1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PowerPC-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // PPCGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 }; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *Subtarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()), 102 Context(&FuncInfo.Fn->getContext()) {} 103 104 // Backend specific FastISel code. 105 private: 106 bool fastSelectInstruction(const Instruction *I) override; 107 unsigned fastMaterializeConstant(const Constant *C) override; 108 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 109 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 110 const LoadInst *LI) override; 111 bool fastLowerArguments() override; 112 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 113 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 114 const TargetRegisterClass *RC, 115 unsigned Op0, uint64_t Imm); 116 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, unsigned Op0); 118 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, unsigned Op1); 121 122 bool fastLowerCall(CallLoweringInfo &CLI) override; 123 124 // Instruction selection routines. 125 private: 126 bool SelectLoad(const Instruction *I); 127 bool SelectStore(const Instruction *I); 128 bool SelectBranch(const Instruction *I); 129 bool SelectIndirectBr(const Instruction *I); 130 bool SelectFPExt(const Instruction *I); 131 bool SelectFPTrunc(const Instruction *I); 132 bool SelectIToFP(const Instruction *I, bool IsSigned); 133 bool SelectFPToI(const Instruction *I, bool IsSigned); 134 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 135 bool SelectRet(const Instruction *I); 136 bool SelectTrunc(const Instruction *I); 137 bool SelectIntExt(const Instruction *I); 138 139 // Utility routines. 140 private: 141 bool isTypeLegal(Type *Ty, MVT &VT); 142 bool isLoadTypeLegal(Type *Ty, MVT &VT); 143 bool isValueAvailable(const Value *V) const; 144 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 145 return RC->getID() == PPC::VSFRCRegClassID; 146 } 147 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 148 return RC->getID() == PPC::VSSRCRegClassID; 149 } 150 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC, 151 unsigned SrcReg, unsigned Flag = 0, 152 unsigned SubReg = 0) { 153 unsigned TmpReg = createResultReg(ToRC); 154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 155 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg); 156 return TmpReg; 157 } 158 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 159 bool isZExt, unsigned DestReg, 160 const PPC::Predicate Pred); 161 bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 162 const TargetRegisterClass *RC, bool IsZExt = true, 163 unsigned FP64LoadOpc = PPC::LFD); 164 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 165 bool PPCComputeAddress(const Value *Obj, Address &Addr); 166 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 167 unsigned &IndexReg); 168 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 169 unsigned DestReg, bool IsZExt); 170 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 171 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 172 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 173 bool UseSExt = true); 174 unsigned PPCMaterialize32BitInt(int64_t Imm, 175 const TargetRegisterClass *RC); 176 unsigned PPCMaterialize64BitInt(int64_t Imm, 177 const TargetRegisterClass *RC); 178 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 179 unsigned SrcReg, bool IsSigned); 180 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 181 182 // Call handling routines. 183 private: 184 bool processCallArgs(SmallVectorImpl<Value*> &Args, 185 SmallVectorImpl<unsigned> &ArgRegs, 186 SmallVectorImpl<MVT> &ArgVTs, 187 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 188 SmallVectorImpl<unsigned> &RegArgs, 189 CallingConv::ID CC, 190 unsigned &NumBytes, 191 bool IsVarArg); 192 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 193 194 private: 195 #include "PPCGenFastISel.inc" 196 197 }; 198 199 } // end anonymous namespace 200 201 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 202 switch (Pred) { 203 // These are not representable with any single compare. 204 case CmpInst::FCMP_FALSE: 205 case CmpInst::FCMP_TRUE: 206 // Major concern about the following 6 cases is NaN result. The comparison 207 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 208 // only one of which will be set. The result is generated by fcmpu 209 // instruction. However, bc instruction only inspects one of the first 3 210 // bits, so when un is set, bc instruction may jump to an undesired 211 // place. 212 // 213 // More specifically, if we expect an unordered comparison and un is set, we 214 // expect to always go to true branch; in such case UEQ, UGT and ULT still 215 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 216 // since they are tested by inspecting !eq, !lt, !gt, respectively. 217 // 218 // Similarly, for ordered comparison, when un is set, we always expect the 219 // result to be false. In such case OGT, OLT and OEQ is good, since they are 220 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 221 // and ONE are tested through !lt, !gt and !eq, and these are true. 222 case CmpInst::FCMP_UEQ: 223 case CmpInst::FCMP_UGT: 224 case CmpInst::FCMP_ULT: 225 case CmpInst::FCMP_OGE: 226 case CmpInst::FCMP_OLE: 227 case CmpInst::FCMP_ONE: 228 default: 229 return Optional<PPC::Predicate>(); 230 231 case CmpInst::FCMP_OEQ: 232 case CmpInst::ICMP_EQ: 233 return PPC::PRED_EQ; 234 235 case CmpInst::FCMP_OGT: 236 case CmpInst::ICMP_UGT: 237 case CmpInst::ICMP_SGT: 238 return PPC::PRED_GT; 239 240 case CmpInst::FCMP_UGE: 241 case CmpInst::ICMP_UGE: 242 case CmpInst::ICMP_SGE: 243 return PPC::PRED_GE; 244 245 case CmpInst::FCMP_OLT: 246 case CmpInst::ICMP_ULT: 247 case CmpInst::ICMP_SLT: 248 return PPC::PRED_LT; 249 250 case CmpInst::FCMP_ULE: 251 case CmpInst::ICMP_ULE: 252 case CmpInst::ICMP_SLE: 253 return PPC::PRED_LE; 254 255 case CmpInst::FCMP_UNE: 256 case CmpInst::ICMP_NE: 257 return PPC::PRED_NE; 258 259 case CmpInst::FCMP_ORD: 260 return PPC::PRED_NU; 261 262 case CmpInst::FCMP_UNO: 263 return PPC::PRED_UN; 264 } 265 } 266 267 // Determine whether the type Ty is simple enough to be handled by 268 // fast-isel, and return its equivalent machine type in VT. 269 // FIXME: Copied directly from ARM -- factor into base class? 270 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 271 EVT Evt = TLI.getValueType(DL, Ty, true); 272 273 // Only handle simple types. 274 if (Evt == MVT::Other || !Evt.isSimple()) return false; 275 VT = Evt.getSimpleVT(); 276 277 // Handle all legal types, i.e. a register that will directly hold this 278 // value. 279 return TLI.isTypeLegal(VT); 280 } 281 282 // Determine whether the type Ty is simple enough to be handled by 283 // fast-isel as a load target, and return its equivalent machine type in VT. 284 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 285 if (isTypeLegal(Ty, VT)) return true; 286 287 // If this is a type than can be sign or zero-extended to a basic operation 288 // go ahead and accept it now. 289 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 290 return true; 291 } 292 293 return false; 294 } 295 296 bool PPCFastISel::isValueAvailable(const Value *V) const { 297 if (!isa<Instruction>(V)) 298 return true; 299 300 const auto *I = cast<Instruction>(V); 301 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 302 } 303 304 // Given a value Obj, create an Address object Addr that represents its 305 // address. Return false if we can't handle it. 306 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 307 const User *U = nullptr; 308 unsigned Opcode = Instruction::UserOp1; 309 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 310 // Don't walk into other basic blocks unless the object is an alloca from 311 // another block, otherwise it may not have a virtual register assigned. 312 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 313 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 314 Opcode = I->getOpcode(); 315 U = I; 316 } 317 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 318 Opcode = C->getOpcode(); 319 U = C; 320 } 321 322 switch (Opcode) { 323 default: 324 break; 325 case Instruction::BitCast: 326 // Look through bitcasts. 327 return PPCComputeAddress(U->getOperand(0), Addr); 328 case Instruction::IntToPtr: 329 // Look past no-op inttoptrs. 330 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 331 TLI.getPointerTy(DL)) 332 return PPCComputeAddress(U->getOperand(0), Addr); 333 break; 334 case Instruction::PtrToInt: 335 // Look past no-op ptrtoints. 336 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 337 return PPCComputeAddress(U->getOperand(0), Addr); 338 break; 339 case Instruction::GetElementPtr: { 340 Address SavedAddr = Addr; 341 long TmpOffset = Addr.Offset; 342 343 // Iterate through the GEP folding the constants into offsets where 344 // we can. 345 gep_type_iterator GTI = gep_type_begin(U); 346 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 347 II != IE; ++II, ++GTI) { 348 const Value *Op = *II; 349 if (StructType *STy = GTI.getStructTypeOrNull()) { 350 const StructLayout *SL = DL.getStructLayout(STy); 351 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 352 TmpOffset += SL->getElementOffset(Idx); 353 } else { 354 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 355 for (;;) { 356 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 357 // Constant-offset addressing. 358 TmpOffset += CI->getSExtValue() * S; 359 break; 360 } 361 if (canFoldAddIntoGEP(U, Op)) { 362 // A compatible add with a constant operand. Fold the constant. 363 ConstantInt *CI = 364 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 365 TmpOffset += CI->getSExtValue() * S; 366 // Iterate on the other operand. 367 Op = cast<AddOperator>(Op)->getOperand(0); 368 continue; 369 } 370 // Unsupported 371 goto unsupported_gep; 372 } 373 } 374 } 375 376 // Try to grab the base operand now. 377 Addr.Offset = TmpOffset; 378 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 379 380 // We failed, restore everything and try the other options. 