xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCCallingConv.td (revision 7877fdebeeb35fad1cbbafce22598b1bdf97c786)
1//===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the PowerPC 32- and 64-bit
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const PPCSubtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).",
18                     F),
19          A>;
20class CCIfNotSubtarget<string F, CCAction A>
21    : CCIf<!strconcat("!static_cast<const PPCSubtarget&>"
22                       "(State.getMachineFunction().getSubtarget()).",
23                     F),
24          A>;
25class CCIfOrigArgWasNotPPCF128<CCAction A>
26    : CCIf<"!static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
27           A>;
28class CCIfOrigArgWasPPCF128<CCAction A>
29    : CCIf<"static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
30           A>;
31
32//===----------------------------------------------------------------------===//
33// Return Value Calling Convention
34//===----------------------------------------------------------------------===//
35
36// PPC64 AnyReg return-value convention. No explicit register is specified for
37// the return-value. The register allocator is allowed and expected to choose
38// any free register.
39//
40// This calling convention is currently only supported by the stackmap and
41// patchpoint intrinsics. All other uses will result in an assert on Debug
42// builds. On Release builds we fallback to the PPC C calling convention.
43def RetCC_PPC64_AnyReg : CallingConv<[
44  CCCustom<"CC_PPC_AnyReg_Error">
45]>;
46
47// Return-value convention for PowerPC coldcc.
48let Entry = 1 in
49def RetCC_PPC_Cold : CallingConv<[
50  // Use the same return registers as RetCC_PPC, but limited to only
51  // one return value. The remaining return values will be saved to
52  // the stack.
53  CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
54  CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
55
56  CCIfType<[i32], CCAssignToReg<[R3]>>,
57  CCIfType<[i64], CCAssignToReg<[X3]>>,
58  CCIfType<[i128], CCAssignToReg<[X3]>>,
59
60  CCIfType<[f32], CCAssignToReg<[F1]>>,
61  CCIfType<[f64], CCAssignToReg<[F1]>>,
62  CCIfType<[f128], CCIfSubtarget<"hasP9Vector()", CCAssignToReg<[V2]>>>,
63
64  CCIfType<[v4f64, v4f32, v4i1],
65           CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1]>>>,
66
67  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
68           CCIfSubtarget<"hasAltivec()",
69           CCAssignToReg<[V2]>>>
70]>;
71
72// Return-value convention for PowerPC
73let Entry = 1 in
74def RetCC_PPC : CallingConv<[
75  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
76
77  // On PPC64, integer return values are always promoted to i64
78  CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
79  CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
80
81  CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
82  CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>,
83  CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
84
85  // Floating point types returned as "direct" go into F1 .. F8; note that
86  // only the ELFv2 ABI fully utilizes all these registers.
87  CCIfNotSubtarget<"hasSPE()",
88       CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
89  CCIfNotSubtarget<"hasSPE()",
90       CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
91  CCIfSubtarget<"hasSPE()",
92       CCIfType<[f32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
93  CCIfSubtarget<"hasSPE()",
94       CCIfType<[f64], CCCustom<"CC_PPC32_SPE_RetF64">>>,
95
96  // For P9, f128 are passed in vector registers.
97  CCIfType<[f128],
98           CCIfSubtarget<"hasP9Vector()",
99           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
100
101  // QPX vectors are returned in QF1 and QF2.
102  CCIfType<[v4f64, v4f32, v4i1],
103           CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>,
104
105  // Vector types returned as "direct" go into V2 .. V9; note that only the
106  // ELFv2 ABI fully utilizes all these registers.
107  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
108           CCIfSubtarget<"hasAltivec()",
109           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
110]>;
111
112// No explicit register is specified for the AnyReg calling convention. The
113// register allocator may assign the arguments to any free register.
114//
115// This calling convention is currently only supported by the stackmap and
116// patchpoint intrinsics. All other uses will result in an assert on Debug
117// builds. On Release builds we fallback to the PPC C calling convention.
118def CC_PPC64_AnyReg : CallingConv<[
119  CCCustom<"CC_PPC_AnyReg_Error">
120]>;
121
122// Note that we don't currently have calling conventions for 64-bit
123// PowerPC, but handle all the complexities of the ABI in the lowering
124// logic.  FIXME: See if the logic can be simplified with use of CCs.
125// This may require some extensions to current table generation.
126
127// Simple calling convention for 64-bit ELF PowerPC fast isel.
128// Only handle ints and floats.  All ints are promoted to i64.
129// Vector types and quadword ints are not handled.
130let Entry = 1 in
131def CC_PPC64_ELF_FIS : CallingConv<[
132  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>,
133
134  CCIfType<[i1],  CCPromoteToType<i64>>,
135  CCIfType<[i8],  CCPromoteToType<i64>>,
136  CCIfType<[i16], CCPromoteToType<i64>>,
137  CCIfType<[i32], CCPromoteToType<i64>>,
138  CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>,
139  CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>
140]>;
141
142// Simple return-value convention for 64-bit ELF PowerPC fast isel.
