xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFastISel.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
40 
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 //   fastLowerArguments: Handle simple cases.
45 //   PPCMaterializeGV: Handle TLS.
46 //   SelectCall: Handle function pointers.
47 //   SelectCall: Handle multi-register return values.
48 //   SelectCall: Optimize away nops for local calls.
49 //   processCallArgs: Handle bit-converted arguments.
50 //   finishCall: Handle multi-register return values.
51 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
52 //   PPCEmitCmp: Handle immediate as operand 1.
53 //   SelectCall: Handle small byval arguments.
54 //   SelectIntrinsicCall: Implement.
55 //   SelectSelect: Implement.
56 //   Consider factoring isTypeLegal into the base class.
57 //   Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "ppcfastisel"
63 
64 namespace {
65 
66 struct Address {
67   enum {
68     RegBase,
69     FrameIndexBase
70   } BaseType;
71 
72   union {
73     unsigned Reg;
74     int FI;
75   } Base;
76 
77   long Offset;
78 
79   // Innocuous defaults for our address.
80   Address()
81    : BaseType(RegBase), Offset(0) {
82      Base.Reg = 0;
83    }
84 };
85 
86 class PPCFastISel final : public FastISel {
87 
88   const TargetMachine &TM;
89   const PPCSubtarget *Subtarget;
90   PPCFunctionInfo *PPCFuncInfo;
91   const TargetInstrInfo &TII;
92   const TargetLowering &TLI;
93   LLVMContext *Context;
94 
95   public:
96     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97                          const TargetLibraryInfo *LibInfo)
98         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99           Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101           TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
102           Context(&FuncInfo.Fn->getContext()) {}
103 
104     // Backend specific FastISel code.
105   private:
106     bool fastSelectInstruction(const Instruction *I) override;
107     unsigned fastMaterializeConstant(const Constant *C) override;
108     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
109     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
110                              const LoadInst *LI) override;
111     bool fastLowerArguments() override;
112     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
113     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
114                              const TargetRegisterClass *RC,
115                              unsigned Op0, uint64_t Imm);
116     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
117                             const TargetRegisterClass *RC, unsigned Op0);
118     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
119                              const TargetRegisterClass *RC,
120                              unsigned Op0, unsigned Op1);
121 
122     bool fastLowerCall(CallLoweringInfo &CLI) override;
123 
124   // Instruction selection routines.
125   private:
126     bool SelectLoad(const Instruction *I);
127     bool SelectStore(const Instruction *I);
128     bool SelectBranch(const Instruction *I);
129     bool SelectIndirectBr(const Instruction *I);
130     bool SelectFPExt(const Instruction *I);
131     bool SelectFPTrunc(const Instruction *I);
132     bool SelectIToFP(const Instruction *I, bool IsSigned);
133     bool SelectFPToI(const Instruction *I, bool IsSigned);
134     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
135     bool SelectRet(const Instruction *I);
136     bool SelectTrunc(const Instruction *I);
137     bool SelectIntExt(const Instruction *I);
138 
139   // Utility routines.
140   private:
141     bool isTypeLegal(Type *Ty, MVT &VT);
142     bool isLoadTypeLegal(Type *Ty, MVT &VT);
143     bool isValueAvailable(const Value *V) const;
144     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
145       return RC->getID() == PPC::VSFRCRegClassID;
146     }
147     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
148       return RC->getID() == PPC::VSSRCRegClassID;
149     }
150     unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
151                                unsigned SrcReg, unsigned Flag = 0,
152                                unsigned SubReg = 0) {
153       unsigned TmpReg = createResultReg(ToRC);
154       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
155               TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
156       return TmpReg;
157     }
158     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
159                     bool isZExt, unsigned DestReg,
160                     const PPC::Predicate Pred);
161     bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
162                      const TargetRegisterClass *RC, bool IsZExt = true,
163                      unsigned FP64LoadOpc = PPC::LFD);
164     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
165     bool PPCComputeAddress(const Value *Obj, Address &Addr);
166     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
167                             unsigned &IndexReg);
168     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
169                            unsigned DestReg, bool IsZExt);
170     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
171     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
172     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
173                                bool UseSExt = true);
174     unsigned PPCMaterialize32BitInt(int64_t Imm,
175                                     const TargetRegisterClass *RC);
176     unsigned PPCMaterialize64BitInt(int64_t Imm,
177                                     const TargetRegisterClass *RC);
178     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
179                              unsigned SrcReg, bool IsSigned);
180     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
181 
182   // Call handling routines.
183   private:
184     bool processCallArgs(SmallVectorImpl<Value*> &Args,
185                          SmallVectorImpl<unsigned> &ArgRegs,
186                          SmallVectorImpl<MVT> &ArgVTs,
187                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
188                          SmallVectorImpl<unsigned> &RegArgs,
189                          CallingConv::ID CC,
190                          unsigned &NumBytes,
191                          bool IsVarArg);
192     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
193 
194   private:
195   #include "PPCGenFastISel.inc"
196 
197 };
198 
199 } // end anonymous namespace
200 
201 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
202   switch (Pred) {
203     // These are not representable with any single compare.
204     case CmpInst::FCMP_FALSE:
205     case CmpInst::FCMP_TRUE:
206     // Major concern about the following 6 cases is NaN result. The comparison
207     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
208     // only one of which will be set. The result is generated by fcmpu
209     // instruction. However, bc instruction only inspects one of the first 3
210     // bits, so when un is set, bc instruction may jump to an undesired
211     // place.
212     //
213     // More specifically, if we expect an unordered comparison and un is set, we
214     // expect to always go to true branch; in such case UEQ, UGT and ULT still
215     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
216     // since they are tested by inspecting !eq, !lt, !gt, respectively.
217     //
218     // Similarly, for ordered comparison, when un is set, we always expect the
219     // result to be false. In such case OGT, OLT and OEQ is good, since they are
220     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
221     // and ONE are tested through !lt, !gt and !eq, and these are true.
222     case CmpInst::FCMP_UEQ:
223     case CmpInst::FCMP_UGT:
224     case CmpInst::FCMP_ULT:
225     case CmpInst::FCMP_OGE:
226     case CmpInst::FCMP_OLE:
227     case CmpInst::FCMP_ONE:
228     default:
229       return Optional<PPC::Predicate>();
230 
231     case CmpInst::FCMP_OEQ:
232     case CmpInst::ICMP_EQ:
233       return PPC::PRED_EQ;
234 
235     case CmpInst::FCMP_OGT:
236     case CmpInst::ICMP_UGT:
237     case CmpInst::ICMP_SGT:
238       return PPC::PRED_GT;
239 
240     case CmpInst::FCMP_UGE:
241     case CmpInst::ICMP_UGE:
242     case CmpInst::ICMP_SGE:
243       return PPC::PRED_GE;
244 
245     case CmpInst::FCMP_OLT:
246     case CmpInst::ICMP_ULT:
247     case CmpInst::ICMP_SLT:
248       return PPC::PRED_LT;
249 
250     case CmpInst::FCMP_ULE:
251     case CmpInst::ICMP_ULE:
252     case CmpInst::ICMP_SLE:
253       return PPC::PRED_LE;
254 
255     case CmpInst::FCMP_UNE:
256     case CmpInst::ICMP_NE:
257       return PPC::PRED_NE;
258 
259     case CmpInst::FCMP_ORD:
260       return PPC::PRED_NU;
261 
262     case CmpInst::FCMP_UNO:
263       return PPC::PRED_UN;
264   }
265 }
266 
267 // Determine whether the type Ty is simple enough to be handled by
268 // fast-isel, and return its equivalent machine type in VT.
269 // FIXME: Copied directly from ARM -- factor into base class?
270 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
271   EVT Evt = TLI.getValueType(DL, Ty, true);
272 
273   // Only handle simple types.
274   if (Evt == MVT::Other || !Evt.isSimple()) return false;
275   VT = Evt.getSimpleVT();
276 
277   // Handle all legal types, i.e. a register that will directly hold this
278   // value.
279   return TLI.isTypeLegal(VT);
280 }
281 
282 // Determine whether the type Ty is simple enough to be handled by
283 // fast-isel as a load target, and return its equivalent machine type in VT.
284 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
285   if (isTypeLegal(Ty, VT)) return true;
286 
287   // If this is a type than can be sign or zero-extended to a basic operation
288   // go ahead and accept it now.
289   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
290     return true;
291   }
292 
293   return false;
294 }
295 
296 bool PPCFastISel::isValueAvailable(const Value *V) const {
297   if (!isa<Instruction>(V))
298     return true;
299 
300   const auto *I = cast<Instruction>(V);
301   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
302 }
303 
304 // Given a value Obj, create an Address object Addr that represents its
305 // address.  Return false if we can't handle it.
306 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
307   const User *U = nullptr;
308   unsigned Opcode = Instruction::UserOp1;
309   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
310     // Don't walk into other basic blocks unless the object is an alloca from
311     // another block, otherwise it may not have a virtual register assigned.
312     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
313         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
314       Opcode = I->getOpcode();
315       U = I;
316     }
317   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
318     Opcode = C->getOpcode();
319     U = C;
320   }
321 
322   switch (Opcode) {
323     default:
324       break;
325     case Instruction::BitCast:
326       // Look through bitcasts.
327       return PPCComputeAddress(U->getOperand(0), Addr);
328     case Instruction::IntToPtr:
329       // Look past no-op inttoptrs.
