1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/BinaryFormat/ELF.h" 36 #include "llvm/CodeGen/AsmPrinter.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 42 #include "llvm/CodeGen/MachineOperand.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/StackMaps.h" 45 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/MC/MCAsmInfo.h" 51 #include "llvm/MC/MCContext.h" 52 #include "llvm/MC/MCDirectives.h" 53 #include "llvm/MC/MCExpr.h" 54 #include "llvm/MC/MCInst.h" 55 #include "llvm/MC/MCInstBuilder.h" 56 #include "llvm/MC/MCSectionELF.h" 57 #include "llvm/MC/MCSectionXCOFF.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCSymbolELF.h" 61 #include "llvm/MC/MCSymbolXCOFF.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/Process.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/Transforms/Utils/ModuleUtils.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <memory> 78 #include <new> 79 80 using namespace llvm; 81 using namespace llvm::XCOFF; 82 83 #define DEBUG_TYPE "asmprinter" 84 85 STATISTIC(NumTOCEntries, "Number of Total TOC Entries Emitted."); 86 STATISTIC(NumTOCConstPool, "Number of Constant Pool TOC Entries."); 87 STATISTIC(NumTOCGlobalInternal, 88 "Number of Internal Linkage Global TOC Entries."); 89 STATISTIC(NumTOCGlobalExternal, 90 "Number of External Linkage Global TOC Entries."); 91 STATISTIC(NumTOCJumpTable, "Number of Jump Table TOC Entries."); 92 STATISTIC(NumTOCThreadLocal, "Number of Thread Local TOC Entries."); 93 STATISTIC(NumTOCBlockAddress, "Number of Block Address TOC Entries."); 94 STATISTIC(NumTOCEHBlock, "Number of EH Block TOC Entries."); 95 96 static cl::opt<bool> EnableSSPCanaryBitInTB( 97 "aix-ssp-tb-bit", cl::init(false), 98 cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden); 99 100 // Specialize DenseMapInfo to allow 101 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 102 // This specialization is needed here because that type is used as keys in the 103 // map representing TOC entries. 104 namespace llvm { 105 template <> 106 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 107 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 108 109 static inline TOCKey getEmptyKey() { 110 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 111 } 112 static inline TOCKey getTombstoneKey() { 113 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 114 } 115 static unsigned getHashValue(const TOCKey &PairVal) { 116 return detail::combineHashValue( 117 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 118 DenseMapInfo<int>::getHashValue(PairVal.second)); 119 } 120 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 121 }; 122 } // end namespace llvm 123 124 namespace { 125 126 enum { 127 // GNU attribute tags for PowerPC ABI 128 Tag_GNU_Power_ABI_FP = 4, 129 Tag_GNU_Power_ABI_Vector = 8, 130 Tag_GNU_Power_ABI_Struct_Return = 12, 131 132 // GNU attribute values for PowerPC float ABI, as combination of two parts 133 Val_GNU_Power_ABI_NoFloat = 0b00, 134 Val_GNU_Power_ABI_HardFloat_DP = 0b01, 135 Val_GNU_Power_ABI_SoftFloat_DP = 0b10, 136 Val_GNU_Power_ABI_HardFloat_SP = 0b11, 137 138 Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100, 139 Val_GNU_Power_ABI_LDBL_64 = 0b1000, 140 Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100, 141 }; 142 143 class PPCAsmPrinter : public AsmPrinter { 144 protected: 145 // For TLS on AIX, we need to be able to identify TOC entries of specific 146 // VariantKind so we can add the right relocations when we generate the 147 // entries. So each entry is represented by a pair of MCSymbol and 148 // VariantKind. For example, we need to be able to identify the following 149 // entry as a TLSGD entry so we can add the @m relocation: 150 // .tc .i[TC],i[TL]@m 151 // By default, VK_None is used for the VariantKind. 152 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 153 MCSymbol *> 154 TOC; 155 const PPCSubtarget *Subtarget = nullptr; 156 157 public: 158 explicit PPCAsmPrinter(TargetMachine &TM, 159 std::unique_ptr<MCStreamer> Streamer) 160 : AsmPrinter(TM, std::move(Streamer)) {} 161 162 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 163 164 enum TOCEntryType { 165 TOCType_ConstantPool, 166 TOCType_GlobalExternal, 167 TOCType_GlobalInternal, 168 TOCType_JumpTable, 169 TOCType_ThreadLocal, 170 TOCType_BlockAddress, 171 TOCType_EHBlock 172 }; 173 174 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type, 175 MCSymbolRefExpr::VariantKind Kind = 176 MCSymbolRefExpr::VariantKind::VK_None); 177 178 bool doInitialization(Module &M) override { 179 if (!TOC.empty()) 180 TOC.clear(); 181 return AsmPrinter::doInitialization(M); 182 } 183 184 void emitInstruction(const MachineInstr *MI) override; 185 186 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 187 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 188 /// The \p MI would be INLINEASM ONLY. 189 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 190 191 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 192 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 193 const char *ExtraCode, raw_ostream &O) override; 194 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 195 const char *ExtraCode, raw_ostream &O) override; 196 197 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 198 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 199 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 200 void EmitAIXTlsCallHelper(const MachineInstr *MI); 201 bool runOnMachineFunction(MachineFunction &MF) override { 202 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 203 bool Changed = AsmPrinter::runOnMachineFunction(MF); 204 emitXRayTable(); 205 return Changed; 206 } 207 }; 208 209 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 210 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 211 public: 212 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 213 std::unique_ptr<MCStreamer> Streamer) 214 : PPCAsmPrinter(TM, std::move(Streamer)) {} 215 216 StringRef getPassName() const override { 217 return "Linux PPC Assembly Printer"; 218 } 219 220 void emitGNUAttributes(Module &M); 221 222 void emitStartOfAsmFile(Module &M) override; 223 void emitEndOfAsmFile(Module &) override; 224 225 void emitFunctionEntryLabel() override; 226 227 void emitFunctionBodyStart() override; 228 void emitFunctionBodyEnd() override; 229 void emitInstruction(const MachineInstr *MI) override; 230 }; 231 232 class PPCAIXAsmPrinter : public PPCAsmPrinter { 233 private: 234 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 235 /// linkage for them in AIX. 236 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 237 238 /// A format indicator and unique trailing identifier to form part of the 239 /// sinit/sterm function names. 240 std::string FormatIndicatorAndUniqueModId; 241 242 // Record a list of GlobalAlias associated with a GlobalObject. 243 // This is used for AIX's extra-label-at-definition aliasing strategy. 244 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 245 GOAliasMap; 246 247 uint16_t getNumberOfVRSaved(); 248 void emitTracebackTable(); 249 250 SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars; 251 252 void emitGlobalVariableHelper(const GlobalVariable *); 253 254 // Get the offset of an alias based on its AliaseeObject. 255 uint64_t getAliasOffset(const Constant *C); 256 257 public: 258 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 259 : PPCAsmPrinter(TM, std::move(Streamer)) { 260 if (MAI->isLittleEndian()) 261 report_fatal_error( 262 "cannot create AIX PPC Assembly Printer for a little-endian target"); 263 } 264 265 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 266 267 bool doInitialization(Module &M) override; 268 269 void emitXXStructorList(const DataLayout &DL, const Constant *List, 270 bool IsCtor) override; 271 272 void SetupMachineFunction(MachineFunction &MF) override; 273 274 void emitGlobalVariable(const GlobalVariable *GV) override; 275 276 void emitFunctionDescriptor() override; 277 278 void emitFunctionEntryLabel() override; 279 280 void emitFunctionBodyEnd() override; 281 282 void emitPGORefs(Module &M); 283 284 void emitEndOfAsmFile(Module &) override; 285 286 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 287 288 void emitInstruction(const MachineInstr *MI) override; 289 290 bool doFinalization(Module &M) override; 291 292 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 293 294 void emitModuleCommandLines(Module &M) override; 295 }; 296 297 } // end anonymous namespace 298 299 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 300 raw_ostream &O) { 301 // Computing the address of a global symbol, not calling it. 302 const GlobalValue *GV = MO.getGlobal(); 303 getSymbol(GV)->print(O, MAI); 304 printOffset(MO.getOffset(), O); 305 } 306 307 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 308 raw_ostream &O) { 309 const DataLayout &DL = getDataLayout(); 310 const MachineOperand &MO = MI->getOperand(OpNo); 311 312 switch (MO.getType()) { 313 case MachineOperand::MO_Register: { 314 // The MI is INLINEASM ONLY and UseVSXReg is always false. 315 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 316 317 // Linux assembler (Others?) does not take register mnemonics. 318 // FIXME - What about special registers used in mfspr/mtspr? 319 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 320 return; 321 } 322 case MachineOperand::MO_Immediate: 323 O << MO.getImm(); 324 return; 325 326 case MachineOperand::MO_MachineBasicBlock: 327 MO.getMBB()->getSymbol()->print(O, MAI); 328 return; 329 case MachineOperand::MO_ConstantPoolIndex: 330 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 331 << MO.getIndex(); 332 return; 333 case MachineOperand::MO_BlockAddress: 334 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 335 return; 336 case MachineOperand::MO_GlobalAddress: { 337 PrintSymbolOperand(MO, O); 338 return; 339 } 340 341 default: 342 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 343 return; 344 } 345 } 346 347 /// PrintAsmOperand - Print out an operand for an inline asm expression. 348 /// 349 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 350 const char *ExtraCode, raw_ostream &O) { 351 // Does this asm operand have a single letter operand modifier? 352 if (ExtraCode && ExtraCode[0]) { 353 if (ExtraCode[1] != 0) return true; // Unknown modifier. 354 355 switch (ExtraCode[0]) { 356 default: 357 // See if this is a generic print operand 358 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 359 case 'L': // Write second word of DImode reference. 360 // Verify that this operand has two consecutive registers. 361 if (!MI->getOperand(OpNo).isReg() || 362 OpNo+1 == MI->getNumOperands() || 363 !MI->getOperand(OpNo+1).isReg()) 364 return true; 365 ++OpNo; // Return the high-part. 366 break; 367 case 'I': 368 // Write 'i' if an integer constant, otherwise nothing. Used to print 369 // addi vs add, etc. 370 if (MI->getOperand(OpNo).isImm()) 371 O << "i"; 372 return false; 373 case 'x': 374 if(!MI->getOperand(OpNo).isReg()) 375 return true; 376 // This operand uses VSX numbering. 377 // If the operand is a VMX register, convert it to a VSX register. 378 Register Reg = MI->getOperand(OpNo).getReg(); 379 if (PPCInstrInfo::isVRRegister(Reg)) 380 Reg = PPC::VSX32 + (Reg - PPC::V0); 381 else if (PPCInstrInfo::isVFRegister(Reg)) 382 Reg = PPC::VSX32 + (Reg - PPC::VF0); 383 const char *RegName; 384 RegName = PPCInstPrinter::getRegisterName(Reg); 385 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 386 O << RegName; 387 return false; 388 } 389 } 390 391 printOperand(MI, OpNo, O); 392 return false; 393 } 394 395 // At the moment, all inline asm memory operands are a single register. 396 // In any case, the output of this routine should always be just one 397 // assembler operand. 398 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 399 const char *ExtraCode, 400 raw_ostream &O) { 401 if (ExtraCode && ExtraCode[0]) { 402 if (ExtraCode[1] != 0) return true; // Unknown modifier. 403 404 switch (ExtraCode[0]) { 405 default: return true; // Unknown modifier. 406 case 'L': // A memory reference to the upper word of a double word op. 407 O << getDataLayout().getPointerSize() << "("; 408 printOperand(MI, OpNo, O); 409 O << ")"; 410 return false; 411 case 'y': // A memory reference for an X-form instruction 412 O << "0, "; 413 printOperand(MI, OpNo, O); 414 return false; 415 case 'I': 416 // Write 'i' if an integer constant, otherwise nothing. Used to print 417 // addi vs add, etc. 418 if (MI->getOperand(OpNo).isImm()) 419 O << "i"; 420 return false; 421 case 'U': // Print 'u' for update form. 422 case 'X': // Print 'x' for indexed form. 423 // FIXME: Currently for PowerPC memory operands are always loaded 424 // into a register, so we never get an update or indexed form. 425 // This is bad even for offset forms, since even if we know we 426 // have a value in -16(r1), we will generate a load into r<n> 427 // and then load from 0(r<n>). Until that issue is fixed, 428 // tolerate 'U' and 'X' but don't output anything. 429 assert(MI->getOperand(OpNo).isReg()); 430 return false; 431 } 432 } 433 434 assert(MI->getOperand(OpNo).isReg()); 435 O << "0("; 436 printOperand(MI, OpNo, O); 437 O << ")"; 438 return false; 439 } 440 441 static void collectTOCStats(PPCAsmPrinter::TOCEntryType Type) { 442 ++NumTOCEntries; 443 switch (Type) { 444 case PPCAsmPrinter::TOCType_ConstantPool: 445 ++NumTOCConstPool; 446 break; 447 case PPCAsmPrinter::TOCType_GlobalInternal: 448 ++NumTOCGlobalInternal; 449 break; 450 case PPCAsmPrinter::TOCType_GlobalExternal: 451 ++NumTOCGlobalExternal; 452 break; 453 case PPCAsmPrinter::TOCType_JumpTable: 454 ++NumTOCJumpTable; 455 break; 456 case PPCAsmPrinter::TOCType_ThreadLocal: 457 ++NumTOCThreadLocal; 458 break; 459 case PPCAsmPrinter::TOCType_BlockAddress: 460 ++NumTOCBlockAddress; 461 break; 462 case PPCAsmPrinter::TOCType_EHBlock: 463 ++NumTOCEHBlock; 464 break; 465 } 466 } 467 468 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 469 /// exists for it. If not, create one. Then return a symbol that references 470 /// the TOC entry. 