(&PPC::VSFRCRegClass);
1239     if (DstVT == MVT::i32)
1240       Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1241     else
1242       Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1243   } else {
1244     DestReg = createResultReg(&PPC::F8RCRegClass);
1245     if (DstVT == MVT::i32)
1246       if (IsSigned)
1247         Opc = PPC::FCTIWZ;
1248       else
1249         Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1250     else
1251       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1252   }
1253 
1254   // Generate the convert.
1255   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1256     .addReg(SrcReg);
1257 
1258   // Now move the integer value from a float register to an integer register.
1259   unsigned IntReg = Subtarget->hasSPE()
1260                         ? DestReg
1261                         : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1262 
1263   if (IntReg == 0)
1264     return false;
1265 
1266   updateValueMap(I, IntReg);
1267   return true;
1268 }
1269 
1270 // Attempt to fast-select a binary integer operation that isn't already
1271 // handled automatically.
1272 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1273   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1274 
1275   // We can get here in the case when we have a binary operation on a non-legal
1276   // type and the target independent selector doesn't know how to handle it.
1277   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1278     return false;
1279 
1280   // Look at the currently assigned register for this instruction
1281   // to determine the required register class.  If there is no register,
1282   // make a conservative choice (don't assign R0).
1283   unsigned AssignedReg = FuncInfo.ValueMap[I];
1284   const TargetRegisterClass *RC =
1285     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1286      &PPC::GPRC_and_GPRC_NOR0RegClass);
1287   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1288 
1289   unsigned Opc;
1290   switch (ISDOpcode) {
1291     default: return false;
1292     case ISD::ADD:
1293       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1294       break;
1295     case ISD::OR:
1296       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1297       break;
1298     case ISD::SUB:
1299       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1300       break;
1301   }
1302 
1303   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1304   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1305   if (SrcReg1 == 0) return false;
1306 
1307   // Handle case of small immediate operand.
1308   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1309     const APInt &CIVal = ConstInt->getValue();
1310     int Imm = (int)CIVal.getSExtValue();
1311     bool UseImm = true;
1312     if (isInt<16>(Imm)) {
1313       switch (Opc) {
1314         default:
1315           llvm_unreachable("Missing case!");
1316         case PPC::ADD4:
1317           Opc = PPC::ADDI;
1318           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1319           break;
1320         case PPC::ADD8:
1321           Opc = PPC::ADDI8;
1322           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1323           break;
1324         case PPC::OR:
1325           Opc = PPC::ORI;
1326           break;
1327         case PPC::OR8:
1328           Opc = PPC::ORI8;
1329           break;
1330         case PPC::SUBF:
1331           if (Imm == -32768)
1332             UseImm = false;
1333           else {
1334             Opc = PPC::ADDI;
1335             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1336             Imm = -Imm;
1337           }
1338           break;
1339         case PPC::SUBF8:
1340           if (Imm == -32768)
1341             UseImm = false;
1342           else {
1343             Opc = PPC::ADDI8;
1344             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1345             Imm = -Imm;
1346           }
1347           break;
1348       }
1349 
1350       if (UseImm) {
1351         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1352                 ResultReg)
1353             .addReg(SrcReg1)
1354             .addImm(Imm);
1355         updateValueMap(I, ResultReg);
1356         return true;
1357       }
1358     }
1359   }
1360 
1361   // Reg-reg case.
1362   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1363   if (SrcReg2 == 0) return false;
1364 
1365   // Reverse operands for subtract-from.
1366   if (ISDOpcode == ISD::SUB)
1367     std::swap(SrcReg1, SrcReg2);
1368 
1369   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1370     .addReg(SrcReg1).addReg(SrcReg2);
1371   updateValueMap(I, ResultReg);
1372   return true;
1373 }
1374 
1375 // Handle arguments to a call that we're attempting to fast-select.
1376 // Return false if the arguments are too complex for us at the moment.
1377 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1378                                   SmallVectorImpl<unsigned> &ArgRegs,
1379                                   SmallVectorImpl<MVT> &ArgVTs,
1380                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1381                                   SmallVectorImpl<unsigned> &RegArgs,
1382                                   CallingConv::ID CC,
1383                                   unsigned &NumBytes,
1384                                   bool IsVarArg) {
1385   SmallVector<CCValAssign, 16> ArgLocs;
1386   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1387 
1388   // Reserve space for the linkage area on the stack.
1389   unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1390   CCInfo.AllocateStack(LinkageSize, Align(8));
1391 
1392   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1393 
1394   // Bail out if we can't handle any of the arguments.
1395   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1396     CCValAssign &VA = ArgLocs[I];
1397     MVT ArgVT = ArgVTs[VA.getValNo()];
1398 
1399     // Skip vector arguments for now, as well as long double and
1400     // uint128_t, and anything that isn't passed in a register.
1401     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1402         !VA.isRegLoc() || VA.needsCustom())
1403       return false;
1404 
1405     // Skip bit-converted arguments for now.