330       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
331           TLI.getPointerTy(DL))
332         return PPCComputeAddress(U->getOperand(0), Addr);
333       break;
334     case Instruction::PtrToInt:
335       // Look past no-op ptrtoints.
336       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
337         return PPCComputeAddress(U->getOperand(0), Addr);
338       break;
339     case Instruction::GetElementPtr: {
340       Address SavedAddr = Addr;
341       long TmpOffset = Addr.Offset;
342 
343       // Iterate through the GEP folding the constants into offsets where
344       // we can.
345       gep_type_iterator GTI = gep_type_begin(U);
346       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
347            II != IE; ++II, ++GTI) {
348         const Value *Op = *II;
349         if (StructType *STy = GTI.getStructTypeOrNull()) {
350           const StructLayout *SL = DL.getStructLayout(STy);
351           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
352           TmpOffset += SL->getElementOffset(Idx);
353         } else {
354           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
355           for (;;) {
356             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
357               // Constant-offset addressing.
358               TmpOffset += CI->getSExtValue() * S;
359               break;
360             }
361             if (canFoldAddIntoGEP(U, Op)) {
362               // A compatible add with a constant operand. Fold the constant.
363               ConstantInt *CI =
364               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
365               TmpOffset += CI->getSExtValue() * S;
366               // Iterate on the other operand.
367               Op = cast<AddOperator>(Op)->getOperand(0);
368               continue;
369             }
370             // Unsupported
371             goto unsupported_gep;
372           }
373         }
374       }
375 
376       // Try to grab the base operand now.
377       Addr.Offset = TmpOffset;
378       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
379 
380       // We failed, restore everything and try the other options.
381       Addr = SavedAddr;
382 
383       unsupported_gep:
384       break;
385     }
386     case Instruction::Alloca: {
387       const AllocaInst *AI = cast<AllocaInst>(Obj);
388       DenseMap<const AllocaInst*, int>::iterator SI =
389         FuncInfo.StaticAllocaMap.find(AI);
390       if (SI != FuncInfo.StaticAllocaMap.end()) {
391         Addr.BaseType = Address::FrameIndexBase;
392         Addr.Base.FI = SI->second;
393         return true;
394       }
395       break;
396     }
397   }
398 
399   // FIXME: References to parameters fall through to the behavior
400   // below.  They should be able to reference a frame index since
401   // they are stored to the stack, so we can get "ld rx, offset(r1)"
402   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
403   // just contain the parameter.  Try to handle this with a FI.
404 
405   // Try to get this in a register if nothing else has worked.
406   if (Addr.Base.Reg == 0)
407     Addr.Base.Reg = getRegForValue(Obj);
408 
409   // Prevent assignment of base register to X0, which is inappropriate
410   // for loads and stores alike.
411   if (Addr.Base.Reg != 0)
412     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
413 
414   return Addr.Base.Reg != 0;
415 }
416 
417 // Fix up some addresses that can't be used directly.  For example, if
418 // an offset won't fit in an instruction field, we may need to move it
419 // into an index register.
420 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
421                                      unsigned &IndexReg) {
422 
423   // Check whether the offset fits in the instruction field.
424   if (!isInt<16>(Addr.Offset))
425     UseOffset = false;
426 
427   // If this is a stack pointer and the offset needs to be simplified then
428   // put the alloca address into a register, set the base type back to
429   // register and continue. This should almost never happen.
430   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
431     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
432     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
433             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
434     Addr.Base.Reg = ResultReg;
435     Addr.BaseType = Address::RegBase;
436   }
437 
438   if (!UseOffset) {
439     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
440     const ConstantInt *Offset =
441       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
442     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
443     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
444   }
445 }
446 
447 // Emit a load instruction if possible, returning true if we succeeded,
448 // otherwise false.  See commentary below for how the register class of
449 // the load is determined.
450 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
451                               const TargetRegisterClass *RC,
452                               bool IsZExt, unsigned FP64LoadOpc) {
453   unsigned Opc;
454   bool UseOffset = true;
455   bool HasSPE = Subtarget->hasSPE();
456 
457   // If ResultReg is given, it determines the register class of the load.
458   // Otherwise, RC is the register class to use.  If the result of the
459   // load isn't anticipated in this block, both may be zero, in which
460   // case we must make a conservative guess.  In particular, don't assign
461   // R0 or X0 to the result register, as the result may be used in a load,
462   // store, add-immediate, or isel that won't permit this.  (Though
463   // perhaps the spill and reload of live-exit values would handle this?)
464   const TargetRegisterClass *UseRC =
465     (ResultReg ? MRI.getRegClass(ResultReg) :
466      (RC ? RC :
467       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
468        (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
469         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
470          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
471 
472   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
473 
474   switch (VT.SimpleTy) {
475     default: // e.g., vector types not handled
476       return false;
477     case MVT::i8:
478       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
479       break;
480     case MVT::i16:
481       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
482                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
483       break;
484     case MVT::i32:
485       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
486                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
487       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
488         UseOffset = false;
489       break;
490     case MVT::i64:
491       Opc = PPC::LD;
492       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
493              "64-bit load with 32-bit target??");
494       UseOffset = ((Addr.Offset & 3) == 0);
495       break;
496     case MVT::f32:
497       Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
498       break;
499     case MVT::f64:
500       Opc = FP64LoadOpc;
501       break;
502   }
503 
504   // If necessary, materialize the offset into a register and use
505   // the indexed form.  Also handle stack pointers with special needs.
506   unsigned IndexReg = 0;
507   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
508 
509   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
510   // be used.
511   bool IsVSSRC = isVSSRCRegClass(UseRC);
512   bool IsVSFRC = isVSFRCRegClass(UseRC);
513   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
514   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
515   if ((Is32VSXLoad || Is64VSXLoad) &&
516       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
517       (Addr.Offset == 0)) {
518     UseOffset = false;
519   }
520 
521   if (ResultReg == 0)
522     ResultReg = createResultReg(UseRC);
523 
524   // Note: If we still have a frame index here, we know the offset is
525   // in range, as otherwise PPCSimplifyAddress would have converted it
526   // into a RegBase.
527   if (Addr.BaseType == Address::FrameIndexBase) {
528     // VSX only provides an indexed load.
529     if (Is32VSXLoad || Is64VSXLoad) return false;
530 
531     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
532         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
533                                           Addr.Offset),
534         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
535         MFI.getObjectAlign(Addr.Base.FI));
536 
537     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
538       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
539 
540   // Base reg with offset in range.
541   } else if (UseOffset) {
542     // VSX only provides an indexed load.
543     if (Is32VSXLoad || Is64VSXLoad) return false;
544 
545     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
546       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
547 
548   // Indexed form.
549   } else {
550     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
551     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
552     // is hard to get at.
553     switch (Opc) {
554       default:        llvm_unreachable("Unexpected opcode!");
555       case PPC::LBZ:    Opc = PPC::LBZX;    break;
556       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
557       case PPC::LHZ:    Opc = PPC::LHZX;    break;
558       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
559       case PPC::LHA:    Opc = PPC::LHAX;    break;
560       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
561       case PPC::LWZ:    Opc = PPC::LWZX;    break;
562       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
563       case PPC::LWA:    Opc = PPC::LWAX;    break;
564       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
565       case PPC::LD:     Opc = PPC::LDX;     break;
566       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
567       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
568       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
569       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
570     }
571 
572     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
573                        ResultReg);
574 
575     // If we have an index register defined we use it in the store inst,
576     // otherwise we use X0 as base as it makes the vector instructions to
577     // use zero in the computation of the effective address regardless the
578     // content of the register.
579     if (IndexReg)
580       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
581     else
582       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
583   }
584 
585   return true;
586 }
587 
588 // Attempt to fast-select a load instruction.
589 bool PPCFastISel::SelectLoad(const Instruction *I) {
590   // FIXME: No atomic loads are supported.
591   if (cast<LoadInst>(I)->isAtomic())
592     return false;
593 
594   // Verify we have a legal type before going any further.
595   MVT VT;
596   if (!isLoadTypeLegal(I->getType(), VT))
597     return false;
598 
599   // See if we can handle this address.
600   Address Addr;
601   if (!PPCComputeAddress(I->getOperand(0), Addr))
602     return false;
603 
604   // Look at the currently assigned register for this instruction
605   // to determine the required register class.  This is necessary
606   // to constrain RA from using R0/X0 when this is not legal.
607   unsigned AssignedReg = FuncInfo.ValueMap[I];
608   const TargetRegisterClass *RC =
609     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
610 
611   Register ResultReg = 0;
612   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
613                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
614     return false;
615   updateValueMap(I, ResultReg);
616   return true;
617 }
618 
619 // Emit a store instruction to store SrcReg at Addr.
620 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
621   assert(SrcReg && "Nothing to store!");
622   unsigned Opc;
623   bool UseOffset = true;
624 
625   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
626   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
627 
628   switch (VT.SimpleTy) {
629     default: // e.g., vector types not handled
630       return false;
631     case MVT::i8:
632       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
633       break;
634     case MVT::i16:
635       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
636       break;
637     case MVT::i32:
638       assert(Is32BitInt && "Not GPRC for i32??");
639       Opc = PPC::STW;
640       break;
641     case MVT::i64:
642       Opc = PPC::STD;
643       UseOffset = ((Addr.Offset & 3) == 0);
644       break;
645     case MVT::f32:
646       Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
647       break;
648     case MVT::f64:
649       Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
650       break;
651   }
652 
653   // If necessary, materialize the offset into a register and use
654   // the indexed form.  Also handle stack pointers with special needs.
