xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFastISel.cpp (revision 950a6087ec18cd22464b3297573f54a6d9223c99)
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetMachine.h"
39 
40 //===----------------------------------------------------------------------===//
41 //
42 // TBD:
43 //   fastLowerArguments: Handle simple cases.
44 //   PPCMaterializeGV: Handle TLS.
45 //   SelectCall: Handle function pointers.
46 //   SelectCall: Handle multi-register return values.
47 //   SelectCall: Optimize away nops for local calls.
48 //   processCallArgs: Handle bit-converted arguments.
49 //   finishCall: Handle multi-register return values.
50 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
51 //   PPCEmitCmp: Handle immediate as operand 1.
52 //   SelectCall: Handle small byval arguments.
53 //   SelectIntrinsicCall: Implement.
54 //   SelectSelect: Implement.
55 //   Consider factoring isTypeLegal into the base class.
56 //   Implement switches and jump tables.
57 //
58 //===----------------------------------------------------------------------===//
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "ppcfastisel"
62 
63 namespace {
64 
65 struct Address {
66   enum {
67     RegBase,
68     FrameIndexBase
69   } BaseType;
70 
71   union {
72     unsigned Reg;
73     int FI;
74   } Base;
75 
76   int64_t Offset;
77 
78   // Innocuous defaults for our address.
79   Address()
80    : BaseType(RegBase), Offset(0) {
81      Base.Reg = 0;
82    }
83 };
84 
85 class PPCFastISel final : public FastISel {
86 
87   const TargetMachine &TM;
88   const PPCSubtarget *Subtarget;
89   PPCFunctionInfo *PPCFuncInfo;
90   const TargetInstrInfo &TII;
91   const TargetLowering &TLI;
92   LLVMContext *Context;
93 
94   public:
95     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
96                          const TargetLibraryInfo *LibInfo)
97         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
98           Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
99           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
100           TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
101           Context(&FuncInfo.Fn->getContext()) {}
102 
103     // Backend specific FastISel code.
104   private:
105     bool fastSelectInstruction(const Instruction *I) override;
106     unsigned fastMaterializeConstant(const Constant *C) override;
107     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
108     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
109                              const LoadInst *LI) override;
110     bool fastLowerArguments() override;
111     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
112     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
113                              const TargetRegisterClass *RC,
114                              unsigned Op0, uint64_t Imm);
115     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
116                             const TargetRegisterClass *RC, unsigned Op0);
117     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
118                              const TargetRegisterClass *RC,
119                              unsigned Op0, unsigned Op1);
120 
121     bool fastLowerCall(CallLoweringInfo &CLI) override;
122 
123   // Instruction selection routines.
124   private:
125     bool SelectLoad(const Instruction *I);
126     bool SelectStore(const Instruction *I);
127     bool SelectBranch(const Instruction *I);
128     bool SelectIndirectBr(const Instruction *I);
129     bool SelectFPExt(const Instruction *I);
130     bool SelectFPTrunc(const Instruction *I);
131     bool SelectIToFP(const Instruction *I, bool IsSigned);
132     bool SelectFPToI(const Instruction *I, bool IsSigned);
133     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
134     bool SelectRet(const Instruction *I);
135     bool SelectTrunc(const Instruction *I);
136     bool SelectIntExt(const Instruction *I);
137 
138   // Utility routines.
139   private:
140     bool isTypeLegal(Type *Ty, MVT &VT);
141     bool isLoadTypeLegal(Type *Ty, MVT &VT);
142     bool isValueAvailable(const Value *V) const;
143     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
144       return RC->getID() == PPC::VSFRCRegClassID;
145     }
146     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
147       return RC->getID() == PPC::VSSRCRegClassID;
148     }
149     unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
150                                unsigned SrcReg, unsigned Flag = 0,
151                                unsigned SubReg = 0) {
152       Register TmpReg = createResultReg(ToRC);
153       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
154               TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
155       return TmpReg;
156     }
157     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
158                     bool isZExt, unsigned DestReg,
159                     const PPC::Predicate Pred);
160     bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
161                      const TargetRegisterClass *RC, bool IsZExt = true,
162                      unsigned FP64LoadOpc = PPC::LFD);
163     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
164     bool PPCComputeAddress(const Value *Obj, Address &Addr);
165     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
166                             unsigned &IndexReg);
167     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
168                            unsigned DestReg, bool IsZExt);
169     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
170     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
171     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
172                                bool UseSExt = true);
173     unsigned PPCMaterialize32BitInt(int64_t Imm,
174                                     const TargetRegisterClass *RC);
175     unsigned PPCMaterialize64BitInt(int64_t Imm,
176                                     const TargetRegisterClass *RC);
177     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
178                              unsigned SrcReg, bool IsSigned);
179     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
180 
181   // Call handling routines.
182   private:
183     bool processCallArgs(SmallVectorImpl<Value*> &Args,
184                          SmallVectorImpl<unsigned> &ArgRegs,
185                          SmallVectorImpl<MVT> &ArgVTs,
186                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
187                          SmallVectorImpl<unsigned> &RegArgs,
188                          CallingConv::ID CC,
189                          unsigned &NumBytes,
190                          bool IsVarArg);
191     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
192 
193   private:
194   #include "PPCGenFastISel.inc"
195 
196 };
197 
198 } // end anonymous namespace
199 
200 static std::optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
201     switch (Pred) {
202     // These are not representable with any single compare.
203     case CmpInst::FCMP_FALSE:
204     case CmpInst::FCMP_TRUE:
205     // Major concern about the following 6 cases is NaN result. The comparison
206     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
207     // only one of which will be set. The result is generated by fcmpu
208     // instruction. However, bc instruction only inspects one of the first 3
209     // bits, so when un is set, bc instruction may jump to an undesired
210     // place.
211     //
212     // More specifically, if we expect an unordered comparison and un is set, we
213     // expect to always go to true branch; in such case UEQ, UGT and ULT still
214     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
215     // since they are tested by inspecting !eq, !lt, !gt, respectively.
216     //
217     // Similarly, for ordered comparison, when un is set, we always expect the
218     // result to be false. In such case OGT, OLT and OEQ is good, since they are
219     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
220     // and ONE are tested through !lt, !gt and !eq, and these are true.
221     case CmpInst::FCMP_UEQ:
222     case CmpInst::FCMP_UGT:
223     case CmpInst::FCMP_ULT:
224     case CmpInst::FCMP_OGE:
225     case CmpInst::FCMP_OLE:
226     case CmpInst::FCMP_ONE:
227     default:
228       return std::nullopt;
229 
230     case CmpInst::FCMP_OEQ:
231     case CmpInst::ICMP_EQ:
232       return PPC::PRED_EQ;
233 
234     case CmpInst::FCMP_OGT:
235     case CmpInst::ICMP_UGT:
236     case CmpInst::ICMP_SGT:
237       return PPC::PRED_GT;
238 
239     case CmpInst::FCMP_UGE:
240     case CmpInst::ICMP_UGE:
241     case CmpInst::ICMP_SGE:
242       return PPC::PRED_GE;
243 
244     case CmpInst::FCMP_OLT:
245     case CmpInst::ICMP_ULT:
246     case CmpInst::ICMP_SLT:
247       return PPC::PRED_LT;
248 
249     case CmpInst::FCMP_ULE:
250     case CmpInst::ICMP_ULE:
251     case CmpInst::ICMP_SLE:
252       return PPC::PRED_LE;
253 
254     case CmpInst::FCMP_UNE:
255     case CmpInst::ICMP_NE:
256       return PPC::PRED_NE;
257 
258     case CmpInst::FCMP_ORD:
259       return PPC::PRED_NU;
260 
261     case CmpInst::FCMP_UNO:
262       return PPC::PRED_UN;
263   }
264 }
265 
266 // Determine whether the type Ty is simple enough to be handled by
267 // fast-isel, and return its equivalent machine type in VT.
268 // FIXME: Copied directly from ARM -- factor into base class?
269 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
270   EVT Evt = TLI.getValueType(DL, Ty, true);
271 
272   // Only handle simple types.
273   if (Evt == MVT::Other || !Evt.isSimple()) return false;
274   VT = Evt.getSimpleVT();
275 
276   // Handle all legal types, i.e. a register that will directly hold this
277   // value.
278   return TLI.isTypeLegal(VT);
279 }
280 
281 // Determine whether the type Ty is simple enough to be handled by
282 // fast-isel as a load target, and return its equivalent machine type in VT.
283 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
284   if (isTypeLegal(Ty, VT)) return true;
285 
286   // If this is a type than can be sign or zero-extended to a basic operation
287   // go ahead and accept it now.
288   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
289     return true;
290   }
291 
292   return false;
293 }
294 
295 bool PPCFastISel::isValueAvailable(const Value *V) const {
296   if (!isa<Instruction>(V))
297     return true;
298 
299   const auto *I = cast<Instruction>(V);
300   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
301 }
302 
303 // Given a value Obj, create an Address object Addr that represents its
304 // address.  Return false if we can't handle it.
305 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
306   const User *U = nullptr;
307   unsigned Opcode = Instruction::UserOp1;
308   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
309     // Don't walk into other basic blocks unless the object is an alloca from
310     // another block, otherwise it may not have a virtual register assigned.
311     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
312         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
313       Opcode = I->getOpcode();
314       U = I;
315     }
316   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
317     Opcode = C->getOpcode();
318     U = C;
319   }
320 
321   switch (Opcode) {
322     default:
323       break;
324     case Instruction::BitCast:
325       // Look through bitcasts.