1406     if (VA.getLocInfo() == CCValAssign::BCvt)
1407       return false;
1408   }
1409 
1410   // Get a count of how many bytes are to be pushed onto the stack.
1411   NumBytes = CCInfo.getNextStackOffset();
1412 
1413   // The prolog code of the callee may store up to 8 GPR argument registers to
1414   // the stack, allowing va_start to index over them in memory if its varargs.
1415   // Because we cannot tell if this is needed on the caller side, we have to
1416   // conservatively assume that it is needed.  As such, make sure we have at
1417   // least enough stack space for the caller to store the 8 GPRs.
1418   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1419   NumBytes = std::max(NumBytes, LinkageSize + 64);
1420 
1421   // Issue CALLSEQ_START.
1422   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1423           TII.get(TII.getCallFrameSetupOpcode()))
1424     .addImm(NumBytes).addImm(0);
1425 
1426   // Prepare to assign register arguments.  Every argument uses up a
1427   // GPR protocol register even if it's passed in a floating-point
1428   // register (unless we're using the fast calling convention).
1429   unsigned NextGPR = PPC::X3;
1430   unsigned NextFPR = PPC::F1;
1431 
1432   // Process arguments.
1433   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1434     CCValAssign &VA = ArgLocs[I];
1435     unsigned Arg = ArgRegs[VA.getValNo()];
1436     MVT ArgVT = ArgVTs[VA.getValNo()];
1437 
1438     // Handle argument promotion and bitcasts.
1439     switch (VA.getLocInfo()) {
1440       default:
1441         llvm_unreachable("Unknown loc info!");
1442       case CCValAssign::Full:
1443         break;
1444       case CCValAssign::SExt: {
1445         MVT DestVT = VA.getLocVT();
1446         const TargetRegisterClass *RC =
1447           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1448         unsigned TmpReg = createResultReg(RC);
1449         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1450           llvm_unreachable("Failed to emit a sext!");
1451         ArgVT = DestVT;
1452         Arg = TmpReg;
1453         break;
1454       }
1455       case CCValAssign::AExt:
1456       case CCValAssign::ZExt: {
1457         MVT DestVT = VA.getLocVT();
1458         const TargetRegisterClass *RC =
1459           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1460         unsigned TmpReg = createResultReg(RC);
1461         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1462           llvm_unreachable("Failed to emit a zext!");
1463         ArgVT = DestVT;
1464         Arg = TmpReg;
1465         break;
1466       }
1467       case CCValAssign::BCvt: {
1468         // FIXME: Not yet handled.
1469         llvm_unreachable("Should have bailed before getting here!");
1470         break;
1471       }
1472     }
1473 
1474     // Copy this argument to the appropriate register.
1475     unsigned ArgReg;
1476     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1477       ArgReg = NextFPR++;
1478       if (CC != CallingConv::Fast)
1479         ++NextGPR;
1480     } else
1481       ArgReg = NextGPR++;
1482 
1483     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1484             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1485     RegArgs.push_back(ArgReg);
1486   }
1487 
1488   return true;
1489 }
1490 
1491 // For a call that we've determined we can fast-select, finish the
1492 // call sequence and generate a copy to obtain the return value (if any).
1493 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1494   CallingConv::ID CC = CLI.CallConv;
1495 
1496   // Issue CallSEQ_END.
1497   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1498           TII.get(TII.getCallFrameDestroyOpcode()))
1499     .addImm(NumBytes).addImm(0);
1500 
1501   // Next, generate a copy to obtain the return value.
1502   // FIXME: No multi-register return values yet, though I don't foresee
1503   // any real difficulties there.
1504   if (RetVT != MVT::isVoid) {
1505     SmallVector<CCValAssign, 16> RVLocs;
1506     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1507     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1508     CCValAssign &VA = RVLocs[0];
1509     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1510     assert(VA.isRegLoc() && "Can only return in registers!");
1511 
1512     MVT DestVT = VA.getValVT();
1513     MVT CopyVT = DestVT;
1514 
1515     // Ints smaller than a register still arrive in a full 64-bit
1516     // register, so make sure we recognize this.
1517     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1518       CopyVT = MVT::i64;
1519 
1520     unsigned SourcePhysReg = VA.getLocReg();
1521     unsigned ResultReg = 0;
1522 
1523     if (RetVT == CopyVT) {
1524       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1525       ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1526 
1527     // If necessary, round the floating result to single precision.
1528     } else if (CopyVT == MVT::f64) {
1529       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1530       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1531               ResultReg).addReg(SourcePhysReg);
1532 
1533     // If only the low half of a general register is needed, generate
1534     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1535     // used along the fast-isel path (not lowered), and downstream logic
1536     // also doesn't like a direct subreg copy on a physical reg.)
1537     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1538       // Convert physical register from G8RC to GPRC.