471 MCSymbol * 472 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type, 473 MCSymbolRefExpr::VariantKind Kind) { 474 // If this is a new TOC entry add statistics about it. 475 if (!TOC.contains({Sym, Kind})) 476 collectTOCStats(Type); 477 478 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 479 if (!TOCEntry) 480 TOCEntry = createTempSymbol("C"); 481 return TOCEntry; 482 } 483 484 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 485 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 486 487 auto &Ctx = OutStreamer->getContext(); 488 MCSymbol *MILabel = Ctx.createTempSymbol(); 489 OutStreamer->emitLabel(MILabel); 490 491 SM.recordStackMap(*MILabel, MI); 492 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 493 494 // Scan ahead to trim the shadow. 495 const MachineBasicBlock &MBB = *MI.getParent(); 496 MachineBasicBlock::const_iterator MII(MI); 497 ++MII; 498 while (NumNOPBytes > 0) { 499 if (MII == MBB.end() || MII->isCall() || 500 MII->getOpcode() == PPC::DBG_VALUE || 501 MII->getOpcode() == TargetOpcode::PATCHPOINT || 502 MII->getOpcode() == TargetOpcode::STACKMAP) 503 break; 504 ++MII; 505 NumNOPBytes -= 4; 506 } 507 508 // Emit nops. 509 for (unsigned i = 0; i < NumNOPBytes; i += 4) 510 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 511 } 512 513 // Lower a patchpoint of the form: 514 // [<def>], <id>, <numBytes>, <target>, <numArgs> 515 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 516 auto &Ctx = OutStreamer->getContext(); 517 MCSymbol *MILabel = Ctx.createTempSymbol(); 518 OutStreamer->emitLabel(MILabel); 519 520 SM.recordPatchPoint(*MILabel, MI); 521 PatchPointOpers Opers(&MI); 522 523 unsigned EncodedBytes = 0; 524 const MachineOperand &CalleeMO = Opers.getCallTarget(); 525 526 if (CalleeMO.isImm()) { 527 int64_t CallTarget = CalleeMO.getImm(); 528 if (CallTarget) { 529 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 530 "High 16 bits of call target should be zero."); 531 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 532 EncodedBytes = 0; 533 // Materialize the jump address: 534 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 535 .addReg(ScratchReg) 536 .addImm((CallTarget >> 32) & 0xFFFF)); 537 ++EncodedBytes; 538 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 539 .addReg(ScratchReg) 540 .addReg(ScratchReg) 541 .addImm(32).addImm(16)); 542 ++EncodedBytes; 543 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 544 .addReg(ScratchReg) 545 .addReg(ScratchReg) 546 .addImm((CallTarget >> 16) & 0xFFFF)); 547 ++EncodedBytes; 548 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 549 .addReg(ScratchReg) 550 .addReg(ScratchReg) 551 .addImm(CallTarget & 0xFFFF)); 552 553 // Save the current TOC pointer before the remote call. 554 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 555 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 556 .addReg(PPC::X2) 557 .addImm(TOCSaveOffset) 558 .addReg(PPC::X1)); 559 ++EncodedBytes; 560 561 // If we're on ELFv1, then we need to load the actual function pointer 562 // from the function descriptor. 563 if (!Subtarget->isELFv2ABI()) { 564 // Load the new TOC pointer and the function address, but not r11 565 // (needing this is rare, and loading it here would prevent passing it 566 // via a 'nest' parameter. 567 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 568 .addReg(PPC::X2) 569 .addImm(8) 570 .addReg(ScratchReg)); 571 ++EncodedBytes; 572 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 573 .addReg(ScratchReg) 574 .addImm(0) 575 .addReg(ScratchReg)); 576 ++EncodedBytes; 577 } 578 579 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 580 .addReg(ScratchReg)); 581 ++EncodedBytes; 582 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 583 ++EncodedBytes; 584 585 // Restore the TOC pointer after the call. 586 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 587 .addReg(PPC::X2) 588 .addImm(TOCSaveOffset) 589 .addReg(PPC::X1)); 590 ++EncodedBytes; 591 } 592 } else if (CalleeMO.isGlobal()) { 593 const GlobalValue *GValue = CalleeMO.getGlobal(); 594 MCSymbol *MOSymbol = getSymbol(GValue); 595 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 596 597 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 598 .addExpr(SymVar)); 599 EncodedBytes += 2; 600 } 601 602 // Each instruction is 4 bytes. 603 EncodedBytes *= 4; 604 605 // Emit padding. 606 unsigned NumBytes = Opers.getNumPatchBytes(); 607 assert(NumBytes >= EncodedBytes && 608 "Patchpoint can't request size less than the length of a call."); 609 assert((NumBytes - EncodedBytes) % 4 == 0 && 610 "Invalid number of NOP bytes requested!"); 611 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 612 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 613 } 614 615 /// This helper function creates the TlsGetAddr MCSymbol for AIX. We will 616 /// create the csect and use the qual-name symbol instead of creating just the 617 /// external symbol. 618 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx, unsigned MIOpc) { 619 StringRef SymName = 620 MIOpc == PPC::GETtlsTpointer32AIX ? ".__get_tpointer" : ".__tls_get_addr"; 621 return Ctx 622 .getXCOFFSection(SymName, SectionKind::getText(), 623 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)) 624 ->getQualNameSymbol(); 625 } 626 627 void PPCAsmPrinter::EmitAIXTlsCallHelper(const MachineInstr *MI) { 628 assert(Subtarget->isAIXABI() && 629 "Only expecting to emit calls to get the thread pointer on AIX!"); 630 631 MCSymbol *TlsCall = createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode()); 632 const MCExpr *TlsRef = 633 MCSymbolRefExpr::create(TlsCall, MCSymbolRefExpr::VK_None, OutContext); 634 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef)); 635 return; 636 } 637 638 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 639 /// call to __tls_get_addr to the current output stream. 640 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 641 MCSymbolRefExpr::VariantKind VK) { 642 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 643 unsigned Opcode = PPC::BL8_NOP_TLS; 644 645 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 646 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 647 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 648 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 649 Opcode = PPC::BL8_NOTOC_TLS; 650 } 651 const Module *M = MF->getFunction().getParent(); 652 653 assert(MI->getOperand(0).isReg() && 654 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 655 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 656 "GETtls[ld]ADDR[32] must define GPR3"); 657 assert(MI->getOperand(1).isReg() && 658 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 659 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 660 "GETtls[ld]ADDR[32] must read GPR3"); 661 662 if (Subtarget->isAIXABI()) { 663 // On AIX, the variable offset should already be in R4 and the region handle 664 // should already be in R3. 665 // For TLSGD, which currently is the only supported access model, we only 666 // need to generate an absolute branch to .__tls_get_addr. 667 Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4; 668 (void)VarOffsetReg; 669 assert(MI->getOperand(2).isReg() && 670 MI->getOperand(2).getReg() == VarOffsetReg && 671 "GETtls[ld]ADDR[32] must read GPR4"); 672 EmitAIXTlsCallHelper(MI); 673 return; 674 } 675 676 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr"); 677 678 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 679 Kind = MCSymbolRefExpr::VK_PLT; 680 681 const MCExpr *TlsRef = 682 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 683 684 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 685 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 686 M->getPICLevel() == PICLevel::BigPIC) 687 TlsRef = MCBinaryExpr::createAdd( 688 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 689 const MachineOperand &MO = MI->getOperand(2); 690 const GlobalValue *GValue = MO.getGlobal(); 691 MCSymbol *MOSymbol = getSymbol(GValue); 692 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 693 EmitToStreamer(*OutStreamer, 694 MCInstBuilder(Subtarget->isPPC64() ? Opcode 695 : (unsigned)PPC::BL_TLS) 696 .addExpr(TlsRef) 697 .addExpr(SymVar)); 698 } 699 700 /// Map a machine operand for a TOC pseudo-machine instruction to its 701 /// corresponding MCSymbol. 702 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 703 AsmPrinter &AP) { 704 switch (MO.getType()) { 705 case MachineOperand::MO_GlobalAddress: 706 return AP.getSymbol(MO.getGlobal()); 707 case MachineOperand::MO_ConstantPoolIndex: 708 return AP.GetCPISymbol(MO.getIndex()); 709 case MachineOperand::MO_JumpTableIndex: 710 return AP.GetJTISymbol(MO.getIndex()); 711 case MachineOperand::MO_BlockAddress: 712 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 713 default: 714 llvm_unreachable("Unexpected operand type to get symbol."); 715 } 716 } 717 718 static bool hasTLSFlag(const MachineOperand &MO) { 719 unsigned Flags = MO.getTargetFlags(); 720 if (Flags & PPCII::MO_TLSGD_FLAG || Flags & PPCII::MO_TPREL_FLAG || 721 Flags & PPCII::MO_TLSLD_FLAG || Flags & PPCII::MO_TLSGDM_FLAG) 722 return true; 723 724 if (Flags == PPCII::MO_TPREL_LO || Flags == PPCII::MO_TPREL_HA || 725 Flags == PPCII::MO_DTPREL_LO || Flags == PPCII::MO_TLSLD_LO || 726 Flags == PPCII::MO_TLS) 727 return true; 728 729 return false; 730 } 731 732 static PPCAsmPrinter::TOCEntryType 733 getTOCEntryTypeForMO(const MachineOperand &MO) { 734 // Use the target flags to determine if this MO is Thread Local. 735 // If we don't do this it comes out as Global. 736 if (hasTLSFlag(MO)) 737 return PPCAsmPrinter::TOCType_ThreadLocal; 738 739 switch (MO.getType()) { 740 case MachineOperand::MO_GlobalAddress: { 741 const GlobalValue *GlobalV = MO.getGlobal(); 742 GlobalValue::LinkageTypes Linkage = GlobalV->getLinkage(); 743 if (Linkage == GlobalValue::ExternalLinkage || 744 Linkage == GlobalValue::AvailableExternallyLinkage || 745 Linkage == GlobalValue::ExternalWeakLinkage) 746 return PPCAsmPrinter::TOCType_GlobalExternal; 747 748 return PPCAsmPrinter::TOCType_GlobalInternal; 749 } 750 case MachineOperand::MO_ConstantPoolIndex: 751 return PPCAsmPrinter::TOCType_ConstantPool; 752 case MachineOperand::MO_JumpTableIndex: 753 return PPCAsmPrinter::TOCType_JumpTable; 754 case MachineOperand::MO_BlockAddress: 755 return PPCAsmPrinter::TOCType_BlockAddress; 756 default: 757 llvm_unreachable("Unexpected operand type to get TOC type."); 758 } 759 } 760 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 761 /// the current output stream. 762 /// 763 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 764 PPC_MC::verifyInstructionPredicates(MI->getOpcode(), 765 getSubtargetInfo().getFeatureBits()); 766 767 MCInst TmpInst; 768 const bool IsPPC64 = Subtarget->isPPC64(); 769 const bool IsAIX = Subtarget->isAIXABI(); 770 const Module *M = MF->getFunction().getParent(); 771 PICLevel::Level PL = M->getPICLevel(); 772 773 #ifndef NDEBUG 774 // Validate that SPE and FPU are mutually exclusive in codegen 775 if (!MI->isInlineAsm()) { 776 for (const MachineOperand &MO: MI->operands()) { 777 if (MO.isReg()) { 778 Register Reg = MO.getReg(); 779 if (Subtarget->hasSPE()) { 780 if (PPC::F4RCRegClass.contains(Reg) || 781 PPC::F8RCRegClass.contains(Reg) || 782 PPC::VFRCRegClass.contains(Reg) || 783 PPC::VRRCRegClass.contains(Reg) || 784 PPC::VSFRCRegClass.contains(Reg) || 785 PPC::VSSRCRegClass.contains(Reg) 786 ) 787 llvm_unreachable("SPE targets cannot have FPRegs!"); 788 } else { 789 if (PPC::SPERCRegClass.contains(Reg)) 790 llvm_unreachable("SPE register found in FPU-targeted code!"); 791 } 792 } 793 } 794 } 795 #endif 796 797 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 798 ptrdiff_t OriginalOffset) { 799 // Apply an offset to the TOC-based expression such that the adjusted 800 // notional offset from the TOC base (to be encoded into the instruction's D 801 // or DS field) is the signed 16-bit truncation of the original notional 802 // offset from the TOC base. 803 // This is consistent with the treatment used both by XL C/C++ and 804 // by AIX ld -r. 805 ptrdiff_t Adjustment = 806 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 807 return MCBinaryExpr::createAdd( 808 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 809 }; 810 811 auto getTOCEntryLoadingExprForXCOFF = 812 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 813 this](const MCSymbol *MOSymbol, const MCExpr *Expr, 814 MCSymbolRefExpr::VariantKind VK = 815 MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * { 816 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 817 const auto TOCEntryIter = TOC.find({MOSymbol, VK}); 818 assert(TOCEntryIter != TOC.end() && 819 "Could not find the TOC entry for this symbol."); 820 const ptrdiff_t EntryDistanceFromTOCBase = 821 (TOCEntryIter - TOC.begin()) * EntryByteSize; 822 constexpr int16_t PositiveTOCRange = INT16_MAX; 823 824 if (EntryDistanceFromTOCBase > PositiveTOCRange) 825 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 826 827 return Expr; 828 }; 829 auto GetVKForMO = [&](const MachineOperand &MO) { 830 // For TLS local-exec accesses on AIX, we have one TOC entry for the symbol 831 // (with the variable offset), which is differentiated by MO_TPREL_FLAG. 832 if (MO.getTargetFlags() & PPCII::MO_TPREL_FLAG) { 833 // TODO: Update the query and the comment above to add a check for initial 834 // exec when this TLS model is supported on AIX in the future, as both 835 // local-exec and initial-exec can use MO_TPREL_FLAG. 836 assert(MO.isGlobal() && "Only expecting a global MachineOperand here!