xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is
11 // the output mechanism used by `llc'.
12 //
13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/
14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "MCTargetDesc/PPCInstPrinter.h"
19 #include "MCTargetDesc/PPCMCExpr.h"
20 #include "MCTargetDesc/PPCMCTargetDesc.h"
21 #include "MCTargetDesc/PPCPredicates.h"
22 #include "PPC.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCSubtarget.h"
26 #include "PPCTargetMachine.h"
27 #include "PPCTargetStreamer.h"
28 #include "TargetInfo/PowerPCTargetInfo.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/Triple.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/BinaryFormat/ELF.h"
35 #include "llvm/CodeGen/AsmPrinter.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/MC/MCAsmInfo.h"
50 #include "llvm/MC/MCContext.h"
51 #include "llvm/MC/MCDirectives.h"
52 #include "llvm/MC/MCExpr.h"
53 #include "llvm/MC/MCInst.h"
54 #include "llvm/MC/MCInstBuilder.h"
55 #include "llvm/MC/MCSectionELF.h"
56 #include "llvm/MC/MCSectionXCOFF.h"
57 #include "llvm/MC/MCStreamer.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/MCSymbolELF.h"
60 #include "llvm/MC/MCSymbolXCOFF.h"
61 #include "llvm/MC/SectionKind.h"
62 #include "llvm/MC/TargetRegistry.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/Process.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Transforms/Utils/ModuleUtils.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <new>
77 
78 using namespace llvm;
79 using namespace llvm::XCOFF;
80 
81 #define DEBUG_TYPE "asmprinter"
82 
83 static cl::opt<bool> EnableSSPCanaryBitInTB(
84     "aix-ssp-tb-bit", cl::init(false),
85     cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
86 
87 // Specialize DenseMapInfo to allow
88 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap.
89 // This specialization is needed here because that type is used as keys in the
90 // map representing TOC entries.
91 namespace llvm {
92 template <>
93 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> {
94   using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>;
95 
96   static inline TOCKey getEmptyKey() {
97     return {nullptr, MCSymbolRefExpr::VariantKind::VK_None};
98   }
99   static inline TOCKey getTombstoneKey() {
100     return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid};
101   }
102   static unsigned getHashValue(const TOCKey &PairVal) {
103     return detail::combineHashValue(
104         DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
105         DenseMapInfo<int>::getHashValue(PairVal.second));
106   }
107   static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
108 };
109 } // end namespace llvm
110 
111 namespace {
112 
113 enum {
114   // GNU attribute tags for PowerPC ABI
115   Tag_GNU_Power_ABI_FP = 4,
116   Tag_GNU_Power_ABI_Vector = 8,
117   Tag_GNU_Power_ABI_Struct_Return = 12,
118 
119   // GNU attribute values for PowerPC float ABI, as combination of two parts
120   Val_GNU_Power_ABI_NoFloat = 0b00,
121   Val_GNU_Power_ABI_HardFloat_DP = 0b01,
122   Val_GNU_Power_ABI_SoftFloat_DP = 0b10,
123   Val_GNU_Power_ABI_HardFloat_SP = 0b11,
124 
125   Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100,
126   Val_GNU_Power_ABI_LDBL_64 = 0b1000,
127   Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100,
128 };
129 
130 class PPCAsmPrinter : public AsmPrinter {
131 protected:
132   // For TLS on AIX, we need to be able to identify TOC entries of specific
133   // VariantKind so we can add the right relocations when we generate the
134   // entries. So each entry is represented by a pair of MCSymbol and
135   // VariantKind. For example, we need to be able to identify the following
136   // entry as a TLSGD entry so we can add the @m relocation:
137   //   .tc .i[TC],i[TL]@m
138   // By default, VK_None is used for the VariantKind.
139   MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>,
140             MCSymbol *>
141       TOC;
142   const PPCSubtarget *Subtarget = nullptr;
143   StackMaps SM;
144 
145 public:
146   explicit PPCAsmPrinter(TargetMachine &TM,
147                          std::unique_ptr<MCStreamer> Streamer)
148       : AsmPrinter(TM, std::move(Streamer)), SM(*this) {}
149 
150   StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
151 
152   MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym,
153                                    MCSymbolRefExpr::VariantKind Kind =
154                                        MCSymbolRefExpr::VariantKind::VK_None);
155 
156   bool doInitialization(Module &M) override {
157     if (!TOC.empty())
158       TOC.clear();
159     return AsmPrinter::doInitialization(M);
160   }
161 
162   void emitInstruction(const MachineInstr *MI) override;
163 
164   /// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
165   /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
166   /// The \p MI would be INLINEASM ONLY.
167   void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
168 
169   void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
170   bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
171                        const char *ExtraCode, raw_ostream &O) override;
172   bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
173                              const char *ExtraCode, raw_ostream &O) override;
174 
175   void emitEndOfAsmFile(Module &M) override;
176 
177   void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
178   void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
179   void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
180   bool runOnMachineFunction(MachineFunction &MF) override {
181     Subtarget = &MF.getSubtarget<PPCSubtarget>();
182     bool Changed = AsmPrinter::runOnMachineFunction(MF);
183     emitXRayTable();
184     return Changed;
185   }
186 };
187 
188 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
189 class PPCLinuxAsmPrinter : public PPCAsmPrinter {
190 public:
191   explicit PPCLinuxAsmPrinter(TargetMachine &TM,
192                               std::unique_ptr<MCStreamer> Streamer)
193       : PPCAsmPrinter(TM, std::move(Streamer)) {}
194 
195   StringRef getPassName() const override {
196     return "Linux PPC Assembly Printer";
197   }
198 
199   void emitGNUAttributes(Module &M);
200 
201   void emitStartOfAsmFile(Module &M) override;
202   void emitEndOfAsmFile(Module &) override;
203 
204   void emitFunctionEntryLabel() override;
205 
206   void emitFunctionBodyStart() override;
207   void emitFunctionBodyEnd() override;
208   void emitInstruction(const MachineInstr *MI) override;
209 };
210 
211 class PPCAIXAsmPrinter : public PPCAsmPrinter {
212 private:
213   /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
214   /// linkage for them in AIX.
215   SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols;
216 
217   /// A format indicator and unique trailing identifier to form part of the
218   /// sinit/sterm function names.
219   std::string FormatIndicatorAndUniqueModId;
220 
221   // Record a list of GlobalAlias associated with a GlobalObject.
222   // This is used for AIX's extra-label-at-definition aliasing strategy.
223   DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
224       GOAliasMap;
225 
226   uint16_t getNumberOfVRSaved();
227   void emitTracebackTable();
228 
229   SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
230 
231   void emitGlobalVariableHelper(const GlobalVariable *);
232 
233   // Get the offset of an alias based on its AliaseeObject.
234   uint64_t getAliasOffset(const Constant *C);
235 
236 public:
237   PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
238       : PPCAsmPrinter(TM, std::move(Streamer)) {
239     if (MAI->isLittleEndian())
240       report_fatal_error(
241           "cannot create AIX PPC Assembly Printer for a little-endian target");
242   }
243 
244   StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
245 
246   bool doInitialization(Module &M) override;
247 
248   void emitXXStructorList(const DataLayout &DL, const Constant *List,
249                           bool IsCtor) override;
250 
251   void SetupMachineFunction(MachineFunction &MF) override;
252 
253   void emitGlobalVariable(const GlobalVariable *GV) override;
254 
255   void emitFunctionDescriptor() override;
256 
257   void emitFunctionEntryLabel() override;
258 
259   void emitFunctionBodyEnd() override;
260 
261   void emitPGORefs();
262 
263   void emitEndOfAsmFile(Module &) override;
264 
265   void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
266 
267   void emitInstruction(const MachineInstr *MI) override;
268 
269   bool doFinalization(Module &M) override;
270 
271   void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
272 };
273 
274 } // end anonymous namespace
275 
276 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
277                                        raw_ostream &O) {
278   // Computing the address of a global symbol, not calling it.
279   const GlobalValue *GV = MO.getGlobal();
280   getSymbol(GV)->print(O, MAI);
281   printOffset(MO.getOffset(), O);
282 }
283 
284 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
285                                  raw_ostream &O) {
286   const DataLayout &DL = getDataLayout();
287   const MachineOperand &MO = MI->getOperand(OpNo);
288 
289   switch (MO.getType()) {
290   case MachineOperand::MO_Register: {
291     // The MI is INLINEASM ONLY and UseVSXReg is always false.
292     const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
293 
294     // Linux assembler (Others?) does not take register mnemonics.
295     // FIXME - What about special registers used in mfspr/mtspr?
296     O << PPCRegisterInfo::stripRegisterPrefix(RegName);
297     return;
298   }
299   case MachineOperand::MO_Immediate:
300     O << MO.getImm();
301     return;
302 
303   case MachineOperand::MO_MachineBasicBlock:
304     MO.getMBB()->getSymbol()->print(O, MAI);
305     return;
306   case MachineOperand::MO_ConstantPoolIndex:
307     O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
308       << MO.getIndex();
309     return;
310   case MachineOperand::MO_BlockAddress:
311     GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
312     return;
313   case MachineOperand::MO_GlobalAddress: {
314     PrintSymbolOperand(MO, O);
315     return;
316   }
317 
318   default:
319     O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
320     return;
321   }
322 }
323 
324 /// PrintAsmOperand - Print out an operand for an inline asm expression.
325 ///
326 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
327                                     const char *ExtraCode, raw_ostream &O) {
328   // Does this asm operand have a single letter operand modifier?
329   if (ExtraCode && ExtraCode[0]) {
330     if (ExtraCode[1] != 0) return true; // Unknown modifier.
331 
332     switch (ExtraCode[0]) {
333     default:
334       // See if this is a generic print operand
335       return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
336     case 'L': // Write second word of DImode reference.
337       // Verify that this operand has two consecutive registers.
338       if (!MI->getOperand(OpNo).isReg() ||
339           OpNo+1 == MI->getNumOperands() ||
340           !MI->getOperand(OpNo+1).isReg())
341         return true;
342       ++OpNo;   // Return the high-part.
343       break;
344     case 'I':
345       // Write 'i' if an integer constant, otherwise nothing.  Used to print
346       // addi vs add, etc.
347       if (MI->getOperand(OpNo).isImm())
348         O << "i";
349       return false;
350     case 'x':
351       if(!MI->getOperand(OpNo).isReg())
352         return true;
353       // This operand uses VSX numbering.
354       // If the operand is a VMX register, convert it to a VSX register.
355       Register Reg = MI->getOperand(OpNo).getReg();
356       if (PPCInstrInfo::isVRRegister(Reg))
357         Reg = PPC::VSX32 + (Reg - PPC::V0);
358       else if (PPCInstrInfo::isVFRegister(Reg))
359         Reg = PPC::VSX32 + (Reg - PPC::VF0);
360       const char *RegName;
361       RegName = PPCInstPrinter::getRegisterName(Reg);
362       RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
363       O << RegName;
364       return false;
365     }
366   }
367 
368   printOperand(MI, OpNo, O);
369   return false;
370 }
371 
372 // At the moment, all inline asm memory operands are a single register.
373 // In any case, the output of this routine should always be just one
374 // assembler operand.
375 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
376                                           const char *ExtraCode,
377                                           raw_ostream &O) {
378   if (ExtraCode && ExtraCode[0]) {
379     if (ExtraCode[1] != 0) return true; // Unknown modifier.
380 
381     switch (ExtraCode[0]) {
382     default: return true;  // Unknown modifier.
383     case 'L': // A memory reference to the upper word of a double word op.
384       O << getDataLayout().getPointerSize() << "(";
385       printOperand(MI, OpNo, O);
386       O << ")";
387       return false;
388     case 'y': // A memory reference for an X-form instruction
389       O << "0, ";
390       printOperand(MI, OpNo, O);
391       return false;
392     case 'I':
393       // Write 'i' if an integer constant, otherwise nothing.  Used to print
394       // addi vs add, etc.
395       if (MI->getOperand(OpNo).isImm())
396         O << "i";
397       return false;
398     case 'U': // Print 'u' for update form.
399     case 'X': // Print 'x' for indexed form.