1539       SourcePhysReg -= PPC::X0 - PPC::R0;
1540       ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1541     }
1542 
1543     assert(ResultReg && "ResultReg unset!");
1544     CLI.InRegs.push_back(SourcePhysReg);
1545     CLI.ResultReg = ResultReg;
1546     CLI.NumResultRegs = 1;
1547   }
1548 
1549   return true;
1550 }
1551 
1552 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1553   CallingConv::ID CC  = CLI.CallConv;
1554   bool IsTailCall     = CLI.IsTailCall;
1555   bool IsVarArg       = CLI.IsVarArg;
1556   const Value *Callee = CLI.Callee;
1557   const MCSymbol *Symbol = CLI.Symbol;
1558 
1559   if (!Callee && !Symbol)
1560     return false;
1561 
1562   // Allow SelectionDAG isel to handle tail calls.
1563   if (IsTailCall)
1564     return false;
1565 
1566   // Let SDISel handle vararg functions.
1567   if (IsVarArg)
1568     return false;
1569 
1570   // Handle simple calls for now, with legal return types and
1571   // those that can be extended.
1572   Type *RetTy = CLI.RetTy;
1573   MVT RetVT;
1574   if (RetTy->isVoidTy())
1575     RetVT = MVT::isVoid;
1576   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1577            RetVT != MVT::i8)
1578     return false;
1579   else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1580     // We can't handle boolean returns when CR bits are in use.
1581     return false;
1582 
1583   // FIXME: No multi-register return values yet.
1584   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1585       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1586       RetVT != MVT::f64) {
1587     SmallVector<CCValAssign, 16> RVLocs;
1588     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1589     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1590     if (RVLocs.size() > 1)
1591       return false;
1592   }
1593 
1594   // Bail early if more than 8 arguments, as we only currently
1595   // handle arguments passed in registers.
1596   unsigned NumArgs = CLI.OutVals.size();
1597   if (NumArgs > 8)
1598     return false;
1599 
1600   // Set up the argument vectors.
1601   SmallVector<Value*, 8> Args;
1602   SmallVector<unsigned, 8> ArgRegs;
1603   SmallVector<MVT, 8> ArgVTs;
1604   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1605 
1606   Args.reserve(NumArgs);
1607   ArgRegs.reserve(NumArgs);
1608   ArgVTs.reserve(NumArgs);
1609   ArgFlags.reserve(NumArgs);
1610 
1611   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1612     // Only handle easy calls for now.  It would be reasonably easy
1613     // to handle <= 8-byte structures passed ByVal in registers, but we
1614     // have to ensure they are right-justified in the register.
1615     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1616     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1617       return false;
1618 
1619     Value *ArgValue = CLI.OutVals[i];
1620     Type *ArgTy = ArgValue->getType();
1621     MVT ArgVT;
1622     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1623       return false;
1624 
1625     if (ArgVT.isVector())
1626       return false;
1627 
1628     unsigned Arg = getRegForValue(ArgValue);
1629     if (Arg == 0)
1630       return false;
1631 
1632     Args.push_back(ArgValue);
1633     ArgRegs.push_back(Arg);
1634     ArgVTs.push_back(ArgVT);
1635     ArgFlags.push_back(Flags);
1636   }
1637 
1638   // Process the arguments.
1639   SmallVector<unsigned, 8> RegArgs;
1640   unsigned NumBytes;
1641 
1642   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1643                        RegArgs, CC, NumBytes, IsVarArg))
1644     return false;
1645 
1646   MachineInstrBuilder MIB;
1647   // FIXME: No handling for function pointers yet.  This requires
1648   // implementing the function descriptor (OPD) setup.
1649   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1650   if (!GV) {
1651     // patchpoints are a special case; they always dispatch to a pointer value.
1652     // However, we don't actually want to generate the indirect call sequence
1653     // here (that will be generated, as necessary, during asm printing), and
1654     // the call we generate here will be erased by FastISel::selectPatchpoint,
1655     // so don't try very hard...
1656     if (CLI.IsPatchPoint)
1657       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1658     else
1659       return false;
1660   } else {
1661     // Build direct call with NOP for TOC restore.
1662     // FIXME: We can and should optimize away the NOP for local calls.
1663     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1664                   TII.get(PPC::BL8_NOP));
1665     // Add callee.
1666     MIB.addGlobalAddress(GV);
1667   }
1668 
1669   // Add implicit physical register uses to the call.
1670   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1671     MIB.addReg(RegArgs[II], RegState::Implicit);
1672 
1673   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1674   // into the call.
1675   PPCFuncInfo->setUsesTOCBasePtr();
1676   MIB.addReg(PPC::X2, RegState::Implicit);
1677 
1678   // Add a register mask with the call-preserved registers.  Proper
1679   // defs for return values will be added by setPhysRegsDeadExcept().
1680   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1681 
1682   CLI.Call = MIB;
1683 
1684   // Finish off the call including any return values.
