xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCFastISel.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetMachine.h"
39 
40 //===----------------------------------------------------------------------===//
41 //
42 // TBD:
43 //   fastLowerArguments: Handle simple cases.
44 //   PPCMaterializeGV: Handle TLS.
45 //   SelectCall: Handle function pointers.
46 //   SelectCall: Handle multi-register return values.
47 //   SelectCall: Optimize away nops for local calls.
48 //   processCallArgs: Handle bit-converted arguments.
49 //   finishCall: Handle multi-register return values.
50 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
51 //   PPCEmitCmp: Handle immediate as operand 1.
52 //   SelectCall: Handle small byval arguments.
53 //   SelectIntrinsicCall: Implement.
54 //   SelectSelect: Implement.
55 //   Consider factoring isTypeLegal into the base class.
56 //   Implement switches and jump tables.
57 //
58 //===----------------------------------------------------------------------===//
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "ppcfastisel"
62 
63 namespace {
64 
65 struct Address {
66   enum {
67     RegBase,
68     FrameIndexBase
69   } BaseType;
70 
71   union {
72     unsigned Reg;
73     int FI;
74   } Base;
75 
76   int64_t Offset;
77 
78   // Innocuous defaults for our address.
79   Address()
80    : BaseType(RegBase), Offset(0) {
81      Base.Reg = 0;
82    }
83 };
84 
85 class PPCFastISel final : public FastISel {
86 
87   const TargetMachine &TM;
88   const PPCSubtarget *Subtarget;
89   PPCFunctionInfo *PPCFuncInfo;
90   const TargetInstrInfo &TII;
91   const TargetLowering &TLI;
92   LLVMContext *Context;
93 
94   public:
95     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
96                          const TargetLibraryInfo *LibInfo)
97         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
98           Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
99           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
100           TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
101           Context(&FuncInfo.Fn->getContext()) {}
102 
103     // Backend specific FastISel code.
104   private:
105     bool fastSelectInstruction(const Instruction *I) override;
106     unsigned fastMaterializeConstant(const Constant *C) override;
107     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
108     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
109                              const LoadInst *LI) override;
110     bool fastLowerArguments() override;
111     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
112     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
113                              const TargetRegisterClass *RC,
114                              unsigned Op0, uint64_t Imm);
115     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
116                             const TargetRegisterClass *RC, unsigned Op0);
117     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
118                              const TargetRegisterClass *RC,
119                              unsigned Op0, unsigned Op1);
120 
121     bool fastLowerCall(CallLoweringInfo &CLI) override;
122 
123   // Instruction selection routines.
124   private:
125     bool SelectLoad(const Instruction *I);
126     bool SelectStore(const Instruction *I);
127     bool SelectBranch(const Instruction *I);
128     bool SelectIndirectBr(const Instruction *I);
129     bool SelectFPExt(const Instruction *I);
130     bool SelectFPTrunc(const Instruction *I);
131     bool SelectIToFP(const Instruction *I, bool IsSigned);
132     bool SelectFPToI(const Instruction *I, bool IsSigned);
133     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
134     bool SelectRet(const Instruction *I);
135     bool SelectTrunc(const Instruction *I);
136     bool SelectIntExt(const Instruction *I);
137 
138   // Utility routines.
139   private:
140     bool isTypeLegal(Type *Ty, MVT &VT);
141     bool isLoadTypeLegal(Type *Ty, MVT &VT);
142     bool isValueAvailable(const Value *V) const;
143     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
144       return RC->getID() == PPC::VSFRCRegClassID;
145     }
146     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
147       return RC->getID() == PPC::VSSRCRegClassID;
148     }
149     unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
150                                unsigned SrcReg, unsigned Flag = 0,
151                                unsigned SubReg = 0) {
152       Register TmpReg = createResultReg(ToRC);
153       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
154               TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
155       return TmpReg;
156     }
157     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
158                     bool isZExt, unsigned DestReg,
159                     const PPC::Predicate Pred);
160     bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
161                      const TargetRegisterClass *RC, bool IsZExt = true,
162                      unsigned FP64LoadOpc = PPC::LFD);
163     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
164     bool PPCComputeAddress(const Value *Obj, Address &Addr);
165     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
166                             unsigned &IndexReg);
167     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
168                            unsigned DestReg, bool IsZExt);
169     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
170     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
171     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
172                                bool UseSExt = true);
173     unsigned PPCMaterialize32BitInt(int64_t Imm,
174                                     const TargetRegisterClass *RC);
175     unsigned PPCMaterialize64BitInt(int64_t Imm,
176                                     const TargetRegisterClass *RC);
177     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
178                              unsigned SrcReg, bool IsSigned);
179     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
180 
181   // Call handling routines.
182   private:
183     bool processCallArgs(SmallVectorImpl<Value*> &Args,
184                          SmallVectorImpl<unsigned> &ArgRegs,
185                          SmallVectorImpl<MVT> &ArgVTs,
186                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
187                          SmallVectorImpl<unsigned> &RegArgs,
188                          CallingConv::ID CC,
189                          unsigned &NumBytes,
190                          bool IsVarArg);
191     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
192 
193   private:
194   #include "PPCGenFastISel.inc"
195 
196 };
197 
198 } // end anonymous namespace
199 
200 static std::optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
201     switch (Pred) {
202     // These are not representable with any single compare.
203     case CmpInst::FCMP_FALSE:
204     case CmpInst::FCMP_TRUE:
205     // Major concern about the following 6 cases is NaN result. The comparison
206     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
207     // only one of which will be set. The result is generated by fcmpu
208     // instruction. However, bc instruction only inspects one of the first 3
209     // bits, so when un is set, bc instruction may jump to an undesired
210     // place.
211     //
212     // More specifically, if we expect an unordered comparison and un is set, we
213     // expect to always go to true branch; in such case UEQ, UGT and ULT still
214     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
215     // since they are tested by inspecting !eq, !lt, !gt, respectively.
216     //
217     // Similarly, for ordered comparison, when un is set, we always expect the
218     // result to be false. In such case OGT, OLT and OEQ is good, since they are
219     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
220     // and ONE are tested through !lt, !gt and !eq, and these are true.
221     case CmpInst::FCMP_UEQ:
222     case CmpInst::FCMP_UGT:
223     case CmpInst::FCMP_ULT:
224     case CmpInst::FCMP_OGE:
225     case CmpInst::FCMP_OLE:
226     case CmpInst::FCMP_ONE:
227     default:
228       return std::nullopt;
229 
230     case CmpInst::FCMP_OEQ:
231     case CmpInst::ICMP_EQ:
232       return PPC::PRED_EQ;
233 
234     case CmpInst::FCMP_OGT:
235     case CmpInst::ICMP_UGT:
236     case CmpInst::ICMP_SGT:
237       return PPC::PRED_GT;
238 
239     case CmpInst::FCMP_UGE:
240     case CmpInst::ICMP_UGE:
241     case CmpInst::ICMP_SGE:
242       return PPC::PRED_GE;
243 
244     case CmpInst::FCMP_OLT:
245     case CmpInst::ICMP_ULT:
246     case CmpInst::ICMP_SLT:
247       return PPC::PRED_LT;
248 
249     case CmpInst::FCMP_ULE:
250     case CmpInst::ICMP_ULE:
251     case CmpInst::ICMP_SLE:
252       return PPC::PRED_LE;
253 
254     case CmpInst::FCMP_UNE:
255     case CmpInst::ICMP_NE:
256       return PPC::PRED_NE;
257 
258     case CmpInst::FCMP_ORD:
259       return PPC::PRED_NU;
260 
261     case CmpInst::FCMP_UNO:
262       return PPC::PRED_UN;
263   }
264 }
265 
266 // Determine whether the type Ty is simple enough to be handled by
267 // fast-isel, and return its equivalent machine type in VT.
268 // FIXME: Copied directly from ARM -- factor into base class?
269 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
270   EVT Evt = TLI.getValueType(DL, Ty, true);
271 
272   // Only handle simple types.
273   if (Evt == MVT::Other || !Evt.isSimple()) return false;
274   VT = Evt.getSimpleVT();
275 
276   // Handle all legal types, i.e. a register that will directly hold this
277   // value.
278   return TLI.isTypeLegal(VT);
279 }
280 
281 // Determine whether the type Ty is simple enough to be handled by
282 // fast-isel as a load target, and return its equivalent machine type in VT.
283 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
284   if (isTypeLegal(Ty, VT)) return true;
285 
286   // If this is a type than can be sign or zero-extended to a basic operation
287   // go ahead and accept it now.
288   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
289     return true;
290   }
291 
292   return false;
293 }
294 
295 bool PPCFastISel::isValueAvailable(const Value *V) const {
296   if (!isa<Instruction>(V))
297     return true;
298 
299   const auto *I = cast<Instruction>(V);
300   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
301 }
302 
303 // Given a value Obj, create an Address object Addr that represents its
304 // address.  Return false if we can't handle it.
305 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
306   const User *U = nullptr;
307   unsigned Opcode = Instruction::UserOp1;
308   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
309     // Don't walk into other basic blocks unless the object is an alloca from
310     // another block, otherwise it may not have a virtual register assigned.
311     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
312         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
313       Opcode = I->getOpcode();
314       U = I;
315     }
316   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
317     Opcode = C->getOpcode();
318     U = C;
319   }
320 
321   switch (Opcode) {
322     default:
323       break;
324     case Instruction::BitCast:
325       // Look through bitcasts.