\n"); 837 TLSModel::Model Model = TM.getTLSModel(MO.getGlobal()); 838 if (Model == TLSModel::LocalExec) 839 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLE; 840 llvm_unreachable("Only expecting local-exec accesses!"); 841 } 842 // For GD TLS access on AIX, we have two TOC entries for the symbol (one for 843 // the variable offset and the other for the region handle). They are 844 // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG. 845 if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG) 846 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM; 847 if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG) 848 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD; 849 return MCSymbolRefExpr::VariantKind::VK_None; 850 }; 851 852 // Lower multi-instruction pseudo operations. 853 switch (MI->getOpcode()) { 854 default: break; 855 case TargetOpcode::DBG_VALUE: 856 llvm_unreachable("Should be handled target independently"); 857 case TargetOpcode::STACKMAP: 858 return LowerSTACKMAP(SM, *MI); 859 case TargetOpcode::PATCHPOINT: 860 return LowerPATCHPOINT(SM, *MI); 861 862 case PPC::MoveGOTtoLR: { 863 // Transform %lr = MoveGOTtoLR 864 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 865 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 866 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 867 // blrl 868 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 869 MCSymbol *GOTSymbol = 870 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 871 const MCExpr *OffsExpr = 872 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 873 MCSymbolRefExpr::VK_PPC_LOCAL, 874 OutContext), 875 MCConstantExpr::create(4, OutContext), 876 OutContext); 877 878 // Emit the 'bl'. 879 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 880 return; 881 } 882 case PPC::MovePCtoLR: 883 case PPC::MovePCtoLR8: { 884 // Transform %lr = MovePCtoLR 885 // Into this, where the label is the PIC base: 886 // bl L1$pb 887 // L1$pb: 888 MCSymbol *PICBase = MF->getPICBaseSymbol(); 889 890 // Emit the 'bl'. 891 EmitToStreamer(*OutStreamer, 892 MCInstBuilder(PPC::BL) 893 // FIXME: We would like an efficient form for this, so we 894 // don't have to do a lot of extra uniquing. 895 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 896 897 // Emit the label. 898 OutStreamer->emitLabel(PICBase); 899 return; 900 } 901 case PPC::UpdateGBR: { 902 // Transform %rd = UpdateGBR(%rt, %ri) 903 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 904 // add %rd, %rt, %ri 905 // or into (if secure plt mode is on): 906 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 907 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 908 // Get the offset from the GOT Base Register to the GOT 909 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 910 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 911 unsigned PICR = TmpInst.getOperand(0).getReg(); 912 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 913 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 914 : ".LTOC"); 915 const MCExpr *PB = 916 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 917 918 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 919 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 920 921 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 922 EmitToStreamer( 923 *OutStreamer, 924 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 925 926 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 927 EmitToStreamer( 928 *OutStreamer, 929 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 930 return; 931 } else { 932 MCSymbol *PICOffset = 933 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 934 TmpInst.setOpcode(PPC::LWZ); 935 const MCExpr *Exp = 936 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 937 const MCExpr *PB = 938 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 939 MCSymbolRefExpr::VK_None, 940 OutContext); 941 const MCOperand TR = TmpInst.getOperand(1); 942 const MCOperand PICR = TmpInst.getOperand(0); 943 944 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 945 TmpInst.getOperand(1) = 946 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 947 TmpInst.getOperand(0) = TR; 948 TmpInst.getOperand(2) = PICR; 949 EmitToStreamer(*OutStreamer, TmpInst); 950 951 TmpInst.setOpcode(PPC::ADD4); 952 TmpInst.getOperand(0) = PICR; 953 TmpInst.getOperand(1) = TR; 954 TmpInst.getOperand(2) = PICR; 955 EmitToStreamer(*OutStreamer, TmpInst); 956 return; 957 } 958 } 959 case PPC::LWZtoc: { 960 // Transform %rN = LWZtoc @op1, %r2 961 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 962 963 // Change the opcode to LWZ. 964 TmpInst.setOpcode(PPC::LWZ); 965 966 const MachineOperand &MO = MI->getOperand(1); 967 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 968 "Invalid operand for LWZtoc."); 969 970 // Map the operand to its corresponding MCSymbol. 971 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 972 973 // Create a reference to the GOT entry for the symbol. The GOT entry will be 974 // synthesized later. 975 if (PL == PICLevel::SmallPIC && !IsAIX) { 976 const MCExpr *Exp = 977 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 978 OutContext); 979 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 980 EmitToStreamer(*OutStreamer, TmpInst); 981 return; 982 } 983 984 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 985 986 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 987 // storage allocated in the TOC which contains the address of 988 // 'MOSymbol'. Said TOC entry will be synthesized later. 989 MCSymbol *TOCEntry = 990 lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK); 991 const MCExpr *Exp = 992 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 993 994 // AIX uses the label directly as the lwz displacement operand for 995 // references into the toc section. The displacement value will be generated 996 // relative to the toc-base. 997 if (IsAIX) { 998 assert( 999 TM.getCodeModel() == CodeModel::Small && 1000 "This pseudo should only be selected for 32-bit small code model."); 1001 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK); 1002 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1003 1004 // Print MO for better readability 1005 if (isVerbose()) 1006 OutStreamer->getCommentOS() << MO << '\n'; 1007 EmitToStreamer(*OutStreamer, TmpInst); 1008 return; 1009 } 1010 1011 // Create an explicit subtract expression between the local symbol and 1012 // '.LTOC' to manifest the toc-relative offset. 1013 const MCExpr *PB = MCSymbolRefExpr::create( 1014 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 1015 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 1016 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1017 EmitToStreamer(*OutStreamer, TmpInst); 1018 return; 1019 } 1020 case PPC::ADDItoc: 1021 case PPC::ADDItoc8: { 1022 assert(IsAIX && TM.getCodeModel() == CodeModel::Small && 1023 "PseudoOp only valid for small code model AIX"); 1024 1025 // Transform %rN = ADDItoc/8 @op1, %r2. 1026 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1027 1028 // Change the opcode to load address. 1029 TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8)); 1030 1031 const MachineOperand &MO = MI->getOperand(1); 1032 assert(MO.isGlobal() && "Invalid operand for ADDItoc[8]."); 1033 1034 // Map the operand to its corresponding MCSymbol. 1035 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1036 1037 const MCExpr *Exp = 1038 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext); 1039 1040 TmpInst.getOperand(1) = TmpInst.getOperand(2); 1041 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1042 EmitToStreamer(*OutStreamer, TmpInst); 1043 return; 1044 } 1045 case PPC::LDtocJTI: 1046 case PPC::LDtocCPT: 1047 case PPC::LDtocBA: 1048 case PPC::LDtoc: { 1049 // Transform %x3 = LDtoc @min1, %x2 1050 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1051 1052 // Change the opcode to LD. 1053 TmpInst.setOpcode(PPC::LD); 1054 1055 const MachineOperand &MO = MI->getOperand(1); 1056 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1057 "Invalid operand!"); 1058 1059 // Map the operand to its corresponding MCSymbol. 1060 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1061 1062 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1063 1064 // Map the machine operand to its corresponding MCSymbol, then map the 1065 // global address operand to be a reference to the TOC entry we will 1066 // synthesize later. 1067 MCSymbol *TOCEntry = 1068 lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK); 1069 1070 MCSymbolRefExpr::VariantKind VKExpr = 1071 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 1072 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext); 1073 TmpInst.getOperand(1) = MCOperand::createExpr( 1074 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp); 1075 1076 // Print MO for better readability 1077 if (isVerbose() && IsAIX) 1078 OutStreamer->getCommentOS() << MO << '\n'; 1079 EmitToStreamer(*OutStreamer, TmpInst); 1080 return; 1081 } 1082 case PPC::ADDIStocHA: { 1083 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 1084 "This pseudo should only be selected for 32-bit large code model on" 1085 " AIX."); 1086 1087 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 1088 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1089 1090 // Change the opcode to ADDIS. 1091 TmpInst.setOpcode(PPC::ADDIS); 1092 1093 const MachineOperand &MO = MI->getOperand(2); 1094 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1095 "Invalid operand for ADDIStocHA."); 1096 1097 // Map the machine operand to its corresponding MCSymbol. 1098 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1099 1100 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1101 1102 // Always use TOC on AIX. Map the global address operand to be a reference 1103 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 1104 // reference the storage allocated in the TOC which contains the address of 1105 // 'MOSymbol'. 1106 MCSymbol *TOCEntry = 1107 lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK); 1108 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 1109 MCSymbolRefExpr::VK_PPC_U, 1110 OutContext); 1111 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1112 EmitToStreamer(*OutStreamer, TmpInst); 1113 return; 1114 } 1115 case PPC::LWZtocL: { 1116 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 1117 "This pseudo should only be selected for 32-bit large code model on" 1118 " AIX."); 1119 1120 // Transform %rd = LWZtocL @sym, %rs. 1121 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1122 1123 // Change the opcode to lwz. 1124 TmpInst.setOpcode(PPC::LWZ); 1125 1126 const MachineOperand &MO = MI->getOperand(1); 1127 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1128 "Invalid operand for LWZtocL."); 1129 1130 // Map the machine operand to its corresponding MCSymbol. 1131 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1132 1133 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1134 1135 // Always use TOC on AIX. Map the global address operand to be a reference 1136 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 1137 // reference the storage allocated in the TOC which contains the address of 1138 // 'MOSymbol'. 1139 MCSymbol *TOCEntry = 1140 lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK); 1141 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 1142 MCSymbolRefExpr::VK_PPC_L, 1143 OutContext); 1144 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1145 EmitToStreamer(*OutStreamer, TmpInst); 1146 return; 1147 } 1148 case PPC::ADDIStocHA8: { 1149 // Transform %xd = ADDIStocHA8 %x2, @sym 1150 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1151 1152 // Change the opcode to ADDIS8. If the global address is the address of 1153 // an external symbol, is a jump table address, is a block address, or is a 1154 // constant pool index with large code model enabled, then generate a TOC 1155 // entry and reference that. Otherwise, reference the symbol directly. 1156 TmpInst.setOpcode(PPC::ADDIS8); 1157 1158 const MachineOperand &MO = MI->getOperand(2); 1159 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1160 "Invalid operand for ADDIStocHA8!"); 1161 1162 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1163 1164 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1165 1166 const bool GlobalToc = 1167 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 1168 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 1169 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 1170 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK); 1171 1172 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 1173 1174 const MCExpr *Exp = 1175 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1176 1177 if (!MO.isJTI() && MO.getOffset()) 1178 Exp = MCBinaryExpr::createAdd(Exp, 1179 MCConstantExpr::create(MO.getOffset(), 1180 OutContext), 1181 OutContext); 1182 1183 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1184 EmitToStreamer(*OutStreamer, TmpInst); 1185 return; 1186 } 1187 case PPC::LDtocL: { 1188 // Transform %xd = LDtocL @sym, %xs 1189 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1190 1191 // Change the opcode to LD. If the global address is the address of 1192 // an external symbol, is a jump table address, is a block address, or is 1193 // a constant pool index with large code model enabled, then generate a 1194 // TOC entry and reference that. Otherwise, reference the symbol directly. 