1685   return finishCall(RetVT, CLI, NumBytes);
1686 }
1687 
1688 // Attempt to fast-select a return instruction.
1689 bool PPCFastISel::SelectRet(const Instruction *I) {
1690 
1691   if (!FuncInfo.CanLowerReturn)
1692     return false;
1693 
1694   const ReturnInst *Ret = cast<ReturnInst>(I);
1695   const Function &F = *I->getParent()->getParent();
1696 
1697   // Build a list of return value registers.
1698   SmallVector<unsigned, 4> RetRegs;
1699   CallingConv::ID CC = F.getCallingConv();
1700 
1701   if (Ret->getNumOperands() > 0) {
1702     SmallVector<ISD::OutputArg, 4> Outs;
1703     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1704 
1705     // Analyze operands of the call, assigning locations to each operand.
1706     SmallVector<CCValAssign, 16> ValLocs;
1707     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1708     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1709     const Value *RV = Ret->getOperand(0);
1710 
1711     // FIXME: Only one output register for now.
1712     if (ValLocs.size() > 1)
1713       return false;
1714 
1715     // Special case for returning a constant integer of any size - materialize
1716     // the constant as an i64 and copy it to the return register.
1717     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1718       CCValAssign &VA = ValLocs[0];
1719 
1720       Register RetReg = VA.getLocReg();
1721       // We still need to worry about properly extending the sign. For example,
1722       // we could have only a single bit or a constant that needs zero
1723       // extension rather than sign extension. Make sure we pass the return
1724       // value extension property to integer materialization.
1725       unsigned SrcReg =
1726           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1727 
1728       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1729             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1730 
1731       RetRegs.push_back(RetReg);
1732 
1733     } else {
1734       unsigned Reg = getRegForValue(RV);
1735 
1736       if (Reg == 0)
1737         return false;
1738 
1739       // Copy the result values into the output registers.
1740       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1741 
1742         CCValAssign &VA = ValLocs[i];
1743         assert(VA.isRegLoc() && "Can only return in registers!");
1744         RetRegs.push_back(VA.getLocReg());
1745         unsigned SrcReg = Reg + VA.getValNo();
1746 
1747         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1748         if (!RVEVT.isSimple())
1749           return false;
1750         MVT RVVT = RVEVT.getSimpleVT();
1751         MVT DestVT = VA.getLocVT();
1752 
1753         if (RVVT != DestVT && RVVT != MVT::i8 &&
1754             RVVT != MVT::i16 && RVVT != MVT::i32)
1755           return false;
1756 
1757         if (RVVT != DestVT) {
1758           switch (VA.getLocInfo()) {
1759             default:
1760               llvm_unreachable("Unknown loc info!");
1761             case CCValAssign::Full:
1762               llvm_unreachable("Full value assign but types don't match?");
1763             case CCValAssign::AExt:
1764             case CCValAssign::ZExt: {
1765               const TargetRegisterClass *RC =
1766                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1767               unsigned TmpReg = createResultReg(RC);
1768               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1769                 return false;
1770               SrcReg = TmpReg;
1771               break;
1772             }
1773             case CCValAssign::SExt: {
1774               const TargetRegisterClass *RC =
1775                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1776               unsigned TmpReg = createResultReg(RC);
1777               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1778                 return false;
1779               SrcReg = TmpReg;
1780               break;
1781             }
1782           }
1783         }
1784 
1785         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1786                 TII.get(TargetOpcode::COPY), RetRegs[i])
1787           .addReg(SrcReg);
1788       }
1789     }
1790   }
1791 
1792   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1793                                     TII.get(PPC::BLR8));
1794 
1795   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1796     MIB.addReg(RetRegs[i], RegState::Implicit);
1797 
1798   return true;
1799 }
1800 
1801 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1802 // signed and zero extensions are supported.  Return false if we
1803 // can't handle it.
1804 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1805                                 unsigned DestReg, bool IsZExt) {
1806   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1807     return false;
1808   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1809     return false;
1810 
1811   // Signed extensions use EXTSB, EXTSH, EXTSW.
1812   if (!IsZExt) {
1813     unsigned Opc;
1814     if (SrcVT == MVT::i8)
1815       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1816     else if (SrcVT == MVT::i16)
1817       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1818     else {
1819       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1820       Opc = PPC::EXTSW_32_64;
1821     }
1822     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1823       .addReg(SrcReg);
1824 
1825   // Unsigned 32-bit extensions use RLWINM.
1826   } else if (DestVT == MVT::i32) {
1827     unsigned MB;
1828     if (SrcVT == MVT::i8)
1829       MB = 24;
1830     else {
1831       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1832       MB = 16;
1833     }
1834     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1835             DestReg)
1836       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1837 
1838   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1839   } else {
1840     unsigned MB;
1841     if (SrcVT == MVT::i8)
1842       MB = 56;
1843     else if (SrcVT == MVT::i16)
1844       MB = 48;
1845     else
1846       MB = 32;
1847     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1848             TII.get(PPC::RLDICL_32_64), DestReg)
1849       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1850   }
1851 
1852   return true;
1853 }
1854 
1855 // Attempt to fast-select an indirect branch instruction.