326       return PPCComputeAddress(U->getOperand(0), Addr);
327     case Instruction::IntToPtr:
328       // Look past no-op inttoptrs.
329       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
330           TLI.getPointerTy(DL))
331         return PPCComputeAddress(U->getOperand(0), Addr);
332       break;
333     case Instruction::PtrToInt:
334       // Look past no-op ptrtoints.
335       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
336         return PPCComputeAddress(U->getOperand(0), Addr);
337       break;
338     case Instruction::GetElementPtr: {
339       Address SavedAddr = Addr;
340       int64_t TmpOffset = Addr.Offset;
341 
342       // Iterate through the GEP folding the constants into offsets where
343       // we can.
344       gep_type_iterator GTI = gep_type_begin(U);
345       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
346            II != IE; ++II, ++GTI) {
347         const Value *Op = *II;
348         if (StructType *STy = GTI.getStructTypeOrNull()) {
349           const StructLayout *SL = DL.getStructLayout(STy);
350           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
351           TmpOffset += SL->getElementOffset(Idx);
352         } else {
353           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
354           for (;;) {
355             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
356               // Constant-offset addressing.
357               TmpOffset += CI->getSExtValue() * S;
358               break;
359             }
360             if (canFoldAddIntoGEP(U, Op)) {
361               // A compatible add with a constant operand. Fold the constant.
362               ConstantInt *CI =
363               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
364               TmpOffset += CI->getSExtValue() * S;
365               // Iterate on the other operand.
366               Op = cast<AddOperator>(Op)->getOperand(0);
367               continue;
368             }
369             // Unsupported
370             goto unsupported_gep;
371           }
372         }
373       }
374 
375       // Try to grab the base operand now.
376       Addr.Offset = TmpOffset;
377       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
378 
379       // We failed, restore everything and try the other options.
380       Addr = SavedAddr;
381 
382       unsupported_gep:
383       break;
384     }
385     case Instruction::Alloca: {
386       const AllocaInst *AI = cast<AllocaInst>(Obj);
387       DenseMap<const AllocaInst*, int>::iterator SI =
388         FuncInfo.StaticAllocaMap.find(AI);
389       if (SI != FuncInfo.StaticAllocaMap.end()) {
390         Addr.BaseType = Address::FrameIndexBase;
391         Addr.Base.FI = SI->second;
392         return true;
393       }
394       break;
395     }
396   }
397 
398   // FIXME: References to parameters fall through to the behavior
399   // below.  They should be able to reference a frame index since
400   // they are stored to the stack, so we can get "ld rx, offset(r1)"
401   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
402   // just contain the parameter.  Try to handle this with a FI.
403 
404   // Try to get this in a register if nothing else has worked.
405   if (Addr.Base.Reg == 0)
406     Addr.Base.Reg = getRegForValue(Obj);
407 
408   // Prevent assignment of base register to X0, which is inappropriate
409   // for loads and stores alike.
410   if (Addr.Base.Reg != 0)
411     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
412 
413   return Addr.Base.Reg != 0;
414 }
415 
416 // Fix up some addresses that can't be used directly.  For example, if
417 // an offset won't fit in an instruction field, we may need to move it
418 // into an index register.
419 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
420                                      unsigned &IndexReg) {
421 
422   // Check whether the offset fits in the instruction field.
423   if (!isInt<16>(Addr.Offset))
424     UseOffset = false;
425 
426   // If this is a stack pointer and the offset needs to be simplified then
427   // put the alloca address into a register, set the base type back to
428   // register and continue. This should almost never happen.
429   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
430     Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
431     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8),
432             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
433     Addr.Base.Reg = ResultReg;
434     Addr.BaseType = Address::RegBase;
435   }
436 
437   if (!UseOffset) {
438     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
439     const ConstantInt *Offset = ConstantInt::getSigned(OffsetTy, Addr.Offset);
440     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
441     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
442   }
443 }
444 
445 // Emit a load instruction if possible, returning true if we succeeded,
446 // otherwise false.  See commentary below for how the register class of
447 // the load is determined.
448 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
449                               const TargetRegisterClass *RC,
450                               bool IsZExt, unsigned FP64LoadOpc) {
451   unsigned Opc;
452   bool UseOffset = true;
453   bool HasSPE = Subtarget->hasSPE();
454 
455   // If ResultReg is given, it determines the register class of the load.
456   // Otherwise, RC is the register class to use.  If the result of the
457   // load isn't anticipated in this block, both may be zero, in which
458   // case we must make a conservative guess.  In particular, don't assign
459   // R0 or X0 to the result register, as the result may be used in a load,
460   // store, add-immediate, or isel that won't permit this.  (Though
461   // perhaps the spill and reload of live-exit values would handle this?)
462   const TargetRegisterClass *UseRC =
463     (ResultReg ? MRI.getRegClass(ResultReg) :
464      (RC ? RC :
465       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
466        (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
467         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
468          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
469 
470   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
471 
472   switch (VT.SimpleTy) {
473     default: // e.g., vector types not handled
474       return false;
475     case MVT::i8:
476       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
477       break;
478     case MVT::i16:
479       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
480                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
481       break;
482     case MVT::i32:
483       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
484                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
485       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
486         UseOffset = false;
487       break;
488     case MVT::i64:
489       Opc = PPC::LD;
490       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
491              "64-bit load with 32-bit target??");
492       UseOffset = ((Addr.Offset & 3) == 0);
493       break;
494     case MVT::f32:
495       Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
496       break;
497     case MVT::f64:
498       Opc = FP64LoadOpc;
499       break;
500   }
501 
502   // If necessary, materialize the offset into a register and use
503   // the indexed form.  Also handle stack pointers with special needs.
504   unsigned IndexReg = 0;
505   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
506 
507   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
508   // be used.
509   bool IsVSSRC = isVSSRCRegClass(UseRC);
510   bool IsVSFRC = isVSFRCRegClass(UseRC);
511   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
512   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
513   if ((Is32VSXLoad || Is64VSXLoad) &&
514       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
515       (Addr.Offset == 0)) {
516     UseOffset = false;
517   }
518 
519   if (ResultReg == 0)
520     ResultReg = createResultReg(UseRC);
521 
522   // Note: If we still have a frame index here, we know the offset is
523   // in range, as otherwise PPCSimplifyAddress would have converted it
524   // into a RegBase.
525   if (Addr.BaseType == Address::FrameIndexBase) {
526     // VSX only provides an indexed load.
527     if (Is32VSXLoad || Is64VSXLoad) return false;
528 
529     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
530         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
531                                           Addr.Offset),
532         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
533         MFI.getObjectAlign(Addr.Base.FI));
534 
535     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
536       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
537 
538   // Base reg with offset in range.
539   } else if (UseOffset) {
540     // VSX only provides an indexed load.
541     if (Is32VSXLoad || Is64VSXLoad) return false;
542 
543     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
544       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
545 
546   // Indexed form.
547   } else {
548     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
549     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
550     // is hard to get at.
551     switch (Opc) {
552       default:        llvm_unreachable("Unexpected opcode!");
553       case PPC::LBZ:    Opc = PPC::LBZX;    break;
554       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
555       case PPC::LHZ:    Opc = PPC::LHZX;    break;
556       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
557       case PPC::LHA:    Opc = PPC::LHAX;    break;
558       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
559       case PPC::LWZ:    Opc = PPC::LWZX;    break;
560       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
561       case PPC::LWA:    Opc = PPC::LWAX;    break;
562       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
563       case PPC::LD:     Opc = PPC::LDX;     break;
564       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
565       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
566       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
567       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
568     }
569 
570     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
571                        ResultReg);
572 
573     // If we have an index register defined we use it in the store inst,
574     // otherwise we use X0 as base as it makes the vector instructions to
575     // use zero in the computation of the effective address regardless the
576     // content of the register.
577     if (IndexReg)
578       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
579     else
580       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
581   }
582 
583   return true;
584 }
585 
586 // Attempt to fast-select a load instruction.
587 bool PPCFastISel::SelectLoad(const Instruction *I) {
588   // FIXME: No atomic loads are supported.
589   if (cast<LoadInst>(I)->isAtomic())
590     return false;
591 
592   // Verify we have a legal type before going any further.
593   MVT VT;
594   if (!isLoadTypeLegal(I->getType(), VT))
595     return false;
596 
597   // See if we can handle this address.
598   Address Addr;
599   if (!PPCComputeAddress(I->getOperand(0), Addr))
600     return false;
601 
602   // Look at the currently assigned register for this instruction
603   // to determine the required register class.  This is necessary
604   // to constrain RA from using R0/X0 when this is not legal.
605   Register AssignedReg = FuncInfo.ValueMap[I];
606   const TargetRegisterClass *RC =
607     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
608 
609   Register ResultReg = 0;
610   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
611                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
612     return false;
613   updateValueMap(I, ResultReg);
614   return true;
615 }
616 
617 // Emit a store instruction to store SrcReg at Addr.
618 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
619   assert(SrcReg && "Nothing to store!");
620   unsigned Opc;
621   bool UseOffset = true;
622 
623   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
624   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
625 
626   switch (VT.SimpleTy) {
627     default: // e.g., vector types not handled
628       return false;
629     case MVT::i8:
630       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
631       break;
632     case MVT::i16:
633       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
634       break;
635     case MVT::i32:
636       assert(Is32BitInt && "Not GPRC for i32??");
637       Opc = PPC::STW;
638       break;
639     case MVT::i64:
640       Opc = PPC::STD;
641       UseOffset = ((Addr.Offset & 3) == 0);
642       break;
643     case MVT::f32:
644       Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
645       break;
646     case MVT::f64:
647       Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
648       break;
649   }
650 
651   // If necessary, materialize the offset into a register and use
652   // the indexed form.  Also handle stack pointers with special needs.