381 Addr = SavedAddr; 382 383 unsupported_gep: 384 break; 385 } 386 case Instruction::Alloca: { 387 const AllocaInst *AI = cast<AllocaInst>(Obj); 388 DenseMap<const AllocaInst*, int>::iterator SI = 389 FuncInfo.StaticAllocaMap.find(AI); 390 if (SI != FuncInfo.StaticAllocaMap.end()) { 391 Addr.BaseType = Address::FrameIndexBase; 392 Addr.Base.FI = SI->second; 393 return true; 394 } 395 break; 396 } 397 } 398 399 // FIXME: References to parameters fall through to the behavior 400 // below. They should be able to reference a frame index since 401 // they are stored to the stack, so we can get "ld rx, offset(r1)" 402 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 403 // just contain the parameter. Try to handle this with a FI. 404 405 // Try to get this in a register if nothing else has worked. 406 if (Addr.Base.Reg == 0) 407 Addr.Base.Reg = getRegForValue(Obj); 408 409 // Prevent assignment of base register to X0, which is inappropriate 410 // for loads and stores alike. 411 if (Addr.Base.Reg != 0) 412 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 413 414 return Addr.Base.Reg != 0; 415 } 416 417 // Fix up some addresses that can't be used directly. For example, if 418 // an offset won't fit in an instruction field, we may need to move it 419 // into an index register. 420 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 421 unsigned &IndexReg) { 422 423 // Check whether the offset fits in the instruction field. 424 if (!isInt<16>(Addr.Offset)) 425 UseOffset = false; 426 427 // If this is a stack pointer and the offset needs to be simplified then 428 // put the alloca address into a register, set the base type back to 429 // register and continue. This should almost never happen. 430 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 431 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 432 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 433 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 434 Addr.Base.Reg = ResultReg; 435 Addr.BaseType = Address::RegBase; 436 } 437 438 if (!UseOffset) { 439 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 440 const ConstantInt *Offset = 441 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 442 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 443 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 444 } 445 } 446 447 // Emit a load instruction if possible, returning true if we succeeded, 448 // otherwise false. See commentary below for how the register class of 449 // the load is determined. 450 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 451 const TargetRegisterClass *RC, 452 bool IsZExt, unsigned FP64LoadOpc) { 453 unsigned Opc; 454 bool UseOffset = true; 455 bool HasSPE = Subtarget->hasSPE(); 456 457 // If ResultReg is given, it determines the register class of the load. 458 // Otherwise, RC is the register class to use. If the result of the 459 // load isn't anticipated in this block, both may be zero, in which 460 // case we must make a conservative guess. In particular, don't assign 461 // R0 or X0 to the result register, as the result may be used in a load, 462 // store, add-immediate, or isel that won't permit this. (Though 463 // perhaps the spill and reload of live-exit values would handle this?) 464 const TargetRegisterClass *UseRC = 465 (ResultReg ? MRI.getRegClass(ResultReg) : 466 (RC ? RC : 467 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : 468 (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) : 469 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 470 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 471 472 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 473 474 switch (VT.SimpleTy) { 475 default: // e.g., vector types not handled 476 return false; 477 case MVT::i8: 478 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 479 break; 480 case MVT::i16: 481 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 482 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 483 break; 484 case MVT::i32: 485 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 486 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 487 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 488 UseOffset = false; 489 break; 490 case MVT::i64: 491 Opc = PPC::LD; 492 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 493 "64-bit load with 32-bit target??"); 494 UseOffset = ((Addr.Offset & 3) == 0); 495 break; 496 case MVT::f32: 497 Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; 498 break; 499 case MVT::f64: 500 Opc = FP64LoadOpc; 501 break; 502 } 503 504 // If necessary, materialize the offset into a register and use 505 // the indexed form. Also handle stack pointers with special needs. 506 unsigned IndexReg = 0; 507 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 508 509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 510 // be used. 511 bool IsVSSRC = isVSSRCRegClass(UseRC); 512 bool IsVSFRC = isVSFRCRegClass(UseRC); 513 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 514 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 515 if ((Is32VSXLoad || Is64VSXLoad) && 516 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 517 (Addr.Offset == 0)) { 518 UseOffset = false; 519 } 520 521 if (ResultReg == 0) 522 ResultReg = createResultReg(UseRC); 523 524 // Note: If we still have a frame index here, we know the offset is 525 // in range, as otherwise PPCSimplifyAddress would have converted it 526 // into a RegBase. 527 if (Addr.BaseType == Address::FrameIndexBase) { 528 // VSX only provides an indexed load. 529 if (Is32VSXLoad || Is64VSXLoad) return false; 530 531 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 532 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 533 Addr.Offset), 534 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 535 MFI.getObjectAlign(Addr.Base.FI)); 536 537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 538 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 539 540 // Base reg with offset in range. 541 } else if (UseOffset) { 542 // VSX only provides an indexed load. 543 if (Is32VSXLoad || Is64VSXLoad) return false; 544 545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 546 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 547 548 // Indexed form. 549 } else { 550 // Get the RR opcode corresponding to the RI one. FIXME: It would be 551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 552 // is hard to get at. 553 switch (Opc) { 554 default: llvm_unreachable("Unexpected opcode!"); 555 case PPC::LBZ: Opc = PPC::LBZX; break; 556 case PPC::LBZ8: Opc = PPC::LBZX8; break; 557 case PPC::LHZ: Opc = PPC::LHZX; break; 558 case PPC::LHZ8: Opc = PPC::LHZX8; break; 559 case PPC::LHA: Opc = PPC::LHAX; break; 560 case PPC::LHA8: Opc = PPC::LHAX8; break; 561 case PPC::LWZ: Opc = PPC::LWZX; break; 562 case PPC::LWZ8: Opc = PPC::LWZX8; break; 563 case PPC::LWA: Opc = PPC::LWAX; break; 564 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 565 case PPC::LD: Opc = PPC::LDX; break; 566 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 567 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 568 case PPC::EVLDD: Opc = PPC::EVLDDX; break; 569 case PPC::SPELWZ: Opc = PPC::SPELWZX; break; 570 } 571 572 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 573 ResultReg); 574 575 // If we have an index register defined we use it in the store inst, 576 // otherwise we use X0 as base as it makes the vector instructions to 577 // use zero in the computation of the effective address regardless the 578 // content of the register. 579 if (IndexReg) 580 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 581 else 582 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 583 } 584 585 return true; 586 } 587 588 // Attempt to fast-select a load instruction. 589 bool PPCFastISel::SelectLoad(const Instruction *I) { 590 // FIXME: No atomic loads are supported. 591 if (cast<LoadInst>(I)->isAtomic()) 592 return false; 593 594 // Verify we have a legal type before going any further. 595 MVT VT; 596 if (!isLoadTypeLegal(I->getType(), VT)) 597 return false; 598 599 // See if we can handle this address. 600 Address Addr; 601 if (!PPCComputeAddress(I->getOperand(0), Addr)) 602 return false; 603 604 // Look at the currently assigned register for this instruction 605 // to determine the required register class. This is necessary 606 // to constrain RA from using R0/X0 when this is not legal. 607 unsigned AssignedReg = FuncInfo.ValueMap[I]; 608 const TargetRegisterClass *RC = 609 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 610 611 Register ResultReg = 0; 612 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true, 613 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 614 return false; 615 updateValueMap(I, ResultReg); 616 return true; 617 } 618 619 // Emit a store instruction to store SrcReg at Addr. 620 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 621 assert(SrcReg && "Nothing to store!"); 622 unsigned Opc; 623 bool UseOffset = true; 624 625 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 626 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 627 628 switch (VT.SimpleTy) { 629 default: // e.g., vector types not handled 630 return false; 631 case MVT::i8: 632 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 633 break; 634 case MVT::i16: 635 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 636 break; 637 case MVT::i32: 638 assert(Is32BitInt && "Not GPRC for i32??"); 639 Opc = PPC::STW; 640 break; 641 case MVT::i64: 642 Opc = PPC::STD; 643 UseOffset = ((Addr.Offset & 3) == 0); 644 break; 645 case MVT::f32: 646 Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS; 647 break; 648 case MVT::f64: 649 Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; 650 break; 651 } 652 653 // If necessary, materialize the offset into a register and use 654 // the indexed form. Also handle stack pointers with special needs. 655 unsigned IndexReg = 0; 656 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 657 658 // If this is a potential VSX store with an offset of 0, a VSX indexed store 659 // can be used. 660 bool IsVSSRC = isVSSRCRegClass(RC); 661 bool IsVSFRC = isVSFRCRegClass(RC); 662 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 663 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 664 if ((Is32VSXStore || Is64VSXStore) && 665 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 666 (Addr.Offset == 0)) { 667 UseOffset = false; 668 } 669 670 // Note: If we still have a frame index here, we know the offset is 671 // in range, as otherwise PPCSimplifyAddress would have converted it 672 // into a RegBase. 