xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCCallingConv.td (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1//===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the PowerPC 32- and 64-bit
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const PPCSubtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).",
18                     F),
19          A>;
20class CCIfNotSubtarget<string F, CCAction A>
21    : CCIf<!strconcat("!static_cast<const PPCSubtarget&>"
22                       "(State.getMachineFunction().getSubtarget()).",
23                     F),
24          A>;
25class CCIfOrigArgWasNotPPCF128<CCAction A>
26    : CCIf<"!static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
27           A>;
28class CCIfOrigArgWasPPCF128<CCAction A>
29    : CCIf<"static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
30           A>;
31
32//===----------------------------------------------------------------------===//
33// Return Value Calling Convention
34//===----------------------------------------------------------------------===//
35
36// PPC64 AnyReg return-value convention. No explicit register is specified for
37// the return-value. The register allocator is allowed and expected to choose
38// any free register.
39//
40// This calling convention is currently only supported by the stackmap and
41// patchpoint intrinsics. All other uses will result in an assert on Debug
42// builds. On Release builds we fallback to the PPC C calling convention.
43def RetCC_PPC64_AnyReg : CallingConv<[
44  CCCustom<"CC_PPC_AnyReg_Error">
45]>;
46
47// Return-value convention for PowerPC coldcc.
48let Entry = 1 in
49def RetCC_PPC_Cold : CallingConv<[
50  // Use the same return registers as RetCC_PPC, but limited to only
51  // one return value. The remaining return values will be saved to
52  // the stack.
53  CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
54  CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
55
56  CCIfType<[i32], CCAssignToReg<[R3]>>,
57  CCIfType<[i64], CCAssignToReg<[X3]>>,
58  CCIfType<[i128], CCAssignToReg<[X3]>>,
59
60  CCIfType<[f32], CCAssignToReg<[F1]>>,
61  CCIfType<[f64], CCAssignToReg<[F1]>>,
62  CCIfType<[f128], CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2]>>>,
63
64  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
65           CCIfSubtarget<"hasAltivec()",
66           CCAssignToReg<[V2]>>>
67]>;
68
69// Return-value convention for PowerPC
70let Entry = 1 in
71def RetCC_PPC : CallingConv<[
72  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
73
74  // On PPC64, integer return values are always promoted to i64
75  CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
76  CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
77
78  CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
79  CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>,
80  CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
81
82  // Floating point types returned as "direct" go into F1 .. F8; note that
83  // only the ELFv2 ABI fully utilizes all these registers.
84  CCIfNotSubtarget<"hasSPE()",
85       CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
86  CCIfNotSubtarget<"hasSPE()",
87       CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
88  CCIfSubtarget<"hasSPE()",
89       CCIfType<[f32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
90  CCIfSubtarget<"hasSPE()",
91       CCIfType<[f64], CCCustom<"CC_PPC32_SPE_RetF64">>>,
92
93  // For P9, f128 are passed in vector registers.
94  CCIfType<[f128],
95           CCIfSubtarget<"hasAltivec()",
96           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
97
98  // Vector types returned as "direct" go into V2 .. V9; note that only the
99  // ELFv2 ABI fully utilizes all these registers.
100  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
101           CCIfSubtarget<"hasAltivec()",
102           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
103]>;
104
105// No explicit register is specified for the AnyReg calling convention. The
106// register allocator may assign the arguments to any free register.
107//
108// This calling convention is currently only supported by the stackmap and
109// patchpoint intrinsics. All other uses will result in an assert on Debug
110// builds. On Release builds we fallback to the PPC C calling convention.
111def CC_PPC64_AnyReg : CallingConv<[
112  CCCustom<"CC_PPC_AnyReg_Error">
113]>;
114
115// Note that we don't currently have calling conventions for 64-bit
116// PowerPC, but handle all the complexities of the ABI in the lowering
117// logic.  FIXME: See if the logic can be simplified with use of CCs.
118// This may require some extensions to current table generation.
119
120// Simple calling convention for 64-bit ELF PowerPC fast isel.
