1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PowerPC-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // PPCGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetMachine.h" 39 40 //===----------------------------------------------------------------------===// 41 // 42 // TBD: 43 // fastLowerArguments: Handle simple cases. 44 // PPCMaterializeGV: Handle TLS. 45 // SelectCall: Handle function pointers. 46 // SelectCall: Handle multi-register return values. 47 // SelectCall: Optimize away nops for local calls. 48 // processCallArgs: Handle bit-converted arguments. 49 // finishCall: Handle multi-register return values. 50 // PPCComputeAddress: Handle parameter references as FrameIndex's. 51 // PPCEmitCmp: Handle immediate as operand 1. 52 // SelectCall: Handle small byval arguments. 53 // SelectIntrinsicCall: Implement. 54 // SelectSelect: Implement. 55 // Consider factoring isTypeLegal into the base class. 56 // Implement switches and jump tables. 57 // 58 //===----------------------------------------------------------------------===// 59 using namespace llvm; 60 61 #define DEBUG_TYPE "ppcfastisel" 62 63 namespace { 64 65 struct Address { 66 enum { 67 RegBase, 68 FrameIndexBase 69 } BaseType; 70 71 union { 72 unsigned Reg; 73 int FI; 74 } Base; 75 76 int64_t Offset; 77 78 // Innocuous defaults for our address. 79 Address() 80 : BaseType(RegBase), Offset(0) { 81 Base.Reg = 0; 82 } 83 }; 84 85 class PPCFastISel final : public FastISel { 86 87 const TargetMachine &TM; 88 const PPCSubtarget *Subtarget; 89 PPCFunctionInfo *PPCFuncInfo; 90 const TargetInstrInfo &TII; 91 const TargetLowering &TLI; 92 LLVMContext *Context; 93 94 public: 95 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 96 const TargetLibraryInfo *LibInfo) 97 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 98 Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 99 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 100 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()), 101 Context(&FuncInfo.Fn->getContext()) {} 102 103 // Backend specific FastISel code. 104 private: 105 bool fastSelectInstruction(const Instruction *I) override; 106 unsigned fastMaterializeConstant(const Constant *C) override; 107 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 108 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 109 const LoadInst *LI) override; 110 bool fastLowerArguments() override; 111 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 112 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, uint64_t Imm); 115 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, unsigned Op0); 117 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 118 const TargetRegisterClass *RC, 119 unsigned Op0, unsigned Op1); 120 121 bool fastLowerCall(CallLoweringInfo &CLI) override; 122 123 // Instruction selection routines. 124 private: 125 bool SelectLoad(const Instruction *I); 126 bool SelectStore(const Instruction *I); 127 bool SelectBranch(const Instruction *I); 128 bool SelectIndirectBr(const Instruction *I); 129 bool SelectFPExt(const Instruction *I); 130 bool SelectFPTrunc(const Instruction *I); 131 bool SelectIToFP(const Instruction *I, bool IsSigned); 132 bool SelectFPToI(const Instruction *I, bool IsSigned); 133 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 134 bool SelectRet(const Instruction *I); 135 bool SelectTrunc(const Instruction *I); 136 bool SelectIntExt(const Instruction *I); 137 138 // Utility routines. 139 private: 140 bool isTypeLegal(Type *Ty, MVT &VT); 141 bool isLoadTypeLegal(Type *Ty, MVT &VT); 142 bool isValueAvailable(const Value *V) const; 143 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 144 return RC->getID() == PPC::VSFRCRegClassID; 145 } 146 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 147 return RC->getID() == PPC::VSSRCRegClassID; 148 } 149 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC, 150 unsigned SrcReg, unsigned Flag = 0, 151 unsigned SubReg = 0) { 152 Register TmpReg = createResultReg(ToRC); 153 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 154 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg); 155 return TmpReg; 156 } 157 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 158 bool isZExt, unsigned DestReg, 159 const PPC::Predicate Pred); 160 bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 161 const TargetRegisterClass *RC, bool IsZExt = true, 162 unsigned FP64LoadOpc = PPC::LFD); 163 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 164 bool PPCComputeAddress(const Value *Obj, Address &Addr); 165 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 166 unsigned &IndexReg); 167 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 168 unsigned DestReg, bool IsZExt); 169 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 170 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 171 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 172 bool UseSExt = true); 173 unsigned PPCMaterialize32BitInt(int64_t Imm, 174 const TargetRegisterClass *RC); 175 unsigned PPCMaterialize64BitInt(int64_t Imm, 176 const TargetRegisterClass *RC); 177 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 178 unsigned SrcReg, bool IsSigned); 179 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 180 181 // Call handling routines. 182 private: 183 bool processCallArgs(SmallVectorImpl<Value*> &Args, 184 SmallVectorImpl<unsigned> &ArgRegs, 185 SmallVectorImpl<MVT> &ArgVTs, 186 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 187 SmallVectorImpl<unsigned> &RegArgs, 188 CallingConv::ID CC, 189 unsigned &NumBytes, 190 bool IsVarArg); 191 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 192 193 private: 194 #include "PPCGenFastISel.inc" 195 196 }; 197 198 } // end anonymous namespace 199 200 static std::optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 201 switch (Pred) { 202 // These are not representable with any single compare. 203 case CmpInst::FCMP_FALSE: 204 case CmpInst::FCMP_TRUE: 205 // Major concern about the following 6 cases is NaN result. The comparison 206 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 207 // only one of which will be set. The result is generated by fcmpu 208 // instruction. However, bc instruction only inspects one of the first 3 209 // bits, so when un is set, bc instruction may jump to an undesired 210 // place. 211 // 212 // More specifically, if we expect an unordered comparison and un is set, we 213 // expect to always go to true branch; in such case UEQ, UGT and ULT still 214 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 215 // since they are tested by inspecting !eq, !lt, !gt, respectively. 216 // 217 // Similarly, for ordered comparison, when un is set, we always expect the 218 // result to be false. In such case OGT, OLT and OEQ is good, since they are 219 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 220 // and ONE are tested through !lt, !gt and !eq, and these are true. 221 case CmpInst::FCMP_UEQ: 222 case CmpInst::FCMP_UGT: 223 case CmpInst::FCMP_ULT: 224 case CmpInst::FCMP_OGE: 225 case CmpInst::FCMP_OLE: 226 case CmpInst::FCMP_ONE: 227 default: 228 return std::nullopt; 229 230 case CmpInst::FCMP_OEQ: 231 case CmpInst::ICMP_EQ: 232 return PPC::PRED_EQ; 233 234 case CmpInst::FCMP_OGT: 235 case CmpInst::ICMP_UGT: 236 case CmpInst::ICMP_SGT: 237 return PPC::PRED_GT; 238 239 case CmpInst::FCMP_UGE: 240 case CmpInst::ICMP_UGE: 241 case CmpInst::ICMP_SGE: 242 return PPC::PRED_GE; 243 244 case CmpInst::FCMP_OLT: 245 case CmpInst::ICMP_ULT: 246 case CmpInst::ICMP_SLT: 247 return PPC::PRED_LT; 248 249 case CmpInst::FCMP_ULE: 250 case CmpInst::ICMP_ULE: 251 case CmpInst::ICMP_SLE: 252 return PPC::PRED_LE; 253 254 case CmpInst::FCMP_UNE: 255 case CmpInst::ICMP_NE: 256 return PPC::PRED_NE; 257 258 case CmpInst::FCMP_ORD: 259 return PPC::PRED_NU; 260 261 case CmpInst::FCMP_UNO: 262 return PPC::PRED_UN; 263 } 264 } 265 266 // Determine whether the type Ty is simple enough to be handled by 267 // fast-isel, and return its equivalent machine type in VT. 268 // FIXME: Copied directly from ARM -- factor into base class? 269 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 270 EVT Evt = TLI.getValueType(DL, Ty, true); 271 272 // Only handle simple types. 273 if (Evt == MVT::Other || !Evt.isSimple()) return false; 274 VT = Evt.getSimpleVT(); 275 276 // Handle all legal types, i.e. a register that will directly hold this 277 // value. 278 return TLI.isTypeLegal(VT); 279 } 280 281 // Determine whether the type Ty is simple enough to be handled by 282 // fast-isel as a load target, and return its equivalent machine type in VT. 283 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 284 if (isTypeLegal(Ty, VT)) return true; 285 286 // If this is a type than can be sign or zero-extended to a basic operation 287 // go ahead and accept it now. 288 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 289 return true; 290 } 291 292 return false; 293 } 294 295 bool PPCFastISel::isValueAvailable(const Value *V) const { 296 if (!isa<Instruction>(V)) 297 return true; 298 299 const auto *I = cast<Instruction>(V); 300 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 301 } 302 303 // Given a value Obj, create an Address object Addr that represents its 304 // address. Return false if we can't handle it. 305 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 306 const User *U = nullptr; 307 unsigned Opcode = Instruction::UserOp1; 308 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 309 // Don't walk into other basic blocks unless the object is an alloca from 310 // another block, otherwise it may not have a virtual register assigned. 311 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 312 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 313 Opcode = I->getOpcode(); 314 U = I; 315 } 316 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 317 Opcode = C->getOpcode(); 318 U = C; 319 } 320 321 switch (Opcode) { 322 default: 323 break; 324 case Instruction::BitCast: 325 // Look through bitcasts. 326 return PPCComputeAddress(U->getOperand(0), Addr); 327 case Instruction::IntToPtr: 328 // Look past no-op inttoptrs. 329 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 330 TLI.getPointerTy(DL)) 331 return PPCComputeAddress(U->getOperand(0), Addr); 332 break; 333 case Instruction::PtrToInt: 334 // Look past no-op ptrtoints. 