400       // FIXME: Currently for PowerPC memory operands are always loaded
401       // into a register, so we never get an update or indexed form.
402       // This is bad even for offset forms, since even if we know we
403       // have a value in -16(r1), we will generate a load into r<n>
404       // and then load from 0(r<n>).  Until that issue is fixed,
405       // tolerate 'U' and 'X' but don't output anything.
406       assert(MI->getOperand(OpNo).isReg());
407       return false;
408     }
409   }
410 
411   assert(MI->getOperand(OpNo).isReg());
412   O << "0(";
413   printOperand(MI, OpNo, O);
414   O << ")";
415   return false;
416 }
417 
418 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
419 /// exists for it.  If not, create one.  Then return a symbol that references
420 /// the TOC entry.
421 MCSymbol *
422 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym,
423                                       MCSymbolRefExpr::VariantKind Kind) {
424   MCSymbol *&TOCEntry = TOC[{Sym, Kind}];
425   if (!TOCEntry)
426     TOCEntry = createTempSymbol("C");
427   return TOCEntry;
428 }
429 
430 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) {
431   emitStackMaps(SM);
432 }
433 
434 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
435   unsigned NumNOPBytes = MI.getOperand(1).getImm();
436 
437   auto &Ctx = OutStreamer->getContext();
438   MCSymbol *MILabel = Ctx.createTempSymbol();
439   OutStreamer->emitLabel(MILabel);
440 
441   SM.recordStackMap(*MILabel, MI);
442   assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
443 
444   // Scan ahead to trim the shadow.
445   const MachineBasicBlock &MBB = *MI.getParent();
446   MachineBasicBlock::const_iterator MII(MI);
447   ++MII;
448   while (NumNOPBytes > 0) {
449     if (MII == MBB.end() || MII->isCall() ||
450         MII->getOpcode() == PPC::DBG_VALUE ||
451         MII->getOpcode() == TargetOpcode::PATCHPOINT ||
452         MII->getOpcode() == TargetOpcode::STACKMAP)
453       break;
454     ++MII;
455     NumNOPBytes -= 4;
456   }
457 
458   // Emit nops.
459   for (unsigned i = 0; i < NumNOPBytes; i += 4)
460     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
461 }
462 
463 // Lower a patchpoint of the form:
464 // [<def>], <id>, <numBytes>, <target>, <numArgs>
465 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
466   auto &Ctx = OutStreamer->getContext();
467   MCSymbol *MILabel = Ctx.createTempSymbol();
468   OutStreamer->emitLabel(MILabel);
469 
470   SM.recordPatchPoint(*MILabel, MI);
471   PatchPointOpers Opers(&MI);
472 
473   unsigned EncodedBytes = 0;
474   const MachineOperand &CalleeMO = Opers.getCallTarget();
475 
476   if (CalleeMO.isImm()) {
477     int64_t CallTarget = CalleeMO.getImm();
478     if (CallTarget) {
479       assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
480              "High 16 bits of call target should be zero.");
481       Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
482       EncodedBytes = 0;
483       // Materialize the jump address:
484       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
485                                       .addReg(ScratchReg)
486                                       .addImm((CallTarget >> 32) & 0xFFFF));
487       ++EncodedBytes;
488       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
489                                       .addReg(ScratchReg)
490                                       .addReg(ScratchReg)
491                                       .addImm(32).addImm(16));
492       ++EncodedBytes;
493       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
494                                       .addReg(ScratchReg)
495                                       .addReg(ScratchReg)
496                                       .addImm((CallTarget >> 16) & 0xFFFF));
497       ++EncodedBytes;
498       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
499                                       .addReg(ScratchReg)
500                                       .addReg(ScratchReg)
501                                       .addImm(CallTarget & 0xFFFF));
502 
503       // Save the current TOC pointer before the remote call.
504       int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
505       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
506                                       .addReg(PPC::X2)
507                                       .addImm(TOCSaveOffset)
508                                       .addReg(PPC::X1));
509       ++EncodedBytes;
510 
511       // If we're on ELFv1, then we need to load the actual function pointer
512       // from the function descriptor.
513       if (!Subtarget->isELFv2ABI()) {
514         // Load the new TOC pointer and the function address, but not r11
515         // (needing this is rare, and loading it here would prevent passing it
516         // via a 'nest' parameter.
517         EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
518                                         .addReg(PPC::X2)
519                                         .addImm(8)
520                                         .addReg(ScratchReg));
521         ++EncodedBytes;
522         EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
523                                         .addReg(ScratchReg)
524                                         .addImm(0)
525                                         .addReg(ScratchReg));
526         ++EncodedBytes;
527       }
528 
529       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
530                                       .addReg(ScratchReg));
531       ++EncodedBytes;
532       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
533       ++EncodedBytes;
534 
535       // Restore the TOC pointer after the call.
536       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
537                                       .addReg(PPC::X2)
538                                       .addImm(TOCSaveOffset)
539                                       .addReg(PPC::X1));
540       ++EncodedBytes;
541     }
542   } else if (CalleeMO.isGlobal()) {
543     const GlobalValue *GValue = CalleeMO.getGlobal();
544     MCSymbol *MOSymbol = getSymbol(GValue);
545     const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
546 
547     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
548                                     .addExpr(SymVar));
549     EncodedBytes += 2;
550   }
551 
552   // Each instruction is 4 bytes.
553   EncodedBytes *= 4;
554 
555   // Emit padding.
556   unsigned NumBytes = Opers.getNumPatchBytes();
557   assert(NumBytes >= EncodedBytes &&
558          "Patchpoint can't request size less than the length of a call.");
559   assert((NumBytes - EncodedBytes) % 4 == 0 &&
560          "Invalid number of NOP bytes requested!");
561   for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
562     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
563 }
564 
565 /// This helper function creates the TlsGetAddr MCSymbol for AIX. We will
566 /// create the csect and use the qual-name symbol instead of creating just the
567 /// external symbol.
568 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx) {
569   return Ctx
570       .getXCOFFSection(".__tls_get_addr", SectionKind::getText(),
571                        XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
572       ->getQualNameSymbol();
573 }
574 
575 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
576 /// call to __tls_get_addr to the current output stream.
577 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
578                                 MCSymbolRefExpr::VariantKind VK) {
579   MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
580   unsigned Opcode = PPC::BL8_NOP_TLS;
581 
582   assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
583   if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
584       MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
585     Kind = MCSymbolRefExpr::VK_PPC_NOTOC;
586     Opcode = PPC::BL8_NOTOC_TLS;
587   }
588   const Module *M = MF->getFunction().getParent();
589 
590   assert(MI->getOperand(0).isReg() &&
591          ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
592           (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
593          "GETtls[ld]ADDR[32] must define GPR3");
594   assert(MI->getOperand(1).isReg() &&
595          ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
596           (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
597          "GETtls[ld]ADDR[32] must read GPR3");
598 
599   if (Subtarget->isAIXABI()) {
600     // On AIX, the variable offset should already be in R4 and the region handle
601     // should already be in R3.
602     // For TLSGD, which currently is the only supported access model, we only
603     // need to generate an absolute branch to .__tls_get_addr.
604     Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
605     (void)VarOffsetReg;
606     assert(MI->getOperand(2).isReg() &&
607            MI->getOperand(2).getReg() == VarOffsetReg &&
608            "GETtls[ld]ADDR[32] must read GPR4");
609     MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
610     const MCExpr *TlsRef = MCSymbolRefExpr::create(
611         TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
612     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
613     return;
614   }
615 
616   MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
617 
618   if (Subtarget->is32BitELFABI() && isPositionIndependent())
619     Kind = MCSymbolRefExpr::VK_PLT;
620 
621   const MCExpr *TlsRef =
622     MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
623 
624   // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
625   if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() &&
626       M->getPICLevel() == PICLevel::BigPIC)
627     TlsRef = MCBinaryExpr::createAdd(
628         TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
629   const MachineOperand &MO = MI->getOperand(2);
630   const GlobalValue *GValue = MO.getGlobal();
631   MCSymbol *MOSymbol = getSymbol(GValue);
632   const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
633   EmitToStreamer(*OutStreamer,
634                  MCInstBuilder(Subtarget->isPPC64() ? Opcode
635                                                     : (unsigned)PPC::BL_TLS)
636                      .addExpr(TlsRef)
637                      .addExpr(SymVar));
638 }
639 
640 /// Map a machine operand for a TOC pseudo-machine instruction to its
641 /// corresponding MCSymbol.
642 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
643                                            AsmPrinter &AP) {
644   switch (MO.getType()) {
645   case MachineOperand::MO_GlobalAddress:
646     return AP.getSymbol(MO.getGlobal());
647   case MachineOperand::MO_ConstantPoolIndex:
648     return AP.GetCPISymbol(MO.getIndex());
649   case MachineOperand::MO_JumpTableIndex:
650     return AP.GetJTISymbol(MO.getIndex());
651   case MachineOperand::MO_BlockAddress:
652     return AP.GetBlockAddressSymbol(MO.getBlockAddress());
653   default:
654     llvm_unreachable("Unexpected operand type to get symbol.");
655   }
656 }
657 
658 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
659 /// the current output stream.
660 ///
661 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
662   PPC_MC::verifyInstructionPredicates(MI->getOpcode(),
663                                       getSubtargetInfo().getFeatureBits());
664 
665   MCInst TmpInst;
666   const bool IsPPC64 = Subtarget->isPPC64();
667   const bool IsAIX = Subtarget->isAIXABI();
668   const Module *M = MF->getFunction().getParent();
669   PICLevel::Level PL = M->getPICLevel();
670 
671 #ifndef NDEBUG
672   // Validate that SPE and FPU are mutually exclusive in codegen
673   if (!MI->isInlineAsm()) {
674     for (const MachineOperand &MO: MI->operands()) {
675       if (MO.isReg()) {
676         Register Reg = MO.getReg();
677         if (Subtarget->hasSPE()) {
678           if (PPC::F4RCRegClass.contains(Reg) ||
679               PPC::F8RCRegClass.contains(Reg) ||
680               PPC::VFRCRegClass.contains(Reg) ||
681               PPC::VRRCRegClass.contains(Reg) ||
682               PPC::VSFRCRegClass.contains(Reg) ||
683               PPC::VSSRCRegClass.contains(Reg)
684               )
685             llvm_unreachable("SPE targets cannot have FPRegs!");
686         } else {
687           if (PPC::SPERCRegClass.contains(Reg))
688             llvm_unreachable("SPE register found in FPU-targeted code!");
689         }
690       }
691     }
692   }
693 #endif
694 
695   auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
696                                                 ptrdiff_t OriginalOffset) {
697     // Apply an offset to the TOC-based expression such that the adjusted
698     // notional offset from the TOC base (to be encoded into the instruction's D
699     // or DS field) is the signed 16-bit truncation of the original notional
700     // offset from the TOC base.
701     // This is consistent with the treatment used both by XL C/C++ and
702     // by AIX ld -r.
703     ptrdiff_t Adjustment =
704         OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
705     return MCBinaryExpr::createAdd(
706         Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
707   };
708 
709   auto getTOCEntryLoadingExprForXCOFF =
710       [IsPPC64, getTOCRelocAdjustedExprForXCOFF,
711        this](const MCSymbol *MOSymbol, const MCExpr *Expr,
712              MCSymbolRefExpr::VariantKind VK =
713                  MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * {
714     const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
715     const auto TOCEntryIter = TOC.find({MOSymbol, VK});
716     assert(TOCEntryIter != TOC.end() &&
717            "Could not find the TOC entry for this symbol.");
718     const ptrdiff_t EntryDistanceFromTOCBase =
719         (TOCEntryIter - TOC.begin()) * EntryByteSize;
720     constexpr int16_t PositiveTOCRange = INT16_MAX;
721 
722     if (EntryDistanceFromTOCBase > PositiveTOCRange)
723       return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
724 
725     return Expr;
726   };
727   auto GetVKForMO = [&](const MachineOperand &MO) {
728     // For GD TLS access on AIX, we have two TOC entries for the symbol (one for
729     // the variable offset and the other for the region handle). They are
730     // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
731     if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG)
732       return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM;
733     if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG)
734       return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD;
735     return MCSymbolRefExpr::VariantKind::VK_None;
736   };
737 
738   // Lower multi-instruction pseudo operations.