673 if (Addr.BaseType == Address::FrameIndexBase) { 674 // VSX only provides an indexed store. 675 if (Is32VSXStore || Is64VSXStore) return false; 676 677 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 678 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 679 Addr.Offset), 680 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 681 MFI.getObjectAlign(Addr.Base.FI)); 682 683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 684 .addReg(SrcReg) 685 .addImm(Addr.Offset) 686 .addFrameIndex(Addr.Base.FI) 687 .addMemOperand(MMO); 688 689 // Base reg with offset in range. 690 } else if (UseOffset) { 691 // VSX only provides an indexed store. 692 if (Is32VSXStore || Is64VSXStore) 693 return false; 694 695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 696 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 697 698 // Indexed form. 699 } else { 700 // Get the RR opcode corresponding to the RI one. FIXME: It would be 701 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 702 // is hard to get at. 703 switch (Opc) { 704 default: llvm_unreachable("Unexpected opcode!"); 705 case PPC::STB: Opc = PPC::STBX; break; 706 case PPC::STH : Opc = PPC::STHX; break; 707 case PPC::STW : Opc = PPC::STWX; break; 708 case PPC::STB8: Opc = PPC::STBX8; break; 709 case PPC::STH8: Opc = PPC::STHX8; break; 710 case PPC::STW8: Opc = PPC::STWX8; break; 711 case PPC::STD: Opc = PPC::STDX; break; 712 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 713 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 714 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; 715 case PPC::SPESTW: Opc = PPC::SPESTWX; break; 716 } 717 718 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 719 .addReg(SrcReg); 720 721 // If we have an index register defined we use it in the store inst, 722 // otherwise we use X0 as base as it makes the vector instructions to 723 // use zero in the computation of the effective address regardless the 724 // content of the register. 725 if (IndexReg) 726 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 727 else 728 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 729 } 730 731 return true; 732 } 733 734 // Attempt to fast-select a store instruction. 735 bool PPCFastISel::SelectStore(const Instruction *I) { 736 Value *Op0 = I->getOperand(0); 737 unsigned SrcReg = 0; 738 739 // FIXME: No atomics loads are supported. 740 if (cast<StoreInst>(I)->isAtomic()) 741 return false; 742 743 // Verify we have a legal type before going any further. 744 MVT VT; 745 if (!isLoadTypeLegal(Op0->getType(), VT)) 746 return false; 747 748 // Get the value to be stored into a register. 749 SrcReg = getRegForValue(Op0); 750 if (SrcReg == 0) 751 return false; 752 753 // See if we can handle this address. 754 Address Addr; 755 if (!PPCComputeAddress(I->getOperand(1), Addr)) 756 return false; 757 758 if (!PPCEmitStore(VT, SrcReg, Addr)) 759 return false; 760 761 return true; 762 } 763 764 // Attempt to fast-select a branch instruction. 765 bool PPCFastISel::SelectBranch(const Instruction *I) { 766 const BranchInst *BI = cast<BranchInst>(I); 767 MachineBasicBlock *BrBB = FuncInfo.MBB; 768 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 769 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 770 771 // For now, just try the simplest case where it's fed by a compare. 772 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 773 if (isValueAvailable(CI)) { 774 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 775 if (!OptPPCPred) 776 return false; 777 778 PPC::Predicate PPCPred = OptPPCPred.getValue(); 779 780 // Take advantage of fall-through opportunities. 781 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 782 std::swap(TBB, FBB); 783 PPCPred = PPC::InvertPredicate(PPCPred); 784 } 785 786 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 787 788 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 789 CondReg, PPCPred)) 790 return false; 791 792 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 793 .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred) 794 .addReg(CondReg) 795 .addMBB(TBB); 796 finishCondBranch(BI->getParent(), TBB, FBB); 797 return true; 798 } 799 } else if (const ConstantInt *CI = 800 dyn_cast<ConstantInt>(BI->getCondition())) { 801 uint64_t Imm = CI->getZExtValue(); 802 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 803 fastEmitBranch(Target, DbgLoc); 804 return true; 805 } 806 807 // FIXME: ARM looks for a case where the block containing the compare 808 // has been split from the block containing the branch. If this happens, 809 // there is a vreg available containing the result of the compare. I'm 810 // not sure we can do much, as we've lost the predicate information with 811 // the compare instruction -- we have a 4-bit CR but don't know which bit 812 // to test here. 813 return false; 814 } 815 816 // Attempt to emit a compare of the two source values. Signed and unsigned 817 // comparisons are supported. Return false if we can't handle it. 818 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 819 bool IsZExt, unsigned DestReg, 820 const PPC::Predicate Pred) { 821 Type *Ty = SrcValue1->getType(); 822 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 823 if (!SrcEVT.isSimple()) 824 return false; 825 MVT SrcVT = SrcEVT.getSimpleVT(); 826 827 if (SrcVT == MVT::i1 && Subtarget->useCRBits()) 828 return false; 829 830 // See if operand 2 is an immediate encodeable in the compare. 831 // FIXME: Operands are not in canonical order at -O0, so an immediate 832 // operand in position 1 is a lost opportunity for now. We are 833 // similar to ARM in this regard. 834 long Imm = 0; 835 bool UseImm = false; 836 const bool HasSPE = Subtarget->hasSPE(); 837 838 // Only 16-bit integer constants can be represented in compares for 839 // PowerPC. Others will be materialized into a register. 840 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 841 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 842 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 843 const APInt &CIVal = ConstInt->getValue(); 844 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 845 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 846 UseImm = true; 847 } 848 } 849 850 unsigned SrcReg1 = getRegForValue(SrcValue1); 851 if (SrcReg1 == 0) 852 return false; 853 854 unsigned SrcReg2 = 0; 855 if (!UseImm) { 856 SrcReg2 = getRegForValue(SrcValue2); 857 if (SrcReg2 == 0) 858 return false; 859 } 860 861 unsigned CmpOpc; 862 bool NeedsExt = false; 863 864 auto RC1 = MRI.getRegClass(SrcReg1); 865 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr; 866 867 switch (SrcVT.SimpleTy) { 868 default: return false; 869 case MVT::f32: 870 if (HasSPE) { 871 switch (Pred) { 872 default: return false; 873 case PPC::PRED_EQ: 874 CmpOpc = PPC::EFSCMPEQ; 875 break; 876 case PPC::PRED_LT: 877 CmpOpc = PPC::EFSCMPLT; 878 break; 879 case PPC::PRED_GT: 880 CmpOpc = PPC::EFSCMPGT; 881 break; 882 } 883 } else { 884 CmpOpc = PPC::FCMPUS; 885 if (isVSSRCRegClass(RC1)) 886 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1); 887 if (RC2 && isVSSRCRegClass(RC2)) 888 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2); 889 } 890 break; 891 case MVT::f64: 892 if (HasSPE) { 893 switch (Pred) { 894 default: return false; 895 case PPC::PRED_EQ: 896 CmpOpc = PPC::EFDCMPEQ; 897 break; 898 case PPC::PRED_LT: 899 CmpOpc = PPC::EFDCMPLT; 900 break; 901 case PPC::PRED_GT: 902 CmpOpc = PPC::EFDCMPGT; 903 break; 904 } 905 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) { 906 CmpOpc = PPC::XSCMPUDP; 907 } else { 908 CmpOpc = PPC::FCMPUD; 909 } 910 break; 911 case MVT::i1: 912 case MVT::i8: 913 case MVT::i16: 914 NeedsExt = true; 915 LLVM_FALLTHROUGH; 916 case MVT::i32: 917 if (!UseImm) 918 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 919 else 920 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 921 break; 922 case MVT::i64: 923 if (!UseImm) 924 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 925 else 926 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 927 break; 928 } 929 930 if (NeedsExt) { 931 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 932 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 933 return false; 934 SrcReg1 = ExtReg; 935 936 if (!UseImm) { 937 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 938 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 939 return false; 940 SrcReg2 = ExtReg; 941 } 942 } 943 944 if (!UseImm) 945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 946 .addReg(SrcReg1).addReg(SrcReg2); 947 else 948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 949 .addReg(SrcReg1).addImm(Imm); 950 951 return true; 952 } 953 954 // Attempt to fast-select a floating-point extend instruction. 955 bool PPCFastISel::SelectFPExt(const Instruction *I) { 956 Value *Src = I->getOperand(0); 957 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 958 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 959 960 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 961 return false; 962 963 unsigned SrcReg = getRegForValue(Src); 964 if (!SrcReg) 965 return false; 966 967 // No code is generated for a FP extend. 968 updateValueMap(I, SrcReg); 969 return true; 970 } 971 972 // Attempt to fast-select a floating-point truncate instruction. 973 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 974 Value *Src = I->getOperand(0); 975 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 976 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 977 978 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 979 return false; 980 981 unsigned SrcReg = getRegForValue(Src); 982 if (!SrcReg) 983 return false; 984 985 // Round the result to single precision. 