653   unsigned IndexReg = 0;
654   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
655 
656   // If this is a potential VSX store with an offset of 0, a VSX indexed store
657   // can be used.
658   bool IsVSSRC = isVSSRCRegClass(RC);
659   bool IsVSFRC = isVSFRCRegClass(RC);
660   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
661   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
662   if ((Is32VSXStore || Is64VSXStore) &&
663       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
664       (Addr.Offset == 0)) {
665     UseOffset = false;
666   }
667 
668   // Note: If we still have a frame index here, we know the offset is
669   // in range, as otherwise PPCSimplifyAddress would have converted it
670   // into a RegBase.
671   if (Addr.BaseType == Address::FrameIndexBase) {
672     // VSX only provides an indexed store.
673     if (Is32VSXStore || Is64VSXStore) return false;
674 
675     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
676         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
677                                           Addr.Offset),
678         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
679         MFI.getObjectAlign(Addr.Base.FI));
680 
681     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
682         .addReg(SrcReg)
683         .addImm(Addr.Offset)
684         .addFrameIndex(Addr.Base.FI)
685         .addMemOperand(MMO);
686 
687   // Base reg with offset in range.
688   } else if (UseOffset) {
689     // VSX only provides an indexed store.
690     if (Is32VSXStore || Is64VSXStore)
691       return false;
692 
693     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
694       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
695 
696   // Indexed form.
697   } else {
698     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
699     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
700     // is hard to get at.
701     switch (Opc) {
702       default:        llvm_unreachable("Unexpected opcode!");
703       case PPC::STB:  Opc = PPC::STBX;  break;
704       case PPC::STH : Opc = PPC::STHX;  break;
705       case PPC::STW : Opc = PPC::STWX;  break;
706       case PPC::STB8: Opc = PPC::STBX8; break;
707       case PPC::STH8: Opc = PPC::STHX8; break;
708       case PPC::STW8: Opc = PPC::STWX8; break;
709       case PPC::STD:  Opc = PPC::STDX;  break;
710       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
711       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
712       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
713       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
714     }
715 
716     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
717         .addReg(SrcReg);
718 
719     // If we have an index register defined we use it in the store inst,
720     // otherwise we use X0 as base as it makes the vector instructions to
721     // use zero in the computation of the effective address regardless the
722     // content of the register.
723     if (IndexReg)
724       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
725     else
726       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
727   }
728 
729   return true;
730 }
731 
732 // Attempt to fast-select a store instruction.
733 bool PPCFastISel::SelectStore(const Instruction *I) {
734   Value *Op0 = I->getOperand(0);
735   unsigned SrcReg = 0;
736 
737   // FIXME: No atomics loads are supported.
738   if (cast<StoreInst>(I)->isAtomic())
739     return false;
740 
741   // Verify we have a legal type before going any further.
742   MVT VT;
743   if (!isLoadTypeLegal(Op0->getType(), VT))
744     return false;
745 
746   // Get the value to be stored into a register.
747   SrcReg = getRegForValue(Op0);
748   if (SrcReg == 0)
749     return false;
750 
751   // See if we can handle this address.
752   Address Addr;
753   if (!PPCComputeAddress(I->getOperand(1), Addr))
754     return false;
755 
756   if (!PPCEmitStore(VT, SrcReg, Addr))
757     return false;
758 
759   return true;
760 }
761 
762 // Attempt to fast-select a branch instruction.
763 bool PPCFastISel::SelectBranch(const Instruction *I) {
764   const BranchInst *BI = cast<BranchInst>(I);
765   MachineBasicBlock *BrBB = FuncInfo.MBB;
766   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
767   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
768 
769   // For now, just try the simplest case where it's fed by a compare.
770   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
771     if (isValueAvailable(CI)) {
772       std::optional<PPC::Predicate> OptPPCPred =
773           getComparePred(CI->getPredicate());
774       if (!OptPPCPred)
775         return false;
776 
777       PPC::Predicate PPCPred = *OptPPCPred;
778 
779       // Take advantage of fall-through opportunities.
780       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
781         std::swap(TBB, FBB);
782         PPCPred = PPC::InvertPredicate(PPCPred);
783       }
784 
785       Register CondReg = createResultReg(&PPC::CRRCRegClass);
786 
787       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
788                       CondReg, PPCPred))
789         return false;
790 
791       BuildMI(*BrBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCC))
792           .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
793           .addReg(CondReg)
794           .addMBB(TBB);
795       finishCondBranch(BI->getParent(), TBB, FBB);
796       return true;
797     }
798   } else if (const ConstantInt *CI =
799              dyn_cast<ConstantInt>(BI->getCondition())) {
800     uint64_t Imm = CI->getZExtValue();
801     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
802     fastEmitBranch(Target, MIMD.getDL());
803     return true;
804   }
805 
806   // FIXME: ARM looks for a case where the block containing the compare
807   // has been split from the block containing the branch.  If this happens,
808   // there is a vreg available containing the result of the compare.  I'm
809   // not sure we can do much, as we've lost the predicate information with
810   // the compare instruction -- we have a 4-bit CR but don't know which bit
811   // to test here.
812   return false;
813 }
814 
815 // Attempt to emit a compare of the two source values.  Signed and unsigned
816 // comparisons are supported.  Return false if we can't handle it.
817 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
818                              bool IsZExt, unsigned DestReg,
819                              const PPC::Predicate Pred) {
820   Type *Ty = SrcValue1->getType();
821   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
822   if (!SrcEVT.isSimple())
823     return false;
824   MVT SrcVT = SrcEVT.getSimpleVT();
825 
826   if (SrcVT == MVT::i1 && Subtarget->useCRBits())
827     return false;
828 
829   // See if operand 2 is an immediate encodeable in the compare.
830   // FIXME: Operands are not in canonical order at -O0, so an immediate
831   // operand in position 1 is a lost opportunity for now.  We are
832   // similar to ARM in this regard.
833   int64_t Imm = 0;
834   bool UseImm = false;
835   const bool HasSPE = Subtarget->hasSPE();
836 
837   // Only 16-bit integer constants can be represented in compares for
838   // PowerPC.  Others will be materialized into a register.
839   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
840     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
841         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
842       const APInt &CIVal = ConstInt->getValue();
843       Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() :
844                        (int64_t)CIVal.getSExtValue();
845       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
846         UseImm = true;
847     }
848   }
849 
850   Register SrcReg1 = getRegForValue(SrcValue1);
851   if (SrcReg1 == 0)
852     return false;
853 
854   unsigned SrcReg2 = 0;
855   if (!UseImm) {
856     SrcReg2 = getRegForValue(SrcValue2);
857     if (SrcReg2 == 0)
858       return false;
859   }
860 
861   unsigned CmpOpc;
862   bool NeedsExt = false;
863 
864   auto RC1 = MRI.getRegClass(SrcReg1);
865   auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
866 
867   switch (SrcVT.SimpleTy) {
868     default: return false;
869     case MVT::f32:
870       if (HasSPE) {
871         switch (Pred) {
872           default: return false;
873           case PPC::PRED_EQ:
874             CmpOpc = PPC::EFSCMPEQ;
875             break;
876           case PPC::PRED_LT:
877             CmpOpc = PPC::EFSCMPLT;
878             break;
879           case PPC::PRED_GT:
880             CmpOpc = PPC::EFSCMPGT;
881             break;
882         }
883       } else {
884         CmpOpc = PPC::FCMPUS;
885         if (isVSSRCRegClass(RC1))
886           SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
887         if (RC2 && isVSSRCRegClass(RC2))
888           SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
889       }
890       break;
891     case MVT::f64:
892       if (HasSPE) {
893         switch (Pred) {
894           default: return false;
895           case PPC::PRED_EQ:
896             CmpOpc = PPC::EFDCMPEQ;
897             break;
898           case PPC::PRED_LT:
899             CmpOpc = PPC::EFDCMPLT;
900             break;
901           case PPC::PRED_GT:
902             CmpOpc = PPC::EFDCMPGT;
903             break;
904         }
905       } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
906         CmpOpc = PPC::XSCMPUDP;
907       } else {
908         CmpOpc = PPC::FCMPUD;
909       }
910       break;
911     case MVT::i1:
912     case MVT::i8:
913     case MVT::i16:
914       NeedsExt = true;
915       [[fallthrough]];
916     case MVT::i32:
917       if (!UseImm)
918         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
919       else
920         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
921       break;
922     case MVT::i64:
923       if (!UseImm)
924         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
925       else
926         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
927       break;
928   }
929 
930   if (NeedsExt) {
931     Register ExtReg = createResultReg(&PPC::GPRCRegClass);
932     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
933       return false;
934     SrcReg1 = ExtReg;
935 
936     if (!UseImm) {
937       Register ExtReg = createResultReg(&PPC::GPRCRegClass);
938       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
939         return false;
940       SrcReg2 = ExtReg;
941     }
942   }
943 
944   if (!UseImm)
945     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg)
946       .addReg(SrcReg1).addReg(SrcReg2);
947   else
948     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg)
949       .addReg(SrcReg1).addImm(Imm);
950 
951   return true;
952 }
953 
954 // Attempt to fast-select a floating-point extend instruction.
