1 //===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NVPTXTargetTransformInfo.h" 10 #include "NVPTXUtilities.h" 11 #include "llvm/Analysis/LoopInfo.h" 12 #include "llvm/Analysis/TargetTransformInfo.h" 13 #include "llvm/Analysis/ValueTracking.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicsNVPTX.h" 18 #include "llvm/Support/Debug.h" 19 using namespace llvm; 20 21 #define DEBUG_TYPE "NVPTXtti" 22 23 // Whether the given intrinsic reads threadIdx.x/y/z. 24 static bool readsThreadIndex(const IntrinsicInst *II) { 25 switch (II->getIntrinsicID()) { 26 default: return false; 27 case Intrinsic::nvvm_read_ptx_sreg_tid_x: 28 case Intrinsic::nvvm_read_ptx_sreg_tid_y: 29 case Intrinsic::nvvm_read_ptx_sreg_tid_z: 30 return true; 31 } 32 } 33 34 static bool readsLaneId(const IntrinsicInst *II) { 35 return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid; 36 } 37 38 // Whether the given intrinsic is an atomic instruction in PTX. 39 static bool isNVVMAtomic(const IntrinsicInst *II) { 40 switch (II->getIntrinsicID()) { 41 default: return false; 42 case Intrinsic::nvvm_atomic_load_inc_32: 43 case Intrinsic::nvvm_atomic_load_dec_32: 44 45 case Intrinsic::nvvm_atomic_add_gen_f_cta: 46 case Intrinsic::nvvm_atomic_add_gen_f_sys: 47 case Intrinsic::nvvm_atomic_add_gen_i_cta: 48 case Intrinsic::nvvm_atomic_add_gen_i_sys: 49 case Intrinsic::nvvm_atomic_and_gen_i_cta: 50 case Intrinsic::nvvm_atomic_and_gen_i_sys: 51 case Intrinsic::nvvm_atomic_cas_gen_i_cta: 52 case Intrinsic::nvvm_atomic_cas_gen_i_sys: 53 case Intrinsic::nvvm_atomic_dec_gen_i_cta: 54 case Intrinsic::nvvm_atomic_dec_gen_i_sys: 55 case Intrinsic::nvvm_atomic_inc_gen_i_cta: 56 case Intrinsic::nvvm_atomic_inc_gen_i_sys: 57 case Intrinsic::nvvm_atomic_max_gen_i_cta: 58 case Intrinsic::nvvm_atomic_max_gen_i_sys: 59 case Intrinsic::nvvm_atomic_min_gen_i_cta: 60 case Intrinsic::nvvm_atomic_min_gen_i_sys: 61 case Intrinsic::nvvm_atomic_or_gen_i_cta: 62 case Intrinsic::nvvm_atomic_or_gen_i_sys: 63 case Intrinsic::nvvm_atomic_exch_gen_i_cta: 64 case Intrinsic::nvvm_atomic_exch_gen_i_sys: 65 case Intrinsic::nvvm_atomic_xor_gen_i_cta: 66 case Intrinsic::nvvm_atomic_xor_gen_i_sys: 67 return true; 68 } 69 } 70 71 bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) { 72 // Without inter-procedural analysis, we conservatively assume that arguments 73 // to __device__ functions are divergent. 74 if (const Argument *Arg = dyn_cast<Argument>(V)) 75 return !isKernelFunction(*Arg->getParent()); 76 77 if (const Instruction *I = dyn_cast<Instruction>(V)) { 78 // Without pointer analysis, we conservatively assume values loaded from 79 // generic or local address space are divergent. 80 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 81 unsigned AS = LI->getPointerAddressSpace(); 82 return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL; 83 } 84 // Atomic instructions may cause divergence. Atomic instructions are 85 // executed sequentially across all threads in a warp. Therefore, an earlier 86 // executed thread may see different memory inputs than a later executed 87 // thread. For example, suppose *a = 0 initially. 88 // 89 // atom.global.add.s32 d, [a], 1 90 // 91 // returns 0 for the first thread that enters the critical region, and 1 for 92 // the second thread. 93 if (I->isAtomic()) 94 return true; 95 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 96 // Instructions that read threadIdx are obviously divergent. 97 if (readsThreadIndex(II) || readsLaneId(II)) 98 return true; 99 // Handle the NVPTX atomic instrinsics that cannot be represented as an 100 // atomic IR instruction. 101 if (isNVVMAtomic(II)) 102 return true; 103 } 104 // Conservatively consider the return value of function calls as divergent. 105 // We could analyze callees with bodies more precisely using 106 // inter-procedural analysis. 