1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 // Arguments to kernel and device functions are passed via param space, 11 // which imposes certain restrictions: 12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces 13 // 14 // Kernel parameters are read-only and accessible only via ld.param 15 // instruction, directly or via a pointer. Pointers to kernel 16 // arguments can't be converted to generic address space. 17 // 18 // Device function parameters are directly accessible via 19 // ld.param/st.param, but taking the address of one returns a pointer 20 // to a copy created in local space which *can't* be used with 21 // ld.param/st.param. 22 // 23 // Copying a byval struct into local memory in IR allows us to enforce 24 // the param space restrictions, gives the rest of IR a pointer w/o 25 // param space restrictions, and gives us an opportunity to eliminate 26 // the copy. 27 // 28 // Pointer arguments to kernel functions need more work to be lowered: 29 // 30 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the 31 // global address space. This allows later optimizations to emit 32 // ld.global.*/st.global.* for accessing these pointer arguments. For 33 // example, 34 // 35 // define void @foo(float* %input) { 36 // %v = load float, float* %input, align 4 37 // ... 38 // } 39 // 40 // becomes 41 // 42 // define void @foo(float* %input) { 43 // %input2 = addrspacecast float* %input to float addrspace(1)* 44 // %input3 = addrspacecast float addrspace(1)* %input2 to float* 45 // %v = load float, float* %input3, align 4 46 // ... 47 // } 48 // 49 // Later, NVPTXInferAddressSpaces will optimize it to 50 // 51 // define void @foo(float* %input) { 52 // %input2 = addrspacecast float* %input to float addrspace(1)* 53 // %v = load float, float addrspace(1)* %input2, align 4 54 // ... 55 // } 56 // 57 // 2. Convert pointers in a byval kernel parameter to pointers in the global 58 // address space. As #2, it allows NVPTX to emit more ld/st.global. E.g., 59 // 60 // struct S { 61 // int *x; 62 // int *y; 63 // }; 64 // __global__ void foo(S s) { 65 // int *b = s.y; 66 // // use b 67 // } 68 // 69 // "b" points to the global address space. In the IR level, 70 // 71 // define void @foo({i32*, i32*}* byval %input) { 72 // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1 73 // %b = load i32*, i32** %b_ptr 74 // ; use %b 75 // } 76 // 77 // becomes 78 // 79 // define void @foo({i32*, i32*}* byval %input) { 80 // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1 81 // %b = load i32*, i32** %b_ptr 82 // %b_global = addrspacecast i32* %b to i32 addrspace(1)* 83 // %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32* 84 // ; use %b_generic 85 // } 86 // 87 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't 88 // cancel the addrspacecast pair this pass emits. 89 //===----------------------------------------------------------------------===// 90 91 #include "NVPTX.h" 92 #include "NVPTXTargetMachine.h" 93 #include "NVPTXUtilities.h" 94 #include "MCTargetDesc/NVPTXBaseInfo.h" 95 #include "llvm/Analysis/ValueTracking.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/Instructions.h" 98 #include "llvm/IR/Module.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/Pass.h" 101 102 #define DEBUG_TYPE "nvptx-lower-args" 103 104 using namespace llvm; 105 106 namespace llvm { 107 void initializeNVPTXLowerArgsPass(PassRegistry &); 108 } 109 110 namespace { 111 class NVPTXLowerArgs : public FunctionPass { 112 bool runOnFunction(Function &F) override; 113 114 bool runOnKernelFunction(Function &F); 115 bool runOnDeviceFunction(Function &F); 116 117 // handle byval parameters 118 void handleByValParam(Argument *Arg); 119 // Knowing Ptr must point to the global address space, this function 120 // addrspacecasts Ptr to global and then back to generic. This allows 121 // NVPTXInferAddressSpaces to fold the global-to-generic cast into 122 // loads/stores that appear later. 123 void markPointerAsGlobal(Value *Ptr); 124 125 public: 126 static char ID; // Pass identification, replacement for typeid 127 NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr) 128 : FunctionPass(ID), TM(TM) {} 129 StringRef getPassName() const override { 130 return "Lower pointer arguments of CUDA kernels"; 131 } 132 133 private: 134 const NVPTXTargetMachine *TM; 135 }; 136 } // namespace 137 138 char NVPTXLowerArgs::ID = 1; 139 140 INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args", 141 "Lower arguments (NVPTX)", false, false) 142 143 // ============================================================================= 144 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d), 145 // and we can't guarantee that the only accesses are loads, 146 // then add the following instructions to the first basic block: 147 // 148 // %temp = alloca %struct.x, align 8 149 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)* 150 // %tv = load %struct.x addrspace(101)* %tempd 151 // store %struct.x %tv, %struct.x* %temp, align 8 152 // 153 // The above code allocates some space in the stack and copies the incoming 154 // struct from param space to local space. 