xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Top-level implementation for the NVPTX target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "NVPTXTargetMachine.h"
14 #include "NVPTX.h"
15 #include "NVPTXAliasAnalysis.h"
16 #include "NVPTXAllocaHoisting.h"
17 #include "NVPTXAtomicLower.h"
18 #include "NVPTXCtorDtorLowering.h"
19 #include "NVPTXLowerAggrCopies.h"
20 #include "NVPTXMachineFunctionInfo.h"
21 #include "NVPTXTargetObjectFile.h"
22 #include "NVPTXTargetTransformInfo.h"
23 #include "TargetInfo/NVPTXTargetInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/TargetPassConfig.h"
28 #include "llvm/IR/IntrinsicsNVPTX.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Passes/PassBuilder.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Scalar/GVN.h"
38 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
39 #include <cassert>
40 #include <optional>
41 #include <string>
42 
43 using namespace llvm;
44 
45 // LSV is still relatively new; this switch lets us turn it off in case we
46 // encounter (or suspect) a bug.
47 static cl::opt<bool>
48     DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
49                                cl::desc("Disable load/store vectorizer"),
50                                cl::init(false), cl::Hidden);
51 
52 // TODO: Remove this flag when we are confident with no regressions.
53 static cl::opt<bool> DisableRequireStructuredCFG(
54     "disable-nvptx-require-structured-cfg",
55     cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
56              "structured CFG. The requirement should be disabled only when "
57              "unexpected regressions happen."),
58     cl::init(false), cl::Hidden);
59 
60 static cl::opt<bool> UseShortPointersOpt(
61     "nvptx-short-ptr",
62     cl::desc(
63         "Use 32-bit pointers for accessing const/local/shared address spaces."),
64     cl::init(false), cl::Hidden);
65 
66 namespace llvm {
67 
68 void initializeGenericToNVVMLegacyPassPass(PassRegistry &);
69 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
70 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry &);
71 void initializeNVPTXAtomicLowerPass(PassRegistry &);
72 void initializeNVPTXCtorDtorLoweringLegacyPass(PassRegistry &);
73 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
74 void initializeNVPTXLowerAllocaPass(PassRegistry &);
75 void initializeNVPTXLowerUnreachablePass(PassRegistry &);
76 void initializeNVPTXCtorDtorLoweringLegacyPass(PassRegistry &);
77 void initializeNVPTXLowerArgsPass(PassRegistry &);
78 void initializeNVPTXProxyRegErasurePass(PassRegistry &);
79 void initializeNVVMIntrRangePass(PassRegistry &);
80 void initializeNVVMReflectPass(PassRegistry &);
81 void initializeNVPTXAAWrapperPassPass(PassRegistry &);
82 void initializeNVPTXExternalAAWrapperPass(PassRegistry &);
83 
84 } // end namespace llvm
85 
86 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXTarget() {
87   // Register the target.
88   RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
89   RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
90 
91   PassRegistry &PR = *PassRegistry::getPassRegistry();
92   // FIXME: This pass is really intended to be invoked during IR optimization,
93   // but it's very NVPTX-specific.
94   initializeNVVMReflectPass(PR);
95   initializeNVVMIntrRangePass(PR);
96   initializeGenericToNVVMLegacyPassPass(PR);
97   initializeNVPTXAllocaHoistingPass(PR);
98   initializeNVPTXAssignValidGlobalNamesPass(PR);
99   initializeNVPTXAtomicLowerPass(PR);
100   initializeNVPTXLowerArgsPass(PR);
101   initializeNVPTXLowerAllocaPass(PR);
102   initializeNVPTXLowerUnreachablePass(PR);
103   initializeNVPTXCtorDtorLoweringLegacyPass(PR);
104   initializeNVPTXLowerAggrCopiesPass(PR);
105   initializeNVPTXProxyRegErasurePass(PR);
106   initializeNVPTXDAGToDAGISelPass(PR);
107   initializeNVPTXAAWrapperPassPass(PR);
108   initializeNVPTXExternalAAWrapperPass(PR);
109 }
110 
111 static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
112   std::string Ret = "e";
113 
114   if (!is64Bit)
115     Ret += "-p:32:32";
116   else if (UseShortPointers)
117     Ret += "-p3:32:32-p4:32:32-p5:32:32";
118 
119   Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
120 
121   return Ret;
122 }
123 
124 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
125                                        StringRef CPU, StringRef FS,
126                                        const TargetOptions &Options,
127                                        std::optional<Reloc::Model> RM,
128                                        std::optional<CodeModel::Model> CM,
129                                        CodeGenOptLevel OL, bool is64bit)
130     // The pic relocation model is used regardless of what the client has
131     // specified, as it is the only relocation model currently supported.