1856 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1857   unsigned AddrReg = getRegForValue(I->getOperand(0));
1858   if (AddrReg == 0)
1859     return false;
1860 
1861   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1862     .addReg(AddrReg);
1863   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1864 
1865   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1866   for (const BasicBlock *SuccBB : IB->successors())
1867     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1868 
1869   return true;
1870 }
1871 
1872 // Attempt to fast-select an integer truncate instruction.
1873 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1874   Value *Src  = I->getOperand(0);
1875   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1876   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1877 
1878   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1879     return false;
1880 
1881   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1882     return false;
1883 
1884   unsigned SrcReg = getRegForValue(Src);
1885   if (!SrcReg)
1886     return false;
1887 
1888   // The only interesting case is when we need to switch register classes.
1889   if (SrcVT == MVT::i64)
1890     SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1891 
1892   updateValueMap(I, SrcReg);
1893   return true;
1894 }
1895 
1896 // Attempt to fast-select an integer extend instruction.
1897 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1898   Type *DestTy = I->getType();
1899   Value *Src = I->getOperand(0);
1900   Type *SrcTy = Src->getType();
1901 
1902   bool IsZExt = isa<ZExtInst>(I);
1903   unsigned SrcReg = getRegForValue(Src);
1904   if (!SrcReg) return false;
1905 
1906   EVT SrcEVT, DestEVT;
1907   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1908   DestEVT = TLI.getValueType(DL, DestTy, true);
1909   if (!SrcEVT.isSimple())
1910     return false;
1911   if (!DestEVT.isSimple())
1912     return false;
1913 
1914   MVT SrcVT = SrcEVT.getSimpleVT();
1915   MVT DestVT = DestEVT.getSimpleVT();
1916 
1917   // If we know the register class needed for the result of this
1918   // instruction, use it.  Otherwise pick the register class of the
1919   // correct size that does not contain X0/R0, since we don't know
1920   // whether downstream uses permit that assignment.
1921   unsigned AssignedReg = FuncInfo.ValueMap[I];
1922   const TargetRegisterClass *RC =
1923     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1924      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1925       &PPC::GPRC_and_GPRC_NOR0RegClass));
1926   unsigned ResultReg = createResultReg(RC);
1927 
1928   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1929     return false;
1930 
1931   updateValueMap(I, ResultReg);
1932   return true;
1933 }
1934 
1935 // Attempt to fast-select an instruction that wasn't handled by
1936 // the table-generated machinery.
1937 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1938 
1939   switch (I->getOpcode()) {
1940     case Instruction::Load:
1941       return SelectLoad(I);
1942     case Instruction::Store:
1943       return SelectStore(I);
1944     case Instruction::Br:
1945       return SelectBranch(I);
1946     case Instruction::IndirectBr:
1947       return SelectIndirectBr(I);
1948     case Instruction::FPExt:
1949       return SelectFPExt(I);
1950     case Instruction::FPTrunc:
1951       return SelectFPTrunc(I);
1952     case Instruction::SIToFP:
1953       return SelectIToFP(I, /*IsSigned*/ true);
1954     case Instruction::UIToFP:
1955       return SelectIToFP(I, /*IsSigned*/ false);
1956     case Instruction::FPToSI:
1957       return SelectFPToI(I, /*IsSigned*/ true);
1958     case Instruction::FPToUI:
1959       return SelectFPToI(I, /*IsSigned*/ false);
1960     case Instruction::Add:
1961       return SelectBinaryIntOp(I, ISD::ADD);
1962     case Instruction::Or:
1963       return SelectBinaryIntOp(I, ISD::OR);
1964     case Instruction::Sub:
1965       return SelectBinaryIntOp(I, ISD::SUB);
1966     case Instruction::Call:
1967       // On AIX, call lowering uses the DAG-ISEL path currently so that the
1968       // callee of the direct function call instruction will be mapped to the
1969       // symbol for the function's entry point, which is distinct from the
1970       // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1971       // name is the C-linkage name of the source level function.
1972       if (TM.getTargetTriple().isOSAIX())
1973         break;
1974       return selectCall(I);
1975     case Instruction::Ret:
1976       return SelectRet(I);
1977     case Instruction::Trunc:
1978       return SelectTrunc(I);
1979     case Instruction::ZExt:
1980     case Instruction::SExt:
1981       return SelectIntExt(I);
1982     // Here add other flavors of Instruction::XXX that automated
1983     // cases don't catch.  For example, switches are terminators
1984     // that aren't yet handled.
1985     default:
1986       break;
1987   }
1988   return false;
1989 }
1990 
1991 // Materialize a floating-point constant into a register, and return
1992 // the register number (or zero if we failed to handle it).
1993 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1994   // No plans to handle long double here.
