1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/PPCMCExpr.h" 10 #include "MCTargetDesc/PPCMCTargetDesc.h" 11 #include "PPCTargetStreamer.h" 12 #include "TargetInfo/PowerPCTargetInfo.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/StringSwitch.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/MC/MCExpr.h" 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/MC/MCInstrInfo.h" 20 #include "llvm/MC/MCParser/MCAsmLexer.h" 21 #include "llvm/MC/MCParser/MCAsmParser.h" 22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 23 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 24 #include "llvm/MC/MCStreamer.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/MC/MCSymbolELF.h" 27 #include "llvm/Support/SourceMgr.h" 28 #include "llvm/Support/TargetRegistry.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 DEFINE_PPC_REGCLASSES; 34 35 // Evaluate an expression containing condition register 36 // or condition register field symbols. Returns positive 37 // value on success, or -1 on error. 38 static int64_t 39 EvaluateCRExpr(const MCExpr *E) { 40 switch (E->getKind()) { 41 case MCExpr::Target: 42 return -1; 43 44 case MCExpr::Constant: { 45 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 46 return Res < 0 ? -1 : Res; 47 } 48 49 case MCExpr::SymbolRef: { 50 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 51 StringRef Name = SRE->getSymbol().getName(); 52 53 if (Name == "lt") return 0; 54 if (Name == "gt") return 1; 55 if (Name == "eq") return 2; 56 if (Name == "so") return 3; 57 if (Name == "un") return 3; 58 59 if (Name == "cr0") return 0; 60 if (Name == "cr1") return 1; 61 if (Name == "cr2") return 2; 62 if (Name == "cr3") return 3; 63 if (Name == "cr4") return 4; 64 if (Name == "cr5") return 5; 65 if (Name == "cr6") return 6; 66 if (Name == "cr7") return 7; 67 68 return -1; 69 } 70 71 case MCExpr::Unary: 72 return -1; 73 74 case MCExpr::Binary: { 75 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 76 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 77 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 78 int64_t Res; 79 80 if (LHSVal < 0 || RHSVal < 0) 81 return -1; 82 83 switch (BE->getOpcode()) { 84 default: return -1; 85 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 86 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 87 } 88 89 return Res < 0 ? -1 : Res; 90 } 91 } 92 93 llvm_unreachable("Invalid expression kind!"); 94 } 95 96 namespace { 97 98 struct PPCOperand; 99 100 class PPCAsmParser : public MCTargetAsmParser { 101 bool IsPPC64; 102 bool IsDarwin; 103 104 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 105 106 bool isPPC64() const { return IsPPC64; } 107 bool isDarwin() const { return IsDarwin; } 108 109 bool MatchRegisterName(unsigned &RegNo, int64_t &IntVal); 110 111 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 112 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 113 SMLoc &EndLoc) override; 114 115 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 116 PPCMCExpr::VariantKind &Variant); 117 const MCExpr *FixupVariantKind(const MCExpr *E); 118 bool ParseExpression(const MCExpr *&EVal); 119 bool ParseDarwinExpression(const MCExpr *&EVal); 120 121 bool ParseOperand(OperandVector &Operands); 122 123 bool ParseDirectiveWord(unsigned Size, AsmToken ID); 124 bool ParseDirectiveTC(unsigned Size, AsmToken ID); 125 bool ParseDirectiveMachine(SMLoc L); 126 bool ParseDarwinDirectiveMachine(SMLoc L); 127 bool ParseDirectiveAbiVersion(SMLoc L); 128 bool ParseDirectiveLocalEntry(SMLoc L); 129 130 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 131 OperandVector &Operands, MCStreamer &Out, 132 uint64_t &ErrorInfo, 133 bool MatchingInlineAsm) override; 134 135 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 136 137 /// @name Auto-generated Match Functions 138 /// { 139 140 #define GET_ASSEMBLER_HEADER 141 #include "PPCGenAsmMatcher.inc" 142 143 /// } 144 145 146 public: 147 PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &, 148 const MCInstrInfo &MII, const MCTargetOptions &Options) 149 : MCTargetAsmParser(Options, STI, MII) { 150 // Check for 64-bit vs. 32-bit pointer mode. 151 const Triple &TheTriple = STI.getTargetTriple(); 152 IsPPC64 = TheTriple.isPPC64(); 153 IsDarwin = TheTriple.isMacOSX(); 154 // Initialize the set of available features. 155 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 156 } 157 158 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 159 SMLoc NameLoc, OperandVector &Operands) override; 160 161 bool ParseDirective(AsmToken DirectiveID) override; 162 163 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 164 unsigned Kind) override; 165 166 const MCExpr *applyModifierToExpr(const MCExpr *E, 167 MCSymbolRefExpr::VariantKind, 168 MCContext &Ctx) override; 169 }; 170 171 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 172 /// instruction. 173 struct PPCOperand : public MCParsedAsmOperand { 174 enum KindTy { 175 Token, 176 Immediate, 177 ContextImmediate, 178 Expression, 179 TLSRegister 180 } Kind; 181 182 SMLoc StartLoc, EndLoc; 183 bool IsPPC64; 184 185 struct TokOp { 186 const char *Data; 187 unsigned Length; 188 }; 189 190 struct ImmOp { 191 int64_t Val; 192 }; 193 194 struct ExprOp { 195 const MCExpr *Val; 196 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 197 }; 198 199 struct TLSRegOp { 200 const MCSymbolRefExpr *Sym; 201 }; 202 203 union { 204 struct TokOp Tok; 205 struct ImmOp Imm; 206 struct ExprOp Expr; 207 struct TLSRegOp TLSReg; 208 }; 209 210 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 211 public: 212 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 213 Kind = o.Kind; 214 StartLoc = o.StartLoc; 215 EndLoc = o.EndLoc; 216 IsPPC64 = o.IsPPC64; 217 switch (Kind) { 218 case Token: 219 Tok = o.Tok; 220 break; 221 case Immediate: 222 case ContextImmediate: 223 Imm = o.Imm; 224 break; 225 case Expression: 226 Expr = o.Expr; 227 break; 228 case TLSRegister: 229 TLSReg = o.TLSReg; 230 break; 231 } 232 } 233 234 // Disable use of sized deallocation due to overallocation of PPCOperand 235 // objects in CreateTokenWithStringCopy. 236 void operator delete(void *p) { ::operator delete(p); } 237 238 /// getStartLoc - Get the location of the first token of this operand. 239 SMLoc getStartLoc() const override { return StartLoc; } 240 241 /// getEndLoc - Get the location of the last token of this operand. 242 SMLoc getEndLoc() const override { return EndLoc; } 243 244 /// getLocRange - Get the range between the first and last token of this 245 /// operand. 