132     : LLVMTargetMachine(T, computeDataLayout(is64bit, UseShortPointersOpt), TT,
133                         CPU, FS, Options, Reloc::PIC_,
134                         getEffectiveCodeModel(CM, CodeModel::Small), OL),
135       is64bit(is64bit), UseShortPointers(UseShortPointersOpt),
136       TLOF(std::make_unique<NVPTXTargetObjectFile>()),
137       Subtarget(TT, std::string(CPU), std::string(FS), *this),
138       StrPool(StrAlloc) {
139   if (TT.getOS() == Triple::NVCL)
140     drvInterface = NVPTX::NVCL;
141   else
142     drvInterface = NVPTX::CUDA;
143   if (!DisableRequireStructuredCFG)
144     setRequiresStructuredCFG(true);
145   initAsmInfo();
146 }
147 
148 NVPTXTargetMachine::~NVPTXTargetMachine() = default;
149 
150 void NVPTXTargetMachine32::anchor() {}
151 
152 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
153                                            StringRef CPU, StringRef FS,
154                                            const TargetOptions &Options,
155                                            std::optional<Reloc::Model> RM,
156                                            std::optional<CodeModel::Model> CM,
157                                            CodeGenOptLevel OL, bool JIT)
158     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
159 
160 void NVPTXTargetMachine64::anchor() {}
161 
162 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
163                                            StringRef CPU, StringRef FS,
164                                            const TargetOptions &Options,
165                                            std::optional<Reloc::Model> RM,
166                                            std::optional<CodeModel::Model> CM,
167                                            CodeGenOptLevel OL, bool JIT)
168     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
169 
170 namespace {
171 
172 class NVPTXPassConfig : public TargetPassConfig {
173 public:
174   NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
175       : TargetPassConfig(TM, PM) {}
176 
177   NVPTXTargetMachine &getNVPTXTargetMachine() const {
178     return getTM<NVPTXTargetMachine>();
179   }
180 
181   void addIRPasses() override;
182   bool addInstSelector() override;
183   void addPreRegAlloc() override;
184   void addPostRegAlloc() override;
185   void addMachineSSAOptimization() override;
186 
187   FunctionPass *createTargetRegisterAllocator(bool) override;
188   void addFastRegAlloc() override;
189   void addOptimizedRegAlloc() override;
190 
191   bool addRegAssignAndRewriteFast() override {
192     llvm_unreachable("should not be used");
193   }
194 
195   bool addRegAssignAndRewriteOptimized() override {
196     llvm_unreachable("should not be used");
197   }
198 
199 private:
200   // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
201   // function is only called in opt mode.
202   void addEarlyCSEOrGVNPass();
203 
204   // Add passes that propagate special memory spaces.
205   void addAddressSpaceInferencePasses();
206 
207   // Add passes that perform straight-line scalar optimizations.
208   void addStraightLineScalarOptimizationPasses();
209 };
210 
211 } // end anonymous namespace
212 
213 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
214   return new NVPTXPassConfig(*this, PM);
215 }
216 
217 MachineFunctionInfo *NVPTXTargetMachine::createMachineFunctionInfo(
218     BumpPtrAllocator &Allocator, const Function &F,
219     const TargetSubtargetInfo *STI) const {
220   return NVPTXMachineFunctionInfo::create<NVPTXMachineFunctionInfo>(Allocator,
221                                                                     F, STI);
222 }
223 
224 void NVPTXTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
225   AAM.registerFunctionAnalysis<NVPTXAA>();
226 }
227 
228 void NVPTXTargetMachine::registerPassBuilderCallbacks(
229     PassBuilder &PB, bool PopulateClassToPassNames) {
230   PB.registerPipelineParsingCallback(
231       [](StringRef PassName, FunctionPassManager &PM,
232          ArrayRef<PassBuilder::PipelineElement>) {
233         if (PassName == "nvvm-reflect") {
234           PM.addPass(NVVMReflectPass());
235           return true;
236         }
237         if (PassName == "nvvm-intr-range") {
238           PM.addPass(NVVMIntrRangePass());
239           return true;
240         }
241         return false;
242       });
243 
244   PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
245     FAM.registerPass([&] { return NVPTXAA(); });
246   });
247 
248   PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
249     if (AAName == "nvptx-aa") {
250       AAM.registerFunctionAnalysis<NVPTXAA>();
251       return true;
252     }
253     return false;
254   });
255 
256   PB.registerPipelineParsingCallback(
257       [](StringRef PassName, ModulePassManager &PM,
258          ArrayRef<PassBuilder::PipelineElement>) {
259         if (PassName == "nvptx-lower-ctor-dtor") {
260           PM.addPass(NVPTXCtorDtorLoweringPass());
261           return true;
262         }
263         if (PassName == "generic-to-nvvm") {
264           PM.addPass(GenericToNVVMPass());
265           return true;
266         }
267         return false;
268       });
269 
270   PB.registerPipelineStartEPCallback(
271       [this](ModulePassManager &PM, OptimizationLevel Level) {
272         FunctionPassManager FPM;
273         FPM.addPass(NVVMReflectPass(Subtarget.getSmVersion()));
274         // FIXME: NVVMIntrRangePass is causing numerical discrepancies,
275         // investigate and re-enable.