1995   if (VT != MVT::f32 && VT != MVT::f64)
1996     return 0;
1997 
1998   // All FP constants are loaded from the constant pool.
1999   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
2000   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
2001   const bool HasSPE = Subtarget->hasSPE();
2002   const TargetRegisterClass *RC;
2003   if (HasSPE)
2004     RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2005   else
2006     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2007 
2008   unsigned DestReg = createResultReg(RC);
2009   CodeModel::Model CModel = TM.getCodeModel();
2010 
2011   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2012       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2013       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2014 
2015   unsigned Opc;
2016 
2017   if (HasSPE)
2018     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2019   else
2020     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2021 
2022   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2023 
2024   PPCFuncInfo->setUsesTOCBasePtr();
2025   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2026   if (CModel == CodeModel::Small) {
2027     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2028             TmpReg)
2029       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2030     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2031       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2032   } else {
2033     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2034     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2035             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2036     // But for large code model, we must generate a LDtocL followed
2037     // by the LF[SD].
2038     if (CModel == CodeModel::Large) {
2039       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2040       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2041               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2042       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2043           .addImm(0)
2044           .addReg(TmpReg2);
2045     } else
2046       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2047         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2048         .addReg(TmpReg)
2049         .addMemOperand(MMO);
2050   }
2051 
2052   return DestReg;
2053 }
2054 
2055 // Materialize the address of a global value into a register, and return
2056 // the register number (or zero if we failed to handle it).
2057 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2058   assert(VT == MVT::i64 && "Non-address!");
2059   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2060   unsigned DestReg = createResultReg(RC);
2061 
2062   // Global values may be plain old object addresses, TLS object
2063   // addresses, constant pool entries, or jump tables.  How we generate
2064   // code for these may depend on small, medium, or large code model.
2065   CodeModel::Model CModel = TM.getCodeModel();
2066 
2067   // FIXME: Jump tables are not yet required because fast-isel doesn't
2068   // handle switches; if that changes, we need them as well.  For now,
2069   // what follows assumes everything's a generic (or TLS) global address.
2070 
2071   // FIXME: We don't yet handle the complexity of TLS.
2072   if (GV->isThreadLocal())
2073     return 0;
2074 
2075   PPCFuncInfo->setUsesTOCBasePtr();
2076   // For small code model, generate a simple TOC load.
2077   if (CModel == CodeModel::Small)
2078     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2079             DestReg)
2080         .addGlobalAddress(GV)
2081         .addReg(PPC::X2);
2082   else {
2083     // If the address is an externally defined symbol, a symbol with common
2084     // or externally available linkage, a non-local function address, or a
2085     // jump table address (not yet needed), or if we are generating code
2086     // for large code model, we generate:
2087     //       LDtocL(GV, ADDIStocHA8(%x2, GV))
2088     // Otherwise we generate:
2089     //       ADDItocL(ADDIStocHA8(%x2, GV), GV)
2090     // Either way, start with the ADDIStocHA8:
2091     unsigned HighPartReg = createResultReg(RC);
2092     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2093             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2094 
2095     if (Subtarget->isGVIndirectSymbol(GV)) {
2096       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2097               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2098     } else {
2099       // Otherwise generate the ADDItocL.
2100       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2101               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2102     }
2103   }
2104 
2105   return DestReg;
2106 }
2107 
2108 // Materialize a 32-bit integer constant into a register, and return
2109 // the register number (or zero if we failed to handle it).
2110 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2111                                              const TargetRegisterClass *RC) {
2112   unsigned Lo = Imm & 0xFFFF;
2113   unsigned Hi = (Imm >> 16) & 0xFFFF;
2114 
2115   unsigned ResultReg = createResultReg(RC);
2116   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2117 
2118   if (isInt<16>(Imm))
2119     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2120             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2121       .addImm(Imm);
2122   else if (Lo) {
2123     // Both Lo and Hi have nonzero bits.
2124     unsigned TmpReg = createResultReg(RC);
2125     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2126             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2127       .addImm(Hi);
2128     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2129             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2130       .addReg(TmpReg).addImm(Lo);
2131   } else
2132     // Just Hi bits.
2133     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2134             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2135         .addImm(Hi);
2136 
2137   return ResultReg;
2138 }
2139 
2140 // Materialize a 64-bit integer constant into a register, and return
2141 // the register number (or zero if we failed to handle it).
2142 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2143                                              const TargetRegisterClass *RC) {
2144   unsigned Remainder = 0;
2145   unsigned Shift = 0;
2146 
2147   // If the value doesn't fit in 32 bits, see if we can shift it
2148   // so that it fits in 32 bits.
2149   if (!isInt<32>(Imm)) {
2150     Shift = countTrailingZeros<uint64_t>(Imm);
2151     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2152 
2153     if (isInt<32>(ImmSh))
2154       Imm = ImmSh;
2155     else {
2156       Remainder = Imm;
2157       Shift = 32;
2158       Imm >>= 32;
2159     }
2160   }
2161 
2162   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2163   // (if not shifted).