107 if (isa<CallInst>(I)) 108 return true; 109 } 110 111 return false; 112 } 113 114 // Convert NVVM intrinsics to target-generic LLVM code where possible. 115 static Instruction *simplifyNvvmIntrinsic(IntrinsicInst *II, InstCombiner &IC) { 116 // Each NVVM intrinsic we can simplify can be replaced with one of: 117 // 118 // * an LLVM intrinsic, 119 // * an LLVM cast operation, 120 // * an LLVM binary operation, or 121 // * ad-hoc LLVM IR for the particular operation. 122 123 // Some transformations are only valid when the module's 124 // flush-denormals-to-zero (ftz) setting is true/false, whereas other 125 // transformations are valid regardless of the module's ftz setting. 126 enum FtzRequirementTy { 127 FTZ_Any, // Any ftz setting is ok. 128 FTZ_MustBeOn, // Transformation is valid only if ftz is on. 129 FTZ_MustBeOff, // Transformation is valid only if ftz is off. 130 }; 131 // Classes of NVVM intrinsics that can't be replaced one-to-one with a 132 // target-generic intrinsic, cast op, or binary op but that we can nonetheless 133 // simplify. 134 enum SpecialCase { 135 SPC_Reciprocal, 136 }; 137 138 // SimplifyAction is a poor-man's variant (plus an additional flag) that 139 // represents how to replace an NVVM intrinsic with target-generic LLVM IR. 140 struct SimplifyAction { 141 // Invariant: At most one of these Optionals has a value. 142 Optional<Intrinsic::ID> IID; 143 Optional<Instruction::CastOps> CastOp; 144 Optional<Instruction::BinaryOps> BinaryOp; 145 Optional<SpecialCase> Special; 146 147 FtzRequirementTy FtzRequirement = FTZ_Any; 148 149 SimplifyAction() = default; 150 151 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq) 152 : IID(IID), FtzRequirement(FtzReq) {} 153 154 // Cast operations don't have anything to do with FTZ, so we skip that 155 // argument. 156 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} 157 158 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) 159 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} 160 161 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) 162 : Special(Special), FtzRequirement(FtzReq) {} 163 }; 164 165 // Try to generate a SimplifyAction describing how to replace our 166 // IntrinsicInstr with target-generic LLVM IR. 167 const SimplifyAction Action = [II]() -> SimplifyAction { 168 switch (II->getIntrinsicID()) { 169 // NVVM intrinsics that map directly to LLVM intrinsics. 170 case Intrinsic::nvvm_ceil_d: 171 return {Intrinsic::ceil, FTZ_Any}; 172 case Intrinsic::nvvm_ceil_f: 173 return {Intrinsic::ceil, FTZ_MustBeOff}; 174 case Intrinsic::nvvm_ceil_ftz_f: 175 return {Intrinsic::ceil, FTZ_MustBeOn}; 176 case Intrinsic::nvvm_fabs_d: 177 return {Intrinsic::fabs, FTZ_Any}; 178 case Intrinsic::nvvm_fabs_f: 179 return {Intrinsic::fabs, FTZ_MustBeOff}; 180 case Intrinsic::nvvm_fabs_ftz_f: 181 return {Intrinsic::fabs, FTZ_MustBeOn}; 182 case Intrinsic::nvvm_floor_d: 183 return {Intrinsic::floor, FTZ_Any}; 184 case Intrinsic::nvvm_floor_f: 185 return {Intrinsic::floor, FTZ_MustBeOff}; 186 case Intrinsic::nvvm_floor_ftz_f: 187 return {Intrinsic::floor, FTZ_MustBeOn}; 188 case Intrinsic::nvvm_fma_rn_d: 189 return {Intrinsic::fma, FTZ_Any}; 190 case Intrinsic::nvvm_fma_rn_f: 191 return {Intrinsic::fma, FTZ_MustBeOff}; 192 case Intrinsic::nvvm_fma_rn_ftz_f: 193 return {Intrinsic::fma, FTZ_MustBeOn}; 194 case Intrinsic::nvvm_fmax_d: 195 return {Intrinsic::maxnum, FTZ_Any}; 196 case Intrinsic::nvvm_fmax_f: 197 return {Intrinsic::maxnum, FTZ_MustBeOff}; 198 case Intrinsic::nvvm_fmax_ftz_f: 199 return {Intrinsic::maxnum, FTZ_MustBeOn}; 200 case Intrinsic::nvvm_fmin_d: 201 return {Intrinsic::minnum, FTZ_Any}; 202 case Intrinsic::nvvm_fmin_f: 203 return {Intrinsic::minnum, FTZ_MustBeOff}; 204 case Intrinsic::nvvm_fmin_ftz_f: 205 return {Intrinsic::minnum, FTZ_MustBeOn}; 206 case Intrinsic::nvvm_round_d: 207 return {Intrinsic::round, FTZ_Any}; 