986 unsigned DestReg; 987 auto RC = MRI.getRegClass(SrcReg); 988 if (Subtarget->hasSPE()) { 989 DestReg = createResultReg(&PPC::GPRCRegClass); 990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 991 TII.get(PPC::EFSCFD), DestReg) 992 .addReg(SrcReg); 993 } else if (isVSFRCRegClass(RC)) { 994 DestReg = createResultReg(&PPC::VSSRCRegClass); 995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 996 TII.get(PPC::XSRSP), DestReg) 997 .addReg(SrcReg); 998 } else { 999 DestReg = createResultReg(&PPC::F4RCRegClass); 1000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1001 TII.get(PPC::FRSP), DestReg) 1002 .addReg(SrcReg); 1003 } 1004 1005 updateValueMap(I, DestReg); 1006 return true; 1007 } 1008 1009 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 1010 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1011 // those should be used instead of moving via a stack slot when the 1012 // subtarget permits. 1013 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 1014 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 1015 // case to 8 bytes which produces tighter code but wastes stack space. 1016 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 1017 bool IsSigned) { 1018 1019 // If necessary, extend 32-bit int to 64-bit. 1020 if (SrcVT == MVT::i32) { 1021 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1022 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1023 return 0; 1024 SrcReg = TmpReg; 1025 } 1026 1027 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1028 Address Addr; 1029 Addr.BaseType = Address::FrameIndexBase; 1030 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1031 1032 // Store the value from the GPR. 1033 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 1034 return 0; 1035 1036 // Load the integer value into an FPR. The kind of load used depends 1037 // on a number of conditions. 1038 unsigned LoadOpc = PPC::LFD; 1039 1040 if (SrcVT == MVT::i32) { 1041 if (!IsSigned) { 1042 LoadOpc = PPC::LFIWZX; 1043 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1044 } else if (Subtarget->hasLFIWAX()) { 1045 LoadOpc = PPC::LFIWAX; 1046 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1047 } 1048 } 1049 1050 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1051 Register ResultReg = 0; 1052 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1053 return 0; 1054 1055 return ResultReg; 1056 } 1057 1058 // Attempt to fast-select an integer-to-floating-point conversion. 1059 // FIXME: Once fast-isel has better support for VSX, conversions using 1060 // direct moves should be implemented. 1061 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1062 MVT DstVT; 1063 Type *DstTy = I->getType(); 1064 if (!isTypeLegal(DstTy, DstVT)) 1065 return false; 1066 1067 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1068 return false; 1069 1070 Value *Src = I->getOperand(0); 1071 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1072 if (!SrcEVT.isSimple()) 1073 return false; 1074 1075 MVT SrcVT = SrcEVT.getSimpleVT(); 1076 1077 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1078 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1079 return false; 1080 1081 unsigned SrcReg = getRegForValue(Src); 1082 if (SrcReg == 0) 1083 return false; 1084 1085 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs 1086 if (Subtarget->hasSPE()) { 1087 unsigned Opc; 1088 if (DstVT == MVT::f32) 1089 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; 1090 else 1091 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; 1092 1093 unsigned DestReg = createResultReg(&PPC::SPERCRegClass); 1094 // Generate the convert. 1095 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1096 .addReg(SrcReg); 1097 updateValueMap(I, DestReg); 1098 return true; 1099 } 1100 1101 // We can only lower an unsigned convert if we have the newer 1102 // floating-point conversion operations. 1103 if (!IsSigned && !Subtarget->hasFPCVT()) 1104 return false; 1105 1106 // FIXME: For now we require the newer floating-point conversion operations 1107 // (which are present only on P7 and A2 server models) when converting 1108 // to single-precision float. Otherwise we have to generate a lot of 1109 // fiddly code to avoid double rounding. If necessary, the fiddly code 1110 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1111 if (DstVT == MVT::f32 && !Subtarget->hasFPCVT()) 1112 return false; 1113 1114 // Extend the input if necessary. 1115 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1116 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1117 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1118 return false; 1119 SrcVT = MVT::i64; 1120 SrcReg = TmpReg; 1121 } 1122 1123 // Move the integer value to an FPR. 1124 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1125 if (FPReg == 0) 1126 return false; 1127 1128 // Determine the opcode for the conversion. 1129 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1130 unsigned DestReg = createResultReg(RC); 1131 unsigned Opc; 1132 1133 if (DstVT == MVT::f32) 1134 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1135 else 1136 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1137 1138 // Generate the convert. 1139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1140 .addReg(FPReg); 1141 1142 updateValueMap(I, DestReg); 1143 return true; 1144 } 1145 1146 // Move the floating-point value in SrcReg into an integer destination 1147 // register, and return the register (or zero if we can't handle it). 1148 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1149 // those should be used instead of moving via a stack slot when the 1150 // subtarget permits. 1151 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1152 unsigned SrcReg, bool IsSigned) { 1153 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1154 // Note that if have STFIWX available, we could use a 4-byte stack 1155 // slot for i32, but this being fast-isel we'll just go with the 1156 // easiest code gen possible. 1157 Address Addr; 1158 Addr.BaseType = Address::FrameIndexBase; 1159 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1160 1161 // Store the value from the FPR. 1162 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1163 return 0; 1164 1165 // Reload it into a GPR. If we want an i32 on big endian, modify the 1166 // address to have a 4-byte offset so we load from the right place. 1167 if (VT == MVT::i32) 1168 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1169 1170 // Look at the currently assigned register for this instruction 1171 // to determine the required register class. 1172 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1173 const TargetRegisterClass *RC = 1174 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1175 1176 Register ResultReg = 0; 1177 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1178 return 0; 1179 1180 return ResultReg; 1181 } 1182 1183 // Attempt to fast-select a floating-point-to-integer conversion. 1184 // FIXME: Once fast-isel has better support for VSX, conversions using 1185 // direct moves should be implemented. 1186 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1187 MVT DstVT, SrcVT; 1188 Type *DstTy = I->getType(); 1189 if (!isTypeLegal(DstTy, DstVT)) 1190 return false; 1191 1192 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1193 return false; 1194 1195 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. 1196 if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() && 1197 !Subtarget->hasSPE()) 1198 return false; 1199 1200 Value *Src = I->getOperand(0); 1201 Type *SrcTy = Src->getType(); 1202 if (!isTypeLegal(SrcTy, SrcVT)) 1203 return false; 1204 1205 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1206 return false; 1207 1208 unsigned SrcReg = getRegForValue(Src); 1209 if (SrcReg == 0) 1210 return false; 1211 1212 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a 1213 // meaningless copy to get the register class right. 1214 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1215 if (InRC == &PPC::F4RCRegClass) 1216 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg); 1217 else if (InRC == &PPC::VSSRCRegClass) 1218 SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg); 1219 1220 // Determine the opcode for the conversion, which takes place 1221 // entirely within FPRs or VSRs. 1222 unsigned DestReg; 1223 unsigned Opc; 1224 auto RC = MRI.getRegClass(SrcReg); 1225 1226 if (Subtarget->hasSPE()) { 1227 DestReg = createResultReg(&PPC::GPRCRegClass); 1228 if (IsSigned) 1229 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; 1230 else 1231 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; 1232 } else if (isVSFRCRegClass(RC)) { 1233 DestReg = createResultReg(&PPC::VSFRCRegClass); 1234 if (DstVT == MVT::i32) 1235 Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS; 1236 else 1237 Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS; 1238 } else { 1239 DestReg = createResultReg(&PPC::F8RCRegClass); 1240 if (DstVT == MVT::i32) 1241 if (IsSigned) 1242 Opc = PPC::FCTIWZ; 1243 else 1244 Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1245 else 1246 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1247 } 1248 1249 // Generate the convert. 1250 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1251 .addReg(SrcReg); 1252 1253 // Now move the integer value from a float register to an integer register. 1254 unsigned IntReg = Subtarget->hasSPE() 1255 ? DestReg 1256 : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1257 1258 if (IntReg == 0) 1259 return false; 1260 1261 updateValueMap(I, IntReg); 1262 return true; 1263 } 1264 1265 // Attempt to fast-select a binary integer operation that isn't already 1266 // handled automatically. 1267 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1268 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1269 1270 // We can get here in the case when we have a binary operation on a non-legal 1271 // type and the target independent selector doesn't know how to handle it. 1272 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1273 return false; 1274 1275 // Look at the currently assigned register for this instruction 1276 // to determine the required register class. If there is no register, 1277 // make a conservative choice (don't assign R0). 