655   unsigned IndexReg = 0;
656   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
657 
658   // If this is a potential VSX store with an offset of 0, a VSX indexed store
659   // can be used.
660   bool IsVSSRC = isVSSRCRegClass(RC);
661   bool IsVSFRC = isVSFRCRegClass(RC);
662   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
663   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
664   if ((Is32VSXStore || Is64VSXStore) &&
665       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
666       (Addr.Offset == 0)) {
667     UseOffset = false;
668   }
669 
670   // Note: If we still have a frame index here, we know the offset is
671   // in range, as otherwise PPCSimplifyAddress would have converted it
672   // into a RegBase.
673   if (Addr.BaseType == Address::FrameIndexBase) {
674     // VSX only provides an indexed store.
675     if (Is32VSXStore || Is64VSXStore) return false;
676 
677     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
678         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
679                                           Addr.Offset),
680         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
681         MFI.getObjectAlign(Addr.Base.FI));
682 
683     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
684         .addReg(SrcReg)
685         .addImm(Addr.Offset)
686         .addFrameIndex(Addr.Base.FI)
687         .addMemOperand(MMO);
688 
689   // Base reg with offset in range.
690   } else if (UseOffset) {
691     // VSX only provides an indexed store.
692     if (Is32VSXStore || Is64VSXStore)
693       return false;
694 
695     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
696       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
697 
698   // Indexed form.
699   } else {
700     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
701     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
702     // is hard to get at.
703     switch (Opc) {
704       default:        llvm_unreachable("Unexpected opcode!");
705       case PPC::STB:  Opc = PPC::STBX;  break;
706       case PPC::STH : Opc = PPC::STHX;  break;
707       case PPC::STW : Opc = PPC::STWX;  break;
708       case PPC::STB8: Opc = PPC::STBX8; break;
709       case PPC::STH8: Opc = PPC::STHX8; break;
710       case PPC::STW8: Opc = PPC::STWX8; break;
711       case PPC::STD:  Opc = PPC::STDX;  break;
712       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
713       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
714       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
715       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
716     }
717 
718     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
719         .addReg(SrcReg);
720 
721     // If we have an index register defined we use it in the store inst,
722     // otherwise we use X0 as base as it makes the vector instructions to
723     // use zero in the computation of the effective address regardless the
724     // content of the register.
725     if (IndexReg)
726       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
727     else
728       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
729   }
730 
731   return true;
732 }
733 
734 // Attempt to fast-select a store instruction.
735 bool PPCFastISel::SelectStore(const Instruction *I) {
736   Value *Op0 = I->getOperand(0);
737   unsigned SrcReg = 0;
738 
739   // FIXME: No atomics loads are supported.
740   if (cast<StoreInst>(I)->isAtomic())
741     return false;
742 
743   // Verify we have a legal type before going any further.
744   MVT VT;
745   if (!isLoadTypeLegal(Op0->getType(), VT))
746     return false;
747 
748   // Get the value to be stored into a register.
749   SrcReg = getRegForValue(Op0);
750   if (SrcReg == 0)
751     return false;
752 
753   // See if we can handle this address.
754   Address Addr;
755   if (!PPCComputeAddress(I->getOperand(1), Addr))
756     return false;
757 
758   if (!PPCEmitStore(VT, SrcReg, Addr))
759     return false;
760 
761   return true;
762 }
763 
764 // Attempt to fast-select a branch instruction.
765 bool PPCFastISel::SelectBranch(const Instruction *I) {
766   const BranchInst *BI = cast<BranchInst>(I);
767   MachineBasicBlock *BrBB = FuncInfo.MBB;
768   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
769   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
770 
771   // For now, just try the simplest case where it's fed by a compare.
772   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
773     if (isValueAvailable(CI)) {
774       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
775       if (!OptPPCPred)
776         return false;
777 
778       PPC::Predicate PPCPred = OptPPCPred.getValue();
779 
780       // Take advantage of fall-through opportunities.
781       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
782         std::swap(TBB, FBB);
783         PPCPred = PPC::InvertPredicate(PPCPred);
784       }
785 
786       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
787 
788       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
789                       CondReg, PPCPred))
790         return false;
791 
792       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
793           .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
794           .addReg(CondReg)
795           .addMBB(TBB);
796       finishCondBranch(BI->getParent(), TBB, FBB);
797       return true;
798     }
799   } else if (const ConstantInt *CI =
800              dyn_cast<ConstantInt>(BI->getCondition())) {
801     uint64_t Imm = CI->getZExtValue();
802     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
803     fastEmitBranch(Target, DbgLoc);
804     return true;
805   }
806 
807   // FIXME: ARM looks for a case where the block containing the compare
808   // has been split from the block containing the branch.  If this happens,
809   // there is a vreg available containing the result of the compare.  I'm
810   // not sure we can do much, as we've lost the predicate information with
811   // the compare instruction -- we have a 4-bit CR but don't know which bit
812   // to test here.
813   return false;
814 }
815 
816 // Attempt to emit a compare of the two source values.  Signed and unsigned
817 // comparisons are supported.  Return false if we can't handle it.
818 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
819                              bool IsZExt, unsigned DestReg,
820                              const PPC::Predicate Pred) {
821   Type *Ty = SrcValue1->getType();
822   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
823   if (!SrcEVT.isSimple())
824     return false;
825   MVT SrcVT = SrcEVT.getSimpleVT();
826 
827   if (SrcVT == MVT::i1 && Subtarget->useCRBits())
828     return false;
829 
830   // See if operand 2 is an immediate encodeable in the compare.
831   // FIXME: Operands are not in canonical order at -O0, so an immediate
832   // operand in position 1 is a lost opportunity for now.  We are
833   // similar to ARM in this regard.
834   long Imm = 0;
835   bool UseImm = false;
836   const bool HasSPE = Subtarget->hasSPE();
837 
838   // Only 16-bit integer constants can be represented in compares for
839   // PowerPC.  Others will be materialized into a register.
840   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
841     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
842         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
843       const APInt &CIVal = ConstInt->getValue();
844       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
845       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
846         UseImm = true;
847     }
848   }
849 
850   unsigned SrcReg1 = getRegForValue(SrcValue1);
851   if (SrcReg1 == 0)
852     return false;
853 
854   unsigned SrcReg2 = 0;
855   if (!UseImm) {
856     SrcReg2 = getRegForValue(SrcValue2);
857     if (SrcReg2 == 0)
858       return false;
859   }
860 
861   unsigned CmpOpc;
862   bool NeedsExt = false;
863 
864   auto RC1 = MRI.getRegClass(SrcReg1);
865   auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
866 
867   switch (SrcVT.SimpleTy) {
868     default: return false;
869     case MVT::f32:
870       if (HasSPE) {
871         switch (Pred) {
872           default: return false;
873           case PPC::PRED_EQ:
874             CmpOpc = PPC::EFSCMPEQ;
875             break;
876           case PPC::PRED_LT:
877             CmpOpc = PPC::EFSCMPLT;
878             break;
879           case PPC::PRED_GT:
880             CmpOpc = PPC::EFSCMPGT;
881             break;
882         }
883       } else {
884         CmpOpc = PPC::FCMPUS;
885         if (isVSSRCRegClass(RC1))
886           SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
887         if (RC2 && isVSSRCRegClass(RC2))
888           SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
889       }
890       break;
891     case MVT::f64:
892       if (HasSPE) {
893         switch (Pred) {
894           default: return false;
895           case PPC::PRED_EQ:
896             CmpOpc = PPC::EFDCMPEQ;
897             break;
898           case PPC::PRED_LT:
899             CmpOpc = PPC::EFDCMPLT;
900             break;
901           case PPC::PRED_GT:
902             CmpOpc = PPC::EFDCMPGT;
903             break;
904         }
905       } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
906         CmpOpc = PPC::XSCMPUDP;
907       } else {
908         CmpOpc = PPC::FCMPUD;
909       }
910       break;
911     case MVT::i1:
912     case MVT::i8:
913     case MVT::i16:
914       NeedsExt = true;
915       LLVM_FALLTHROUGH;
916     case MVT::i32:
917       if (!UseImm)
918         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
919       else
920         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
921       break;
922     case MVT::i64:
923       if (!UseImm)
924         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
925       else
926         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
927       break;
928   }
929 
930   if (NeedsExt) {
931     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
932     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
933       return false;
934     SrcReg1 = ExtReg;
935 
936     if (!UseImm) {
937       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
938       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
939         return false;
940       SrcReg2 = ExtReg;
941     }
942   }
943 
944   if (!UseImm)
945     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
946       .addReg(SrcReg1).addReg(SrcReg2);
947   else
948     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
949       .addReg(SrcReg1).addImm(Imm);
950 
951   return true;
952 }
953 
954 // Attempt to fast-select a floating-point extend instruction.
955 bool PPCFastISel::SelectFPExt(const Instruction *I) {
956   Value *Src  = I->getOperand(0);
957   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
958   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
959 
960   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
961     return false;
962 
963   unsigned SrcReg = getRegForValue(Src);
964   if (!SrcReg)
965     return false;
966 
967   // No code is generated for a FP extend.