246 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 247 248 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 249 bool isPPC64() const { return IsPPC64; } 250 251 int64_t getImm() const { 252 assert(Kind == Immediate && "Invalid access!"); 253 return Imm.Val; 254 } 255 int64_t getImmS16Context() const { 256 assert((Kind == Immediate || Kind == ContextImmediate) && 257 "Invalid access!"); 258 if (Kind == Immediate) 259 return Imm.Val; 260 return static_cast<int16_t>(Imm.Val); 261 } 262 int64_t getImmU16Context() const { 263 assert((Kind == Immediate || Kind == ContextImmediate) && 264 "Invalid access!"); 265 return Imm.Val; 266 } 267 268 const MCExpr *getExpr() const { 269 assert(Kind == Expression && "Invalid access!"); 270 return Expr.Val; 271 } 272 273 int64_t getExprCRVal() const { 274 assert(Kind == Expression && "Invalid access!"); 275 return Expr.CRVal; 276 } 277 278 const MCExpr *getTLSReg() const { 279 assert(Kind == TLSRegister && "Invalid access!"); 280 return TLSReg.Sym; 281 } 282 283 unsigned getReg() const override { 284 assert(isRegNumber() && "Invalid access!"); 285 return (unsigned) Imm.Val; 286 } 287 288 unsigned getVSReg() const { 289 assert(isVSRegNumber() && "Invalid access!"); 290 return (unsigned) Imm.Val; 291 } 292 293 unsigned getCCReg() const { 294 assert(isCCRegNumber() && "Invalid access!"); 295 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 296 } 297 298 unsigned getCRBit() const { 299 assert(isCRBitNumber() && "Invalid access!"); 300 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 301 } 302 303 unsigned getCRBitMask() const { 304 assert(isCRBitMask() && "Invalid access!"); 305 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 306 } 307 308 bool isToken() const override { return Kind == Token; } 309 bool isImm() const override { 310 return Kind == Immediate || Kind == Expression; 311 } 312 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 313 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 314 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 315 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 316 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 317 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 318 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 319 bool isU6ImmX2() const { return Kind == Immediate && 320 isUInt<6>(getImm()) && 321 (getImm() & 1) == 0; } 322 bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); } 323 bool isU7ImmX4() const { return Kind == Immediate && 324 isUInt<7>(getImm()) && 325 (getImm() & 3) == 0; } 326 bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); } 327 bool isU8ImmX8() const { return Kind == Immediate && 328 isUInt<8>(getImm()) && 329 (getImm() & 7) == 0; } 330 331 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 332 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 333 bool isU16Imm() const { 334 switch (Kind) { 335 case Expression: 336 return true; 337 case Immediate: 338 case ContextImmediate: 339 return isUInt<16>(getImmU16Context()); 340 default: 341 return false; 342 } 343 } 344 bool isS16Imm() const { 345 switch (Kind) { 346 case Expression: 347 return true; 348 case Immediate: 349 case ContextImmediate: 350 return isInt<16>(getImmS16Context()); 351 default: 352 return false; 353 } 354 } 355 bool isS16ImmX4() const { return Kind == Expression || 356 (Kind == Immediate && isInt<16>(getImm()) && 357 (getImm() & 3) == 0); } 358 bool isS16ImmX16() const { return Kind == Expression || 359 (Kind == Immediate && isInt<16>(getImm()) && 360 (getImm() & 15) == 0); } 361 bool isS34ImmX16() const { 362 return Kind == Expression || 363 (Kind == Immediate && isInt<34>(getImm()) && (getImm() & 15) == 0); 364 } 365 bool isS34Imm() const { 366 // Once the PC-Rel ABI is finalized, evaluate whether a 34-bit 367 // ContextImmediate is needed. 368 return Kind == Expression || (Kind == Immediate && isInt<34>(getImm())); 369 } 370 371 bool isS17Imm() const { 372 switch (Kind) { 373 case Expression: 374 return true; 375 case Immediate: 376 case ContextImmediate: 377 return isInt<17>(getImmS16Context()); 378 default: 379 return false; 380 } 381 } 382 bool isTLSReg() const { return Kind == TLSRegister; } 383 bool isDirectBr() const { 384 if (Kind == Expression) 385 return true; 386 if (Kind != Immediate) 387 return false; 388 // Operand must be 64-bit aligned, signed 27-bit immediate. 389 if ((getImm() & 3) != 0) 390 return false; 391 if (isInt<26>(getImm())) 392 return true; 393 if (!IsPPC64) { 394 // In 32-bit mode, large 32-bit quantities wrap around. 395 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 396 return true; 397 } 398 return false; 399 } 400 bool isCondBr() const { return Kind == Expression || 401 (Kind == Immediate && isInt<16>(getImm()) && 402 (getImm() & 3) == 0); } 403 bool isImmZero() const { return Kind == Immediate && getImm() == 0; } 404 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 405 bool isVSRegNumber() const { 406 return Kind == Immediate && isUInt<6>(getImm()); 407 } 408 bool isCCRegNumber() const { return (Kind == Expression 409 && isUInt<3>(getExprCRVal())) || 410 (Kind == Immediate 411 && isUInt<3>(getImm())); } 412 bool isCRBitNumber() const { return (Kind == Expression 413 && isUInt<5>(getExprCRVal())) || 414 (Kind == Immediate 415 && isUInt<5>(getImm())); } 416 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 417 isPowerOf2_32(getImm()); } 418 bool isATBitsAsHint() const { return false; } 419 bool isMem() const override { return false; } 420 bool isReg() const override { return false; } 421 422 void addRegOperands(MCInst &Inst, unsigned N) const { 423 llvm_unreachable("addRegOperands"); 424 } 425 426 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 427 assert(N == 1 && "Invalid number of operands!"); 428 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 429 } 430 431 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 432 assert(N == 1 && "Invalid number of operands!"); 433 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()])); 434 } 435 436 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 437 assert(N == 1 && "Invalid number of operands!"); 438 Inst.addOperand(MCOperand::createReg(XRegs[getReg()])); 439 } 440 441 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 442 assert(N == 1 && "Invalid number of operands!"); 443 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()])); 444 } 445 446 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 447 if (isPPC64()) 448 addRegG8RCOperands(Inst, N); 449 else 450 addRegGPRCOperands(Inst, N); 451 } 452 453 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 454 if (isPPC64()) 455 addRegG8RCNoX0Operands(Inst, N); 456 else 457 addRegGPRCNoR0Operands(Inst, N); 458 } 459 460 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 461 assert(N == 1 && "Invalid number of operands!"); 462 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 463 } 464 465 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 466 assert(N == 1 && "Invalid number of operands!"); 467 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 468 } 469 470 void addRegVFRCOperands(MCInst &Inst, unsigned N) const { 471 assert(N == 1 && "Invalid number of operands!"); 472 Inst.addOperand(MCOperand::createReg(VFRegs[getReg()])); 473 } 474 475 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 476 assert(N == 1 && "Invalid number of operands!"); 477 Inst.addOperand(MCOperand::createReg(VRegs[getReg()])); 478 } 479 480 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 481 assert(N == 1 && "Invalid number of operands!"); 482 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 483 } 484 485 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 486 assert(N == 1 && "Invalid number of operands!"); 487 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 488 } 489 490 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 491 assert(N == 1 && "Invalid number of operands!"); 492 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 493 } 494 495 void addRegQFRCOperands(MCInst &Inst, unsigned N) const { 496 assert(N == 1 && "Invalid number of operands!"); 497 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 498 } 499 500 void addRegQSRCOperands(MCInst &Inst, unsigned N) const { 501 assert(N == 1 && "Invalid number of operands!"); 502 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 503 } 504 505 void addRegQBRCOperands(MCInst &Inst, unsigned N) const { 506 assert(N == 1 && "Invalid number of operands!"); 507 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 508 } 509 510 void addRegSPE4RCOperands(MCInst &Inst, unsigned N) const { 511 assert(N == 1 && "Invalid number of operands!"); 512 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 513 } 514 515 void addRegSPERCOperands(MCInst &Inst, unsigned N) const { 516 assert(N == 1 && "Invalid number of operands!"); 517 Inst.addOperand(MCOperand::createReg(SPERegs[getReg()])); 518 } 519 520 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 521 assert(N == 1 && "Invalid number of operands!"); 522 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 523 } 524 525 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 526 assert(N == 1 && "Invalid number of operands!"); 527 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 528 } 529 530 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 531 assert(N == 1 && "Invalid number of operands!"); 532 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 533 } 534 535 void addImmOperands(MCInst &Inst, unsigned N) const { 536 assert(N == 1 && "Invalid number of operands!"); 537 if (Kind == Immediate) 538 Inst.addOperand(MCOperand::createImm(getImm())); 539 else 540 Inst.addOperand(MCOperand::createExpr(getExpr())); 541 } 542 543 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 544 assert(N == 1 && "Invalid number of operands!"); 545 switch (Kind) { 546 case Immediate: 547 Inst.addOperand(MCOperand::createImm(getImm())); 548 break; 549 case ContextImmediate: 550 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 551 break; 552 default: 553 Inst.addOperand(MCOperand::createExpr(getExpr())); 554 break; 555 } 556 } 557 558 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 559 assert(N == 1 && "Invalid number of operands!"); 560 switch (Kind) { 561 case Immediate: 562 Inst.addOperand(MCOperand::createImm(getImm())); 563 break; 564 case ContextImmediate: 565 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 566 break; 567 default: 568 Inst.addOperand(MCOperand::createExpr(getExpr())); 569 break; 570 } 571 } 572 573 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 574 assert(N == 1 && "Invalid number of operands!"); 575 if (Kind == Immediate) 576 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 577 else 578 Inst.addOperand(MCOperand::createExpr(getExpr())); 579 } 580 581 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 582 assert(N == 1 && "Invalid number of operands!"); 583 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 584 } 585 586 StringRef getToken() const { 587 assert(Kind == Token && "Invalid access!"); 588 return StringRef(Tok.Data, Tok.Length); 589 } 590 591 void print(raw_ostream &OS) const override; 592 593 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 594 bool IsPPC64) { 595 auto Op = std::make_unique<PPCOperand>(Token); 596 Op->Tok.Data = Str.data(); 597 Op->Tok.Length = Str.size(); 598 Op->StartLoc = S; 599 Op->EndLoc = S; 600 Op->IsPPC64 = IsPPC64; 601 return Op; 602 } 603 604 static std::unique_ptr<PPCOperand> 605 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 606 // Allocate extra memory for the string and copy it. 607 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 608 // deleter which will destroy them by simply using "delete", not correctly 609 // calling operator delete on this extra memory after calling the dtor 610 // explicitly. 611 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 612 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 613 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 614 Op->Tok.Length = Str.size(); 615 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 616 Op->StartLoc = S; 617 Op->EndLoc = S; 618 Op->IsPPC64 = IsPPC64; 619 return Op; 620 } 621 622 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 623 bool IsPPC64) { 624 auto Op = std::make_unique<PPCOperand>(Immediate); 625 Op->Imm.Val = Val; 626 Op->StartLoc = S; 627 Op->EndLoc = E; 628 Op->IsPPC64 = IsPPC64; 629 return Op; 630 } 631 632 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 633 SMLoc E, bool IsPPC64) { 634 auto Op = std::make_unique<PPCOperand>(Expression); 635 Op->Expr.Val = Val; 636 Op->Expr.CRVal = EvaluateCRExpr(Val); 637 Op->StartLoc = S; 638 Op->EndLoc = E; 639 Op->IsPPC64 = IsPPC64; 640 return Op; 641 } 642 643 static std::unique_ptr<PPCOperand> 644 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 645 auto Op = std::make_unique<PPCOperand>(TLSRegister); 646 Op->TLSReg.Sym = Sym; 647 Op->StartLoc = S; 648 Op->EndLoc = E; 649 Op->IsPPC64 = IsPPC64; 650 return Op; 651 } 652 653 static std::unique_ptr<PPCOperand> 654 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 655 auto Op = std::make_unique<PPCOperand>(ContextImmediate); 656 Op->Imm.Val = Val; 657 Op->StartLoc = S; 658 Op->EndLoc = E; 659 Op->IsPPC64 = IsPPC64; 660 return Op; 661 } 662 663 static std::unique_ptr<PPCOperand> 664 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 665 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 666 return CreateImm(CE->getValue(), S, E, IsPPC64); 667 668 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 669 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS) 670 return CreateTLSReg(SRE, S, E, IsPPC64); 671 672 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 673 int64_t Res; 674 if (TE->evaluateAsConstant(Res)) 675 return CreateContextImm(Res, S, E, IsPPC64); 676 } 677 678 return CreateExpr(Val, S, E, IsPPC64); 679 } 680 }; 681 682 } // end anonymous namespace. 683 684 void PPCOperand::print(raw_ostream &OS) const { 685 switch (Kind) { 686 case Token: 687 OS << "'" << getToken() << "'"; 688 break; 689 case Immediate: 690 case ContextImmediate: 691 OS << getImm(); 692 break; 693 case Expression: 694 OS << *getExpr(); 695 break; 696 case TLSRegister: 697 OS << *getTLSReg(); 698 break; 699 } 700 } 701 702 static void 703 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 704 if (Op.isImm()) { 705 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 706 return; 707 } 708 const MCExpr *Expr = Op.getExpr(); 709 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 710 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 711 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 712 return; 713 } 714 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 715 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 716 const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(), 717 BinExpr->getLHS(), Ctx); 718 Inst.addOperand(MCOperand::createExpr(NE)); 719 return; 720 } 721 } 722 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx))); 723 } 724 725 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 726 const OperandVector &Operands) { 727 int Opcode = Inst.getOpcode(); 728 switch (Opcode) { 729 case PPC::DCBTx: 730 case PPC::DCBTT: 731 case PPC::DCBTSTx: 732 case PPC::DCBTSTT: { 733 MCInst TmpInst; 734 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 735 PPC::DCBT : PPC::DCBTST); 736 TmpInst.addOperand(MCOperand::createImm( 737 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 738 TmpInst.addOperand(Inst.getOperand(0)); 739 TmpInst.addOperand(Inst.getOperand(1)); 740 Inst = TmpInst; 741 break; 742 } 743 case PPC::DCBTCT: 744 case PPC::DCBTDS: { 745 MCInst TmpInst; 746 TmpInst.setOpcode(PPC::DCBT); 747 TmpInst.addOperand(Inst.getOperand(2)); 748 TmpInst.addOperand(Inst.getOperand(0)); 749 TmpInst.addOperand(Inst.getOperand(1)); 750 Inst = TmpInst; 751 break; 752 } 753 case PPC::DCBTSTCT: 754 case PPC::DCBTSTDS: { 755 MCInst TmpInst; 756 TmpInst.setOpcode(PPC::DCBTST); 757 TmpInst.addOperand(Inst.getOperand(2)); 758 TmpInst.addOperand(Inst.getOperand(0)); 759 TmpInst.addOperand(Inst.getOperand(1)); 760 Inst = TmpInst; 761 break; 762 } 763 case PPC::DCBFx: 764 case PPC::DCBFL: 765 case PPC::DCBFLP: { 766 int L = 0; 767 if (Opcode == PPC::DCBFL) 768 L = 1; 769 else if (Opcode == PPC::DCBFLP) 770 L = 3; 771 772 MCInst TmpInst; 773 TmpInst.setOpcode(PPC::DCBF); 774 