xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXLowerArgs.cpp (revision 2a9021898c4ee2154787da862c238cfeccd655df)
1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Arguments to kernel and device functions are passed via param space,
11 // which imposes certain restrictions:
12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
13 //
14 // Kernel parameters are read-only and accessible only via ld.param
15 // instruction, directly or via a pointer. Pointers to kernel
16 // arguments can't be converted to generic address space.
17 //
18 // Device function parameters are directly accessible via
19 // ld.param/st.param, but taking the address of one returns a pointer
20 // to a copy created in local space which *can't* be used with
21 // ld.param/st.param.
22 //
23 // Copying a byval struct into local memory in IR allows us to enforce
24 // the param space restrictions, gives the rest of IR a pointer w/o
25 // param space restrictions, and gives us an opportunity to eliminate
26 // the copy.
27 //
28 // Pointer arguments to kernel functions need more work to be lowered:
29 //
30 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
31 //    global address space. This allows later optimizations to emit
32 //    ld.global.*/st.global.* for accessing these pointer arguments. For
33 //    example,
34 //
35 //    define void @foo(float* %input) {
36 //      %v = load float, float* %input, align 4
37 //      ...
38 //    }
39 //
40 //    becomes
41 //
42 //    define void @foo(float* %input) {
43 //      %input2 = addrspacecast float* %input to float addrspace(1)*
44 //      %input3 = addrspacecast float addrspace(1)* %input2 to float*
45 //      %v = load float, float* %input3, align 4
46 //      ...
47 //    }
48 //
49 //    Later, NVPTXInferAddressSpaces will optimize it to
50 //
51 //    define void @foo(float* %input) {
52 //      %input2 = addrspacecast float* %input to float addrspace(1)*
53 //      %v = load float, float addrspace(1)* %input2, align 4
54 //      ...
55 //    }
56 //
57 // 2. Convert pointers in a byval kernel parameter to pointers in the global
58 //    address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
59 //
60 //    struct S {
61 //      int *x;
62 //      int *y;
63 //    };
64 //    __global__ void foo(S s) {
65 //      int *b = s.y;
66 //      // use b
67 //    }
68 //
69 //    "b" points to the global address space. In the IR level,
70 //
71 //    define void @foo({i32*, i32*}* byval %input) {
72 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
73 //      %b = load i32*, i32** %b_ptr
74 //      ; use %b
75 //    }
76 //
77 //    becomes
78 //
79 //    define void @foo({i32*, i32*}* byval %input) {
80 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
81 //      %b = load i32*, i32** %b_ptr
82 //      %b_global = addrspacecast i32* %b to i32 addrspace(1)*
83 //      %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
84 //      ; use %b_generic
85 //    }
86 //
87 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
88 // cancel the addrspacecast pair this pass emits.
89 //===----------------------------------------------------------------------===//
90 
91 #include "MCTargetDesc/NVPTXBaseInfo.h"
92 #include "NVPTX.h"
93 #include "NVPTXTargetMachine.h"
94 #include "NVPTXUtilities.h"
95 #include "llvm/Analysis/ValueTracking.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/Pass.h"
101 #include <numeric>
102 #include <queue>
103 
104 #define DEBUG_TYPE "nvptx-lower-args"
105 
106 using namespace llvm;
107 
108 namespace llvm {
109 void initializeNVPTXLowerArgsPass(PassRegistry &);
110 }
111 
112 namespace {
113 class NVPTXLowerArgs : public FunctionPass {
114   bool runOnFunction(Function &F) override;
115 
116   bool runOnKernelFunction(Function &F);
117   bool runOnDeviceFunction(Function &F);
118 
119   // handle byval parameters
120   void handleByValParam(Argument *Arg);
121   // Knowing Ptr must point to the global address space, this function
122   // addrspacecasts Ptr to global and then back to generic. This allows
123   // NVPTXInferAddressSpaces to fold the global-to-generic cast into
124   // loads/stores that appear later.
