xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXLowerArgs.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Arguments to kernel and device functions are passed via param space,
11 // which imposes certain restrictions:
12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
13 //
14 // Kernel parameters are read-only and accessible only via ld.param
15 // instruction, directly or via a pointer. Pointers to kernel
16 // arguments can't be converted to generic address space.
17 //
18 // Device function parameters are directly accessible via
19 // ld.param/st.param, but taking the address of one returns a pointer
20 // to a copy created in local space which *can't* be used with
21 // ld.param/st.param.
22 //
23 // Copying a byval struct into local memory in IR allows us to enforce
24 // the param space restrictions, gives the rest of IR a pointer w/o
25 // param space restrictions, and gives us an opportunity to eliminate
26 // the copy.
27 //
28 // Pointer arguments to kernel functions need more work to be lowered:
29 //
30 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
31 //    global address space. This allows later optimizations to emit
32 //    ld.global.*/st.global.* for accessing these pointer arguments. For
33 //    example,
34 //
35 //    define void @foo(float* %input) {
36 //      %v = load float, float* %input, align 4
37 //      ...
38 //    }
39 //
40 //    becomes
41 //
42 //    define void @foo(float* %input) {
43 //      %input2 = addrspacecast float* %input to float addrspace(1)*
44 //      %input3 = addrspacecast float addrspace(1)* %input2 to float*
45 //      %v = load float, float* %input3, align 4
46 //      ...
47 //    }
48 //
49 //    Later, NVPTXInferAddressSpaces will optimize it to
50 //
51 //    define void @foo(float* %input) {
52 //      %input2 = addrspacecast float* %input to float addrspace(1)*
53 //      %v = load float, float addrspace(1)* %input2, align 4
54 //      ...
55 //    }
56 //
57 // 2. Convert pointers in a byval kernel parameter to pointers in the global
58 //    address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
59 //
60 //    struct S {
61 //      int *x;
62 //      int *y;
63 //    };
64 //    __global__ void foo(S s) {
65 //      int *b = s.y;
66 //      // use b
67 //    }
68 //
69 //    "b" points to the global address space. In the IR level,
70 //
71 //    define void @foo({i32*, i32*}* byval %input) {
72 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
73 //      %b = load i32*, i32** %b_ptr
74 //      ; use %b
75 //    }
76 //
77 //    becomes
78 //
79 //    define void @foo({i32*, i32*}* byval %input) {
80 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
81 //      %b = load i32*, i32** %b_ptr
82 //      %b_global = addrspacecast i32* %b to i32 addrspace(1)*
83 //      %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
84 //      ; use %b_generic
85 //    }
86 //
87 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
88 // cancel the addrspacecast pair this pass emits.
89 //===----------------------------------------------------------------------===//
90 
91 #include "MCTargetDesc/NVPTXBaseInfo.h"
92 #include "NVPTX.h"
93 #include "NVPTXTargetMachine.h"
94 #include "NVPTXUtilities.h"
95 #include "llvm/Analysis/ValueTracking.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/Pass.h"
101 #include <queue>
102 
103 #define DEBUG_TYPE "nvptx-lower-args"
104 
105 using namespace llvm;
106 
107 namespace llvm {
108 void initializeNVPTXLowerArgsPass(PassRegistry &);
109 }
110 
111 namespace {
112 class NVPTXLowerArgs : public FunctionPass {
113   bool runOnFunction(Function &F) override;
114 
115   bool runOnKernelFunction(Function &F);
116   bool runOnDeviceFunction(Function &F);
117 
118   // handle byval parameters
119   void handleByValParam(Argument *Arg);
120   // Knowing Ptr must point to the global address space, this function
121   // addrspacecasts Ptr to global and then back to generic. This allows
122   // NVPTXInferAddressSpaces to fold the global-to-generic cast into
123   // loads/stores that appear later.