TmpInst.addOperand(MCOperand::createImm(L)); 775 TmpInst.addOperand(Inst.getOperand(0)); 776 TmpInst.addOperand(Inst.getOperand(1)); 777 Inst = TmpInst; 778 break; 779 } 780 case PPC::LAx: { 781 MCInst TmpInst; 782 TmpInst.setOpcode(PPC::LA); 783 TmpInst.addOperand(Inst.getOperand(0)); 784 TmpInst.addOperand(Inst.getOperand(2)); 785 TmpInst.addOperand(Inst.getOperand(1)); 786 Inst = TmpInst; 787 break; 788 } 789 case PPC::SUBI: { 790 MCInst TmpInst; 791 TmpInst.setOpcode(PPC::ADDI); 792 TmpInst.addOperand(Inst.getOperand(0)); 793 TmpInst.addOperand(Inst.getOperand(1)); 794 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 795 Inst = TmpInst; 796 break; 797 } 798 case PPC::SUBIS: { 799 MCInst TmpInst; 800 TmpInst.setOpcode(PPC::ADDIS); 801 TmpInst.addOperand(Inst.getOperand(0)); 802 TmpInst.addOperand(Inst.getOperand(1)); 803 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 804 Inst = TmpInst; 805 break; 806 } 807 case PPC::SUBIC: { 808 MCInst TmpInst; 809 TmpInst.setOpcode(PPC::ADDIC); 810 TmpInst.addOperand(Inst.getOperand(0)); 811 TmpInst.addOperand(Inst.getOperand(1)); 812 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 813 Inst = TmpInst; 814 break; 815 } 816 case PPC::SUBIC_rec: { 817 MCInst TmpInst; 818 TmpInst.setOpcode(PPC::ADDIC_rec); 819 TmpInst.addOperand(Inst.getOperand(0)); 820 TmpInst.addOperand(Inst.getOperand(1)); 821 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 822 Inst = TmpInst; 823 break; 824 } 825 case PPC::EXTLWI: 826 case PPC::EXTLWI_rec: { 827 MCInst TmpInst; 828 int64_t N = Inst.getOperand(2).getImm(); 829 int64_t B = Inst.getOperand(3).getImm(); 830 TmpInst.setOpcode(Opcode == PPC::EXTLWI ? PPC::RLWINM : PPC::RLWINM_rec); 831 TmpInst.addOperand(Inst.getOperand(0)); 832 TmpInst.addOperand(Inst.getOperand(1)); 833 TmpInst.addOperand(MCOperand::createImm(B)); 834 TmpInst.addOperand(MCOperand::createImm(0)); 835 TmpInst.addOperand(MCOperand::createImm(N - 1)); 836 Inst = TmpInst; 837 break; 838 } 839 case PPC::EXTRWI: 840 case PPC::EXTRWI_rec: { 841 MCInst TmpInst; 842 int64_t N = Inst.getOperand(2).getImm(); 843 int64_t B = Inst.getOperand(3).getImm(); 844 TmpInst.setOpcode(Opcode == PPC::EXTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 845 TmpInst.addOperand(Inst.getOperand(0)); 846 TmpInst.addOperand(Inst.getOperand(1)); 847 TmpInst.addOperand(MCOperand::createImm(B + N)); 848 TmpInst.addOperand(MCOperand::createImm(32 - N)); 849 TmpInst.addOperand(MCOperand::createImm(31)); 850 Inst = TmpInst; 851 break; 852 } 853 case PPC::INSLWI: 854 case PPC::INSLWI_rec: { 855 MCInst TmpInst; 856 int64_t N = Inst.getOperand(2).getImm(); 857 int64_t B = Inst.getOperand(3).getImm(); 858 TmpInst.setOpcode(Opcode == PPC::INSLWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 859 TmpInst.addOperand(Inst.getOperand(0)); 860 TmpInst.addOperand(Inst.getOperand(0)); 861 TmpInst.addOperand(Inst.getOperand(1)); 862 TmpInst.addOperand(MCOperand::createImm(32 - B)); 863 TmpInst.addOperand(MCOperand::createImm(B)); 864 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 865 Inst = TmpInst; 866 break; 867 } 868 case PPC::INSRWI: 869 case PPC::INSRWI_rec: { 870 MCInst TmpInst; 871 int64_t N = Inst.getOperand(2).getImm(); 872 int64_t B = Inst.getOperand(3).getImm(); 873 TmpInst.setOpcode(Opcode == PPC::INSRWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 874 TmpInst.addOperand(Inst.getOperand(0)); 875 TmpInst.addOperand(Inst.getOperand(0)); 876 TmpInst.addOperand(Inst.getOperand(1)); 877 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 878 TmpInst.addOperand(MCOperand::createImm(B)); 879 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 880 Inst = TmpInst; 881 break; 882 } 883 case PPC::ROTRWI: 884 case PPC::ROTRWI_rec: { 885 MCInst TmpInst; 886 int64_t N = Inst.getOperand(2).getImm(); 887 TmpInst.setOpcode(Opcode == PPC::ROTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 888 TmpInst.addOperand(Inst.getOperand(0)); 889 TmpInst.addOperand(Inst.getOperand(1)); 890 TmpInst.addOperand(MCOperand::createImm(32 - N)); 891 TmpInst.addOperand(MCOperand::createImm(0)); 892 TmpInst.addOperand(MCOperand::createImm(31)); 893 Inst = TmpInst; 894 break; 895 } 896 case PPC::SLWI: 897 case PPC::SLWI_rec: { 898 MCInst TmpInst; 899 int64_t N = Inst.getOperand(2).getImm(); 900 TmpInst.setOpcode(Opcode == PPC::SLWI ? PPC::RLWINM : PPC::RLWINM_rec); 901 TmpInst.addOperand(Inst.getOperand(0)); 902 TmpInst.addOperand(Inst.getOperand(1)); 903 TmpInst.addOperand(MCOperand::createImm(N)); 904 TmpInst.addOperand(MCOperand::createImm(0)); 905 TmpInst.addOperand(MCOperand::createImm(31 - N)); 906 Inst = TmpInst; 907 break; 908 } 909 case PPC::SRWI: 910 case PPC::SRWI_rec: { 911 MCInst TmpInst; 912 int64_t N = Inst.getOperand(2).getImm(); 913 TmpInst.setOpcode(Opcode == PPC::SRWI ? PPC::RLWINM : PPC::RLWINM_rec); 914 TmpInst.addOperand(Inst.getOperand(0)); 915 TmpInst.addOperand(Inst.getOperand(1)); 916 TmpInst.addOperand(MCOperand::createImm(32 - N)); 917 TmpInst.addOperand(MCOperand::createImm(N)); 918 TmpInst.addOperand(MCOperand::createImm(31)); 919 Inst = TmpInst; 920 break; 921 } 922 case PPC::CLRRWI: 923 case PPC::CLRRWI_rec: { 924 MCInst TmpInst; 925 int64_t N = Inst.getOperand(2).getImm(); 926 TmpInst.setOpcode(Opcode == PPC::CLRRWI ? PPC::RLWINM : PPC::RLWINM_rec); 927 TmpInst.addOperand(Inst.getOperand(0)); 928 TmpInst.addOperand(Inst.getOperand(1)); 929 TmpInst.addOperand(MCOperand::createImm(0)); 930 TmpInst.addOperand(MCOperand::createImm(0)); 931 TmpInst.addOperand(MCOperand::createImm(31 - N)); 932 Inst = TmpInst; 933 break; 934 } 935 case PPC::CLRLSLWI: 936 case PPC::CLRLSLWI_rec: { 937 MCInst TmpInst; 938 int64_t B = Inst.getOperand(2).getImm(); 939 int64_t N = Inst.getOperand(3).getImm(); 940 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI ? PPC::RLWINM : PPC::RLWINM_rec); 941 TmpInst.addOperand(Inst.getOperand(0)); 942 TmpInst.addOperand(Inst.getOperand(1)); 943 TmpInst.addOperand(MCOperand::createImm(N)); 944 TmpInst.addOperand(MCOperand::createImm(B - N)); 945 TmpInst.addOperand(MCOperand::createImm(31 - N)); 946 Inst = TmpInst; 947 break; 948 } 949 case PPC::EXTLDI: 950 case PPC::EXTLDI_rec: { 951 MCInst TmpInst; 952 int64_t N = Inst.getOperand(2).getImm(); 953 int64_t B = Inst.getOperand(3).getImm(); 954 TmpInst.setOpcode(Opcode == PPC::EXTLDI ? PPC::RLDICR : PPC::RLDICR_rec); 955 TmpInst.addOperand(Inst.getOperand(0)); 956 TmpInst.addOperand(Inst.getOperand(1)); 957 TmpInst.addOperand(MCOperand::createImm(B)); 958 TmpInst.addOperand(MCOperand::createImm(N - 1)); 959 Inst = TmpInst; 960 break; 961 } 962 case PPC::EXTRDI: 963 case PPC::EXTRDI_rec: { 964 MCInst TmpInst; 965 int64_t N = Inst.getOperand(2).getImm(); 966 int64_t B = Inst.getOperand(3).getImm(); 967 TmpInst.setOpcode(Opcode == PPC::EXTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 968 TmpInst.addOperand(Inst.getOperand(0)); 969 TmpInst.addOperand(Inst.getOperand(1)); 970 TmpInst.addOperand(MCOperand::createImm(B + N)); 971 TmpInst.addOperand(MCOperand::createImm(64 - N)); 972 Inst = TmpInst; 973 break; 974 } 975 case PPC::INSRDI: 976 case PPC::INSRDI_rec: { 977 MCInst TmpInst; 978 int64_t N = Inst.getOperand(2).getImm(); 979 int64_t B = Inst.getOperand(3).getImm(); 980 TmpInst.setOpcode(Opcode == PPC::INSRDI ? PPC::RLDIMI : PPC::RLDIMI_rec); 981 TmpInst.addOperand(Inst.getOperand(0)); 982 TmpInst.addOperand(Inst.getOperand(0)); 983 TmpInst.addOperand(Inst.getOperand(1)); 984 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 985 TmpInst.addOperand(MCOperand::createImm(B)); 986 Inst = TmpInst; 987 break; 988 } 989 case PPC::ROTRDI: 990 case PPC::ROTRDI_rec: { 991 MCInst TmpInst; 992 int64_t N = Inst.getOperand(2).getImm(); 993 TmpInst.setOpcode(Opcode == PPC::ROTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 994 TmpInst.addOperand(Inst.getOperand(0)); 995 TmpInst.addOperand(Inst.getOperand(1)); 996 TmpInst.addOperand(MCOperand::createImm(64 - N)); 997 TmpInst.addOperand(MCOperand::createImm(0)); 998 Inst = TmpInst; 999 break; 1000 } 1001 case PPC::SLDI: 1002 case PPC::SLDI_rec: { 1003 MCInst TmpInst; 1004 int64_t N = Inst.getOperand(2).getImm(); 1005 TmpInst.setOpcode(Opcode == PPC::SLDI ? PPC::RLDICR : PPC::RLDICR_rec); 1006 TmpInst.addOperand(Inst.getOperand(0)); 1007 TmpInst.addOperand(Inst.getOperand(1)); 1008 TmpInst.addOperand(MCOperand::createImm(N)); 1009 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1010 Inst = TmpInst; 1011 break; 1012 } 1013 case PPC::SUBPCIS: { 1014 MCInst TmpInst; 1015 int64_t N = Inst.getOperand(1).getImm(); 1016 TmpInst.setOpcode(PPC::ADDPCIS); 1017 TmpInst.addOperand(Inst.getOperand(0)); 1018 TmpInst.addOperand(MCOperand::createImm(-N)); 1019 Inst = TmpInst; 1020 break; 1021 } 1022 case PPC::SRDI: 1023 case PPC::SRDI_rec: { 1024 MCInst TmpInst; 1025 int64_t N = Inst.getOperand(2).getImm(); 1026 TmpInst.setOpcode(Opcode == PPC::SRDI ? PPC::RLDICL : PPC::RLDICL_rec); 1027 TmpInst.addOperand(Inst.getOperand(0)); 1028 TmpInst.addOperand(Inst.getOperand(1)); 1029 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1030 TmpInst.addOperand(MCOperand::createImm(N)); 1031 Inst = TmpInst; 1032 break; 1033 } 1034 case PPC::CLRRDI: 1035 case PPC::CLRRDI_rec: { 1036 MCInst TmpInst; 1037 int64_t N = Inst.getOperand(2).getImm(); 1038 TmpInst.setOpcode(Opcode == PPC::CLRRDI ? PPC::RLDICR : PPC::RLDICR_rec); 1039 TmpInst.addOperand(Inst.getOperand(0)); 1040 TmpInst.addOperand(Inst.getOperand(1)); 1041 TmpInst.addOperand(MCOperand::createImm(0)); 1042 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1043 Inst = TmpInst; 1044 break; 1045 } 1046 case PPC::CLRLSLDI: 1047 case PPC::CLRLSLDI_rec: { 1048 MCInst TmpInst; 1049 int64_t B = Inst.getOperand(2).getImm(); 1050 int64_t N = Inst.getOperand(3).getImm(); 1051 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI ? PPC::RLDIC : PPC::RLDIC_rec); 1052 TmpInst.addOperand(Inst.getOperand(0)); 1053 TmpInst.addOperand(Inst.getOperand(1)); 1054 TmpInst.addOperand(MCOperand::createImm(N)); 1055 TmpInst.addOperand(MCOperand::createImm(B - N)); 1056 Inst = TmpInst; 1057 break; 1058 } 1059 case PPC::RLWINMbm: 1060 case PPC::RLWINMbm_rec: { 1061 unsigned MB, ME; 1062 int64_t BM = Inst.getOperand(3).getImm(); 1063 if (!isRunOfOnes(BM, MB, ME)) 1064 break; 1065 1066 MCInst TmpInst; 1067 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINM_rec); 1068 TmpInst.addOperand(Inst.getOperand(0)); 1069 TmpInst.addOperand(Inst.getOperand(1)); 1070 TmpInst.addOperand(Inst.getOperand(2)); 1071 TmpInst.addOperand(MCOperand::createImm(MB)); 1072 TmpInst.addOperand(MCOperand::createImm(ME)); 1073 Inst = TmpInst; 1074 break; 1075 } 1076 case PPC::RLWIMIbm: 1077 case PPC::RLWIMIbm_rec: { 1078 unsigned MB, ME; 1079 int64_t BM = Inst.getOperand(3).getImm(); 1080 if (!isRunOfOnes(BM, MB, ME)) 1081 break; 1082 1083 MCInst TmpInst; 1084 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMI_rec); 1085 TmpInst.addOperand(Inst.getOperand(0)); 1086 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1087 TmpInst.addOperand(Inst.getOperand(1)); 1088 TmpInst.addOperand(Inst.getOperand(2)); 1089 TmpInst.addOperand(MCOperand::createImm(MB)); 1090 TmpInst.addOperand(MCOperand::createImm(ME)); 1091 Inst = TmpInst; 1092 break; 1093 } 1094 case PPC::RLWNMbm: 1095 case PPC::RLWNMbm_rec: { 1096 unsigned MB, ME; 1097 int64_t BM = Inst.getOperand(3).getImm(); 1098 if (!isRunOfOnes(BM, MB, ME)) 1099 break; 1100 1101 MCInst TmpInst; 1102 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNM_rec); 1103 TmpInst.addOperand(Inst.getOperand(0)); 1104 TmpInst.addOperand(Inst.getOperand(1)); 1105 TmpInst.addOperand(Inst.getOperand(2)); 1106 TmpInst.addOperand(MCOperand::createImm(MB)); 1107 TmpInst.addOperand(MCOperand::createImm(ME)); 1108 Inst = TmpInst; 1109 break; 1110 } 1111 case PPC::MFTB: { 1112 if (getSTI().getFeatureBits()[PPC::FeatureMFTB]) { 1113 assert(Inst.getNumOperands() == 2 && "Expecting two operands"); 1114 Inst.setOpcode(PPC::MFSPR); 1115 } 1116 break; 1117 } 1118 case PPC::CP_COPYx: 1119 case PPC::CP_COPY_FIRST: { 1120 MCInst TmpInst; 1121 TmpInst.setOpcode(PPC::CP_COPY); 1122 TmpInst.addOperand(Inst.getOperand(0)); 1123 TmpInst.addOperand(Inst.getOperand(1)); 1124 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_COPYx ? 0 : 1)); 1125 1126 Inst = TmpInst; 1127 break; 1128 } 1129 case PPC::CP_PASTEx : 1130 case PPC::CP_PASTE_LAST: { 1131 MCInst TmpInst; 1132 TmpInst.setOpcode(Opcode == PPC::CP_PASTEx ? PPC::CP_PASTE 1133 : PPC::CP_PASTE_rec); 1134 TmpInst.addOperand(Inst.getOperand(0)); 1135 TmpInst.addOperand(Inst.getOperand(1)); 1136 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_PASTEx ? 0 : 1)); 1137 1138 Inst = TmpInst; 1139 break; 1140 } 1141 } 1142 } 1143 1144 static std::string PPCMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 1145 unsigned VariantID = 0); 1146 1147 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1148 OperandVector &Operands, 1149 MCStreamer &Out, uint64_t &ErrorInfo, 1150 bool MatchingInlineAsm) { 1151 MCInst Inst; 1152 1153 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1154 case Match_Success: 1155 // Post-process instructions (typically extended mnemonics) 1156 ProcessInstruction(Inst, Operands); 1157 Inst.setLoc(IDLoc); 1158 Out.emitInstruction(Inst, getSTI()); 1159 return false; 1160 case Match_MissingFeature: 1161 return Error(IDLoc, "instruction use requires an option to be enabled"); 1162 case Match_MnemonicFail: { 1163 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1164 std::string Suggestion = PPCMnemonicSpellCheck( 1165 ((PPCOperand &)*Operands[0]).getToken(), FBS); 1166 return Error(IDLoc, "invalid instruction" + Suggestion, 1167 ((PPCOperand &)*Operands[0]).getLocRange()); 1168 } 1169 case Match_InvalidOperand: { 1170 SMLoc ErrorLoc = IDLoc; 1171 if (ErrorInfo != ~0ULL) { 1172 if (ErrorInfo >= Operands.size()) 1173 return Error(IDLoc, "too few operands for instruction"); 1174 1175 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1176 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1177 } 1178 1179 return Error(ErrorLoc, "invalid operand for instruction"); 1180 } 1181 } 1182 1183 llvm_unreachable("Implement any new match types added!"); 1184 } 1185 1186 bool PPCAsmParser::MatchRegisterName(unsigned &RegNo, int64_t &IntVal) { 1187 if (getParser().getTok().is(AsmToken::Identifier)) { 1188 StringRef Name = getParser().getTok().getString(); 1189 if (Name.equals_lower("lr")) { 1190 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1191 IntVal = 8; 1192 } else if (Name.equals_lower("ctr")) { 1193 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1194 IntVal = 9; 1195 } else if (Name.equals_lower("vrsave")) { 1196 RegNo = PPC::VRSAVE; 1197 IntVal = 256; 1198 } else if (Name.startswith_lower("r") && 1199 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1200 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1201 } else if (Name.startswith_lower("f") && 1202 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1203 RegNo = FRegs[IntVal]; 1204 } else if (Name.startswith_lower("vs") && 1205 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1206 RegNo = VSRegs[IntVal]; 1207 } else if (Name.startswith_lower("v") && 1208 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1209 RegNo = VRegs[IntVal]; 1210 } else if (Name.startswith_lower("q") && 1211 