2164   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2165   if (!Shift)
2166     return TmpReg1;
2167 
2168   // If upper 32 bits were not zero, we've built them and need to shift
2169   // them into place.
2170   unsigned TmpReg2;
2171   if (Imm) {
2172     TmpReg2 = createResultReg(RC);
2173     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2174             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2175   } else
2176     TmpReg2 = TmpReg1;
2177 
2178   unsigned TmpReg3, Hi, Lo;
2179   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2180     TmpReg3 = createResultReg(RC);
2181     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2182             TmpReg3).addReg(TmpReg2).addImm(Hi);
2183   } else
2184     TmpReg3 = TmpReg2;
2185 
2186   if ((Lo = Remainder & 0xFFFF)) {
2187     unsigned ResultReg = createResultReg(RC);
2188     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2189             ResultReg).addReg(TmpReg3).addImm(Lo);
2190     return ResultReg;
2191   }
2192 
2193   return TmpReg3;
2194 }
2195 
2196 // Materialize an integer constant into a register, and return
2197 // the register number (or zero if we failed to handle it).
2198 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2199                                         bool UseSExt) {
2200   // If we're using CR bit registers for i1 values, handle that as a special
2201   // case first.
2202   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2203     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2204     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2205             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2206     return ImmReg;
2207   }
2208 
2209   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2210       VT != MVT::i1)
2211     return 0;
2212 
2213   const TargetRegisterClass *RC =
2214       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2215   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2216 
2217   // If the constant is in range, use a load-immediate.
2218   // Since LI will sign extend the constant we need to make sure that for
2219   // our zeroext constants that the sign extended constant fits into 16-bits -
2220   // a range of 0..0x7fff.
2221   if (isInt<16>(Imm)) {
2222     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2223     unsigned ImmReg = createResultReg(RC);
2224     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2225         .addImm(Imm);
2226     return ImmReg;
2227   }
2228 
2229   // Construct the constant piecewise.
2230   if (VT == MVT::i64)
2231     return PPCMaterialize64BitInt(Imm, RC);
2232   else if (VT == MVT::i32)
2233     return PPCMaterialize32BitInt(Imm, RC);
2234 
2235   return 0;
2236 }
2237 
2238 // Materialize a constant into a register, and return the register
2239 // number (or zero if we failed to handle it).
2240 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2241   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2242 
2243   // Only handle simple types.
2244   if (!CEVT.isSimple()) return 0;
2245   MVT VT = CEVT.getSimpleVT();
2246 
2247   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2248     return PPCMaterializeFP(CFP, VT);
2249   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2250     return PPCMaterializeGV(GV, VT);
2251   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2252     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2253     // assumes that constant PHI operands will be zero extended, and failure to
2254     // match that assumption will cause problems if we sign extend here but
2255     // some user of a PHI is in a block for which we fall back to full SDAG
2256     // instruction selection.
2257     return PPCMaterializeInt(CI, VT, false);
2258 
2259   return 0;
2260 }
2261 
2262 // Materialize the address created by an alloca into a register, and
2263 // return the register number (or zero if we failed to handle it).
2264 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2265   // Don't handle dynamic allocas.
2266   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2267 
2268   MVT VT;
2269   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2270 
2271   DenseMap<const AllocaInst*, int>::iterator SI =
2272     FuncInfo.StaticAllocaMap.find(AI);
2273 
2274   if (SI != FuncInfo.StaticAllocaMap.end()) {
2275     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2276     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2277             ResultReg).addFrameIndex(SI->second).addImm(0);
2278     return ResultReg;
2279   }
2280 
2281   return 0;
2282 }
2283 
2284 // Fold loads into extends when possible.
2285 // FIXME: We can have multiple redundant extend/trunc instructions
2286 // following a load.  The folding only picks up one.  Extend this
2287 // to check subsequent instructions for the same pattern and remove
2288 // them.  Thus ResultReg should be the def reg for the last redundant
2289 // instruction in a chain, and all intervening instructions can be
2290 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2291 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2292 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2293                                       const LoadInst *LI) {
2294   // Verify we have a legal type before going any further.
2295   MVT VT;
2296   if (!isLoadTypeLegal(LI->getType(), VT))
2297     return false;
2298 
2299   // Combine load followed by zero- or sign-extend.