143// All small ints are promoted to i64.  Vector types, quadword ints,
144// and multiple register returns are "supported" to avoid compile
145// errors, but none are handled by the fast selector.
146let Entry = 1 in
147def RetCC_PPC64_ELF_FIS : CallingConv<[
148  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
149
150  CCIfType<[i1],   CCPromoteToType<i64>>,
151  CCIfType<[i8],   CCPromoteToType<i64>>,
152  CCIfType<[i16],  CCPromoteToType<i64>>,
153  CCIfType<[i32],  CCPromoteToType<i64>>,
154  CCIfType<[i64],  CCAssignToReg<[X3, X4, X5, X6]>>,
155  CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
156  CCIfType<[f32],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
157  CCIfType<[f64],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
158  CCIfType<[f128],
159           CCIfSubtarget<"hasP9Vector()",
160           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
161  CCIfType<[v4f64, v4f32, v4i1],
162           CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>,
163  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
164           CCIfSubtarget<"hasAltivec()",
165           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
166]>;
167
168//===----------------------------------------------------------------------===//
169// PowerPC System V Release 4 32-bit ABI
170//===----------------------------------------------------------------------===//
171
172def CC_PPC32_SVR4_Common : CallingConv<[
173  CCIfType<[i1], CCPromoteToType<i32>>,
174
175  // The ABI requires i64 to be passed in two adjacent registers with the first
176  // register having an odd register number.
177  CCIfType<[i32],
178  CCIfSplit<CCIfSubtarget<"useSoftFloat()",
179            CCIfOrigArgWasNotPPCF128<
180            CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>>,
181
182  CCIfType<[i32],
183  CCIfSplit<CCIfNotSubtarget<"useSoftFloat()",
184                            CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>,
185  CCIfType<[f64],
186  CCIfSubtarget<"hasSPE()",
187                CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>,
188  CCIfSplit<CCIfSubtarget<"useSoftFloat()",
189                          CCIfOrigArgWasPPCF128<CCCustom<
190                          "CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128">>>>,
191
192  // The 'nest' parameter, if any, is passed in R11.
193  CCIfNest<CCAssignToReg<[R11]>>,
194
195  // The first 8 integer arguments are passed in integer registers.
196  CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
197
198  // Make sure the i64 words from a long double are either both passed in
199  // registers or both passed on the stack.
200  CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>,
201
202  // FP values are passed in F1 - F8.
203  CCIfType<[f32, f64],
204           CCIfNotSubtarget<"hasSPE()",
205                            CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
206  CCIfType<[f64],
207           CCIfSubtarget<"hasSPE()",
208                         CCCustom<"CC_PPC32_SPE_CustomSplitFP64">>>,
209  CCIfType<[f32],
210           CCIfSubtarget<"hasSPE()",
211                         CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
212
213  // Split arguments have an alignment of 8 bytes on the stack.
214  CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>,
215
216  CCIfType<[i32], CCAssignToStack<4, 4>>,
217
218  // Floats are stored in double precision format, thus they have the same
219  // alignment and size as doubles.
220  // With SPE floats are stored as single precision, so have alignment and
221  // size of int.
222  CCIfType<[f32,f64], CCIfNotSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
223  CCIfType<[f32], CCIfSubtarget<"hasSPE()", CCAssignToStack<4, 4>>>,
224  CCIfType<[f64], CCIfSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
225
226  // QPX vectors that are stored in double precision need 32-byte alignment.
227  CCIfType<[v4f64, v4i1], CCAssignToStack<32, 32>>,
228
229  // Vectors and float128 get 16-byte stack slots that are 16-byte aligned.
230  CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>>,
231  CCIfType<[f128], CCIfSubtarget<"hasP9Vector()", CCAssignToStack<16, 16>>>
232]>;
233
234// This calling convention puts vector arguments always on the stack. It is used
235// to assign vector arguments which belong to the variable portion of the
236// parameter list of a variable argument function.
237let Entry = 1 in
238def CC_PPC32_SVR4_VarArg : CallingConv<[
239  CCDelegateTo<CC_PPC32_SVR4_Common>
240]>;
241
242// In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to
243// put vector arguments in vector registers before putting them on the stack.
244let Entry = 1 in
245def CC_PPC32_SVR4 : CallingConv<[
246  // QPX vectors mirror the scalar FP convention.
247  CCIfType<[v4f64, v4f32, v4i1], CCIfSubtarget<"hasQPX()",
248    CCAssignToReg<[QF1, QF2, QF3, QF4, QF5, QF6, QF7, QF8]>>>,
249
250  // The first 12 Vector arguments are passed in AltiVec registers.
251  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
252           CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
253                          V8, V9, V10, V11, V12, V13]>>>,
254
255  // Float128 types treated as vector arguments.
256  CCIfType<[f128],
257           CCIfSubtarget<"hasP9Vector()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
258                          V8, V9, V10, V11, V12, V13]>>>,
259
260  CCDelegateTo<CC_PPC32_SVR4_Common>
261]>;
262
263// Helper "calling convention" to handle aggregate by value arguments.