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1212 RegNo = QFRegs[IntVal]; 1213 } else if (Name.startswith_lower("cr") && 1214 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1215 RegNo = CRRegs[IntVal]; 1216 } else 1217 return true; 1218 getParser().Lex(); 1219 return false; 1220 } 1221 return true; 1222 } 1223 1224 bool PPCAsmParser:: 1225 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1226 if (tryParseRegister(RegNo, StartLoc, EndLoc) != MatchOperand_Success) 1227 return TokError("invalid register name"); 1228 return false; 1229 } 1230 1231 OperandMatchResultTy PPCAsmParser::tryParseRegister(unsigned &RegNo, 1232 SMLoc &StartLoc, 1233 SMLoc &EndLoc) { 1234 const AsmToken &Tok = getParser().getTok(); 1235 StartLoc = Tok.getLoc(); 1236 EndLoc = Tok.getEndLoc(); 1237 RegNo = 0; 1238 int64_t IntVal; 1239 if (MatchRegisterName(RegNo, IntVal)) 1240 return MatchOperand_NoMatch; 1241 return MatchOperand_Success; 1242 } 1243 1244 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1245 /// the expression and check for VK_PPC_LO/HI/HA 1246 /// symbol variants. If all symbols with modifier use the same 1247 /// variant, return the corresponding PPCMCExpr::VariantKind, 1248 /// and a modified expression using the default symbol variant. 1249 /// Otherwise, return NULL. 1250 const MCExpr *PPCAsmParser:: 1251 ExtractModifierFromExpr(const MCExpr *E, 1252 PPCMCExpr::VariantKind &Variant) { 1253 MCContext &Context = getParser().getContext(); 1254 Variant = PPCMCExpr::VK_PPC_None; 1255 1256 switch (E->getKind()) { 1257 case MCExpr::Target: 1258 case MCExpr::Constant: 1259 return nullptr; 1260 1261 case MCExpr::SymbolRef: { 1262 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1263 1264 switch (SRE->getKind()) { 1265 case MCSymbolRefExpr::VK_PPC_LO: 1266 Variant = PPCMCExpr::VK_PPC_LO; 1267 break; 1268 case MCSymbolRefExpr::VK_PPC_HI: 1269 Variant = PPCMCExpr::VK_PPC_HI; 1270 break; 1271 case MCSymbolRefExpr::VK_PPC_HA: 1272 Variant = PPCMCExpr::VK_PPC_HA; 1273 break; 1274 case MCSymbolRefExpr::VK_PPC_HIGH: 1275 Variant = PPCMCExpr::VK_PPC_HIGH; 1276 break; 1277 case MCSymbolRefExpr::VK_PPC_HIGHA: 1278 Variant = PPCMCExpr::VK_PPC_HIGHA; 1279 break; 1280 case MCSymbolRefExpr::VK_PPC_HIGHER: 1281 Variant = PPCMCExpr::VK_PPC_HIGHER; 1282 break; 1283 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1284 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1285 break; 1286 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1287 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1288 break; 1289 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1290 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1291 break; 1292 default: 1293 return nullptr; 1294 } 1295 1296 return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); 1297 } 1298 1299 case MCExpr::Unary: { 1300 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1301 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1302 if (!Sub) 1303 return nullptr; 1304 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1305 } 1306 1307 case MCExpr::Binary: { 1308 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1309 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1310 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1311 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1312 1313 if (!LHS && !RHS) 1314 return nullptr; 1315 1316 if (!LHS) LHS = BE->getLHS(); 1317 if (!RHS) RHS = BE->getRHS(); 1318 1319 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1320 Variant = RHSVariant; 1321 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1322 Variant = LHSVariant; 1323 else if (LHSVariant == RHSVariant) 1324 Variant = LHSVariant; 1325 else 1326 return nullptr; 1327 1328 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1329 } 1330 } 1331 1332 llvm_unreachable("Invalid expression kind!"); 1333 } 1334 1335 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1336 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1337 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1338 /// FIXME: This is a hack. 1339 const MCExpr *PPCAsmParser:: 1340 FixupVariantKind(const MCExpr *E) { 1341 MCContext &Context = getParser().getContext(); 1342 1343 switch (E->getKind()) { 1344 case MCExpr::Target: 1345 case MCExpr::Constant: 1346 return E; 1347 1348 case MCExpr::SymbolRef: { 1349 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1350 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1351 1352 switch (SRE->getKind()) { 1353 case MCSymbolRefExpr::VK_TLSGD: 1354 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1355 break; 1356 case MCSymbolRefExpr::VK_TLSLD: 1357 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1358 break; 1359 default: 1360 return E; 1361 } 1362 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context); 1363 } 1364 1365 case MCExpr::Unary: { 1366 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1367 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1368 if (Sub == UE->getSubExpr()) 1369 return E; 1370 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1371 } 1372 1373 case MCExpr::Binary: { 1374 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1375 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1376 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1377 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1378 return E; 1379 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1380 } 1381 } 1382 1383 llvm_unreachable("Invalid expression kind!"); 1384 } 1385 1386 /// ParseExpression. This differs from the default "parseExpression" in that 1387 /// it handles modifiers. 1388 bool PPCAsmParser:: 1389 ParseExpression(const MCExpr *&EVal) { 1390 1391 if (isDarwin()) 1392 return ParseDarwinExpression(EVal); 1393 1394 // (ELF Platforms) 1395 // Handle \code @l/@ha \endcode 1396 if (getParser().parseExpression(EVal)) 1397 return true; 1398 1399 EVal = FixupVariantKind(EVal); 1400 1401 PPCMCExpr::VariantKind Variant; 1402 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1403 if (E) 1404 EVal = PPCMCExpr::create(Variant, E, getParser().getContext()); 1405 1406 return false; 1407 } 1408 1409 /// ParseDarwinExpression. (MachO Platforms) 1410 /// This differs from the default "parseExpression" in that it handles detection 1411 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1412 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1413 /// syntax form so it is done here. TODO: Determine if there is merit in 1414 /// arranging for this to be done at a higher level. 1415 bool PPCAsmParser:: 1416 ParseDarwinExpression(const MCExpr *&EVal) { 1417 MCAsmParser &Parser = getParser(); 1418 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1419 switch (getLexer().getKind()) { 1420 default: 1421 break; 1422 case AsmToken::Identifier: 1423 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1424 // something starting with any other char should be part of the 1425 // asm syntax. If handwritten asm includes an identifier like lo16, 1426 // then all bets are off - but no-one would do that, right? 1427 StringRef poss = Parser.getTok().getString(); 1428 if (poss.equals_lower("lo16")) { 1429 Variant = PPCMCExpr::VK_PPC_LO; 1430 } else if (poss.equals_lower("hi16")) { 1431 Variant = PPCMCExpr::VK_PPC_HI; 1432 } else if (poss.equals_lower("ha16")) { 1433 Variant = PPCMCExpr::VK_PPC_HA; 1434 } 1435 if (Variant != PPCMCExpr::VK_PPC_None) { 1436 Parser.Lex(); // Eat the xx16 1437 if (getLexer().isNot(AsmToken::LParen)) 1438 return Error(Parser.getTok().getLoc(), "expected '('"); 1439 Parser.Lex(); // Eat the '(' 1440 } 1441 break; 1442 } 1443 1444 if (getParser().parseExpression(EVal)) 1445 return true; 1446 1447 if (Variant != PPCMCExpr::VK_PPC_None) { 1448 if (getLexer().isNot(AsmToken::RParen)) 1449 return Error(Parser.getTok().getLoc(), "expected ')'"); 1450 Parser.Lex(); // Eat the ')' 1451 EVal = PPCMCExpr::create(Variant, EVal, getParser().getContext()); 1452 } 1453 return false; 1454 } 1455 1456 /// ParseOperand 1457 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1458 /// rNN for MachO. 