125   void markPointerAsGlobal(Value *Ptr);
126 
127 public:
128   static char ID; // Pass identification, replacement for typeid
129   NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
130       : FunctionPass(ID), TM(TM) {}
131   StringRef getPassName() const override {
132     return "Lower pointer arguments of CUDA kernels";
133   }
134 
135 private:
136   const NVPTXTargetMachine *TM;
137 };
138 } // namespace
139 
140 char NVPTXLowerArgs::ID = 1;
141 
142 INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
143                 "Lower arguments (NVPTX)", false, false)
144 
145 // =============================================================================
146 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
147 // and we can't guarantee that the only accesses are loads,
148 // then add the following instructions to the first basic block:
149 //
150 // %temp = alloca %struct.x, align 8
151 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
152 // %tv = load %struct.x addrspace(101)* %tempd
153 // store %struct.x %tv, %struct.x* %temp, align 8
154 //
155 // The above code allocates some space in the stack and copies the incoming
156 // struct from param space to local space.
157 // Then replace all occurrences of %d by %temp.
158 //
159 // In case we know that all users are GEPs or Loads, replace them with the same
160 // ones in parameter AS, so we can access them using ld.param.
161 // =============================================================================
162 
163 // Replaces the \p OldUser instruction with the same in parameter AS.
164 // Only Load and GEP are supported.
165 static void convertToParamAS(Value *OldUser, Value *Param) {
166   Instruction *I = dyn_cast<Instruction>(OldUser);
167   assert(I && "OldUser must be an instruction");
168   struct IP {
169     Instruction *OldInstruction;
170     Value *NewParam;
171   };
172   SmallVector<IP> ItemsToConvert = {{I, Param}};
173   SmallVector<Instruction *> InstructionsToDelete;
174 
175   auto CloneInstInParamAS = [](const IP &I) -> Value * {
176     if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
177       LI->setOperand(0, I.NewParam);
178       return LI;
179     }
180     if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
181       SmallVector<Value *, 4> Indices(GEP->indices());
182       auto *NewGEP = GetElementPtrInst::Create(GEP->getSourceElementType(),
183                                                I.NewParam, Indices,
184                                                GEP->getName(), GEP);
185       NewGEP->setIsInBounds(GEP->isInBounds());
186       return NewGEP;
187     }
188     if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
189       auto *NewBCType = PointerType::getWithSamePointeeType(
190           cast<PointerType>(BC->getType()), ADDRESS_SPACE_PARAM);
191       return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
192                                  BC->getName(), BC);
193     }
194     if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
195       assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
196       (void)ASC;
197       // Just pass through the argument, the old ASC is no longer needed.
198       return I.NewParam;
199     }
200     llvm_unreachable("Unsupported instruction");
201   };
202 
203   while (!ItemsToConvert.empty()) {
204     IP I = ItemsToConvert.pop_back_val();
205     Value *NewInst = CloneInstInParamAS(I);
206 
207     if (NewInst && NewInst != I.OldInstruction) {
208       // We've created a new instruction. Queue users of the old instruction to
209       // be converted and the instruction itself to be deleted. We can't delete
210       // the old instruction yet, because it's still in use by a load somewhere.
211       for (Value *V : I.OldInstruction->users())
212         ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
213 
214       InstructionsToDelete.push_back(I.OldInstruction);
215     }
216   }
217 
218   // Now we know that all argument loads are using addresses in parameter space
219   // and we can finally remove the old instructions in generic AS.  Instructions
220   // scheduled for removal should be processed in reverse order so the ones
221   // closest to the load are deleted first. Otherwise they may still be in use.
222   // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
223   // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
224   // the BitCast.
225   for (Instruction *I : llvm::reverse(InstructionsToDelete))
226     I->eraseFromParent();
227 }
228 
229 // Adjust alignment of arguments passed byval in .param address space. We can
230 // increase alignment of such arguments in a way that ensures that we can
231 // effectively vectorize their loads. We should also traverse all loads from
232 // byval pointer and adjust their alignment, if those were using known offset.
