1//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the PTX instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13include "NVPTXInstrFormats.td" 14 15// A NOP instruction 16let hasSideEffects = 0 in { 17 def NOP : NVPTXInst<(outs), (ins), "", []>; 18} 19 20let OperandType = "OPERAND_IMMEDIATE" in { 21 def f16imm : Operand<f16>; 22} 23 24// List of vector specific properties 25def isVecLD : VecInstTypeEnum<1>; 26def isVecST : VecInstTypeEnum<2>; 27def isVecBuild : VecInstTypeEnum<3>; 28def isVecShuffle : VecInstTypeEnum<4>; 29def isVecExtract : VecInstTypeEnum<5>; 30def isVecInsert : VecInstTypeEnum<6>; 31def isVecDest : VecInstTypeEnum<7>; 32def isVecOther : VecInstTypeEnum<15>; 33 34//===----------------------------------------------------------------------===// 35// NVPTX Operand Definitions. 36//===----------------------------------------------------------------------===// 37 38def brtarget : Operand<OtherVT>; 39 40// CVT conversion modes 41// These must match the enum in NVPTX.h 42def CvtNONE : PatLeaf<(i32 0x0)>; 43def CvtRNI : PatLeaf<(i32 0x1)>; 44def CvtRZI : PatLeaf<(i32 0x2)>; 45def CvtRMI : PatLeaf<(i32 0x3)>; 46def CvtRPI : PatLeaf<(i32 0x4)>; 47def CvtRN : PatLeaf<(i32 0x5)>; 48def CvtRZ : PatLeaf<(i32 0x6)>; 49def CvtRM : PatLeaf<(i32 0x7)>; 50def CvtRP : PatLeaf<(i32 0x8)>; 51 52def CvtNONE_FTZ : PatLeaf<(i32 0x10)>; 53def CvtRNI_FTZ : PatLeaf<(i32 0x11)>; 54def CvtRZI_FTZ : PatLeaf<(i32 0x12)>; 55def CvtRMI_FTZ : PatLeaf<(i32 0x13)>; 56def CvtRPI_FTZ : PatLeaf<(i32 0x14)>; 57def CvtRN_FTZ : PatLeaf<(i32 0x15)>; 58def CvtRZ_FTZ : PatLeaf<(i32 0x16)>; 59def CvtRM_FTZ : PatLeaf<(i32 0x17)>; 60def CvtRP_FTZ : PatLeaf<(i32 0x18)>; 61 62def CvtSAT : PatLeaf<(i32 0x20)>; 63def CvtSAT_FTZ : PatLeaf<(i32 0x30)>; 64 65def CvtMode : Operand<i32> { 66 let PrintMethod = "printCvtMode"; 67} 68 69// Compare modes 70// These must match the enum in NVPTX.h 71def CmpEQ : PatLeaf<(i32 0)>; 72def CmpNE : PatLeaf<(i32 1)>; 73def CmpLT : PatLeaf<(i32 2)>; 74def CmpLE : PatLeaf<(i32 3)>; 75def CmpGT : PatLeaf<(i32 4)>; 76def CmpGE : PatLeaf<(i32 5)>; 77def CmpEQU : PatLeaf<(i32 10)>; 78def CmpNEU : PatLeaf<(i32 11)>; 79def CmpLTU : PatLeaf<(i32 12)>; 80def CmpLEU : PatLeaf<(i32 13)>; 81def CmpGTU : PatLeaf<(i32 14)>; 82def CmpGEU : PatLeaf<(i32 15)>; 83def CmpNUM : PatLeaf<(i32 16)>; 84def CmpNAN : PatLeaf<(i32 17)>; 85 86def CmpEQ_FTZ : PatLeaf<(i32 0x100)>; 87def CmpNE_FTZ : PatLeaf<(i32 0x101)>; 88def CmpLT_FTZ : PatLeaf<(i32 0x102)>; 89def CmpLE_FTZ : PatLeaf<(i32 0x103)>; 90def CmpGT_FTZ : PatLeaf<(i32 0x104)>; 91def CmpGE_FTZ : PatLeaf<(i32 0x105)>; 92def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>; 93def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>; 94def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>; 95def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>; 96def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>; 97def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>; 98def CmpNUM_FTZ : PatLeaf<(i32 0x110)>; 99def CmpNAN_FTZ : PatLeaf<(i32 0x111)>; 100 101def CmpMode : Operand<i32> { 102 let PrintMethod = "printCmpMode"; 103} 104def VecElement : Operand<i32> { 105 let PrintMethod = "printVecElement"; 106} 107 108//===----------------------------------------------------------------------===// 109// NVPTX Instruction Predicate Definitions 110//===----------------------------------------------------------------------===// 111 112 113def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">; 114def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">; 115def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">; 116def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">; 117def hasVote : Predicate<"Subtarget->hasVote()">; 118def hasDouble : Predicate<"Subtarget->hasDouble()">; 119def hasLDG : Predicate<"Subtarget->hasLDG()">; 120def hasLDU : Predicate<"Subtarget->hasLDU()">; 121 122def doF32FTZ : Predicate<"useF32FTZ()">; 123def doNoF32FTZ : Predicate<"!useF32FTZ()">; 124 125def doMulWide : Predicate<"doMulWide">; 126 127def allowFMA : Predicate<"allowFMA()">; 128def noFMA : Predicate<"!allowFMA()">; 129def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">; 130 131def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">; 132def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">; 133 134def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">; 135def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">; 136 137def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">; 138def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">; 139 140def true : Predicate<"true">; 141 142def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">; 143def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">; 144def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">; 145def hasPTX63 : Predicate<"Subtarget->getPTXVersion() >= 63">; 146def hasPTX64 : Predicate<"Subtarget->getPTXVersion() >= 64">; 147 148def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">; 149def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">; 150def hasSM72 : Predicate<"Subtarget->getSmVersion() >= 72">; 151def hasSM75 : Predicate<"Subtarget->getSmVersion() >= 75">; 152 153// non-sync shfl instructions are not available on sm_70+ in PTX6.4+ 154def hasSHFL : Predicate<"!