xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXLowerArgs.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Arguments to kernel and device functions are passed via param space,
11 // which imposes certain restrictions:
12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
13 //
14 // Kernel parameters are read-only and accessible only via ld.param
15 // instruction, directly or via a pointer. Pointers to kernel
16 // arguments can't be converted to generic address space.
17 //
18 // Device function parameters are directly accessible via
19 // ld.param/st.param, but taking the address of one returns a pointer
20 // to a copy created in local space which *can't* be used with
21 // ld.param/st.param.
22 //
23 // Copying a byval struct into local memory in IR allows us to enforce
24 // the param space restrictions, gives the rest of IR a pointer w/o
25 // param space restrictions, and gives us an opportunity to eliminate
26 // the copy.
27 //
28 // Pointer arguments to kernel functions need more work to be lowered:
29 //
30 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
31 //    global address space. This allows later optimizations to emit
32 //    ld.global.*/st.global.* for accessing these pointer arguments. For
33 //    example,
34 //
35 //    define void @foo(float* %input) {
36 //      %v = load float, float* %input, align 4
37 //      ...
38 //    }
39 //
40 //    becomes
41 //
42 //    define void @foo(float* %input) {
43 //      %input2 = addrspacecast float* %input to float addrspace(1)*
44 //      %input3 = addrspacecast float addrspace(1)* %input2 to float*
45 //      %v = load float, float* %input3, align 4
46 //      ...
47 //    }
48 //
49 //    Later, NVPTXInferAddressSpaces will optimize it to
50 //
51 //    define void @foo(float* %input) {
52 //      %input2 = addrspacecast float* %input to float addrspace(1)*
53 //      %v = load float, float addrspace(1)* %input2, align 4
54 //      ...
55 //    }
56 //
57 // 2. Convert pointers in a byval kernel parameter to pointers in the global
58 //    address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
59 //
60 //    struct S {
61 //      int *x;
62 //      int *y;
63 //    };
64 //    __global__ void foo(S s) {
65 //      int *b = s.y;
66 //      // use b
67 //    }
68 //
69 //    "b" points to the global address space. In the IR level,
70 //
71 //    define void @foo({i32*, i32*}* byval %input) {
72 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
73 //      %b = load i32*, i32** %b_ptr
74 //      ; use %b
75 //    }
76 //
77 //    becomes
78 //
79 //    define void @foo({i32*, i32*}* byval %input) {
80 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
81 //      %b = load i32*, i32** %b_ptr
82 //      %b_global = addrspacecast i32* %b to i32 addrspace(1)*
83 //      %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
84 //      ; use %b_generic
85 //    }
86 //
87 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
88 // cancel the addrspacecast pair this pass emits.
89 //===----------------------------------------------------------------------===//
90 
91 #include "NVPTX.h"
92 #include "NVPTXTargetMachine.h"
93 #include "NVPTXUtilities.h"
94 #include "MCTargetDesc/NVPTXBaseInfo.h"
95 #include "llvm/Analysis/ValueTracking.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/Pass.h"
101 
102 #define DEBUG_TYPE "nvptx-lower-args"
103 
104 using namespace llvm;
105 
106 namespace llvm {
107 void initializeNVPTXLowerArgsPass(PassRegistry &);
108 }
109 
110 namespace {
111 class NVPTXLowerArgs : public FunctionPass {
112   bool runOnFunction(Function &F) override;
113 
114   bool runOnKernelFunction(Function &F);
115   bool runOnDeviceFunction(Function &F);
116 
117   // handle byval parameters
118   void handleByValParam(Argument *Arg);
119   // Knowing Ptr must point to the global address space, this function
120   // addrspacecasts Ptr to global and then back to generic. This allows
121   // NVPTXInferAddressSpaces to fold the global-to-generic cast into
122   // loads/stores that appear later.