335 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 336 return PPCComputeAddress(U->getOperand(0), Addr); 337 break; 338 case Instruction::GetElementPtr: { 339 Address SavedAddr = Addr; 340 int64_t TmpOffset = Addr.Offset; 341 342 // Iterate through the GEP folding the constants into offsets where 343 // we can. 344 gep_type_iterator GTI = gep_type_begin(U); 345 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 346 II != IE; ++II, ++GTI) { 347 const Value *Op = *II; 348 if (StructType *STy = GTI.getStructTypeOrNull()) { 349 const StructLayout *SL = DL.getStructLayout(STy); 350 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 351 TmpOffset += SL->getElementOffset(Idx); 352 } else { 353 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 354 for (;;) { 355 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 356 // Constant-offset addressing. 357 TmpOffset += CI->getSExtValue() * S; 358 break; 359 } 360 if (canFoldAddIntoGEP(U, Op)) { 361 // A compatible add with a constant operand. Fold the constant. 362 ConstantInt *CI = 363 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 364 TmpOffset += CI->getSExtValue() * S; 365 // Iterate on the other operand. 366 Op = cast<AddOperator>(Op)->getOperand(0); 367 continue; 368 } 369 // Unsupported 370 goto unsupported_gep; 371 } 372 } 373 } 374 375 // Try to grab the base operand now. 376 Addr.Offset = TmpOffset; 377 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 378 379 // We failed, restore everything and try the other options. 380 Addr = SavedAddr; 381 382 unsupported_gep: 383 break; 384 } 385 case Instruction::Alloca: { 386 const AllocaInst *AI = cast<AllocaInst>(Obj); 387 DenseMap<const AllocaInst*, int>::iterator SI = 388 FuncInfo.StaticAllocaMap.find(AI); 389 if (SI != FuncInfo.StaticAllocaMap.end()) { 390 Addr.BaseType = Address::FrameIndexBase; 391 Addr.Base.FI = SI->second; 392 return true; 393 } 394 break; 395 } 396 } 397 398 // FIXME: References to parameters fall through to the behavior 399 // below. They should be able to reference a frame index since 400 // they are stored to the stack, so we can get "ld rx, offset(r1)" 401 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 402 // just contain the parameter. Try to handle this with a FI. 403 404 // Try to get this in a register if nothing else has worked. 405 if (Addr.Base.Reg == 0) 406 Addr.Base.Reg = getRegForValue(Obj); 407 408 // Prevent assignment of base register to X0, which is inappropriate 409 // for loads and stores alike. 410 if (Addr.Base.Reg != 0) 411 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 412 413 return Addr.Base.Reg != 0; 414 } 415 416 // Fix up some addresses that can't be used directly. For example, if 417 // an offset won't fit in an instruction field, we may need to move it 418 // into an index register. 419 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 420 unsigned &IndexReg) { 421 422 // Check whether the offset fits in the instruction field. 423 if (!isInt<16>(Addr.Offset)) 424 UseOffset = false; 425 426 // If this is a stack pointer and the offset needs to be simplified then 427 // put the alloca address into a register, set the base type back to 428 // register and continue. This should almost never happen. 429 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 430 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 431 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8), 432 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 433 Addr.Base.Reg = ResultReg; 434 Addr.BaseType = Address::RegBase; 435 } 436 437 if (!UseOffset) { 438 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 439 const ConstantInt *Offset = ConstantInt::getSigned(OffsetTy, Addr.Offset); 440 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 441 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 442 } 443 } 444 445 // Emit a load instruction if possible, returning true if we succeeded, 446 // otherwise false. See commentary below for how the register class of 447 // the load is determined. 448 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 449 const TargetRegisterClass *RC, 450 bool IsZExt, unsigned FP64LoadOpc) { 451 unsigned Opc; 452 bool UseOffset = true; 453 bool HasSPE = Subtarget->hasSPE(); 454 455 // If ResultReg is given, it determines the register class of the load. 456 // Otherwise, RC is the register class to use. If the result of the 457 // load isn't anticipated in this block, both may be zero, in which 458 // case we must make a conservative guess. In particular, don't assign 459 // R0 or X0 to the result register, as the result may be used in a load, 460 // store, add-immediate, or isel that won't permit this. (Though 461 // perhaps the spill and reload of live-exit values would handle this?) 462 const TargetRegisterClass *UseRC = 463 (ResultReg ? MRI.getRegClass(ResultReg) : 464 (RC ? RC : 465 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : 466 (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) : 467 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 468 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 469 470 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 471 472 switch (VT.SimpleTy) { 473 default: // e.g., vector types not handled 474 return false; 475 case MVT::i8: 476 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 477 break; 478 case MVT::i16: 479 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 480 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 481 break; 482 case MVT::i32: 483 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 484 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 485 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 486 UseOffset = false; 487 break; 488 case MVT::i64: 489 Opc = PPC::LD; 490 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 491 "64-bit load with 32-bit target??"); 492 UseOffset = ((Addr.Offset & 3) == 0); 493 break; 494 case MVT::f32: 495 Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; 496 break; 497 case MVT::f64: 498 Opc = FP64LoadOpc; 499 break; 500 } 501 502 // If necessary, materialize the offset into a register and use 503 // the indexed form. Also handle stack pointers with special needs. 504 unsigned IndexReg = 0; 505 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 506 507 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 508 // be used. 509 bool IsVSSRC = isVSSRCRegClass(UseRC); 510 bool IsVSFRC = isVSFRCRegClass(UseRC); 511 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 512 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 513 if ((Is32VSXLoad || Is64VSXLoad) && 514 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 515 (Addr.Offset == 0)) { 516 UseOffset = false; 517 } 518 519 if (ResultReg == 0) 520 ResultReg = createResultReg(UseRC); 521 522 // Note: If we still have a frame index here, we know the offset is 523 // in range, as otherwise PPCSimplifyAddress would have converted it 524 // into a RegBase. 525 if (Addr.BaseType == Address::FrameIndexBase) { 526 // VSX only provides an indexed load. 527 if (Is32VSXLoad || Is64VSXLoad) return false; 528 529 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 530 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 531 Addr.Offset), 532 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 533 MFI.getObjectAlign(Addr.Base.FI)); 534 535 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 536 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 537 538 // Base reg with offset in range. 539 } else if (UseOffset) { 540 // VSX only provides an indexed load. 541 if (Is32VSXLoad || Is64VSXLoad) return false; 542 543 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 544 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 545 546 // Indexed form. 547 } else { 548 // Get the RR opcode corresponding to the RI one. FIXME: It would be 549 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 550 // is hard to get at. 551 switch (Opc) { 552 default: llvm_unreachable("Unexpected opcode!"); 553 case PPC::LBZ: Opc = PPC::LBZX; break; 554 case PPC::LBZ8: Opc = PPC::LBZX8; break; 555 case PPC::LHZ: Opc = PPC::LHZX; break; 556 case PPC::LHZ8: Opc = PPC::LHZX8; break; 557 case PPC::LHA: Opc = PPC::LHAX; break; 558 case PPC::LHA8: Opc = PPC::LHAX8; break; 559 case PPC::LWZ: Opc = PPC::LWZX; break; 560 case PPC::LWZ8: Opc = PPC::LWZX8; break; 561 case PPC::LWA: Opc = PPC::LWAX; break; 562 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 563 case PPC::LD: Opc = PPC::LDX; break; 564 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 565 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 566 case PPC::EVLDD: Opc = PPC::EVLDDX; break; 567 case PPC::SPELWZ: Opc = PPC::SPELWZX; break; 568 } 569 570 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 571 ResultReg); 572 573 // If we have an index register defined we use it in the store inst, 574 // otherwise we use X0 as base as it makes the vector instructions to 575 // use zero in the computation of the effective address regardless the 576 // content of the register. 577 if (IndexReg) 578 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 579 else 580 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 581 } 582 583 return true; 584 } 585 586 // Attempt to fast-select a load instruction. 587 bool PPCFastISel::SelectLoad(const Instruction *I) { 588 // FIXME: No atomic loads are supported. 589 if (cast<LoadInst>(I)->isAtomic()) 590 return false; 591 592 // Verify we have a legal type before going any further. 593 MVT VT; 594 if (!isLoadTypeLegal(I->getType(), VT)) 595 return false; 596 597 // See if we can handle this address. 598 Address Addr; 599 if (!PPCComputeAddress(I->getOperand(0), Addr)) 600 return false; 601 602 // Look at the currently assigned register for this instruction 603 // to determine the required register class. This is necessary 604 // to constrain RA from using R0/X0 when this is not legal. 605 Register AssignedReg = FuncInfo.ValueMap[I]; 606 const TargetRegisterClass *RC = 607 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 608 609 Register ResultReg = 0; 610 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true, 611 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 612 return false; 613 updateValueMap(I, ResultReg); 614 return true; 615 } 616 617 // Emit a store instruction to store SrcReg at Addr. 618 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 619 assert(SrcReg && "Nothing to store!"); 620 unsigned Opc; 621 bool UseOffset = true; 622 623 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 624 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 625 626 switch (VT.SimpleTy) { 627 default: // e.g., vector types not handled 628 return false; 629 case MVT::i8: 630 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 631 break; 632 case MVT::i16: 633 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 634 break; 635 case MVT::i32: 636 assert(Is32BitInt && "Not GPRC for i32??"); 637 Opc = PPC::STW; 638 break; 639 case MVT::i64: 640 Opc = PPC::STD; 641 UseOffset = ((Addr.Offset & 3) == 0); 642 break; 643 case MVT::f32: 644 Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS; 645 break; 646 case MVT::f64: 647 Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; 648 break; 649 } 650 651 // If necessary, materialize the offset into a register and use 652 // the indexed form. Also handle stack pointers with special needs. 