1459 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1460 MCAsmParser &Parser = getParser(); 1461 SMLoc S = Parser.getTok().getLoc(); 1462 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1463 const MCExpr *EVal; 1464 1465 // Attempt to parse the next token as an immediate 1466 switch (getLexer().getKind()) { 1467 // Special handling for register names. These are interpreted 1468 // as immediates corresponding to the register number. 1469 case AsmToken::Percent: 1470 Parser.Lex(); // Eat the '%'. 1471 unsigned RegNo; 1472 int64_t IntVal; 1473 if (MatchRegisterName(RegNo, IntVal)) 1474 return Error(S, "invalid register name"); 1475 1476 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1477 return false; 1478 1479 case AsmToken::Identifier: 1480 case AsmToken::LParen: 1481 case AsmToken::Plus: 1482 case AsmToken::Minus: 1483 case AsmToken::Integer: 1484 case AsmToken::Dot: 1485 case AsmToken::Dollar: 1486 case AsmToken::Exclaim: 1487 case AsmToken::Tilde: 1488 // Note that non-register-name identifiers from the compiler will begin 1489 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1490 // identifiers like r31foo - so we fall through in the event that parsing 1491 // a register name fails. 1492 if (isDarwin()) { 1493 unsigned RegNo; 1494 int64_t IntVal; 1495 if (!MatchRegisterName(RegNo, IntVal)) { 1496 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1497 return false; 1498 } 1499 } 1500 // All other expressions 1501 1502 if (!ParseExpression(EVal)) 1503 break; 1504 // Fall-through 1505 LLVM_FALLTHROUGH; 1506 default: 1507 return Error(S, "unknown operand"); 1508 } 1509 1510 // Push the parsed operand into the list of operands 1511 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1512 1513 // Check whether this is a TLS call expression 1514 bool TLSCall = false; 1515 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1516 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1517 1518 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1519 const MCExpr *TLSSym; 1520 1521 Parser.Lex(); // Eat the '('. 1522 S = Parser.getTok().getLoc(); 1523 if (ParseExpression(TLSSym)) 1524 return Error(S, "invalid TLS call expression"); 1525 if (getLexer().isNot(AsmToken::RParen)) 1526 return Error(Parser.getTok().getLoc(), "missing ')'"); 1527 E = Parser.getTok().getLoc(); 1528 Parser.Lex(); // Eat the ')'. 1529 1530 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1531 } 1532 1533 // Otherwise, check for D-form memory operands 1534 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1535 Parser.Lex(); // Eat the '('. 1536 S = Parser.getTok().getLoc(); 1537 1538 int64_t IntVal; 1539 switch (getLexer().getKind()) { 1540 case AsmToken::Percent: 1541 Parser.Lex(); // Eat the '%'. 1542 unsigned RegNo; 1543 if (MatchRegisterName(RegNo, IntVal)) 1544 return Error(S, "invalid register name"); 1545 break; 1546 1547 case AsmToken::Integer: 1548 if (isDarwin()) 1549 return Error(S, "unexpected integer value"); 1550 else if (getParser().parseAbsoluteExpression(IntVal) || IntVal < 0 || 1551 IntVal > 31) 1552 return Error(S, "invalid register number"); 1553 break; 1554 case AsmToken::Identifier: 1555 if (isDarwin()) { 1556 unsigned RegNo; 1557 if (!MatchRegisterName(RegNo, IntVal)) { 1558 break; 1559 } 1560 } 1561 LLVM_FALLTHROUGH; 1562 1563 default: 1564 return Error(S, "invalid memory operand"); 1565 } 1566 1567 E = Parser.getTok().getLoc(); 1568 if (parseToken(AsmToken::RParen, "missing ')'")) 1569 return true; 1570 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1571 } 1572 1573 return false; 1574 } 1575 1576 /// Parse an instruction mnemonic followed by its operands. 1577 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1578 SMLoc NameLoc, OperandVector &Operands) { 1579 // The first operand is the token for the instruction name. 1580 // If the next character is a '+' or '-', we need to add it to the 1581 // instruction name, to match what TableGen is doing. 1582 std::string NewOpcode; 1583 if (parseOptionalToken(AsmToken::Plus)) { 1584 NewOpcode = std::string(Name); 1585 NewOpcode += '+'; 1586 Name = NewOpcode; 1587 } 1588 if (parseOptionalToken(AsmToken::Minus)) { 1589 NewOpcode = std::string(Name); 1590 NewOpcode += '-'; 1591 Name = NewOpcode; 1592 } 1593 // If the instruction ends in a '.', we need to create a separate 1594 // token for it, to match what TableGen is doing. 1595 size_t Dot = Name.find('.'); 1596 StringRef Mnemonic = Name.slice(0, Dot); 1597 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1598 Operands.push_back( 1599 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1600 else 1601 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1602 if (Dot != StringRef::npos) { 1603 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1604 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1605 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1606 Operands.push_back( 1607 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1608 else 1609 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1610 } 1611 1612 // If there are no more operands then finish 1613 if (parseOptionalToken(AsmToken::EndOfStatement)) 1614 return false; 1615 1616 // Parse the first operand 1617 if (ParseOperand(Operands)) 1618 return true; 1619 1620 while (!parseOptionalToken(AsmToken::EndOfStatement)) { 1621 if (parseToken(AsmToken::Comma) || ParseOperand(Operands)) 1622 return true; 1623 } 1624 1625 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1626 // and dcbtst instructions differs for server vs. embedded cores. 1627 // The syntax for dcbt is: 1628 // dcbt ra, rb, th [server] 1629 // dcbt th, ra, rb [embedded] 1630 // where th can be omitted when it is 0. dcbtst is the same. We take the 1631 // server form to be the default, so swap the operands if we're parsing for 1632 // an embedded core (they'll be swapped again upon printing). 1633 if (getSTI().getFeatureBits()[PPC::FeatureBookE] && 1634 Operands.size() == 4 && 1635 (Name == "dcbt" || Name == "dcbtst")) { 1636 std::swap(Operands[1], Operands[3]); 1637 std::swap(Operands[2], Operands[1]); 1638 } 1639 1640 return false; 1641 } 1642 1643 /// ParseDirective parses the PPC specific directives 1644 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1645 StringRef IDVal = DirectiveID.getIdentifier(); 1646 if (isDarwin()) { 1647 if (IDVal == ".machine") 1648 ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1649 else 1650 return true; 1651 } else if (IDVal == ".word") 1652 ParseDirectiveWord(2, DirectiveID); 1653 else if (IDVal == ".llong") 1654 ParseDirectiveWord(8, DirectiveID); 1655 else if (IDVal == ".tc") 1656 ParseDirectiveTC(isPPC64() ? 