233 // Such alignment changes must be conformed with parameter store and load in
234 // NVPTXTargetLowering::LowerCall.
235 static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
236                                     const NVPTXTargetLowering *TLI) {
237   Function *Func = Arg->getParent();
238   Type *StructType = Arg->getParamByValType();
239   const DataLayout DL(Func->getParent());
240 
241   uint64_t NewArgAlign =
242       TLI->getFunctionParamOptimizedAlign(Func, StructType, DL).value();
243   uint64_t CurArgAlign =
244       Arg->getAttribute(Attribute::Alignment).getValueAsInt();
245 
246   if (CurArgAlign >= NewArgAlign)
247     return;
248 
249   LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign << " instead of "
250                     << CurArgAlign << " for " << *Arg << '\n');
251 
252   auto NewAlignAttr =
253       Attribute::get(Func->getContext(), Attribute::Alignment, NewArgAlign);
254   Arg->removeAttr(Attribute::Alignment);
255   Arg->addAttr(NewAlignAttr);
256 
257   struct Load {
258     LoadInst *Inst;
259     uint64_t Offset;
260   };
261 
262   struct LoadContext {
263     Value *InitialVal;
264     uint64_t Offset;
265   };
266 
267   SmallVector<Load> Loads;
268   std::queue<LoadContext> Worklist;
269   Worklist.push({ArgInParamAS, 0});
270 
271   while (!Worklist.empty()) {
272     LoadContext Ctx = Worklist.front();
273     Worklist.pop();
274 
275     for (User *CurUser : Ctx.InitialVal->users()) {
276       if (auto *I = dyn_cast<LoadInst>(CurUser)) {
277         Loads.push_back({I, Ctx.Offset});
278         continue;
279       }
280 
281       if (auto *I = dyn_cast<BitCastInst>(CurUser)) {
282         Worklist.push({I, Ctx.Offset});
283         continue;
284       }
285 
286       if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
287         APInt OffsetAccumulated =
288             APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
289 
290         if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
291           continue;
292 
293         uint64_t OffsetLimit = -1;
294         uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
295         assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
296 
297         Worklist.push({I, Ctx.Offset + Offset});
298         continue;
299       }
300 
301       llvm_unreachable("All users must be one of: load, "
302                        "bitcast, getelementptr.");
303     }
304   }
305 
306   for (Load &CurLoad : Loads) {
307     Align NewLoadAlign(std::gcd(NewArgAlign, CurLoad.Offset));
308     Align CurLoadAlign(CurLoad.Inst->getAlign());
309     CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
310   }
311 }
312 
313 void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
314   Function *Func = Arg->getParent();
315   Instruction *FirstInst = &(Func->getEntryBlock().front());
316   Type *StructType = Arg->getParamByValType();
317   assert(StructType && "Missing byval type");
318 
319   auto IsALoadChain = [&](Value *Start) {
320     SmallVector<Value *, 16> ValuesToCheck = {Start};
321     auto IsALoadChainInstr = [](Value *V) -> bool {
322       if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
323         return true;
324       // ASC to param space are OK, too -- we'll just strip them.
325       if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
326         if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
327           return true;
328       }
329       return false;
330     };
331 
332     while (!ValuesToCheck.empty()) {
333       Value *V = ValuesToCheck.pop_back_val();
334       if (!IsALoadChainInstr(V)) {
335         LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
336                           << "\n");
337         (void)Arg;
338         return false;
339       }
340       if (!isa<LoadInst>(V))
341         llvm::append_range(ValuesToCheck, V->users());
342     }
343     return true;
344   };
345 
346   if (llvm::all_of(Arg->users(), IsALoadChain)) {
347     // Convert all loads and intermediate operations to use parameter AS and
348     // skip creation of a local copy of the argument.