955 bool PPCFastISel::SelectFPExt(const Instruction *I) {
956   Value *Src  = I->getOperand(0);
957   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
958   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
959 
960   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
961     return false;
962 
963   Register SrcReg = getRegForValue(Src);
964   if (!SrcReg)
965     return false;
966 
967   // No code is generated for a FP extend.
968   updateValueMap(I, SrcReg);
969   return true;
970 }
971 
972 // Attempt to fast-select a floating-point truncate instruction.
973 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
974   Value *Src  = I->getOperand(0);
975   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
976   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
977 
978   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
979     return false;
980 
981   Register SrcReg = getRegForValue(Src);
982   if (!SrcReg)
983     return false;
984 
985   // Round the result to single precision.
986   unsigned DestReg;
987   auto RC = MRI.getRegClass(SrcReg);
988   if (Subtarget->hasSPE()) {
989     DestReg = createResultReg(&PPC::GPRCRegClass);
990     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::EFSCFD),
991             DestReg)
992         .addReg(SrcReg);
993   } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) {
994     DestReg = createResultReg(&PPC::VSSRCRegClass);
995     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::XSRSP),
996             DestReg)
997         .addReg(SrcReg);
998   } else {
999     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1000     DestReg = createResultReg(&PPC::F4RCRegClass);
1001     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1002       TII.get(PPC::FRSP), DestReg)
1003       .addReg(SrcReg);
1004   }
1005 
1006   updateValueMap(I, DestReg);
1007   return true;
1008 }
1009 
1010 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1011 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1012 // those should be used instead of moving via a stack slot when the
1013 // subtarget permits.
1014 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1015 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1016 // case to 8 bytes which produces tighter code but wastes stack space.
1017 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1018                                      bool IsSigned) {
1019 
1020   // If necessary, extend 32-bit int to 64-bit.
1021   if (SrcVT == MVT::i32) {
1022     Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1023     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1024       return 0;
1025     SrcReg = TmpReg;
1026   }
1027 
1028   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1029   Address Addr;
1030   Addr.BaseType = Address::FrameIndexBase;
1031   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1032 
1033   // Store the value from the GPR.
1034   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1035     return 0;
1036 
1037   // Load the integer value into an FPR.  The kind of load used depends
1038   // on a number of conditions.
1039   unsigned LoadOpc = PPC::LFD;
1040 
1041   if (SrcVT == MVT::i32) {
1042     if (!IsSigned) {
1043       LoadOpc = PPC::LFIWZX;
1044       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1045     } else if (Subtarget->hasLFIWAX()) {
1046       LoadOpc = PPC::LFIWAX;
1047       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1048     }
1049   }
1050 
1051   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1052   Register ResultReg = 0;
1053   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1054     return 0;
1055 
1056   return ResultReg;
1057 }
1058 
1059 // Attempt to fast-select an integer-to-floating-point conversion.
1060 // FIXME: Once fast-isel has better support for VSX, conversions using
1061 //        direct moves should be implemented.
1062 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1063   MVT DstVT;
1064   Type *DstTy = I->getType();
1065   if (!isTypeLegal(DstTy, DstVT))
1066     return false;
1067 
1068   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1069     return false;
1070 
1071   Value *Src = I->getOperand(0);
1072   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1073   if (!SrcEVT.isSimple())
1074     return false;
1075 
1076   MVT SrcVT = SrcEVT.getSimpleVT();
1077 
1078   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1079       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1080     return false;
1081 
1082   Register SrcReg = getRegForValue(Src);
1083   if (SrcReg == 0)
1084     return false;
1085 
1086   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1087   if (Subtarget->hasSPE()) {
1088     unsigned Opc;
1089     if (DstVT == MVT::f32)
1090       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1091     else
1092       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1093 
1094     Register DestReg = createResultReg(&PPC::SPERCRegClass);
1095     // Generate the convert.
1096     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1097       .addReg(SrcReg);
1098     updateValueMap(I, DestReg);
1099     return true;
1100   }
1101 
1102   // We can only lower an unsigned convert if we have the newer
1103   // floating-point conversion operations.
1104   if (!IsSigned && !Subtarget->hasFPCVT())
1105     return false;
1106 
1107   // FIXME: For now we require the newer floating-point conversion operations
1108   // (which are present only on P7 and A2 server models) when converting
1109   // to single-precision float.  Otherwise we have to generate a lot of
1110   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1111   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1112   if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1113     return false;
1114 
1115   // Extend the input if necessary.
1116   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1117     Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1118     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1119       return false;
1120     SrcVT = MVT::i64;
1121     SrcReg = TmpReg;
1122   }
1123 
1124   // Move the integer value to an FPR.
1125   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1126   if (FPReg == 0)
1127     return false;
1128 
1129   // Determine the opcode for the conversion.
1130   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1131   Register DestReg = createResultReg(RC);
1132   unsigned Opc;
1133 
1134   if (DstVT == MVT::f32)
1135     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1136   else
1137     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1138 
1139   // Generate the convert.
1140   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1141     .addReg(FPReg);
1142 
1143   updateValueMap(I, DestReg);
1144   return true;
1145 }
1146 
1147 // Move the floating-point value in SrcReg into an integer destination
1148 // register, and return the register (or zero if we can't handle it).
1149 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1150 // those should be used instead of moving via a stack slot when the
1151 // subtarget permits.
1152 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1153                                       unsigned SrcReg, bool IsSigned) {
1154   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1155   // Note that if have STFIWX available, we could use a 4-byte stack
1156   // slot for i32, but this being fast-isel we'll just go with the
1157   // easiest code gen possible.
1158   Address Addr;
1159   Addr.BaseType = Address::FrameIndexBase;
1160   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1161 
1162   // Store the value from the FPR.
1163   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1164     return 0;
1165 
1166   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1167   // address to have a 4-byte offset so we load from the right place.
1168   if (VT == MVT::i32)
1169     Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1170 
1171   // Look at the currently assigned register for this instruction
1172   // to determine the required register class.
1173   Register AssignedReg = FuncInfo.ValueMap[I];
1174   const TargetRegisterClass *RC =
1175     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1176 
1177   Register ResultReg = 0;
1178   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1179     return 0;
1180 
1181   return ResultReg;
1182 }
1183 
1184 // Attempt to fast-select a floating-point-to-integer conversion.
1185 // FIXME: Once fast-isel has better support for VSX, conversions using
1186 //        direct moves should be implemented.
1187 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1188   MVT DstVT, SrcVT;
1189   Type *DstTy = I->getType();
1190   if (!isTypeLegal(DstTy, DstVT))
1191     return false;
1192 
1193   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1194     return false;
1195 
1196   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1197   if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1198       !Subtarget->hasSPE())
1199     return false;
1200 
1201   Value *Src = I->getOperand(0);
1202   Type *SrcTy = Src->getType();
1203   if (!isTypeLegal(SrcTy, SrcVT))
1204     return false;
1205 
1206   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1207     return false;
1208 
1209   Register SrcReg = getRegForValue(Src);
1210   if (SrcReg == 0)
1211     return false;
1212 
1213   // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1214   // meaningless copy to get the register class right.
1215   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1216   if (InRC == &PPC::F4RCRegClass)
1217     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1218   else if (InRC == &PPC::VSSRCRegClass)
1219     SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1220 
1221   // Determine the opcode for the conversion, which takes place
1222   // entirely within FPRs or VSRs.
1223   unsigned DestReg;
1224   unsigned Opc;
1225   auto RC = MRI.getRegClass(SrcReg);
1226 
1227   if (Subtarget->hasSPE()) {
1228     DestReg = createResultReg(&PPC::GPRCRegClass);
1229     if (IsSigned)
1230       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1231     else
1232       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1233   } else if (isVSFRCRegClass(RC)) {
1234     DestReg = createResultReg(&PPC::VSFRCRegClass);
1235     if (DstVT == MVT::i32)
1236       Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1237     else
1238       Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1239   } else {
1240     DestReg = createResultReg(&PPC::F8RCRegClass);
1241     if (DstVT == MVT::i32)
1242       if (IsSigned)
1243         Opc = PPC::FCTIWZ;
1244       else
1245         Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1246     else
1247       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1248   }
1249 
1250   // Generate the convert.
1251   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1252     .addReg(SrcReg);
1253 
1254   // Now move the integer value from a float register to an integer register.
1255   unsigned IntReg = Subtarget->hasSPE()
1256                         ? DestReg
1257                         : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1258 
1259   if (IntReg == 0)
1260     return false;
1261 
1262   updateValueMap(I, IntReg);
1263   return true;
1264 }
1265 
1266 // Attempt to fast-select a binary integer operation that isn't already
1267 // handled automatically.
1268 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1269   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1270 
1271   // We can get here in the case when we have a binary operation on a non-legal
1272   // type and the target independent selector doesn't know how to handle it.
1273   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1274     return false;
1275 
1276   // Look at the currently assigned register for this instruction
1277   // to determine the required register class.  If there is no register,
1278   // make a conservative choice (don't assign R0).
1279   Register AssignedReg = FuncInfo.ValueMap[I];
1280   const TargetRegisterClass *RC =
1281     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1282      &PPC::GPRC_and_GPRC_NOR0RegClass);
1283   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1284 
1285   unsigned Opc;
1286   switch (ISDOpcode) {
1287     default: return false;
1288     case ISD::ADD:
1289       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1290       break;
1291     case ISD::OR:
1292       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1293       break;
1294     case ISD::SUB:
1295       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1296       break;
1297   }
1298 
1299   Register ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1300   Register SrcReg1 = getRegForValue(I->getOperand(0));
1301   if (SrcReg1 == 0) return false;
1302 
1303   // Handle case of small immediate operand.