121// Only handle ints and floats.  All ints are promoted to i64.
122// Vector types and quadword ints are not handled.
123let Entry = 1 in
124def CC_PPC64_ELF_FIS : CallingConv<[
125  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>,
126
127  CCIfType<[i1],  CCPromoteToType<i64>>,
128  CCIfType<[i8],  CCPromoteToType<i64>>,
129  CCIfType<[i16], CCPromoteToType<i64>>,
130  CCIfType<[i32], CCPromoteToType<i64>>,
131  CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>,
132  CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>
133]>;
134
135// Simple return-value convention for 64-bit ELF PowerPC fast isel.
136// All small ints are promoted to i64.  Vector types, quadword ints,
137// and multiple register returns are "supported" to avoid compile
138// errors, but none are handled by the fast selector.
139let Entry = 1 in
140def RetCC_PPC64_ELF_FIS : CallingConv<[
141  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
142
143  CCIfType<[i1],   CCPromoteToType<i64>>,
144  CCIfType<[i8],   CCPromoteToType<i64>>,
145  CCIfType<[i16],  CCPromoteToType<i64>>,
146  CCIfType<[i32],  CCPromoteToType<i64>>,
147  CCIfType<[i64],  CCAssignToReg<[X3, X4, X5, X6]>>,
148  CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
149  CCIfType<[f32],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
150  CCIfType<[f64],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
151  CCIfType<[f128],
152           CCIfSubtarget<"hasAltivec()",
153           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
154  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
155           CCIfSubtarget<"hasAltivec()",
156           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
157]>;
158
159//===----------------------------------------------------------------------===//
160// PowerPC System V Release 4 32-bit ABI
161//===----------------------------------------------------------------------===//
162
163def CC_PPC32_SVR4_Common : CallingConv<[
164  CCIfType<[i1], CCPromoteToType<i32>>,
165
166  // The ABI requires i64 to be passed in two adjacent registers with the first
167  // register having an odd register number.
168  CCIfType<[i32],
169  CCIfSplit<CCIfSubtarget<"useSoftFloat()",
170            CCIfOrigArgWasNotPPCF128<
171            CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>>,
172
173  CCIfType<[i32],
174  CCIfSplit<CCIfNotSubtarget<"useSoftFloat()",
175                            CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>,
176  CCIfType<[f64],
177  CCIfSubtarget<"hasSPE()",
178                CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>,
179  CCIfSplit<CCIfSubtarget<"useSoftFloat()",
180                          CCIfOrigArgWasPPCF128<CCCustom<
181                          "CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128">>>>,
182
183  // The 'nest' parameter, if any, is passed in R11.
184  CCIfNest<CCAssignToReg<[R11]>>,
185
186  // The first 8 integer arguments are passed in integer registers.
187  CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
188
189  // Make sure the i64 words from a long double are either both passed in
190  // registers or both passed on the stack.
191  CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>,
192
193  // FP values are passed in F1 - F8.
194  CCIfType<[f32, f64],
195           CCIfNotSubtarget<"hasSPE()",
196                            CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
197  CCIfType<[f64],
198           CCIfSubtarget<"hasSPE()",
199                         CCCustom<"CC_PPC32_SPE_CustomSplitFP64">>>,
200  CCIfType<[f32],
201           CCIfSubtarget<"hasSPE()",
202                         CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
203
204  // Split arguments have an alignment of 8 bytes on the stack.
205  CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>,
206
207  CCIfType<[i32], CCAssignToStack<4, 4>>,
208
209  // Floats are stored in double precision format, thus they have the same
210  // alignment and size as doubles.
211  // With SPE floats are stored as single precision, so have alignment and
212  // size of int.
213  CCIfType<[f32,f64], CCIfNotSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
214  CCIfType<[f32], CCIfSubtarget<"hasSPE()", CCAssignToStack<4, 4>>>,
215  CCIfType<[f64], CCIfSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
216
217  // Vectors and float128 get 16-byte stack slots that are 16-byte aligned.