968   updateValueMap(I, SrcReg);
969   return true;
970 }
971 
972 // Attempt to fast-select a floating-point truncate instruction.
973 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
974   Value *Src  = I->getOperand(0);
975   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
976   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
977 
978   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
979     return false;
980 
981   unsigned SrcReg = getRegForValue(Src);
982   if (!SrcReg)
983     return false;
984 
985   // Round the result to single precision.
986   unsigned DestReg;
987   auto RC = MRI.getRegClass(SrcReg);
988   if (Subtarget->hasSPE()) {
989     DestReg = createResultReg(&PPC::GPRCRegClass);
990     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
991       TII.get(PPC::EFSCFD), DestReg)
992       .addReg(SrcReg);
993   } else if (isVSFRCRegClass(RC)) {
994     DestReg = createResultReg(&PPC::VSSRCRegClass);
995     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
996       TII.get(PPC::XSRSP), DestReg)
997       .addReg(SrcReg);
998   } else {
999     DestReg = createResultReg(&PPC::F4RCRegClass);
1000     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1001       TII.get(PPC::FRSP), DestReg)
1002       .addReg(SrcReg);
1003   }
1004 
1005   updateValueMap(I, DestReg);
1006   return true;
1007 }
1008 
1009 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1010 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1011 // those should be used instead of moving via a stack slot when the
1012 // subtarget permits.
1013 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1014 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1015 // case to 8 bytes which produces tighter code but wastes stack space.
1016 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1017                                      bool IsSigned) {
1018 
1019   // If necessary, extend 32-bit int to 64-bit.
1020   if (SrcVT == MVT::i32) {
1021     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1022     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1023       return 0;
1024     SrcReg = TmpReg;
1025   }
1026 
1027   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1028   Address Addr;
1029   Addr.BaseType = Address::FrameIndexBase;
1030   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1031 
1032   // Store the value from the GPR.
1033   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1034     return 0;
1035 
1036   // Load the integer value into an FPR.  The kind of load used depends
1037   // on a number of conditions.
1038   unsigned LoadOpc = PPC::LFD;
1039 
1040   if (SrcVT == MVT::i32) {
1041     if (!IsSigned) {
1042       LoadOpc = PPC::LFIWZX;
1043       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1044     } else if (Subtarget->hasLFIWAX()) {
1045       LoadOpc = PPC::LFIWAX;
1046       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1047     }
1048   }
1049 
1050   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1051   Register ResultReg = 0;
1052   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1053     return 0;
1054 
1055   return ResultReg;
1056 }
1057 
1058 // Attempt to fast-select an integer-to-floating-point conversion.
1059 // FIXME: Once fast-isel has better support for VSX, conversions using
1060 //        direct moves should be implemented.
1061 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1062   MVT DstVT;
1063   Type *DstTy = I->getType();
1064   if (!isTypeLegal(DstTy, DstVT))
1065     return false;
1066 
1067   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1068     return false;
1069 
1070   Value *Src = I->getOperand(0);
1071   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1072   if (!SrcEVT.isSimple())
1073     return false;
1074 
1075   MVT SrcVT = SrcEVT.getSimpleVT();
1076 
1077   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1078       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1079     return false;
1080 
1081   unsigned SrcReg = getRegForValue(Src);
1082   if (SrcReg == 0)
1083     return false;
1084 
1085   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1086   if (Subtarget->hasSPE()) {
1087     unsigned Opc;
1088     if (DstVT == MVT::f32)
1089       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1090     else
1091       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1092 
1093     unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1094     // Generate the convert.
1095     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1096       .addReg(SrcReg);
1097     updateValueMap(I, DestReg);
1098     return true;
1099   }
1100 
1101   // We can only lower an unsigned convert if we have the newer
1102   // floating-point conversion operations.
1103   if (!IsSigned && !Subtarget->hasFPCVT())
1104     return false;
1105 
1106   // FIXME: For now we require the newer floating-point conversion operations
1107   // (which are present only on P7 and A2 server models) when converting
1108   // to single-precision float.  Otherwise we have to generate a lot of
1109   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1110   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1111   if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1112     return false;
1113 
1114   // Extend the input if necessary.
1115   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1116     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1117     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1118       return false;
1119     SrcVT = MVT::i64;
1120     SrcReg = TmpReg;
1121   }
1122 
1123   // Move the integer value to an FPR.
1124   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1125   if (FPReg == 0)
1126     return false;
1127 
1128   // Determine the opcode for the conversion.
1129   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1130   unsigned DestReg = createResultReg(RC);
1131   unsigned Opc;
1132 
1133   if (DstVT == MVT::f32)
1134     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1135   else
1136     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1137 
1138   // Generate the convert.
1139   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1140     .addReg(FPReg);
1141 
1142   updateValueMap(I, DestReg);
1143   return true;
1144 }
1145 
1146 // Move the floating-point value in SrcReg into an integer destination
1147 // register, and return the register (or zero if we can't handle it).
1148 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1149 // those should be used instead of moving via a stack slot when the
1150 // subtarget permits.
1151 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1152                                       unsigned SrcReg, bool IsSigned) {
1153   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1154   // Note that if have STFIWX available, we could use a 4-byte stack
1155   // slot for i32, but this being fast-isel we'll just go with the
1156   // easiest code gen possible.
1157   Address Addr;
1158   Addr.BaseType = Address::FrameIndexBase;
1159   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1160 
1161   // Store the value from the FPR.
1162   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1163     return 0;
1164 
1165   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1166   // address to have a 4-byte offset so we load from the right place.
1167   if (VT == MVT::i32)
1168     Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1169 
1170   // Look at the currently assigned register for this instruction
1171   // to determine the required register class.
1172   unsigned AssignedReg = FuncInfo.ValueMap[I];
1173   const TargetRegisterClass *RC =
1174     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1175 
1176   Register ResultReg = 0;
1177   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1178     return 0;
1179 
1180   return ResultReg;
1181 }
1182 
1183 // Attempt to fast-select a floating-point-to-integer conversion.
1184 // FIXME: Once fast-isel has better support for VSX, conversions using
1185 //        direct moves should be implemented.
1186 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1187   MVT DstVT, SrcVT;
1188   Type *DstTy = I->getType();
1189   if (!isTypeLegal(DstTy, DstVT))
1190     return false;
1191 
1192   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1193     return false;
1194 
1195   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1196   if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1197       !Subtarget->hasSPE())
1198     return false;
1199 
1200   Value *Src = I->getOperand(0);
1201   Type *SrcTy = Src->getType();
1202   if (!isTypeLegal(SrcTy, SrcVT))
1203     return false;
1204 
1205   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1206     return false;
1207 
1208   unsigned SrcReg = getRegForValue(Src);
1209   if (SrcReg == 0)
1210     return false;
1211 
1212   // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1213   // meaningless copy to get the register class right.
1214   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1215   if (InRC == &PPC::F4RCRegClass)
1216     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1217   else if (InRC == &PPC::VSSRCRegClass)
1218     SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1219 
1220   // Determine the opcode for the conversion, which takes place
1221   // entirely within FPRs or VSRs.
1222   unsigned DestReg;
1223   unsigned Opc;
1224   auto RC = MRI.getRegClass(SrcReg);
1225 
1226   if (Subtarget->hasSPE()) {
1227     DestReg = createResultReg(&PPC::GPRCRegClass);
1228     if (IsSigned)
1229       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1230     else
1231       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1232   } else if (isVSFRCRegClass(RC)) {
1233     DestReg = createResultReg(&PPC::VSFRCRegClass);
1234     if (DstVT == MVT::i32)
1235       Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1236     else
1237       Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1238   } else {
1239     DestReg = createResultReg(&PPC::F8RCRegClass);
1240     if (DstVT == MVT::i32)
1241       if (IsSigned)
1242         Opc = PPC::FCTIWZ;
1243       else
1244         Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1245     else
1246       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1247   }
1248 
1249   // Generate the convert.
1250   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1251     .addReg(SrcReg);
1252 
1253   // Now move the integer value from a float register to an integer register.
1254   unsigned IntReg = Subtarget->hasSPE()
1255                         ? DestReg
1256                         : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1257 
1258   if (IntReg == 0)
1259     return false;
1260 
1261   updateValueMap(I, IntReg);
1262   return true;
1263 }
1264 
1265 // Attempt to fast-select a binary integer operation that isn't already
1266 // handled automatically.
1267 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1268   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1269 
1270   // We can get here in the case when we have a binary operation on a non-legal
1271   // type and the target independent selector doesn't know how to handle it.
1272   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1273     return false;
1274 
1275   // Look at the currently assigned register for this instruction
1276   // to determine the required register class.  If there is no register,
1277   // make a conservative choice (don't assign R0).
1278   unsigned AssignedReg = FuncInfo.ValueMap[I];
1279   const TargetRegisterClass *RC =
1280     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1281      &PPC::GPRC_and_GPRC_NOR0RegClass);
1282   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1283 
1284   unsigned Opc;
1285   switch (ISDOpcode) {
1286     default: return false;
1287     case ISD::ADD:
1288       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1289       break;
1290     case ISD::OR:
1291       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1292       break;
1293     case ISD::SUB:
1294       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1295       break;
1296   }
1297 
1298   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1299   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1300   if (SrcReg1 == 0) return false;
1301 
1302   // Handle case of small immediate operand.