326       return PPCComputeAddress(U->getOperand(0), Addr);
327     case Instruction::IntToPtr:
328       // Look past no-op inttoptrs.
329       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
330           TLI.getPointerTy(DL))
331         return PPCComputeAddress(U->getOperand(0), Addr);
332       break;
333     case Instruction::PtrToInt:
334       // Look past no-op ptrtoints.
335       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
336         return PPCComputeAddress(U->getOperand(0), Addr);
337       break;
338     case Instruction::GetElementPtr: {
339       Address SavedAddr = Addr;
340       int64_t TmpOffset = Addr.Offset;
341 
342       // Iterate through the GEP folding the constants into offsets where
343       // we can.
344       gep_type_iterator GTI = gep_type_begin(U);
345       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
346            II != IE; ++II, ++GTI) {
347         const Value *Op = *II;
348         if (StructType *STy = GTI.getStructTypeOrNull()) {
349           const StructLayout *SL = DL.getStructLayout(STy);
350           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
351           TmpOffset += SL->getElementOffset(Idx);
352         } else {
353           uint64_t S = GTI.getSequentialElementStride(DL);
354           for (;;) {
355             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
356               // Constant-offset addressing.
357               TmpOffset += CI->getSExtValue() * S;
358               break;
359             }
360             if (canFoldAddIntoGEP(U, Op)) {
361               // A compatible add with a constant operand. Fold the constant.
362               ConstantInt *CI =
363               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
364               TmpOffset += CI->getSExtValue() * S;
365               // Iterate on the other operand.
366               Op = cast<AddOperator>(Op)->getOperand(0);
367               continue;
368             }
369             // Unsupported
370             goto unsupported_gep;
371           }
372         }
373       }
374 
375       // Try to grab the base operand now.
376       Addr.Offset = TmpOffset;
377       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
378 
379       // We failed, restore everything and try the other options.
380       Addr = SavedAddr;
381 
382       unsupported_gep:
383       break;
384     }
385     case Instruction::Alloca: {
386       const AllocaInst *AI = cast<AllocaInst>(Obj);
387       DenseMap<const AllocaInst*, int>::iterator SI =
388         FuncInfo.StaticAllocaMap.find(AI);
389       if (SI != FuncInfo.StaticAllocaMap.end()) {
390         Addr.BaseType = Address::FrameIndexBase;
391         Addr.Base.FI = SI->second;
392         return true;
393       }
394       break;
395     }
396   }
397 
398   // FIXME: References to parameters fall through to the behavior
399   // below.  They should be able to reference a frame index since
400   // they are stored to the stack, so we can get "ld rx, offset(r1)"
401   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
402   // just contain the parameter.  Try to handle this with a FI.
403 
404   // Try to get this in a register if nothing else has worked.
405   if (Addr.Base.Reg == 0)
406     Addr.Base.Reg = getRegForValue(Obj);
407 
408   // Prevent assignment of base register to X0, which is inappropriate
409   // for loads and stores alike.
410   if (Addr.Base.Reg != 0)
411     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
412 
413   return Addr.Base.Reg != 0;
414 }
415 
416 // Fix up some addresses that can't be used directly.  For example, if
417 // an offset won't fit in an instruction field, we may need to move it
418 // into an index register.
419 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
420                                      unsigned &IndexReg) {
421 
422   // Check whether the offset fits in the instruction field.
423   if (!isInt<16>(Addr.Offset))
424     UseOffset = false;
425 
426   // If this is a stack pointer and the offset needs to be simplified then
427   // put the alloca address into a register, set the base type back to
428   // register and continue. This should almost never happen.
429   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
430     Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
431     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8),
432             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
433     Addr.Base.Reg = ResultReg;
434     Addr.BaseType = Address::RegBase;
435   }
436 
437   if (!UseOffset) {
438     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
439     const ConstantInt *Offset = ConstantInt::getSigned(OffsetTy, Addr.Offset);
440     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
441     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
442   }
443 }
444 
445 // Emit a load instruction if possible, returning true if we succeeded,
446 // otherwise false.  See commentary below for how the register class of
447 // the load is determined.
448 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
449                               const TargetRegisterClass *RC,
450                               bool IsZExt, unsigned FP64LoadOpc) {
451   unsigned Opc;
452   bool UseOffset = true;
453   bool HasSPE = Subtarget->hasSPE();
454 
455   // If ResultReg is given, it determines the register class of the load.
456   // Otherwise, RC is the register class to use.  If the result of the
457   // load isn't anticipated in this block, both may be zero, in which
458   // case we must make a conservative guess.  In particular, don't assign
459   // R0 or X0 to the result register, as the result may be used in a load,
460   // store, add-immediate, or isel that won't permit this.  (Though
461   // perhaps the spill and reload of live-exit values would handle this?)
462   const TargetRegisterClass *UseRC =
463     (ResultReg ? MRI.getRegClass(ResultReg) :
464      (RC ? RC :
465       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
466        (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
467         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
468          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
469 
470   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
471 
472   switch (VT.SimpleTy) {
473     default: // e.g., vector types not handled
474       return false;
475     case MVT::i8:
476       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
477       break;
478     case MVT::i16:
479       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
480                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
481       break;
482     case MVT::i32:
483       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
484                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
485       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
486         UseOffset = false;
487       break;
488     case MVT::i64:
489       Opc = PPC::LD;
490       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
491              "64-bit load with 32-bit target??");
492       UseOffset = ((Addr.Offset & 3) == 0);
493       break;
494     case MVT::f32:
495       Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
496       break;
497     case MVT::f64:
498       Opc = FP64LoadOpc;
499       break;
500   }
501 
502   // If necessary, materialize the offset into a register and use
503   // the indexed form.  Also handle stack pointers with special needs.
504   unsigned IndexReg = 0;
505   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
506 
507   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
508   // be used.
509   bool IsVSSRC = isVSSRCRegClass(UseRC);
510   bool IsVSFRC = isVSFRCRegClass(UseRC);
511   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
512   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
513   if ((Is32VSXLoad || Is64VSXLoad) &&
514       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
515       (Addr.Offset == 0)) {
516     UseOffset = false;
517   }
518 
519   if (ResultReg == 0)
520     ResultReg = createResultReg(UseRC);
521 
522   // Note: If we still have a frame index here, we know the offset is
523   // in range, as otherwise PPCSimplifyAddress would have converted it
524   // into a RegBase.
525   if (Addr.BaseType == Address::FrameIndexBase) {
526     // VSX only provides an indexed load.
527     if (Is32VSXLoad || Is64VSXLoad) return false;
528 
529     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
530         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
531                                           Addr.Offset),
532         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
533         MFI.getObjectAlign(Addr.Base.FI));
534 
535     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
536       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
537 
538   // Base reg with offset in range.
539   } else if (UseOffset) {
540     // VSX only provides an indexed load.
541     if (Is32VSXLoad || Is64VSXLoad) return false;
542 
543     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
544       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
545 
546   // Indexed form.
547   } else {
548     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
549     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
550     // is hard to get at.
551     switch (Opc) {
552       default:        llvm_unreachable("Unexpected opcode!");
553       case PPC::LBZ:    Opc = PPC::LBZX;    break;
554       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
555       case PPC::LHZ:    Opc = PPC::LHZX;    break;
556       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
557       case PPC::LHA:    Opc = PPC::LHAX;    break;
558       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
559       case PPC::LWZ:    Opc = PPC::LWZX;    break;
560       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
561       case PPC::LWA:    Opc = PPC::LWAX;    break;
562       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
563       case PPC::LD:     Opc = PPC::LDX;     break;
564       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
565       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
566       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
567       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
568     }
569 
570     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
571                        ResultReg);
572 
573     // If we have an index register defined we use it in the store inst,
574     // otherwise we use X0 as base as it makes the vector instructions to
575     // use zero in the computation of the effective address regardless the
576     // content of the register.
577     if (IndexReg)
578       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
579     else
580       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
581   }
582 
583   return true;
584 }
585 
586 // Attempt to fast-select a load instruction.
587 bool PPCFastISel::SelectLoad(const Instruction *I) {
588   // FIXME: No atomic loads are supported.
589   if (cast<LoadInst>(I)->isAtomic())
590     return false;
591 
592   // Verify we have a legal type before going any further.
593   MVT VT;
594   if (!isLoadTypeLegal(I->getType(), VT))
595     return false;
596 
597   // See if we can handle this address.
598   Address Addr;
599   if (!PPCComputeAddress(I->getOperand(0), Addr))
600     return false;
601 
602   // Look at the currently assigned register for this instruction
603   // to determine the required register class.  This is necessary
604   // to constrain RA from using R0/X0 when this is not legal.
605   Register AssignedReg = FuncInfo.ValueMap[I];
606   const TargetRegisterClass *RC =
607     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
608 
609   Register ResultReg = 0;
610   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
611                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
612     return false;
613   updateValueMap(I, ResultReg);
614   return true;
615 }
616 
617 // Emit a store instruction to store SrcReg at Addr.
618 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
619   assert(SrcReg && "Nothing to store!");
620   unsigned Opc;
621   bool UseOffset = true;
622 
623   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
624   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
625 
626   switch (VT.SimpleTy) {
627     default: // e.g., vector types not handled
628       return false;
629     case MVT::i8:
630       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
631       break;
632     case MVT::i16:
633       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
634       break;
635     case MVT::i32:
636       assert(Is32BitInt && "Not GPRC for i32??");
637       Opc = PPC::STW;
638       break;
639     case MVT::i64:
640       Opc = PPC::STD;
641       UseOffset = ((Addr.Offset & 3) == 0);
642       break;
643     case MVT::f32:
644       Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
645       break;
646     case MVT::f64:
647       Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
648       break;
649   }
650 
651   // If necessary, materialize the offset into a register and use
652   // the indexed form.  Also handle stack pointers with special needs.