218  CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>>,
219  CCIfType<[f128], CCIfSubtarget<"hasAltivec()", CCAssignToStack<16, 16>>>
220]>;
221
222// This calling convention puts vector arguments always on the stack. It is used
223// to assign vector arguments which belong to the variable portion of the
224// parameter list of a variable argument function.
225let Entry = 1 in
226def CC_PPC32_SVR4_VarArg : CallingConv<[
227  CCDelegateTo<CC_PPC32_SVR4_Common>
228]>;
229
230// In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to
231// put vector arguments in vector registers before putting them on the stack.
232let Entry = 1 in
233def CC_PPC32_SVR4 : CallingConv<[
234  // The first 12 Vector arguments are passed in AltiVec registers.
235  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
236           CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
237                          V8, V9, V10, V11, V12, V13]>>>,
238
239  // Float128 types treated as vector arguments.
240  CCIfType<[f128],
241           CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
242                          V8, V9, V10, V11, V12, V13]>>>,
243
244  CCDelegateTo<CC_PPC32_SVR4_Common>
245]>;
246
247// Helper "calling convention" to handle aggregate by value arguments.
248// Aggregate by value arguments are always placed in the local variable space
249// of the caller. This calling convention is only used to assign those stack
250// offsets in the callers stack frame.
251//
252// Still, the address of the aggregate copy in the callers stack frame is passed
253// in a GPR (or in the parameter list area if all GPRs are allocated) from the
254// caller to the callee. The location for the address argument is assigned by
255// the CC_PPC32_SVR4 calling convention.
256//
257// The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are
258// not passed by value.
259
260let Entry = 1 in
261def CC_PPC32_SVR4_ByVal : CallingConv<[
262  CCIfByVal<CCPassByVal<4, 4>>,
263
264  CCCustom<"CC_PPC32_SVR4_Custom_Dummy">
265]>;
266
267def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27,
268                                       V28, V29, V30, V31)>;
269
270// SPE does not use FPRs, so break out the common register set as base.
271def CSR_SVR432_COMM : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20,
272                                          R21, R22, R23, R24, R25, R26, R27,
273                                          R28, R29, R30, R31, CR2, CR3, CR4
274                                      )>;
275def CSR_SVR432 :  CalleeSavedRegs<(add CSR_SVR432_COMM, F14, F15, F16, F17, F18,
276                                        F19, F20, F21, F22, F23, F24, F25, F26,
277                                        F27, F28, F29, F30, F31
278                                   )>;
279def CSR_SPE : CalleeSavedRegs<(add S14, S15, S16, S17, S18, S19, S20, S21, S22,
280                                   S23, S24, S25, S26, S27, S28, S29, S30, S31
281                              )>;
282
283def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>;
284
285def CSR_SVR432_SPE : CalleeSavedRegs<(add CSR_SVR432_COMM, CSR_SPE)>;
286
287def CSR_AIX32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20,
288                                     R21, R22, R23, R24, R25, R26, R27, R28,
289                                     R29, R30, R31, F14, F15, F16, F17, F18,
290                                     F19, F20, F21, F22, F23, F24, F25, F26,
291                                     F27, F28, F29, F30, F31, CR2, CR3, CR4
292                                )>;
293
294def CSR_AIX32_Altivec : CalleeSavedRegs<(add CSR_AIX32, CSR_Altivec)>;
295
296// Common CalleeSavedRegs for SVR4 and AIX.
297def CSR_PPC64   : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20,
298                                        X21, X22, X23, X24, X25, X26, X27, X28,
299                                        X29, X30, X31, F14, F15, F16, F17, F18,
300                                        F19, F20, F21, F22, F23, F24, F25, F26,
301                                        F27, F28, F29, F30, F31, CR2, CR3, CR4
302                                   )>;
303
304
305def CSR_PPC64_Altivec : CalleeSavedRegs<(add CSR_PPC64, CSR_Altivec)>;
306
307def CSR_PPC64_R2 : CalleeSavedRegs<(add CSR_PPC64, X2)>;
308
309def CSR_PPC64_R2_Altivec : CalleeSavedRegs<(add CSR_PPC64_Altivec, X2)>;
310
311def CSR_NoRegs : CalleeSavedRegs<(add)>;
312
313// coldcc calling convection marks most registers as non-volatile.