1303   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1304     const APInt &CIVal = ConstInt->getValue();
1305     int Imm = (int)CIVal.getSExtValue();
1306     bool UseImm = true;
1307     if (isInt<16>(Imm)) {
1308       switch (Opc) {
1309         default:
1310           llvm_unreachable("Missing case!");
1311         case PPC::ADD4:
1312           Opc = PPC::ADDI;
1313           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1314           break;
1315         case PPC::ADD8:
1316           Opc = PPC::ADDI8;
1317           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1318           break;
1319         case PPC::OR:
1320           Opc = PPC::ORI;
1321           break;
1322         case PPC::OR8:
1323           Opc = PPC::ORI8;
1324           break;
1325         case PPC::SUBF:
1326           if (Imm == -32768)
1327             UseImm = false;
1328           else {
1329             Opc = PPC::ADDI;
1330             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1331             Imm = -Imm;
1332           }
1333           break;
1334         case PPC::SUBF8:
1335           if (Imm == -32768)
1336             UseImm = false;
1337           else {
1338             Opc = PPC::ADDI8;
1339             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1340             Imm = -Imm;
1341           }
1342           break;
1343       }
1344 
1345       if (UseImm) {
1346         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1347                 ResultReg)
1348             .addReg(SrcReg1)
1349             .addImm(Imm);
1350         updateValueMap(I, ResultReg);
1351         return true;
1352       }
1353     }
1354   }
1355 
1356   // Reg-reg case.
1357   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1358   if (SrcReg2 == 0) return false;
1359 
1360   // Reverse operands for subtract-from.
1361   if (ISDOpcode == ISD::SUB)
1362     std::swap(SrcReg1, SrcReg2);
1363 
1364   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1365     .addReg(SrcReg1).addReg(SrcReg2);
1366   updateValueMap(I, ResultReg);
1367   return true;
1368 }
1369 
1370 // Handle arguments to a call that we're attempting to fast-select.
1371 // Return false if the arguments are too complex for us at the moment.
1372 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1373                                   SmallVectorImpl<unsigned> &ArgRegs,
1374                                   SmallVectorImpl<MVT> &ArgVTs,
1375                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1376                                   SmallVectorImpl<unsigned> &RegArgs,
1377                                   CallingConv::ID CC,
1378                                   unsigned &NumBytes,
1379                                   bool IsVarArg) {
1380   SmallVector<CCValAssign, 16> ArgLocs;
1381   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1382 
1383   // Reserve space for the linkage area on the stack.
1384   unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1385   CCInfo.AllocateStack(LinkageSize, Align(8));
1386 
1387   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1388 
1389   // Bail out if we can't handle any of the arguments.
1390   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1391     CCValAssign &VA = ArgLocs[I];
1392     MVT ArgVT = ArgVTs[VA.getValNo()];
1393 
1394     // Skip vector arguments for now, as well as long double and
1395     // uint128_t, and anything that isn't passed in a register.
1396     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1397         !VA.isRegLoc() || VA.needsCustom())
1398       return false;
1399 
1400     // Skip bit-converted arguments for now.
1401     if (VA.getLocInfo() == CCValAssign::BCvt)
1402       return false;
1403   }
1404 
1405   // Get a count of how many bytes are to be pushed onto the stack.
1406   NumBytes = CCInfo.getNextStackOffset();
1407 
1408   // The prolog code of the callee may store up to 8 GPR argument registers to
1409   // the stack, allowing va_start to index over them in memory if its varargs.
1410   // Because we cannot tell if this is needed on the caller side, we have to
1411   // conservatively assume that it is needed.  As such, make sure we have at
1412   // least enough stack space for the caller to store the 8 GPRs.
1413   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1414   NumBytes = std::max(NumBytes, LinkageSize + 64);
1415 
1416   // Issue CALLSEQ_START.
1417   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1418           TII.get(TII.getCallFrameSetupOpcode()))
1419     .addImm(NumBytes).addImm(0);
1420 
1421   // Prepare to assign register arguments.  Every argument uses up a
1422   // GPR protocol register even if it's passed in a floating-point
1423   // register (unless we're using the fast calling convention).
1424   unsigned NextGPR = PPC::X3;
1425   unsigned NextFPR = PPC::F1;
1426 
1427   // Process arguments.
1428   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1429     CCValAssign &VA = ArgLocs[I];
1430     unsigned Arg = ArgRegs[VA.getValNo()];
1431     MVT ArgVT = ArgVTs[VA.getValNo()];
1432 
1433     // Handle argument promotion and bitcasts.
1434     switch (VA.getLocInfo()) {
1435       default:
1436         llvm_unreachable("Unknown loc info!");
1437       case CCValAssign::Full:
1438         break;
1439       case CCValAssign::SExt: {
1440         MVT DestVT = VA.getLocVT();
1441         const TargetRegisterClass *RC =
1442           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1443         unsigned TmpReg = createResultReg(RC);
1444         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1445           llvm_unreachable("Failed to emit a sext!");
1446         ArgVT = DestVT;
1447         Arg = TmpReg;
1448         break;
1449       }
1450       case CCValAssign::AExt:
1451       case CCValAssign::ZExt: {
1452         MVT DestVT = VA.getLocVT();
1453         const TargetRegisterClass *RC =
1454           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1455         unsigned TmpReg = createResultReg(RC);
1456         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1457           llvm_unreachable("Failed to emit a zext!");
1458         ArgVT = DestVT;
1459         Arg = TmpReg;
1460         break;
1461       }
1462       case CCValAssign::BCvt: {
1463         // FIXME: Not yet handled.
1464         llvm_unreachable("Should have bailed before getting here!");
1465         break;
1466       }
1467     }
1468 
1469     // Copy this argument to the appropriate register.
1470     unsigned ArgReg;
1471     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1472       ArgReg = NextFPR++;
1473       if (CC != CallingConv::Fast)
1474         ++NextGPR;
1475     } else
1476       ArgReg = NextGPR++;
1477 
1478     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1479             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1480     RegArgs.push_back(ArgReg);
1481   }
1482 
1483   return true;
1484 }
1485 
1486 // For a call that we've determined we can fast-select, finish the
1487 // call sequence and generate a copy to obtain the return value (if any).
1488 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1489   CallingConv::ID CC = CLI.CallConv;
1490 
1491   // Issue CallSEQ_END.
1492   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1493           TII.get(TII.getCallFrameDestroyOpcode()))
1494     .addImm(NumBytes).addImm(0);
1495 
1496   // Next, generate a copy to obtain the return value.
1497   // FIXME: No multi-register return values yet, though I don't foresee
1498   // any real difficulties there.
1499   if (RetVT != MVT::isVoid) {
1500     SmallVector<CCValAssign, 16> RVLocs;
1501     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1502     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1503     CCValAssign &VA = RVLocs[0];
1504     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1505     assert(VA.isRegLoc() && "Can only return in registers!");
1506 
1507     MVT DestVT = VA.getValVT();
1508     MVT CopyVT = DestVT;
1509 
1510     // Ints smaller than a register still arrive in a full 64-bit
1511     // register, so make sure we recognize this.
1512     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1513       CopyVT = MVT::i64;
1514 
1515     unsigned SourcePhysReg = VA.getLocReg();
1516     unsigned ResultReg = 0;
1517 
1518     if (RetVT == CopyVT) {
1519       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1520       ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1521 
1522     // If necessary, round the floating result to single precision.
1523     } else if (CopyVT == MVT::f64) {
1524       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1525       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1526               ResultReg).addReg(SourcePhysReg);
1527 
1528     // If only the low half of a general register is needed, generate
1529     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1530     // used along the fast-isel path (not lowered), and downstream logic
1531     // also doesn't like a direct subreg copy on a physical reg.)
1532     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1533       // Convert physical register from G8RC to GPRC.
1534       SourcePhysReg -= PPC::X0 - PPC::R0;
1535       ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1536     }
1537 
1538     assert(ResultReg && "ResultReg unset!");
1539     CLI.InRegs.push_back(SourcePhysReg);
1540     CLI.ResultReg = ResultReg;
1541     CLI.NumResultRegs = 1;
1542   }
1543 
1544   return true;
1545 }
1546 
1547 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1548   CallingConv::ID CC  = CLI.CallConv;
1549   bool IsTailCall     = CLI.IsTailCall;
1550   bool IsVarArg       = CLI.IsVarArg;
1551   const Value *Callee = CLI.Callee;
1552   const MCSymbol *Symbol = CLI.Symbol;
1553 
1554   if (!Callee && !Symbol)
1555     return false;
1556 
1557   // Allow SelectionDAG isel to handle tail calls.
1558   if (IsTailCall)
1559     return false;
1560 
1561   // Let SDISel handle vararg functions.
1562   if (IsVarArg)
1563     return false;
1564 
1565   // If this is a PC-Rel function, let SDISel handle the call.
1566   if (Subtarget->isUsingPCRelativeCalls())
1567     return false;
1568 
1569   // Handle simple calls for now, with legal return types and
1570   // those that can be extended.
1571   Type *RetTy = CLI.RetTy;
1572   MVT RetVT;
1573   if (RetTy->isVoidTy())
1574     RetVT = MVT::isVoid;
1575   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1576            RetVT != MVT::i8)
1577     return false;
1578   else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1579     // We can't handle boolean returns when CR bits are in use.