1304   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1305     const APInt &CIVal = ConstInt->getValue();
1306     int Imm = (int)CIVal.getSExtValue();
1307     bool UseImm = true;
1308     if (isInt<16>(Imm)) {
1309       switch (Opc) {
1310         default:
1311           llvm_unreachable("Missing case!");
1312         case PPC::ADD4:
1313           Opc = PPC::ADDI;
1314           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1315           break;
1316         case PPC::ADD8:
1317           Opc = PPC::ADDI8;
1318           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1319           break;
1320         case PPC::OR:
1321           Opc = PPC::ORI;
1322           break;
1323         case PPC::OR8:
1324           Opc = PPC::ORI8;
1325           break;
1326         case PPC::SUBF:
1327           if (Imm == -32768)
1328             UseImm = false;
1329           else {
1330             Opc = PPC::ADDI;
1331             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1332             Imm = -Imm;
1333           }
1334           break;
1335         case PPC::SUBF8:
1336           if (Imm == -32768)
1337             UseImm = false;
1338           else {
1339             Opc = PPC::ADDI8;
1340             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1341             Imm = -Imm;
1342           }
1343           break;
1344       }
1345 
1346       if (UseImm) {
1347         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
1348                 ResultReg)
1349             .addReg(SrcReg1)
1350             .addImm(Imm);
1351         updateValueMap(I, ResultReg);
1352         return true;
1353       }
1354     }
1355   }
1356 
1357   // Reg-reg case.
1358   Register SrcReg2 = getRegForValue(I->getOperand(1));
1359   if (SrcReg2 == 0) return false;
1360 
1361   // Reverse operands for subtract-from.
1362   if (ISDOpcode == ISD::SUB)
1363     std::swap(SrcReg1, SrcReg2);
1364 
1365   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
1366     .addReg(SrcReg1).addReg(SrcReg2);
1367   updateValueMap(I, ResultReg);
1368   return true;
1369 }
1370 
1371 // Handle arguments to a call that we're attempting to fast-select.
1372 // Return false if the arguments are too complex for us at the moment.
1373 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1374                                   SmallVectorImpl<unsigned> &ArgRegs,
1375                                   SmallVectorImpl<MVT> &ArgVTs,
1376                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1377                                   SmallVectorImpl<unsigned> &RegArgs,
1378                                   CallingConv::ID CC,
1379                                   unsigned &NumBytes,
1380                                   bool IsVarArg) {
1381   SmallVector<CCValAssign, 16> ArgLocs;
1382   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1383 
1384   // Reserve space for the linkage area on the stack.
1385   unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1386   CCInfo.AllocateStack(LinkageSize, Align(8));
1387 
1388   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1389 
1390   // Bail out if we can't handle any of the arguments.
1391   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1392     CCValAssign &VA = ArgLocs[I];
1393     MVT ArgVT = ArgVTs[VA.getValNo()];
1394 
1395     // Skip vector arguments for now, as well as long double and
1396     // uint128_t, and anything that isn't passed in a register.
1397     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1398         !VA.isRegLoc() || VA.needsCustom())
1399       return false;
1400 
1401     // Skip bit-converted arguments for now.
1402     if (VA.getLocInfo() == CCValAssign::BCvt)
1403       return false;
1404   }
1405 
1406   // Get a count of how many bytes are to be pushed onto the stack.
1407   NumBytes = CCInfo.getStackSize();
1408 
1409   // The prolog code of the callee may store up to 8 GPR argument registers to
1410   // the stack, allowing va_start to index over them in memory if its varargs.
1411   // Because we cannot tell if this is needed on the caller side, we have to
1412   // conservatively assume that it is needed.  As such, make sure we have at
1413   // least enough stack space for the caller to store the 8 GPRs.
1414   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1415   NumBytes = std::max(NumBytes, LinkageSize + 64);
1416 
1417   // Issue CALLSEQ_START.
1418   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1419           TII.get(TII.getCallFrameSetupOpcode()))
1420     .addImm(NumBytes).addImm(0);
1421 
1422   // Prepare to assign register arguments.  Every argument uses up a
1423   // GPR protocol register even if it's passed in a floating-point
1424   // register (unless we're using the fast calling convention).
1425   unsigned NextGPR = PPC::X3;
1426   unsigned NextFPR = PPC::F1;
1427 
1428   // Process arguments.
1429   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1430     CCValAssign &VA = ArgLocs[I];
1431     unsigned Arg = ArgRegs[VA.getValNo()];
1432     MVT ArgVT = ArgVTs[VA.getValNo()];
1433 
1434     // Handle argument promotion and bitcasts.
1435     switch (VA.getLocInfo()) {
1436       default:
1437         llvm_unreachable("Unknown loc info!");
1438       case CCValAssign::Full:
1439         break;
1440       case CCValAssign::SExt: {
1441         MVT DestVT = VA.getLocVT();
1442         const TargetRegisterClass *RC =
1443           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1444         Register TmpReg = createResultReg(RC);
1445         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1446           llvm_unreachable("Failed to emit a sext!");
1447         ArgVT = DestVT;
1448         Arg = TmpReg;
1449         break;
1450       }
1451       case CCValAssign::AExt:
1452       case CCValAssign::ZExt: {
1453         MVT DestVT = VA.getLocVT();
1454         const TargetRegisterClass *RC =
1455           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1456         Register TmpReg = createResultReg(RC);
1457         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1458           llvm_unreachable("Failed to emit a zext!");
1459         ArgVT = DestVT;
1460         Arg = TmpReg;
1461         break;
1462       }
1463       case CCValAssign::BCvt: {
1464         // FIXME: Not yet handled.
1465         llvm_unreachable("Should have bailed before getting here!");
1466         break;
1467       }
1468     }
1469 
1470     // Copy this argument to the appropriate register.
1471     unsigned ArgReg;
1472     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1473       ArgReg = NextFPR++;
1474       if (CC != CallingConv::Fast)
1475         ++NextGPR;
1476     } else
1477       ArgReg = NextGPR++;
1478 
1479     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1480             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1481     RegArgs.push_back(ArgReg);
1482   }
1483 
1484   return true;
1485 }
1486 
1487 // For a call that we've determined we can fast-select, finish the
1488 // call sequence and generate a copy to obtain the return value (if any).
1489 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1490   CallingConv::ID CC = CLI.CallConv;
1491 
1492   // Issue CallSEQ_END.
1493   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1494           TII.get(TII.getCallFrameDestroyOpcode()))
1495     .addImm(NumBytes).addImm(0);
1496 
1497   // Next, generate a copy to obtain the return value.
1498   // FIXME: No multi-register return values yet, though I don't foresee
1499   // any real difficulties there.
1500   if (RetVT != MVT::isVoid) {
1501     SmallVector<CCValAssign, 16> RVLocs;
1502     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1503     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1504     CCValAssign &VA = RVLocs[0];
1505     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1506     assert(VA.isRegLoc() && "Can only return in registers!");
1507 
1508     MVT DestVT = VA.getValVT();
1509     MVT CopyVT = DestVT;
1510 
1511     // Ints smaller than a register still arrive in a full 64-bit
1512     // register, so make sure we recognize this.
1513     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1514       CopyVT = MVT::i64;
1515 
1516     unsigned SourcePhysReg = VA.getLocReg();
1517     unsigned ResultReg = 0;
1518 
1519     if (RetVT == CopyVT) {
1520       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1521       ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1522 
1523     // If necessary, round the floating result to single precision.
1524     } else if (CopyVT == MVT::f64) {
1525       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1526       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::FRSP),
1527               ResultReg).addReg(SourcePhysReg);
1528 
1529     // If only the low half of a general register is needed, generate
1530     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1531     // used along the fast-isel path (not lowered), and downstream logic
1532     // also doesn't like a direct subreg copy on a physical reg.)
1533     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1534       // Convert physical register from G8RC to GPRC.
1535       SourcePhysReg -= PPC::X0 - PPC::R0;
1536       ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1537     }
1538 
1539     assert(ResultReg && "ResultReg unset!");
1540     CLI.InRegs.push_back(SourcePhysReg);
1541     CLI.ResultReg = ResultReg;
1542     CLI.NumResultRegs = 1;
1543   }
1544 
1545   return true;
1546 }
1547 
1548 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1549   CallingConv::ID CC  = CLI.CallConv;
1550   bool IsTailCall     = CLI.IsTailCall;
1551   bool IsVarArg       = CLI.IsVarArg;
1552   const Value *Callee = CLI.Callee;
1553   const MCSymbol *Symbol = CLI.Symbol;
1554 
1555   if (!Callee && !Symbol)
1556     return false;
1557 
1558   // Allow SelectionDAG isel to handle tail calls and long calls.
1559   if (IsTailCall || Subtarget->useLongCalls())
1560     return false;
1561 
1562   // Let SDISel handle vararg functions.
1563   if (IsVarArg)
1564     return false;
1565 
1566   // If this is a PC-Rel function, let SDISel handle the call.
1567   if (Subtarget->isUsingPCRelativeCalls())
1568     return false;
1569 
1570   // Handle simple calls for now, with legal return types and
1571   // those that can be extended.