739   switch (MI->getOpcode()) {
740   default: break;
741   case TargetOpcode::DBG_VALUE:
742     llvm_unreachable("Should be handled target independently");
743   case TargetOpcode::STACKMAP:
744     return LowerSTACKMAP(SM, *MI);
745   case TargetOpcode::PATCHPOINT:
746     return LowerPATCHPOINT(SM, *MI);
747 
748   case PPC::MoveGOTtoLR: {
749     // Transform %lr = MoveGOTtoLR
750     // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
751     // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
752     // _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
753     //      blrl
754     // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
755     MCSymbol *GOTSymbol =
756       OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
757     const MCExpr *OffsExpr =
758       MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
759                                                       MCSymbolRefExpr::VK_PPC_LOCAL,
760                                                       OutContext),
761                               MCConstantExpr::create(4, OutContext),
762                               OutContext);
763 
764     // Emit the 'bl'.
765     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
766     return;
767   }
768   case PPC::MovePCtoLR:
769   case PPC::MovePCtoLR8: {
770     // Transform %lr = MovePCtoLR
771     // Into this, where the label is the PIC base:
772     //     bl L1$pb
773     // L1$pb:
774     MCSymbol *PICBase = MF->getPICBaseSymbol();
775 
776     // Emit the 'bl'.
777     EmitToStreamer(*OutStreamer,
778                    MCInstBuilder(PPC::BL)
779                        // FIXME: We would like an efficient form for this, so we
780                        // don't have to do a lot of extra uniquing.
781                        .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
782 
783     // Emit the label.
784     OutStreamer->emitLabel(PICBase);
785     return;
786   }
787   case PPC::UpdateGBR: {
788     // Transform %rd = UpdateGBR(%rt, %ri)
789     // Into: lwz %rt, .L0$poff - .L0$pb(%ri)
790     //       add %rd, %rt, %ri
791     // or into (if secure plt mode is on):
792     //       addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
793     //       addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
794     // Get the offset from the GOT Base Register to the GOT
795     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
796     if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
797       unsigned PICR = TmpInst.getOperand(0).getReg();
798       MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
799           M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
800                                                  : ".LTOC");
801       const MCExpr *PB =
802           MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
803 
804       const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
805           MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
806 
807       const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
808       EmitToStreamer(
809           *OutStreamer,
810           MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
811 
812       const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
813       EmitToStreamer(
814           *OutStreamer,
815           MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
816       return;
817     } else {
818       MCSymbol *PICOffset =
819         MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
820       TmpInst.setOpcode(PPC::LWZ);
821       const MCExpr *Exp =
822         MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
823       const MCExpr *PB =
824         MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
825                                 MCSymbolRefExpr::VK_None,
826                                 OutContext);
827       const MCOperand TR = TmpInst.getOperand(1);
828       const MCOperand PICR = TmpInst.getOperand(0);
829 
830       // Step 1: lwz %rt, .L$poff - .L$pb(%ri)
831       TmpInst.getOperand(1) =
832           MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
833       TmpInst.getOperand(0) = TR;
834       TmpInst.getOperand(2) = PICR;
835       EmitToStreamer(*OutStreamer, TmpInst);
836 
837       TmpInst.setOpcode(PPC::ADD4);
838       TmpInst.getOperand(0) = PICR;
839       TmpInst.getOperand(1) = TR;
840       TmpInst.getOperand(2) = PICR;
841       EmitToStreamer(*OutStreamer, TmpInst);
842       return;
843     }
844   }
845   case PPC::LWZtoc: {
846     // Transform %rN = LWZtoc @op1, %r2
847     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
848 
849     // Change the opcode to LWZ.
850     TmpInst.setOpcode(PPC::LWZ);
851 
852     const MachineOperand &MO = MI->getOperand(1);
853     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
854            "Invalid operand for LWZtoc.");
855 
856     // Map the operand to its corresponding MCSymbol.
857     const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
858 
859     // Create a reference to the GOT entry for the symbol. The GOT entry will be
860     // synthesized later.
861     if (PL == PICLevel::SmallPIC && !IsAIX) {
862       const MCExpr *Exp =
863         MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
864                                 OutContext);
865       TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
866       EmitToStreamer(*OutStreamer, TmpInst);
867       return;
868     }
869 
870     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
871 
872     // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
873     // storage allocated in the TOC which contains the address of
874     // 'MOSymbol'. Said TOC entry will be synthesized later.
875     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
876     const MCExpr *Exp =
877         MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext);
878 
879     // AIX uses the label directly as the lwz displacement operand for
880     // references into the toc section. The displacement value will be generated
881     // relative to the toc-base.
882     if (IsAIX) {
883       assert(
884           TM.getCodeModel() == CodeModel::Small &&
885           "This pseudo should only be selected for 32-bit small code model.");
886       Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
887       TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
888 
889       // Print MO for better readability
890       if (isVerbose())
891         OutStreamer->getCommentOS() << MO << '\n';
892       EmitToStreamer(*OutStreamer, TmpInst);
893       return;
894     }
895 
896     // Create an explicit subtract expression between the local symbol and
897     // '.LTOC' to manifest the toc-relative offset.
898     const MCExpr *PB = MCSymbolRefExpr::create(
899         OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
900     Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
901     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
902     EmitToStreamer(*OutStreamer, TmpInst);
903     return;
904   }
905   case PPC::ADDItoc:
906   case PPC::ADDItoc8: {
907     assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
908            "PseudoOp only valid for small code model AIX");
909 
910     // Transform %rN = ADDItoc/8 @op1, %r2.
911     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
912 
913     // Change the opcode to load address.
914     TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8));
915 
916     const MachineOperand &MO = MI->getOperand(1);
917     assert(MO.isGlobal() && "Invalid operand for ADDItoc[8].");
918 
919     // Map the operand to its corresponding MCSymbol.
920     const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
921 
922     const MCExpr *Exp =
923         MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext);
924 
925     TmpInst.getOperand(1) = TmpInst.getOperand(2);
926     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
927     EmitToStreamer(*OutStreamer, TmpInst);
928     return;
929   }
930   case PPC::LDtocJTI:
931   case PPC::LDtocCPT:
932   case PPC::LDtocBA:
933   case PPC::LDtoc: {
934     // Transform %x3 = LDtoc @min1, %x2
935     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
936 
937     // Change the opcode to LD.
938     TmpInst.setOpcode(PPC::LD);
939 
940     const MachineOperand &MO = MI->getOperand(1);
941     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
942            "Invalid operand!");
943 
944     // Map the operand to its corresponding MCSymbol.
945     const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
946 
947     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
948 
949     // Map the machine operand to its corresponding MCSymbol, then map the
950     // global address operand to be a reference to the TOC entry we will
951     // synthesize later.
952     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
953 
954     MCSymbolRefExpr::VariantKind VKExpr =
955         IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC;
956     const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext);
957     TmpInst.getOperand(1) = MCOperand::createExpr(
958         IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
959 
960     // Print MO for better readability
961     if (isVerbose() && IsAIX)
962       OutStreamer->getCommentOS() << MO << '\n';
963     EmitToStreamer(*OutStreamer, TmpInst);
964     return;
965   }
966   case PPC::ADDIStocHA: {
967     assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) &&
968            "This pseudo should only be selected for 32-bit large code model on"
969            " AIX.");
970 
971     // Transform %rd = ADDIStocHA %rA, @sym(%r2)
972     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
973 
974     // Change the opcode to ADDIS.
975     TmpInst.setOpcode(PPC::ADDIS);
976 
977     const MachineOperand &MO = MI->getOperand(2);
978     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
979            "Invalid operand for ADDIStocHA.");
980 
981     // Map the machine operand to its corresponding MCSymbol.
982     MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
983 
984     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
985 
986     // Always use TOC on AIX. Map the global address operand to be a reference
987     // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
988     // reference the storage allocated in the TOC which contains the address of
989     // 'MOSymbol'.
990     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
991     const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
992                                                 MCSymbolRefExpr::VK_PPC_U,
993                                                 OutContext);
994     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
995     EmitToStreamer(*OutStreamer, TmpInst);
996     return;
997   }
998   case PPC::LWZtocL: {
999     assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large &&
1000            "This pseudo should only be selected for 32-bit large code model on"
1001            " AIX.");
1002 
1003     // Transform %rd = LWZtocL @sym, %rs.
1004     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1005 
1006     // Change the opcode to lwz.
1007     TmpInst.setOpcode(PPC::LWZ);
1008 
1009     const MachineOperand &MO = MI->getOperand(1);
1010     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1011            "Invalid operand for LWZtocL.");
1012 
1013     // Map the machine operand to its corresponding MCSymbol.
1014     MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1015 
1016     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1017 
1018     // Always use TOC on AIX. Map the global address operand to be a reference
1019     // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
1020     // reference the storage allocated in the TOC which contains the address of
1021     // 'MOSymbol'.
1022     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
1023     const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
1024                                                 MCSymbolRefExpr::VK_PPC_L,
1025                                                 OutContext);
1026     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1027     EmitToStreamer(*OutStreamer, TmpInst);
1028     return;
1029   }
1030   case PPC::ADDIStocHA8: {
1031     // Transform %xd = ADDIStocHA8 %x2, @sym
1032     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1033 
1034     // Change the opcode to ADDIS8. If the global address is the address of
1035     // an external symbol, is a jump table address, is a block address, or is a
1036     // constant pool index with large code model enabled, then generate a TOC
1037     // entry and reference that. Otherwise, reference the symbol directly.
1038     TmpInst.setOpcode(PPC::ADDIS8);
1039 
1040     const MachineOperand &MO = MI->getOperand(2);
1041     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1042            "Invalid operand for ADDIStocHA8!");
1043 
1044     const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1045 
1046     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1047 
1048     const bool GlobalToc =
1049         MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
1050     if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
1051         (MO.isCPI() && TM.getCodeModel() == CodeModel::Large))
1052       MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
1053 
1054     VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA;
1055 
1056     const MCExpr *Exp =
1057         MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1058 
1059     if (!MO.isJTI() && MO.getOffset())
1060       Exp = MCBinaryExpr::createAdd(Exp,
1061                                     MCConstantExpr::create(MO.getOffset(),
1062                                                            OutContext),
1063                                     OutContext);
1064 
1065     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1066     EmitToStreamer(*OutStreamer, TmpInst);
1067     return;
1068   }
1069   case PPC::LDtocL: {
1070     // Transform %xd = LDtocL @sym, %xs
1071     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1072 
1073     // Change the opcode to LD. If the global address is the address of
1074     // an external symbol, is a jump table address, is a block address, or is
1075     // a constant pool index with large code model enabled, then generate a
1076     // TOC entry and reference that. Otherwise, reference the symbol directly.
1077     TmpInst.setOpcode(PPC::LD);
1078 
1079     const MachineOperand &MO = MI->getOperand(1);
1080     assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
1081             MO.isBlockAddress()) &&
1082            "Invalid operand for LDtocL!");
1083 
1084     LLVM_DEBUG(assert(
1085         (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1086         "LDtocL used on symbol that could be accessed directly is "
1087         "invalid. Must match ADDIStocHA8."));
1088 
1089     const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1090 
1091     MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1092 
1093     if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large)
1094       MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
1095 
1096     VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO;
1097     const MCExpr *Exp =
1098         MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1099     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1100     EmitToStreamer(*OutStreamer, TmpInst);
1101     return;
1102   }
1103   case PPC::ADDItocL: {
1104     // Transform %xd = ADDItocL %xs, @sym
1105     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1106 
1107     // Change the opcode to ADDI8. If the global address is external, then
1108     // generate a TOC entry and reference that. Otherwise, reference the
1109     // symbol directly.