1580     return false;
1581 
1582   // FIXME: No multi-register return values yet.
1583   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1584       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1585       RetVT != MVT::f64) {
1586     SmallVector<CCValAssign, 16> RVLocs;
1587     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1588     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1589     if (RVLocs.size() > 1)
1590       return false;
1591   }
1592 
1593   // Bail early if more than 8 arguments, as we only currently
1594   // handle arguments passed in registers.
1595   unsigned NumArgs = CLI.OutVals.size();
1596   if (NumArgs > 8)
1597     return false;
1598 
1599   // Set up the argument vectors.
1600   SmallVector<Value*, 8> Args;
1601   SmallVector<unsigned, 8> ArgRegs;
1602   SmallVector<MVT, 8> ArgVTs;
1603   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1604 
1605   Args.reserve(NumArgs);
1606   ArgRegs.reserve(NumArgs);
1607   ArgVTs.reserve(NumArgs);
1608   ArgFlags.reserve(NumArgs);
1609 
1610   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1611     // Only handle easy calls for now.  It would be reasonably easy
1612     // to handle <= 8-byte structures passed ByVal in registers, but we
1613     // have to ensure they are right-justified in the register.
1614     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1615     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1616       return false;
1617 
1618     Value *ArgValue = CLI.OutVals[i];
1619     Type *ArgTy = ArgValue->getType();
1620     MVT ArgVT;
1621     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1622       return false;
1623 
1624     // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1625     // types, which is passed through vector register. Skip these types and
1626     // fallback to default SelectionDAG based selection.
1627     if (ArgVT.isVector() || ArgVT == MVT::f128)
1628       return false;
1629 
1630     unsigned Arg = getRegForValue(ArgValue);
1631     if (Arg == 0)
1632       return false;
1633 
1634     Args.push_back(ArgValue);
1635     ArgRegs.push_back(Arg);
1636     ArgVTs.push_back(ArgVT);
1637     ArgFlags.push_back(Flags);
1638   }
1639 
1640   // Process the arguments.
1641   SmallVector<unsigned, 8> RegArgs;
1642   unsigned NumBytes;
1643 
1644   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1645                        RegArgs, CC, NumBytes, IsVarArg))
1646     return false;
1647 
1648   MachineInstrBuilder MIB;
1649   // FIXME: No handling for function pointers yet.  This requires
1650   // implementing the function descriptor (OPD) setup.
1651   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1652   if (!GV) {
1653     // patchpoints are a special case; they always dispatch to a pointer value.
1654     // However, we don't actually want to generate the indirect call sequence
1655     // here (that will be generated, as necessary, during asm printing), and
1656     // the call we generate here will be erased by FastISel::selectPatchpoint,
1657     // so don't try very hard...
1658     if (CLI.IsPatchPoint)
1659       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1660     else
1661       return false;
1662   } else {
1663     // Build direct call with NOP for TOC restore.
1664     // FIXME: We can and should optimize away the NOP for local calls.
1665     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1666                   TII.get(PPC::BL8_NOP));
1667     // Add callee.
1668     MIB.addGlobalAddress(GV);
1669   }
1670 
1671   // Add implicit physical register uses to the call.
1672   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1673     MIB.addReg(RegArgs[II], RegState::Implicit);
1674 
1675   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1676   // into the call.
1677   PPCFuncInfo->setUsesTOCBasePtr();
1678   MIB.addReg(PPC::X2, RegState::Implicit);
1679 
1680   // Add a register mask with the call-preserved registers.  Proper
1681   // defs for return values will be added by setPhysRegsDeadExcept().
1682   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1683 
1684   CLI.Call = MIB;
1685 
1686   // Finish off the call including any return values.
1687   return finishCall(RetVT, CLI, NumBytes);
1688 }
1689 
1690 // Attempt to fast-select a return instruction.
1691 bool PPCFastISel::SelectRet(const Instruction *I) {
1692 
1693   if (!FuncInfo.CanLowerReturn)
1694     return false;
1695 
1696   const ReturnInst *Ret = cast<ReturnInst>(I);
1697   const Function &F = *I->getParent()->getParent();
1698 
1699   // Build a list of return value registers.
1700   SmallVector<unsigned, 4> RetRegs;
1701   CallingConv::ID CC = F.getCallingConv();
1702 
1703   if (Ret->getNumOperands() > 0) {
1704     SmallVector<ISD::OutputArg, 4> Outs;
1705     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1706 
1707     // Analyze operands of the call, assigning locations to each operand.
1708     SmallVector<CCValAssign, 16> ValLocs;
1709     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1710     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1711     const Value *RV = Ret->getOperand(0);
1712 
1713     // FIXME: Only one output register for now.
1714     if (ValLocs.size() > 1)
1715       return false;
1716 
1717     // Special case for returning a constant integer of any size - materialize
1718     // the constant as an i64 and copy it to the return register.
1719     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1720       CCValAssign &VA = ValLocs[0];
1721 
1722       Register RetReg = VA.getLocReg();
1723       // We still need to worry about properly extending the sign. For example,
1724       // we could have only a single bit or a constant that needs zero
1725       // extension rather than sign extension. Make sure we pass the return
1726       // value extension property to integer materialization.
1727       unsigned SrcReg =
1728           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1729 
1730       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1731             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1732 
1733       RetRegs.push_back(RetReg);
1734 
1735     } else {
1736       unsigned Reg = getRegForValue(RV);
1737 
1738       if (Reg == 0)
1739         return false;
1740 
1741       // Copy the result values into the output registers.
1742       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1743 
1744         CCValAssign &VA = ValLocs[i];
1745         assert(VA.isRegLoc() && "Can only return in registers!");
1746         RetRegs.push_back(VA.getLocReg());
1747         unsigned SrcReg = Reg + VA.getValNo();
1748 
1749         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1750         if (!RVEVT.isSimple())
1751           return false;
1752         MVT RVVT = RVEVT.getSimpleVT();
1753         MVT DestVT = VA.getLocVT();
1754 
1755         if (RVVT != DestVT && RVVT != MVT::i8 &&
1756             RVVT != MVT::i16 && RVVT != MVT::i32)
1757           return false;
1758 
1759         if (RVVT != DestVT) {
1760           switch (VA.getLocInfo()) {
1761             default:
1762               llvm_unreachable("Unknown loc info!");
1763             case CCValAssign::Full:
1764               llvm_unreachable("Full value assign but types don't match?");
1765             case CCValAssign::AExt:
1766             case CCValAssign::ZExt: {
1767               const TargetRegisterClass *RC =
1768                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1769               unsigned TmpReg = createResultReg(RC);
1770               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1771                 return false;
1772               SrcReg = TmpReg;
1773               break;
1774             }
1775             case CCValAssign::SExt: {
1776               const TargetRegisterClass *RC =
1777                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1778               unsigned TmpReg = createResultReg(RC);
1779               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1780                 return false;
1781               SrcReg = TmpReg;
1782               break;
1783             }
1784           }
1785         }
1786 
1787         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1788                 TII.get(TargetOpcode::COPY), RetRegs[i])
1789           .addReg(SrcReg);
1790       }
1791     }
1792   }
1793 
1794   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1795                                     TII.get(PPC::BLR8));
1796 
1797   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1798     MIB.addReg(RetRegs[i], RegState::Implicit);
1799 
1800   return true;
1801 }
1802 
1803 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1804 // signed and zero extensions are supported.  Return false if we
1805 // can't handle it.
1806 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1807                                 unsigned DestReg, bool IsZExt) {
1808   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1809     return false;
1810   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1811     return false;
1812 
1813   // Signed extensions use EXTSB, EXTSH, EXTSW.
1814   if (!IsZExt) {
1815     unsigned Opc;
1816     if (SrcVT == MVT::i8)
1817       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1818     else if (SrcVT == MVT::i16)
1819       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1820     else {
1821       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1822       Opc = PPC::EXTSW_32_64;
1823     }
1824     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1825       .addReg(SrcReg);
1826 
1827   // Unsigned 32-bit extensions use RLWINM.
1828   } else if (DestVT == MVT::i32) {
1829     unsigned MB;
1830     if (SrcVT == MVT::i8)
1831       MB = 24;
1832     else {
1833       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1834       MB = 16;
1835     }
1836     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1837             DestReg)
1838       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1839 
1840   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1841   } else {
1842     unsigned MB;
1843     if (SrcVT == MVT::i8)
1844       MB = 56;
1845     else if (SrcVT == MVT::i16)
1846       MB = 48;
1847     else
1848       MB = 32;
1849     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1850             TII.get(PPC::RLDICL_32_64), DestReg)
1851       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1852   }
1853 
1854   return true;
1855 }
1856 
1857 // Attempt to fast-select an indirect branch instruction.
1858 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1859   unsigned AddrReg = getRegForValue(I->getOperand(0));
1860   if (AddrReg == 0)
1861     return false;
1862 
1863   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1864     .addReg(AddrReg);
1865   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1866 
1867   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1868   for (const BasicBlock *SuccBB : IB->successors())
1869     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1870 
1871   return true;
1872 }
1873 
1874 // Attempt to fast-select an integer truncate instruction.
1875 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1876   Value *Src  = I->getOperand(0);
1877   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1878   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1879 
1880   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1881     return false;
1882 
1883   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1884     return false;
1885 
1886   unsigned SrcReg = getRegForValue(Src);
1887   if (!SrcReg)
1888     return false;
1889 
1890   // The only interesting case is when we need to switch register classes.