1195 TmpInst.setOpcode(PPC::LD); 1196 1197 const MachineOperand &MO = MI->getOperand(1); 1198 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 1199 MO.isBlockAddress()) && 1200 "Invalid operand for LDtocL!"); 1201 1202 LLVM_DEBUG(assert( 1203 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1204 "LDtocL used on symbol that could be accessed directly is " 1205 "invalid. Must match ADDIStocHA8.")); 1206 1207 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1208 1209 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1210 1211 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 1212 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK); 1213 1214 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 1215 const MCExpr *Exp = 1216 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1217 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1218 EmitToStreamer(*OutStreamer, TmpInst); 1219 return; 1220 } 1221 case PPC::ADDItocL: { 1222 // Transform %xd = ADDItocL %xs, @sym 1223 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1224 1225 // Change the opcode to ADDI8. If the global address is external, then 1226 // generate a TOC entry and reference that. Otherwise, reference the 1227 // symbol directly. 1228 TmpInst.setOpcode(PPC::ADDI8); 1229 1230 const MachineOperand &MO = MI->getOperand(2); 1231 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 1232 1233 LLVM_DEBUG(assert( 1234 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1235 "Interposable definitions must use indirect access.")); 1236 1237 const MCExpr *Exp = 1238 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 1239 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 1240 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1241 EmitToStreamer(*OutStreamer, TmpInst); 1242 return; 1243 } 1244 case PPC::ADDISgotTprelHA: { 1245 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1246 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1247 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1248 const MachineOperand &MO = MI->getOperand(2); 1249 const GlobalValue *GValue = MO.getGlobal(); 1250 MCSymbol *MOSymbol = getSymbol(GValue); 1251 const MCExpr *SymGotTprel = 1252 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1253 OutContext); 1254 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1255 .addReg(MI->getOperand(0).getReg()) 1256 .addReg(MI->getOperand(1).getReg()) 1257 .addExpr(SymGotTprel)); 1258 return; 1259 } 1260 case PPC::LDgotTprelL: 1261 case PPC::LDgotTprelL32: { 1262 // Transform %xd = LDgotTprelL @sym, %xs 1263 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1264 1265 // Change the opcode to LD. 1266 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1267 const MachineOperand &MO = MI->getOperand(1); 1268 const GlobalValue *GValue = MO.getGlobal(); 1269 MCSymbol *MOSymbol = getSymbol(GValue); 1270 const MCExpr *Exp = MCSymbolRefExpr::create( 1271 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1272 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1273 OutContext); 1274 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1275 EmitToStreamer(*OutStreamer, TmpInst); 1276 return; 1277 } 1278 1279 case PPC::PPC32PICGOT: { 1280 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1281 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1282 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1283 1284 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1285 // FIXME: We would like an efficient form for this, so we don't have to do 1286 // a lot of extra uniquing. 1287 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1288 const MCExpr *OffsExpr = 1289 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1290 MCSymbolRefExpr::create(GOTRef, OutContext), 1291 OutContext); 1292 OutStreamer->emitLabel(GOTRef); 1293 OutStreamer->emitValue(OffsExpr, 4); 1294 OutStreamer->emitLabel(NextInstr); 1295 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1296 .addReg(MI->getOperand(0).getReg())); 1297 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1298 .addReg(MI->getOperand(1).getReg()) 1299 .addImm(0) 1300 .addReg(MI->getOperand(0).getReg())); 1301 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1302 .addReg(MI->getOperand(0).getReg()) 1303 .addReg(MI->getOperand(1).getReg()) 1304 .addReg(MI->getOperand(0).getReg())); 1305 return; 1306 } 1307 case PPC::PPC32GOT: { 1308 MCSymbol *GOTSymbol = 1309 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1310 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1311 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1312 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1313 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1314 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1315 .addReg(MI->getOperand(0).getReg()) 1316 .addExpr(SymGotTlsL)); 1317 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1318 .addReg(MI->getOperand(0).getReg()) 1319 .addReg(MI->getOperand(0).getReg()) 1320 .addExpr(SymGotTlsHA)); 1321 return; 1322 } 1323 case PPC::ADDIStlsgdHA: { 1324 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1325 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1326 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1327 const MachineOperand &MO = MI->getOperand(2); 1328 const GlobalValue *GValue = MO.getGlobal(); 1329 MCSymbol *MOSymbol = getSymbol(GValue); 1330 const MCExpr *SymGotTlsGD = 1331 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1332 OutContext); 1333 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1334 .addReg(MI->getOperand(0).getReg()) 1335 .addReg(MI->getOperand(1).getReg()) 1336 .addExpr(SymGotTlsGD)); 1337 return; 1338 } 1339 case PPC::ADDItlsgdL: 1340 // Transform: %xd = ADDItlsgdL %xs, @sym 1341 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1342 case PPC::ADDItlsgdL32: { 1343 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1344 // Into: %rd = ADDI %rs, sym@got@tlsgd 1345 const MachineOperand &MO = MI->getOperand(2); 1346 const GlobalValue *GValue = MO.getGlobal(); 1347 MCSymbol *MOSymbol = getSymbol(GValue); 1348 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1349 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1350 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1351 OutContext); 1352 EmitToStreamer(*OutStreamer, 1353 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1354 .addReg(MI->getOperand(0).getReg()) 1355 .addReg(MI->getOperand(1).getReg()) 1356 .addExpr(SymGotTlsGD)); 1357 return; 1358 } 1359 case PPC::GETtlsADDR: 1360 // Transform: %x3 = GETtlsADDR %x3, @sym 1361 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1362 case PPC::GETtlsADDRPCREL: 1363 case PPC::GETtlsADDR32AIX: 1364 case PPC::GETtlsADDR64AIX: 1365 // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64). 1366 // Into: BLA .__tls_get_addr() 1367 // Unlike on Linux, there is no symbol or relocation needed for this call. 1368 case PPC::GETtlsADDR32: { 1369 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1370 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1371 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1372 return; 1373 } 1374 case PPC::GETtlsTpointer32AIX: { 1375 // Transform: %r3 = GETtlsTpointer32AIX 1376 // Into: BLA .__get_tpointer() 1377 EmitAIXTlsCallHelper(MI); 1378 return; 1379 } 1380 case PPC::ADDIStlsldHA: { 1381 // Transform: %xd = ADDIStlsldHA %x2, @sym 1382 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1383 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1384 const MachineOperand &MO = MI->getOperand(2); 1385 const GlobalValue *GValue = MO.getGlobal(); 1386 MCSymbol *MOSymbol = getSymbol(GValue); 1387 const MCExpr *SymGotTlsLD = 1388 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1389 OutContext); 1390 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1391 .addReg(MI->getOperand(0).getReg()) 1392 .addReg(MI->getOperand(1).getReg()) 1393 .addExpr(SymGotTlsLD)); 1394 return; 1395 } 1396 case PPC::ADDItlsldL: 1397 // Transform: %xd = ADDItlsldL %xs, @sym 1398 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1399 case PPC::ADDItlsldL32: { 1400 // Transform: %rd = ADDItlsldL32 %rs, @sym 1401 // Into: %rd = ADDI %rs, sym@got@tlsld 1402 const MachineOperand &MO = MI->getOperand(2); 1403 const GlobalValue *GValue = MO.getGlobal(); 1404 MCSymbol *MOSymbol = getSymbol(GValue); 1405 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1406 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1407 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1408 OutContext); 1409 EmitToStreamer(*OutStreamer, 1410 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1411 .addReg(MI->getOperand(0).getReg()) 1412 .addReg(MI->getOperand(1).getReg()) 1413 .addExpr(SymGotTlsLD)); 1414 return; 1415 } 1416 case PPC::GETtlsldADDR: 1417 // Transform: %x3 = GETtlsldADDR %x3, @sym 1418 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1419 case PPC::GETtlsldADDRPCREL: 1420 case PPC::GETtlsldADDR32: { 1421 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1422 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1423 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1424 return; 1425 } 1426 case PPC::ADDISdtprelHA: 1427 // Transform: %xd = ADDISdtprelHA %xs, @sym 1428 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1429 case PPC::ADDISdtprelHA32: { 1430 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1431 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1432 const MachineOperand &MO = MI->getOperand(2); 1433 const GlobalValue *GValue = MO.getGlobal(); 1434 MCSymbol *MOSymbol = getSymbol(GValue); 1435 const MCExpr *SymDtprel = 1436 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1437 OutContext); 1438 EmitToStreamer( 1439 *OutStreamer, 1440 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1441 .addReg(MI->getOperand(0).getReg()) 1442 .addReg(MI->getOperand(1).getReg()) 1443 .addExpr(SymDtprel)); 1444 return; 1445 } 1446 case PPC::PADDIdtprel: { 1447 // Transform: %rd = PADDIdtprel %rs, @sym 1448 // Into: %rd = PADDI8 %rs, sym@dtprel 1449 const MachineOperand &MO = MI->getOperand(2); 1450 const GlobalValue *GValue = MO.getGlobal(); 1451 MCSymbol *MOSymbol = getSymbol(GValue); 1452 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1453 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1454 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1455 .addReg(MI->getOperand(0).getReg()) 1456 .addReg(MI->getOperand(1).getReg()) 1457 .addExpr(SymDtprel)); 1458 return; 1459 } 1460 1461 case PPC::ADDIdtprelL: 1462 // Transform: %xd = ADDIdtprelL %xs, @sym 1463 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1464 case PPC::ADDIdtprelL32: { 1465 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1466 // Into: %rd = ADDI %rs, sym@dtprel@l 1467 const MachineOperand &MO = MI->getOperand(2); 1468 const GlobalValue *GValue = MO.getGlobal(); 1469 MCSymbol *MOSymbol = getSymbol(GValue); 1470 const MCExpr *SymDtprel = 1471 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1472 OutContext); 1473 EmitToStreamer(*OutStreamer, 1474 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1475 .addReg(MI->getOperand(0).getReg()) 1476 .addReg(MI->getOperand(1).getReg()) 1477 .addExpr(SymDtprel)); 1478 return; 1479 } 1480 case PPC::MFOCRF: 1481 case PPC::MFOCRF8: 1482 if (!Subtarget->hasMFOCRF()) { 1483 // Transform: %r3 = MFOCRF %cr7 1484 // Into: %r3 = MFCR ;; cr7 1485 unsigned NewOpcode = 1486 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1487 OutStreamer->AddComment(PPCInstPrinter:: 1488 getRegisterName(MI->getOperand(1).getReg())); 1489 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1490 .addReg(MI->getOperand(0).getReg())); 1491 return; 1492 } 1493 break; 1494 case PPC::MTOCRF: 1495 case PPC::MTOCRF8: 1496 if (!Subtarget->hasMFOCRF()) { 1497 // Transform: %cr7 = MTOCRF %r3 1498 // Into: MTCRF mask, %r3 ;; cr7 1499 unsigned NewOpcode = 1500 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1501 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1502 ->getEncodingValue(MI->getOperand(0).getReg()); 1503 OutStreamer->AddComment(PPCInstPrinter:: 1504 getRegisterName(MI->getOperand(0).getReg())); 1505 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1506 .addImm(Mask) 1507 .addReg(MI->getOperand(1).getReg())); 1508 return; 1509 } 1510 break; 1511 case PPC::LD: 1512 case PPC::STD: 1513 case PPC::LWA_32: 1514 case PPC::LWA: { 1515 // Verify alignment is legal, so we don't create relocations 1516 // that can't be supported. 1517 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1518 const MachineOperand &MO = MI->getOperand(OpNum); 1519 if (MO.isGlobal()) { 1520 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1521 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1522 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1523 } 1524 // Now process the instruction normally. 1525 break; 1526 } 1527 case PPC::PseudoEIEIO: { 1528 EmitToStreamer( 1529 *OutStreamer, 1530 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1531 EmitToStreamer( 1532 *OutStreamer, 1533 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1534 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO)); 1535 return; 1536 } 1537 } 1538 1539 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1540 EmitToStreamer(*OutStreamer, TmpInst); 1541 } 1542 1543 void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) { 1544 // Emit float ABI into GNU attribute 1545 Metadata *MD = M.getModuleFlag("float-abi"); 1546 MDString *FloatABI = dyn_cast_or_null<MDString>(MD); 1547 if (!FloatABI) 1548 return; 1549 StringRef flt = FloatABI->getString(); 1550 // TODO: Support emitting soft-fp and hard double/single attributes. 