1110     TmpInst.setOpcode(PPC::ADDI8);
1111 
1112     const MachineOperand &MO = MI->getOperand(2);
1113     assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL.");
1114 
1115     LLVM_DEBUG(assert(
1116         !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1117         "Interposable definitions must use indirect access."));
1118 
1119     const MCExpr *Exp =
1120         MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this),
1121                                 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext);
1122     TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1123     EmitToStreamer(*OutStreamer, TmpInst);
1124     return;
1125   }
1126   case PPC::ADDISgotTprelHA: {
1127     // Transform: %xd = ADDISgotTprelHA %x2, @sym
1128     // Into:      %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1129     assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1130     const MachineOperand &MO = MI->getOperand(2);
1131     const GlobalValue *GValue = MO.getGlobal();
1132     MCSymbol *MOSymbol = getSymbol(GValue);
1133     const MCExpr *SymGotTprel =
1134         MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
1135                                 OutContext);
1136     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1137                                  .addReg(MI->getOperand(0).getReg())
1138                                  .addReg(MI->getOperand(1).getReg())
1139                                  .addExpr(SymGotTprel));
1140     return;
1141   }
1142   case PPC::LDgotTprelL:
1143   case PPC::LDgotTprelL32: {
1144     // Transform %xd = LDgotTprelL @sym, %xs
1145     LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1146 
1147     // Change the opcode to LD.
1148     TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
1149     const MachineOperand &MO = MI->getOperand(1);
1150     const GlobalValue *GValue = MO.getGlobal();
1151     MCSymbol *MOSymbol = getSymbol(GValue);
1152     const MCExpr *Exp = MCSymbolRefExpr::create(
1153         MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO
1154                           : MCSymbolRefExpr::VK_PPC_GOT_TPREL,
1155         OutContext);
1156     TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1157     EmitToStreamer(*OutStreamer, TmpInst);
1158     return;
1159   }
1160 
1161   case PPC::PPC32PICGOT: {
1162     MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1163     MCSymbol *GOTRef = OutContext.createTempSymbol();
1164     MCSymbol *NextInstr = OutContext.createTempSymbol();
1165 
1166     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
1167       // FIXME: We would like an efficient form for this, so we don't have to do
1168       // a lot of extra uniquing.
1169       .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
1170     const MCExpr *OffsExpr =
1171       MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
1172                                 MCSymbolRefExpr::create(GOTRef, OutContext),
1173         OutContext);
1174     OutStreamer->emitLabel(GOTRef);
1175     OutStreamer->emitValue(OffsExpr, 4);
1176     OutStreamer->emitLabel(NextInstr);
1177     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
1178                                  .addReg(MI->getOperand(0).getReg()));
1179     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
1180                                  .addReg(MI->getOperand(1).getReg())
1181                                  .addImm(0)
1182                                  .addReg(MI->getOperand(0).getReg()));
1183     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
1184                                  .addReg(MI->getOperand(0).getReg())
1185                                  .addReg(MI->getOperand(1).getReg())
1186                                  .addReg(MI->getOperand(0).getReg()));
1187     return;
1188   }
1189   case PPC::PPC32GOT: {
1190     MCSymbol *GOTSymbol =
1191         OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1192     const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
1193         GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
1194     const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
1195         GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
1196     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
1197                                  .addReg(MI->getOperand(0).getReg())
1198                                  .addExpr(SymGotTlsL));
1199     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1200                                  .addReg(MI->getOperand(0).getReg())
1201                                  .addReg(MI->getOperand(0).getReg())
1202                                  .addExpr(SymGotTlsHA));
1203     return;
1204   }
1205   case PPC::ADDIStlsgdHA: {
1206     // Transform: %xd = ADDIStlsgdHA %x2, @sym
1207     // Into:      %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1208     assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1209     const MachineOperand &MO = MI->getOperand(2);
1210     const GlobalValue *GValue = MO.getGlobal();
1211     MCSymbol *MOSymbol = getSymbol(GValue);
1212     const MCExpr *SymGotTlsGD =
1213       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
1214                               OutContext);
1215     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1216                                  .addReg(MI->getOperand(0).getReg())
1217                                  .addReg(MI->getOperand(1).getReg())
1218                                  .addExpr(SymGotTlsGD));
1219     return;
1220   }
1221   case PPC::ADDItlsgdL:
1222     // Transform: %xd = ADDItlsgdL %xs, @sym
1223     // Into:      %xd = ADDI8 %xs, sym@got@tlsgd@l
1224   case PPC::ADDItlsgdL32: {
1225     // Transform: %rd = ADDItlsgdL32 %rs, @sym
1226     // Into:      %rd = ADDI %rs, sym@got@tlsgd
1227     const MachineOperand &MO = MI->getOperand(2);
1228     const GlobalValue *GValue = MO.getGlobal();
1229     MCSymbol *MOSymbol = getSymbol(GValue);
1230     const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
1231         MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
1232                           : MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
1233         OutContext);
1234     EmitToStreamer(*OutStreamer,
1235                    MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1236                    .addReg(MI->getOperand(0).getReg())
1237                    .addReg(MI->getOperand(1).getReg())
1238                    .addExpr(SymGotTlsGD));
1239     return;
1240   }
1241   case PPC::GETtlsADDR:
1242     // Transform: %x3 = GETtlsADDR %x3, @sym
1243     // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
1244   case PPC::GETtlsADDRPCREL:
1245   case PPC::GETtlsADDR32AIX:
1246   case PPC::GETtlsADDR64AIX:
1247     // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
1248     // Into: BLA .__tls_get_addr()
1249     // Unlike on Linux, there is no symbol or relocation needed for this call.
1250   case PPC::GETtlsADDR32: {
1251     // Transform: %r3 = GETtlsADDR32 %r3, @sym
1252     // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
1253     EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
1254     return;
1255   }
1256   case PPC::ADDIStlsldHA: {
1257     // Transform: %xd = ADDIStlsldHA %x2, @sym
1258     // Into:      %xd = ADDIS8 %x2, sym@got@tlsld@ha
1259     assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1260     const MachineOperand &MO = MI->getOperand(2);
1261     const GlobalValue *GValue = MO.getGlobal();
1262     MCSymbol *MOSymbol = getSymbol(GValue);
1263     const MCExpr *SymGotTlsLD =
1264       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
1265                               OutContext);
1266     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1267                                  .addReg(MI->getOperand(0).getReg())
1268                                  .addReg(MI->getOperand(1).getReg())
1269                                  .addExpr(SymGotTlsLD));
1270     return;
1271   }
1272   case PPC::ADDItlsldL:
1273     // Transform: %xd = ADDItlsldL %xs, @sym
1274     // Into:      %xd = ADDI8 %xs, sym@got@tlsld@l
1275   case PPC::ADDItlsldL32: {
1276     // Transform: %rd = ADDItlsldL32 %rs, @sym
1277     // Into:      %rd = ADDI %rs, sym@got@tlsld
1278     const MachineOperand &MO = MI->getOperand(2);
1279     const GlobalValue *GValue = MO.getGlobal();
1280     MCSymbol *MOSymbol = getSymbol(GValue);
1281     const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
1282         MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
1283                           : MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
1284         OutContext);
1285     EmitToStreamer(*OutStreamer,
1286                    MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1287                        .addReg(MI->getOperand(0).getReg())
1288                        .addReg(MI->getOperand(1).getReg())
1289                        .addExpr(SymGotTlsLD));
1290     return;
1291   }
1292   case PPC::GETtlsldADDR:
1293     // Transform: %x3 = GETtlsldADDR %x3, @sym
1294     // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
1295   case PPC::GETtlsldADDRPCREL:
1296   case PPC::GETtlsldADDR32: {
1297     // Transform: %r3 = GETtlsldADDR32 %r3, @sym
1298     // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
1299     EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
1300     return;
1301   }
1302   case PPC::ADDISdtprelHA:
1303     // Transform: %xd = ADDISdtprelHA %xs, @sym
1304     // Into:      %xd = ADDIS8 %xs, sym@dtprel@ha
1305   case PPC::ADDISdtprelHA32: {
1306     // Transform: %rd = ADDISdtprelHA32 %rs, @sym
1307     // Into:      %rd = ADDIS %rs, sym@dtprel@ha
1308     const MachineOperand &MO = MI->getOperand(2);
1309     const GlobalValue *GValue = MO.getGlobal();
1310     MCSymbol *MOSymbol = getSymbol(GValue);
1311     const MCExpr *SymDtprel =
1312       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
1313                               OutContext);
1314     EmitToStreamer(
1315         *OutStreamer,
1316         MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
1317             .addReg(MI->getOperand(0).getReg())
1318             .addReg(MI->getOperand(1).getReg())
1319             .addExpr(SymDtprel));
1320     return;
1321   }
1322   case PPC::PADDIdtprel: {
1323     // Transform: %rd = PADDIdtprel %rs, @sym
1324     // Into:      %rd = PADDI8 %rs, sym@dtprel
1325     const MachineOperand &MO = MI->getOperand(2);
1326     const GlobalValue *GValue = MO.getGlobal();
1327     MCSymbol *MOSymbol = getSymbol(GValue);
1328     const MCExpr *SymDtprel = MCSymbolRefExpr::create(
1329         MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext);
1330     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
1331                                      .addReg(MI->getOperand(0).getReg())
1332                                      .addReg(MI->getOperand(1).getReg())
1333                                      .addExpr(SymDtprel));
1334     return;
1335   }
1336 
1337   case PPC::ADDIdtprelL:
1338     // Transform: %xd = ADDIdtprelL %xs, @sym
1339     // Into:      %xd = ADDI8 %xs, sym@dtprel@l
1340   case PPC::ADDIdtprelL32: {
1341     // Transform: %rd = ADDIdtprelL32 %rs, @sym
1342     // Into:      %rd = ADDI %rs, sym@dtprel@l
1343     const MachineOperand &MO = MI->getOperand(2);
1344     const GlobalValue *GValue = MO.getGlobal();
1345     MCSymbol *MOSymbol = getSymbol(GValue);
1346     const MCExpr *SymDtprel =
1347       MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
1348                               OutContext);
1349     EmitToStreamer(*OutStreamer,
1350                    MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1351                        .addReg(MI->getOperand(0).getReg())
1352                        .addReg(MI->getOperand(1).getReg())
1353                        .addExpr(SymDtprel));
1354     return;
1355   }
1356   case PPC::MFOCRF:
1357   case PPC::MFOCRF8:
1358     if (!Subtarget->hasMFOCRF()) {
1359       // Transform: %r3 = MFOCRF %cr7
1360       // Into:      %r3 = MFCR   ;; cr7
1361       unsigned NewOpcode =
1362         MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
1363       OutStreamer->AddComment(PPCInstPrinter::
1364                               getRegisterName(MI->getOperand(1).getReg()));
1365       EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1366                                   .addReg(MI->getOperand(0).getReg()));
1367       return;
1368     }
1369     break;
1370   case PPC::MTOCRF:
1371   case PPC::MTOCRF8:
1372     if (!Subtarget->hasMFOCRF()) {
1373       // Transform: %cr7 = MTOCRF %r3
1374       // Into:      MTCRF mask, %r3 ;; cr7
1375       unsigned NewOpcode =
1376         MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
1377       unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
1378                               ->getEncodingValue(MI->getOperand(0).getReg());
1379       OutStreamer->AddComment(PPCInstPrinter::
1380                               getRegisterName(MI->getOperand(0).getReg()));
1381       EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1382                                      .addImm(Mask)
1383                                      .addReg(MI->getOperand(1).getReg()));
1384       return;
1385     }
1386     break;
1387   case PPC::LD:
1388   case PPC::STD:
1389   case PPC::LWA_32:
1390   case PPC::LWA: {
1391     // Verify alignment is legal, so we don't create relocations
1392     // that can't be supported.
1393     unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
1394     const MachineOperand &MO = MI->getOperand(OpNum);
1395     if (MO.isGlobal()) {
1396       const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout();
1397       if (MO.getGlobal()->getPointerAlignment(DL) < 4)
1398         llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
1399     }
1400     // Now process the instruction normally.
1401     break;
1402   }
1403   case PPC::PseudoEIEIO: {
1404     EmitToStreamer(
1405         *OutStreamer,
1406         MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1407     EmitToStreamer(
1408         *OutStreamer,
1409         MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1410     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
1411     return;
1412   }
1413   }
1414 
1415   LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1416   EmitToStreamer(*OutStreamer, TmpInst);
1417 }
1418 
1419 void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) {
1420   // Emit float ABI into GNU attribute
1421   Metadata *MD = M.getModuleFlag("float-abi");
1422   MDString *FloatABI = dyn_cast_or_null<MDString>(MD);
1423   if (!FloatABI)
1424     return;
1425   StringRef flt = FloatABI->getString();
1426   // TODO: Support emitting soft-fp and hard double/single attributes.