8 : 4, DirectiveID); 1657 else if (IDVal == ".machine") 1658 ParseDirectiveMachine(DirectiveID.getLoc()); 1659 else if (IDVal == ".abiversion") 1660 ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1661 else if (IDVal == ".localentry") 1662 ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1663 else 1664 return true; 1665 return false; 1666 } 1667 1668 /// ParseDirectiveWord 1669 /// ::= .word [ expression (, expression)* ] 1670 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, AsmToken ID) { 1671 auto parseOp = [&]() -> bool { 1672 const MCExpr *Value; 1673 SMLoc ExprLoc = getParser().getTok().getLoc(); 1674 if (getParser().parseExpression(Value)) 1675 return true; 1676 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { 1677 assert(Size <= 8 && "Invalid size"); 1678 uint64_t IntValue = MCE->getValue(); 1679 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 1680 return Error(ExprLoc, "literal value out of range for '" + 1681 ID.getIdentifier() + "' directive"); 1682 getStreamer().emitIntValue(IntValue, Size); 1683 } else 1684 getStreamer().emitValue(Value, Size, ExprLoc); 1685 return false; 1686 }; 1687 1688 if (parseMany(parseOp)) 1689 return addErrorSuffix(" in '" + ID.getIdentifier() + "' directive"); 1690 return false; 1691 } 1692 1693 /// ParseDirectiveTC 1694 /// ::= .tc [ symbol (, expression)* ] 1695 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, AsmToken ID) { 1696 MCAsmParser &Parser = getParser(); 1697 // Skip TC symbol, which is only used with XCOFF. 1698 while (getLexer().isNot(AsmToken::EndOfStatement) 1699 && getLexer().isNot(AsmToken::Comma)) 1700 Parser.Lex(); 1701 if (parseToken(AsmToken::Comma)) 1702 return addErrorSuffix(" in '.tc' directive"); 1703 1704 // Align to word size. 1705 getParser().getStreamer().emitValueToAlignment(Size); 1706 1707 // Emit expressions. 1708 return ParseDirectiveWord(Size, ID); 1709 } 1710 1711 /// ParseDirectiveMachine (ELF platforms) 1712 /// ::= .machine [ cpu | "push" | "pop" ] 1713 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1714 MCAsmParser &Parser = getParser(); 1715 if (Parser.getTok().isNot(AsmToken::Identifier) && 1716 Parser.getTok().isNot(AsmToken::String)) 1717 return Error(L, "unexpected token in '.machine' directive"); 1718 1719 StringRef CPU = Parser.getTok().getIdentifier(); 1720 1721 // FIXME: Right now, the parser always allows any available 1722 // instruction, so the .machine directive is not useful. 1723 // Implement ".machine any" (by doing nothing) for the benefit 1724 // of existing assembler code. Likewise, we can then implement 1725 // ".machine push" and ".machine pop" as no-op. 1726 if (CPU != "any" && CPU != "push" && CPU != "pop") 1727 return TokError("unrecognized machine type"); 1728 1729 Parser.Lex(); 1730 1731 if (parseToken(AsmToken::EndOfStatement)) 1732 return addErrorSuffix(" in '.machine' directive"); 1733 1734 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1735 getParser().getStreamer().getTargetStreamer()); 1736 if (TStreamer != nullptr) 1737 TStreamer->emitMachine(CPU); 1738 1739 return false; 1740 } 1741 1742 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1743 /// ::= .machine cpu-identifier 1744 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1745 MCAsmParser &Parser = getParser(); 1746 if (Parser.getTok().isNot(AsmToken::Identifier) && 1747 Parser.getTok().isNot(AsmToken::String)) 1748 return Error(L, "unexpected token in directive"); 1749 1750 StringRef CPU = Parser.getTok().getIdentifier(); 1751 Parser.Lex(); 1752 1753 // FIXME: this is only the 'default' set of cpu variants. 1754 // However we don't act on this information at present, this is simply 1755 // allowing parsing to proceed with minimal sanity checking. 1756 if (check(CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64", L, 1757 "unrecognized cpu type") || 1758 check(isPPC64() && (CPU == "ppc7400" || CPU == "ppc"), L, 1759 "wrong cpu type specified for 64bit") || 1760 check(!isPPC64() && CPU == "ppc64", L, 1761 "wrong cpu type specified for 32bit") || 1762 parseToken(AsmToken::EndOfStatement)) 1763 return addErrorSuffix(" in '.machine' directive"); 1764 return false; 1765 } 1766 1767 /// ParseDirectiveAbiVersion 1768 /// ::= .abiversion constant-expression 1769 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1770 int64_t AbiVersion; 1771 if (check(getParser().parseAbsoluteExpression(AbiVersion), L, 1772 "expected constant expression") || 1773 parseToken(AsmToken::EndOfStatement)) 1774 return addErrorSuffix(" in '.abiversion' directive"); 1775 1776 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1777 getParser().getStreamer().getTargetStreamer()); 1778 if (TStreamer != nullptr) 1779 TStreamer->emitAbiVersion(AbiVersion); 1780 1781 return false; 1782 } 1783 1784 /// ParseDirectiveLocalEntry 1785 /// ::= .localentry symbol, expression 1786 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1787 StringRef Name; 1788 if (getParser().parseIdentifier(Name)) 1789 return Error(L, "expected identifier in '.localentry' directive"); 1790 1791 MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name)); 1792 const MCExpr *Expr; 1793 1794 if (parseToken(AsmToken::Comma) || 1795 check(getParser().parseExpression(Expr), L, "expected expression") || 1796 parseToken(AsmToken::EndOfStatement)) 1797 return addErrorSuffix(" in '.localentry' directive"); 1798 1799 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1800 getParser().getStreamer().getTargetStreamer()); 1801 if (TStreamer != nullptr) 1802 TStreamer->emitLocalEntry(Sym, Expr); 1803 1804 return false; 1805 } 1806 1807 1808 1809 /// Force static initialization. 1810 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmParser() { 1811 RegisterMCAsmParser<PPCAsmParser> A(getThePPC32Target()); 1812 RegisterMCAsmParser<PPCAsmParser> B(getThePPC64Target()); 1813 RegisterMCAsmParser<PPCAsmParser> C(getThePPC64LETarget()); 1814 } 1815 1816 #define GET_REGISTER_MATCHER 1817 #define GET_MATCHER_IMPLEMENTATION 1818 #define GET_MNEMONIC_SPELL_CHECKER 1819 #include "PPCGenAsmMatcher.inc" 1820 1821 // Define this matcher function after the auto-generated include so we 1822 // have the match class enum definitions. 1823 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1824 unsigned Kind) { 1825 // If the kind is a token for a literal immediate, check if our asm 1826 // operand matches. This is for InstAliases which have a fixed-value 1827 // immediate in the syntax. 1828 int64_t ImmVal; 1829 switch (Kind) { 1830 case MCK_0: ImmVal = 0; break; 1831 case MCK_1: ImmVal = 1; break; 1832 case MCK_2: ImmVal = 2; break; 1833 case MCK_3: ImmVal = 3; break; 1834 case MCK_4: ImmVal = 4; break; 1835 case MCK_5: ImmVal = 5; break; 1836 case MCK_6: ImmVal = 6; break; 1837 case MCK_7: ImmVal = 7; break; 1838 default: return Match_InvalidOperand; 1839 } 1840 1841 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1842 if (Op.isImm() && Op.getImm() == ImmVal) 1843 return Match_Success; 1844 1845 return Match_InvalidOperand; 1846 } 1847 1848 const MCExpr * 1849 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 1850 MCSymbolRefExpr::VariantKind Variant, 1851 MCContext &Ctx) { 1852 switch (Variant) { 1853 case MCSymbolRefExpr::VK_PPC_LO: 1854 return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, Ctx); 1855 case MCSymbolRefExpr::VK_PPC_HI: 1856 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, Ctx); 1857 case MCSymbolRefExpr::VK_PPC_HA: 1858 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, Ctx); 1859 case MCSymbolRefExpr::VK_PPC_HIGH: 1860 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGH, E, Ctx); 1861 case MCSymbolRefExpr::VK_PPC_HIGHA: 1862 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHA, E, Ctx); 1863 case MCSymbolRefExpr::VK_PPC_HIGHER: 1864 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, Ctx); 1865 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1866 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, Ctx); 1867 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1868 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, Ctx); 1869 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1870 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, Ctx); 1871 default: 1872 return nullptr; 1873 } 1874 } 1875