124   void markPointerAsGlobal(Value *Ptr);
125 
126 public:
127   static char ID; // Pass identification, replacement for typeid
128   NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
129       : FunctionPass(ID), TM(TM) {}
130   StringRef getPassName() const override {
131     return "Lower pointer arguments of CUDA kernels";
132   }
133 
134 private:
135   const NVPTXTargetMachine *TM;
136 };
137 } // namespace
138 
139 char NVPTXLowerArgs::ID = 1;
140 
141 INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
142                 "Lower arguments (NVPTX)", false, false)
143 
144 // =============================================================================
145 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
146 // and we can't guarantee that the only accesses are loads,
147 // then add the following instructions to the first basic block:
148 //
149 // %temp = alloca %struct.x, align 8
150 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
151 // %tv = load %struct.x addrspace(101)* %tempd
152 // store %struct.x %tv, %struct.x* %temp, align 8
153 //
154 // The above code allocates some space in the stack and copies the incoming
155 // struct from param space to local space.
156 // Then replace all occurrences of %d by %temp.
157 //
158 // In case we know that all users are GEPs or Loads, replace them with the same
159 // ones in parameter AS, so we can access them using ld.param.
160 // =============================================================================
161 
162 // Replaces the \p OldUser instruction with the same in parameter AS.
163 // Only Load and GEP are supported.
164 static void convertToParamAS(Value *OldUser, Value *Param) {
165   Instruction *I = dyn_cast<Instruction>(OldUser);
166   assert(I && "OldUser must be an instruction");
167   struct IP {
168     Instruction *OldInstruction;
169     Value *NewParam;
170   };
171   SmallVector<IP> ItemsToConvert = {{I, Param}};
172   SmallVector<Instruction *> InstructionsToDelete;
173 
174   auto CloneInstInParamAS = [](const IP &I) -> Value * {
175     if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
176       LI->setOperand(0, I.NewParam);
177       return LI;
178     }
179     if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
180       SmallVector<Value *, 4> Indices(GEP->indices());
181       auto *NewGEP = GetElementPtrInst::Create(GEP->getSourceElementType(),
182                                                I.NewParam, Indices,
183                                                GEP->getName(), GEP);
184       NewGEP->setIsInBounds(GEP->isInBounds());
185       return NewGEP;
186     }
187     if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
188       auto *NewBCType = PointerType::getWithSamePointeeType(
189           cast<PointerType>(BC->getType()), ADDRESS_SPACE_PARAM);
190       return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
191                                  BC->getName(), BC);
192     }
193     if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
194       assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
195       (void)ASC;
196       // Just pass through the argument, the old ASC is no longer needed.
197       return I.NewParam;
198     }
199     llvm_unreachable("Unsupported instruction");
200   };
201 
202   while (!ItemsToConvert.empty()) {
203     IP I = ItemsToConvert.pop_back_val();
204     Value *NewInst = CloneInstInParamAS(I);
205 
206     if (NewInst && NewInst != I.OldInstruction) {
207       // We've created a new instruction. Queue users of the old instruction to
208       // be converted and the instruction itself to be deleted. We can't delete
209       // the old instruction yet, because it's still in use by a load somewhere.
210       for (Value *V : I.OldInstruction->users())
211         ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
212 
213       InstructionsToDelete.push_back(I.OldInstruction);
214     }
215   }
216 
217   // Now we know that all argument loads are using addresses in parameter space
218   // and we can finally remove the old instructions in generic AS.  Instructions
219   // scheduled for removal should be processed in reverse order so the ones
220   // closest to the load are deleted first. Otherwise they may still be in use.
221   // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
222   // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
223   // the BitCast.
224   for (Instruction *I : llvm::reverse(InstructionsToDelete))
225     I->eraseFromParent();
226 }
227 
228 // Adjust alignment of arguments passed byval in .param address space. We can
229 // increase alignment of such arguments in a way that ensures that we can
230 // effectively vectorize their loads. We should also traverse all loads from
231 // byval pointer and adjust their alignment, if those were using known offset.