208 case Intrinsic::nvvm_round_f: 209 return {Intrinsic::round, FTZ_MustBeOff}; 210 case Intrinsic::nvvm_round_ftz_f: 211 return {Intrinsic::round, FTZ_MustBeOn}; 212 case Intrinsic::nvvm_sqrt_rn_d: 213 return {Intrinsic::sqrt, FTZ_Any}; 214 case Intrinsic::nvvm_sqrt_f: 215 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the 216 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts 217 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are 218 // the versions with explicit ftz-ness. 219 return {Intrinsic::sqrt, FTZ_Any}; 220 case Intrinsic::nvvm_sqrt_rn_f: 221 return {Intrinsic::sqrt, FTZ_MustBeOff}; 222 case Intrinsic::nvvm_sqrt_rn_ftz_f: 223 return {Intrinsic::sqrt, FTZ_MustBeOn}; 224 case Intrinsic::nvvm_trunc_d: 225 return {Intrinsic::trunc, FTZ_Any}; 226 case Intrinsic::nvvm_trunc_f: 227 return {Intrinsic::trunc, FTZ_MustBeOff}; 228 case Intrinsic::nvvm_trunc_ftz_f: 229 return {Intrinsic::trunc, FTZ_MustBeOn}; 230 231 // NVVM intrinsics that map to LLVM cast operations. 232 // 233 // Note that llvm's target-generic conversion operators correspond to the rz 234 // (round to zero) versions of the nvvm conversion intrinsics, even though 235 // most everything else here uses the rn (round to nearest even) nvvm ops. 236 case Intrinsic::nvvm_d2i_rz: 237 case Intrinsic::nvvm_f2i_rz: 238 case Intrinsic::nvvm_d2ll_rz: 239 case Intrinsic::nvvm_f2ll_rz: 240 return {Instruction::FPToSI}; 241 case Intrinsic::nvvm_d2ui_rz: 242 case Intrinsic::nvvm_f2ui_rz: 243 case Intrinsic::nvvm_d2ull_rz: 244 case Intrinsic::nvvm_f2ull_rz: 245 return {Instruction::FPToUI}; 246 case Intrinsic::nvvm_i2d_rz: 247 case Intrinsic::nvvm_i2f_rz: 248 case Intrinsic::nvvm_ll2d_rz: 249 case Intrinsic::nvvm_ll2f_rz: 250 return {Instruction::SIToFP}; 251 case Intrinsic::nvvm_ui2d_rz: 252 case Intrinsic::nvvm_ui2f_rz: 253 case Intrinsic::nvvm_ull2d_rz: 254 case Intrinsic::nvvm_ull2f_rz: 255 return {Instruction::UIToFP}; 256 257 // NVVM intrinsics that map to LLVM binary ops. 258 case Intrinsic::nvvm_add_rn_d: 259 return {Instruction::FAdd, FTZ_Any}; 260 case Intrinsic::nvvm_add_rn_f: 261 return {Instruction::FAdd, FTZ_MustBeOff}; 262 case Intrinsic::nvvm_add_rn_ftz_f: 263 return {Instruction::FAdd, FTZ_MustBeOn}; 264 case Intrinsic::nvvm_mul_rn_d: 265 return {Instruction::FMul, FTZ_Any}; 266 case Intrinsic::nvvm_mul_rn_f: 267 return {Instruction::FMul, FTZ_MustBeOff}; 268 case Intrinsic::nvvm_mul_rn_ftz_f: 269 return {Instruction::FMul, FTZ_MustBeOn}; 270 case Intrinsic::nvvm_div_rn_d: 271 return {Instruction::FDiv, FTZ_Any}; 272 case Intrinsic::nvvm_div_rn_f: 273 return {Instruction::FDiv, FTZ_MustBeOff}; 274 case Intrinsic::nvvm_div_rn_ftz_f: 275 return {Instruction::FDiv, FTZ_MustBeOn}; 276 277 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but 278 // need special handling. 279 // 280 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just 281 // as well. 282 case Intrinsic::nvvm_rcp_rn_d: 283 return {SPC_Reciprocal, FTZ_Any}; 284 case Intrinsic::nvvm_rcp_rn_f: 285 return {SPC_Reciprocal, FTZ_MustBeOff}; 286 case Intrinsic::nvvm_rcp_rn_ftz_f: 287 return {SPC_Reciprocal, FTZ_MustBeOn}; 288 289 // We do not currently simplify intrinsics that give an approximate 290 // answer. These include: 291 // 292 // - nvvm_cos_approx_{f,ftz_f} 293 // - nvvm_ex2_approx_{d,f,ftz_f} 294 // - nvvm_lg2_approx_{d,f,ftz_f} 295 // - nvvm_sin_approx_{f,ftz_f} 296 // - nvvm_sqrt_approx_{f,ftz_f} 297 // - nvvm_rsqrt_approx_{d,f,ftz_f} 298 // - nvvm_div_approx_{ftz_d,ftz_f,f} 299 // - nvvm_rcp_approx_ftz_d 300 // 301 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" 302 // means that fastmath is enabled in the intrinsic. Unfortunately only 303 // binary operators (currently) have a fastmath bit in SelectionDAG, so 304 // this information gets lost and we can't select on it. 305 // 306 // TODO: div and rcp are lowered to a binary op, so these we could in 307 // theory lower them to "fast fdiv". 