653   unsigned IndexReg = 0;
654   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
655 
656   // If this is a potential VSX store with an offset of 0, a VSX indexed store
657   // can be used.
658   bool IsVSSRC = isVSSRCRegClass(RC);
659   bool IsVSFRC = isVSFRCRegClass(RC);
660   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
661   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
662   if ((Is32VSXStore || Is64VSXStore) &&
663       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
664       (Addr.Offset == 0)) {
665     UseOffset = false;
666   }
667 
668   // Note: If we still have a frame index here, we know the offset is
669   // in range, as otherwise PPCSimplifyAddress would have converted it
670   // into a RegBase.
671   if (Addr.BaseType == Address::FrameIndexBase) {
672     // VSX only provides an indexed store.
673     if (Is32VSXStore || Is64VSXStore) return false;
674 
675     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
676         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
677                                           Addr.Offset),
678         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
679         MFI.getObjectAlign(Addr.Base.FI));
680 
681     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
682         .addReg(SrcReg)
683         .addImm(Addr.Offset)
684         .addFrameIndex(Addr.Base.FI)
685         .addMemOperand(MMO);
686 
687   // Base reg with offset in range.
688   } else if (UseOffset) {
689     // VSX only provides an indexed store.
690     if (Is32VSXStore || Is64VSXStore)
691       return false;
692 
693     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
694       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
695 
696   // Indexed form.
697   } else {
698     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
699     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
700     // is hard to get at.
701     switch (Opc) {
702       default:        llvm_unreachable("Unexpected opcode!");
703       case PPC::STB:  Opc = PPC::STBX;  break;
704       case PPC::STH : Opc = PPC::STHX;  break;
705       case PPC::STW : Opc = PPC::STWX;  break;
706       case PPC::STB8: Opc = PPC::STBX8; break;
707       case PPC::STH8: Opc = PPC::STHX8; break;
708       case PPC::STW8: Opc = PPC::STWX8; break;
709       case PPC::STD:  Opc = PPC::STDX;  break;
710       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
711       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
712       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
713       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
714     }
715 
716     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
717         .addReg(SrcReg);
718 
719     // If we have an index register defined we use it in the store inst,
720     // otherwise we use X0 as base as it makes the vector instructions to
721     // use zero in the computation of the effective address regardless the
722     // content of the register.
723     if (IndexReg)
724       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
725     else
726       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
727   }
728 
729   return true;
730 }
731 
732 // Attempt to fast-select a store instruction.
733 bool PPCFastISel::SelectStore(const Instruction *I) {
734   Value *Op0 = I->getOperand(0);
735   unsigned SrcReg = 0;
736 
737   // FIXME: No atomics loads are supported.
738   if (cast<StoreInst>(I)->isAtomic())
739     return false;
740 
741   // Verify we have a legal type before going any further.
742   MVT VT;
743   if (!isLoadTypeLegal(Op0->getType(), VT))
744     return false;
745 
746   // Get the value to be stored into a register.
747   SrcReg = getRegForValue(Op0);
748   if (SrcReg == 0)
749     return false;
750 
751   // See if we can handle this address.
752   Address Addr;
753   if (!PPCComputeAddress(I->getOperand(1), Addr))
754     return false;
755 
756   if (!PPCEmitStore(VT, SrcReg, Addr))
757     return false;
758 
759   return true;
760 }
761 
762 // Attempt to fast-select a branch instruction.
763 bool PPCFastISel::SelectBranch(const Instruction *I) {
764   const BranchInst *BI = cast<BranchInst>(I);
765   MachineBasicBlock *BrBB = FuncInfo.MBB;
766   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
767   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
768 
769   // For now, just try the simplest case where it's fed by a compare.
770   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
771     if (isValueAvailable(CI)) {
772       std::optional<PPC::Predicate> OptPPCPred =
773           getComparePred(CI->getPredicate());
774       if (!OptPPCPred)
775         return false;
776 
777       PPC::Predicate PPCPred = *OptPPCPred;
778 
779       // Take advantage of fall-through opportunities.
780       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
781         std::swap(TBB, FBB);
782         PPCPred = PPC::InvertPredicate(PPCPred);
783       }
784 
785       Register CondReg = createResultReg(&PPC::CRRCRegClass);
786 
787       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
788                       CondReg, PPCPred))
789         return false;
790 
791       BuildMI(*BrBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCC))
792           .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
793           .addReg(CondReg)
794           .addMBB(TBB);
795       finishCondBranch(BI->getParent(), TBB, FBB);
796       return true;
797     }
798   } else if (const ConstantInt *CI =
799              dyn_cast<ConstantInt>(BI->getCondition())) {
800     uint64_t Imm = CI->getZExtValue();
801     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
802     fastEmitBranch(Target, MIMD.getDL());
803     return true;
804   }
805 
806   // FIXME: ARM looks for a case where the block containing the compare
807   // has been split from the block containing the branch.  If this happens,
808   // there is a vreg available containing the result of the compare.  I'm
809   // not sure we can do much, as we've lost the predicate information with
810   // the compare instruction -- we have a 4-bit CR but don't know which bit
811   // to test here.
812   return false;
813 }
814 
815 // Attempt to emit a compare of the two source values.  Signed and unsigned
816 // comparisons are supported.  Return false if we can't handle it.
817 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
818                              bool IsZExt, unsigned DestReg,
819                              const PPC::Predicate Pred) {
820   Type *Ty = SrcValue1->getType();
821   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
822   if (!SrcEVT.isSimple())
823     return false;
824   MVT SrcVT = SrcEVT.getSimpleVT();
825 
826   if (SrcVT == MVT::i1 && Subtarget->useCRBits())
827     return false;
828 
829   // See if operand 2 is an immediate encodeable in the compare.
830   // FIXME: Operands are not in canonical order at -O0, so an immediate
831   // operand in position 1 is a lost opportunity for now.  We are
832   // similar to ARM in this regard.
833   int64_t Imm = 0;
834   bool UseImm = false;
835   const bool HasSPE = Subtarget->hasSPE();
836 
837   // Only 16-bit integer constants can be represented in compares for
838   // PowerPC.  Others will be materialized into a register.
839   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
840     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
841         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
842       const APInt &CIVal = ConstInt->getValue();
843       Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() :
844                        (int64_t)CIVal.getSExtValue();
845       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
846         UseImm = true;
847     }
848   }
849 
850   Register SrcReg1 = getRegForValue(SrcValue1);
851   if (SrcReg1 == 0)
852     return false;
853 
854   unsigned SrcReg2 = 0;
855   if (!UseImm) {
856     SrcReg2 = getRegForValue(SrcValue2);
857     if (SrcReg2 == 0)
858       return false;
859   }
860 
861   unsigned CmpOpc;
862   bool NeedsExt = false;
863 
864   auto RC1 = MRI.getRegClass(SrcReg1);
865   auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
866 
867   switch (SrcVT.SimpleTy) {
868     default: return false;
869     case MVT::f32:
870       if (HasSPE) {
871         switch (Pred) {
872           default: return false;
873           case PPC::PRED_EQ:
874             CmpOpc = PPC::EFSCMPEQ;
875             break;
876           case PPC::PRED_LT:
877             CmpOpc = PPC::EFSCMPLT;
878             break;
879           case PPC::PRED_GT:
880             CmpOpc = PPC::EFSCMPGT;
881             break;
882         }
883       } else {
884         CmpOpc = PPC::FCMPUS;
885         if (isVSSRCRegClass(RC1))
886           SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
887         if (RC2 && isVSSRCRegClass(RC2))
888           SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
889       }
890       break;
891     case MVT::f64:
892       if (HasSPE) {
893         switch (Pred) {
894           default: return false;
895           case PPC::PRED_EQ:
896             CmpOpc = PPC::EFDCMPEQ;
897             break;
898           case PPC::PRED_LT:
899             CmpOpc = PPC::EFDCMPLT;
900             break;
901           case PPC::PRED_GT:
902             CmpOpc = PPC::EFDCMPGT;
903             break;
904         }
905       } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
906         CmpOpc = PPC::XSCMPUDP;
907       } else {
908         CmpOpc = PPC::FCMPUD;
909       }
910       break;
911     case MVT::i1:
912     case MVT::i8:
913     case MVT::i16:
914       NeedsExt = true;
915       [[fallthrough]];
916     case MVT::i32:
917       if (!UseImm)
918         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
919       else
920         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
921       break;
922     case MVT::i64:
923       if (!UseImm)
924         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
925       else
926         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
927       break;
928   }
929 
930   if (NeedsExt) {
931     Register ExtReg = createResultReg(&PPC::GPRCRegClass);
932     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
933       return false;
934     SrcReg1 = ExtReg;
935 
936     if (!UseImm) {
937       Register ExtReg = createResultReg(&PPC::GPRCRegClass);
938       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
939         return false;
940       SrcReg2 = ExtReg;
941     }
942   }
943 
944   if (!UseImm)
945     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg)
946       .addReg(SrcReg1).addReg(SrcReg2);
947   else
948     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg)
949       .addReg(SrcReg1).addImm(Imm);
950 
951   return true;
952 }
953 
954 // Attempt to fast-select a floating-point extend instruction.