232 // Such alignment changes must be conformed with parameter store and load in
233 // NVPTXTargetLowering::LowerCall.
234 static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
235                                     const NVPTXTargetLowering *TLI) {
236   Function *Func = Arg->getParent();
237   Type *StructType = Arg->getParamByValType();
238   const DataLayout DL(Func->getParent());
239 
240   uint64_t NewArgAlign =
241       TLI->getFunctionParamOptimizedAlign(Func, StructType, DL).value();
242   uint64_t CurArgAlign =
243       Arg->getAttribute(Attribute::Alignment).getValueAsInt();
244 
245   if (CurArgAlign >= NewArgAlign)
246     return;
247 
248   LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign << " instead of "
249                     << CurArgAlign << " for " << *Arg << '\n');
250 
251   auto NewAlignAttr =
252       Attribute::get(Func->getContext(), Attribute::Alignment, NewArgAlign);
253   Arg->removeAttr(Attribute::Alignment);
254   Arg->addAttr(NewAlignAttr);
255 
256   struct Load {
257     LoadInst *Inst;
258     uint64_t Offset;
259   };
260 
261   struct LoadContext {
262     Value *InitialVal;
263     uint64_t Offset;
264   };
265 
266   SmallVector<Load> Loads;
267   std::queue<LoadContext> Worklist;
268   Worklist.push({ArgInParamAS, 0});
269 
270   while (!Worklist.empty()) {
271     LoadContext Ctx = Worklist.front();
272     Worklist.pop();
273 
274     for (User *CurUser : Ctx.InitialVal->users()) {
275       if (auto *I = dyn_cast<LoadInst>(CurUser)) {
276         Loads.push_back({I, Ctx.Offset});
277         continue;
278       }
279 
280       if (auto *I = dyn_cast<BitCastInst>(CurUser)) {
281         Worklist.push({I, Ctx.Offset});
282         continue;
283       }
284 
285       if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
286         APInt OffsetAccumulated =
287             APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
288 
289         if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
290           continue;
291 
292         uint64_t OffsetLimit = -1;
293         uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
294         assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
295 
296         Worklist.push({I, Ctx.Offset + Offset});
297         continue;
298       }
299 
300       llvm_unreachable("All users must be one of: load, "
301                        "bitcast, getelementptr.");
302     }
303   }
304 
305   for (Load &CurLoad : Loads) {
306     Align NewLoadAlign(greatestCommonDivisor(NewArgAlign, CurLoad.Offset));
307     Align CurLoadAlign(CurLoad.Inst->getAlign());
308     CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
309   }
310 }
311 
312 void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
313   Function *Func = Arg->getParent();
314   Instruction *FirstInst = &(Func->getEntryBlock().front());
315   Type *StructType = Arg->getParamByValType();
316   assert(StructType && "Missing byval type");
317 
318   auto IsALoadChain = [&](Value *Start) {
319     SmallVector<Value *, 16> ValuesToCheck = {Start};
320     auto IsALoadChainInstr = [](Value *V) -> bool {
321       if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
322         return true;
323       // ASC to param space are OK, too -- we'll just strip them.
324       if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
325         if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
326           return true;
327       }
328       return false;
329     };
330 
331     while (!ValuesToCheck.empty()) {
332       Value *V = ValuesToCheck.pop_back_val();
333       if (!IsALoadChainInstr(V)) {
334         LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
335                           << "\n");
336         (void)Arg;
337         return false;
338       }
339       if (!isa<LoadInst>(V))
340         llvm::append_range(ValuesToCheck, V->users());
341     }
342     return true;
343   };
344 
345   if (llvm::all_of(Arg->users(), IsALoadChain)) {
346     // Convert all loads and intermediate operations to use parameter AS and
347     // skip creation of a local copy of the argument.