123   void markPointerAsGlobal(Value *Ptr);
124 
125 public:
126   static char ID; // Pass identification, replacement for typeid
127   NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
128       : FunctionPass(ID), TM(TM) {}
129   StringRef getPassName() const override {
130     return "Lower pointer arguments of CUDA kernels";
131   }
132 
133 private:
134   const NVPTXTargetMachine *TM;
135 };
136 } // namespace
137 
138 char NVPTXLowerArgs::ID = 1;
139 
140 INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
141                 "Lower arguments (NVPTX)", false, false)
142 
143 // =============================================================================
144 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
145 // and we can't guarantee that the only accesses are loads,
146 // then add the following instructions to the first basic block:
147 //
148 // %temp = alloca %struct.x, align 8
149 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
150 // %tv = load %struct.x addrspace(101)* %tempd
151 // store %struct.x %tv, %struct.x* %temp, align 8
152 //
153 // The above code allocates some space in the stack and copies the incoming
154 // struct from param space to local space.
155 // Then replace all occurrences of %d by %temp.
156 //
157 // In case we know that all users are GEPs or Loads, replace them with the same
158 // ones in parameter AS, so we can access them using ld.param.
159 // =============================================================================
160 
161 // Replaces the \p OldUser instruction with the same in parameter AS.
162 // Only Load and GEP are supported.
163 static void convertToParamAS(Value *OldUser, Value *Param) {
164   Instruction *I = dyn_cast<Instruction>(OldUser);
165   assert(I && "OldUser must be an instruction");
166   struct IP {
167     Instruction *OldInstruction;
168     Value *NewParam;
169   };
170   SmallVector<IP> ItemsToConvert = {{I, Param}};
171   SmallVector<Instruction *> InstructionsToDelete;
172 
173   auto CloneInstInParamAS = [](const IP &I) -> Value * {
174     if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
175       LI->setOperand(0, I.NewParam);
176       return LI;
177     }
178     if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
179       SmallVector<Value *, 4> Indices(GEP->indices());
180       auto *NewGEP = GetElementPtrInst::Create(GEP->getSourceElementType(),
181                                                I.NewParam, Indices,
182                                                GEP->getName(), GEP);
183       NewGEP->setIsInBounds(GEP->isInBounds());
184       return NewGEP;
185     }
186     if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
187       auto *NewBCType = PointerType::getWithSamePointeeType(
188           cast<PointerType>(BC->getType()), ADDRESS_SPACE_PARAM);
189       return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
190                                  BC->getName(), BC);
191     }
192     if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
193       assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
194       (void)ASC;
195       // Just pass through the argument, the old ASC is no longer needed.
196       return I.NewParam;
197     }
198     llvm_unreachable("Unsupported instruction");
199   };
200 
201   while (!ItemsToConvert.empty()) {
202     IP I = ItemsToConvert.pop_back_val();
203     Value *NewInst = CloneInstInParamAS(I);
204 
205     if (NewInst && NewInst != I.OldInstruction) {
206       // We've created a new instruction. Queue users of the old instruction to
207       // be converted and the instruction itself to be deleted. We can't delete
208       // the old instruction yet, because it's still in use by a load somewhere.
209       llvm::for_each(
210           I.OldInstruction->users(), [NewInst, &ItemsToConvert](Value *V) {
211             ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
212           });
213 
214       InstructionsToDelete.push_back(I.OldInstruction);
215     }
216   }
217 
218   // Now we know that all argument loads are using addresses in parameter space
219   // and we can finally remove the old instructions in generic AS.  Instructions
220   // scheduled for removal should be processed in reverse order so the ones
221   // closest to the load are deleted first. Otherwise they may still be in use.
222   // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
223   // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
224   // the BitCast.
225   llvm::for_each(reverse(InstructionsToDelete),
226                  [](Instruction *I) { I->eraseFromParent(); });
227 }
228 
229 void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
230   Function *Func = Arg->getParent();
231   Instruction *FirstInst = &(Func->getEntryBlock().front());
232   PointerType *PType = dyn_cast<PointerType>(Arg->getType());
233 
234   assert(PType && "Expecting pointer type in handleByValParam");
235 
236   Type *StructType = PType->getPointerElementType();
237 
238   auto IsALoadChain = [&](Value *Start) {
239     SmallVector<Value *, 16> ValuesToCheck = {Start};
240     auto IsALoadChainInstr = [](Value *V) -> bool {
241       if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
242         return true;
243       // ASC to param space are OK, too -- we'll just strip them.