955 bool PPCFastISel::SelectFPExt(const Instruction *I) {
956   Value *Src  = I->getOperand(0);
957   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
958   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
959 
960   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
961     return false;
962 
963   Register SrcReg = getRegForValue(Src);
964   if (!SrcReg)
965     return false;
966 
967   // No code is generated for a FP extend.
968   updateValueMap(I, SrcReg);
969   return true;
970 }
971 
972 // Attempt to fast-select a floating-point truncate instruction.
973 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
974   Value *Src  = I->getOperand(0);
975   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
976   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
977 
978   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
979     return false;
980 
981   Register SrcReg = getRegForValue(Src);
982   if (!SrcReg)
983     return false;
984 
985   // Round the result to single precision.
986   unsigned DestReg;
987   auto RC = MRI.getRegClass(SrcReg);
988   if (Subtarget->hasSPE()) {
989     DestReg = createResultReg(&PPC::GPRCRegClass);
990     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::EFSCFD),
991             DestReg)
992         .addReg(SrcReg);
993   } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) {
994     DestReg = createResultReg(&PPC::VSSRCRegClass);
995     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::XSRSP),
996             DestReg)
997         .addReg(SrcReg);
998   } else {
999     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1000     DestReg = createResultReg(&PPC::F4RCRegClass);
1001     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1002       TII.get(PPC::FRSP), DestReg)
1003       .addReg(SrcReg);
1004   }
1005 
1006   updateValueMap(I, DestReg);
1007   return true;
1008 }
1009 
1010 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1011 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1012 // those should be used instead of moving via a stack slot when the
1013 // subtarget permits.
1014 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1015 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1016 // case to 8 bytes which produces tighter code but wastes stack space.
1017 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1018                                      bool IsSigned) {
1019 
1020   // If necessary, extend 32-bit int to 64-bit.
1021   if (SrcVT == MVT::i32) {
1022     Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1023     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1024       return 0;
1025     SrcReg = TmpReg;
1026   }
1027 
1028   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1029   Address Addr;
1030   Addr.BaseType = Address::FrameIndexBase;
1031   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1032 
1033   // Store the value from the GPR.
1034   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1035     return 0;
1036 
1037   // Load the integer value into an FPR.  The kind of load used depends
1038   // on a number of conditions.
1039   unsigned LoadOpc = PPC::LFD;
1040 
1041   if (SrcVT == MVT::i32) {
1042     if (!IsSigned) {
1043       LoadOpc = PPC::LFIWZX;
1044       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1045     } else if (Subtarget->hasLFIWAX()) {
1046       LoadOpc = PPC::LFIWAX;
1047       Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1048     }
1049   }
1050 
1051   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1052   Register ResultReg = 0;
1053   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1054     return 0;
1055 
1056   return ResultReg;
1057 }
1058 
1059 // Attempt to fast-select an integer-to-floating-point conversion.
1060 // FIXME: Once fast-isel has better support for VSX, conversions using
1061 //        direct moves should be implemented.
1062 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1063   MVT DstVT;
1064   Type *DstTy = I->getType();
1065   if (!isTypeLegal(DstTy, DstVT))
1066     return false;
1067 
1068   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1069     return false;
1070 
1071   Value *Src = I->getOperand(0);
1072   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1073   if (!SrcEVT.isSimple())
1074     return false;
1075 
1076   MVT SrcVT = SrcEVT.getSimpleVT();
1077 
1078   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1079       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1080     return false;
1081 
1082   Register SrcReg = getRegForValue(Src);
1083   if (SrcReg == 0)
1084     return false;
1085 
1086   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1087   if (Subtarget->hasSPE()) {
1088     unsigned Opc;
1089     if (DstVT == MVT::f32)
1090       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1091     else
1092       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1093 
1094     Register DestReg = createResultReg(&PPC::SPERCRegClass);
1095     // Generate the convert.
1096     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1097       .addReg(SrcReg);
1098     updateValueMap(I, DestReg);
1099     return true;
1100   }
1101 
1102   // We can only lower an unsigned convert if we have the newer
1103   // floating-point conversion operations.
1104   if (!IsSigned && !Subtarget->hasFPCVT())
1105     return false;
1106 
1107   // FIXME: For now we require the newer floating-point conversion operations
1108   // (which are present only on P7 and A2 server models) when converting
1109   // to single-precision float.  Otherwise we have to generate a lot of
1110   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1111   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1112   if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1113     return false;
1114 
1115   // Extend the input if necessary.
1116   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1117     Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1118     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1119       return false;
1120     SrcVT = MVT::i64;
1121     SrcReg = TmpReg;
1122   }
1123 
1124   // Move the integer value to an FPR.
1125   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1126   if (FPReg == 0)
1127     return false;
1128 
1129   // Determine the opcode for the conversion.
1130   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1131   Register DestReg = createResultReg(RC);
1132   unsigned Opc;
1133 
1134   if (DstVT == MVT::f32)
1135     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1136   else
1137     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1138 
1139   // Generate the convert.
1140   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1141     .addReg(FPReg);
1142 
1143   updateValueMap(I, DestReg);
1144   return true;
1145 }
1146 
1147 // Move the floating-point value in SrcReg into an integer destination
1148 // register, and return the register (or zero if we can't handle it).
1149 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1150 // those should be used instead of moving via a stack slot when the
1151 // subtarget permits.
1152 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1153                                       unsigned SrcReg, bool IsSigned) {
1154   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1155   // Note that if have STFIWX available, we could use a 4-byte stack
1156   // slot for i32, but this being fast-isel we'll just go with the
1157   // easiest code gen possible.
1158   Address Addr;
1159   Addr.BaseType = Address::FrameIndexBase;
1160   Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1161 
1162   // Store the value from the FPR.
1163   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1164     return 0;
1165 
1166   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1167   // address to have a 4-byte offset so we load from the right place.
1168   if (VT == MVT::i32)
1169     Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1170 
1171   // Look at the currently assigned register for this instruction
1172   // to determine the required register class.
1173   Register AssignedReg = FuncInfo.ValueMap[I];
1174   const TargetRegisterClass *RC =
1175     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1176 
1177   Register ResultReg = 0;
1178   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1179     return 0;
1180 
1181   return ResultReg;
1182 }
1183 
1184 // Attempt to fast-select a floating-point-to-integer conversion.
1185 // FIXME: Once fast-isel has better support for VSX, conversions using
1186 //        direct moves should be implemented.
1187 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1188   MVT DstVT, SrcVT;
1189   Type *DstTy = I->getType();
1190   if (!isTypeLegal(DstTy, DstVT))
1191     return false;
1192 
1193   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1194     return false;
1195 
1196   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1197   if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1198       !Subtarget->hasSPE())
1199     return false;
1200 
1201   Value *Src = I->getOperand(0);
1202   Type *SrcTy = Src->getType();
1203   if (!isTypeLegal(SrcTy, SrcVT))
1204     return false;
1205 
1206   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1207     return false;
1208 
1209   Register SrcReg = getRegForValue(Src);
1210   if (SrcReg == 0)
1211     return false;
1212 
1213   // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1214   // meaningless copy to get the register class right.
1215   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1216   if (InRC == &PPC::F4RCRegClass)
1217     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1218   else if (InRC == &PPC::VSSRCRegClass)
1219     SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1220 
1221   // Determine the opcode for the conversion, which takes place
1222   // entirely within FPRs or VSRs.
1223   unsigned DestReg;
1224   unsigned Opc;
1225   auto RC = MRI.getRegClass(SrcReg);
1226 
1227   if (Subtarget->hasSPE()) {
1228     DestReg = createResultReg(&PPC::GPRCRegClass);
1229     if (IsSigned)
1230       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1231     else
1232       Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1233   } else if (isVSFRCRegClass(RC)) {
1234     DestReg = createResultReg(&PPC::VSFRCRegClass);
1235     if (DstVT == MVT::i32)
1236       Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1237     else
1238       Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1239   } else {
1240     DestReg = createResultReg(&PPC::F8RCRegClass);
1241     if (DstVT == MVT::i32)
1242       if (IsSigned)
1243         Opc = PPC::FCTIWZ;
1244       else
1245         Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1246     else
1247       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1248   }
1249 
1250   // Generate the convert.
1251   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1252     .addReg(SrcReg);
1253 
1254   // Now move the integer value from a float register to an integer register.
1255   unsigned IntReg = Subtarget->hasSPE()
1256                         ? DestReg
1257                         : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1258 
1259   if (IntReg == 0)
1260     return false;
1261 
1262   updateValueMap(I, IntReg);
1263   return true;
1264 }
1265 
1266 // Attempt to fast-select a binary integer operation that isn't already
1267 // handled automatically.
1268 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1269   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1270 
1271   // We can get here in the case when we have a binary operation on a non-legal
1272   // type and the target independent selector doesn't know how to handle it.
1273   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1274     return false;
1275 
1276   // Look at the currently assigned register for this instruction
1277   // to determine the required register class.  If there is no register,
1278   // make a conservative choice (don't assign R0).
1279   Register AssignedReg = FuncInfo.ValueMap[I];
1280   const TargetRegisterClass *RC =
1281     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1282      &PPC::GPRC_and_GPRC_NOR0RegClass);
1283   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1284 
1285   unsigned Opc;
1286   switch (ISDOpcode) {
1287     default: return false;
1288     case ISD::ADD:
1289       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1290       break;
1291     case ISD::OR:
1292       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1293       break;
1294     case ISD::SUB:
1295       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1296       break;
1297   }
1298 
1299   Register ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1300   Register SrcReg1 = getRegForValue(I->getOperand(0));
1301   if (SrcReg1 == 0) return false;
1302 
1303   // Handle case of small immediate operand.