1427   if (flt == "doubledouble")
1428     OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1429                                   Val_GNU_Power_ABI_HardFloat_DP |
1430                                       Val_GNU_Power_ABI_LDBL_IBM128);
1431   else if (flt == "ieeequad")
1432     OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1433                                   Val_GNU_Power_ABI_HardFloat_DP |
1434                                       Val_GNU_Power_ABI_LDBL_IEEE128);
1435   else if (flt == "ieeedouble")
1436     OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1437                                   Val_GNU_Power_ABI_HardFloat_DP |
1438                                       Val_GNU_Power_ABI_LDBL_64);
1439 }
1440 
1441 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
1442   if (!Subtarget->isPPC64())
1443     return PPCAsmPrinter::emitInstruction(MI);
1444 
1445   switch (MI->getOpcode()) {
1446   default:
1447     return PPCAsmPrinter::emitInstruction(MI);
1448   case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
1449     // .begin:
1450     //   b .end # lis 0, FuncId[16..32]
1451     //   nop    # li  0, FuncId[0..15]
1452     //   std 0, -8(1)
1453     //   mflr 0
1454     //   bl __xray_FunctionEntry
1455     //   mtlr 0
1456     // .end:
1457     //
1458     // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1459     // of instructions change.
1460     MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1461     MCSymbol *EndOfSled = OutContext.createTempSymbol();
1462     OutStreamer->emitLabel(BeginOfSled);
1463     EmitToStreamer(*OutStreamer,
1464                    MCInstBuilder(PPC::B).addExpr(
1465                        MCSymbolRefExpr::create(EndOfSled, OutContext)));
1466     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1467     EmitToStreamer(
1468         *OutStreamer,
1469         MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1470     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1471     EmitToStreamer(*OutStreamer,
1472                    MCInstBuilder(PPC::BL8_NOP)
1473                        .addExpr(MCSymbolRefExpr::create(
1474                            OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
1475                            OutContext)));
1476     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1477     OutStreamer->emitLabel(EndOfSled);
1478     recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
1479     break;
1480   }
1481   case TargetOpcode::PATCHABLE_RET: {
1482     unsigned RetOpcode = MI->getOperand(0).getImm();
1483     MCInst RetInst;
1484     RetInst.setOpcode(RetOpcode);
1485     for (const auto &MO : llvm::drop_begin(MI->operands())) {
1486       MCOperand MCOp;
1487       if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
1488         RetInst.addOperand(MCOp);
1489     }
1490 
1491     bool IsConditional;
1492     if (RetOpcode == PPC::BCCLR) {
1493       IsConditional = true;
1494     } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
1495                RetOpcode == PPC::TCRETURNai8) {
1496       break;
1497     } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
1498       IsConditional = false;
1499     } else {
1500       EmitToStreamer(*OutStreamer, RetInst);
1501       break;
1502     }
1503 
1504     MCSymbol *FallthroughLabel;
1505     if (IsConditional) {
1506       // Before:
1507       //   bgtlr cr0
1508       //
1509       // After:
1510       //   ble cr0, .end
1511       // .p2align 3
1512       // .begin:
1513       //   blr    # lis 0, FuncId[16..32]
1514       //   nop    # li  0, FuncId[0..15]
1515       //   std 0, -8(1)
1516       //   mflr 0
1517       //   bl __xray_FunctionExit
1518       //   mtlr 0
1519       //   blr
1520       // .end:
1521       //
1522       // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1523       // of instructions change.
1524       FallthroughLabel = OutContext.createTempSymbol();
1525       EmitToStreamer(
1526           *OutStreamer,
1527           MCInstBuilder(PPC::BCC)
1528               .addImm(PPC::InvertPredicate(
1529                   static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
1530               .addReg(MI->getOperand(2).getReg())
1531               .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
1532       RetInst = MCInst();
1533       RetInst.setOpcode(PPC::BLR8);
1534     }
1535     // .p2align 3
1536     // .begin:
1537     //   b(lr)? # lis 0, FuncId[16..32]
1538     //   nop    # li  0, FuncId[0..15]
1539     //   std 0, -8(1)
1540     //   mflr 0
1541     //   bl __xray_FunctionExit
1542     //   mtlr 0
1543     //   b(lr)?
1544     //
1545     // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1546     // of instructions change.
1547     OutStreamer->emitCodeAlignment(8, &getSubtargetInfo());
1548     MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1549     OutStreamer->emitLabel(BeginOfSled);
1550     EmitToStreamer(*OutStreamer, RetInst);
1551     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1552     EmitToStreamer(
1553         *OutStreamer,
1554         MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1555     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1556     EmitToStreamer(*OutStreamer,
1557                    MCInstBuilder(PPC::BL8_NOP)
1558                        .addExpr(MCSymbolRefExpr::create(
1559                            OutContext.getOrCreateSymbol("__xray_FunctionExit"),
1560                            OutContext)));
1561     EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1562     EmitToStreamer(*OutStreamer, RetInst);
1563     if (IsConditional)
1564       OutStreamer->emitLabel(FallthroughLabel);
1565     recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
1566     break;
1567   }
1568   case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1569     llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
1570   case TargetOpcode::PATCHABLE_TAIL_CALL:
1571     // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
1572     // normal function exit from a tail exit.
1573     llvm_unreachable("Tail call is handled in the normal case. See comments "
1574                      "around this assert.");
1575   }
1576 }
1577 
1578 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
1579   if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
1580     PPCTargetStreamer *TS =
1581       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1582 
1583     if (TS)
1584       TS->emitAbiVersion(2);
1585   }
1586 
1587   if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
1588       !isPositionIndependent())
1589     return AsmPrinter::emitStartOfAsmFile(M);
1590 
1591   if (M.getPICLevel() == PICLevel::SmallPIC)
1592     return AsmPrinter::emitStartOfAsmFile(M);
1593 
1594   OutStreamer->switchSection(OutContext.getELFSection(
1595       ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
1596 
1597   MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
1598   MCSymbol *CurrentPos = OutContext.createTempSymbol();
1599 
1600   OutStreamer->emitLabel(CurrentPos);
1601 
1602   // The GOT pointer points to the middle of the GOT, in order to reference the
1603   // entire 64kB range.  0x8000 is the midpoint.
1604   const MCExpr *tocExpr =
1605     MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
1606                             MCConstantExpr::create(0x8000, OutContext),
1607                             OutContext);
1608 
1609   OutStreamer->emitAssignment(TOCSym, tocExpr);
1610 
1611   OutStreamer->switchSection(getObjFileLowering().getTextSection());
1612 }
1613 
1614 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
1615   // linux/ppc32 - Normal entry label.
1616   if (!Subtarget->isPPC64() &&
1617       (!isPositionIndependent() ||
1618        MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
1619     return AsmPrinter::emitFunctionEntryLabel();
1620 
1621   if (!Subtarget->isPPC64()) {
1622     const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1623     if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
1624       MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
1625       MCSymbol *PICBase = MF->getPICBaseSymbol();
1626       OutStreamer->emitLabel(RelocSymbol);
1627 
1628       const MCExpr *OffsExpr =
1629         MCBinaryExpr::createSub(
1630           MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
1631                                                                OutContext),
1632                                   MCSymbolRefExpr::create(PICBase, OutContext),
1633           OutContext);
1634       OutStreamer->emitValue(OffsExpr, 4);
1635       OutStreamer->emitLabel(CurrentFnSym);
1636       return;
1637     } else
1638       return AsmPrinter::emitFunctionEntryLabel();
1639   }
1640 
1641   // ELFv2 ABI - Normal entry label.
1642   if (Subtarget->isELFv2ABI()) {
1643     // In the Large code model, we allow arbitrary displacements between
1644     // the text section and its associated TOC section.  We place the
1645     // full 8-byte offset to the TOC in memory immediately preceding
1646     // the function global entry point.
1647     if (TM.getCodeModel() == CodeModel::Large
1648         && !MF->getRegInfo().use_empty(PPC::X2)) {
1649       const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1650 
1651       MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1652       MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
1653       const MCExpr *TOCDeltaExpr =
1654         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
1655                                 MCSymbolRefExpr::create(GlobalEPSymbol,
1656                                                         OutContext),
1657                                 OutContext);
1658 
1659       OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
1660       OutStreamer->emitValue(TOCDeltaExpr, 8);
1661     }
1662     return AsmPrinter::emitFunctionEntryLabel();
1663   }
1664 
1665   // Emit an official procedure descriptor.
1666   MCSectionSubPair Current = OutStreamer->getCurrentSection();
1667   MCSectionELF *Section = OutStreamer->getContext().getELFSection(
1668       ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
1669   OutStreamer->switchSection(Section);
1670   OutStreamer->emitLabel(CurrentFnSym);
1671   OutStreamer->emitValueToAlignment(8);
1672   MCSymbol *Symbol1 = CurrentFnSymForSize;
1673   // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
1674   // entry point.
1675   OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
1676                          8 /*size*/);
1677   MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1678   // Generates a R_PPC64_TOC relocation for TOC base insertion.
1679   OutStreamer->emitValue(
1680     MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
1681     8/*size*/);
1682   // Emit a null environment pointer.
1683   OutStreamer->emitIntValue(0, 8 /* size */);
1684   OutStreamer->switchSection(Current.first, Current.second);
1685 }
1686 
1687 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
1688   const DataLayout &DL = getDataLayout();
1689 
1690   bool isPPC64 = DL.getPointerSizeInBits() == 64;
1691 
1692   PPCTargetStreamer *TS =
1693       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1694 
1695   emitGNUAttributes(M);
1696 
1697   if (!TOC.empty()) {
1698     const char *Name = isPPC64 ? ".toc" : ".got2";
1699     MCSectionELF *Section = OutContext.getELFSection(
1700         Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
1701     OutStreamer->switchSection(Section);
1702     if (!isPPC64)
1703       OutStreamer->emitValueToAlignment(4);
1704 
1705     for (const auto &TOCMapPair : TOC) {
1706       const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
1707       MCSymbol *const TOCEntryLabel = TOCMapPair.second;
1708 
1709       OutStreamer->emitLabel(TOCEntryLabel);
1710       if (isPPC64 && TS != nullptr)
1711         TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
1712       else
1713         OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
1714     }
1715   }
1716 
1717   PPCAsmPrinter::emitEndOfAsmFile(M);
1718 }
1719 
1720 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
1721 void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
1722   // In the ELFv2 ABI, in functions that use the TOC register, we need to
1723   // provide two entry points.  The ABI guarantees that when calling the
1724   // local entry point, r2 is set up by the caller to contain the TOC base
1725   // for this function, and when calling the global entry point, r12 is set
1726   // up by the caller to hold the address of the global entry point.  We
1727   // thus emit a prefix sequence along the following lines:
1728   //
1729   // func:
1730   // .Lfunc_gepNN:
1731   //         # global entry point
1732   //         addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
1733   //         addi  r2,r2,(.TOC.-.Lfunc_gepNN)@l
1734   // .Lfunc_lepNN:
1735   //         .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
1736   //         # local entry point, followed by function body
1737   //
1738   // For the Large code model, we create
1739   //
1740   // .Lfunc_tocNN:
1741   //         .quad .TOC.-.Lfunc_gepNN      # done by EmitFunctionEntryLabel
1742   // func:
1743   // .Lfunc_gepNN:
1744   //         # global entry point
1745   //         ld    r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
1746   //         add   r2,r2,r12
1747   // .Lfunc_lepNN:
1748   //         .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
1749   //         # local entry point, followed by function body
1750   //
1751   // This ensures we have r2 set up correctly while executing the function
1752   // body, no matter which entry point is called.