653 unsigned IndexReg = 0; 654 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 655 656 // If this is a potential VSX store with an offset of 0, a VSX indexed store 657 // can be used. 658 bool IsVSSRC = isVSSRCRegClass(RC); 659 bool IsVSFRC = isVSFRCRegClass(RC); 660 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 661 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 662 if ((Is32VSXStore || Is64VSXStore) && 663 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 664 (Addr.Offset == 0)) { 665 UseOffset = false; 666 } 667 668 // Note: If we still have a frame index here, we know the offset is 669 // in range, as otherwise PPCSimplifyAddress would have converted it 670 // into a RegBase. 671 if (Addr.BaseType == Address::FrameIndexBase) { 672 // VSX only provides an indexed store. 673 if (Is32VSXStore || Is64VSXStore) return false; 674 675 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 676 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 677 Addr.Offset), 678 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 679 MFI.getObjectAlign(Addr.Base.FI)); 680 681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) 682 .addReg(SrcReg) 683 .addImm(Addr.Offset) 684 .addFrameIndex(Addr.Base.FI) 685 .addMemOperand(MMO); 686 687 // Base reg with offset in range. 688 } else if (UseOffset) { 689 // VSX only provides an indexed store. 690 if (Is32VSXStore || Is64VSXStore) 691 return false; 692 693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) 694 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 695 696 // Indexed form. 697 } else { 698 // Get the RR opcode corresponding to the RI one. FIXME: It would be 699 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 700 // is hard to get at. 701 switch (Opc) { 702 default: llvm_unreachable("Unexpected opcode!"); 703 case PPC::STB: Opc = PPC::STBX; break; 704 case PPC::STH : Opc = PPC::STHX; break; 705 case PPC::STW : Opc = PPC::STWX; break; 706 case PPC::STB8: Opc = PPC::STBX8; break; 707 case PPC::STH8: Opc = PPC::STHX8; break; 708 case PPC::STW8: Opc = PPC::STWX8; break; 709 case PPC::STD: Opc = PPC::STDX; break; 710 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 711 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 712 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; 713 case PPC::SPESTW: Opc = PPC::SPESTWX; break; 714 } 715 716 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) 717 .addReg(SrcReg); 718 719 // If we have an index register defined we use it in the store inst, 720 // otherwise we use X0 as base as it makes the vector instructions to 721 // use zero in the computation of the effective address regardless the 722 // content of the register. 723 if (IndexReg) 724 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 725 else 726 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 727 } 728 729 return true; 730 } 731 732 // Attempt to fast-select a store instruction. 733 bool PPCFastISel::SelectStore(const Instruction *I) { 734 Value *Op0 = I->getOperand(0); 735 unsigned SrcReg = 0; 736 737 // FIXME: No atomics loads are supported. 738 if (cast<StoreInst>(I)->isAtomic()) 739 return false; 740 741 // Verify we have a legal type before going any further. 742 MVT VT; 743 if (!isLoadTypeLegal(Op0->getType(), VT)) 744 return false; 745 746 // Get the value to be stored into a register. 747 SrcReg = getRegForValue(Op0); 748 if (SrcReg == 0) 749 return false; 750 751 // See if we can handle this address. 752 Address Addr; 753 if (!PPCComputeAddress(I->getOperand(1), Addr)) 754 return false; 755 756 if (!PPCEmitStore(VT, SrcReg, Addr)) 757 return false; 758 759 return true; 760 } 761 762 // Attempt to fast-select a branch instruction. 763 bool PPCFastISel::SelectBranch(const Instruction *I) { 764 const BranchInst *BI = cast<BranchInst>(I); 765 MachineBasicBlock *BrBB = FuncInfo.MBB; 766 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 767 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 768 769 // For now, just try the simplest case where it's fed by a compare. 770 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 771 if (isValueAvailable(CI)) { 772 std::optional<PPC::Predicate> OptPPCPred = 773 getComparePred(CI->getPredicate()); 774 if (!OptPPCPred) 775 return false; 776 777 PPC::Predicate PPCPred = *OptPPCPred; 778 779 // Take advantage of fall-through opportunities. 780 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 781 std::swap(TBB, FBB); 782 PPCPred = PPC::InvertPredicate(PPCPred); 783 } 784 785 Register CondReg = createResultReg(&PPC::CRRCRegClass); 786 787 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 788 CondReg, PPCPred)) 789 return false; 790 791 BuildMI(*BrBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCC)) 792 .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred) 793 .addReg(CondReg) 794 .addMBB(TBB); 795 finishCondBranch(BI->getParent(), TBB, FBB); 796 return true; 797 } 798 } else if (const ConstantInt *CI = 799 dyn_cast<ConstantInt>(BI->getCondition())) { 800 uint64_t Imm = CI->getZExtValue(); 801 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 802 fastEmitBranch(Target, MIMD.getDL()); 803 return true; 804 } 805 806 // FIXME: ARM looks for a case where the block containing the compare 807 // has been split from the block containing the branch. If this happens, 808 // there is a vreg available containing the result of the compare. I'm 809 // not sure we can do much, as we've lost the predicate information with 810 // the compare instruction -- we have a 4-bit CR but don't know which bit 811 // to test here. 812 return false; 813 } 814 815 // Attempt to emit a compare of the two source values. Signed and unsigned 816 // comparisons are supported. Return false if we can't handle it. 817 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 818 bool IsZExt, unsigned DestReg, 819 const PPC::Predicate Pred) { 820 Type *Ty = SrcValue1->getType(); 821 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 822 if (!SrcEVT.isSimple()) 823 return false; 824 MVT SrcVT = SrcEVT.getSimpleVT(); 825 826 if (SrcVT == MVT::i1 && Subtarget->useCRBits()) 827 return false; 828 829 // See if operand 2 is an immediate encodeable in the compare. 830 // FIXME: Operands are not in canonical order at -O0, so an immediate 831 // operand in position 1 is a lost opportunity for now. We are 832 // similar to ARM in this regard. 833 int64_t Imm = 0; 834 bool UseImm = false; 835 const bool HasSPE = Subtarget->hasSPE(); 836 837 // Only 16-bit integer constants can be represented in compares for 838 // PowerPC. Others will be materialized into a register. 839 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 840 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 841 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 842 const APInt &CIVal = ConstInt->getValue(); 843 Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() : 844 (int64_t)CIVal.getSExtValue(); 845 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 846 UseImm = true; 847 } 848 } 849 850 Register SrcReg1 = getRegForValue(SrcValue1); 851 if (SrcReg1 == 0) 852 return false; 853 854 unsigned SrcReg2 = 0; 855 if (!UseImm) { 856 SrcReg2 = getRegForValue(SrcValue2); 857 if (SrcReg2 == 0) 858 return false; 859 } 860 861 unsigned CmpOpc; 862 bool NeedsExt = false; 863 864 auto RC1 = MRI.getRegClass(SrcReg1); 865 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr; 866 867 switch (SrcVT.SimpleTy) { 868 default: return false; 869 case MVT::f32: 870 if (HasSPE) { 871 switch (Pred) { 872 default: return false; 873 case PPC::PRED_EQ: 874 CmpOpc = PPC::EFSCMPEQ; 875 break; 876 case PPC::PRED_LT: 877 CmpOpc = PPC::EFSCMPLT; 878 break; 879 case PPC::PRED_GT: 880 CmpOpc = PPC::EFSCMPGT; 881 break; 882 } 883 } else { 884 CmpOpc = PPC::FCMPUS; 885 if (isVSSRCRegClass(RC1)) 886 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1); 887 if (RC2 && isVSSRCRegClass(RC2)) 888 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2); 889 } 890 break; 891 case MVT::f64: 892 if (HasSPE) { 893 switch (Pred) { 894 default: return false; 895 case PPC::PRED_EQ: 896 CmpOpc = PPC::EFDCMPEQ; 897 break; 898 case PPC::PRED_LT: 899 CmpOpc = PPC::EFDCMPLT; 900 break; 901 case PPC::PRED_GT: 902 CmpOpc = PPC::EFDCMPGT; 903 break; 904 } 905 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) { 906 CmpOpc = PPC::XSCMPUDP; 907 } else { 908 CmpOpc = PPC::FCMPUD; 909 } 910 break; 911 case MVT::i1: 912 case MVT::i8: 913 case MVT::i16: 914 NeedsExt = true; 915 [[fallthrough]]; 916 case MVT::i32: 917 if (!UseImm) 918 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 919 else 920 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 921 break; 922 case MVT::i64: 923 if (!UseImm) 924 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 925 else 926 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 927 break; 928 } 929 930 if (NeedsExt) { 931 Register ExtReg = createResultReg(&PPC::GPRCRegClass); 932 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 933 return false; 934 SrcReg1 = ExtReg; 935 936 if (!UseImm) { 937 Register ExtReg = createResultReg(&PPC::GPRCRegClass); 938 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 939 return false; 940 SrcReg2 = ExtReg; 941 } 942 } 943 944 if (!UseImm) 945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg) 946 .addReg(SrcReg1).addReg(SrcReg2); 947 else 948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg) 949 .addReg(SrcReg1).addImm(Imm); 950 951 return true; 952 } 953 954 // Attempt to fast-select a floating-point extend instruction. 955 bool PPCFastISel::SelectFPExt(const Instruction *I) { 956 Value *Src = I->getOperand(0); 957 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 958 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 959 960 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 961 return false; 962 963 Register SrcReg = getRegForValue(Src); 964 if (!SrcReg) 965 return false; 966 967 // No code is generated for a FP extend. 