1304   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1305     const APInt &CIVal = ConstInt->getValue();
1306     int Imm = (int)CIVal.getSExtValue();
1307     bool UseImm = true;
1308     if (isInt<16>(Imm)) {
1309       switch (Opc) {
1310         default:
1311           llvm_unreachable("Missing case!");
1312         case PPC::ADD4:
1313           Opc = PPC::ADDI;
1314           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1315           break;
1316         case PPC::ADD8:
1317           Opc = PPC::ADDI8;
1318           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1319           break;
1320         case PPC::OR:
1321           Opc = PPC::ORI;
1322           break;
1323         case PPC::OR8:
1324           Opc = PPC::ORI8;
1325           break;
1326         case PPC::SUBF:
1327           if (Imm == -32768)
1328             UseImm = false;
1329           else {
1330             Opc = PPC::ADDI;
1331             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1332             Imm = -Imm;
1333           }
1334           break;
1335         case PPC::SUBF8:
1336           if (Imm == -32768)
1337             UseImm = false;
1338           else {
1339             Opc = PPC::ADDI8;
1340             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1341             Imm = -Imm;
1342           }
1343           break;
1344       }
1345 
1346       if (UseImm) {
1347         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
1348                 ResultReg)
1349             .addReg(SrcReg1)
1350             .addImm(Imm);
1351         updateValueMap(I, ResultReg);
1352         return true;
1353       }
1354     }
1355   }
1356 
1357   // Reg-reg case.
1358   Register SrcReg2 = getRegForValue(I->getOperand(1));
1359   if (SrcReg2 == 0) return false;
1360 
1361   // Reverse operands for subtract-from.
1362   if (ISDOpcode == ISD::SUB)
1363     std::swap(SrcReg1, SrcReg2);
1364 
1365   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
1366     .addReg(SrcReg1).addReg(SrcReg2);
1367   updateValueMap(I, ResultReg);
1368   return true;
1369 }
1370 
1371 // Handle arguments to a call that we're attempting to fast-select.
1372 // Return false if the arguments are too complex for us at the moment.
1373 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1374                                   SmallVectorImpl<unsigned> &ArgRegs,
1375                                   SmallVectorImpl<MVT> &ArgVTs,
1376                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1377                                   SmallVectorImpl<unsigned> &RegArgs,
1378                                   CallingConv::ID CC,
1379                                   unsigned &NumBytes,
1380                                   bool IsVarArg) {
1381   SmallVector<CCValAssign, 16> ArgLocs;
1382   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1383 
1384   // Reserve space for the linkage area on the stack.
1385   unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1386   CCInfo.AllocateStack(LinkageSize, Align(8));
1387 
1388   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1389 
1390   // Bail out if we can't handle any of the arguments.
1391   for (const CCValAssign &VA : ArgLocs) {
1392     MVT ArgVT = ArgVTs[VA.getValNo()];
1393 
1394     // Skip vector arguments for now, as well as long double and
1395     // uint128_t, and anything that isn't passed in a register.
1396     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1397         !VA.isRegLoc() || VA.needsCustom())
1398       return false;
1399 
1400     // Skip bit-converted arguments for now.
1401     if (VA.getLocInfo() == CCValAssign::BCvt)
1402       return false;
1403   }
1404 
1405   // Get a count of how many bytes are to be pushed onto the stack.
1406   NumBytes = CCInfo.getStackSize();
1407 
1408   // The prolog code of the callee may store up to 8 GPR argument registers to
1409   // the stack, allowing va_start to index over them in memory if its varargs.
1410   // Because we cannot tell if this is needed on the caller side, we have to
1411   // conservatively assume that it is needed.  As such, make sure we have at
1412   // least enough stack space for the caller to store the 8 GPRs.
1413   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1414   NumBytes = std::max(NumBytes, LinkageSize + 64);
1415 
1416   // Issue CALLSEQ_START.
1417   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1418           TII.get(TII.getCallFrameSetupOpcode()))
1419     .addImm(NumBytes).addImm(0);
1420 
1421   // Prepare to assign register arguments.  Every argument uses up a
1422   // GPR protocol register even if it's passed in a floating-point
1423   // register (unless we're using the fast calling convention).
1424   unsigned NextGPR = PPC::X3;
1425   unsigned NextFPR = PPC::F1;
1426 
1427   // Process arguments.
1428   for (const CCValAssign &VA : ArgLocs) {
1429     unsigned Arg = ArgRegs[VA.getValNo()];
1430     MVT ArgVT = ArgVTs[VA.getValNo()];
1431 
1432     // Handle argument promotion and bitcasts.
1433     switch (VA.getLocInfo()) {
1434       default:
1435         llvm_unreachable("Unknown loc info!");
1436       case CCValAssign::Full:
1437         break;
1438       case CCValAssign::SExt: {
1439         MVT DestVT = VA.getLocVT();
1440         const TargetRegisterClass *RC =
1441           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1442         Register TmpReg = createResultReg(RC);
1443         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1444           llvm_unreachable("Failed to emit a sext!");
1445         ArgVT = DestVT;
1446         Arg = TmpReg;
1447         break;
1448       }
1449       case CCValAssign::AExt:
1450       case CCValAssign::ZExt: {
1451         MVT DestVT = VA.getLocVT();
1452         const TargetRegisterClass *RC =
1453           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1454         Register TmpReg = createResultReg(RC);
1455         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1456           llvm_unreachable("Failed to emit a zext!");
1457         ArgVT = DestVT;
1458         Arg = TmpReg;
1459         break;
1460       }
1461       case CCValAssign::BCvt: {
1462         // FIXME: Not yet handled.
1463         llvm_unreachable("Should have bailed before getting here!");
1464         break;
1465       }
1466     }
1467 
1468     // Copy this argument to the appropriate register.
1469     unsigned ArgReg;
1470     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1471       ArgReg = NextFPR++;
1472       if (CC != CallingConv::Fast)
1473         ++NextGPR;
1474     } else
1475       ArgReg = NextGPR++;
1476 
1477     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1478             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1479     RegArgs.push_back(ArgReg);
1480   }
1481 
1482   return true;
1483 }
1484 
1485 // For a call that we've determined we can fast-select, finish the
1486 // call sequence and generate a copy to obtain the return value (if any).
1487 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1488   CallingConv::ID CC = CLI.CallConv;
1489 
1490   // Issue CallSEQ_END.
1491   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1492           TII.get(TII.getCallFrameDestroyOpcode()))
1493     .addImm(NumBytes).addImm(0);
1494 
1495   // Next, generate a copy to obtain the return value.
1496   // FIXME: No multi-register return values yet, though I don't foresee
1497   // any real difficulties there.
1498   if (RetVT != MVT::isVoid) {
1499     SmallVector<CCValAssign, 16> RVLocs;
1500     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1501     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1502     CCValAssign &VA = RVLocs[0];
1503     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1504     assert(VA.isRegLoc() && "Can only return in registers!");
1505 
1506     MVT DestVT = VA.getValVT();
1507     MVT CopyVT = DestVT;
1508 
1509     // Ints smaller than a register still arrive in a full 64-bit
1510     // register, so make sure we recognize this.
1511     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1512       CopyVT = MVT::i64;
1513 
1514     unsigned SourcePhysReg = VA.getLocReg();
1515     unsigned ResultReg = 0;
1516 
1517     if (RetVT == CopyVT) {
1518       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1519       ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1520 
1521     // If necessary, round the floating result to single precision.
1522     } else if (CopyVT == MVT::f64) {
1523       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1524       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::FRSP),
1525               ResultReg).addReg(SourcePhysReg);
1526 
1527     // If only the low half of a general register is needed, generate
1528     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1529     // used along the fast-isel path (not lowered), and downstream logic
1530     // also doesn't like a direct subreg copy on a physical reg.)
1531     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1532       // Convert physical register from G8RC to GPRC.
1533       SourcePhysReg -= PPC::X0 - PPC::R0;
1534       ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1535     }
1536 
1537     assert(ResultReg && "ResultReg unset!");
1538     CLI.InRegs.push_back(SourcePhysReg);
1539     CLI.ResultReg = ResultReg;
1540     CLI.NumResultRegs = 1;
1541   }
1542 
1543   return true;
1544 }
1545 
1546 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1547   CallingConv::ID CC  = CLI.CallConv;
1548   bool IsTailCall     = CLI.IsTailCall;
1549   bool IsVarArg       = CLI.IsVarArg;
1550   const Value *Callee = CLI.Callee;
1551   const MCSymbol *Symbol = CLI.Symbol;
1552 
1553   if (!Callee && !Symbol)
1554     return false;
1555 
1556   // Allow SelectionDAG isel to handle tail calls and long calls.
1557   if (IsTailCall || Subtarget->useLongCalls())
1558     return false;
1559 
1560   // Let SDISel handle vararg functions.
1561   if (IsVarArg)
1562     return false;
1563 
1564   // If this is a PC-Rel function, let SDISel handle the call.
1565   if (Subtarget->isUsingPCRelativeCalls())
1566     return false;
1567 
1568   // Handle simple calls for now, with legal return types and
1569   // those that can be extended.
1570   Type *RetTy = CLI.RetTy;
1571   MVT RetVT;
1572   if (RetTy->isVoidTy())
1573     RetVT = MVT::isVoid;
1574   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1575            RetVT != MVT::i8)
1576     return false;
1577   else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1578     // We can't handle boolean returns when CR bits are in use.
1579     return false;
1580 
1581   // FIXME: No multi-register return values yet.