1278 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1279 const TargetRegisterClass *RC = 1280 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1281 &PPC::GPRC_and_GPRC_NOR0RegClass); 1282 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1283 1284 unsigned Opc; 1285 switch (ISDOpcode) { 1286 default: return false; 1287 case ISD::ADD: 1288 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1289 break; 1290 case ISD::OR: 1291 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1292 break; 1293 case ISD::SUB: 1294 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1295 break; 1296 } 1297 1298 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1299 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1300 if (SrcReg1 == 0) return false; 1301 1302 // Handle case of small immediate operand. 1303 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1304 const APInt &CIVal = ConstInt->getValue(); 1305 int Imm = (int)CIVal.getSExtValue(); 1306 bool UseImm = true; 1307 if (isInt<16>(Imm)) { 1308 switch (Opc) { 1309 default: 1310 llvm_unreachable("Missing case!"); 1311 case PPC::ADD4: 1312 Opc = PPC::ADDI; 1313 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1314 break; 1315 case PPC::ADD8: 1316 Opc = PPC::ADDI8; 1317 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1318 break; 1319 case PPC::OR: 1320 Opc = PPC::ORI; 1321 break; 1322 case PPC::OR8: 1323 Opc = PPC::ORI8; 1324 break; 1325 case PPC::SUBF: 1326 if (Imm == -32768) 1327 UseImm = false; 1328 else { 1329 Opc = PPC::ADDI; 1330 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1331 Imm = -Imm; 1332 } 1333 break; 1334 case PPC::SUBF8: 1335 if (Imm == -32768) 1336 UseImm = false; 1337 else { 1338 Opc = PPC::ADDI8; 1339 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1340 Imm = -Imm; 1341 } 1342 break; 1343 } 1344 1345 if (UseImm) { 1346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1347 ResultReg) 1348 .addReg(SrcReg1) 1349 .addImm(Imm); 1350 updateValueMap(I, ResultReg); 1351 return true; 1352 } 1353 } 1354 } 1355 1356 // Reg-reg case. 1357 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1358 if (SrcReg2 == 0) return false; 1359 1360 // Reverse operands for subtract-from. 1361 if (ISDOpcode == ISD::SUB) 1362 std::swap(SrcReg1, SrcReg2); 1363 1364 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1365 .addReg(SrcReg1).addReg(SrcReg2); 1366 updateValueMap(I, ResultReg); 1367 return true; 1368 } 1369 1370 // Handle arguments to a call that we're attempting to fast-select. 1371 // Return false if the arguments are too complex for us at the moment. 1372 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1373 SmallVectorImpl<unsigned> &ArgRegs, 1374 SmallVectorImpl<MVT> &ArgVTs, 1375 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1376 SmallVectorImpl<unsigned> &RegArgs, 1377 CallingConv::ID CC, 1378 unsigned &NumBytes, 1379 bool IsVarArg) { 1380 SmallVector<CCValAssign, 16> ArgLocs; 1381 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1382 1383 // Reserve space for the linkage area on the stack. 1384 unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize(); 1385 CCInfo.AllocateStack(LinkageSize, Align(8)); 1386 1387 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1388 1389 // Bail out if we can't handle any of the arguments. 1390 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1391 CCValAssign &VA = ArgLocs[I]; 1392 MVT ArgVT = ArgVTs[VA.getValNo()]; 1393 1394 // Skip vector arguments for now, as well as long double and 1395 // uint128_t, and anything that isn't passed in a register. 1396 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1397 !VA.isRegLoc() || VA.needsCustom()) 1398 return false; 1399 1400 // Skip bit-converted arguments for now. 1401 if (VA.getLocInfo() == CCValAssign::BCvt) 1402 return false; 1403 } 1404 1405 // Get a count of how many bytes are to be pushed onto the stack. 1406 NumBytes = CCInfo.getNextStackOffset(); 1407 1408 // The prolog code of the callee may store up to 8 GPR argument registers to 1409 // the stack, allowing va_start to index over them in memory if its varargs. 1410 // Because we cannot tell if this is needed on the caller side, we have to 1411 // conservatively assume that it is needed. As such, make sure we have at 1412 // least enough stack space for the caller to store the 8 GPRs. 1413 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1414 NumBytes = std::max(NumBytes, LinkageSize + 64); 1415 1416 // Issue CALLSEQ_START. 1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1418 TII.get(TII.getCallFrameSetupOpcode())) 1419 .addImm(NumBytes).addImm(0); 1420 1421 // Prepare to assign register arguments. Every argument uses up a 1422 // GPR protocol register even if it's passed in a floating-point 1423 // register (unless we're using the fast calling convention). 1424 unsigned NextGPR = PPC::X3; 1425 unsigned NextFPR = PPC::F1; 1426 1427 // Process arguments. 1428 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1429 CCValAssign &VA = ArgLocs[I]; 1430 unsigned Arg = ArgRegs[VA.getValNo()]; 1431 MVT ArgVT = ArgVTs[VA.getValNo()]; 1432 1433 // Handle argument promotion and bitcasts. 1434 switch (VA.getLocInfo()) { 1435 default: 1436 llvm_unreachable("Unknown loc info!"); 1437 case CCValAssign::Full: 1438 break; 1439 case CCValAssign::SExt: { 1440 MVT DestVT = VA.getLocVT(); 1441 const TargetRegisterClass *RC = 1442 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1443 unsigned TmpReg = createResultReg(RC); 1444 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1445 llvm_unreachable("Failed to emit a sext!"); 1446 ArgVT = DestVT; 1447 Arg = TmpReg; 1448 break; 1449 } 1450 case CCValAssign::AExt: 1451 case CCValAssign::ZExt: { 1452 MVT DestVT = VA.getLocVT(); 1453 const TargetRegisterClass *RC = 1454 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1455 unsigned TmpReg = createResultReg(RC); 1456 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1457 llvm_unreachable("Failed to emit a zext!"); 1458 ArgVT = DestVT; 1459 Arg = TmpReg; 1460 break; 1461 } 1462 case CCValAssign::BCvt: { 1463 // FIXME: Not yet handled. 1464 llvm_unreachable("Should have bailed before getting here!"); 1465 break; 1466 } 1467 } 1468 1469 // Copy this argument to the appropriate register. 1470 unsigned ArgReg; 1471 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1472 ArgReg = NextFPR++; 1473 if (CC != CallingConv::Fast) 1474 ++NextGPR; 1475 } else 1476 ArgReg = NextGPR++; 1477 1478 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1479 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1480 RegArgs.push_back(ArgReg); 1481 } 1482 1483 return true; 1484 } 1485 1486 // For a call that we've determined we can fast-select, finish the 1487 // call sequence and generate a copy to obtain the return value (if any). 1488 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1489 CallingConv::ID CC = CLI.CallConv; 1490 1491 // Issue CallSEQ_END. 1492 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1493 TII.get(TII.getCallFrameDestroyOpcode())) 1494 .addImm(NumBytes).addImm(0); 1495 1496 // Next, generate a copy to obtain the return value. 1497 // FIXME: No multi-register return values yet, though I don't foresee 1498 // any real difficulties there. 1499 if (RetVT != MVT::isVoid) { 1500 SmallVector<CCValAssign, 16> RVLocs; 1501 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1502 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1503 CCValAssign &VA = RVLocs[0]; 1504 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1505 assert(VA.isRegLoc() && "Can only return in registers!"); 1506 1507 MVT DestVT = VA.getValVT(); 1508 MVT CopyVT = DestVT; 1509 1510 // Ints smaller than a register still arrive in a full 64-bit 1511 // register, so make sure we recognize this. 1512 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1513 CopyVT = MVT::i64; 1514 1515 unsigned SourcePhysReg = VA.getLocReg(); 1516 unsigned ResultReg = 0; 1517 1518 if (RetVT == CopyVT) { 1519 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1520 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg); 1521 1522 // If necessary, round the floating result to single precision. 1523 } else if (CopyVT == MVT::f64) { 1524 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1526 ResultReg).addReg(SourcePhysReg); 1527 1528 // If only the low half of a general register is needed, generate 1529 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1530 // used along the fast-isel path (not lowered), and downstream logic 1531 // also doesn't like a direct subreg copy on a physical reg.) 1532 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1533 // Convert physical register from G8RC to GPRC. 1534 SourcePhysReg -= PPC::X0 - PPC::R0; 1535 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg); 1536 } 1537 1538 assert(ResultReg && "ResultReg unset!"); 1539 CLI.InRegs.push_back(SourcePhysReg); 1540 CLI.ResultReg = ResultReg; 1541 CLI.NumResultRegs = 1; 1542 } 1543 1544 return true; 1545 } 1546 1547 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1548 CallingConv::ID CC = CLI.CallConv; 1549 bool IsTailCall = CLI.IsTailCall; 1550 bool IsVarArg = CLI.IsVarArg; 1551 const Value *Callee = CLI.Callee; 1552 const MCSymbol *Symbol = CLI.Symbol; 1553 1554 if (!Callee && !Symbol) 1555 return false; 1556 1557 // Allow SelectionDAG isel to handle tail calls. 1558 if (IsTailCall) 1559 return false; 1560 1561 // Let SDISel handle vararg functions. 1562 if (IsVarArg) 1563 return false; 1564 1565 // If this is a PC-Rel function, let SDISel handle the call. 1566 if (Subtarget->isUsingPCRelativeCalls()) 1567 return false; 1568 1569 // Handle simple calls for now, with legal return types and 1570 // those that can be extended. 1571 Type *RetTy = CLI.RetTy; 1572 MVT RetVT; 1573 if (RetTy->isVoidTy()) 1574 RetVT = MVT::isVoid; 1575 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1576 RetVT != MVT::i8) 1577 return false; 1578 else if (RetVT == MVT::i1 && Subtarget->useCRBits()) 1579 // We can't handle boolean returns when CR bits are in use. 1580 return false; 1581 1582 // FIXME: No multi-register return values yet. 1583 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1584 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1585 RetVT != MVT::f64) { 1586 SmallVector<CCValAssign, 16> RVLocs; 1587 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1588 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1589 if (RVLocs.size() > 1) 1590 return false; 1591 } 1592 1593 // Bail early if more than 8 arguments, as we only currently 1594 // handle arguments passed in registers. 