968 updateValueMap(I, SrcReg); 969 return true; 970 } 971 972 // Attempt to fast-select a floating-point truncate instruction. 973 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 974 Value *Src = I->getOperand(0); 975 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 976 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 977 978 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 979 return false; 980 981 Register SrcReg = getRegForValue(Src); 982 if (!SrcReg) 983 return false; 984 985 // Round the result to single precision. 986 unsigned DestReg; 987 auto RC = MRI.getRegClass(SrcReg); 988 if (Subtarget->hasSPE()) { 989 DestReg = createResultReg(&PPC::GPRCRegClass); 990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::EFSCFD), 991 DestReg) 992 .addReg(SrcReg); 993 } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) { 994 DestReg = createResultReg(&PPC::VSSRCRegClass); 995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::XSRSP), 996 DestReg) 997 .addReg(SrcReg); 998 } else { 999 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg); 1000 DestReg = createResultReg(&PPC::F4RCRegClass); 1001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1002 TII.get(PPC::FRSP), DestReg) 1003 .addReg(SrcReg); 1004 } 1005 1006 updateValueMap(I, DestReg); 1007 return true; 1008 } 1009 1010 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 1011 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1012 // those should be used instead of moving via a stack slot when the 1013 // subtarget permits. 1014 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 1015 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 1016 // case to 8 bytes which produces tighter code but wastes stack space. 1017 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 1018 bool IsSigned) { 1019 1020 // If necessary, extend 32-bit int to 64-bit. 1021 if (SrcVT == MVT::i32) { 1022 Register TmpReg = createResultReg(&PPC::G8RCRegClass); 1023 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1024 return 0; 1025 SrcReg = TmpReg; 1026 } 1027 1028 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1029 Address Addr; 1030 Addr.BaseType = Address::FrameIndexBase; 1031 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1032 1033 // Store the value from the GPR. 1034 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 1035 return 0; 1036 1037 // Load the integer value into an FPR. The kind of load used depends 1038 // on a number of conditions. 1039 unsigned LoadOpc = PPC::LFD; 1040 1041 if (SrcVT == MVT::i32) { 1042 if (!IsSigned) { 1043 LoadOpc = PPC::LFIWZX; 1044 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1045 } else if (Subtarget->hasLFIWAX()) { 1046 LoadOpc = PPC::LFIWAX; 1047 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1048 } 1049 } 1050 1051 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1052 Register ResultReg = 0; 1053 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1054 return 0; 1055 1056 return ResultReg; 1057 } 1058 1059 // Attempt to fast-select an integer-to-floating-point conversion. 1060 // FIXME: Once fast-isel has better support for VSX, conversions using 1061 // direct moves should be implemented. 1062 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1063 MVT DstVT; 1064 Type *DstTy = I->getType(); 1065 if (!isTypeLegal(DstTy, DstVT)) 1066 return false; 1067 1068 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1069 return false; 1070 1071 Value *Src = I->getOperand(0); 1072 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1073 if (!SrcEVT.isSimple()) 1074 return false; 1075 1076 MVT SrcVT = SrcEVT.getSimpleVT(); 1077 1078 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1079 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1080 return false; 1081 1082 Register SrcReg = getRegForValue(Src); 1083 if (SrcReg == 0) 1084 return false; 1085 1086 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs 1087 if (Subtarget->hasSPE()) { 1088 unsigned Opc; 1089 if (DstVT == MVT::f32) 1090 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; 1091 else 1092 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; 1093 1094 Register DestReg = createResultReg(&PPC::SPERCRegClass); 1095 // Generate the convert. 1096 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1097 .addReg(SrcReg); 1098 updateValueMap(I, DestReg); 1099 return true; 1100 } 1101 1102 // We can only lower an unsigned convert if we have the newer 1103 // floating-point conversion operations. 1104 if (!IsSigned && !Subtarget->hasFPCVT()) 1105 return false; 1106 1107 // FIXME: For now we require the newer floating-point conversion operations 1108 // (which are present only on P7 and A2 server models) when converting 1109 // to single-precision float. Otherwise we have to generate a lot of 1110 // fiddly code to avoid double rounding. If necessary, the fiddly code 1111 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1112 if (DstVT == MVT::f32 && !Subtarget->hasFPCVT()) 1113 return false; 1114 1115 // Extend the input if necessary. 1116 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1117 Register TmpReg = createResultReg(&PPC::G8RCRegClass); 1118 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1119 return false; 1120 SrcVT = MVT::i64; 1121 SrcReg = TmpReg; 1122 } 1123 1124 // Move the integer value to an FPR. 1125 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1126 if (FPReg == 0) 1127 return false; 1128 1129 // Determine the opcode for the conversion. 1130 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1131 Register DestReg = createResultReg(RC); 1132 unsigned Opc; 1133 1134 if (DstVT == MVT::f32) 1135 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1136 else 1137 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1138 1139 // Generate the convert. 1140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1141 .addReg(FPReg); 1142 1143 updateValueMap(I, DestReg); 1144 return true; 1145 } 1146 1147 // Move the floating-point value in SrcReg into an integer destination 1148 // register, and return the register (or zero if we can't handle it). 1149 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1150 // those should be used instead of moving via a stack slot when the 1151 // subtarget permits. 1152 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1153 unsigned SrcReg, bool IsSigned) { 1154 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1155 // Note that if have STFIWX available, we could use a 4-byte stack 1156 // slot for i32, but this being fast-isel we'll just go with the 1157 // easiest code gen possible. 1158 Address Addr; 1159 Addr.BaseType = Address::FrameIndexBase; 1160 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1161 1162 // Store the value from the FPR. 1163 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1164 return 0; 1165 1166 // Reload it into a GPR. If we want an i32 on big endian, modify the 1167 // address to have a 4-byte offset so we load from the right place. 1168 if (VT == MVT::i32) 1169 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1170 1171 // Look at the currently assigned register for this instruction 1172 // to determine the required register class. 1173 Register AssignedReg = FuncInfo.ValueMap[I]; 1174 const TargetRegisterClass *RC = 1175 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1176 1177 Register ResultReg = 0; 1178 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1179 return 0; 1180 1181 return ResultReg; 1182 } 1183 1184 // Attempt to fast-select a floating-point-to-integer conversion. 1185 // FIXME: Once fast-isel has better support for VSX, conversions using 1186 // direct moves should be implemented. 1187 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1188 MVT DstVT, SrcVT; 1189 Type *DstTy = I->getType(); 1190 if (!isTypeLegal(DstTy, DstVT)) 1191 return false; 1192 1193 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1194 return false; 1195 1196 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. 1197 if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() && 1198 !Subtarget->hasSPE()) 1199 return false; 1200 1201 Value *Src = I->getOperand(0); 1202 Type *SrcTy = Src->getType(); 1203 if (!isTypeLegal(SrcTy, SrcVT)) 1204 return false; 1205 1206 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1207 return false; 1208 1209 Register SrcReg = getRegForValue(Src); 1210 if (SrcReg == 0) 1211 return false; 1212 1213 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a 1214 // meaningless copy to get the register class right. 1215 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1216 if (InRC == &PPC::F4RCRegClass) 1217 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg); 1218 else if (InRC == &PPC::VSSRCRegClass) 1219 SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg); 1220 1221 // Determine the opcode for the conversion, which takes place 1222 // entirely within FPRs or VSRs. 1223 unsigned DestReg; 1224 unsigned Opc; 1225 auto RC = MRI.getRegClass(SrcReg); 1226 1227 if (Subtarget->hasSPE()) { 1228 DestReg = createResultReg(&PPC::GPRCRegClass); 1229 if (IsSigned) 1230 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; 1231 else 1232 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; 1233 } else if (isVSFRCRegClass(RC)) { 1234 DestReg = createResultReg(&PPC::VSFRCRegClass); 1235 if (DstVT == MVT::i32) 1236 Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS; 1237 else 1238 Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS; 1239 } else { 1240 DestReg = createResultReg(&PPC::F8RCRegClass); 1241 if (DstVT == MVT::i32) 1242 if (IsSigned) 1243 Opc = PPC::FCTIWZ; 1244 else 1245 Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1246 else 1247 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1248 } 1249 1250 // Generate the convert. 1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1252 .addReg(SrcReg); 1253 1254 // Now move the integer value from a float register to an integer register. 1255 unsigned IntReg = Subtarget->hasSPE() 1256 ? DestReg 1257 : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1258 1259 if (IntReg == 0) 1260 return false; 1261 1262 updateValueMap(I, IntReg); 1263 return true; 1264 } 1265 1266 // Attempt to fast-select a binary integer operation that isn't already 1267 // handled automatically. 