1891   if (SrcVT == MVT::i64)
1892     SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1893 
1894   updateValueMap(I, SrcReg);
1895   return true;
1896 }
1897 
1898 // Attempt to fast-select an integer extend instruction.
1899 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1900   Type *DestTy = I->getType();
1901   Value *Src = I->getOperand(0);
1902   Type *SrcTy = Src->getType();
1903 
1904   bool IsZExt = isa<ZExtInst>(I);
1905   unsigned SrcReg = getRegForValue(Src);
1906   if (!SrcReg) return false;
1907 
1908   EVT SrcEVT, DestEVT;
1909   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1910   DestEVT = TLI.getValueType(DL, DestTy, true);
1911   if (!SrcEVT.isSimple())
1912     return false;
1913   if (!DestEVT.isSimple())
1914     return false;
1915 
1916   MVT SrcVT = SrcEVT.getSimpleVT();
1917   MVT DestVT = DestEVT.getSimpleVT();
1918 
1919   // If we know the register class needed for the result of this
1920   // instruction, use it.  Otherwise pick the register class of the
1921   // correct size that does not contain X0/R0, since we don't know
1922   // whether downstream uses permit that assignment.
1923   unsigned AssignedReg = FuncInfo.ValueMap[I];
1924   const TargetRegisterClass *RC =
1925     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1926      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1927       &PPC::GPRC_and_GPRC_NOR0RegClass));
1928   unsigned ResultReg = createResultReg(RC);
1929 
1930   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1931     return false;
1932 
1933   updateValueMap(I, ResultReg);
1934   return true;
1935 }
1936 
1937 // Attempt to fast-select an instruction that wasn't handled by
1938 // the table-generated machinery.
1939 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1940 
1941   switch (I->getOpcode()) {
1942     case Instruction::Load:
1943       return SelectLoad(I);
1944     case Instruction::Store:
1945       return SelectStore(I);
1946     case Instruction::Br:
1947       return SelectBranch(I);
1948     case Instruction::IndirectBr:
1949       return SelectIndirectBr(I);
1950     case Instruction::FPExt:
1951       return SelectFPExt(I);
1952     case Instruction::FPTrunc:
1953       return SelectFPTrunc(I);
1954     case Instruction::SIToFP:
1955       return SelectIToFP(I, /*IsSigned*/ true);
1956     case Instruction::UIToFP:
1957       return SelectIToFP(I, /*IsSigned*/ false);
1958     case Instruction::FPToSI:
1959       return SelectFPToI(I, /*IsSigned*/ true);
1960     case Instruction::FPToUI:
1961       return SelectFPToI(I, /*IsSigned*/ false);
1962     case Instruction::Add:
1963       return SelectBinaryIntOp(I, ISD::ADD);
1964     case Instruction::Or:
1965       return SelectBinaryIntOp(I, ISD::OR);
1966     case Instruction::Sub:
1967       return SelectBinaryIntOp(I, ISD::SUB);
1968     case Instruction::Call:
1969       // On AIX, call lowering uses the DAG-ISEL path currently so that the
1970       // callee of the direct function call instruction will be mapped to the
1971       // symbol for the function's entry point, which is distinct from the
1972       // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1973       // name is the C-linkage name of the source level function.
1974       if (TM.getTargetTriple().isOSAIX())
1975         break;
1976       return selectCall(I);
1977     case Instruction::Ret:
1978       return SelectRet(I);
1979     case Instruction::Trunc:
1980       return SelectTrunc(I);
1981     case Instruction::ZExt:
1982     case Instruction::SExt:
1983       return SelectIntExt(I);
1984     // Here add other flavors of Instruction::XXX that automated
1985     // cases don't catch.  For example, switches are terminators
1986     // that aren't yet handled.
1987     default:
1988       break;
1989   }
1990   return false;
1991 }
1992 
1993 // Materialize a floating-point constant into a register, and return
1994 // the register number (or zero if we failed to handle it).
1995 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1996   // If this is a PC-Rel function, let SDISel handle constant pool.
1997   if (Subtarget->isUsingPCRelativeCalls())
1998     return false;
1999 
2000   // No plans to handle long double here.
2001   if (VT != MVT::f32 && VT != MVT::f64)
2002     return 0;
2003 
2004   // All FP constants are loaded from the constant pool.
2005   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
2006   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
2007   const bool HasSPE = Subtarget->hasSPE();
2008   const TargetRegisterClass *RC;
2009   if (HasSPE)
2010     RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2011   else
2012     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2013 
2014   unsigned DestReg = createResultReg(RC);
2015   CodeModel::Model CModel = TM.getCodeModel();
2016 
2017   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2018       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2019       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2020 
2021   unsigned Opc;
2022 
2023   if (HasSPE)
2024     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2025   else
2026     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2027 
2028   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2029 
2030   PPCFuncInfo->setUsesTOCBasePtr();
2031   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2032   if (CModel == CodeModel::Small) {
2033     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2034             TmpReg)
2035       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2036     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2037       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2038   } else {
2039     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2040     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2041             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2042     // But for large code model, we must generate a LDtocL followed
2043     // by the LF[SD].
2044     if (CModel == CodeModel::Large) {
2045       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2046       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2047               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2048       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2049           .addImm(0)
2050           .addReg(TmpReg2);
2051     } else
2052       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2053         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2054         .addReg(TmpReg)
2055         .addMemOperand(MMO);
2056   }
2057 
2058   return DestReg;
2059 }
2060 
2061 // Materialize the address of a global value into a register, and return
2062 // the register number (or zero if we failed to handle it).
2063 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2064   // If this is a PC-Rel function, let SDISel handle GV materialization.
2065   if (Subtarget->isUsingPCRelativeCalls())
2066     return false;
2067 
2068   assert(VT == MVT::i64 && "Non-address!");
2069   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2070   unsigned DestReg = createResultReg(RC);
2071 
2072   // Global values may be plain old object addresses, TLS object
2073   // addresses, constant pool entries, or jump tables.  How we generate
2074   // code for these may depend on small, medium, or large code model.
2075   CodeModel::Model CModel = TM.getCodeModel();
2076 
2077   // FIXME: Jump tables are not yet required because fast-isel doesn't
2078   // handle switches; if that changes, we need them as well.  For now,
2079   // what follows assumes everything's a generic (or TLS) global address.
2080 
2081   // FIXME: We don't yet handle the complexity of TLS.
2082   if (GV->isThreadLocal())
2083     return 0;
2084 
2085   PPCFuncInfo->setUsesTOCBasePtr();
2086   // For small code model, generate a simple TOC load.
2087   if (CModel == CodeModel::Small)
2088     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2089             DestReg)
2090         .addGlobalAddress(GV)
2091         .addReg(PPC::X2);
2092   else {
2093     // If the address is an externally defined symbol, a symbol with common
2094     // or externally available linkage, a non-local function address, or a
2095     // jump table address (not yet needed), or if we are generating code
2096     // for large code model, we generate:
2097     //       LDtocL(GV, ADDIStocHA8(%x2, GV))
2098     // Otherwise we generate:
2099     //       ADDItocL(ADDIStocHA8(%x2, GV), GV)
2100     // Either way, start with the ADDIStocHA8:
2101     unsigned HighPartReg = createResultReg(RC);
2102     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2103             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2104 
2105     if (Subtarget->isGVIndirectSymbol(GV)) {
2106       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2107               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2108     } else {
2109       // Otherwise generate the ADDItocL.
2110       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2111               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2112     }
2113   }
2114 
2115   return DestReg;
2116 }
2117 
2118 // Materialize a 32-bit integer constant into a register, and return
2119 // the register number (or zero if we failed to handle it).
2120 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2121                                              const TargetRegisterClass *RC) {
2122   unsigned Lo = Imm & 0xFFFF;
2123   unsigned Hi = (Imm >> 16) & 0xFFFF;
2124 
2125   unsigned ResultReg = createResultReg(RC);
2126   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2127 
2128   if (isInt<16>(Imm))
2129     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2130             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2131       .addImm(Imm);
2132   else if (Lo) {
2133     // Both Lo and Hi have nonzero bits.
2134     unsigned TmpReg = createResultReg(RC);
2135     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2136             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2137       .addImm(Hi);
2138     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2139             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2140       .addReg(TmpReg).addImm(Lo);
2141   } else
2142     // Just Hi bits.
2143     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2144             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2145         .addImm(Hi);
2146 
2147   return ResultReg;
2148 }
2149 
2150 // Materialize a 64-bit integer constant into a register, and return
2151 // the register number (or zero if we failed to handle it).
2152 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2153                                              const TargetRegisterClass *RC) {
2154   unsigned Remainder = 0;
2155   unsigned Shift = 0;
2156 
2157   // If the value doesn't fit in 32 bits, see if we can shift it
2158   // so that it fits in 32 bits.
2159   if (!isInt<32>(Imm)) {
2160     Shift = countTrailingZeros<uint64_t>(Imm);
2161     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2162 
2163     if (isInt<32>(ImmSh))
2164       Imm = ImmSh;
2165     else {
2166       Remainder = Imm;
2167       Shift = 32;
2168       Imm >>= 32;
2169     }
2170   }
2171 
2172   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2173   // (if not shifted).