1595 unsigned NumArgs = CLI.OutVals.size(); 1596 if (NumArgs > 8) 1597 return false; 1598 1599 // Set up the argument vectors. 1600 SmallVector<Value*, 8> Args; 1601 SmallVector<unsigned, 8> ArgRegs; 1602 SmallVector<MVT, 8> ArgVTs; 1603 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1604 1605 Args.reserve(NumArgs); 1606 ArgRegs.reserve(NumArgs); 1607 ArgVTs.reserve(NumArgs); 1608 ArgFlags.reserve(NumArgs); 1609 1610 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1611 // Only handle easy calls for now. It would be reasonably easy 1612 // to handle <= 8-byte structures passed ByVal in registers, but we 1613 // have to ensure they are right-justified in the register. 1614 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1615 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1616 return false; 1617 1618 Value *ArgValue = CLI.OutVals[i]; 1619 Type *ArgTy = ArgValue->getType(); 1620 MVT ArgVT; 1621 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1622 return false; 1623 1624 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP 1625 // types, which is passed through vector register. Skip these types and 1626 // fallback to default SelectionDAG based selection. 1627 if (ArgVT.isVector() || ArgVT == MVT::f128) 1628 return false; 1629 1630 unsigned Arg = getRegForValue(ArgValue); 1631 if (Arg == 0) 1632 return false; 1633 1634 Args.push_back(ArgValue); 1635 ArgRegs.push_back(Arg); 1636 ArgVTs.push_back(ArgVT); 1637 ArgFlags.push_back(Flags); 1638 } 1639 1640 // Process the arguments. 1641 SmallVector<unsigned, 8> RegArgs; 1642 unsigned NumBytes; 1643 1644 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1645 RegArgs, CC, NumBytes, IsVarArg)) 1646 return false; 1647 1648 MachineInstrBuilder MIB; 1649 // FIXME: No handling for function pointers yet. This requires 1650 // implementing the function descriptor (OPD) setup. 1651 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1652 if (!GV) { 1653 // patchpoints are a special case; they always dispatch to a pointer value. 1654 // However, we don't actually want to generate the indirect call sequence 1655 // here (that will be generated, as necessary, during asm printing), and 1656 // the call we generate here will be erased by FastISel::selectPatchpoint, 1657 // so don't try very hard... 1658 if (CLI.IsPatchPoint) 1659 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1660 else 1661 return false; 1662 } else { 1663 // Build direct call with NOP for TOC restore. 1664 // FIXME: We can and should optimize away the NOP for local calls. 1665 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1666 TII.get(PPC::BL8_NOP)); 1667 // Add callee. 1668 MIB.addGlobalAddress(GV); 1669 } 1670 1671 // Add implicit physical register uses to the call. 1672 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1673 MIB.addReg(RegArgs[II], RegState::Implicit); 1674 1675 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1676 // into the call. 1677 PPCFuncInfo->setUsesTOCBasePtr(); 1678 MIB.addReg(PPC::X2, RegState::Implicit); 1679 1680 // Add a register mask with the call-preserved registers. Proper 1681 // defs for return values will be added by setPhysRegsDeadExcept(). 1682 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1683 1684 CLI.Call = MIB; 1685 1686 // Finish off the call including any return values. 1687 return finishCall(RetVT, CLI, NumBytes); 1688 } 1689 1690 // Attempt to fast-select a return instruction. 1691 bool PPCFastISel::SelectRet(const Instruction *I) { 1692 1693 if (!FuncInfo.CanLowerReturn) 1694 return false; 1695 1696 const ReturnInst *Ret = cast<ReturnInst>(I); 1697 const Function &F = *I->getParent()->getParent(); 1698 1699 // Build a list of return value registers. 1700 SmallVector<unsigned, 4> RetRegs; 1701 CallingConv::ID CC = F.getCallingConv(); 1702 1703 if (Ret->getNumOperands() > 0) { 1704 SmallVector<ISD::OutputArg, 4> Outs; 1705 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1706 1707 // Analyze operands of the call, assigning locations to each operand. 1708 SmallVector<CCValAssign, 16> ValLocs; 1709 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1710 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1711 const Value *RV = Ret->getOperand(0); 1712 1713 // FIXME: Only one output register for now. 1714 if (ValLocs.size() > 1) 1715 return false; 1716 1717 // Special case for returning a constant integer of any size - materialize 1718 // the constant as an i64 and copy it to the return register. 1719 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1720 CCValAssign &VA = ValLocs[0]; 1721 1722 Register RetReg = VA.getLocReg(); 1723 // We still need to worry about properly extending the sign. For example, 1724 // we could have only a single bit or a constant that needs zero 1725 // extension rather than sign extension. Make sure we pass the return 1726 // value extension property to integer materialization. 1727 unsigned SrcReg = 1728 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1729 1730 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1731 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1732 1733 RetRegs.push_back(RetReg); 1734 1735 } else { 1736 unsigned Reg = getRegForValue(RV); 1737 1738 if (Reg == 0) 1739 return false; 1740 1741 // Copy the result values into the output registers. 1742 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1743 1744 CCValAssign &VA = ValLocs[i]; 1745 assert(VA.isRegLoc() && "Can only return in registers!"); 1746 RetRegs.push_back(VA.getLocReg()); 1747 unsigned SrcReg = Reg + VA.getValNo(); 1748 1749 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1750 if (!RVEVT.isSimple()) 1751 return false; 1752 MVT RVVT = RVEVT.getSimpleVT(); 1753 MVT DestVT = VA.getLocVT(); 1754 1755 if (RVVT != DestVT && RVVT != MVT::i8 && 1756 RVVT != MVT::i16 && RVVT != MVT::i32) 1757 return false; 1758 1759 if (RVVT != DestVT) { 1760 switch (VA.getLocInfo()) { 1761 default: 1762 llvm_unreachable("Unknown loc info!"); 1763 case CCValAssign::Full: 1764 llvm_unreachable("Full value assign but types don't match?"); 1765 case CCValAssign::AExt: 1766 case CCValAssign::ZExt: { 1767 const TargetRegisterClass *RC = 1768 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1769 unsigned TmpReg = createResultReg(RC); 1770 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1771 return false; 1772 SrcReg = TmpReg; 1773 break; 1774 } 1775 case CCValAssign::SExt: { 1776 const TargetRegisterClass *RC = 1777 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1778 unsigned TmpReg = createResultReg(RC); 1779 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1780 return false; 1781 SrcReg = TmpReg; 1782 break; 1783 } 1784 } 1785 } 1786 1787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1788 TII.get(TargetOpcode::COPY), RetRegs[i]) 1789 .addReg(SrcReg); 1790 } 1791 } 1792 } 1793 1794 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1795 TII.get(PPC::BLR8)); 1796 1797 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1798 MIB.addReg(RetRegs[i], RegState::Implicit); 1799 1800 return true; 1801 } 1802 1803 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1804 // signed and zero extensions are supported. Return false if we 1805 // can't handle it. 1806 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1807 unsigned DestReg, bool IsZExt) { 1808 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1809 return false; 1810 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1811 return false; 1812 1813 // Signed extensions use EXTSB, EXTSH, EXTSW. 1814 if (!IsZExt) { 1815 unsigned Opc; 1816 if (SrcVT == MVT::i8) 1817 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1818 else if (SrcVT == MVT::i16) 1819 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1820 else { 1821 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1822 Opc = PPC::EXTSW_32_64; 1823 } 1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1825 .addReg(SrcReg); 1826 1827 // Unsigned 32-bit extensions use RLWINM. 1828 } else if (DestVT == MVT::i32) { 1829 unsigned MB; 1830 if (SrcVT == MVT::i8) 1831 MB = 24; 1832 else { 1833 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1834 MB = 16; 1835 } 1836 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1837 DestReg) 1838 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1839 1840 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1841 } else { 1842 unsigned MB; 1843 if (SrcVT == MVT::i8) 1844 MB = 56; 1845 else if (SrcVT == MVT::i16) 1846 MB = 48; 1847 else 1848 MB = 32; 1849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1850 TII.get(PPC::RLDICL_32_64), DestReg) 1851 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1852 } 1853 1854 return true; 1855 } 1856 1857 // Attempt to fast-select an indirect branch instruction. 1858 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1859 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1860 if (AddrReg == 0) 1861 return false; 1862 1863 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1864 .addReg(AddrReg); 1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1866 1867 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1868 for (const BasicBlock *SuccBB : IB->successors()) 1869 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1870 1871 return true; 1872 } 1873 1874 // Attempt to fast-select an integer truncate instruction. 1875 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1876 Value *Src = I->getOperand(0); 1877 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1878 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1879 1880 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1881 return false; 1882 1883 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1884 return false; 1885 1886 unsigned SrcReg = getRegForValue(Src); 1887 if (!SrcReg) 1888 return false; 1889 1890 // The only interesting case is when we need to switch register classes. 1891 if (SrcVT == MVT::i64) 1892 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32); 1893 1894 updateValueMap(I, SrcReg); 1895 return true; 1896 } 1897 1898 // Attempt to fast-select an integer extend instruction. 