1582   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1583       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1584       RetVT != MVT::f64) {
1585     SmallVector<CCValAssign, 16> RVLocs;
1586     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1587     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1588     if (RVLocs.size() > 1)
1589       return false;
1590   }
1591 
1592   // Bail early if more than 8 arguments, as we only currently
1593   // handle arguments passed in registers.
1594   unsigned NumArgs = CLI.OutVals.size();
1595   if (NumArgs > 8)
1596     return false;
1597 
1598   // Set up the argument vectors.
1599   SmallVector<Value*, 8> Args;
1600   SmallVector<unsigned, 8> ArgRegs;
1601   SmallVector<MVT, 8> ArgVTs;
1602   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1603 
1604   Args.reserve(NumArgs);
1605   ArgRegs.reserve(NumArgs);
1606   ArgVTs.reserve(NumArgs);
1607   ArgFlags.reserve(NumArgs);
1608 
1609   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1610     // Only handle easy calls for now.  It would be reasonably easy
1611     // to handle <= 8-byte structures passed ByVal in registers, but we
1612     // have to ensure they are right-justified in the register.
1613     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1614     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1615       return false;
1616 
1617     Value *ArgValue = CLI.OutVals[i];
1618     Type *ArgTy = ArgValue->getType();
1619     MVT ArgVT;
1620     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1621       return false;
1622 
1623     // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1624     // types, which is passed through vector register. Skip these types and
1625     // fallback to default SelectionDAG based selection.
1626     if (ArgVT.isVector() || ArgVT == MVT::f128)
1627       return false;
1628 
1629     Register Arg = getRegForValue(ArgValue);
1630     if (Arg == 0)
1631       return false;
1632 
1633     Args.push_back(ArgValue);
1634     ArgRegs.push_back(Arg);
1635     ArgVTs.push_back(ArgVT);
1636     ArgFlags.push_back(Flags);
1637   }
1638 
1639   // Process the arguments.
1640   SmallVector<unsigned, 8> RegArgs;
1641   unsigned NumBytes;
1642 
1643   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1644                        RegArgs, CC, NumBytes, IsVarArg))
1645     return false;
1646 
1647   MachineInstrBuilder MIB;
1648   // FIXME: No handling for function pointers yet.  This requires
1649   // implementing the function descriptor (OPD) setup.
1650   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1651   if (!GV) {
1652     // patchpoints are a special case; they always dispatch to a pointer value.
1653     // However, we don't actually want to generate the indirect call sequence
1654     // here (that will be generated, as necessary, during asm printing), and
1655     // the call we generate here will be erased by FastISel::selectPatchpoint,
1656     // so don't try very hard...
1657     if (CLI.IsPatchPoint)
1658       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::NOP));
1659     else
1660       return false;
1661   } else {
1662     // Build direct call with NOP for TOC restore.
1663     // FIXME: We can and should optimize away the NOP for local calls.
1664     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1665                   TII.get(PPC::BL8_NOP));
1666     // Add callee.
1667     MIB.addGlobalAddress(GV);
1668   }
1669 
1670   // Add implicit physical register uses to the call.
1671   for (unsigned Reg : RegArgs)
1672     MIB.addReg(Reg, RegState::Implicit);
1673 
1674   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1675   // into the call.
1676   PPCFuncInfo->setUsesTOCBasePtr();
1677   MIB.addReg(PPC::X2, RegState::Implicit);
1678 
1679   // Add a register mask with the call-preserved registers.  Proper
1680   // defs for return values will be added by setPhysRegsDeadExcept().
1681   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1682 
1683   CLI.Call = MIB;
1684 
1685   // Finish off the call including any return values.
1686   return finishCall(RetVT, CLI, NumBytes);
1687 }
1688 
1689 // Attempt to fast-select a return instruction.
1690 bool PPCFastISel::SelectRet(const Instruction *I) {
1691 
1692   if (!FuncInfo.CanLowerReturn)
1693     return false;
1694 
1695   const ReturnInst *Ret = cast<ReturnInst>(I);
1696   const Function &F = *I->getParent()->getParent();
1697 
1698   // Build a list of return value registers.
1699   SmallVector<unsigned, 4> RetRegs;
1700   CallingConv::ID CC = F.getCallingConv();
1701 
1702   if (Ret->getNumOperands() > 0) {
1703     SmallVector<ISD::OutputArg, 4> Outs;
1704     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1705 
1706     // Analyze operands of the call, assigning locations to each operand.
1707     SmallVector<CCValAssign, 16> ValLocs;
1708     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1709     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1710     const Value *RV = Ret->getOperand(0);
1711 
1712     // FIXME: Only one output register for now.
1713     if (ValLocs.size() > 1)
1714       return false;
1715 
1716     // Special case for returning a constant integer of any size - materialize
1717     // the constant as an i64 and copy it to the return register.
1718     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1719       CCValAssign &VA = ValLocs[0];
1720 
1721       Register RetReg = VA.getLocReg();
1722       // We still need to worry about properly extending the sign. For example,
1723       // we could have only a single bit or a constant that needs zero
1724       // extension rather than sign extension. Make sure we pass the return
1725       // value extension property to integer materialization.
1726       unsigned SrcReg =
1727           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1728 
1729       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1730             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1731 
1732       RetRegs.push_back(RetReg);
1733 
1734     } else {
1735       Register Reg = getRegForValue(RV);
1736 
1737       if (Reg == 0)
1738         return false;
1739 
1740       // Copy the result values into the output registers.
1741       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1742 
1743         CCValAssign &VA = ValLocs[i];
1744         assert(VA.isRegLoc() && "Can only return in registers!");
1745         RetRegs.push_back(VA.getLocReg());
1746         unsigned SrcReg = Reg + VA.getValNo();
1747 
1748         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1749         if (!RVEVT.isSimple())
1750           return false;
1751         MVT RVVT = RVEVT.getSimpleVT();
1752         MVT DestVT = VA.getLocVT();
1753 
1754         if (RVVT != DestVT && RVVT != MVT::i8 &&
1755             RVVT != MVT::i16 && RVVT != MVT::i32)
1756           return false;
1757 
1758         if (RVVT != DestVT) {
1759           switch (VA.getLocInfo()) {
1760             default:
1761               llvm_unreachable("Unknown loc info!");
1762             case CCValAssign::Full:
1763               llvm_unreachable("Full value assign but types don't match?");
1764             case CCValAssign::AExt:
1765             case CCValAssign::ZExt: {
1766               const TargetRegisterClass *RC =
1767                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1768               Register TmpReg = createResultReg(RC);
1769               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1770                 return false;
1771               SrcReg = TmpReg;
1772               break;
1773             }
1774             case CCValAssign::SExt: {
1775               const TargetRegisterClass *RC =
1776                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1777               Register TmpReg = createResultReg(RC);
1778               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1779                 return false;
1780               SrcReg = TmpReg;
1781               break;
1782             }
1783           }
1784         }
1785 
1786         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1787                 TII.get(TargetOpcode::COPY), RetRegs[i])
1788           .addReg(SrcReg);
1789       }
1790     }
1791   }
1792 
1793   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1794                                     TII.get(PPC::BLR8));
1795 
1796   for (unsigned Reg : RetRegs)
1797     MIB.addReg(Reg, RegState::Implicit);
1798 
1799   return true;
1800 }
1801 
1802 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1803 // signed and zero extensions are supported.  Return false if we
1804 // can't handle it.
1805 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1806                                 unsigned DestReg, bool IsZExt) {
1807   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1808     return false;
1809   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1810     return false;
1811 
1812   // Signed extensions use EXTSB, EXTSH, EXTSW.
1813   if (!IsZExt) {
1814     unsigned Opc;
1815     if (SrcVT == MVT::i8)
1816       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1817     else if (SrcVT == MVT::i16)
1818       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1819     else {
1820       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1821       Opc = PPC::EXTSW_32_64;
1822     }
1823     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1824       .addReg(SrcReg);
1825 
1826   // Unsigned 32-bit extensions use RLWINM.
1827   } else if (DestVT == MVT::i32) {
1828     unsigned MB;
1829     if (SrcVT == MVT::i8)
1830       MB = 24;
1831     else {
1832       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1833       MB = 16;
1834     }
1835     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLWINM),
1836             DestReg)
1837       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1838 
1839   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1840   } else {
1841     unsigned MB;
1842     if (SrcVT == MVT::i8)
1843       MB = 56;
1844     else if (SrcVT == MVT::i16)
1845       MB = 48;
1846     else
1847       MB = 32;
1848     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1849             TII.get(PPC::RLDICL_32_64), DestReg)
1850       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1851   }
1852 
1853   return true;
1854 }
1855 
1856 // Attempt to fast-select an indirect branch instruction.
1857 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1858   Register AddrReg = getRegForValue(I->getOperand(0));
1859   if (AddrReg == 0)
1860     return false;
1861 
1862   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::MTCTR8))
1863     .addReg(AddrReg);
1864   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCTR8));
1865 
1866   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1867   for (const BasicBlock *SuccBB : IB->successors())
1868     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1869 
1870   return true;
1871 }
1872 
1873 // Attempt to fast-select an integer truncate instruction.
1874 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1875   Value *Src  = I->getOperand(0);
1876   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1877   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1878 
1879   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1880     return false;
1881 
1882   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1883     return false;
1884 
1885   Register SrcReg = getRegForValue(Src);
1886   if (!SrcReg)
1887     return false;
1888 
1889   // The only interesting case is when we need to switch register classes.