1753   const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1754   const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
1755                           !MF->getRegInfo().use_empty(PPC::R2);
1756   const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
1757                                 UsesX2OrR2 && PPCFI->usesTOCBasePtr();
1758   const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
1759                                    Subtarget->isELFv2ABI() && UsesX2OrR2;
1760 
1761   // Only do all that if the function uses R2 as the TOC pointer
1762   // in the first place. We don't need the global entry point if the
1763   // function uses R2 as an allocatable register.
1764   if (NonPCrelGEPRequired || PCrelGEPRequired) {
1765     // Note: The logic here must be synchronized with the code in the
1766     // branch-selection pass which sets the offset of the first block in the
1767     // function. This matters because it affects the alignment.
1768     MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
1769     OutStreamer->emitLabel(GlobalEntryLabel);
1770     const MCSymbolRefExpr *GlobalEntryLabelExp =
1771       MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
1772 
1773     if (TM.getCodeModel() != CodeModel::Large) {
1774       MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1775       const MCExpr *TOCDeltaExpr =
1776         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
1777                                 GlobalEntryLabelExp, OutContext);
1778 
1779       const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
1780       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1781                                    .addReg(PPC::X2)
1782                                    .addReg(PPC::X12)
1783                                    .addExpr(TOCDeltaHi));
1784 
1785       const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
1786       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
1787                                    .addReg(PPC::X2)
1788                                    .addReg(PPC::X2)
1789                                    .addExpr(TOCDeltaLo));
1790     } else {
1791       MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
1792       const MCExpr *TOCOffsetDeltaExpr =
1793         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
1794                                 GlobalEntryLabelExp, OutContext);
1795 
1796       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
1797                                    .addReg(PPC::X2)
1798                                    .addExpr(TOCOffsetDeltaExpr)
1799                                    .addReg(PPC::X12));
1800       EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
1801                                    .addReg(PPC::X2)
1802                                    .addReg(PPC::X2)
1803                                    .addReg(PPC::X12));
1804     }
1805 
1806     MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
1807     OutStreamer->emitLabel(LocalEntryLabel);
1808     const MCSymbolRefExpr *LocalEntryLabelExp =
1809        MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
1810     const MCExpr *LocalOffsetExp =
1811       MCBinaryExpr::createSub(LocalEntryLabelExp,
1812                               GlobalEntryLabelExp, OutContext);
1813 
1814     PPCTargetStreamer *TS =
1815       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1816 
1817     if (TS)
1818       TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
1819   } else if (Subtarget->isUsingPCRelativeCalls()) {
1820     // When generating the entry point for a function we have a few scenarios
1821     // based on whether or not that function uses R2 and whether or not that
1822     // function makes calls (or is a leaf function).
1823     // 1) A leaf function that does not use R2 (or treats it as callee-saved
1824     //    and preserves it). In this case st_other=0 and both
1825     //    the local and global entry points for the function are the same.
1826     //    No special entry point code is required.
1827     // 2) A function uses the TOC pointer R2. This function may or may not have
1828     //    calls. In this case st_other=[2,6] and the global and local entry
1829     //    points are different. Code to correctly setup the TOC pointer in R2
1830     //    is put between the global and local entry points. This case is
1831     //    covered by the if statatement above.
1832     // 3) A function does not use the TOC pointer R2 but does have calls.
1833     //    In this case st_other=1 since we do not know whether or not any
1834     //    of the callees clobber R2. This case is dealt with in this else if
1835     //    block. Tail calls are considered calls and the st_other should also
1836     //    be set to 1 in that case as well.
1837     // 4) The function does not use the TOC pointer but R2 is used inside
1838     //    the function. In this case st_other=1 once again.
1839     // 5) This function uses inline asm. We mark R2 as reserved if the function
1840     //    has inline asm as we have to assume that it may be used.
1841     if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
1842         MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
1843       PPCTargetStreamer *TS =
1844           static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1845       if (TS)
1846         TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
1847                            MCConstantExpr::create(1, OutContext));
1848     }
1849   }
1850 }
1851 
1852 /// EmitFunctionBodyEnd - Print the traceback table before the .size
1853 /// directive.
1854 ///
1855 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
1856   // Only the 64-bit target requires a traceback table.  For now,
1857   // we only emit the word of zeroes that GDB requires to find
1858   // the end of the function, and zeroes for the eight-byte
1859   // mandatory fields.
1860   // FIXME: We should fill in the eight-byte mandatory fields as described in
1861   // the PPC64 ELF ABI (this is a low-priority item because GDB does not
1862   // currently make use of these fields).
1863   if (Subtarget->isPPC64()) {
1864     OutStreamer->emitIntValue(0, 4/*size*/);
1865     OutStreamer->emitIntValue(0, 8/*size*/);
1866   }
1867 }
1868 
1869 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
1870                                    MCSymbol *GVSym) const {
1871 
1872   assert(MAI->hasVisibilityOnlyWithLinkage() &&
1873          "AIX's linkage directives take a visibility setting.");
1874 
1875   MCSymbolAttr LinkageAttr = MCSA_Invalid;
1876   switch (GV->getLinkage()) {
1877   case GlobalValue::ExternalLinkage:
1878     LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
1879     break;
1880   case GlobalValue::LinkOnceAnyLinkage:
1881   case GlobalValue::LinkOnceODRLinkage:
1882   case GlobalValue::WeakAnyLinkage:
1883   case GlobalValue::WeakODRLinkage:
1884   case GlobalValue::ExternalWeakLinkage:
1885     LinkageAttr = MCSA_Weak;
1886     break;
1887   case GlobalValue::AvailableExternallyLinkage:
1888     LinkageAttr = MCSA_Extern;
1889     break;
1890   case GlobalValue::PrivateLinkage:
1891     return;
1892   case GlobalValue::InternalLinkage:
1893     assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
1894            "InternalLinkage should not have other visibility setting.");
1895     LinkageAttr = MCSA_LGlobal;
1896     break;
1897   case GlobalValue::AppendingLinkage:
1898     llvm_unreachable("Should never emit this");
1899   case GlobalValue::CommonLinkage:
1900     llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
1901   }
1902 
1903   assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
1904 
1905   MCSymbolAttr VisibilityAttr = MCSA_Invalid;
1906   if (!TM.getIgnoreXCOFFVisibility()) {
1907     if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility())
1908       report_fatal_error(
1909           "Cannot not be both dllexport and non-default visibility");
1910     switch (GV->getVisibility()) {
1911 
1912     // TODO: "internal" Visibility needs to go here.
1913     case GlobalValue::DefaultVisibility:
1914       if (GV->hasDLLExportStorageClass())
1915         VisibilityAttr = MAI->getExportedVisibilityAttr();
1916       break;
1917     case GlobalValue::HiddenVisibility:
1918       VisibilityAttr = MAI->getHiddenVisibilityAttr();
1919       break;
1920     case GlobalValue::ProtectedVisibility:
1921       VisibilityAttr = MAI->getProtectedVisibilityAttr();
1922       break;
1923     }
1924   }
1925 
1926   OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
1927                                                     VisibilityAttr);
1928 }
1929 
1930 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1931   // Setup CurrentFnDescSym and its containing csect.
1932   MCSectionXCOFF *FnDescSec =
1933       cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
1934           &MF.getFunction(), TM));
1935   FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
1936 
1937   CurrentFnDescSym = FnDescSec->getQualNameSymbol();
1938 
1939   return AsmPrinter::SetupMachineFunction(MF);
1940 }
1941 
1942 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
1943   // Calculate the number of VRs be saved.
1944   // Vector registers 20 through 31 are marked as reserved and cannot be used
1945   // in the default ABI.
1946   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
1947   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
1948       TM.getAIXExtendedAltivecABI()) {
1949     const MachineRegisterInfo &MRI = MF->getRegInfo();
1950     for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
1951       if (MRI.isPhysRegModified(Reg))
1952         // Number of VRs saved.
1953         return PPC::V31 - Reg + 1;
1954   }
1955   return 0;
1956 }
1957 
1958 void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
1959 
1960   if (!TM.getXCOFFTracebackTable())
1961     return;
1962 
1963   emitTracebackTable();
1964 
1965   // If ShouldEmitEHBlock returns true, then the eh info table
1966   // will be emitted via `AIXException::endFunction`. Otherwise, we
1967   // need to emit a dumy eh info table when VRs are saved. We could not
1968   // consolidate these two places into one because there is no easy way
1969   // to access register information in `AIXException` class.
1970   if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
1971       (getNumberOfVRSaved() > 0)) {
1972     // Emit dummy EH Info Table.
1973     OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection());
1974     MCSymbol *EHInfoLabel =
1975         TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
1976     OutStreamer->emitLabel(EHInfoLabel);
1977 
1978     // Version number.
1979     OutStreamer->emitInt32(0);
1980 
1981     const DataLayout &DL = MMI->getModule()->getDataLayout();
1982     const unsigned PointerSize = DL.getPointerSize();
1983     // Add necessary paddings in 64 bit mode.
1984     OutStreamer->emitValueToAlignment(PointerSize);
1985 
1986     OutStreamer->emitIntValue(0, PointerSize);
1987     OutStreamer->emitIntValue(0, PointerSize);
1988     OutStreamer->switchSection(MF->getSection());
1989   }
1990 }
1991 
1992 void PPCAIXAsmPrinter::emitTracebackTable() {
1993 
1994   // Create a symbol for the end of function.
1995   MCSymbol *FuncEnd = createTempSymbol(MF->getName());
1996   OutStreamer->emitLabel(FuncEnd);
1997 
1998   OutStreamer->AddComment("Traceback table begin");
1999   // Begin with a fullword of zero.
2000   OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
2001 
2002   SmallString<128> CommentString;
2003   raw_svector_ostream CommentOS(CommentString);
2004 
2005   auto EmitComment = [&]() {
2006     OutStreamer->AddComment(CommentOS.str());
2007     CommentString.clear();
2008   };
2009 
2010   auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
2011     EmitComment();
2012     OutStreamer->emitIntValueInHexWithPadding(Value, Size);
2013   };
2014 
2015   unsigned int Version = 0;
2016   CommentOS << "Version = " << Version;
2017   EmitCommentAndValue(Version, 1);
2018 
2019   // There is a lack of information in the IR to assist with determining the
2020   // source language. AIX exception handling mechanism would only search for
2021   // personality routine and LSDA area when such language supports exception
2022   // handling. So to be conservatively correct and allow runtime to do its job,
2023   // we need to set it to C++ for now.
2024   TracebackTable::LanguageID LanguageIdentifier =
2025       TracebackTable::CPlusPlus; // C++
2026 
2027   CommentOS << "Language = "
2028             << getNameForTracebackTableLanguageId(LanguageIdentifier);
2029   EmitCommentAndValue(LanguageIdentifier, 1);
2030 
2031   //  This is only populated for the third and fourth bytes.
2032   uint32_t FirstHalfOfMandatoryField = 0;
2033 
2034   // Emit the 3rd byte of the mandatory field.
2035 
2036   // We always set traceback offset bit to true.
2037   FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
2038 
2039   const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2040   const MachineRegisterInfo &MRI = MF->getRegInfo();
2041 
2042   // Check the function uses floating-point processor instructions or not
2043   for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
2044     if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2045       FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
2046       break;
2047     }
2048   }
2049 
2050 #define GENBOOLCOMMENT(Prefix, V, Field)                                       \
2051   CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-")   \
2052             << #Field
2053 
2054 #define GENVALUECOMMENT(PrefixAndName, V, Field)                               \
2055   CommentOS << (PrefixAndName) << " = "                                        \
2056             << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >>  \
2057                                      (TracebackTable::Field##Shift))
2058 
2059   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
2060   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
2061   EmitComment();
2062 
2063   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
2064   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
2065   EmitComment();
2066 
2067   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
2068   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
2069   EmitComment();
2070 
2071   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
2072   EmitComment();
2073   GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
2074                  IsFloatingPointOperationLogOrAbortEnabled);
2075   EmitComment();
2076 
2077   OutStreamer->emitIntValueInHexWithPadding(
2078       (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2079 
2080   // Set the 4th byte of the mandatory field.