314// Do not include r1 since the stack pointer is never considered a CSR.
315// Do not include r2, since it is the TOC register and is added depending
316// on whether or not the function uses the TOC and is a non-leaf.
317// Do not include r0,r11,r13 as they are optional in functional linkage
318// and value may be altered by inter-library calls.
319// Do not include r12 as it is used as a scratch register.
320// Do not include return registers r3, f1, v2.
321def CSR_SVR32_ColdCC_Common : CalleeSavedRegs<(add (sequence "R%u", 4, 10),
322                                                (sequence "R%u", 14, 31),
323                                                (sequence "CR%u", 0, 7))>;
324
325def CSR_SVR32_ColdCC : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common,
326                                          F0, (sequence "F%u", 2, 31))>;
327
328
329def CSR_SVR32_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR32_ColdCC,
330                                            (sequence "V%u", 0, 1),
331                                            (sequence "V%u", 3, 31))>;
332
333def CSR_SVR32_ColdCC_SPE : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common,
334                                            (sequence "S%u", 4, 10),
335                                            (sequence "S%u", 14, 31))>;
336
337def CSR_SVR64_ColdCC : CalleeSavedRegs<(add  (sequence "X%u", 4, 10),
338                                             (sequence "X%u", 14, 31),
339                                             F0, (sequence "F%u", 2, 31),
340                                             (sequence "CR%u", 0, 7))>;
341
342def CSR_SVR64_ColdCC_R2: CalleeSavedRegs<(add CSR_SVR64_ColdCC, X2)>;
343
344def CSR_SVR64_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC,
345                                             (sequence "V%u", 0, 1),
346                                             (sequence "V%u", 3, 31))>;
347
348def CSR_SVR64_ColdCC_R2_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC_Altivec, X2)>;
349
350def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10),
351                                             (sequence "X%u", 14, 31),
352                                             (sequence "F%u", 0, 31),
353                                             (sequence "CR%u", 0, 7))>;
354
355def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
356                                             (sequence "V%u", 0, 31))>;
357
358def CSR_64_AllRegs_AIX_Dflt_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
359                                             (sequence "V%u", 0, 19))>;
360
361def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
362                                         (sequence "VSL%u", 0, 31))>;
363
364def CSR_64_AllRegs_AIX_Dflt_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
365                                         (sequence "VSL%u", 0, 19))>;
366
367def CSR_ALL_VSRP : CalleeSavedRegs<(sequence "VSRp%u", 0, 31)>;
368
369def CSR_VSRP :
370  CalleeSavedRegs<(add VSRp26, VSRp27, VSRp28, VSRp29, VSRp30, VSRp31)>;
371
372def CSR_SVR432_VSRP : CalleeSavedRegs<(add CSR_SVR432_Altivec, CSR_VSRP)>;
373
374def CSR_SVR464_VSRP : CalleeSavedRegs<(add CSR_PPC64_Altivec, CSR_VSRP)>;
375
376def CSR_SVR464_R2_VSRP : CalleeSavedRegs<(add CSR_SVR464_VSRP, X2)>;
377
378def CSR_SVR32_ColdCC_VSRP : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Altivec,
379                                            (sub CSR_ALL_VSRP, VSRp17))>;
380
381def CSR_SVR64_ColdCC_VSRP : CalleeSavedRegs<(add CSR_SVR64_ColdCC,
382                                            (sub CSR_ALL_VSRP, VSRp17))>;
383
384def CSR_SVR64_ColdCC_R2_VSRP : CalleeSavedRegs<(add CSR_SVR64_ColdCC_VSRP, X2)>;
385
386def CSR_64_AllRegs_VSRP :
387  CalleeSavedRegs<(add CSR_64_AllRegs_VSX, CSR_ALL_VSRP)>;
388