1551 if (flt == "doubledouble") 1552 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP, 1553 Val_GNU_Power_ABI_HardFloat_DP | 1554 Val_GNU_Power_ABI_LDBL_IBM128); 1555 else if (flt == "ieeequad") 1556 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP, 1557 Val_GNU_Power_ABI_HardFloat_DP | 1558 Val_GNU_Power_ABI_LDBL_IEEE128); 1559 else if (flt == "ieeedouble") 1560 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP, 1561 Val_GNU_Power_ABI_HardFloat_DP | 1562 Val_GNU_Power_ABI_LDBL_64); 1563 } 1564 1565 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1566 if (!Subtarget->isPPC64()) 1567 return PPCAsmPrinter::emitInstruction(MI); 1568 1569 switch (MI->getOpcode()) { 1570 default: 1571 return PPCAsmPrinter::emitInstruction(MI); 1572 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1573 // .begin: 1574 // b .end # lis 0, FuncId[16..32] 1575 // nop # li 0, FuncId[0..15] 1576 // std 0, -8(1) 1577 // mflr 0 1578 // bl __xray_FunctionEntry 1579 // mtlr 0 1580 // .end: 1581 // 1582 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1583 // of instructions change. 1584 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1585 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1586 OutStreamer->emitLabel(BeginOfSled); 1587 EmitToStreamer(*OutStreamer, 1588 MCInstBuilder(PPC::B).addExpr( 1589 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1590 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1591 EmitToStreamer( 1592 *OutStreamer, 1593 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1594 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1595 EmitToStreamer(*OutStreamer, 1596 MCInstBuilder(PPC::BL8_NOP) 1597 .addExpr(MCSymbolRefExpr::create( 1598 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1599 OutContext))); 1600 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1601 OutStreamer->emitLabel(EndOfSled); 1602 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1603 break; 1604 } 1605 case TargetOpcode::PATCHABLE_RET: { 1606 unsigned RetOpcode = MI->getOperand(0).getImm(); 1607 MCInst RetInst; 1608 RetInst.setOpcode(RetOpcode); 1609 for (const auto &MO : llvm::drop_begin(MI->operands())) { 1610 MCOperand MCOp; 1611 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1612 RetInst.addOperand(MCOp); 1613 } 1614 1615 bool IsConditional; 1616 if (RetOpcode == PPC::BCCLR) { 1617 IsConditional = true; 1618 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1619 RetOpcode == PPC::TCRETURNai8) { 1620 break; 1621 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1622 IsConditional = false; 1623 } else { 1624 EmitToStreamer(*OutStreamer, RetInst); 1625 break; 1626 } 1627 1628 MCSymbol *FallthroughLabel; 1629 if (IsConditional) { 1630 // Before: 1631 // bgtlr cr0 1632 // 1633 // After: 1634 // ble cr0, .end 1635 // .p2align 3 1636 // .begin: 1637 // blr # lis 0, FuncId[16..32] 1638 // nop # li 0, FuncId[0..15] 1639 // std 0, -8(1) 1640 // mflr 0 1641 // bl __xray_FunctionExit 1642 // mtlr 0 1643 // blr 1644 // .end: 1645 // 1646 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1647 // of instructions change. 1648 FallthroughLabel = OutContext.createTempSymbol(); 1649 EmitToStreamer( 1650 *OutStreamer, 1651 MCInstBuilder(PPC::BCC) 1652 .addImm(PPC::InvertPredicate( 1653 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1654 .addReg(MI->getOperand(2).getReg()) 1655 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1656 RetInst = MCInst(); 1657 RetInst.setOpcode(PPC::BLR8); 1658 } 1659 // .p2align 3 1660 // .begin: 1661 // b(lr)? # lis 0, FuncId[16..32] 1662 // nop # li 0, FuncId[0..15] 1663 // std 0, -8(1) 1664 // mflr 0 1665 // bl __xray_FunctionExit 1666 // mtlr 0 1667 // b(lr)? 1668 // 1669 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1670 // of instructions change. 1671 OutStreamer->emitCodeAlignment(Align(8), &getSubtargetInfo()); 1672 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1673 OutStreamer->emitLabel(BeginOfSled); 1674 EmitToStreamer(*OutStreamer, RetInst); 1675 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1676 EmitToStreamer( 1677 *OutStreamer, 1678 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1679 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1680 EmitToStreamer(*OutStreamer, 1681 MCInstBuilder(PPC::BL8_NOP) 1682 .addExpr(MCSymbolRefExpr::create( 1683 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1684 OutContext))); 1685 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1686 EmitToStreamer(*OutStreamer, RetInst); 1687 if (IsConditional) 1688 OutStreamer->emitLabel(FallthroughLabel); 1689 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1690 break; 1691 } 1692 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1693 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1694 case TargetOpcode::PATCHABLE_TAIL_CALL: 1695 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1696 // normal function exit from a tail exit. 1697 llvm_unreachable("Tail call is handled in the normal case. See comments " 1698 "around this assert."); 1699 } 1700 } 1701 1702 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1703 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1704 PPCTargetStreamer *TS = 1705 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1706 TS->emitAbiVersion(2); 1707 } 1708 1709 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1710 !isPositionIndependent()) 1711 return AsmPrinter::emitStartOfAsmFile(M); 1712 1713 if (M.getPICLevel() == PICLevel::SmallPIC) 1714 return AsmPrinter::emitStartOfAsmFile(M); 1715 1716 OutStreamer->switchSection(OutContext.getELFSection( 1717 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1718 1719 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1720 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1721 1722 OutStreamer->emitLabel(CurrentPos); 1723 1724 // The GOT pointer points to the middle of the GOT, in order to reference the 1725 // entire 64kB range. 0x8000 is the midpoint. 1726 const MCExpr *tocExpr = 1727 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1728 MCConstantExpr::create(0x8000, OutContext), 1729 OutContext); 1730 1731 OutStreamer->emitAssignment(TOCSym, tocExpr); 1732 1733 OutStreamer->switchSection(getObjFileLowering().getTextSection()); 1734 } 1735 1736 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1737 // linux/ppc32 - Normal entry label. 1738 if (!Subtarget->isPPC64() && 1739 (!isPositionIndependent() || 1740 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1741 return AsmPrinter::emitFunctionEntryLabel(); 1742 1743 if (!Subtarget->isPPC64()) { 1744 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1745 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1746 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1747 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1748 OutStreamer->emitLabel(RelocSymbol); 1749 1750 const MCExpr *OffsExpr = 1751 MCBinaryExpr::createSub( 1752 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1753 OutContext), 1754 MCSymbolRefExpr::create(PICBase, OutContext), 1755 OutContext); 1756 OutStreamer->emitValue(OffsExpr, 4); 1757 OutStreamer->emitLabel(CurrentFnSym); 1758 return; 1759 } else 1760 return AsmPrinter::emitFunctionEntryLabel(); 1761 } 1762 1763 // ELFv2 ABI - Normal entry label. 1764 if (Subtarget->isELFv2ABI()) { 1765 // In the Large code model, we allow arbitrary displacements between 1766 // the text section and its associated TOC section. We place the 1767 // full 8-byte offset to the TOC in memory immediately preceding 1768 // the function global entry point. 1769 if (TM.getCodeModel() == CodeModel::Large 1770 && !MF->getRegInfo().use_empty(PPC::X2)) { 1771 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1772 1773 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1774 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1775 const MCExpr *TOCDeltaExpr = 1776 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1777 MCSymbolRefExpr::create(GlobalEPSymbol, 1778 OutContext), 1779 OutContext); 1780 1781 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1782 OutStreamer->emitValue(TOCDeltaExpr, 8); 1783 } 1784 return AsmPrinter::emitFunctionEntryLabel(); 1785 } 1786 1787 // Emit an official procedure descriptor. 1788 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1789 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1790 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1791 OutStreamer->switchSection(Section); 1792 OutStreamer->emitLabel(CurrentFnSym); 1793 OutStreamer->emitValueToAlignment(Align(8)); 1794 MCSymbol *Symbol1 = CurrentFnSymForSize; 1795 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1796 // entry point. 1797 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1798 8 /*size*/); 1799 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1800 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1801 OutStreamer->emitValue( 1802 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1803 8/*size*/); 1804 // Emit a null environment pointer. 1805 OutStreamer->emitIntValue(0, 8 /* size */); 1806 OutStreamer->switchSection(Current.first, Current.second); 1807 } 1808 1809 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1810 const DataLayout &DL = getDataLayout(); 1811 1812 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1813 1814 PPCTargetStreamer *TS = 1815 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1816 1817 emitGNUAttributes(M); 1818 1819 if (!TOC.empty()) { 1820 const char *Name = isPPC64 ? ".toc" : ".got2"; 1821 MCSectionELF *Section = OutContext.getELFSection( 1822 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1823 OutStreamer->switchSection(Section); 1824 if (!isPPC64) 1825 OutStreamer->emitValueToAlignment(Align(4)); 1826 1827 for (const auto &TOCMapPair : TOC) { 1828 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1829 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1830 1831 OutStreamer->emitLabel(TOCEntryLabel); 1832 if (isPPC64) 1833 TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second); 1834 else 1835 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1836 } 1837 } 1838 1839 PPCAsmPrinter::emitEndOfAsmFile(M); 1840 } 1841 1842 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1843 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1844 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1845 // provide two entry points. The ABI guarantees that when calling the 1846 // local entry point, r2 is set up by the caller to contain the TOC base 1847 // for this function, and when calling the global entry point, r12 is set 1848 // up by the caller to hold the address of the global entry point. We 1849 // thus emit a prefix sequence along the following lines: 1850 // 1851 // func: 1852 // .Lfunc_gepNN: 1853 // # global entry point 1854 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1855 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1856 // .Lfunc_lepNN: 1857 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1858 // # local entry point, followed by function body 1859 // 1860 // For the Large code model, we create 1861 // 1862 // .Lfunc_tocNN: 1863 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1864 // func: 1865 // .Lfunc_gepNN: 1866 // # global entry point 1867 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1868 // add r2,r2,r12 1869 // .Lfunc_lepNN: 1870 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1871 // # local entry point, followed by function body 1872 // 1873 // This ensures we have r2 set up correctly while executing the function 1874 // body, no matter which entry point is called. 1875 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1876 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1877 !MF->getRegInfo().use_empty(PPC::R2); 1878 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1879 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1880 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1881 Subtarget->isELFv2ABI() && UsesX2OrR2; 1882 1883 // Only do all that if the function uses R2 as the TOC pointer 1884 // in the first place. We don't need the global entry point if the 1885 // function uses R2 as an allocatable register. 1886 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1887 // Note: The logic here must be synchronized with the code in the 1888 // branch-selection pass which sets the offset of the first block in the 1889 // function. This matters because it affects the alignment. 