2300   bool IsZExt = false;
2301   switch(MI->getOpcode()) {
2302     default:
2303       return false;
2304 
2305     case PPC::RLDICL:
2306     case PPC::RLDICL_32_64: {
2307       IsZExt = true;
2308       unsigned MB = MI->getOperand(3).getImm();
2309       if ((VT == MVT::i8 && MB <= 56) ||
2310           (VT == MVT::i16 && MB <= 48) ||
2311           (VT == MVT::i32 && MB <= 32))
2312         break;
2313       return false;
2314     }
2315 
2316     case PPC::RLWINM:
2317     case PPC::RLWINM8: {
2318       IsZExt = true;
2319       unsigned MB = MI->getOperand(3).getImm();
2320       if ((VT == MVT::i8 && MB <= 24) ||
2321           (VT == MVT::i16 && MB <= 16))
2322         break;
2323       return false;
2324     }
2325 
2326     case PPC::EXTSB:
2327     case PPC::EXTSB8:
2328     case PPC::EXTSB8_32_64:
2329       /* There is no sign-extending load-byte instruction. */
2330       return false;
2331 
2332     case PPC::EXTSH:
2333     case PPC::EXTSH8:
2334     case PPC::EXTSH8_32_64: {
2335       if (VT != MVT::i16 && VT != MVT::i8)
2336         return false;
2337       break;
2338     }
2339 
2340     case PPC::EXTSW:
2341     case PPC::EXTSW_32:
2342     case PPC::EXTSW_32_64: {
2343       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2344         return false;
2345       break;
2346     }
2347   }
2348 
2349   // See if we can handle this address.
2350   Address Addr;
2351   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2352     return false;
2353 
2354   Register ResultReg = MI->getOperand(0).getReg();
2355 
2356   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2357                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2358     return false;
2359 
2360   MachineBasicBlock::iterator I(MI);
2361   removeDeadCode(I, std::next(I));
2362   return true;
2363 }
2364 
2365 // Attempt to lower call arguments in a faster way than done by
2366 // the selection DAG code.
2367 bool PPCFastISel::fastLowerArguments() {
2368   // Defer to normal argument lowering for now.  It's reasonably
2369   // efficient.  Consider doing something like ARM to handle the
2370   // case where all args fit in registers, no varargs, no float
2371   // or vector args.
2372   return false;
2373 }
2374 
2375 // Handle materializing integer constants into a register.  This is not
2376 // automatically generated for PowerPC, so must be explicitly created here.
2377 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2378 
2379   if (Opc != ISD::Constant)
2380     return 0;
2381 
2382   // If we're using CR bit registers for i1 values, handle that as a special
2383   // case first.
2384   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2385     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2386     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2387             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2388     return ImmReg;
2389   }
2390 
2391   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2392       VT != MVT::i1)
2393     return 0;
2394 
2395   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2396                                    &PPC::GPRCRegClass);
2397   if (VT == MVT::i64)
2398     return PPCMaterialize64BitInt(Imm, RC);
2399   else
2400     return PPCMaterialize32BitInt(Imm, RC);
2401 }
2402 
2403 // Override for ADDI and ADDI8 to set the correct register class
2404 // on RHS operand 0.  The automatic infrastructure naively assumes
2405 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2406 // for these cases.  At the moment, none of the other automatically
2407 // generated RI instructions require special treatment.  However, once
2408 // SelectSelect is implemented, "isel" requires similar handling.
2409 //
2410 // Also be conservative about the output register class.  Avoid
2411 // assigning R0 or X0 to the output register for GPRC and G8RC
2412 // register classes, as any such result could be used in ADDI, etc.,
2413 // where those regs have another meaning.
2414 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2415                                       const TargetRegisterClass *RC,
2416                                       unsigned Op0, bool Op0IsKill,
2417                                       uint64_t Imm) {
2418   if (MachineInstOpcode == PPC::ADDI)
2419     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2420   else if (MachineInstOpcode == PPC::ADDI8)
2421     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2422 
2423   const TargetRegisterClass *UseRC =
2424     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2425      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2426 
2427   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2428                                    Op0, Op0IsKill, Imm);
2429 }
2430 
2431 // Override for instructions with one register operand to avoid use of
2432 // R0/X0.  The automatic infrastructure isn't aware of the context so
2433 // we must be conservative.
2434 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2435                                      const TargetRegisterClass* RC,
2436                                      unsigned Op0, bool Op0IsKill) {
2437   const TargetRegisterClass *UseRC =
2438     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2439      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2440 
2441   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2442 }
2443 
2444 // Override for instructions with two register operands to avoid use
2445 // of R0/X0.  The automatic infrastructure isn't aware of the context
2446 // so we must be conservative.
2447 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2448                                       const TargetRegisterClass* RC,
2449                                       unsigned Op0, bool Op0IsKill,
2450                                       unsigned Op1, bool Op1IsKill) {
2451   const TargetRegisterClass *UseRC =
2452     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2453      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2454 
2455   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2456                                    Op1, Op1IsKill);
2457 }
2458 
2459 namespace llvm {
2460   // Create the fast instruction selector for PowerPC64 ELF.
2461   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2462                                 const TargetLibraryInfo *LibInfo) {
2463     // Only available on 64-bit ELF for now.
2464     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2465     if (Subtarget.is64BitELFABI())
2466       return new PPCFastISel(FuncInfo, LibInfo);
2467     return nullptr;
2468   }
2469 }
2470