1268 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1269 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1270 1271 // We can get here in the case when we have a binary operation on a non-legal 1272 // type and the target independent selector doesn't know how to handle it. 1273 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1274 return false; 1275 1276 // Look at the currently assigned register for this instruction 1277 // to determine the required register class. If there is no register, 1278 // make a conservative choice (don't assign R0). 1279 Register AssignedReg = FuncInfo.ValueMap[I]; 1280 const TargetRegisterClass *RC = 1281 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1282 &PPC::GPRC_and_GPRC_NOR0RegClass); 1283 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1284 1285 unsigned Opc; 1286 switch (ISDOpcode) { 1287 default: return false; 1288 case ISD::ADD: 1289 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1290 break; 1291 case ISD::OR: 1292 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1293 break; 1294 case ISD::SUB: 1295 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1296 break; 1297 } 1298 1299 Register ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1300 Register SrcReg1 = getRegForValue(I->getOperand(0)); 1301 if (SrcReg1 == 0) return false; 1302 1303 // Handle case of small immediate operand. 1304 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1305 const APInt &CIVal = ConstInt->getValue(); 1306 int Imm = (int)CIVal.getSExtValue(); 1307 bool UseImm = true; 1308 if (isInt<16>(Imm)) { 1309 switch (Opc) { 1310 default: 1311 llvm_unreachable("Missing case!"); 1312 case PPC::ADD4: 1313 Opc = PPC::ADDI; 1314 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1315 break; 1316 case PPC::ADD8: 1317 Opc = PPC::ADDI8; 1318 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1319 break; 1320 case PPC::OR: 1321 Opc = PPC::ORI; 1322 break; 1323 case PPC::OR8: 1324 Opc = PPC::ORI8; 1325 break; 1326 case PPC::SUBF: 1327 if (Imm == -32768) 1328 UseImm = false; 1329 else { 1330 Opc = PPC::ADDI; 1331 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1332 Imm = -Imm; 1333 } 1334 break; 1335 case PPC::SUBF8: 1336 if (Imm == -32768) 1337 UseImm = false; 1338 else { 1339 Opc = PPC::ADDI8; 1340 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1341 Imm = -Imm; 1342 } 1343 break; 1344 } 1345 1346 if (UseImm) { 1347 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 1348 ResultReg) 1349 .addReg(SrcReg1) 1350 .addImm(Imm); 1351 updateValueMap(I, ResultReg); 1352 return true; 1353 } 1354 } 1355 } 1356 1357 // Reg-reg case. 1358 Register SrcReg2 = getRegForValue(I->getOperand(1)); 1359 if (SrcReg2 == 0) return false; 1360 1361 // Reverse operands for subtract-from. 1362 if (ISDOpcode == ISD::SUB) 1363 std::swap(SrcReg1, SrcReg2); 1364 1365 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 1366 .addReg(SrcReg1).addReg(SrcReg2); 1367 updateValueMap(I, ResultReg); 1368 return true; 1369 } 1370 1371 // Handle arguments to a call that we're attempting to fast-select. 1372 // Return false if the arguments are too complex for us at the moment. 1373 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1374 SmallVectorImpl<unsigned> &ArgRegs, 1375 SmallVectorImpl<MVT> &ArgVTs, 1376 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1377 SmallVectorImpl<unsigned> &RegArgs, 1378 CallingConv::ID CC, 1379 unsigned &NumBytes, 1380 bool IsVarArg) { 1381 SmallVector<CCValAssign, 16> ArgLocs; 1382 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1383 1384 // Reserve space for the linkage area on the stack. 1385 unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize(); 1386 CCInfo.AllocateStack(LinkageSize, Align(8)); 1387 1388 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1389 1390 // Bail out if we can't handle any of the arguments. 1391 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1392 CCValAssign &VA = ArgLocs[I]; 1393 MVT ArgVT = ArgVTs[VA.getValNo()]; 1394 1395 // Skip vector arguments for now, as well as long double and 1396 // uint128_t, and anything that isn't passed in a register. 1397 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1398 !VA.isRegLoc() || VA.needsCustom()) 1399 return false; 1400 1401 // Skip bit-converted arguments for now. 1402 if (VA.getLocInfo() == CCValAssign::BCvt) 1403 return false; 1404 } 1405 1406 // Get a count of how many bytes are to be pushed onto the stack. 1407 NumBytes = CCInfo.getNextStackOffset(); 1408 1409 // The prolog code of the callee may store up to 8 GPR argument registers to 1410 // the stack, allowing va_start to index over them in memory if its varargs. 1411 // Because we cannot tell if this is needed on the caller side, we have to 1412 // conservatively assume that it is needed. As such, make sure we have at 1413 // least enough stack space for the caller to store the 8 GPRs. 1414 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1415 NumBytes = std::max(NumBytes, LinkageSize + 64); 1416 1417 // Issue CALLSEQ_START. 1418 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1419 TII.get(TII.getCallFrameSetupOpcode())) 1420 .addImm(NumBytes).addImm(0); 1421 1422 // Prepare to assign register arguments. Every argument uses up a 1423 // GPR protocol register even if it's passed in a floating-point 1424 // register (unless we're using the fast calling convention). 1425 unsigned NextGPR = PPC::X3; 1426 unsigned NextFPR = PPC::F1; 1427 1428 // Process arguments. 1429 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1430 CCValAssign &VA = ArgLocs[I]; 1431 unsigned Arg = ArgRegs[VA.getValNo()]; 1432 MVT ArgVT = ArgVTs[VA.getValNo()]; 1433 1434 // Handle argument promotion and bitcasts. 1435 switch (VA.getLocInfo()) { 1436 default: 1437 llvm_unreachable("Unknown loc info!"); 1438 case CCValAssign::Full: 1439 break; 1440 case CCValAssign::SExt: { 1441 MVT DestVT = VA.getLocVT(); 1442 const TargetRegisterClass *RC = 1443 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1444 Register TmpReg = createResultReg(RC); 1445 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1446 llvm_unreachable("Failed to emit a sext!"); 1447 ArgVT = DestVT; 1448 Arg = TmpReg; 1449 break; 1450 } 1451 case CCValAssign::AExt: 1452 case CCValAssign::ZExt: { 1453 MVT DestVT = VA.getLocVT(); 1454 const TargetRegisterClass *RC = 1455 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1456 Register TmpReg = createResultReg(RC); 1457 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1458 llvm_unreachable("Failed to emit a zext!"); 1459 ArgVT = DestVT; 1460 Arg = TmpReg; 1461 break; 1462 } 1463 case CCValAssign::BCvt: { 1464 // FIXME: Not yet handled. 1465 llvm_unreachable("Should have bailed before getting here!"); 1466 break; 1467 } 1468 } 1469 1470 // Copy this argument to the appropriate register. 1471 unsigned ArgReg; 1472 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1473 ArgReg = NextFPR++; 1474 if (CC != CallingConv::Fast) 1475 ++NextGPR; 1476 } else 1477 ArgReg = NextGPR++; 1478 1479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1480 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1481 RegArgs.push_back(ArgReg); 1482 } 1483 1484 return true; 1485 } 1486 1487 // For a call that we've determined we can fast-select, finish the 1488 // call sequence and generate a copy to obtain the return value (if any). 1489 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1490 CallingConv::ID CC = CLI.CallConv; 1491 1492 // Issue CallSEQ_END. 1493 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1494 TII.get(TII.getCallFrameDestroyOpcode())) 1495 .addImm(NumBytes).addImm(0); 1496 1497 // Next, generate a copy to obtain the return value. 1498 // FIXME: No multi-register return values yet, though I don't foresee 1499 // any real difficulties there. 1500 if (RetVT != MVT::isVoid) { 1501 SmallVector<CCValAssign, 16> RVLocs; 1502 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1503 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1504 CCValAssign &VA = RVLocs[0]; 1505 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1506 assert(VA.isRegLoc() && "Can only return in registers!"); 1507 1508 MVT DestVT = VA.getValVT(); 1509 MVT CopyVT = DestVT; 1510 1511 // Ints smaller than a register still arrive in a full 64-bit 1512 // register, so make sure we recognize this. 1513 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1514 CopyVT = MVT::i64; 1515 1516 unsigned SourcePhysReg = VA.getLocReg(); 1517 unsigned ResultReg = 0; 1518 1519 if (RetVT == CopyVT) { 1520 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1521 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg); 1522 1523 // If necessary, round the floating result to single precision. 1524 } else if (CopyVT == MVT::f64) { 1525 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1526 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::FRSP), 1527 ResultReg).addReg(SourcePhysReg); 1528 1529 // If only the low half of a general register is needed, generate 1530 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1531 // used along the fast-isel path (not lowered), and downstream logic 1532 // also doesn't like a direct subreg copy on a physical reg.) 1533 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1534 // Convert physical register from G8RC to GPRC. 1535 SourcePhysReg -= PPC::X0 - PPC::R0; 1536 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg); 1537 } 1538 1539 assert(ResultReg && "ResultReg unset!"); 1540 CLI.InRegs.push_back(SourcePhysReg); 1541 CLI.ResultReg = ResultReg; 1542 CLI.NumResultRegs = 1; 1543 } 1544 1545 return true; 1546 } 1547 1548 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1549 CallingConv::ID CC = CLI.CallConv; 1550 bool IsTailCall = CLI.IsTailCall; 1551 bool IsVarArg = CLI.IsVarArg; 1552 const Value *Callee = CLI.Callee; 1553 const MCSymbol *Symbol = CLI.Symbol; 1554 1555 if (!Callee && !Symbol) 1556 return false; 1557 1558 // Allow SelectionDAG isel to handle tail calls. 1559 if (IsTailCall) 1560 return false; 1561 1562 // Let SDISel handle vararg functions. 1563 if (IsVarArg) 1564 return false; 1565 1566 // If this is a PC-Rel function, let SDISel handle the call. 1567 if (Subtarget->isUsingPCRelativeCalls()) 1568 return false; 1569 1570 // Handle simple calls for now, with legal return types and 1571 // those that can be extended. 