276         // FPM.addPass(NVVMIntrRangePass(Subtarget.getSmVersion()));
277         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
278       });
279 }
280 
281 TargetTransformInfo
282 NVPTXTargetMachine::getTargetTransformInfo(const Function &F) const {
283   return TargetTransformInfo(NVPTXTTIImpl(this, F));
284 }
285 
286 std::pair<const Value *, unsigned>
287 NVPTXTargetMachine::getPredicatedAddrSpace(const Value *V) const {
288   if (auto *II = dyn_cast<IntrinsicInst>(V)) {
289     switch (II->getIntrinsicID()) {
290     case Intrinsic::nvvm_isspacep_const:
291       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_CONST);
292     case Intrinsic::nvvm_isspacep_global:
293       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_GLOBAL);
294     case Intrinsic::nvvm_isspacep_local:
295       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_LOCAL);
296     case Intrinsic::nvvm_isspacep_shared:
297     case Intrinsic::nvvm_isspacep_shared_cluster:
298       return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_SHARED);
299     default:
300       break;
301     }
302   }
303   return std::make_pair(nullptr, -1);
304 }
305 
306 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
307   if (getOptLevel() == CodeGenOptLevel::Aggressive)
308     addPass(createGVNPass());
309   else
310     addPass(createEarlyCSEPass());
311 }
312 
313 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
314   // NVPTXLowerArgs emits alloca for byval parameters which can often
315   // be eliminated by SROA.
316   addPass(createSROAPass());
317   addPass(createNVPTXLowerAllocaPass());
318   addPass(createInferAddressSpacesPass());
319   addPass(createNVPTXAtomicLowerPass());
320 }
321 
322 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
323   addPass(createSeparateConstOffsetFromGEPPass());
324   addPass(createSpeculativeExecutionPass());
325   // ReassociateGEPs exposes more opportunites for SLSR. See
326   // the example in reassociate-geps-and-slsr.ll.
327   addPass(createStraightLineStrengthReducePass());
328   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
329   // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
330   // for some of our benchmarks.
331   addEarlyCSEOrGVNPass();
332   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
333   addPass(createNaryReassociatePass());
334   // NaryReassociate on GEPs creates redundant common expressions, so run
335   // EarlyCSE after it.
336   addPass(createEarlyCSEPass());
337 }
338 
339 void NVPTXPassConfig::addIRPasses() {
340   // The following passes are known to not play well with virtual regs hanging
341   // around after register allocation (which in our case, is *all* registers).
342   // We explicitly disable them here.  We do, however, need some functionality
343   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
344   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
345   disablePass(&PrologEpilogCodeInserterID);
346   disablePass(&MachineLateInstrsCleanupID);
347   disablePass(&MachineCopyPropagationID);
348   disablePass(&TailDuplicateID);
349   disablePass(&StackMapLivenessID);
350   disablePass(&LiveDebugValuesID);
351   disablePass(&PostRAMachineSinkingID);
352   disablePass(&PostRASchedulerID);
353   disablePass(&FuncletLayoutID);
354   disablePass(&PatchableFunctionID);
355   disablePass(&ShrinkWrapID);
356 
357   addPass(createNVPTXAAWrapperPass());
358   addPass(createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) {
359     if (auto *WrapperPass = P.getAnalysisIfAvailable<NVPTXAAWrapperPass>())
360       AAR.addAAResult(WrapperPass->getResult());
361   }));
362 
363   // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
364   // it here does nothing.  But since we need it for correctness when lowering
365   // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
366   // call addEarlyAsPossiblePasses.
367   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
368   addPass(createNVVMReflectPass(ST.getSmVersion()));
369 
370   if (getOptLevel() != CodeGenOptLevel::None)
371     addPass(createNVPTXImageOptimizerPass());
372   addPass(createNVPTXAssignValidGlobalNamesPass());
373   addPass(createGenericToNVVMLegacyPass());
374 
375   // NVPTXLowerArgs is required for correctness and should be run right
376   // before the address space inference passes.