2081   FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
2082 
2083   const PPCRegisterInfo *RegInfo =
2084       static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo());
2085   Register FrameReg = RegInfo->getFrameRegister(*MF);
2086   if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31))
2087     FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
2088 
2089   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
2090   if (!MustSaveCRs.empty())
2091     FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
2092 
2093   if (FI->mustSaveLR())
2094     FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
2095 
2096   GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
2097   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
2098   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
2099   EmitComment();
2100   GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
2101                   OnConditionDirective);
2102   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
2103   GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
2104   EmitComment();
2105   OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
2106                                             1);
2107 
2108   // Set the 5th byte of mandatory field.
2109   uint32_t SecondHalfOfMandatoryField = 0;
2110 
2111   // Always store back chain.
2112   SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask;
2113 
2114   uint32_t FPRSaved = 0;
2115   for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
2116     if (MRI.isPhysRegModified(Reg)) {
2117       FPRSaved = PPC::F31 - Reg + 1;
2118       break;
2119     }
2120   }
2121   SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
2122                                 TracebackTable::FPRSavedMask;
2123   GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
2124   GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
2125   GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
2126   EmitComment();
2127   OutStreamer->emitIntValueInHexWithPadding(
2128       (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
2129 
2130   // Set the 6th byte of mandatory field.
2131 
2132   // Check whether has Vector Instruction,We only treat instructions uses vector
2133   // register as vector instructions.
2134   bool HasVectorInst = false;
2135   for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
2136     if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2137       // Has VMX instruction.
2138       HasVectorInst = true;
2139       break;
2140     }
2141 
2142   if (FI->hasVectorParms() || HasVectorInst)
2143     SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
2144 
2145   uint16_t NumOfVRSaved = getNumberOfVRSaved();
2146   bool ShouldEmitEHBlock =
2147       TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
2148 
2149   if (ShouldEmitEHBlock)
2150     SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
2151 
2152   uint32_t GPRSaved = 0;
2153 
2154   // X13 is reserved under 64-bit environment.
2155   unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
2156   unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
2157 
2158   for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
2159     if (MRI.isPhysRegModified(Reg)) {
2160       GPRSaved = GPREnd - Reg + 1;
2161       break;
2162     }
2163   }
2164 
2165   SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
2166                                 TracebackTable::GPRSavedMask;
2167 
2168   GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
2169   GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
2170   GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
2171   EmitComment();
2172   OutStreamer->emitIntValueInHexWithPadding(
2173       (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
2174 
2175   // Set the 7th byte of mandatory field.
2176   uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
2177   SecondHalfOfMandatoryField |=
2178       (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
2179       TracebackTable::NumberOfFixedParmsMask;
2180   GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
2181                   NumberOfFixedParms);
2182   EmitComment();
2183   OutStreamer->emitIntValueInHexWithPadding(
2184       (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2185 
2186   // Set the 8th byte of mandatory field.
2187 
2188   // Always set parameter on stack.
2189   SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
2190 
2191   uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
2192   SecondHalfOfMandatoryField |=
2193       (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
2194       TracebackTable::NumberOfFloatingPointParmsMask;
2195 
2196   GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
2197                   NumberOfFloatingPointParms);
2198   GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
2199   EmitComment();
2200   OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
2201                                             1);
2202 
2203   // Generate the optional fields of traceback table.
2204 
2205   // Parameter type.
2206   if (NumberOfFixedParms || NumberOfFPParms) {
2207     uint32_t ParmsTypeValue = FI->getParmsType();
2208 
2209     Expected<SmallString<32>> ParmsType =
2210         FI->hasVectorParms()
2211             ? XCOFF::parseParmsTypeWithVecInfo(
2212                   ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
2213                   FI->getVectorParmsNum())
2214             : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
2215                                     NumberOfFPParms);
2216 
2217     assert(ParmsType && toString(ParmsType.takeError()).c_str());
2218     if (ParmsType) {
2219       CommentOS << "Parameter type = " << ParmsType.get();
2220       EmitComment();
2221     }
2222     OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
2223                                               sizeof(ParmsTypeValue));
2224   }
2225   // Traceback table offset.
2226   OutStreamer->AddComment("Function size");
2227   if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
2228     MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
2229         &(MF->getFunction()), TM);
2230     OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
2231   }
2232 
2233   // Since we unset the Int_Handler.
2234   if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
2235     report_fatal_error("Hand_Mask not implement yet");
2236 
2237   if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
2238     report_fatal_error("Ctl_Info not implement yet");
2239 
2240   if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
2241     StringRef Name = MF->getName().substr(0, INT16_MAX);
2242     int16_t NameLength = Name.size();
2243     CommentOS << "Function name len = "
2244               << static_cast<unsigned int>(NameLength);
2245     EmitCommentAndValue(NameLength, 2);
2246     OutStreamer->AddComment("Function Name");
2247     OutStreamer->emitBytes(Name);
2248   }
2249 
2250   if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
2251     uint8_t AllocReg = XCOFF::AllocRegNo;
2252     OutStreamer->AddComment("AllocaUsed");
2253     OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
2254   }
2255 
2256   if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
2257     uint16_t VRData = 0;
2258     if (NumOfVRSaved) {
2259       // Number of VRs saved.
2260       VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
2261                 TracebackTable::NumberOfVRSavedMask;
2262       // This bit is supposed to set only when the special register
2263       // VRSAVE is saved on stack.
2264       // However, IBM XL compiler sets the bit when any vector registers
2265       // are saved on the stack. We will follow XL's behavior on AIX
2266       // so that we don't get surprise behavior change for C code.
2267       VRData |= TracebackTable::IsVRSavedOnStackMask;
2268     }
2269 
2270     // Set has_varargs.
2271     if (FI->getVarArgsFrameIndex())
2272       VRData |= TracebackTable::HasVarArgsMask;
2273 
2274     // Vector parameters number.
2275     unsigned VectorParmsNum = FI->getVectorParmsNum();
2276     VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
2277               TracebackTable::NumberOfVectorParmsMask;
2278 
2279     if (HasVectorInst)
2280       VRData |= TracebackTable::HasVMXInstructionMask;
2281 
2282     GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
2283     GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
2284     GENBOOLCOMMENT(", ", VRData, HasVarArgs);
2285     EmitComment();
2286     OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
2287 
2288     GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
2289     GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
2290     EmitComment();
2291     OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
2292 
2293     uint32_t VecParmTypeValue = FI->getVecExtParmsType();
2294 
2295     Expected<SmallString<32>> VecParmsType =
2296         XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
2297     assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
2298     if (VecParmsType) {
2299       CommentOS << "Vector Parameter type = " << VecParmsType.get();
2300       EmitComment();
2301     }
2302     OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
2303                                               sizeof(VecParmTypeValue));
2304     // Padding 2 bytes.
2305     CommentOS << "Padding";
2306     EmitCommentAndValue(0, 2);
2307   }
2308 
2309   uint8_t ExtensionTableFlag = 0;
2310   if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
2311     if (ShouldEmitEHBlock)
2312       ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
2313     if (EnableSSPCanaryBitInTB &&
2314         TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
2315       ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
2316 
2317     CommentOS << "ExtensionTableFlag = "
2318               << getExtendedTBTableFlagString(ExtensionTableFlag);
2319     EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
2320   }
2321 
2322   if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
2323     auto &Ctx = OutStreamer->getContext();
2324     MCSymbol *EHInfoSym =
2325         TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2326     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym);
2327     const MCSymbol *TOCBaseSym =
2328         cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2329             ->getQualNameSymbol();
2330     const MCExpr *Exp =
2331         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2332                                 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2333 
2334     const DataLayout &DL = getDataLayout();
2335     OutStreamer->emitValueToAlignment(4);
2336     OutStreamer->AddComment("EHInfo Table");
2337     OutStreamer->emitValue(Exp, DL.getPointerSize());
2338   }
2339 #undef GENBOOLCOMMENT
2340 #undef GENVALUECOMMENT
2341 }
2342 
2343 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
2344   return GV->hasAppendingLinkage() &&
2345          StringSwitch<bool>(GV->getName())
2346              // TODO: Linker could still eliminate the GV if we just skip
2347              // handling llvm.used array. Skipping them for now until we or the
2348              // AIX OS team come up with a good solution.
2349              .Case("llvm.used", true)
2350              // It's correct to just skip llvm.compiler.used array here.
2351              .Case("llvm.compiler.used", true)
2352              .Default(false);
2353 }
2354 
2355 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
2356   return StringSwitch<bool>(GV->getName())
2357       .Cases("llvm.global_ctors", "llvm.global_dtors", true)
2358       .Default(false);
2359 }
2360 
2361 uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) {
2362   if (auto *GA = dyn_cast<GlobalAlias>(C))
2363     return getAliasOffset(GA->getAliasee());
2364   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2365     const MCExpr *LowC = lowerConstant(CE);
2366     const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC);
2367     if (!CBE)
2368       return 0;
2369     if (CBE->getOpcode() != MCBinaryExpr::Add)
2370       report_fatal_error("Only adding an offset is supported now.");
2371     auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS());
2372     if (!RHS)
2373       report_fatal_error("Unable to get the offset of alias.");
2374     return RHS->getValue();
2375   }
2376   return 0;
2377 }
2378 
2379 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
2380   // Special LLVM global arrays have been handled at the initialization.
2381   if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
2382     return;
2383 
2384   // If the Global Variable has the toc-data attribute, it needs to be emitted
2385   // when we emit the .toc section.
2386   if (GV->hasAttribute("toc-data")) {
2387     TOCDataGlobalVars.push_back(GV);
2388     return;
2389   }
2390 
2391   emitGlobalVariableHelper(GV);
2392 }
2393 
2394 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
2395   assert(!GV->getName().startswith("llvm.") &&
2396          "Unhandled intrinsic global variable.");
2397 
2398   if (GV->hasComdat())
2399     report_fatal_error("COMDAT not yet supported by AIX.");
2400 
2401   MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
2402 
2403   if (GV->isDeclarationForLinker()) {
2404     emitLinkage(GV, GVSym);
2405     return;
2406   }
2407 
2408   SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
2409   if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
2410       !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
2411     report_fatal_error("Encountered a global variable kind that is "
2412                        "not supported yet.");
2413 
2414   // Print GV in verbose mode
2415   if (isVerbose()) {
2416     if (GV->hasInitializer()) {
2417       GV->printAsOperand(OutStreamer->getCommentOS(),
2418                          /*PrintType=*/false, GV->getParent());
2419       OutStreamer->getCommentOS() << '\n';
2420     }
2421   }
2422 
2423   MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2424       getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
2425 
2426   // Switch to the containing csect.
2427   OutStreamer->switchSection(Csect);
2428 
2429   const DataLayout &DL = GV->getParent()->getDataLayout();
2430 
2431   // Handle common and zero-initialized local symbols.
2432   if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
2433       GVKind.isThreadBSSLocal()) {
2434     Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV));
2435     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
2436     GVSym->setStorageClass(
2437         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
2438 
2439     if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal())
2440       OutStreamer->emitXCOFFLocalCommonSymbol(
2441           OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
2442           GVSym, Alignment.value());
2443     else
2444       OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value());
2445     return;
2446   }
2447 
2448   MCSymbol *EmittedInitSym = GVSym;
2449 
2450   // Emit linkage for the global variable and its aliases.
2451   emitLinkage(GV, EmittedInitSym);
2452   for (const GlobalAlias *GA : GOAliasMap[GV])
2453     emitLinkage(GA, getSymbol(GA));
2454 
2455   emitAlignment(getGVAlignment(GV, DL), GV);
2456 
2457   // When -fdata-sections is enabled, every GlobalVariable will
2458   // be put into its own csect; therefore, label is not necessary here.
2459   if (!TM.getDataSections() || GV->hasSection())
2460     OutStreamer->emitLabel(EmittedInitSym);
2461 
2462   // No alias to emit.
2463   if (!GOAliasMap[GV].size()) {
2464     emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
2465     return;
2466   }
2467 
2468   // Aliases with the same offset should be aligned. Record the list of aliases
2469   // associated with the offset.
2470   AliasMapTy AliasList;
2471   for (const GlobalAlias *GA : GOAliasMap[GV])
2472     AliasList[getAliasOffset(GA->getAliasee())].push_back(GA);
2473 
2474   // Emit alias label and element value for global variable.