264// Aggregate by value arguments are always placed in the local variable space
265// of the caller. This calling convention is only used to assign those stack
266// offsets in the callers stack frame.
267//
268// Still, the address of the aggregate copy in the callers stack frame is passed
269// in a GPR (or in the parameter list area if all GPRs are allocated) from the
270// caller to the callee. The location for the address argument is assigned by
271// the CC_PPC32_SVR4 calling convention.
272//
273// The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are
274// not passed by value.
275
276let Entry = 1 in
277def CC_PPC32_SVR4_ByVal : CallingConv<[
278  CCIfByVal<CCPassByVal<4, 4>>,
279
280  CCCustom<"CC_PPC32_SVR4_Custom_Dummy">
281]>;
282
283def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27,
284                                       V28, V29, V30, V31)>;
285
286// SPE does not use FPRs, so break out the common register set as base.
287def CSR_SVR432_COMM : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20,
288                                          R21, R22, R23, R24, R25, R26, R27,
289                                          R28, R29, R30, R31, CR2, CR3, CR4
290                                      )>;
291def CSR_SVR432 :  CalleeSavedRegs<(add CSR_SVR432_COMM, F14, F15, F16, F17, F18,
292                                        F19, F20, F21, F22, F23, F24, F25, F26,
293                                        F27, F28, F29, F30, F31
294                                   )>;
295def CSR_SPE : CalleeSavedRegs<(add S14, S15, S16, S17, S18, S19, S20, S21, S22,
296                                   S23, S24, S25, S26, S27, S28, S29, S30, S31
297                              )>;
298
299def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>;
300
301def CSR_SVR432_SPE : CalleeSavedRegs<(add CSR_SVR432_COMM, CSR_SPE)>;
302
303def CSR_AIX32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20,
304                                     R21, R22, R23, R24, R25, R26, R27, R28,
305                                     R29, R30, R31, F14, F15, F16, F17, F18,
306                                     F19, F20, F21, F22, F23, F24, F25, F26,
307                                     F27, F28, F29, F30, F31, CR2, CR3, CR4
308                                )>;
309
310// Common CalleeSavedRegs for SVR4 and AIX.
311def CSR_PPC64   : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20,
312                                        X21, X22, X23, X24, X25, X26, X27, X28,
313                                        X29, X30, X31, F14, F15, F16, F17, F18,
314                                        F19, F20, F21, F22, F23, F24, F25, F26,
315                                        F27, F28, F29, F30, F31, CR2, CR3, CR4
316                                   )>;
317
318
319def CSR_PPC64_Altivec : CalleeSavedRegs<(add CSR_PPC64, CSR_Altivec)>;
320
321def CSR_PPC64_R2 : CalleeSavedRegs<(add CSR_PPC64, X2)>;
322
323def CSR_PPC64_R2_Altivec : CalleeSavedRegs<(add CSR_PPC64_Altivec, X2)>;
324
325def CSR_NoRegs : CalleeSavedRegs<(add)>;
326
327// coldcc calling convection marks most registers as non-volatile.
328// Do not include r1 since the stack pointer is never considered a CSR.
329// Do not include r2, since it is the TOC register and is added depending
330// on whether or not the function uses the TOC and is a non-leaf.
331// Do not include r0,r11,r13 as they are optional in functional linkage
332// and value may be altered by inter-library calls.
333// Do not include r12 as it is used as a scratch register.
334// Do not include return registers r3, f1, v2.
335def CSR_SVR32_ColdCC_Common : CalleeSavedRegs<(add (sequence "R%u", 4, 10),
336                                                (sequence "R%u", 14, 31),
337                                                (sequence "CR%u", 0, 7))>;
338
339def CSR_SVR32_ColdCC : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common,
340                                          F0, (sequence "F%u", 2, 31))>;
341
342
343def CSR_SVR32_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR32_ColdCC,
344                                            (sequence "V%u", 0, 1),
345                                            (sequence "V%u", 3, 31))>;
346
347def CSR_SVR32_ColdCC_SPE : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common,
348                                            (sequence "S%u", 4, 10),
349                                            (sequence "S%u", 14, 31))>;
350
351def CSR_SVR64_ColdCC : CalleeSavedRegs<(add  (sequence "X%u", 4, 10),
352                                             (sequence "X%u", 14, 31),
353                                             F0, (sequence "F%u", 2, 31),
354                                             (sequence "CR%u", 0, 7))>;
355
356def CSR_SVR64_ColdCC_R2: CalleeSavedRegs<(add CSR_SVR64_ColdCC, X2)>;
357
358def CSR_SVR64_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC,
359                                             (sequence "V%u", 0, 1),
360                                             (sequence "V%u", 3, 31))>;
361
362def CSR_SVR64_ColdCC_R2_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC_Altivec, X2)>;
363
364def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10),
365                                             (sequence "X%u", 14, 31),
366                                             (sequence "F%u", 0, 31),
367                                             (sequence "CR%u", 0, 7))>;
368
369def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
370                                             (sequence "V%u", 0, 31))>;
371
372def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
373                                         (sequence "VSL%u", 0, 31))>;
374
375