1899 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1900 Type *DestTy = I->getType(); 1901 Value *Src = I->getOperand(0); 1902 Type *SrcTy = Src->getType(); 1903 1904 bool IsZExt = isa<ZExtInst>(I); 1905 unsigned SrcReg = getRegForValue(Src); 1906 if (!SrcReg) return false; 1907 1908 EVT SrcEVT, DestEVT; 1909 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1910 DestEVT = TLI.getValueType(DL, DestTy, true); 1911 if (!SrcEVT.isSimple()) 1912 return false; 1913 if (!DestEVT.isSimple()) 1914 return false; 1915 1916 MVT SrcVT = SrcEVT.getSimpleVT(); 1917 MVT DestVT = DestEVT.getSimpleVT(); 1918 1919 // If we know the register class needed for the result of this 1920 // instruction, use it. Otherwise pick the register class of the 1921 // correct size that does not contain X0/R0, since we don't know 1922 // whether downstream uses permit that assignment. 1923 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1924 const TargetRegisterClass *RC = 1925 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1926 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1927 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1928 unsigned ResultReg = createResultReg(RC); 1929 1930 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1931 return false; 1932 1933 updateValueMap(I, ResultReg); 1934 return true; 1935 } 1936 1937 // Attempt to fast-select an instruction that wasn't handled by 1938 // the table-generated machinery. 1939 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1940 1941 switch (I->getOpcode()) { 1942 case Instruction::Load: 1943 return SelectLoad(I); 1944 case Instruction::Store: 1945 return SelectStore(I); 1946 case Instruction::Br: 1947 return SelectBranch(I); 1948 case Instruction::IndirectBr: 1949 return SelectIndirectBr(I); 1950 case Instruction::FPExt: 1951 return SelectFPExt(I); 1952 case Instruction::FPTrunc: 1953 return SelectFPTrunc(I); 1954 case Instruction::SIToFP: 1955 return SelectIToFP(I, /*IsSigned*/ true); 1956 case Instruction::UIToFP: 1957 return SelectIToFP(I, /*IsSigned*/ false); 1958 case Instruction::FPToSI: 1959 return SelectFPToI(I, /*IsSigned*/ true); 1960 case Instruction::FPToUI: 1961 return SelectFPToI(I, /*IsSigned*/ false); 1962 case Instruction::Add: 1963 return SelectBinaryIntOp(I, ISD::ADD); 1964 case Instruction::Or: 1965 return SelectBinaryIntOp(I, ISD::OR); 1966 case Instruction::Sub: 1967 return SelectBinaryIntOp(I, ISD::SUB); 1968 case Instruction::Call: 1969 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1970 // callee of the direct function call instruction will be mapped to the 1971 // symbol for the function's entry point, which is distinct from the 1972 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1973 // name is the C-linkage name of the source level function. 1974 if (TM.getTargetTriple().isOSAIX()) 1975 break; 1976 return selectCall(I); 1977 case Instruction::Ret: 1978 return SelectRet(I); 1979 case Instruction::Trunc: 1980 return SelectTrunc(I); 1981 case Instruction::ZExt: 1982 case Instruction::SExt: 1983 return SelectIntExt(I); 1984 // Here add other flavors of Instruction::XXX that automated 1985 // cases don't catch. For example, switches are terminators 1986 // that aren't yet handled. 1987 default: 1988 break; 1989 } 1990 return false; 1991 } 1992 1993 // Materialize a floating-point constant into a register, and return 1994 // the register number (or zero if we failed to handle it). 1995 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1996 // If this is a PC-Rel function, let SDISel handle constant pool. 1997 if (Subtarget->isUsingPCRelativeCalls()) 1998 return false; 1999 2000 // No plans to handle long double here. 2001 if (VT != MVT::f32 && VT != MVT::f64) 2002 return 0; 2003 2004 // All FP constants are loaded from the constant pool. 2005 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 2006 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 2007 const bool HasSPE = Subtarget->hasSPE(); 2008 const TargetRegisterClass *RC; 2009 if (HasSPE) 2010 RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass); 2011 else 2012 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); 2013 2014 unsigned DestReg = createResultReg(RC); 2015 CodeModel::Model CModel = TM.getCodeModel(); 2016 2017 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 2018 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 2019 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment); 2020 2021 unsigned Opc; 2022 2023 if (HasSPE) 2024 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); 2025 else 2026 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); 2027 2028 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2029 2030 PPCFuncInfo->setUsesTOCBasePtr(); 2031 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 2032 if (CModel == CodeModel::Small) { 2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 2034 TmpReg) 2035 .addConstantPoolIndex(Idx).addReg(PPC::X2); 2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2037 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 2038 } else { 2039 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)). 2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8), 2041 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 2042 // But for large code model, we must generate a LDtocL followed 2043 // by the LF[SD]. 2044 if (CModel == CodeModel::Large) { 2045 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2047 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 2048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2049 .addImm(0) 2050 .addReg(TmpReg2); 2051 } else 2052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2053 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 2054 .addReg(TmpReg) 2055 .addMemOperand(MMO); 2056 } 2057 2058 return DestReg; 2059 } 2060 2061 // Materialize the address of a global value into a register, and return 2062 // the register number (or zero if we failed to handle it). 2063 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 2064 // If this is a PC-Rel function, let SDISel handle GV materialization. 2065 if (Subtarget->isUsingPCRelativeCalls()) 2066 return false; 2067 2068 assert(VT == MVT::i64 && "Non-address!"); 2069 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 2070 unsigned DestReg = createResultReg(RC); 2071 2072 // Global values may be plain old object addresses, TLS object 2073 // addresses, constant pool entries, or jump tables. How we generate 2074 // code for these may depend on small, medium, or large code model. 2075 CodeModel::Model CModel = TM.getCodeModel(); 2076 2077 // FIXME: Jump tables are not yet required because fast-isel doesn't 2078 // handle switches; if that changes, we need them as well. For now, 2079 // what follows assumes everything's a generic (or TLS) global address. 2080 2081 // FIXME: We don't yet handle the complexity of TLS. 2082 if (GV->isThreadLocal()) 2083 return 0; 2084 2085 PPCFuncInfo->setUsesTOCBasePtr(); 2086 // For small code model, generate a simple TOC load. 2087 if (CModel == CodeModel::Small) 2088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 2089 DestReg) 2090 .addGlobalAddress(GV) 2091 .addReg(PPC::X2); 2092 else { 2093 // If the address is an externally defined symbol, a symbol with common 2094 // or externally available linkage, a non-local function address, or a 2095 // jump table address (not yet needed), or if we are generating code 2096 // for large code model, we generate: 2097 // LDtocL(GV, ADDIStocHA8(%x2, GV)) 2098 // Otherwise we generate: 2099 // ADDItocL(ADDIStocHA8(%x2, GV), GV) 2100 // Either way, start with the ADDIStocHA8: 2101 unsigned HighPartReg = createResultReg(RC); 2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8), 2103 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2104 2105 if (Subtarget->isGVIndirectSymbol(GV)) { 2106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2107 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2108 } else { 2109 // Otherwise generate the ADDItocL. 2110 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 2111 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 2112 } 2113 } 2114 2115 return DestReg; 2116 } 2117 2118 // Materialize a 32-bit integer constant into a register, and return 2119 // the register number (or zero if we failed to handle it). 2120 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2121 const TargetRegisterClass *RC) { 2122 unsigned Lo = Imm & 0xFFFF; 2123 unsigned Hi = (Imm >> 16) & 0xFFFF; 2124 2125 unsigned ResultReg = createResultReg(RC); 2126 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2127 2128 if (isInt<16>(Imm)) 2129 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2130 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2131 .addImm(Imm); 2132 else if (Lo) { 2133 // Both Lo and Hi have nonzero bits. 2134 unsigned TmpReg = createResultReg(RC); 2135 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2136 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2137 .addImm(Hi); 2138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2139 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2140 .addReg(TmpReg).addImm(Lo); 2141 } else 2142 // Just Hi bits. 2143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2144 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2145 .addImm(Hi); 2146 2147 return ResultReg; 2148 } 2149 2150 // Materialize a 64-bit integer constant into a register, and return 2151 // the register number (or zero if we failed to handle it). 2152 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2153 const TargetRegisterClass *RC) { 2154 unsigned Remainder = 0; 2155 unsigned Shift = 0; 2156 2157 // If the value doesn't fit in 32 bits, see if we can shift it 2158 // so that it fits in 32 bits. 2159 if (!isInt<32>(Imm)) { 2160 Shift = countTrailingZeros<uint64_t>(Imm); 2161 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2162 2163 if (isInt<32>(ImmSh)) 2164 Imm = ImmSh; 2165 else { 2166 Remainder = Imm; 2167 Shift = 32; 2168 Imm >>= 32; 2169 } 2170 } 2171 2172 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2173 // (if not shifted). 2174 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2175 if (!Shift) 2176 return TmpReg1; 2177 2178 // If upper 32 bits were not zero, we've built them and need to shift 2179 // them into place. 