1572 Type *RetTy = CLI.RetTy; 1573 MVT RetVT; 1574 if (RetTy->isVoidTy()) 1575 RetVT = MVT::isVoid; 1576 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1577 RetVT != MVT::i8) 1578 return false; 1579 else if (RetVT == MVT::i1 && Subtarget->useCRBits()) 1580 // We can't handle boolean returns when CR bits are in use. 1581 return false; 1582 1583 // FIXME: No multi-register return values yet. 1584 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1585 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1586 RetVT != MVT::f64) { 1587 SmallVector<CCValAssign, 16> RVLocs; 1588 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1589 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1590 if (RVLocs.size() > 1) 1591 return false; 1592 } 1593 1594 // Bail early if more than 8 arguments, as we only currently 1595 // handle arguments passed in registers. 1596 unsigned NumArgs = CLI.OutVals.size(); 1597 if (NumArgs > 8) 1598 return false; 1599 1600 // Set up the argument vectors. 1601 SmallVector<Value*, 8> Args; 1602 SmallVector<unsigned, 8> ArgRegs; 1603 SmallVector<MVT, 8> ArgVTs; 1604 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1605 1606 Args.reserve(NumArgs); 1607 ArgRegs.reserve(NumArgs); 1608 ArgVTs.reserve(NumArgs); 1609 ArgFlags.reserve(NumArgs); 1610 1611 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1612 // Only handle easy calls for now. It would be reasonably easy 1613 // to handle <= 8-byte structures passed ByVal in registers, but we 1614 // have to ensure they are right-justified in the register. 1615 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1616 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1617 return false; 1618 1619 Value *ArgValue = CLI.OutVals[i]; 1620 Type *ArgTy = ArgValue->getType(); 1621 MVT ArgVT; 1622 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1623 return false; 1624 1625 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP 1626 // types, which is passed through vector register. Skip these types and 1627 // fallback to default SelectionDAG based selection. 1628 if (ArgVT.isVector() || ArgVT == MVT::f128) 1629 return false; 1630 1631 Register Arg = getRegForValue(ArgValue); 1632 if (Arg == 0) 1633 return false; 1634 1635 Args.push_back(ArgValue); 1636 ArgRegs.push_back(Arg); 1637 ArgVTs.push_back(ArgVT); 1638 ArgFlags.push_back(Flags); 1639 } 1640 1641 // Process the arguments. 1642 SmallVector<unsigned, 8> RegArgs; 1643 unsigned NumBytes; 1644 1645 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1646 RegArgs, CC, NumBytes, IsVarArg)) 1647 return false; 1648 1649 MachineInstrBuilder MIB; 1650 // FIXME: No handling for function pointers yet. This requires 1651 // implementing the function descriptor (OPD) setup. 1652 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1653 if (!GV) { 1654 // patchpoints are a special case; they always dispatch to a pointer value. 1655 // However, we don't actually want to generate the indirect call sequence 1656 // here (that will be generated, as necessary, during asm printing), and 1657 // the call we generate here will be erased by FastISel::selectPatchpoint, 1658 // so don't try very hard... 1659 if (CLI.IsPatchPoint) 1660 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::NOP)); 1661 else 1662 return false; 1663 } else { 1664 // Build direct call with NOP for TOC restore. 1665 // FIXME: We can and should optimize away the NOP for local calls. 1666 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1667 TII.get(PPC::BL8_NOP)); 1668 // Add callee. 1669 MIB.addGlobalAddress(GV); 1670 } 1671 1672 // Add implicit physical register uses to the call. 1673 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1674 MIB.addReg(RegArgs[II], RegState::Implicit); 1675 1676 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1677 // into the call. 1678 PPCFuncInfo->setUsesTOCBasePtr(); 1679 MIB.addReg(PPC::X2, RegState::Implicit); 1680 1681 // Add a register mask with the call-preserved registers. Proper 1682 // defs for return values will be added by setPhysRegsDeadExcept(). 1683 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1684 1685 CLI.Call = MIB; 1686 1687 // Finish off the call including any return values. 1688 return finishCall(RetVT, CLI, NumBytes); 1689 } 1690 1691 // Attempt to fast-select a return instruction. 1692 bool PPCFastISel::SelectRet(const Instruction *I) { 1693 1694 if (!FuncInfo.CanLowerReturn) 1695 return false; 1696 1697 const ReturnInst *Ret = cast<ReturnInst>(I); 1698 const Function &F = *I->getParent()->getParent(); 1699 1700 // Build a list of return value registers. 1701 SmallVector<unsigned, 4> RetRegs; 1702 CallingConv::ID CC = F.getCallingConv(); 1703 1704 if (Ret->getNumOperands() > 0) { 1705 SmallVector<ISD::OutputArg, 4> Outs; 1706 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1707 1708 // Analyze operands of the call, assigning locations to each operand. 1709 SmallVector<CCValAssign, 16> ValLocs; 1710 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1711 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1712 const Value *RV = Ret->getOperand(0); 1713 1714 // FIXME: Only one output register for now. 1715 if (ValLocs.size() > 1) 1716 return false; 1717 1718 // Special case for returning a constant integer of any size - materialize 1719 // the constant as an i64 and copy it to the return register. 1720 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1721 CCValAssign &VA = ValLocs[0]; 1722 1723 Register RetReg = VA.getLocReg(); 1724 // We still need to worry about properly extending the sign. For example, 1725 // we could have only a single bit or a constant that needs zero 1726 // extension rather than sign extension. Make sure we pass the return 1727 // value extension property to integer materialization. 1728 unsigned SrcReg = 1729 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1730 1731 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1732 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1733 1734 RetRegs.push_back(RetReg); 1735 1736 } else { 1737 Register Reg = getRegForValue(RV); 1738 1739 if (Reg == 0) 1740 return false; 1741 1742 // Copy the result values into the output registers. 1743 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1744 1745 CCValAssign &VA = ValLocs[i]; 1746 assert(VA.isRegLoc() && "Can only return in registers!"); 1747 RetRegs.push_back(VA.getLocReg()); 1748 unsigned SrcReg = Reg + VA.getValNo(); 1749 1750 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1751 if (!RVEVT.isSimple()) 1752 return false; 1753 MVT RVVT = RVEVT.getSimpleVT(); 1754 MVT DestVT = VA.getLocVT(); 1755 1756 if (RVVT != DestVT && RVVT != MVT::i8 && 1757 RVVT != MVT::i16 && RVVT != MVT::i32) 1758 return false; 1759 1760 if (RVVT != DestVT) { 1761 switch (VA.getLocInfo()) { 1762 default: 1763 llvm_unreachable("Unknown loc info!"); 1764 case CCValAssign::Full: 1765 llvm_unreachable("Full value assign but types don't match?"); 1766 case CCValAssign::AExt: 1767 case CCValAssign::ZExt: { 1768 const TargetRegisterClass *RC = 1769 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1770 Register TmpReg = createResultReg(RC); 1771 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1772 return false; 1773 SrcReg = TmpReg; 1774 break; 1775 } 1776 case CCValAssign::SExt: { 1777 const TargetRegisterClass *RC = 1778 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1779 Register TmpReg = createResultReg(RC); 1780 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1781 return false; 1782 SrcReg = TmpReg; 1783 break; 1784 } 1785 } 1786 } 1787 1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1789 TII.get(TargetOpcode::COPY), RetRegs[i]) 1790 .addReg(SrcReg); 1791 } 1792 } 1793 } 1794 1795 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1796 TII.get(PPC::BLR8)); 1797 1798 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1799 MIB.addReg(RetRegs[i], RegState::Implicit); 1800 1801 return true; 1802 } 1803 1804 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1805 // signed and zero extensions are supported. Return false if we 1806 // can't handle it. 1807 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1808 unsigned DestReg, bool IsZExt) { 1809 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1810 return false; 1811 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1812 return false; 1813 1814 // Signed extensions use EXTSB, EXTSH, EXTSW. 1815 if (!IsZExt) { 1816 unsigned Opc; 1817 if (SrcVT == MVT::i8) 1818 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1819 else if (SrcVT == MVT::i16) 1820 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1821 else { 1822 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1823 Opc = PPC::EXTSW_32_64; 1824 } 1825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1826 .addReg(SrcReg); 1827 1828 // Unsigned 32-bit extensions use RLWINM. 1829 } else if (DestVT == MVT::i32) { 1830 unsigned MB; 1831 if (SrcVT == MVT::i8) 1832 MB = 24; 1833 else { 1834 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1835 MB = 16; 1836 } 1837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLWINM), 1838 DestReg) 1839 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1840 1841 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1842 } else { 1843 unsigned MB; 1844 if (SrcVT == MVT::i8) 1845 MB = 56; 1846 else if (SrcVT == MVT::i16) 1847 MB = 48; 1848 else 1849 MB = 32; 1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1851 TII.get(PPC::RLDICL_32_64), DestReg) 1852 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1853 } 1854 1855 return true; 1856 } 1857 1858 // Attempt to fast-select an indirect branch instruction. 1859 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1860 Register AddrReg = getRegForValue(I->getOperand(0)); 1861 if (AddrReg == 0) 1862 return false; 1863 1864 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::MTCTR8)) 1865 .addReg(AddrReg); 1866 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCTR8)); 1867 1868 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1869 for (const BasicBlock *SuccBB : IB->successors()) 1870 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1871 1872 return true; 1873 } 1874 1875 // Attempt to fast-select an integer truncate instruction. 1876 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1877 Value *Src = I->getOperand(0); 1878 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1879 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1880 1881 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1882 return false; 1883 1884 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1885 return false; 1886 1887 Register SrcReg = getRegForValue(Src); 1888 if (!SrcReg) 1889 return false; 1890 1891 // The only interesting case is when we need to switch register classes. 