2174   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2175   if (!Shift)
2176     return TmpReg1;
2177 
2178   // If upper 32 bits were not zero, we've built them and need to shift
2179   // them into place.
2180   unsigned TmpReg2;
2181   if (Imm) {
2182     TmpReg2 = createResultReg(RC);
2183     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2184             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2185   } else
2186     TmpReg2 = TmpReg1;
2187 
2188   unsigned TmpReg3, Hi, Lo;
2189   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2190     TmpReg3 = createResultReg(RC);
2191     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2192             TmpReg3).addReg(TmpReg2).addImm(Hi);
2193   } else
2194     TmpReg3 = TmpReg2;
2195 
2196   if ((Lo = Remainder & 0xFFFF)) {
2197     unsigned ResultReg = createResultReg(RC);
2198     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2199             ResultReg).addReg(TmpReg3).addImm(Lo);
2200     return ResultReg;
2201   }
2202 
2203   return TmpReg3;
2204 }
2205 
2206 // Materialize an integer constant into a register, and return
2207 // the register number (or zero if we failed to handle it).
2208 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2209                                         bool UseSExt) {
2210   // If we're using CR bit registers for i1 values, handle that as a special
2211   // case first.
2212   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2213     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2214     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2215             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2216     return ImmReg;
2217   }
2218 
2219   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2220       VT != MVT::i1)
2221     return 0;
2222 
2223   const TargetRegisterClass *RC =
2224       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2225   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2226 
2227   // If the constant is in range, use a load-immediate.
2228   // Since LI will sign extend the constant we need to make sure that for
2229   // our zeroext constants that the sign extended constant fits into 16-bits -
2230   // a range of 0..0x7fff.
2231   if (isInt<16>(Imm)) {
2232     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2233     unsigned ImmReg = createResultReg(RC);
2234     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2235         .addImm(Imm);
2236     return ImmReg;
2237   }
2238 
2239   // Construct the constant piecewise.
2240   if (VT == MVT::i64)
2241     return PPCMaterialize64BitInt(Imm, RC);
2242   else if (VT == MVT::i32)
2243     return PPCMaterialize32BitInt(Imm, RC);
2244 
2245   return 0;
2246 }
2247 
2248 // Materialize a constant into a register, and return the register
2249 // number (or zero if we failed to handle it).
2250 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2251   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2252 
2253   // Only handle simple types.
2254   if (!CEVT.isSimple()) return 0;
2255   MVT VT = CEVT.getSimpleVT();
2256 
2257   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2258     return PPCMaterializeFP(CFP, VT);
2259   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2260     return PPCMaterializeGV(GV, VT);
2261   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2262     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2263     // assumes that constant PHI operands will be zero extended, and failure to
2264     // match that assumption will cause problems if we sign extend here but
2265     // some user of a PHI is in a block for which we fall back to full SDAG
2266     // instruction selection.
2267     return PPCMaterializeInt(CI, VT, false);
2268 
2269   return 0;
2270 }
2271 
2272 // Materialize the address created by an alloca into a register, and
2273 // return the register number (or zero if we failed to handle it).
2274 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2275   // Don't handle dynamic allocas.
2276   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2277 
2278   MVT VT;
2279   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2280 
2281   DenseMap<const AllocaInst*, int>::iterator SI =
2282     FuncInfo.StaticAllocaMap.find(AI);
2283 
2284   if (SI != FuncInfo.StaticAllocaMap.end()) {
2285     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2286     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2287             ResultReg).addFrameIndex(SI->second).addImm(0);
2288     return ResultReg;
2289   }
2290 
2291   return 0;
2292 }
2293 
2294 // Fold loads into extends when possible.
2295 // FIXME: We can have multiple redundant extend/trunc instructions
2296 // following a load.  The folding only picks up one.  Extend this
2297 // to check subsequent instructions for the same pattern and remove
2298 // them.  Thus ResultReg should be the def reg for the last redundant
2299 // instruction in a chain, and all intervening instructions can be
2300 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2301 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2302 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2303                                       const LoadInst *LI) {
2304   // Verify we have a legal type before going any further.
2305   MVT VT;
2306   if (!isLoadTypeLegal(LI->getType(), VT))
2307     return false;
2308 
2309   // Combine load followed by zero- or sign-extend.
2310   bool IsZExt = false;
2311   switch(MI->getOpcode()) {
2312     default:
2313       return false;
2314 
2315     case PPC::RLDICL:
2316     case PPC::RLDICL_32_64: {
2317       IsZExt = true;
2318       unsigned MB = MI->getOperand(3).getImm();
2319       if ((VT == MVT::i8 && MB <= 56) ||
2320           (VT == MVT::i16 && MB <= 48) ||
2321           (VT == MVT::i32 && MB <= 32))
2322         break;
2323       return false;
2324     }
2325 
2326     case PPC::RLWINM:
2327     case PPC::RLWINM8: {
2328       IsZExt = true;
2329       unsigned MB = MI->getOperand(3).getImm();
2330       if ((VT == MVT::i8 && MB <= 24) ||
2331           (VT == MVT::i16 && MB <= 16))
2332         break;
2333       return false;
2334     }
2335 
2336     case PPC::EXTSB:
2337     case PPC::EXTSB8:
2338     case PPC::EXTSB8_32_64:
2339       /* There is no sign-extending load-byte instruction. */
2340       return false;
2341 
2342     case PPC::EXTSH:
2343     case PPC::EXTSH8:
2344     case PPC::EXTSH8_32_64: {
2345       if (VT != MVT::i16 && VT != MVT::i8)
2346         return false;
2347       break;
2348     }
2349 
2350     case PPC::EXTSW:
2351     case PPC::EXTSW_32:
2352     case PPC::EXTSW_32_64: {
2353       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2354         return false;
2355       break;
2356     }
2357   }
2358 
2359   // See if we can handle this address.
2360   Address Addr;
2361   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2362     return false;
2363 
2364   Register ResultReg = MI->getOperand(0).getReg();
2365 
2366   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2367                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2368     return false;
2369 
2370   MachineBasicBlock::iterator I(MI);
2371   removeDeadCode(I, std::next(I));
2372   return true;
2373 }
2374 
2375 // Attempt to lower call arguments in a faster way than done by
2376 // the selection DAG code.
2377 bool PPCFastISel::fastLowerArguments() {
2378   // Defer to normal argument lowering for now.  It's reasonably
2379   // efficient.  Consider doing something like ARM to handle the
2380   // case where all args fit in registers, no varargs, no float
2381   // or vector args.
2382   return false;
2383 }
2384 
2385 // Handle materializing integer constants into a register.  This is not
2386 // automatically generated for PowerPC, so must be explicitly created here.
2387 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2388 
2389   if (Opc != ISD::Constant)
2390     return 0;
2391 
2392   // If we're using CR bit registers for i1 values, handle that as a special
2393   // case first.
2394   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2395     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2396     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2397             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2398     return ImmReg;
2399   }
2400 
2401   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2402       VT != MVT::i1)
2403     return 0;
2404 
2405   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2406                                    &PPC::GPRCRegClass);
2407   if (VT == MVT::i64)
2408     return PPCMaterialize64BitInt(Imm, RC);
2409   else
2410     return PPCMaterialize32BitInt(Imm, RC);
2411 }
2412 
2413 // Override for ADDI and ADDI8 to set the correct register class
2414 // on RHS operand 0.  The automatic infrastructure naively assumes
2415 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2416 // for these cases.  At the moment, none of the other automatically
2417 // generated RI instructions require special treatment.  However, once
2418 // SelectSelect is implemented, "isel" requires similar handling.
2419 //
2420 // Also be conservative about the output register class.  Avoid
2421 // assigning R0 or X0 to the output register for GPRC and G8RC
2422 // register classes, as any such result could be used in ADDI, etc.,
2423 // where those regs have another meaning.
2424 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2425                                       const TargetRegisterClass *RC,
2426                                       unsigned Op0,
2427                                       uint64_t Imm) {
2428   if (MachineInstOpcode == PPC::ADDI)
2429     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2430   else if (MachineInstOpcode == PPC::ADDI8)
2431     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2432 
2433   const TargetRegisterClass *UseRC =
2434     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2435      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2436 
2437   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm);
2438 }
2439 
2440 // Override for instructions with one register operand to avoid use of
2441 // R0/X0.  The automatic infrastructure isn't aware of the context so
2442 // we must be conservative.
2443 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2444                                      const TargetRegisterClass* RC,
2445                                      unsigned Op0) {
2446   const TargetRegisterClass *UseRC =
2447     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2448      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2449 
2450   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0);
2451 }
2452 
2453 // Override for instructions with two register operands to avoid use
2454 // of R0/X0.  The automatic infrastructure isn't aware of the context
2455 // so we must be conservative.
2456 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2457                                       const TargetRegisterClass* RC,
2458                                       unsigned Op0, unsigned Op1) {
2459   const TargetRegisterClass *UseRC =
2460     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2461      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2462 
2463   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1);
2464 }
2465 
2466 namespace llvm {
2467   // Create the fast instruction selector for PowerPC64 ELF.
2468   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2469                                 const TargetLibraryInfo *LibInfo) {
2470     // Only available on 64-bit ELF for now.
2471     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2472     if (Subtarget.is64BitELFABI())
2473       return new PPCFastISel(FuncInfo, LibInfo);
2474     return nullptr;
2475   }
2476 }
2477