1890 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1891 OutStreamer->emitLabel(GlobalEntryLabel); 1892 const MCSymbolRefExpr *GlobalEntryLabelExp = 1893 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1894 1895 if (TM.getCodeModel() != CodeModel::Large) { 1896 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1897 const MCExpr *TOCDeltaExpr = 1898 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1899 GlobalEntryLabelExp, OutContext); 1900 1901 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1902 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1903 .addReg(PPC::X2) 1904 .addReg(PPC::X12) 1905 .addExpr(TOCDeltaHi)); 1906 1907 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1908 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1909 .addReg(PPC::X2) 1910 .addReg(PPC::X2) 1911 .addExpr(TOCDeltaLo)); 1912 } else { 1913 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1914 const MCExpr *TOCOffsetDeltaExpr = 1915 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1916 GlobalEntryLabelExp, OutContext); 1917 1918 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1919 .addReg(PPC::X2) 1920 .addExpr(TOCOffsetDeltaExpr) 1921 .addReg(PPC::X12)); 1922 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1923 .addReg(PPC::X2) 1924 .addReg(PPC::X2) 1925 .addReg(PPC::X12)); 1926 } 1927 1928 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1929 OutStreamer->emitLabel(LocalEntryLabel); 1930 const MCSymbolRefExpr *LocalEntryLabelExp = 1931 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1932 const MCExpr *LocalOffsetExp = 1933 MCBinaryExpr::createSub(LocalEntryLabelExp, 1934 GlobalEntryLabelExp, OutContext); 1935 1936 PPCTargetStreamer *TS = 1937 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1938 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1939 } else if (Subtarget->isUsingPCRelativeCalls()) { 1940 // When generating the entry point for a function we have a few scenarios 1941 // based on whether or not that function uses R2 and whether or not that 1942 // function makes calls (or is a leaf function). 1943 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1944 // and preserves it). In this case st_other=0 and both 1945 // the local and global entry points for the function are the same. 1946 // No special entry point code is required. 1947 // 2) A function uses the TOC pointer R2. This function may or may not have 1948 // calls. In this case st_other=[2,6] and the global and local entry 1949 // points are different. Code to correctly setup the TOC pointer in R2 1950 // is put between the global and local entry points. This case is 1951 // covered by the if statatement above. 1952 // 3) A function does not use the TOC pointer R2 but does have calls. 1953 // In this case st_other=1 since we do not know whether or not any 1954 // of the callees clobber R2. This case is dealt with in this else if 1955 // block. Tail calls are considered calls and the st_other should also 1956 // be set to 1 in that case as well. 1957 // 4) The function does not use the TOC pointer but R2 is used inside 1958 // the function. In this case st_other=1 once again. 1959 // 5) This function uses inline asm. We mark R2 as reserved if the function 1960 // has inline asm as we have to assume that it may be used. 1961 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1962 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1963 PPCTargetStreamer *TS = 1964 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1965 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1966 MCConstantExpr::create(1, OutContext)); 1967 } 1968 } 1969 } 1970 1971 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1972 /// directive. 1973 /// 1974 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1975 // Only the 64-bit target requires a traceback table. For now, 1976 // we only emit the word of zeroes that GDB requires to find 1977 // the end of the function, and zeroes for the eight-byte 1978 // mandatory fields. 1979 // FIXME: We should fill in the eight-byte mandatory fields as described in 1980 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1981 // currently make use of these fields). 1982 if (Subtarget->isPPC64()) { 1983 OutStreamer->emitIntValue(0, 4/*size*/); 1984 OutStreamer->emitIntValue(0, 8/*size*/); 1985 } 1986 } 1987 1988 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1989 MCSymbol *GVSym) const { 1990 1991 assert(MAI->hasVisibilityOnlyWithLinkage() && 1992 "AIX's linkage directives take a visibility setting."); 1993 1994 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1995 switch (GV->getLinkage()) { 1996 case GlobalValue::ExternalLinkage: 1997 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1998 break; 1999 case GlobalValue::LinkOnceAnyLinkage: 2000 case GlobalValue::LinkOnceODRLinkage: 2001 case GlobalValue::WeakAnyLinkage: 2002 case GlobalValue::WeakODRLinkage: 2003 case GlobalValue::ExternalWeakLinkage: 2004 LinkageAttr = MCSA_Weak; 2005 break; 2006 case GlobalValue::AvailableExternallyLinkage: 2007 LinkageAttr = MCSA_Extern; 2008 break; 2009 case GlobalValue::PrivateLinkage: 2010 return; 2011 case GlobalValue::InternalLinkage: 2012 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 2013 "InternalLinkage should not have other visibility setting."); 2014 LinkageAttr = MCSA_LGlobal; 2015 break; 2016 case GlobalValue::AppendingLinkage: 2017 llvm_unreachable("Should never emit this"); 2018 case GlobalValue::CommonLinkage: 2019 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 2020 } 2021 2022 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 2023 2024 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 2025 if (!TM.getIgnoreXCOFFVisibility()) { 2026 if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility()) 2027 report_fatal_error( 2028 "Cannot not be both dllexport and non-default visibility"); 2029 switch (GV->getVisibility()) { 2030 2031 // TODO: "internal" Visibility needs to go here. 2032 case GlobalValue::DefaultVisibility: 2033 if (GV->hasDLLExportStorageClass()) 2034 VisibilityAttr = MAI->getExportedVisibilityAttr(); 2035 break; 2036 case GlobalValue::HiddenVisibility: 2037 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 2038 break; 2039 case GlobalValue::ProtectedVisibility: 2040 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 2041 break; 2042 } 2043 } 2044 2045 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 2046 VisibilityAttr); 2047 } 2048 2049 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2050 // Setup CurrentFnDescSym and its containing csect. 2051 MCSectionXCOFF *FnDescSec = 2052 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 2053 &MF.getFunction(), TM)); 2054 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 2055 2056 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 2057 2058 return AsmPrinter::SetupMachineFunction(MF); 2059 } 2060 2061 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() { 2062 // Calculate the number of VRs be saved. 2063 // Vector registers 20 through 31 are marked as reserved and cannot be used 2064 // in the default ABI. 2065 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 2066 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 2067 TM.getAIXExtendedAltivecABI()) { 2068 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2069 for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg) 2070 if (MRI.isPhysRegModified(Reg)) 2071 // Number of VRs saved. 2072 return PPC::V31 - Reg + 1; 2073 } 2074 return 0; 2075 } 2076 2077 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 2078 2079 if (!TM.getXCOFFTracebackTable()) 2080 return; 2081 2082 emitTracebackTable(); 2083 2084 // If ShouldEmitEHBlock returns true, then the eh info table 2085 // will be emitted via `AIXException::endFunction`. Otherwise, we 2086 // need to emit a dumy eh info table when VRs are saved. We could not 2087 // consolidate these two places into one because there is no easy way 2088 // to access register information in `AIXException` class. 2089 if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) && 2090 (getNumberOfVRSaved() > 0)) { 2091 // Emit dummy EH Info Table. 2092 OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection()); 2093 MCSymbol *EHInfoLabel = 2094 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2095 OutStreamer->emitLabel(EHInfoLabel); 2096 2097 // Version number. 2098 OutStreamer->emitInt32(0); 2099 2100 const DataLayout &DL = MMI->getModule()->getDataLayout(); 2101 const unsigned PointerSize = DL.getPointerSize(); 2102 // Add necessary paddings in 64 bit mode. 2103 OutStreamer->emitValueToAlignment(Align(PointerSize)); 2104 2105 OutStreamer->emitIntValue(0, PointerSize); 2106 OutStreamer->emitIntValue(0, PointerSize); 2107 OutStreamer->switchSection(MF->getSection()); 2108 } 2109 } 2110 2111 void PPCAIXAsmPrinter::emitTracebackTable() { 2112 2113 // Create a symbol for the end of function. 2114 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 2115 OutStreamer->emitLabel(FuncEnd); 2116 2117 OutStreamer->AddComment("Traceback table begin"); 2118 // Begin with a fullword of zero. 2119 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 2120 2121 SmallString<128> CommentString; 2122 raw_svector_ostream CommentOS(CommentString); 2123 2124 auto EmitComment = [&]() { 2125 OutStreamer->AddComment(CommentOS.str()); 2126 CommentString.clear(); 2127 }; 2128 2129 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 2130 EmitComment(); 2131 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 2132 }; 2133 2134 unsigned int Version = 0; 2135 CommentOS << "Version = " << Version; 2136 EmitCommentAndValue(Version, 1); 2137 2138 // There is a lack of information in the IR to assist with determining the 2139 // source language. AIX exception handling mechanism would only search for 2140 // personality routine and LSDA area when such language supports exception 2141 // handling. So to be conservatively correct and allow runtime to do its job, 2142 // we need to set it to C++ for now. 2143 TracebackTable::LanguageID LanguageIdentifier = 2144 TracebackTable::CPlusPlus; // C++ 2145 2146 CommentOS << "Language = " 2147 << getNameForTracebackTableLanguageId(LanguageIdentifier); 2148 EmitCommentAndValue(LanguageIdentifier, 1); 2149 2150 // This is only populated for the third and fourth bytes. 2151 uint32_t FirstHalfOfMandatoryField = 0; 2152 2153 // Emit the 3rd byte of the mandatory field. 2154 2155 // We always set traceback offset bit to true. 2156 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 2157 2158 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2159 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2160 2161 // Check the function uses floating-point processor instructions or not 2162 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 2163 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 2164 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 2165 break; 2166 } 2167 } 2168 2169 #define GENBOOLCOMMENT(Prefix, V, Field) \ 2170 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 2171 << #Field 2172 2173 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 2174 CommentOS << (PrefixAndName) << " = " \ 2175 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 2176 (TracebackTable::Field##Shift)) 2177 2178 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 2179 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 2180 EmitComment(); 2181 2182 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 2183 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 2184 EmitComment(); 2185 2186 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 2187 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 2188 EmitComment(); 2189 2190 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 2191 EmitComment(); 2192 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 2193 IsFloatingPointOperationLogOrAbortEnabled); 2194 EmitComment(); 2195 2196 OutStreamer->emitIntValueInHexWithPadding( 2197 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2198 2199 // Set the 4th byte of the mandatory field. 2200 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 2201 2202 const PPCRegisterInfo *RegInfo = 2203 static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo()); 2204 Register FrameReg = RegInfo->getFrameRegister(*MF); 2205 if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31)) 2206 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 2207 2208 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 2209 if (!MustSaveCRs.empty()) 2210 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 2211 2212 if (FI->mustSaveLR()) 2213 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 2214 2215 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 2216 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 2217 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 2218 EmitComment(); 2219 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 2220 OnConditionDirective); 2221 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 2222 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 2223 EmitComment(); 2224 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 2225 1); 2226 2227 // Set the 5th byte of mandatory field. 2228 uint32_t SecondHalfOfMandatoryField = 0; 2229 2230 SecondHalfOfMandatoryField |= MF->getFrameInfo().getStackSize() 2231 ? TracebackTable::IsBackChainStoredMask 2232 : 0; 2233 2234 uint32_t FPRSaved = 0; 2235 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 2236 if (MRI.isPhysRegModified(Reg)) { 2237 FPRSaved = PPC::F31 - Reg + 1; 2238 break; 2239 } 2240 } 2241 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 2242 TracebackTable::FPRSavedMask; 2243 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 2244 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 2245 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 2246 EmitComment(); 2247 OutStreamer->emitIntValueInHexWithPadding( 2248 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 2249 2250 // Set the 6th byte of mandatory field. 2251 2252 // Check whether has Vector Instruction,We only treat instructions uses vector 2253 // register as vector instructions. 2254 bool HasVectorInst = false; 2255 for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg) 2256 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 2257 // Has VMX instruction. 