1890   if (SrcVT == MVT::i64)
1891     SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1892 
1893   updateValueMap(I, SrcReg);
1894   return true;
1895 }
1896 
1897 // Attempt to fast-select an integer extend instruction.
1898 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1899   Type *DestTy = I->getType();
1900   Value *Src = I->getOperand(0);
1901   Type *SrcTy = Src->getType();
1902 
1903   bool IsZExt = isa<ZExtInst>(I);
1904   Register SrcReg = getRegForValue(Src);
1905   if (!SrcReg) return false;
1906 
1907   EVT SrcEVT, DestEVT;
1908   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1909   DestEVT = TLI.getValueType(DL, DestTy, true);
1910   if (!SrcEVT.isSimple())
1911     return false;
1912   if (!DestEVT.isSimple())
1913     return false;
1914 
1915   MVT SrcVT = SrcEVT.getSimpleVT();
1916   MVT DestVT = DestEVT.getSimpleVT();
1917 
1918   // If we know the register class needed for the result of this
1919   // instruction, use it.  Otherwise pick the register class of the
1920   // correct size that does not contain X0/R0, since we don't know
1921   // whether downstream uses permit that assignment.
1922   Register AssignedReg = FuncInfo.ValueMap[I];
1923   const TargetRegisterClass *RC =
1924     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1925      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1926       &PPC::GPRC_and_GPRC_NOR0RegClass));
1927   Register ResultReg = createResultReg(RC);
1928 
1929   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1930     return false;
1931 
1932   updateValueMap(I, ResultReg);
1933   return true;
1934 }
1935 
1936 // Attempt to fast-select an instruction that wasn't handled by
1937 // the table-generated machinery.
1938 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1939 
1940   switch (I->getOpcode()) {
1941     case Instruction::Load:
1942       return SelectLoad(I);
1943     case Instruction::Store:
1944       return SelectStore(I);
1945     case Instruction::Br:
1946       return SelectBranch(I);
1947     case Instruction::IndirectBr:
1948       return SelectIndirectBr(I);
1949     case Instruction::FPExt:
1950       return SelectFPExt(I);
1951     case Instruction::FPTrunc:
1952       return SelectFPTrunc(I);
1953     case Instruction::SIToFP:
1954       return SelectIToFP(I, /*IsSigned*/ true);
1955     case Instruction::UIToFP:
1956       return SelectIToFP(I, /*IsSigned*/ false);
1957     case Instruction::FPToSI:
1958       return SelectFPToI(I, /*IsSigned*/ true);
1959     case Instruction::FPToUI:
1960       return SelectFPToI(I, /*IsSigned*/ false);
1961     case Instruction::Add:
1962       return SelectBinaryIntOp(I, ISD::ADD);
1963     case Instruction::Or:
1964       return SelectBinaryIntOp(I, ISD::OR);
1965     case Instruction::Sub:
1966       return SelectBinaryIntOp(I, ISD::SUB);
1967     case Instruction::Ret:
1968       return SelectRet(I);
1969     case Instruction::Trunc:
1970       return SelectTrunc(I);
1971     case Instruction::ZExt:
1972     case Instruction::SExt:
1973       return SelectIntExt(I);
1974     // Here add other flavors of Instruction::XXX that automated
1975     // cases don't catch.  For example, switches are terminators
1976     // that aren't yet handled.
1977     default:
1978       break;
1979   }
1980   return false;
1981 }
1982 
1983 // Materialize a floating-point constant into a register, and return
1984 // the register number (or zero if we failed to handle it).
1985 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1986   // If this is a PC-Rel function, let SDISel handle constant pool.
1987   if (Subtarget->isUsingPCRelativeCalls())
1988     return false;
1989 
1990   // No plans to handle long double here.
1991   if (VT != MVT::f32 && VT != MVT::f64)
1992     return 0;
1993 
1994   // All FP constants are loaded from the constant pool.
1995   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
1996   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
1997   const bool HasSPE = Subtarget->hasSPE();
1998   const TargetRegisterClass *RC;
1999   if (HasSPE)
2000     RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2001   else
2002     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2003 
2004   Register DestReg = createResultReg(RC);
2005   CodeModel::Model CModel = TM.getCodeModel();
2006 
2007   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2008       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2009       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2010 
2011   unsigned Opc;
2012 
2013   if (HasSPE)
2014     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2015   else
2016     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2017 
2018   Register TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2019 
2020   PPCFuncInfo->setUsesTOCBasePtr();
2021   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2022   if (CModel == CodeModel::Small) {
2023     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocCPT),
2024             TmpReg)
2025       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2026     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2027       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2028   } else {
2029     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2030     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8),
2031             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2032     // But for large code model, we must generate a LDtocL followed
2033     // by the LF[SD].
2034     if (CModel == CodeModel::Large) {
2035       Register TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2036       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL),
2037               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2038       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2039           .addImm(0)
2040           .addReg(TmpReg2);
2041     } else
2042       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2043         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2044         .addReg(TmpReg)
2045         .addMemOperand(MMO);
2046   }
2047 
2048   return DestReg;
2049 }
2050 
2051 // Materialize the address of a global value into a register, and return
2052 // the register number (or zero if we failed to handle it).
2053 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2054   // If this is a PC-Rel function, let SDISel handle GV materialization.
2055   if (Subtarget->isUsingPCRelativeCalls())
2056     return false;
2057 
2058   assert(VT == MVT::i64 && "Non-address!");
2059   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2060   Register DestReg = createResultReg(RC);
2061 
2062   // Global values may be plain old object addresses, TLS object
2063   // addresses, constant pool entries, or jump tables.  How we generate
2064   // code for these may depend on small, medium, or large code model.
2065   CodeModel::Model CModel = TM.getCodeModel();
2066 
2067   // FIXME: Jump tables are not yet required because fast-isel doesn't
2068   // handle switches; if that changes, we need them as well.  For now,
2069   // what follows assumes everything's a generic (or TLS) global address.
2070 
2071   // FIXME: We don't yet handle the complexity of TLS.
2072   if (GV->isThreadLocal())
2073     return 0;
2074 
2075   PPCFuncInfo->setUsesTOCBasePtr();
2076   bool IsAIXTocData = TM.getTargetTriple().isOSAIX() &&
2077                       isa<GlobalVariable>(GV) &&
2078                       cast<GlobalVariable>(GV)->hasAttribute("toc-data");
2079 
2080   // For small code model, generate a simple TOC load.
2081   if (CModel == CodeModel::Small) {
2082     auto MIB = BuildMI(
2083         *FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2084         IsAIXTocData ? TII.get(PPC::ADDItoc8) : TII.get(PPC::LDtoc), DestReg);
2085     if (IsAIXTocData)
2086       MIB.addReg(PPC::X2).addGlobalAddress(GV);
2087     else
2088       MIB.addGlobalAddress(GV).addReg(PPC::X2);
2089   } else {
2090     // If the address is an externally defined symbol, a symbol with common
2091     // or externally available linkage, a non-local function address, or a
2092     // jump table address (not yet needed), or if we are generating code
2093     // for large code model, we generate:
2094     //       LDtocL(GV, ADDIStocHA8(%x2, GV))
2095     // Otherwise we generate:
2096     //       ADDItocL8(ADDIStocHA8(%x2, GV), GV)
2097     // Either way, start with the ADDIStocHA8:
2098     Register HighPartReg = createResultReg(RC);
2099     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8),
2100             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2101 
2102     if (Subtarget->isGVIndirectSymbol(GV)) {
2103       assert(!IsAIXTocData && "TOC data should always be direct.");
2104       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL),
2105               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2106     } else {
2107       // Otherwise generate the ADDItocL8.
2108       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDItocL8),
2109               DestReg)
2110           .addReg(HighPartReg)
2111           .addGlobalAddress(GV);
2112     }
2113   }
2114 
2115   return DestReg;
2116 }
2117 
2118 // Materialize a 32-bit integer constant into a register, and return
2119 // the register number (or zero if we failed to handle it).
2120 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2121                                              const TargetRegisterClass *RC) {
2122   unsigned Lo = Imm & 0xFFFF;
2123   unsigned Hi = (Imm >> 16) & 0xFFFF;
2124 
2125   Register ResultReg = createResultReg(RC);
2126   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2127 
2128   if (isInt<16>(Imm))
2129     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2130             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2131       .addImm(Imm);
2132   else if (Lo) {
2133     // Both Lo and Hi have nonzero bits.
2134     Register TmpReg = createResultReg(RC);
2135     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2136             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2137       .addImm(Hi);
2138     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2139             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2140       .addReg(TmpReg).addImm(Lo);
2141   } else
2142     // Just Hi bits.
2143     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2144             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2145         .addImm(Hi);
2146 
2147   return ResultReg;
2148 }
2149 
2150 // Materialize a 64-bit integer constant into a register, and return
2151 // the register number (or zero if we failed to handle it).
2152 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2153                                              const TargetRegisterClass *RC) {
2154   unsigned Remainder = 0;
2155   unsigned Shift = 0;
2156 
2157   // If the value doesn't fit in 32 bits, see if we can shift it
2158   // so that it fits in 32 bits.
2159   if (!isInt<32>(Imm)) {
2160     Shift = llvm::countr_zero<uint64_t>(Imm);
2161     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2162 
2163     if (isInt<32>(ImmSh))
2164       Imm = ImmSh;
2165     else {
2166       Remainder = Imm;
2167       Shift = 32;
2168       Imm >>= 32;
2169     }
2170   }
2171 
2172   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2173   // (if not shifted).