349     SmallVector<User *, 16> UsersToUpdate(Arg->users());
350     Value *ArgInParamAS = new AddrSpaceCastInst(
351         Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
352         FirstInst);
353     for (Value *V : UsersToUpdate)
354       convertToParamAS(V, ArgInParamAS);
355     LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
356 
357     // Further optimizations require target lowering info.
358     if (!TM)
359       return;
360 
361     const auto *TLI =
362         cast<NVPTXTargetLowering>(TM->getSubtargetImpl()->getTargetLowering());
363 
364     adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
365 
366     return;
367   }
368 
369   // Otherwise we have to create a temporary copy.
370   const DataLayout &DL = Func->getParent()->getDataLayout();
371   unsigned AS = DL.getAllocaAddrSpace();
372   AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
373   // Set the alignment to alignment of the byval parameter. This is because,
374   // later load/stores assume that alignment, and we are going to replace
375   // the use of the byval parameter with this alloca instruction.
376   AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
377                            .value_or(DL.getPrefTypeAlign(StructType)));
378   Arg->replaceAllUsesWith(AllocA);
379 
380   Value *ArgInParam = new AddrSpaceCastInst(
381       Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
382       FirstInst);
383   // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
384   // addrspacecast preserves alignment.  Since params are constant, this load is
385   // definitely not volatile.
386   LoadInst *LI =
387       new LoadInst(StructType, ArgInParam, Arg->getName(),
388                    /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
389   new StoreInst(LI, AllocA, FirstInst);
390 }
391 
392 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
393   if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
394     return;
395 
396   // Deciding where to emit the addrspacecast pair.
397   BasicBlock::iterator InsertPt;
398   if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
399     // Insert at the functon entry if Ptr is an argument.
400     InsertPt = Arg->getParent()->getEntryBlock().begin();
401   } else {
402     // Insert right after Ptr if Ptr is an instruction.
403     InsertPt = ++cast<Instruction>(Ptr)->getIterator();
404     assert(InsertPt != InsertPt->getParent()->end() &&
405            "We don't call this function with Ptr being a terminator.");
406   }
407 
408   Instruction *PtrInGlobal = new AddrSpaceCastInst(
409       Ptr,
410       PointerType::getWithSamePointeeType(cast<PointerType>(Ptr->getType()),
411                                           ADDRESS_SPACE_GLOBAL),
412       Ptr->getName(), &*InsertPt);
413   Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
414                                               Ptr->getName(), &*InsertPt);
415   // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
416   Ptr->replaceAllUsesWith(PtrInGeneric);
417   PtrInGlobal->setOperand(0, Ptr);
418 }
419 
420 // =============================================================================
421 // Main function for this pass.
422 // =============================================================================
423 bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
424   if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
425     // Mark pointers in byval structs as global.
426     for (auto &B : F) {
427       for (auto &I : B) {
428         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
429           if (LI->getType()->isPointerTy()) {
430             Value *UO = getUnderlyingObject(LI->getPointerOperand());
431             if (Argument *Arg = dyn_cast<Argument>(UO)) {
432               if (Arg->hasByValAttr()) {
433                 // LI is a load from a pointer within a byval kernel parameter.
434                 markPointerAsGlobal(LI);
435               }
436             }
437           }
438         }
439       }
440     }
441   }
442 
443   LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
444   for (Argument &Arg : F.args()) {
445     if (Arg.getType()->isPointerTy()) {
446       if (Arg.hasByValAttr())
447         handleByValParam(&Arg);
448       else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
449         markPointerAsGlobal(&Arg);
450     }
451   }
452   return true;
453 }
454 
455 // Device functions only need to copy byval args into local memory.
456 bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
457   LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
458   for (Argument &Arg : F.args())
459     if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
460       handleByValParam(&Arg);
461   return true;
462 }
463 
464 bool NVPTXLowerArgs::runOnFunction(Function &F) {
465   return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
466 }
467 
468 FunctionPass *
469 llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
470   return new NVPTXLowerArgs(TM);
471 }
472