155 // Then replace all occurrences of %d by %temp. 156 // 157 // In case we know that all users are GEPs or Loads, replace them with the same 158 // ones in parameter AS, so we can access them using ld.param. 159 // ============================================================================= 160 161 // Replaces the \p OldUser instruction with the same in parameter AS. 162 // Only Load and GEP are supported. 163 static void convertToParamAS(Value *OldUser, Value *Param) { 164 Instruction *I = dyn_cast<Instruction>(OldUser); 165 assert(I && "OldUser must be an instruction"); 166 struct IP { 167 Instruction *OldInstruction; 168 Value *NewParam; 169 }; 170 SmallVector<IP> ItemsToConvert = {{I, Param}}; 171 SmallVector<Instruction *> InstructionsToDelete; 172 173 auto CloneInstInParamAS = [](const IP &I) -> Value * { 174 if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) { 175 LI->setOperand(0, I.NewParam); 176 return LI; 177 } 178 if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) { 179 SmallVector<Value *, 4> Indices(GEP->indices()); 180 auto *NewGEP = GetElementPtrInst::Create(GEP->getSourceElementType(), 181 I.NewParam, Indices, 182 GEP->getName(), GEP); 183 NewGEP->setIsInBounds(GEP->isInBounds()); 184 return NewGEP; 185 } 186 if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) { 187 auto *NewBCType = PointerType::getWithSamePointeeType( 188 cast<PointerType>(BC->getType()), ADDRESS_SPACE_PARAM); 189 return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType, 190 BC->getName(), BC); 191 } 192 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) { 193 assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM); 194 (void)ASC; 195 // Just pass through the argument, the old ASC is no longer needed. 196 return I.NewParam; 197 } 198 llvm_unreachable("Unsupported instruction"); 199 }; 200 201 while (!ItemsToConvert.empty()) { 202 IP I = ItemsToConvert.pop_back_val(); 203 Value *NewInst = CloneInstInParamAS(I); 204 205 if (NewInst && NewInst != I.OldInstruction) { 206 // We've created a new instruction. Queue users of the old instruction to 207 // be converted and the instruction itself to be deleted. We can't delete 208 // the old instruction yet, because it's still in use by a load somewhere. 209 llvm::for_each( 210 I.OldInstruction->users(), [NewInst, &ItemsToConvert](Value *V) { 211 ItemsToConvert.push_back({cast<Instruction>(V), NewInst}); 212 }); 213 214 InstructionsToDelete.push_back(I.OldInstruction); 215 } 216 } 217 218 // Now we know that all argument loads are using addresses in parameter space 219 // and we can finally remove the old instructions in generic AS. Instructions 220 // scheduled for removal should be processed in reverse order so the ones 221 // closest to the load are deleted first. Otherwise they may still be in use. 222 // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will 223 // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by 224 // the BitCast. 225 llvm::for_each(reverse(InstructionsToDelete), 226 [](Instruction *I) { I->eraseFromParent(); }); 227 } 228 229 void NVPTXLowerArgs::handleByValParam(Argument *Arg) { 230 Function *Func = Arg->getParent(); 231 Instruction *FirstInst = &(Func->getEntryBlock().front()); 232 PointerType *PType = dyn_cast<PointerType>(Arg->getType()); 233 234 assert(PType && "Expecting pointer type in handleByValParam"); 235 236 Type *StructType = PType->getElementType(); 237 238 auto IsALoadChain = [&](Value *Start) { 239 SmallVector<Value *, 16> ValuesToCheck = {Start}; 240 auto IsALoadChainInstr = [](Value *V) -> bool { 241 if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V)) 242 return true; 243 // ASC to param space are OK, too -- we'll just strip them. 244 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) { 245 if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM) 246 return true; 247 } 248 return false; 249 }; 250 251 while (!ValuesToCheck.empty()) { 252 Value *V = ValuesToCheck.pop_back_val(); 253 if (!IsALoadChainInstr(V)) { 254 LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V 255 << "\n"); 256 (void)Arg; 257 return false; 258 } 259 if (!isa<LoadInst>(V)) 260 llvm::append_range(ValuesToCheck, V->users()); 261 } 262 return true; 263 }; 264 265 if (llvm::all_of(Arg->users(), IsALoadChain)) { 266 // Convert all loads and intermediate operations to use parameter AS and 267 // skip creation of a local copy of the argument. 