2174   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2175   if (!Shift)
2176     return TmpReg1;
2177 
2178   // If upper 32 bits were not zero, we've built them and need to shift
2179   // them into place.
2180   unsigned TmpReg2;
2181   if (Imm) {
2182     TmpReg2 = createResultReg(RC);
2183     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLDICR),
2184             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2185   } else
2186     TmpReg2 = TmpReg1;
2187 
2188   unsigned TmpReg3, Hi, Lo;
2189   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2190     TmpReg3 = createResultReg(RC);
2191     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORIS8),
2192             TmpReg3).addReg(TmpReg2).addImm(Hi);
2193   } else
2194     TmpReg3 = TmpReg2;
2195 
2196   if ((Lo = Remainder & 0xFFFF)) {
2197     Register ResultReg = createResultReg(RC);
2198     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORI8),
2199             ResultReg).addReg(TmpReg3).addImm(Lo);
2200     return ResultReg;
2201   }
2202 
2203   return TmpReg3;
2204 }
2205 
2206 // Materialize an integer constant into a register, and return
2207 // the register number (or zero if we failed to handle it).
2208 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2209                                         bool UseSExt) {
2210   // If we're using CR bit registers for i1 values, handle that as a special
2211   // case first.
2212   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2213     Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2214     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2215             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2216     return ImmReg;
2217   }
2218 
2219   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2220       VT != MVT::i1)
2221     return 0;
2222 
2223   const TargetRegisterClass *RC =
2224       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2225   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2226 
2227   // If the constant is in range, use a load-immediate.
2228   // Since LI will sign extend the constant we need to make sure that for
2229   // our zeroext constants that the sign extended constant fits into 16-bits -
2230   // a range of 0..0x7fff.
2231   if (isInt<16>(Imm)) {
2232     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2233     Register ImmReg = createResultReg(RC);
2234     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ImmReg)
2235         .addImm(Imm);
2236     return ImmReg;
2237   }
2238 
2239   // Construct the constant piecewise.
2240   if (VT == MVT::i64)
2241     return PPCMaterialize64BitInt(Imm, RC);
2242   else if (VT == MVT::i32)
2243     return PPCMaterialize32BitInt(Imm, RC);
2244 
2245   return 0;
2246 }
2247 
2248 // Materialize a constant into a register, and return the register
2249 // number (or zero if we failed to handle it).
2250 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2251   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2252 
2253   // Only handle simple types.
2254   if (!CEVT.isSimple()) return 0;
2255   MVT VT = CEVT.getSimpleVT();
2256 
2257   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2258     return PPCMaterializeFP(CFP, VT);
2259   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2260     return PPCMaterializeGV(GV, VT);
2261   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2262     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2263     // assumes that constant PHI operands will be zero extended, and failure to
2264     // match that assumption will cause problems if we sign extend here but
2265     // some user of a PHI is in a block for which we fall back to full SDAG
2266     // instruction selection.
2267     return PPCMaterializeInt(CI, VT, false);
2268 
2269   return 0;
2270 }
2271 
2272 // Materialize the address created by an alloca into a register, and
2273 // return the register number (or zero if we failed to handle it).
2274 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2275   // Don't handle dynamic allocas.
2276   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2277 
2278   MVT VT;
2279   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2280 
2281   DenseMap<const AllocaInst*, int>::iterator SI =
2282     FuncInfo.StaticAllocaMap.find(AI);
2283 
2284   if (SI != FuncInfo.StaticAllocaMap.end()) {
2285     Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2286     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8),
2287             ResultReg).addFrameIndex(SI->second).addImm(0);
2288     return ResultReg;
2289   }
2290 
2291   return 0;
2292 }
2293 
2294 // Fold loads into extends when possible.
2295 // FIXME: We can have multiple redundant extend/trunc instructions
2296 // following a load.  The folding only picks up one.  Extend this
2297 // to check subsequent instructions for the same pattern and remove
2298 // them.  Thus ResultReg should be the def reg for the last redundant
2299 // instruction in a chain, and all intervening instructions can be
2300 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2301 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2302 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2303                                       const LoadInst *LI) {
2304   // Verify we have a legal type before going any further.
2305   MVT VT;
2306   if (!isLoadTypeLegal(LI->getType(), VT))
2307     return false;
2308 
2309   // Combine load followed by zero- or sign-extend.
2310   bool IsZExt = false;
2311   switch(MI->getOpcode()) {
2312     default:
2313       return false;
2314 
2315     case PPC::RLDICL:
2316     case PPC::RLDICL_32_64: {
2317       IsZExt = true;
2318       unsigned MB = MI->getOperand(3).getImm();
2319       if ((VT == MVT::i8 && MB <= 56) ||
2320           (VT == MVT::i16 && MB <= 48) ||
2321           (VT == MVT::i32 && MB <= 32))
2322         break;
2323       return false;
2324     }
2325 
2326     case PPC::RLWINM:
2327     case PPC::RLWINM8: {
2328       IsZExt = true;
2329       unsigned MB = MI->getOperand(3).getImm();
2330       if ((VT == MVT::i8 && MB <= 24) ||
2331           (VT == MVT::i16 && MB <= 16))
2332         break;
2333       return false;
2334     }
2335 
2336     case PPC::EXTSB:
2337     case PPC::EXTSB8:
2338     case PPC::EXTSB8_32_64:
2339       /* There is no sign-extending load-byte instruction. */
2340       return false;
2341 
2342     case PPC::EXTSH:
2343     case PPC::EXTSH8:
2344     case PPC::EXTSH8_32_64: {
2345       if (VT != MVT::i16 && VT != MVT::i8)
2346         return false;
2347       break;
2348     }
2349 
2350     case PPC::EXTSW:
2351     case PPC::EXTSW_32:
2352     case PPC::EXTSW_32_64: {
2353       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2354         return false;
2355       break;
2356     }
2357   }
2358 
2359   // See if we can handle this address.
2360   Address Addr;
2361   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2362     return false;
2363 
2364   Register ResultReg = MI->getOperand(0).getReg();
2365 
2366   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2367                    Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2368     return false;
2369 
2370   MachineBasicBlock::iterator I(MI);
2371   removeDeadCode(I, std::next(I));
2372   return true;
2373 }
2374 
2375 // Attempt to lower call arguments in a faster way than done by
2376 // the selection DAG code.
2377 bool PPCFastISel::fastLowerArguments() {
2378   // Defer to normal argument lowering for now.  It's reasonably
2379   // efficient.  Consider doing something like ARM to handle the
2380   // case where all args fit in registers, no varargs, no float
2381   // or vector args.
2382   return false;
2383 }
2384 
2385 // Handle materializing integer constants into a register.  This is not
2386 // automatically generated for PowerPC, so must be explicitly created here.
2387 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2388 
2389   if (Opc != ISD::Constant)
2390     return 0;
2391 
2392   // If we're using CR bit registers for i1 values, handle that as a special
2393   // case first.
2394   if (VT == MVT::i1 && Subtarget->useCRBits()) {
2395     Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2396     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2397             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2398     return ImmReg;
2399   }
2400 
2401   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2402       VT != MVT::i1)
2403     return 0;
2404 
2405   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2406                                    &PPC::GPRCRegClass);
2407   if (VT == MVT::i64)
2408     return PPCMaterialize64BitInt(Imm, RC);
2409   else
2410     return PPCMaterialize32BitInt(Imm, RC);
2411 }
2412 
2413 // Override for ADDI and ADDI8 to set the correct register class
2414 // on RHS operand 0.  The automatic infrastructure naively assumes
2415 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2416 // for these cases.  At the moment, none of the other automatically
2417 // generated RI instructions require special treatment.  However, once
2418 // SelectSelect is implemented, "isel" requires similar handling.
2419 //
2420 // Also be conservative about the output register class.  Avoid
2421 // assigning R0 or X0 to the output register for GPRC and G8RC
2422 // register classes, as any such result could be used in ADDI, etc.,
2423 // where those regs have another meaning.
2424 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2425                                       const TargetRegisterClass *RC,
2426                                       unsigned Op0,
2427                                       uint64_t Imm) {
2428   if (MachineInstOpcode == PPC::ADDI)
2429     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2430   else if (MachineInstOpcode == PPC::ADDI8)
2431     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2432 
2433   const TargetRegisterClass *UseRC =
2434     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2435      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2436 
2437   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm);
2438 }
2439 
2440 // Override for instructions with one register operand to avoid use of
2441 // R0/X0.  The automatic infrastructure isn't aware of the context so
2442 // we must be conservative.
2443 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2444                                      const TargetRegisterClass* RC,
2445                                      unsigned Op0) {
2446   const TargetRegisterClass *UseRC =
2447     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2448      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2449 
2450   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0);
2451 }
2452 
2453 // Override for instructions with two register operands to avoid use
2454 // of R0/X0.  The automatic infrastructure isn't aware of the context
2455 // so we must be conservative.
2456 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2457                                       const TargetRegisterClass* RC,
2458                                       unsigned Op0, unsigned Op1) {
2459   const TargetRegisterClass *UseRC =
2460     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2461      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2462 
2463   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1);
2464 }
2465 
2466 namespace llvm {
2467   // Create the fast instruction selector for PowerPC64 ELF.
2468   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2469                                 const TargetLibraryInfo *LibInfo) {
2470     // Only available on 64-bit for now.
2471     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2472     if (Subtarget.isPPC64())
2473       return new PPCFastISel(FuncInfo, LibInfo);
2474     return nullptr;
2475   }
2476 }
2477