1572   Type *RetTy = CLI.RetTy;
1573   MVT RetVT;
1574   if (RetTy->isVoidTy())
1575     RetVT = MVT::isVoid;
1576   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1577            RetVT != MVT::i8)
1578     return false;
1579   else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1580     // We can't handle boolean returns when CR bits are in use.
1581     return false;
1582 
1583   // FIXME: No multi-register return values yet.
1584   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1585       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1586       RetVT != MVT::f64) {
1587     SmallVector<CCValAssign, 16> RVLocs;
1588     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1589     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1590     if (RVLocs.size() > 1)
1591       return false;
1592   }
1593 
1594   // Bail early if more than 8 arguments, as we only currently
1595   // handle arguments passed in registers.
1596   unsigned NumArgs = CLI.OutVals.size();
1597   if (NumArgs > 8)
1598     return false;
1599 
1600   // Set up the argument vectors.
1601   SmallVector<Value*, 8> Args;
1602   SmallVector<unsigned, 8> ArgRegs;
1603   SmallVector<MVT, 8> ArgVTs;
1604   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1605 
1606   Args.reserve(NumArgs);
1607   ArgRegs.reserve(NumArgs);
1608   ArgVTs.reserve(NumArgs);
1609   ArgFlags.reserve(NumArgs);
1610 
1611   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1612     // Only handle easy calls for now.  It would be reasonably easy
1613     // to handle <= 8-byte structures passed ByVal in registers, but we
1614     // have to ensure they are right-justified in the register.
1615     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1616     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1617       return false;
1618 
1619     Value *ArgValue = CLI.OutVals[i];
1620     Type *ArgTy = ArgValue->getType();
1621     MVT ArgVT;
1622     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1623       return false;
1624 
1625     // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1626     // types, which is passed through vector register. Skip these types and
1627     // fallback to default SelectionDAG based selection.
1628     if (ArgVT.isVector() || ArgVT == MVT::f128)
1629       return false;
1630 
1631     Register Arg = getRegForValue(ArgValue);
1632     if (Arg == 0)
1633       return false;
1634 
1635     Args.push_back(ArgValue);
1636     ArgRegs.push_back(Arg);
1637     ArgVTs.push_back(ArgVT);
1638     ArgFlags.push_back(Flags);
1639   }
1640 
1641   // Process the arguments.
1642   SmallVector<unsigned, 8> RegArgs;
1643   unsigned NumBytes;
1644 
1645   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1646                        RegArgs, CC, NumBytes, IsVarArg))
1647     return false;
1648 
1649   MachineInstrBuilder MIB;
1650   // FIXME: No handling for function pointers yet.  This requires
1651   // implementing the function descriptor (OPD) setup.
1652   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1653   if (!GV) {
1654     // patchpoints are a special case; they always dispatch to a pointer value.
1655     // However, we don't actually want to generate the indirect call sequence
1656     // here (that will be generated, as necessary, during asm printing), and
1657     // the call we generate here will be erased by FastISel::selectPatchpoint,
1658     // so don't try very hard...
1659     if (CLI.IsPatchPoint)
1660       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::NOP));
1661     else
1662       return false;
1663   } else {
1664     // Build direct call with NOP for TOC restore.
1665     // FIXME: We can and should optimize away the NOP for local calls.
1666     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1667                   TII.get(PPC::BL8_NOP));
1668     // Add callee.
1669     MIB.addGlobalAddress(GV);
1670   }
1671 
1672   // Add implicit physical register uses to the call.
1673   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1674     MIB.addReg(RegArgs[II], RegState::Implicit);
1675 
1676   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1677   // into the call.
1678   PPCFuncInfo->setUsesTOCBasePtr();
1679   MIB.addReg(PPC::X2, RegState::Implicit);
1680 
1681   // Add a register mask with the call-preserved registers.  Proper
1682   // defs for return values will be added by setPhysRegsDeadExcept().
1683   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1684 
1685   CLI.Call = MIB;
1686 
1687   // Finish off the call including any return values.
1688   return finishCall(RetVT, CLI, NumBytes);
1689 }
1690 
1691 // Attempt to fast-select a return instruction.
1692 bool PPCFastISel::SelectRet(const Instruction *I) {
1693 
1694   if (!FuncInfo.CanLowerReturn)
1695     return false;
1696 
1697   const ReturnInst *Ret = cast<ReturnInst>(I);
1698   const Function &F = *I->getParent()->getParent();
1699 
1700   // Build a list of return value registers.
1701   SmallVector<unsigned, 4> RetRegs;
1702   CallingConv::ID CC = F.getCallingConv();
1703 
1704   if (Ret->getNumOperands() > 0) {
1705     SmallVector<ISD::OutputArg, 4> Outs;
1706     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1707 
1708     // Analyze operands of the call, assigning locations to each operand.
1709     SmallVector<CCValAssign, 16> ValLocs;
1710     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1711     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1712     const Value *RV = Ret->getOperand(0);
1713 
1714     // FIXME: Only one output register for now.
1715     if (ValLocs.size() > 1)
1716       return false;
1717 
1718     // Special case for returning a constant integer of any size - materialize
1719     // the constant as an i64 and copy it to the return register.
1720     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1721       CCValAssign &VA = ValLocs[0];
1722 
1723       Register RetReg = VA.getLocReg();
1724       // We still need to worry about properly extending the sign. For example,
1725       // we could have only a single bit or a constant that needs zero
1726       // extension rather than sign extension. Make sure we pass the return
1727       // value extension property to integer materialization.
1728       unsigned SrcReg =
1729           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1730 
1731       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1732             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1733 
1734       RetRegs.push_back(RetReg);
1735 
1736     } else {
1737       Register Reg = getRegForValue(RV);
1738 
1739       if (Reg == 0)
1740         return false;
1741 
1742       // Copy the result values into the output registers.
1743       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1744 
1745         CCValAssign &VA = ValLocs[i];
1746         assert(VA.isRegLoc() && "Can only return in registers!");
1747         RetRegs.push_back(VA.getLocReg());
1748         unsigned SrcReg = Reg + VA.getValNo();
1749 
1750         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1751         if (!RVEVT.isSimple())
1752           return false;
1753         MVT RVVT = RVEVT.getSimpleVT();
1754         MVT DestVT = VA.getLocVT();
1755 
1756         if (RVVT != DestVT && RVVT != MVT::i8 &&
1757             RVVT != MVT::i16 && RVVT != MVT::i32)
1758           return false;
1759 
1760         if (RVVT != DestVT) {
1761           switch (VA.getLocInfo()) {
1762             default:
1763               llvm_unreachable("Unknown loc info!");
1764             case CCValAssign::Full:
1765               llvm_unreachable("Full value assign but types don't match?");
1766             case CCValAssign::AExt:
1767             case CCValAssign::ZExt: {
1768               const TargetRegisterClass *RC =
1769                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1770               Register TmpReg = createResultReg(RC);
1771               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1772                 return false;
1773               SrcReg = TmpReg;
1774               break;
1775             }
1776             case CCValAssign::SExt: {
1777               const TargetRegisterClass *RC =
1778                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1779               Register TmpReg = createResultReg(RC);
1780               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1781                 return false;
1782               SrcReg = TmpReg;
1783               break;
1784             }
1785           }
1786         }
1787 
1788         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1789                 TII.get(TargetOpcode::COPY), RetRegs[i])
1790           .addReg(SrcReg);
1791       }
1792     }
1793   }
1794 
1795   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1796                                     TII.get(PPC::BLR8));
1797 
1798   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1799     MIB.addReg(RetRegs[i], RegState::Implicit);
1800 
1801   return true;
1802 }
1803 
1804 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1805 // signed and zero extensions are supported.  Return false if we
1806 // can't handle it.
1807 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1808                                 unsigned DestReg, bool IsZExt) {
1809   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1810     return false;
1811   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1812     return false;
1813 
1814   // Signed extensions use EXTSB, EXTSH, EXTSW.
1815   if (!IsZExt) {
1816     unsigned Opc;
1817     if (SrcVT == MVT::i8)
1818       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1819     else if (SrcVT == MVT::i16)
1820       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1821     else {
1822       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1823       Opc = PPC::EXTSW_32_64;
1824     }
1825     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1826       .addReg(SrcReg);
1827 
1828   // Unsigned 32-bit extensions use RLWINM.
1829   } else if (DestVT == MVT::i32) {
1830     unsigned MB;
1831     if (SrcVT == MVT::i8)
1832       MB = 24;
1833     else {
1834       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1835       MB = 16;
1836     }
1837     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLWINM),
1838             DestReg)
1839       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1840 
1841   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1842   } else {
1843     unsigned MB;
1844     if (SrcVT == MVT::i8)
1845       MB = 56;
1846     else if (SrcVT == MVT::i16)
1847       MB = 48;
1848     else
1849       MB = 32;
1850     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1851             TII.get(PPC::RLDICL_32_64), DestReg)
1852       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1853   }
1854 
1855   return true;
1856 }
1857 
1858 // Attempt to fast-select an indirect branch instruction.
1859 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1860   Register AddrReg = getRegForValue(I->getOperand(0));
1861   if (AddrReg == 0)
1862     return false;
1863 
1864   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::MTCTR8))
1865     .addReg(AddrReg);
1866   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCTR8));
1867 
1868   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1869   for (const BasicBlock *SuccBB : IB->successors())
1870     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1871 
1872   return true;
1873 }
1874 
1875 // Attempt to fast-select an integer truncate instruction.