2475   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer(),
2476                      &AliasList);
2477 }
2478 
2479 void PPCAIXAsmPrinter::emitFunctionDescriptor() {
2480   const DataLayout &DL = getDataLayout();
2481   const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
2482 
2483   MCSectionSubPair Current = OutStreamer->getCurrentSection();
2484   // Emit function descriptor.
2485   OutStreamer->switchSection(
2486       cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
2487 
2488   // Emit aliasing label for function descriptor csect.
2489   for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2490     OutStreamer->emitLabel(getSymbol(Alias));
2491 
2492   // Emit function entry point address.
2493   OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
2494                          PointerSize);
2495   // Emit TOC base address.
2496   const MCSymbol *TOCBaseSym =
2497       cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2498           ->getQualNameSymbol();
2499   OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
2500                          PointerSize);
2501   // Emit a null environment pointer.
2502   OutStreamer->emitIntValue(0, PointerSize);
2503 
2504   OutStreamer->switchSection(Current.first, Current.second);
2505 }
2506 
2507 void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
2508   // It's not necessary to emit the label when we have individual
2509   // function in its own csect.
2510   if (!TM.getFunctionSections())
2511     PPCAsmPrinter::emitFunctionEntryLabel();
2512 
2513   // Emit aliasing label for function entry point label.
2514   for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2515     OutStreamer->emitLabel(
2516         getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
2517 }
2518 
2519 void PPCAIXAsmPrinter::emitPGORefs() {
2520   if (OutContext.hasXCOFFSection(
2521           "__llvm_prf_cnts",
2522           XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2523     MCSection *CntsSection = OutContext.getXCOFFSection(
2524         "__llvm_prf_cnts", SectionKind::getData(),
2525         XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
2526         /*MultiSymbolsAllowed*/ true);
2527 
2528     OutStreamer->switchSection(CntsSection);
2529     if (OutContext.hasXCOFFSection(
2530             "__llvm_prf_data",
2531             XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2532       OutStreamer->emitXCOFFRefDirective("__llvm_prf_data[RW]");
2533     if (OutContext.hasXCOFFSection(
2534             "__llvm_prf_names",
2535             XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD)))
2536       OutStreamer->emitXCOFFRefDirective("__llvm_prf_names[RO]");
2537     if (OutContext.hasXCOFFSection(
2538             "__llvm_prf_vnds",
2539             XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2540       OutStreamer->emitXCOFFRefDirective("__llvm_prf_vnds[RW]");
2541   }
2542 }
2543 
2544 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
2545   // If there are no functions and there are no toc-data definitions in this
2546   // module, we will never need to reference the TOC base.
2547   if (M.empty() && TOCDataGlobalVars.empty())
2548     return;
2549 
2550   emitPGORefs();
2551 
2552   // Switch to section to emit TOC base.
2553   OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection());
2554 
2555   PPCTargetStreamer *TS =
2556       static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2557 
2558   for (auto &I : TOC) {
2559     MCSectionXCOFF *TCEntry;
2560     // Setup the csect for the current TC entry. If the variant kind is
2561     // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a
2562     // new symbol to prefix the name with a dot.
2563     if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) {
2564       SmallString<128> Name;
2565       StringRef Prefix = ".";
2566       Name += Prefix;
2567       Name += I.first.first->getName();
2568       MCSymbol *S = OutContext.getOrCreateSymbol(Name);
2569       TCEntry = cast<MCSectionXCOFF>(
2570           getObjFileLowering().getSectionForTOCEntry(S, TM));
2571     } else {
2572       TCEntry = cast<MCSectionXCOFF>(
2573           getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
2574     }
2575     OutStreamer->switchSection(TCEntry);
2576 
2577     OutStreamer->emitLabel(I.second);
2578     if (TS != nullptr)
2579       TS->emitTCEntry(*I.first.first, I.first.second);
2580   }
2581 
2582   for (const auto *GV : TOCDataGlobalVars)
2583     emitGlobalVariableHelper(GV);
2584 }
2585 
2586 bool PPCAIXAsmPrinter::doInitialization(Module &M) {
2587   const bool Result = PPCAsmPrinter::doInitialization(M);
2588 
2589   auto setCsectAlignment = [this](const GlobalObject *GO) {
2590     // Declarations have 0 alignment which is set by default.
2591     if (GO->isDeclarationForLinker())
2592       return;
2593 
2594     SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
2595     MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2596         getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
2597 
2598     Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout());
2599     if (GOAlign > Csect->getAlignment())
2600       Csect->setAlignment(GOAlign);
2601   };
2602 
2603   // We need to know, up front, the alignment of csects for the assembly path,
2604   // because once a .csect directive gets emitted, we could not change the
2605   // alignment value on it.
2606   for (const auto &G : M.globals()) {
2607     if (isSpecialLLVMGlobalArrayToSkip(&G))
2608       continue;
2609 
2610     if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
2611       // Generate a format indicator and a unique module id to be a part of
2612       // the sinit and sterm function names.
2613       if (FormatIndicatorAndUniqueModId.empty()) {
2614         std::string UniqueModuleId = getUniqueModuleId(&M);
2615         if (UniqueModuleId != "")
2616           // TODO: Use source file full path to generate the unique module id
2617           // and add a format indicator as a part of function name in case we
2618           // will support more than one format.
2619           FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
2620         else
2621           // Use the Pid and current time as the unique module id when we cannot
2622           // generate one based on a module's strong external symbols.
2623           // FIXME: Adjust the comment accordingly after we use source file full
2624           // path instead.
2625           FormatIndicatorAndUniqueModId =
2626               "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) +
2627               "_" + llvm::itostr(time(nullptr));
2628       }
2629 
2630       emitSpecialLLVMGlobal(&G);
2631       continue;
2632     }
2633 
2634     setCsectAlignment(&G);
2635   }
2636 
2637   for (const auto &F : M)
2638     setCsectAlignment(&F);
2639 
2640   // Construct an aliasing list for each GlobalObject.
2641   for (const auto &Alias : M.aliases()) {
2642     const GlobalObject *Base = Alias.getAliaseeObject();
2643     if (!Base)
2644       report_fatal_error(
2645           "alias without a base object is not yet supported on AIX");
2646     GOAliasMap[Base].push_back(&Alias);
2647   }
2648 
2649   return Result;
2650 }
2651 
2652 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
2653   switch (MI->getOpcode()) {
2654   default:
2655     break;
2656   case PPC::GETtlsADDR64AIX:
2657   case PPC::GETtlsADDR32AIX: {
2658     // The reference to .__tls_get_addr is unknown to the assembler
2659     // so we need to emit an external symbol reference.
2660     MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
2661     ExtSymSDNodeSymbols.insert(TlsGetAddr);
2662     break;
2663   }
2664   case PPC::BL8:
2665   case PPC::BL:
2666   case PPC::BL8_NOP:
2667   case PPC::BL_NOP: {
2668     const MachineOperand &MO = MI->getOperand(0);
2669     if (MO.isSymbol()) {
2670       MCSymbolXCOFF *S =
2671           cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
2672       ExtSymSDNodeSymbols.insert(S);
2673     }
2674   } break;
2675   case PPC::BL_TLS:
2676   case PPC::BL8_TLS:
2677   case PPC::BL8_TLS_:
2678   case PPC::BL8_NOP_TLS:
2679     report_fatal_error("TLS call not yet implemented");
2680   case PPC::TAILB:
2681   case PPC::TAILB8:
2682   case PPC::TAILBA:
2683   case PPC::TAILBA8:
2684   case PPC::TAILBCTR:
2685   case PPC::TAILBCTR8:
2686     if (MI->getOperand(0).isSymbol())
2687       report_fatal_error("Tail call for extern symbol not yet supported.");
2688     break;
2689   case PPC::DST:
2690   case PPC::DST64:
2691   case PPC::DSTT:
2692   case PPC::DSTT64:
2693   case PPC::DSTST:
2694   case PPC::DSTST64:
2695   case PPC::DSTSTT:
2696   case PPC::DSTSTT64:
2697     EmitToStreamer(
2698         *OutStreamer,
2699         MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
2700     return;
2701   }
2702   return PPCAsmPrinter::emitInstruction(MI);
2703 }
2704 
2705 bool PPCAIXAsmPrinter::doFinalization(Module &M) {
2706   // Do streamer related finalization for DWARF.
2707   if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo())
2708     OutStreamer->doFinalizationAtSectionEnd(
2709         OutStreamer->getContext().getObjectFileInfo()->getTextSection());
2710 
2711   for (MCSymbol *Sym : ExtSymSDNodeSymbols)
2712     OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
2713   return PPCAsmPrinter::doFinalization(M);
2714 }
2715 
2716 static unsigned mapToSinitPriority(int P) {
2717   if (P < 0 || P > 65535)
2718     report_fatal_error("invalid init priority");
2719 
2720   if (P <= 20)
2721     return P;
2722 
2723   if (P < 81)
2724     return 20 + (P - 20) * 16;
2725 
2726   if (P <= 1124)
2727     return 1004 + (P - 81);
2728 
2729   if (P < 64512)
2730     return 2047 + (P - 1124) * 33878;
2731 
2732   return 2147482625u + (P - 64512);
2733 }
2734 
2735 static std::string convertToSinitPriority(int Priority) {
2736   // This helper function converts clang init priority to values used in sinit
2737   // and sterm functions.
2738   //
2739   // The conversion strategies are:
2740   // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
2741   // reserved priority range [0, 1023] by
2742   // - directly mapping the first 21 and the last 20 elements of the ranges
2743   // - linear interpolating the intermediate values with a step size of 16.
2744   //
2745   // We map the non reserved clang/gnu priority range of [101, 65535] into the
2746   // sinit/sterm priority range [1024, 2147483648] by:
2747   // - directly mapping the first and the last 1024 elements of the ranges
2748   // - linear interpolating the intermediate values with a step size of 33878.
2749   unsigned int P = mapToSinitPriority(Priority);
2750 
2751   std::string PrioritySuffix;
2752   llvm::raw_string_ostream os(PrioritySuffix);
2753   os << llvm::format_hex_no_prefix(P, 8);
2754   os.flush();
2755   return PrioritySuffix;
2756 }
2757 
2758 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
2759                                           const Constant *List, bool IsCtor) {
2760   SmallVector<Structor, 8> Structors;
2761   preprocessXXStructorList(DL, List, Structors);
2762   if (Structors.empty())
2763     return;
2764 
2765   unsigned Index = 0;
2766   for (Structor &S : Structors) {
2767     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
2768       S.Func = CE->getOperand(0);
2769 
2770     llvm::GlobalAlias::create(
2771         GlobalValue::ExternalLinkage,
2772         (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
2773             llvm::Twine(convertToSinitPriority(S.Priority)) +
2774             llvm::Twine("_", FormatIndicatorAndUniqueModId) +
2775             llvm::Twine("_", llvm::utostr(Index++)),
2776         cast<Function>(S.Func));
2777   }
2778 }
2779 
2780 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
2781                                           unsigned Encoding) {
2782   if (GV) {
2783     MCSymbol *TypeInfoSym = TM.getSymbol(GV);
2784     MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym);
2785     const MCSymbol *TOCBaseSym =
2786         cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2787             ->getQualNameSymbol();
2788     auto &Ctx = OutStreamer->getContext();
2789     const MCExpr *Exp =
2790         MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2791                                 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2792     OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
2793   } else
2794     OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
2795 }
2796 
2797 // Return a pass that prints the PPC assembly code for a MachineFunction to the
2798 // given output stream.
2799 static AsmPrinter *
2800 createPPCAsmPrinterPass(TargetMachine &tm,
2801                         std::unique_ptr<MCStreamer> &&Streamer) {
2802   if (tm.getTargetTriple().isOSAIX())
2803     return new PPCAIXAsmPrinter(tm, std::move(Streamer));
2804 
2805   return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
2806 }
2807 
2808 // Force static initialization.
2809 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
2810   TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
2811                                      createPPCAsmPrinterPass);
2812   TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
2813                                      createPPCAsmPrinterPass);
2814   TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
2815                                      createPPCAsmPrinterPass);
2816   TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
2817                                      createPPCAsmPrinterPass);
2818 }
2819