1892 if (SrcVT == MVT::i64) 1893 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32); 1894 1895 updateValueMap(I, SrcReg); 1896 return true; 1897 } 1898 1899 // Attempt to fast-select an integer extend instruction. 1900 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1901 Type *DestTy = I->getType(); 1902 Value *Src = I->getOperand(0); 1903 Type *SrcTy = Src->getType(); 1904 1905 bool IsZExt = isa<ZExtInst>(I); 1906 Register SrcReg = getRegForValue(Src); 1907 if (!SrcReg) return false; 1908 1909 EVT SrcEVT, DestEVT; 1910 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1911 DestEVT = TLI.getValueType(DL, DestTy, true); 1912 if (!SrcEVT.isSimple()) 1913 return false; 1914 if (!DestEVT.isSimple()) 1915 return false; 1916 1917 MVT SrcVT = SrcEVT.getSimpleVT(); 1918 MVT DestVT = DestEVT.getSimpleVT(); 1919 1920 // If we know the register class needed for the result of this 1921 // instruction, use it. Otherwise pick the register class of the 1922 // correct size that does not contain X0/R0, since we don't know 1923 // whether downstream uses permit that assignment. 1924 Register AssignedReg = FuncInfo.ValueMap[I]; 1925 const TargetRegisterClass *RC = 1926 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1927 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1928 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1929 Register ResultReg = createResultReg(RC); 1930 1931 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1932 return false; 1933 1934 updateValueMap(I, ResultReg); 1935 return true; 1936 } 1937 1938 // Attempt to fast-select an instruction that wasn't handled by 1939 // the table-generated machinery. 1940 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1941 1942 switch (I->getOpcode()) { 1943 case Instruction::Load: 1944 return SelectLoad(I); 1945 case Instruction::Store: 1946 return SelectStore(I); 1947 case Instruction::Br: 1948 return SelectBranch(I); 1949 case Instruction::IndirectBr: 1950 return SelectIndirectBr(I); 1951 case Instruction::FPExt: 1952 return SelectFPExt(I); 1953 case Instruction::FPTrunc: 1954 return SelectFPTrunc(I); 1955 case Instruction::SIToFP: 1956 return SelectIToFP(I, /*IsSigned*/ true); 1957 case Instruction::UIToFP: 1958 return SelectIToFP(I, /*IsSigned*/ false); 1959 case Instruction::FPToSI: 1960 return SelectFPToI(I, /*IsSigned*/ true); 1961 case Instruction::FPToUI: 1962 return SelectFPToI(I, /*IsSigned*/ false); 1963 case Instruction::Add: 1964 return SelectBinaryIntOp(I, ISD::ADD); 1965 case Instruction::Or: 1966 return SelectBinaryIntOp(I, ISD::OR); 1967 case Instruction::Sub: 1968 return SelectBinaryIntOp(I, ISD::SUB); 1969 case Instruction::Ret: 1970 return SelectRet(I); 1971 case Instruction::Trunc: 1972 return SelectTrunc(I); 1973 case Instruction::ZExt: 1974 case Instruction::SExt: 1975 return SelectIntExt(I); 1976 // Here add other flavors of Instruction::XXX that automated 1977 // cases don't catch. For example, switches are terminators 1978 // that aren't yet handled. 1979 default: 1980 break; 1981 } 1982 return false; 1983 } 1984 1985 // Materialize a floating-point constant into a register, and return 1986 // the register number (or zero if we failed to handle it). 1987 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1988 // If this is a PC-Rel function, let SDISel handle constant pool. 1989 if (Subtarget->isUsingPCRelativeCalls()) 1990 return false; 1991 1992 // No plans to handle long double here. 1993 if (VT != MVT::f32 && VT != MVT::f64) 1994 return 0; 1995 1996 // All FP constants are loaded from the constant pool. 1997 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 1998 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 1999 const bool HasSPE = Subtarget->hasSPE(); 2000 const TargetRegisterClass *RC; 2001 if (HasSPE) 2002 RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass); 2003 else 2004 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); 2005 2006 Register DestReg = createResultReg(RC); 2007 CodeModel::Model CModel = TM.getCodeModel(); 2008 2009 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 2010 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 2011 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment); 2012 2013 unsigned Opc; 2014 2015 if (HasSPE) 2016 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); 2017 else 2018 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); 2019 2020 Register TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2021 2022 PPCFuncInfo->setUsesTOCBasePtr(); 2023 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 2024 if (CModel == CodeModel::Small) { 2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocCPT), 2026 TmpReg) 2027 .addConstantPoolIndex(Idx).addReg(PPC::X2); 2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2029 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 2030 } else { 2031 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)). 2032 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8), 2033 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 2034 // But for large code model, we must generate a LDtocL followed 2035 // by the LF[SD]. 2036 if (CModel == CodeModel::Large) { 2037 Register TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2038 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL), 2039 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2041 .addImm(0) 2042 .addReg(TmpReg2); 2043 } else 2044 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2045 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 2046 .addReg(TmpReg) 2047 .addMemOperand(MMO); 2048 } 2049 2050 return DestReg; 2051 } 2052 2053 // Materialize the address of a global value into a register, and return 2054 // the register number (or zero if we failed to handle it). 2055 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 2056 // If this is a PC-Rel function, let SDISel handle GV materialization. 2057 if (Subtarget->isUsingPCRelativeCalls()) 2058 return false; 2059 2060 assert(VT == MVT::i64 && "Non-address!"); 2061 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 2062 Register DestReg = createResultReg(RC); 2063 2064 // Global values may be plain old object addresses, TLS object 2065 // addresses, constant pool entries, or jump tables. How we generate 2066 // code for these may depend on small, medium, or large code model. 2067 CodeModel::Model CModel = TM.getCodeModel(); 2068 2069 // FIXME: Jump tables are not yet required because fast-isel doesn't 2070 // handle switches; if that changes, we need them as well. For now, 2071 // what follows assumes everything's a generic (or TLS) global address. 2072 2073 // FIXME: We don't yet handle the complexity of TLS. 2074 if (GV->isThreadLocal()) 2075 return 0; 2076 2077 // If the global has the toc-data attribute then fallback to DAG-ISEL. 2078 if (TM.getTargetTriple().isOSAIX()) 2079 if (const GlobalVariable *Var = dyn_cast_or_null<GlobalVariable>(GV)) 2080 if (Var->hasAttribute("toc-data")) 2081 return false; 2082 2083 PPCFuncInfo->setUsesTOCBasePtr(); 2084 // For small code model, generate a simple TOC load. 2085 if (CModel == CodeModel::Small) 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtoc), 2087 DestReg) 2088 .addGlobalAddress(GV) 2089 .addReg(PPC::X2); 2090 else { 2091 // If the address is an externally defined symbol, a symbol with common 2092 // or externally available linkage, a non-local function address, or a 2093 // jump table address (not yet needed), or if we are generating code 2094 // for large code model, we generate: 2095 // LDtocL(GV, ADDIStocHA8(%x2, GV)) 2096 // Otherwise we generate: 2097 // ADDItocL(ADDIStocHA8(%x2, GV), GV) 2098 // Either way, start with the ADDIStocHA8: 2099 Register HighPartReg = createResultReg(RC); 2100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8), 2101 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2102 2103 if (Subtarget->isGVIndirectSymbol(GV)) { 2104 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL), 2105 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2106 } else { 2107 // Otherwise generate the ADDItocL. 2108 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDItocL), 2109 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 2110 } 2111 } 2112 2113 return DestReg; 2114 } 2115 2116 // Materialize a 32-bit integer constant into a register, and return 2117 // the register number (or zero if we failed to handle it). 2118 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2119 const TargetRegisterClass *RC) { 2120 unsigned Lo = Imm & 0xFFFF; 2121 unsigned Hi = (Imm >> 16) & 0xFFFF; 2122 2123 Register ResultReg = createResultReg(RC); 2124 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2125 2126 if (isInt<16>(Imm)) 2127 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2128 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2129 .addImm(Imm); 2130 else if (Lo) { 2131 // Both Lo and Hi have nonzero bits. 2132 Register TmpReg = createResultReg(RC); 2133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2134 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2135 .addImm(Hi); 2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2137 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2138 .addReg(TmpReg).addImm(Lo); 2139 } else 2140 // Just Hi bits. 2141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2142 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2143 .addImm(Hi); 2144 2145 return ResultReg; 2146 } 2147 2148 // Materialize a 64-bit integer constant into a register, and return 2149 // the register number (or zero if we failed to handle it). 2150 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2151 const TargetRegisterClass *RC) { 2152 unsigned Remainder = 0; 2153 unsigned Shift = 0; 2154 2155 // If the value doesn't fit in 32 bits, see if we can shift it 2156 // so that it fits in 32 bits. 2157 if (!isInt<32>(Imm)) { 2158 Shift = countTrailingZeros<uint64_t>(Imm); 2159 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2160 2161 if (isInt<32>(ImmSh)) 2162 Imm = ImmSh; 2163 else { 2164 Remainder = Imm; 2165 Shift = 32; 2166 Imm >>= 32; 2167 } 2168 } 2169 2170 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2171 // (if not shifted). 2172 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2173 if (!Shift) 2174 return TmpReg1; 2175 2176 // If upper 32 bits were not zero, we've built them and need to shift 2177 // them into place. 