1876 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1877   Value *Src  = I->getOperand(0);
1878   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1879   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1880 
1881   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1882     return false;
1883 
1884   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1885     return false;
1886 
1887   Register SrcReg = getRegForValue(Src);
1888   if (!SrcReg)
1889     return false;
1890 
1891   // The only interesting case is when we need to switch register classes.
1892   if (SrcVT == MVT::i64)
1893     SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1894 
1895   updateValueMap(I, SrcReg);
1896   return true;
1897 }
1898 
1899 // Attempt to fast-select an integer extend instruction.
1900 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1901   Type *DestTy = I->getType();
1902   Value *Src = I->getOperand(0);
1903   Type *SrcTy = Src->getType();
1904 
1905   bool IsZExt = isa<ZExtInst>(I);
1906   Register SrcReg = getRegForValue(Src);
1907   if (!SrcReg) return false;
1908 
1909   EVT SrcEVT, DestEVT;
1910   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1911   DestEVT = TLI.getValueType(DL, DestTy, true);
1912   if (!SrcEVT.isSimple())
1913     return false;
1914   if (!DestEVT.isSimple())
1915     return false;
1916 
1917   MVT SrcVT = SrcEVT.getSimpleVT();
1918   MVT DestVT = DestEVT.getSimpleVT();
1919 
1920   // If we know the register class needed for the result of this
1921   // instruction, use it.  Otherwise pick the register class of the
1922   // correct size that does not contain X0/R0, since we don't know
1923   // whether downstream uses permit that assignment.
1924   Register AssignedReg = FuncInfo.ValueMap[I];
1925   const TargetRegisterClass *RC =
1926     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1927      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1928       &PPC::GPRC_and_GPRC_NOR0RegClass));
1929   Register ResultReg = createResultReg(RC);
1930 
1931   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1932     return false;
1933 
1934   updateValueMap(I, ResultReg);
1935   return true;
1936 }
1937 
1938 // Attempt to fast-select an instruction that wasn't handled by
1939 // the table-generated machinery.
1940 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1941 
1942   switch (I->getOpcode()) {
1943     case Instruction::Load:
1944       return SelectLoad(I);
1945     case Instruction::Store:
1946       return SelectStore(I);
1947     case Instruction::Br:
1948       return SelectBranch(I);
1949     case Instruction::IndirectBr:
1950       return SelectIndirectBr(I);
1951     case Instruction::FPExt:
1952       return SelectFPExt(I);
1953     case Instruction::FPTrunc:
1954       return SelectFPTrunc(I);
1955     case Instruction::SIToFP:
1956       return SelectIToFP(I, /*IsSigned*/ true);
1957     case Instruction::UIToFP:
1958       return SelectIToFP(I, /*IsSigned*/ false);
1959     case Instruction::FPToSI:
1960       return SelectFPToI(I, /*IsSigned*/ true);
1961     case Instruction::FPToUI:
1962       return SelectFPToI(I, /*IsSigned*/ false);
1963     case Instruction::Add:
1964       return SelectBinaryIntOp(I, ISD::ADD);
1965     case Instruction::Or:
1966       return SelectBinaryIntOp(I, ISD::OR);
1967     case Instruction::Sub:
1968       return SelectBinaryIntOp(I, ISD::SUB);
1969     case Instruction::Ret:
1970       return SelectRet(I);
1971     case Instruction::Trunc:
1972       return SelectTrunc(I);
1973     case Instruction::ZExt:
1974     case Instruction::SExt:
1975       return SelectIntExt(I);
1976     // Here add other flavors of Instruction::XXX that automated
1977     // cases don't catch.  For example, switches are terminators
1978     // that aren't yet handled.
1979     default:
1980       break;
1981   }
1982   return false;
1983 }
1984 
1985 // Materialize a floating-point constant into a register, and return
1986 // the register number (or zero if we failed to handle it).
1987 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1988   // If this is a PC-Rel function, let SDISel handle constant pool.
1989   if (Subtarget->isUsingPCRelativeCalls())
1990     return false;
1991 
1992   // No plans to handle long double here.
1993   if (VT != MVT::f32 && VT != MVT::f64)
1994     return 0;
1995 
1996   // All FP constants are loaded from the constant pool.
1997   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
1998   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
1999   const bool HasSPE = Subtarget->hasSPE();
2000   const TargetRegisterClass *RC;
2001   if (HasSPE)
2002     RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2003   else
2004     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2005 
2006   Register DestReg = createResultReg(RC);
2007   CodeModel::Model CModel = TM.getCodeModel();
2008 
2009   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2010       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2011       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2012 
2013   unsigned Opc;
2014 
2015   if (HasSPE)
2016     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2017   else
2018     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2019 
2020   Register TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2021 
2022   PPCFuncInfo->setUsesTOCBasePtr();
2023   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2024   if (CModel == CodeModel::Small) {
2025     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocCPT),
2026             TmpReg)
2027       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2028     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2029       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2030   } else {
2031     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2032     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8),
2033             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2034     // But for large code model, we must generate a LDtocL followed
2035     // by the LF[SD].
2036     if (CModel == CodeModel::Large) {
2037       Register TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2038       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL),
2039               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2040       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2041           .addImm(0)
2042           .addReg(TmpReg2);
2043     } else
2044       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2045         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2046         .addReg(TmpReg)
2047         .addMemOperand(MMO);
2048   }
2049 
2050   return DestReg;
2051 }
2052 
2053 // Materialize the address of a global value into a register, and return
2054 // the register number (or zero if we failed to handle it).
2055 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2056   // If this is a PC-Rel function, let SDISel handle GV materialization.
2057   if (Subtarget->isUsingPCRelativeCalls())
2058     return false;
2059 
2060   assert(VT == MVT::i64 && "Non-address!");
2061   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2062   Register DestReg = createResultReg(RC);
2063 
2064   // Global values may be plain old object addresses, TLS object
2065   // addresses, constant pool entries, or jump tables.  How we generate
2066   // code for these may depend on small, medium, or large code model.
2067   CodeModel::Model CModel = TM.getCodeModel();
2068 
2069   // FIXME: Jump tables are not yet required because fast-isel doesn't
2070   // handle switches; if that changes, we need them as well.  For now,
2071   // what follows assumes everything's a generic (or TLS) global address.
2072 
2073   // FIXME: We don't yet handle the complexity of TLS.
2074   if (GV->isThreadLocal())
2075     return 0;
2076 
2077   // If the global has the toc-data attribute then fallback to DAG-ISEL.
2078   if (TM.getTargetTriple().isOSAIX())
2079     if (const GlobalVariable *Var = dyn_cast_or_null<GlobalVariable>(GV))
2080       if (Var->hasAttribute("toc-data"))
2081         return false;
2082 
2083   PPCFuncInfo->setUsesTOCBasePtr();
2084   // For small code model, generate a simple TOC load.
2085   if (CModel == CodeModel::Small)
2086     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtoc),
2087             DestReg)
2088         .addGlobalAddress(GV)
2089         .addReg(PPC::X2);
2090   else {
2091     // If the address is an externally defined symbol, a symbol with common
2092     // or externally available linkage, a non-local function address, or a
2093     // jump table address (not yet needed), or if we are generating code
2094     // for large code model, we generate:
2095     //       LDtocL(GV, ADDIStocHA8(%x2, GV))
2096     // Otherwise we generate:
2097     //       ADDItocL(ADDIStocHA8(%x2, GV), GV)
2098     // Either way, start with the ADDIStocHA8:
2099     Register HighPartReg = createResultReg(RC);
2100     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8),
2101             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2102 
2103     if (Subtarget->isGVIndirectSymbol(GV)) {
2104       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL),
2105               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2106     } else {
2107       // Otherwise generate the ADDItocL.
2108       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDItocL),
2109               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2110     }
2111   }
2112 
2113   return DestReg;
2114 }
2115 
2116 // Materialize a 32-bit integer constant into a register, and return
2117 // the register number (or zero if we failed to handle it).
2118 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2119                                              const TargetRegisterClass *RC) {
2120   unsigned Lo = Imm & 0xFFFF;
2121   unsigned Hi = (Imm >> 16) & 0xFFFF;
2122 
2123   Register ResultReg = createResultReg(RC);
2124   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2125 
2126   if (isInt<16>(Imm))
2127     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2128             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2129       .addImm(Imm);
2130   else if (Lo) {
2131     // Both Lo and Hi have nonzero bits.
2132     Register TmpReg = createResultReg(RC);
2133     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2134             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2135       .addImm(Hi);
2136     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2137             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2138       .addReg(TmpReg).addImm(Lo);
2139   } else
2140     // Just Hi bits.
2141     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2142             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2143         .addImm(Hi);
2144 
2145   return ResultReg;
2146 }
2147 
2148 // Materialize a 64-bit integer constant into a register, and return
2149 // the register number (or zero if we failed to handle it).
2150 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2151                                              const TargetRegisterClass *RC) {
2152   unsigned Remainder = 0;
2153   unsigned Shift = 0;
2154 
2155   // If the value doesn't fit in 32 bits, see if we can shift it
2156   // so that it fits in 32 bits.
2157   if (!isInt<32>(Imm)) {
2158     Shift = llvm::countr_zero<uint64_t>(Imm);
2159     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2160 
2161     if (isInt<32>(ImmSh))
2162       Imm = ImmSh;
2163     else {
2164       Remainder = Imm;
2165       Shift = 32;
2166       Imm >>= 32;
2167     }
2168   }
2169 
2170   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2171   // (if not shifted).