244       if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
245         if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
246           return true;
247       }
248       return false;
249     };
250 
251     while (!ValuesToCheck.empty()) {
252       Value *V = ValuesToCheck.pop_back_val();
253       if (!IsALoadChainInstr(V)) {
254         LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
255                           << "\n");
256         (void)Arg;
257         return false;
258       }
259       if (!isa<LoadInst>(V))
260         llvm::append_range(ValuesToCheck, V->users());
261     }
262     return true;
263   };
264 
265   if (llvm::all_of(Arg->users(), IsALoadChain)) {
266     // Convert all loads and intermediate operations to use parameter AS and
267     // skip creation of a local copy of the argument.
268     SmallVector<User *, 16> UsersToUpdate(Arg->users());
269     Value *ArgInParamAS = new AddrSpaceCastInst(
270         Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
271         FirstInst);
272     llvm::for_each(UsersToUpdate, [ArgInParamAS](Value *V) {
273       convertToParamAS(V, ArgInParamAS);
274     });
275     LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
276     return;
277   }
278 
279   // Otherwise we have to create a temporary copy.
280   const DataLayout &DL = Func->getParent()->getDataLayout();
281   unsigned AS = DL.getAllocaAddrSpace();
282   AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
283   // Set the alignment to alignment of the byval parameter. This is because,
284   // later load/stores assume that alignment, and we are going to replace
285   // the use of the byval parameter with this alloca instruction.
286   AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
287                            .getValueOr(DL.getPrefTypeAlign(StructType)));
288   Arg->replaceAllUsesWith(AllocA);
289 
290   Value *ArgInParam = new AddrSpaceCastInst(
291       Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
292       FirstInst);
293   // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
294   // addrspacecast preserves alignment.  Since params are constant, this load is
295   // definitely not volatile.
296   LoadInst *LI =
297       new LoadInst(StructType, ArgInParam, Arg->getName(),
298                    /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
299   new StoreInst(LI, AllocA, FirstInst);
300 }
301 
302 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
303   if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
304     return;
305 
306   // Deciding where to emit the addrspacecast pair.
307   BasicBlock::iterator InsertPt;
308   if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
309     // Insert at the functon entry if Ptr is an argument.
310     InsertPt = Arg->getParent()->getEntryBlock().begin();
311   } else {
312     // Insert right after Ptr if Ptr is an instruction.
313     InsertPt = ++cast<Instruction>(Ptr)->getIterator();
314     assert(InsertPt != InsertPt->getParent()->end() &&
315            "We don't call this function with Ptr being a terminator.");
316   }
317 
318   Instruction *PtrInGlobal = new AddrSpaceCastInst(
319       Ptr,
320       PointerType::getWithSamePointeeType(cast<PointerType>(Ptr->getType()),
321                                           ADDRESS_SPACE_GLOBAL),
322       Ptr->getName(), &*InsertPt);
323   Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
324                                               Ptr->getName(), &*InsertPt);
325   // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
326   Ptr->replaceAllUsesWith(PtrInGeneric);
327   PtrInGlobal->setOperand(0, Ptr);
328 }
329 
330 // =============================================================================
331 // Main function for this pass.
332 // =============================================================================
333 bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
334   if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
335     // Mark pointers in byval structs as global.
336     for (auto &B : F) {
337       for (auto &I : B) {
338         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
339           if (LI->getType()->isPointerTy()) {
340             Value *UO = getUnderlyingObject(LI->getPointerOperand());
341             if (Argument *Arg = dyn_cast<Argument>(UO)) {
342               if (Arg->hasByValAttr()) {
343                 // LI is a load from a pointer within a byval kernel parameter.
344                 markPointerAsGlobal(LI);
345               }
346             }
347           }
348         }
349       }
350     }
351   }
352 
353   LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
354   for (Argument &Arg : F.args()) {
355     if (Arg.getType()->isPointerTy()) {
356       if (Arg.hasByValAttr())
357         handleByValParam(&Arg);
358       else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
359         markPointerAsGlobal(&Arg);
360     }
361   }
362   return true;
363 }
364 
365 // Device functions only need to copy byval args into local memory.
366 bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
367   LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
368   for (Argument &Arg : F.args())
369     if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
370       handleByValParam(&Arg);
371   return true;
372 }
373 
374 bool NVPTXLowerArgs::runOnFunction(Function &F) {
375   return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
376 }
377 
378 FunctionPass *
379 llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
380   return new NVPTXLowerArgs(TM);
381 }
382