268 SmallVector<User *, 16> UsersToUpdate(Arg->users()); 269 Value *ArgInParamAS = new AddrSpaceCastInst( 270 Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(), 271 FirstInst); 272 llvm::for_each(UsersToUpdate, [ArgInParamAS](Value *V) { 273 convertToParamAS(V, ArgInParamAS); 274 }); 275 LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n"); 276 return; 277 } 278 279 // Otherwise we have to create a temporary copy. 280 const DataLayout &DL = Func->getParent()->getDataLayout(); 281 unsigned AS = DL.getAllocaAddrSpace(); 282 AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst); 283 // Set the alignment to alignment of the byval parameter. This is because, 284 // later load/stores assume that alignment, and we are going to replace 285 // the use of the byval parameter with this alloca instruction. 286 AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo()) 287 .getValueOr(DL.getPrefTypeAlign(StructType))); 288 Arg->replaceAllUsesWith(AllocA); 289 290 Value *ArgInParam = new AddrSpaceCastInst( 291 Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(), 292 FirstInst); 293 // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX 294 // addrspacecast preserves alignment. Since params are constant, this load is 295 // definitely not volatile. 296 LoadInst *LI = 297 new LoadInst(StructType, ArgInParam, Arg->getName(), 298 /*isVolatile=*/false, AllocA->getAlign(), FirstInst); 299 new StoreInst(LI, AllocA, FirstInst); 300 } 301 302 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) { 303 if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL) 304 return; 305 306 // Deciding where to emit the addrspacecast pair. 307 BasicBlock::iterator InsertPt; 308 if (Argument *Arg = dyn_cast<Argument>(Ptr)) { 309 // Insert at the functon entry if Ptr is an argument. 310 InsertPt = Arg->getParent()->getEntryBlock().begin(); 311 } else { 312 // Insert right after Ptr if Ptr is an instruction. 313 InsertPt = ++cast<Instruction>(Ptr)->getIterator(); 314 assert(InsertPt != InsertPt->getParent()->end() && 315 "We don't call this function with Ptr being a terminator."); 316 } 317 318 Instruction *PtrInGlobal = new AddrSpaceCastInst( 319 Ptr, 320 PointerType::getWithSamePointeeType(cast<PointerType>(Ptr->getType()), 321 ADDRESS_SPACE_GLOBAL), 322 Ptr->getName(), &*InsertPt); 323 Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(), 324 Ptr->getName(), &*InsertPt); 325 // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal. 326 Ptr->replaceAllUsesWith(PtrInGeneric); 327 PtrInGlobal->setOperand(0, Ptr); 328 } 329 330 // ============================================================================= 331 // Main function for this pass. 332 // ============================================================================= 333 bool NVPTXLowerArgs::runOnKernelFunction(Function &F) { 334 if (TM && TM->getDrvInterface() == NVPTX::CUDA) { 335 // Mark pointers in byval structs as global. 336 for (auto &B : F) { 337 for (auto &I : B) { 338 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 339 if (LI->getType()->isPointerTy()) { 340 Value *UO = getUnderlyingObject(LI->getPointerOperand()); 341 if (Argument *Arg = dyn_cast<Argument>(UO)) { 342 if (Arg->hasByValAttr()) { 343 // LI is a load from a pointer within a byval kernel parameter. 344 markPointerAsGlobal(LI); 345 } 346 } 347 } 348 } 349 } 350 } 351 } 352 353 LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n"); 354 for (Argument &Arg : F.args()) { 355 if (Arg.getType()->isPointerTy()) { 356 if (Arg.hasByValAttr()) 357 handleByValParam(&Arg); 358 else if (TM && TM->getDrvInterface() == NVPTX::CUDA) 359 markPointerAsGlobal(&Arg); 360 } 361 } 362 return true; 363 } 364 365 // Device functions only need to copy byval args into local memory. 366 bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) { 367 LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n"); 368 for (Argument &Arg : F.args()) 369 if (Arg.getType()->isPointerTy() && Arg.hasByValAttr()) 370 handleByValParam(&Arg); 371 return true; 372 } 373 374 bool NVPTXLowerArgs::runOnFunction(Function &F) { 375 return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F); 376 } 377 378 FunctionPass * 379 llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) { 380 return new NVPTXLowerArgs(TM); 381 } 382