2172   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2173   if (!Shift)
2174     return TmpReg1;
2175 
2176   // If upper 32 bits were not zero, we've built them and need to shift
2177   // them into place.
2178   unsigned TmpReg2;
2179   if (Imm) {
2180     TmpReg2 = createResultReg(RC);
2181     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLDICR),
2182             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2183   } else
2184     TmpReg2 = TmpReg1;
2185 
2186   unsigned TmpReg3, Hi, Lo;
2187   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2188     TmpReg3 = createResultReg(RC);
2189     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORIS8),
2190             TmpReg3).addReg(TmpReg2).addImm(Hi);
2191   } else
2192     TmpReg3 = TmpReg2;
2193 
2194   if ((Lo = Remainder & 0xFFFF)) {
2195     Register ResultReg = createResultReg(RC);
2196     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORI8),
2197             ResultReg).addReg(TmpReg3).addImm(Lo);
2198     return ResultReg;
2199   }
2200 
2201   return TmpReg3;
2202 }
2203 
2204 // Materialize an integer constant into a register, and return
2205 // the register number (or zero if we failed to handle it).
2206 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2207                                         bool UseSExt) {
2208   // If we're using CR bit registers for i1 values, handle that as a special
2209   // case first.
2210   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2211     Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2212     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2213             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2214     return ImmReg;
2215   }
2216 
2217   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2218       VT != MVT::i1)
2219     return 0;
2220 
2221   const TargetRegisterClass *RC =
2222       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2223   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2224 
2225   // If the constant is in range, use a load-immediate.
2226   // Since LI will sign extend the constant we need to make sure that for
2227   // our zeroext constants that the sign extended constant fits into 16-bits -
2228   // a range of 0..0x7fff.
2229   if (isInt<16>(Imm)) {
2230     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2231     Register ImmReg = createResultReg(RC);
2232     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ImmReg)
2233         .addImm(Imm);
2234     return ImmReg;
2235   }
2236 
2237   // Construct the constant piecewise.
2238   if (VT == MVT::i64)
2239     return PPCMaterialize64BitInt(Imm, RC);
2240   else if (VT == MVT::i32)
2241     return PPCMaterialize32BitInt(Imm, RC);
2242 
2243   return 0;
2244 }
2245 
2246 // Materialize a constant into a register, and return the register
2247 // number (or zero if we failed to handle it).
2248 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2249   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2250 
2251   // Only handle simple types.
2252   if (!CEVT.isSimple()) return 0;
2253   MVT VT = CEVT.getSimpleVT();
2254 
2255   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2256     return PPCMaterializeFP(CFP, VT);
2257   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2258     return PPCMaterializeGV(GV, VT);
2259   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2260     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2261     // assumes that constant PHI operands will be zero extended, and failure to
2262     // match that assumption will cause problems if we sign extend here but
2263     // some user of a PHI is in a block for which we fall back to full SDAG
2264     // instruction selection.
2265     return PPCMaterializeInt(CI, VT, false);
2266 
2267   return 0;
2268 }
2269 
2270 // Materialize the address created by an alloca into a register, and
2271 // return the register number (or zero if we failed to handle it).
2272 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2273   // Don't handle dynamic allocas.
2274   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2275 
2276   MVT VT;
2277   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2278 
2279   DenseMap<const AllocaInst*, int>::iterator SI =
2280     FuncInfo.StaticAllocaMap.find(AI);
2281 
2282   if (SI != FuncInfo.StaticAllocaMap.end()) {
2283     Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2284     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8),
2285             ResultReg).addFrameIndex(SI->second).addImm(0);
2286     return ResultReg;
2287   }
2288 
2289   return 0;
2290 }
2291 
2292 // Fold loads into extends when possible.
2293 // FIXME: We can have multiple redundant extend/trunc instructions
2294 // following a load.  The folding only picks up one.  Extend this
2295 // to check subsequent instructions for the same pattern and remove
2296 // them.  Thus ResultReg should be the def reg for the last redundant
2297 // instruction in a chain, and all intervening instructions can be
2298 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2299 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2300 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2301                                       const LoadInst *LI) {
2302   // Verify we have a legal type before going any further.
2303   MVT VT;
2304   if (!isLoadTypeLegal(LI->getType(), VT))
2305     return false;
2306 
2307   // Combine load followed by zero- or sign-extend.
2308   bool IsZExt = false;
2309   switch(MI->getOpcode()) {
2310     default:
2311       return false;
2312 
2313     case PPC::RLDICL:
2314     case PPC::RLDICL_32_64: {
2315       IsZExt = true;
2316       unsigned MB = MI->getOperand(3).getImm();
2317       if ((VT == MVT::i8 && MB <= 56) ||
2318           (VT == MVT::i16 && MB <= 48) ||
2319           (VT == MVT::i32 && MB <= 32))
2320         break;
2321       return false;
2322     }
2323 
2324     case PPC::RLWINM:
2325     case PPC::RLWINM8: {
2326       IsZExt = true;
2327       unsigned MB = MI->getOperand(3).getImm();
2328       if ((VT == MVT::i8 && MB <= 24) ||
2329           (VT == MVT::i16 && MB <= 16))
2330         break;
2331       return false;
2332     }
2333 
2334     case PPC::EXTSB:
2335     case PPC::EXTSB8:
2336     case PPC::EXTSB8_32_64:
2337       /* There is no sign-extending load-byte instruction. */
2338       return false;
2339 
2340     case PPC::EXTSH:
2341     case PPC::EXTSH8:
2342     case PPC::EXTSH8_32_64: {
2343       if (VT != MVT::i16 && VT != MVT::i8)
2344         return false;
2345       break;
2346     }
2347 
2348     case PPC::EXTSW:
2349     case PPC::EXTSW_32:
2350     case PPC::EXTSW_32_64: {
2351       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2352         return false;
2353       break;
2354     }
2355   }
2356 
2357   // See if we can handle this address.
2358   Address Addr;
2359   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2360     return false;
2361 
2362   Register ResultReg = MI->getOperand(0).getReg();
2363 
2364   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2365                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2366     return false;
2367 
2368   MachineBasicBlock::iterator I(MI);
2369   removeDeadCode(I, std::next(I));
2370   return true;
2371 }
2372 
2373 // Attempt to lower call arguments in a faster way than done by
2374 // the selection DAG code.
2375 bool PPCFastISel::fastLowerArguments() {
2376   // Defer to normal argument lowering for now.  It's reasonably
2377   // efficient.  Consider doing something like ARM to handle the
2378   // case where all args fit in registers, no varargs, no float
2379   // or vector args.
2380   return false;
2381 }
2382 
2383 // Handle materializing integer constants into a register.  This is not
2384 // automatically generated for PowerPC, so must be explicitly created here.
2385 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2386 
2387   if (Opc != ISD::Constant)
2388     return 0;
2389 
2390   // If we're using CR bit registers for i1 values, handle that as a special
2391   // case first.
2392   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2393     Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2394     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2395             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2396     return ImmReg;
2397   }
2398 
2399   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2400       VT != MVT::i1)
2401     return 0;
2402 
2403   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2404                                    &PPC::GPRCRegClass);
2405   if (VT == MVT::i64)
2406     return PPCMaterialize64BitInt(Imm, RC);
2407   else
2408     return PPCMaterialize32BitInt(Imm, RC);
2409 }
2410 
2411 // Override for ADDI and ADDI8 to set the correct register class
2412 // on RHS operand 0.  The automatic infrastructure naively assumes
2413 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2414 // for these cases.  At the moment, none of the other automatically
2415 // generated RI instructions require special treatment.  However, once
2416 // SelectSelect is implemented, "isel" requires similar handling.
2417 //
2418 // Also be conservative about the output register class.  Avoid
2419 // assigning R0 or X0 to the output register for GPRC and G8RC
2420 // register classes, as any such result could be used in ADDI, etc.,
2421 // where those regs have another meaning.
2422 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2423                                       const TargetRegisterClass *RC,
2424                                       unsigned Op0,
2425                                       uint64_t Imm) {
2426   if (MachineInstOpcode == PPC::ADDI)
2427     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2428   else if (MachineInstOpcode == PPC::ADDI8)
2429     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2430 
2431   const TargetRegisterClass *UseRC =
2432     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2433      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2434 
2435   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm);
2436 }
2437 
2438 // Override for instructions with one register operand to avoid use of
2439 // R0/X0.  The automatic infrastructure isn't aware of the context so
2440 // we must be conservative.
2441 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2442                                      const TargetRegisterClass* RC,
2443                                      unsigned Op0) {
2444   const TargetRegisterClass *UseRC =
2445     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2446      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2447 
2448   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0);
2449 }
2450 
2451 // Override for instructions with two register operands to avoid use
2452 // of R0/X0.  The automatic infrastructure isn't aware of the context
2453 // so we must be conservative.
2454 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2455                                       const TargetRegisterClass* RC,
2456                                       unsigned Op0, unsigned Op1) {
2457   const TargetRegisterClass *UseRC =
2458     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2459      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2460 
2461   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1);
2462 }
2463 
2464 namespace llvm {
2465   // Create the fast instruction selector for PowerPC64 ELF.
2466   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2467                                 const TargetLibraryInfo *LibInfo) {
2468     // Only available on 64-bit for now.
2469     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2470     if (Subtarget.isPPC64())
2471       return new PPCFastISel(FuncInfo, LibInfo);
2472     return nullptr;
2473   }
2474 }
2475