2258 HasVectorInst = true; 2259 break; 2260 } 2261 2262 if (FI->hasVectorParms() || HasVectorInst) 2263 SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask; 2264 2265 uint16_t NumOfVRSaved = getNumberOfVRSaved(); 2266 bool ShouldEmitEHBlock = 2267 TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0; 2268 2269 if (ShouldEmitEHBlock) 2270 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 2271 2272 uint32_t GPRSaved = 0; 2273 2274 // X13 is reserved under 64-bit environment. 2275 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 2276 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 2277 2278 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 2279 if (MRI.isPhysRegModified(Reg)) { 2280 GPRSaved = GPREnd - Reg + 1; 2281 break; 2282 } 2283 } 2284 2285 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 2286 TracebackTable::GPRSavedMask; 2287 2288 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable); 2289 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo); 2290 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 2291 EmitComment(); 2292 OutStreamer->emitIntValueInHexWithPadding( 2293 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 2294 2295 // Set the 7th byte of mandatory field. 2296 uint32_t NumberOfFixedParms = FI->getFixedParmsNum(); 2297 SecondHalfOfMandatoryField |= 2298 (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) & 2299 TracebackTable::NumberOfFixedParmsMask; 2300 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 2301 NumberOfFixedParms); 2302 EmitComment(); 2303 OutStreamer->emitIntValueInHexWithPadding( 2304 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2305 2306 // Set the 8th byte of mandatory field. 2307 2308 // Always set parameter on stack. 2309 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 2310 2311 uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum(); 2312 SecondHalfOfMandatoryField |= 2313 (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) & 2314 TracebackTable::NumberOfFloatingPointParmsMask; 2315 2316 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 2317 NumberOfFloatingPointParms); 2318 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 2319 EmitComment(); 2320 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 2321 1); 2322 2323 // Generate the optional fields of traceback table. 2324 2325 // Parameter type. 2326 if (NumberOfFixedParms || NumberOfFPParms) { 2327 uint32_t ParmsTypeValue = FI->getParmsType(); 2328 2329 Expected<SmallString<32>> ParmsType = 2330 FI->hasVectorParms() 2331 ? XCOFF::parseParmsTypeWithVecInfo( 2332 ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms, 2333 FI->getVectorParmsNum()) 2334 : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms, 2335 NumberOfFPParms); 2336 2337 assert(ParmsType && toString(ParmsType.takeError()).c_str()); 2338 if (ParmsType) { 2339 CommentOS << "Parameter type = " << ParmsType.get(); 2340 EmitComment(); 2341 } 2342 OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue, 2343 sizeof(ParmsTypeValue)); 2344 } 2345 // Traceback table offset. 2346 OutStreamer->AddComment("Function size"); 2347 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 2348 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 2349 &(MF->getFunction()), TM); 2350 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 2351 } 2352 2353 // Since we unset the Int_Handler. 2354 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2355 report_fatal_error("Hand_Mask not implement yet"); 2356 2357 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2358 report_fatal_error("Ctl_Info not implement yet"); 2359 2360 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2361 StringRef Name = MF->getName().substr(0, INT16_MAX); 2362 int16_t NameLength = Name.size(); 2363 CommentOS << "Function name len = " 2364 << static_cast<unsigned int>(NameLength); 2365 EmitCommentAndValue(NameLength, 2); 2366 OutStreamer->AddComment("Function Name"); 2367 OutStreamer->emitBytes(Name); 2368 } 2369 2370 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2371 uint8_t AllocReg = XCOFF::AllocRegNo; 2372 OutStreamer->AddComment("AllocaUsed"); 2373 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2374 } 2375 2376 if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) { 2377 uint16_t VRData = 0; 2378 if (NumOfVRSaved) { 2379 // Number of VRs saved. 2380 VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) & 2381 TracebackTable::NumberOfVRSavedMask; 2382 // This bit is supposed to set only when the special register 2383 // VRSAVE is saved on stack. 2384 // However, IBM XL compiler sets the bit when any vector registers 2385 // are saved on the stack. We will follow XL's behavior on AIX 2386 // so that we don't get surprise behavior change for C code. 2387 VRData |= TracebackTable::IsVRSavedOnStackMask; 2388 } 2389 2390 // Set has_varargs. 2391 if (FI->getVarArgsFrameIndex()) 2392 VRData |= TracebackTable::HasVarArgsMask; 2393 2394 // Vector parameters number. 2395 unsigned VectorParmsNum = FI->getVectorParmsNum(); 2396 VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) & 2397 TracebackTable::NumberOfVectorParmsMask; 2398 2399 if (HasVectorInst) 2400 VRData |= TracebackTable::HasVMXInstructionMask; 2401 2402 GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved); 2403 GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack); 2404 GENBOOLCOMMENT(", ", VRData, HasVarArgs); 2405 EmitComment(); 2406 OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1); 2407 2408 GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms); 2409 GENBOOLCOMMENT(", ", VRData, HasVMXInstruction); 2410 EmitComment(); 2411 OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1); 2412 2413 uint32_t VecParmTypeValue = FI->getVecExtParmsType(); 2414 2415 Expected<SmallString<32>> VecParmsType = 2416 XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum); 2417 assert(VecParmsType && toString(VecParmsType.takeError()).c_str()); 2418 if (VecParmsType) { 2419 CommentOS << "Vector Parameter type = " << VecParmsType.get(); 2420 EmitComment(); 2421 } 2422 OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue, 2423 sizeof(VecParmTypeValue)); 2424 // Padding 2 bytes. 2425 CommentOS << "Padding"; 2426 EmitCommentAndValue(0, 2); 2427 } 2428 2429 uint8_t ExtensionTableFlag = 0; 2430 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2431 if (ShouldEmitEHBlock) 2432 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2433 if (EnableSSPCanaryBitInTB && 2434 TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF)) 2435 ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY; 2436 2437 CommentOS << "ExtensionTableFlag = " 2438 << getExtendedTBTableFlagString(ExtensionTableFlag); 2439 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2440 } 2441 2442 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2443 auto &Ctx = OutStreamer->getContext(); 2444 MCSymbol *EHInfoSym = 2445 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2446 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym, TOCType_EHBlock); 2447 const MCSymbol *TOCBaseSym = 2448 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2449 ->getQualNameSymbol(); 2450 const MCExpr *Exp = 2451 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2452 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2453 2454 const DataLayout &DL = getDataLayout(); 2455 OutStreamer->emitValueToAlignment(Align(4)); 2456 OutStreamer->AddComment("EHInfo Table"); 2457 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2458 } 2459 #undef GENBOOLCOMMENT 2460 #undef GENVALUECOMMENT 2461 } 2462 2463 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2464 return GV->hasAppendingLinkage() && 2465 StringSwitch<bool>(GV->getName()) 2466 // TODO: Linker could still eliminate the GV if we just skip 2467 // handling llvm.used array. Skipping them for now until we or the 2468 // AIX OS team come up with a good solution. 2469 .Case("llvm.used", true) 2470 // It's correct to just skip llvm.compiler.used array here. 2471 .Case("llvm.compiler.used", true) 2472 .Default(false); 2473 } 2474 2475 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2476 return StringSwitch<bool>(GV->getName()) 2477 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2478 .Default(false); 2479 } 2480 2481 uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) { 2482 if (auto *GA = dyn_cast<GlobalAlias>(C)) 2483 return getAliasOffset(GA->getAliasee()); 2484 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2485 const MCExpr *LowC = lowerConstant(CE); 2486 const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC); 2487 if (!CBE) 2488 return 0; 2489 if (CBE->getOpcode() != MCBinaryExpr::Add) 2490 report_fatal_error("Only adding an offset is supported now."); 2491 auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS()); 2492 if (!RHS) 2493 report_fatal_error("Unable to get the offset of alias."); 2494 return RHS->getValue(); 2495 } 2496 return 0; 2497 } 2498 2499 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2500 // Special LLVM global arrays have been handled at the initialization. 2501 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2502 return; 2503 2504 // If the Global Variable has the toc-data attribute, it needs to be emitted 2505 // when we emit the .toc section. 2506 if (GV->hasAttribute("toc-data")) { 2507 TOCDataGlobalVars.push_back(GV); 2508 return; 2509 } 2510 2511 emitGlobalVariableHelper(GV); 2512 } 2513 2514 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) { 2515 assert(!GV->getName().startswith("llvm.") && 2516 "Unhandled intrinsic global variable."); 2517 2518 if (GV->hasComdat()) 2519 report_fatal_error("COMDAT not yet supported by AIX."); 2520 2521 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2522 2523 if (GV->isDeclarationForLinker()) { 2524 emitLinkage(GV, GVSym); 2525 return; 2526 } 2527 2528 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2529 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() && 2530 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS. 2531 report_fatal_error("Encountered a global variable kind that is " 2532 "not supported yet."); 2533 2534 // Print GV in verbose mode 2535 if (isVerbose()) { 2536 if (GV->hasInitializer()) { 2537 GV->printAsOperand(OutStreamer->getCommentOS(), 2538 /*PrintType=*/false, GV->getParent()); 2539 OutStreamer->getCommentOS() << '\n'; 2540 } 2541 } 2542 2543 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2544 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2545 2546 // Switch to the containing csect. 2547 OutStreamer->switchSection(Csect); 2548 2549 const DataLayout &DL = GV->getParent()->getDataLayout(); 2550 2551 // Handle common and zero-initialized local symbols. 2552 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() || 2553 GVKind.isThreadBSSLocal()) { 2554 Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV)); 2555 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 2556 GVSym->setStorageClass( 2557 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2558 2559 if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) 2560 OutStreamer->emitXCOFFLocalCommonSymbol( 2561 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2562 GVSym, Alignment); 2563 else 2564 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 2565 return; 2566 } 2567 2568 MCSymbol *EmittedInitSym = GVSym; 2569 2570 // Emit linkage for the global variable and its aliases. 2571 emitLinkage(GV, EmittedInitSym); 2572 for (const GlobalAlias *GA : GOAliasMap[GV]) 2573 emitLinkage(GA, getSymbol(GA)); 2574 2575 emitAlignment(getGVAlignment(GV, DL), GV); 2576 2577 // When -fdata-sections is enabled, every GlobalVariable will 2578 // be put into its own csect; therefore, label is not necessary here. 2579 if (!TM.getDataSections() || GV->hasSection()) 2580 OutStreamer->emitLabel(EmittedInitSym); 2581 2582 // No alias to emit. 2583 if (!GOAliasMap[GV].size()) { 2584 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2585 return; 2586 } 2587 2588 // Aliases with the same offset should be aligned. Record the list of aliases 2589 // associated with the offset. 2590 AliasMapTy AliasList; 2591 for (const GlobalAlias *GA : GOAliasMap[GV]) 2592 AliasList[getAliasOffset(GA->getAliasee())].push_back(GA); 2593 2594 // Emit alias label and element value for global variable. 2595 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer(), 2596 &AliasList); 2597 } 2598 2599 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2600 const DataLayout &DL = getDataLayout(); 2601 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2602 2603 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2604 // Emit function descriptor. 2605 OutStreamer->switchSection( 2606 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2607 2608 // Emit aliasing label for function descriptor csect. 2609 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()]) 2610 OutStreamer->emitLabel(getSymbol(Alias)); 2611 2612 // Emit function entry point address. 2613 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2614 PointerSize); 2615 // Emit TOC base address. 2616 const MCSymbol *TOCBaseSym = 2617 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2618 ->getQualNameSymbol(); 2619 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2620 PointerSize); 2621 // Emit a null environment pointer. 2622 OutStreamer->emitIntValue(0, PointerSize); 2623 2624 OutStreamer->switchSection(Current.first, Current.second); 2625 } 2626 2627 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2628 // It's not necessary to emit the label when we have individual 2629 // function in its own csect. 2630 if (!TM.getFunctionSections()) 2631 PPCAsmPrinter::emitFunctionEntryLabel(); 2632 2633 // Emit aliasing label for function entry point label. 