308 309 default: 310 return {}; 311 } 312 }(); 313 314 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we 315 // can bail out now. (Notice that in the case that IID is not an NVVM 316 // intrinsic, we don't have to look up any module metadata, as 317 // FtzRequirementTy will be FTZ_Any.) 318 if (Action.FtzRequirement != FTZ_Any) { 319 StringRef Attr = II->getFunction() 320 ->getFnAttribute("denormal-fp-math-f32") 321 .getValueAsString(); 322 DenormalMode Mode = parseDenormalFPAttribute(Attr); 323 bool FtzEnabled = Mode.Output != DenormalMode::IEEE; 324 325 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) 326 return nullptr; 327 } 328 329 // Simplify to target-generic intrinsic. 330 if (Action.IID) { 331 SmallVector<Value *, 4> Args(II->arg_operands()); 332 // All the target-generic intrinsics currently of interest to us have one 333 // type argument, equal to that of the nvvm intrinsic's argument. 334 Type *Tys[] = {II->getArgOperand(0)->getType()}; 335 return CallInst::Create( 336 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args); 337 } 338 339 // Simplify to target-generic binary op. 340 if (Action.BinaryOp) 341 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0), 342 II->getArgOperand(1), II->getName()); 343 344 // Simplify to target-generic cast op. 345 if (Action.CastOp) 346 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(), 347 II->getName()); 348 349 // All that's left are the special cases. 350 if (!Action.Special) 351 return nullptr; 352 353 switch (*Action.Special) { 354 case SPC_Reciprocal: 355 // Simplify reciprocal. 356 return BinaryOperator::Create( 357 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1), 358 II->getArgOperand(0), II->getName()); 359 } 360 llvm_unreachable("All SpecialCase enumerators should be handled in switch."); 361 } 362 363 Optional<Instruction *> 364 NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 365 if (Instruction *I = simplifyNvvmIntrinsic(&II, IC)) { 366 return I; 367 } 368 return None; 369 } 370 371 InstructionCost NVPTXTTIImpl::getArithmeticInstrCost( 372 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 373 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 374 TTI::OperandValueProperties Opd1PropInfo, 375 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 376 const Instruction *CxtI) { 377 // Legalize the type. 378 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 379 380 int ISD = TLI->InstructionOpcodeToISD(Opcode); 381 382 switch (ISD) { 383 default: 384 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 385 Opd2Info, 386 Opd1PropInfo, Opd2PropInfo); 387 case ISD::ADD: 388 case ISD::MUL: 389 case ISD::XOR: 390 case ISD::OR: 391 case ISD::AND: 392 // The machine code (SASS) simulates an i64 with two i32. Therefore, we 393 // estimate that arithmetic operations on i64 are twice as expensive as 394 // those on types that can fit into one machine register. 395 if (LT.second.SimpleTy == MVT::i64) 396 return 2 * LT.first; 397 // Delegate other cases to the basic TTI. 398 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 399 Opd2Info, 400 Opd1PropInfo, Opd2PropInfo); 401 } 402 } 403 404 void NVPTXTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 405 TTI::UnrollingPreferences &UP) { 406 BaseT::getUnrollingPreferences(L, SE, UP); 407 408 // Enable partial unrolling and runtime unrolling, but reduce the 409 // threshold. This partially unrolls small loops which are often 410 // unrolled by the PTX to SASS compiler and unrolling earlier can be 411 // beneficial. 412 UP.Partial = UP.Runtime = true; 413 UP.PartialThreshold = UP.Threshold / 4; 414 } 415 416 void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 417 TTI::PeelingPreferences &PP) { 418 BaseT::getPeelingPreferences(L, SE, PP); 419 } 420