348     SmallVector<User *, 16> UsersToUpdate(Arg->users());
349     Value *ArgInParamAS = new AddrSpaceCastInst(
350         Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
351         FirstInst);
352     for (Value *V : UsersToUpdate)
353       convertToParamAS(V, ArgInParamAS);
354     LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
355 
356     // Further optimizations require target lowering info.
357     if (!TM)
358       return;
359 
360     const auto *TLI =
361         cast<NVPTXTargetLowering>(TM->getSubtargetImpl()->getTargetLowering());
362 
363     adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
364 
365     return;
366   }
367 
368   // Otherwise we have to create a temporary copy.
369   const DataLayout &DL = Func->getParent()->getDataLayout();
370   unsigned AS = DL.getAllocaAddrSpace();
371   AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
372   // Set the alignment to alignment of the byval parameter. This is because,
373   // later load/stores assume that alignment, and we are going to replace
374   // the use of the byval parameter with this alloca instruction.
375   AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
376                            .value_or(DL.getPrefTypeAlign(StructType)));
377   Arg->replaceAllUsesWith(AllocA);
378 
379   Value *ArgInParam = new AddrSpaceCastInst(
380       Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
381       FirstInst);
382   // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
383   // addrspacecast preserves alignment.  Since params are constant, this load is
384   // definitely not volatile.
385   LoadInst *LI =
386       new LoadInst(StructType, ArgInParam, Arg->getName(),
387                    /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
388   new StoreInst(LI, AllocA, FirstInst);
389 }
390 
391 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
392   if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
393     return;
394 
395   // Deciding where to emit the addrspacecast pair.
396   BasicBlock::iterator InsertPt;
397   if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
398     // Insert at the functon entry if Ptr is an argument.
399     InsertPt = Arg->getParent()->getEntryBlock().begin();
400   } else {
401     // Insert right after Ptr if Ptr is an instruction.
402     InsertPt = ++cast<Instruction>(Ptr)->getIterator();
403     assert(InsertPt != InsertPt->getParent()->end() &&
404            "We don't call this function with Ptr being a terminator.");
405   }
406 
407   Instruction *PtrInGlobal = new AddrSpaceCastInst(
408       Ptr,
409       PointerType::getWithSamePointeeType(cast<PointerType>(Ptr->getType()),
410                                           ADDRESS_SPACE_GLOBAL),
411       Ptr->getName(), &*InsertPt);
412   Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
413                                               Ptr->getName(), &*InsertPt);
414   // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
415   Ptr->replaceAllUsesWith(PtrInGeneric);
416   PtrInGlobal->setOperand(0, Ptr);
417 }
418 
419 // =============================================================================
420 // Main function for this pass.
421 // =============================================================================
422 bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
423   if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
424     // Mark pointers in byval structs as global.
425     for (auto &B : F) {
426       for (auto &I : B) {
427         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
428           if (LI->getType()->isPointerTy()) {
429             Value *UO = getUnderlyingObject(LI->getPointerOperand());
430             if (Argument *Arg = dyn_cast<Argument>(UO)) {
431               if (Arg->hasByValAttr()) {
432                 // LI is a load from a pointer within a byval kernel parameter.
433                 markPointerAsGlobal(LI);
434               }
435             }
436           }
437         }
438       }
439     }
440   }
441 
442   LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
443   for (Argument &Arg : F.args()) {
444     if (Arg.getType()->isPointerTy()) {
445       if (Arg.hasByValAttr())
446         handleByValParam(&Arg);
447       else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
448         markPointerAsGlobal(&Arg);
449     }
450   }
451   return true;
452 }
453 
454 // Device functions only need to copy byval args into local memory.
455 bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
456   LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
457   for (Argument &Arg : F.args())
458     if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
459       handleByValParam(&Arg);
460   return true;
461 }
462 
463 bool NVPTXLowerArgs::runOnFunction(Function &F) {
464   return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
465 }
466 
467 FunctionPass *
468 llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
469   return new NVPTXLowerArgs(TM);
470 }
471