2634 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()]) 2635 OutStreamer->emitLabel( 2636 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2637 } 2638 2639 void PPCAIXAsmPrinter::emitPGORefs(Module &M) { 2640 if (!OutContext.hasXCOFFSection( 2641 "__llvm_prf_cnts", 2642 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) 2643 return; 2644 2645 // When inside a csect `foo`, a .ref directive referring to a csect `bar` 2646 // translates into a relocation entry from `foo` to` bar`. The referring 2647 // csect, `foo`, is identified by its address. If multiple csects have the 2648 // same address (because one or more of them are zero-length), the referring 2649 // csect cannot be determined. Hence, we don't generate the .ref directives 2650 // if `__llvm_prf_cnts` is an empty section. 2651 bool HasNonZeroLengthPrfCntsSection = false; 2652 const DataLayout &DL = M.getDataLayout(); 2653 for (GlobalVariable &GV : M.globals()) 2654 if (GV.hasSection() && GV.getSection().equals("__llvm_prf_cnts") && 2655 DL.getTypeAllocSize(GV.getValueType()) > 0) { 2656 HasNonZeroLengthPrfCntsSection = true; 2657 break; 2658 } 2659 2660 if (HasNonZeroLengthPrfCntsSection) { 2661 MCSection *CntsSection = OutContext.getXCOFFSection( 2662 "__llvm_prf_cnts", SectionKind::getData(), 2663 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD), 2664 /*MultiSymbolsAllowed*/ true); 2665 2666 OutStreamer->switchSection(CntsSection); 2667 if (OutContext.hasXCOFFSection( 2668 "__llvm_prf_data", 2669 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) { 2670 MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_data[RW]"); 2671 OutStreamer->emitXCOFFRefDirective(S); 2672 } 2673 if (OutContext.hasXCOFFSection( 2674 "__llvm_prf_names", 2675 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD))) { 2676 MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_names[RO]"); 2677 OutStreamer->emitXCOFFRefDirective(S); 2678 } 2679 if (OutContext.hasXCOFFSection( 2680 "__llvm_prf_vnds", 2681 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) { 2682 MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_vnds[RW]"); 2683 OutStreamer->emitXCOFFRefDirective(S); 2684 } 2685 } 2686 } 2687 2688 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2689 // If there are no functions and there are no toc-data definitions in this 2690 // module, we will never need to reference the TOC base. 2691 if (M.empty() && TOCDataGlobalVars.empty()) 2692 return; 2693 2694 emitPGORefs(M); 2695 2696 // Switch to section to emit TOC base. 2697 OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection()); 2698 2699 PPCTargetStreamer *TS = 2700 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2701 2702 for (auto &I : TOC) { 2703 MCSectionXCOFF *TCEntry; 2704 // Setup the csect for the current TC entry. If the variant kind is 2705 // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a 2706 // new symbol to prefix the name with a dot. 2707 if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) { 2708 SmallString<128> Name; 2709 StringRef Prefix = "."; 2710 Name += Prefix; 2711 Name += cast<MCSymbolXCOFF>(I.first.first)->getSymbolTableName(); 2712 MCSymbol *S = OutContext.getOrCreateSymbol(Name); 2713 TCEntry = cast<MCSectionXCOFF>( 2714 getObjFileLowering().getSectionForTOCEntry(S, TM)); 2715 } else { 2716 TCEntry = cast<MCSectionXCOFF>( 2717 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2718 } 2719 OutStreamer->switchSection(TCEntry); 2720 2721 OutStreamer->emitLabel(I.second); 2722 TS->emitTCEntry(*I.first.first, I.first.second); 2723 } 2724 2725 for (const auto *GV : TOCDataGlobalVars) 2726 emitGlobalVariableHelper(GV); 2727 } 2728 2729 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2730 const bool Result = PPCAsmPrinter::doInitialization(M); 2731 2732 auto setCsectAlignment = [this](const GlobalObject *GO) { 2733 // Declarations have 0 alignment which is set by default. 2734 if (GO->isDeclarationForLinker()) 2735 return; 2736 2737 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2738 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2739 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2740 2741 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2742 Csect->ensureMinAlignment(GOAlign); 2743 }; 2744 2745 // We need to know, up front, the alignment of csects for the assembly path, 2746 // because once a .csect directive gets emitted, we could not change the 2747 // alignment value on it. 2748 for (const auto &G : M.globals()) { 2749 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2750 continue; 2751 2752 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2753 // Generate a format indicator and a unique module id to be a part of 2754 // the sinit and sterm function names. 2755 if (FormatIndicatorAndUniqueModId.empty()) { 2756 std::string UniqueModuleId = getUniqueModuleId(&M); 2757 if (UniqueModuleId != "") 2758 // TODO: Use source file full path to generate the unique module id 2759 // and add a format indicator as a part of function name in case we 2760 // will support more than one format. 2761 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2762 else 2763 // Use the Pid and current time as the unique module id when we cannot 2764 // generate one based on a module's strong external symbols. 2765 // FIXME: Adjust the comment accordingly after we use source file full 2766 // path instead. 2767 FormatIndicatorAndUniqueModId = 2768 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2769 "_" + llvm::itostr(time(nullptr)); 2770 } 2771 2772 emitSpecialLLVMGlobal(&G); 2773 continue; 2774 } 2775 2776 setCsectAlignment(&G); 2777 } 2778 2779 for (const auto &F : M) 2780 setCsectAlignment(&F); 2781 2782 // Construct an aliasing list for each GlobalObject. 2783 for (const auto &Alias : M.aliases()) { 2784 const GlobalObject *Base = Alias.getAliaseeObject(); 2785 if (!Base) 2786 report_fatal_error( 2787 "alias without a base object is not yet supported on AIX"); 2788 GOAliasMap[Base].push_back(&Alias); 2789 } 2790 2791 return Result; 2792 } 2793 2794 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2795 switch (MI->getOpcode()) { 2796 default: 2797 break; 2798 case PPC::TW: 2799 case PPC::TWI: 2800 case PPC::TD: 2801 case PPC::TDI: { 2802 if (MI->getNumOperands() < 5) 2803 break; 2804 const MachineOperand &LangMO = MI->getOperand(3); 2805 const MachineOperand &ReasonMO = MI->getOperand(4); 2806 if (!LangMO.isImm() || !ReasonMO.isImm()) 2807 break; 2808 MCSymbol *TempSym = OutContext.createNamedTempSymbol(); 2809 OutStreamer->emitLabel(TempSym); 2810 OutStreamer->emitXCOFFExceptDirective(CurrentFnSym, TempSym, 2811 LangMO.getImm(), ReasonMO.getImm(), 2812 Subtarget->isPPC64() ? MI->getMF()->getInstructionCount() * 8 : 2813 MI->getMF()->getInstructionCount() * 4, 2814 MMI->hasDebugInfo()); 2815 break; 2816 } 2817 case PPC::GETtlsTpointer32AIX: 2818 case PPC::GETtlsADDR64AIX: 2819 case PPC::GETtlsADDR32AIX: { 2820 // A reference to .__tls_get_addr/.__get_tpointer is unknown to the 2821 // assembler so we need to emit an external symbol reference. 2822 MCSymbol *TlsGetAddr = 2823 createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode()); 2824 ExtSymSDNodeSymbols.insert(TlsGetAddr); 2825 break; 2826 } 2827 case PPC::BL8: 2828 case PPC::BL: 2829 case PPC::BL8_NOP: 2830 case PPC::BL_NOP: { 2831 const MachineOperand &MO = MI->getOperand(0); 2832 if (MO.isSymbol()) { 2833 MCSymbolXCOFF *S = 2834 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2835 ExtSymSDNodeSymbols.insert(S); 2836 } 2837 } break; 2838 case PPC::BL_TLS: 2839 case PPC::BL8_TLS: 2840 case PPC::BL8_TLS_: 2841 case PPC::BL8_NOP_TLS: 2842 report_fatal_error("TLS call not yet implemented"); 2843 case PPC::TAILB: 2844 case PPC::TAILB8: 2845 case PPC::TAILBA: 2846 case PPC::TAILBA8: 2847 case PPC::TAILBCTR: 2848 case PPC::TAILBCTR8: 2849 if (MI->getOperand(0).isSymbol()) 2850 report_fatal_error("Tail call for extern symbol not yet supported."); 2851 break; 2852 case PPC::DST: 2853 case PPC::DST64: 2854 case PPC::DSTT: 2855 case PPC::DSTT64: 2856 case PPC::DSTST: 2857 case PPC::DSTST64: 2858 case PPC::DSTSTT: 2859 case PPC::DSTSTT64: 2860 EmitToStreamer( 2861 *OutStreamer, 2862 MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0)); 2863 return; 2864 } 2865 return PPCAsmPrinter::emitInstruction(MI); 2866 } 2867 2868 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2869 // Do streamer related finalization for DWARF. 2870 if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo()) 2871 OutStreamer->doFinalizationAtSectionEnd( 2872 OutStreamer->getContext().getObjectFileInfo()->getTextSection()); 2873 2874 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2875 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2876 return PPCAsmPrinter::doFinalization(M); 2877 } 2878 2879 static unsigned mapToSinitPriority(int P) { 2880 if (P < 0 || P > 65535) 2881 report_fatal_error("invalid init priority"); 2882 2883 if (P <= 20) 2884 return P; 2885 2886 if (P < 81) 2887 return 20 + (P - 20) * 16; 2888 2889 if (P <= 1124) 2890 return 1004 + (P - 81); 2891 2892 if (P < 64512) 2893 return 2047 + (P - 1124) * 33878; 2894 2895 return 2147482625u + (P - 64512); 2896 } 2897 2898 static std::string convertToSinitPriority(int Priority) { 2899 // This helper function converts clang init priority to values used in sinit 2900 // and sterm functions. 2901 // 2902 // The conversion strategies are: 2903 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2904 // reserved priority range [0, 1023] by 2905 // - directly mapping the first 21 and the last 20 elements of the ranges 2906 // - linear interpolating the intermediate values with a step size of 16. 2907 // 2908 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2909 // sinit/sterm priority range [1024, 2147483648] by: 2910 // - directly mapping the first and the last 1024 elements of the ranges 2911 // - linear interpolating the intermediate values with a step size of 33878. 2912 unsigned int P = mapToSinitPriority(Priority); 2913 2914 std::string PrioritySuffix; 2915 llvm::raw_string_ostream os(PrioritySuffix); 2916 os << llvm::format_hex_no_prefix(P, 8); 2917 os.flush(); 2918 return PrioritySuffix; 2919 } 2920 2921 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2922 const Constant *List, bool IsCtor) { 2923 SmallVector<Structor, 8> Structors; 2924 preprocessXXStructorList(DL, List, Structors); 2925 if (Structors.empty()) 2926 return; 2927 2928 unsigned Index = 0; 2929 for (Structor &S : Structors) { 2930 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2931 S.Func = CE->getOperand(0); 2932 2933 llvm::GlobalAlias::create( 2934 GlobalValue::ExternalLinkage, 2935 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2936 llvm::Twine(convertToSinitPriority(S.Priority)) + 2937 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2938 llvm::Twine("_", llvm::utostr(Index++)), 2939 cast<Function>(S.Func)); 2940 } 2941 } 2942 2943 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2944 unsigned Encoding) { 2945 if (GV) { 2946 TOCEntryType GlobalType = TOCType_GlobalInternal; 2947 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 2948 if (Linkage == GlobalValue::ExternalLinkage || 2949 Linkage == GlobalValue::AvailableExternallyLinkage || 2950 Linkage == GlobalValue::ExternalWeakLinkage) 2951 GlobalType = TOCType_GlobalExternal; 2952 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2953 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym, GlobalType); 2954 const MCSymbol *TOCBaseSym = 2955 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2956 ->getQualNameSymbol(); 2957 auto &Ctx = OutStreamer->getContext(); 2958 const MCExpr *Exp = 2959 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2960 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2961 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2962 } else 2963 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2964 } 2965 2966 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2967 // given output stream. 2968 static AsmPrinter * 2969 createPPCAsmPrinterPass(TargetMachine &tm, 2970 std::unique_ptr<MCStreamer> &&Streamer) { 2971 if (tm.getTargetTriple().isOSAIX()) 2972 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2973 2974 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2975 } 2976 2977 void PPCAIXAsmPrinter::emitModuleCommandLines(Module &M) { 2978 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2979 if (!NMD || !NMD->getNumOperands()) 2980 return; 2981 2982 std::string S; 2983 raw_string_ostream RSOS(S); 2984 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2985 const MDNode *N = NMD->getOperand(i); 2986 assert(N->getNumOperands() == 1 && 2987 "llvm.commandline metadata entry can have only one operand"); 2988 const MDString *MDS = cast<MDString>(N->getOperand(0)); 2989 // Add "@(#)" to support retrieving the command line information with the 2990 // AIX "what" command 2991 RSOS << "@(#)opt " << MDS->getString() << "\n"; 2992 RSOS.write('\0'); 2993 } 2994 OutStreamer->emitXCOFFCInfoSym(".GCC.command.line", RSOS.str()); 2995 } 2996 2997 // Force static initialization. 2998 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2999 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 3000 createPPCAsmPrinterPass); 3001 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 3002 createPPCAsmPrinterPass); 3003 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 3004 createPPCAsmPrinterPass); 3005 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 3006 createPPCAsmPrinterPass); 3007 } 3008