2178 unsigned TmpReg2; 2179 if (Imm) { 2180 TmpReg2 = createResultReg(RC); 2181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLDICR), 2182 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2183 } else 2184 TmpReg2 = TmpReg1; 2185 2186 unsigned TmpReg3, Hi, Lo; 2187 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2188 TmpReg3 = createResultReg(RC); 2189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORIS8), 2190 TmpReg3).addReg(TmpReg2).addImm(Hi); 2191 } else 2192 TmpReg3 = TmpReg2; 2193 2194 if ((Lo = Remainder & 0xFFFF)) { 2195 Register ResultReg = createResultReg(RC); 2196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORI8), 2197 ResultReg).addReg(TmpReg3).addImm(Lo); 2198 return ResultReg; 2199 } 2200 2201 return TmpReg3; 2202 } 2203 2204 // Materialize an integer constant into a register, and return 2205 // the register number (or zero if we failed to handle it). 2206 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2207 bool UseSExt) { 2208 // If we're using CR bit registers for i1 values, handle that as a special 2209 // case first. 2210 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2211 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2212 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2213 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2214 return ImmReg; 2215 } 2216 2217 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2218 VT != MVT::i1) 2219 return 0; 2220 2221 const TargetRegisterClass *RC = 2222 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2223 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2224 2225 // If the constant is in range, use a load-immediate. 2226 // Since LI will sign extend the constant we need to make sure that for 2227 // our zeroext constants that the sign extended constant fits into 16-bits - 2228 // a range of 0..0x7fff. 2229 if (isInt<16>(Imm)) { 2230 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2231 Register ImmReg = createResultReg(RC); 2232 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ImmReg) 2233 .addImm(Imm); 2234 return ImmReg; 2235 } 2236 2237 // Construct the constant piecewise. 2238 if (VT == MVT::i64) 2239 return PPCMaterialize64BitInt(Imm, RC); 2240 else if (VT == MVT::i32) 2241 return PPCMaterialize32BitInt(Imm, RC); 2242 2243 return 0; 2244 } 2245 2246 // Materialize a constant into a register, and return the register 2247 // number (or zero if we failed to handle it). 2248 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2249 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2250 2251 // Only handle simple types. 2252 if (!CEVT.isSimple()) return 0; 2253 MVT VT = CEVT.getSimpleVT(); 2254 2255 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2256 return PPCMaterializeFP(CFP, VT); 2257 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2258 return PPCMaterializeGV(GV, VT); 2259 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2260 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2261 // assumes that constant PHI operands will be zero extended, and failure to 2262 // match that assumption will cause problems if we sign extend here but 2263 // some user of a PHI is in a block for which we fall back to full SDAG 2264 // instruction selection. 2265 return PPCMaterializeInt(CI, VT, false); 2266 2267 return 0; 2268 } 2269 2270 // Materialize the address created by an alloca into a register, and 2271 // return the register number (or zero if we failed to handle it). 2272 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2273 // Don't handle dynamic allocas. 2274 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2275 2276 MVT VT; 2277 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2278 2279 DenseMap<const AllocaInst*, int>::iterator SI = 2280 FuncInfo.StaticAllocaMap.find(AI); 2281 2282 if (SI != FuncInfo.StaticAllocaMap.end()) { 2283 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2284 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8), 2285 ResultReg).addFrameIndex(SI->second).addImm(0); 2286 return ResultReg; 2287 } 2288 2289 return 0; 2290 } 2291 2292 // Fold loads into extends when possible. 2293 // FIXME: We can have multiple redundant extend/trunc instructions 2294 // following a load. The folding only picks up one. Extend this 2295 // to check subsequent instructions for the same pattern and remove 2296 // them. Thus ResultReg should be the def reg for the last redundant 2297 // instruction in a chain, and all intervening instructions can be 2298 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2299 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2300 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2301 const LoadInst *LI) { 2302 // Verify we have a legal type before going any further. 2303 MVT VT; 2304 if (!isLoadTypeLegal(LI->getType(), VT)) 2305 return false; 2306 2307 // Combine load followed by zero- or sign-extend. 2308 bool IsZExt = false; 2309 switch(MI->getOpcode()) { 2310 default: 2311 return false; 2312 2313 case PPC::RLDICL: 2314 case PPC::RLDICL_32_64: { 2315 IsZExt = true; 2316 unsigned MB = MI->getOperand(3).getImm(); 2317 if ((VT == MVT::i8 && MB <= 56) || 2318 (VT == MVT::i16 && MB <= 48) || 2319 (VT == MVT::i32 && MB <= 32)) 2320 break; 2321 return false; 2322 } 2323 2324 case PPC::RLWINM: 2325 case PPC::RLWINM8: { 2326 IsZExt = true; 2327 unsigned MB = MI->getOperand(3).getImm(); 2328 if ((VT == MVT::i8 && MB <= 24) || 2329 (VT == MVT::i16 && MB <= 16)) 2330 break; 2331 return false; 2332 } 2333 2334 case PPC::EXTSB: 2335 case PPC::EXTSB8: 2336 case PPC::EXTSB8_32_64: 2337 /* There is no sign-extending load-byte instruction. */ 2338 return false; 2339 2340 case PPC::EXTSH: 2341 case PPC::EXTSH8: 2342 case PPC::EXTSH8_32_64: { 2343 if (VT != MVT::i16 && VT != MVT::i8) 2344 return false; 2345 break; 2346 } 2347 2348 case PPC::EXTSW: 2349 case PPC::EXTSW_32: 2350 case PPC::EXTSW_32_64: { 2351 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2352 return false; 2353 break; 2354 } 2355 } 2356 2357 // See if we can handle this address. 2358 Address Addr; 2359 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2360 return false; 2361 2362 Register ResultReg = MI->getOperand(0).getReg(); 2363 2364 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt, 2365 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 2366 return false; 2367 2368 MachineBasicBlock::iterator I(MI); 2369 removeDeadCode(I, std::next(I)); 2370 return true; 2371 } 2372 2373 // Attempt to lower call arguments in a faster way than done by 2374 // the selection DAG code. 2375 bool PPCFastISel::fastLowerArguments() { 2376 // Defer to normal argument lowering for now. It's reasonably 2377 // efficient. Consider doing something like ARM to handle the 2378 // case where all args fit in registers, no varargs, no float 2379 // or vector args. 2380 return false; 2381 } 2382 2383 // Handle materializing integer constants into a register. This is not 2384 // automatically generated for PowerPC, so must be explicitly created here. 2385 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2386 2387 if (Opc != ISD::Constant) 2388 return 0; 2389 2390 // If we're using CR bit registers for i1 values, handle that as a special 2391 // case first. 2392 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2393 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2394 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2395 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2396 return ImmReg; 2397 } 2398 2399 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2400 VT != MVT::i1) 2401 return 0; 2402 2403 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2404 &PPC::GPRCRegClass); 2405 if (VT == MVT::i64) 2406 return PPCMaterialize64BitInt(Imm, RC); 2407 else 2408 return PPCMaterialize32BitInt(Imm, RC); 2409 } 2410 2411 // Override for ADDI and ADDI8 to set the correct register class 2412 // on RHS operand 0. The automatic infrastructure naively assumes 2413 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2414 // for these cases. At the moment, none of the other automatically 2415 // generated RI instructions require special treatment. However, once 2416 // SelectSelect is implemented, "isel" requires similar handling. 2417 // 2418 // Also be conservative about the output register class. Avoid 2419 // assigning R0 or X0 to the output register for GPRC and G8RC 2420 // register classes, as any such result could be used in ADDI, etc., 2421 // where those regs have another meaning. 2422 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2423 const TargetRegisterClass *RC, 2424 unsigned Op0, 2425 uint64_t Imm) { 2426 if (MachineInstOpcode == PPC::ADDI) 2427 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2428 else if (MachineInstOpcode == PPC::ADDI8) 2429 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2430 2431 const TargetRegisterClass *UseRC = 2432 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2433 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2434 2435 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm); 2436 } 2437 2438 // Override for instructions with one register operand to avoid use of 2439 // R0/X0. The automatic infrastructure isn't aware of the context so 2440 // we must be conservative. 2441 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2442 const TargetRegisterClass* RC, 2443 unsigned Op0) { 2444 const TargetRegisterClass *UseRC = 2445 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2446 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2447 2448 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0); 2449 } 2450 2451 // Override for instructions with two register operands to avoid use 2452 // of R0/X0. The automatic infrastructure isn't aware of the context 2453 // so we must be conservative. 2454 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2455 const TargetRegisterClass* RC, 2456 unsigned Op0, unsigned Op1) { 2457 const TargetRegisterClass *UseRC = 2458 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2459 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2460 2461 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1); 2462 } 2463 2464 namespace llvm { 2465 // Create the fast instruction selector for PowerPC64 ELF. 2466 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2467 const TargetLibraryInfo *LibInfo) { 2468 // Only available on 64-bit for now. 2469 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2470 if (Subtarget.isPPC64()) 2471 return new PPCFastISel(FuncInfo, LibInfo); 2472 return nullptr; 2473 } 2474 } 2475