377   addPass(createNVPTXLowerArgsPass());
378   if (getOptLevel() != CodeGenOptLevel::None) {
379     addAddressSpaceInferencePasses();
380     addStraightLineScalarOptimizationPasses();
381   }
382 
383   addPass(createAtomicExpandPass());
384   addPass(createNVPTXCtorDtorLoweringLegacyPass());
385 
386   // === LSR and other generic IR passes ===
387   TargetPassConfig::addIRPasses();
388   // EarlyCSE is not always strong enough to clean up what LSR produces. For
389   // example, GVN can combine
390   //
391   //   %0 = add %a, %b
392   //   %1 = add %b, %a
393   //
394   // and
395   //
396   //   %0 = shl nsw %a, 2
397   //   %1 = shl %a, 2
398   //
399   // but EarlyCSE can do neither of them.
400   if (getOptLevel() != CodeGenOptLevel::None) {
401     addEarlyCSEOrGVNPass();
402     if (!DisableLoadStoreVectorizer)
403       addPass(createLoadStoreVectorizerPass());
404     addPass(createSROAPass());
405   }
406 
407   const auto &Options = getNVPTXTargetMachine().Options;
408   addPass(createNVPTXLowerUnreachablePass(Options.TrapUnreachable,
409                                           Options.NoTrapAfterNoreturn));
410 }
411 
412 bool NVPTXPassConfig::addInstSelector() {
413   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
414 
415   addPass(createLowerAggrCopies());
416   addPass(createAllocaHoisting());
417   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
418 
419   if (!ST.hasImageHandles())
420     addPass(createNVPTXReplaceImageHandlesPass());
421 
422   return false;
423 }
424 
425 void NVPTXPassConfig::addPreRegAlloc() {
426   // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
427   addPass(createNVPTXProxyRegErasurePass());
428 }
429 
430 void NVPTXPassConfig::addPostRegAlloc() {
431   addPass(createNVPTXPrologEpilogPass());
432   if (getOptLevel() != CodeGenOptLevel::None) {
433     // NVPTXPrologEpilogPass calculates frame object offset and replace frame
434     // index with VRFrame register. NVPTXPeephole need to be run after that and
435     // will replace VRFrame with VRFrameLocal when possible.
436     addPass(createNVPTXPeephole());
437   }
438 }
439 
440 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
441   return nullptr; // No reg alloc
442 }
443 
444 void NVPTXPassConfig::addFastRegAlloc() {
445   addPass(&PHIEliminationID);
446   addPass(&TwoAddressInstructionPassID);
447 }
448 
449 void NVPTXPassConfig::addOptimizedRegAlloc() {
450   addPass(&ProcessImplicitDefsID);
451   addPass(&LiveVariablesID);
452   addPass(&MachineLoopInfoID);
453   addPass(&PHIEliminationID);
454 
455   addPass(&TwoAddressInstructionPassID);
456   addPass(&RegisterCoalescerID);
457 
458   // PreRA instruction scheduling.
459   if (addPass(&MachineSchedulerID))
460     printAndVerify("After Machine Scheduling");
461 
462   addPass(&StackSlotColoringID);
463 
464   // FIXME: Needs physical registers
465   // addPass(&MachineLICMID);
466 
467   printAndVerify("After StackSlotColoring");
468 }
469 
470 void NVPTXPassConfig::addMachineSSAOptimization() {
471   // Pre-ra tail duplication.
472   if (addPass(&EarlyTailDuplicateID))
473     printAndVerify("After Pre-RegAlloc TailDuplicate");
474 
475   // Optimize PHIs before DCE: removing dead PHI cycles may make more
476   // instructions dead.
477   addPass(&OptimizePHIsID);
478 
479   // This pass merges large allocas. StackSlotColoring is a different pass
480   // which merges spill slots.
481   addPass(&StackColoringID);
482 
483   // If the target requests it, assign local variables to stack slots relative
484   // to one another and simplify frame index references where possible.
485   addPass(&LocalStackSlotAllocationID);
486 
487   // With optimization, dead code should already be eliminated. However
488   // there is one known exception: lowered code for arguments that are only
489   // used by tail calls, where the tail calls reuse the incoming stack
490   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
491   addPass(&DeadMachineInstructionElimID);
492   printAndVerify("After codegen DCE pass");
493 
494   // Allow targets to insert passes that improve instruction level parallelism,
495   // like if-conversion. Such passes will typically need dominator trees and
496   // loop info, just like LICM and CSE below.
497   if (addILPOpts())
498     printAndVerify("After ILP optimizations");
499 
500   addPass(&EarlyMachineLICMID);
501   addPass(&MachineCSEID);
502 
503   addPass(&MachineSinkingID);
504   printAndVerify("After Machine LICM, CSE and Sinking passes");
505 
506   addPass(&PeepholeOptimizerID);
507   printAndVerify("After codegen peephole optimization pass");
508 }
509