2180 unsigned TmpReg2; 2181 if (Imm) { 2182 TmpReg2 = createResultReg(RC); 2183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2184 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2185 } else 2186 TmpReg2 = TmpReg1; 2187 2188 unsigned TmpReg3, Hi, Lo; 2189 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2190 TmpReg3 = createResultReg(RC); 2191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2192 TmpReg3).addReg(TmpReg2).addImm(Hi); 2193 } else 2194 TmpReg3 = TmpReg2; 2195 2196 if ((Lo = Remainder & 0xFFFF)) { 2197 unsigned ResultReg = createResultReg(RC); 2198 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2199 ResultReg).addReg(TmpReg3).addImm(Lo); 2200 return ResultReg; 2201 } 2202 2203 return TmpReg3; 2204 } 2205 2206 // Materialize an integer constant into a register, and return 2207 // the register number (or zero if we failed to handle it). 2208 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2209 bool UseSExt) { 2210 // If we're using CR bit registers for i1 values, handle that as a special 2211 // case first. 2212 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2213 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2215 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2216 return ImmReg; 2217 } 2218 2219 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2220 VT != MVT::i1) 2221 return 0; 2222 2223 const TargetRegisterClass *RC = 2224 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2225 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2226 2227 // If the constant is in range, use a load-immediate. 2228 // Since LI will sign extend the constant we need to make sure that for 2229 // our zeroext constants that the sign extended constant fits into 16-bits - 2230 // a range of 0..0x7fff. 2231 if (isInt<16>(Imm)) { 2232 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2233 unsigned ImmReg = createResultReg(RC); 2234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2235 .addImm(Imm); 2236 return ImmReg; 2237 } 2238 2239 // Construct the constant piecewise. 2240 if (VT == MVT::i64) 2241 return PPCMaterialize64BitInt(Imm, RC); 2242 else if (VT == MVT::i32) 2243 return PPCMaterialize32BitInt(Imm, RC); 2244 2245 return 0; 2246 } 2247 2248 // Materialize a constant into a register, and return the register 2249 // number (or zero if we failed to handle it). 2250 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2251 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2252 2253 // Only handle simple types. 2254 if (!CEVT.isSimple()) return 0; 2255 MVT VT = CEVT.getSimpleVT(); 2256 2257 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2258 return PPCMaterializeFP(CFP, VT); 2259 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2260 return PPCMaterializeGV(GV, VT); 2261 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2262 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2263 // assumes that constant PHI operands will be zero extended, and failure to 2264 // match that assumption will cause problems if we sign extend here but 2265 // some user of a PHI is in a block for which we fall back to full SDAG 2266 // instruction selection. 2267 return PPCMaterializeInt(CI, VT, false); 2268 2269 return 0; 2270 } 2271 2272 // Materialize the address created by an alloca into a register, and 2273 // return the register number (or zero if we failed to handle it). 2274 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2275 // Don't handle dynamic allocas. 2276 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2277 2278 MVT VT; 2279 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2280 2281 DenseMap<const AllocaInst*, int>::iterator SI = 2282 FuncInfo.StaticAllocaMap.find(AI); 2283 2284 if (SI != FuncInfo.StaticAllocaMap.end()) { 2285 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2286 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2287 ResultReg).addFrameIndex(SI->second).addImm(0); 2288 return ResultReg; 2289 } 2290 2291 return 0; 2292 } 2293 2294 // Fold loads into extends when possible. 2295 // FIXME: We can have multiple redundant extend/trunc instructions 2296 // following a load. The folding only picks up one. Extend this 2297 // to check subsequent instructions for the same pattern and remove 2298 // them. Thus ResultReg should be the def reg for the last redundant 2299 // instruction in a chain, and all intervening instructions can be 2300 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2301 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2302 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2303 const LoadInst *LI) { 2304 // Verify we have a legal type before going any further. 2305 MVT VT; 2306 if (!isLoadTypeLegal(LI->getType(), VT)) 2307 return false; 2308 2309 // Combine load followed by zero- or sign-extend. 2310 bool IsZExt = false; 2311 switch(MI->getOpcode()) { 2312 default: 2313 return false; 2314 2315 case PPC::RLDICL: 2316 case PPC::RLDICL_32_64: { 2317 IsZExt = true; 2318 unsigned MB = MI->getOperand(3).getImm(); 2319 if ((VT == MVT::i8 && MB <= 56) || 2320 (VT == MVT::i16 && MB <= 48) || 2321 (VT == MVT::i32 && MB <= 32)) 2322 break; 2323 return false; 2324 } 2325 2326 case PPC::RLWINM: 2327 case PPC::RLWINM8: { 2328 IsZExt = true; 2329 unsigned MB = MI->getOperand(3).getImm(); 2330 if ((VT == MVT::i8 && MB <= 24) || 2331 (VT == MVT::i16 && MB <= 16)) 2332 break; 2333 return false; 2334 } 2335 2336 case PPC::EXTSB: 2337 case PPC::EXTSB8: 2338 case PPC::EXTSB8_32_64: 2339 /* There is no sign-extending load-byte instruction. */ 2340 return false; 2341 2342 case PPC::EXTSH: 2343 case PPC::EXTSH8: 2344 case PPC::EXTSH8_32_64: { 2345 if (VT != MVT::i16 && VT != MVT::i8) 2346 return false; 2347 break; 2348 } 2349 2350 case PPC::EXTSW: 2351 case PPC::EXTSW_32: 2352 case PPC::EXTSW_32_64: { 2353 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2354 return false; 2355 break; 2356 } 2357 } 2358 2359 // See if we can handle this address. 2360 Address Addr; 2361 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2362 return false; 2363 2364 Register ResultReg = MI->getOperand(0).getReg(); 2365 2366 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt, 2367 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 2368 return false; 2369 2370 MachineBasicBlock::iterator I(MI); 2371 removeDeadCode(I, std::next(I)); 2372 return true; 2373 } 2374 2375 // Attempt to lower call arguments in a faster way than done by 2376 // the selection DAG code. 2377 bool PPCFastISel::fastLowerArguments() { 2378 // Defer to normal argument lowering for now. It's reasonably 2379 // efficient. Consider doing something like ARM to handle the 2380 // case where all args fit in registers, no varargs, no float 2381 // or vector args. 2382 return false; 2383 } 2384 2385 // Handle materializing integer constants into a register. This is not 2386 // automatically generated for PowerPC, so must be explicitly created here. 2387 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2388 2389 if (Opc != ISD::Constant) 2390 return 0; 2391 2392 // If we're using CR bit registers for i1 values, handle that as a special 2393 // case first. 2394 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2395 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2396 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2397 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2398 return ImmReg; 2399 } 2400 2401 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2402 VT != MVT::i1) 2403 return 0; 2404 2405 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2406 &PPC::GPRCRegClass); 2407 if (VT == MVT::i64) 2408 return PPCMaterialize64BitInt(Imm, RC); 2409 else 2410 return PPCMaterialize32BitInt(Imm, RC); 2411 } 2412 2413 // Override for ADDI and ADDI8 to set the correct register class 2414 // on RHS operand 0. The automatic infrastructure naively assumes 2415 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2416 // for these cases. At the moment, none of the other automatically 2417 // generated RI instructions require special treatment. However, once 2418 // SelectSelect is implemented, "isel" requires similar handling. 2419 // 2420 // Also be conservative about the output register class. Avoid 2421 // assigning R0 or X0 to the output register for GPRC and G8RC 2422 // register classes, as any such result could be used in ADDI, etc., 2423 // where those regs have another meaning. 2424 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2425 const TargetRegisterClass *RC, 2426 unsigned Op0, 2427 uint64_t Imm) { 2428 if (MachineInstOpcode == PPC::ADDI) 2429 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2430 else if (MachineInstOpcode == PPC::ADDI8) 2431 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2432 2433 const TargetRegisterClass *UseRC = 2434 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2435 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2436 2437 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm); 2438 } 2439 2440 // Override for instructions with one register operand to avoid use of 2441 // R0/X0. The automatic infrastructure isn't aware of the context so 2442 // we must be conservative. 2443 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2444 const TargetRegisterClass* RC, 2445 unsigned Op0) { 2446 const TargetRegisterClass *UseRC = 2447 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2448 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2449 2450 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0); 2451 } 2452 2453 // Override for instructions with two register operands to avoid use 2454 // of R0/X0. The automatic infrastructure isn't aware of the context 2455 // so we must be conservative. 2456 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2457 const TargetRegisterClass* RC, 2458 unsigned Op0, unsigned Op1) { 2459 const TargetRegisterClass *UseRC = 2460 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2461 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2462 2463 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1); 2464 } 2465 2466 namespace llvm { 2467 // Create the fast instruction selector for PowerPC64 ELF. 2468 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2469 const TargetLibraryInfo *LibInfo) { 2470 // Only available on 64-bit ELF for now. 2471 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2472 if (Subtarget.is64BitELFABI()) 2473 return new PPCFastISel(FuncInfo, LibInfo); 2474 return nullptr; 2475 } 2476 } 2477