(Subtarget->getSmVersion() >= 70" 155 "&& Subtarget->getPTXVersion() >= 64)">; 156 157def useShortPtr : Predicate<"useShortPointers()">; 158def useFP16Math: Predicate<"Subtarget->allowFP16Math()">; 159 160//===----------------------------------------------------------------------===// 161// Some Common Instruction Class Templates 162//===----------------------------------------------------------------------===// 163 164// Template for instructions which take three int64, int32, or int16 args. 165// The instructions are named "<OpcStr><Width>" (e.g. "add.s64"). 166multiclass I3<string OpcStr, SDNode OpNode> { 167 def i64rr : 168 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), 169 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 170 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; 171 def i64ri : 172 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), 173 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 174 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; 175 def i32rr : 176 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 177 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 178 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 179 def i32ri : 180 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 181 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 182 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 183 def i16rr : 184 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 185 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 186 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; 187 def i16ri : 188 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 189 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 190 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>; 191} 192 193// Template for instructions which take 3 int32 args. The instructions are 194// named "<OpcStr>.s32" (e.g. "addc.cc.s32"). 195multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> { 196 def i32rr : 197 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 198 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), 199 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 200 def i32ri : 201 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 202 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), 203 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 204} 205 206// Template for instructions which take three fp64 or fp32 args. The 207// instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64"). 208// 209// Also defines ftz (flush subnormal inputs and results to sign-preserving 210// zero) variants for fp32 functions. 211// 212// This multiclass should be used for nodes that cannot be folded into FMAs. 213// For nodes that can be folded into FMAs (i.e. adds and muls), use 214// F3_fma_component. 215multiclass F3<string OpcStr, SDNode OpNode> { 216 def f64rr : 217 NVPTXInst<(outs Float64Regs:$dst), 218 (ins Float64Regs:$a, Float64Regs:$b), 219 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 220 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>; 221 def f64ri : 222 NVPTXInst<(outs Float64Regs:$dst), 223 (ins Float64Regs:$a, f64imm:$b), 224 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 225 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>; 226 def f32rr_ftz : 227 NVPTXInst<(outs Float32Regs:$dst), 228 (ins Float32Regs:$a, Float32Regs:$b), 229 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 230 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 231 Requires<[doF32FTZ]>; 232 def f32ri_ftz : 233 NVPTXInst<(outs Float32Regs:$dst), 234 (ins Float32Regs:$a, f32imm:$b), 235 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 236 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 237 Requires<[doF32FTZ]>; 238 def f32rr : 239 NVPTXInst<(outs Float32Regs:$dst), 240 (ins Float32Regs:$a, Float32Regs:$b), 241 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 242 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>; 243 def f32ri : 244 NVPTXInst<(outs Float32Regs:$dst), 245 (ins Float32Regs:$a, f32imm:$b), 246 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 247 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>; 248} 249 250// Template for instructions which take three FP args. The 251// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64"). 252// 253// Also defines ftz (flush subnormal inputs and results to sign-preserving 254// zero) variants for fp32/fp16 functions. 255// 256// This multiclass should be used for nodes that can be folded to make fma ops. 257// In this case, we use the ".rn" variant when FMA is disabled, as this behaves 258// just like the non ".rn" op, but prevents ptxas from creating FMAs. 259multiclass F3_fma_component<string OpcStr, SDNode OpNode> { 260 def f64rr : 261 NVPTXInst<(outs Float64Regs:$dst), 262 (ins Float64Regs:$a, Float64Regs:$b), 263 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 264 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, 265 Requires<[allowFMA]>; 266 def f64ri : 267 NVPTXInst<(outs Float64Regs:$dst), 268 (ins Float64Regs:$a, f64imm:$b), 269 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 270 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, 271 Requires<[allowFMA]>; 272 def f32rr_ftz : 273 NVPTXInst<(outs Float32Regs:$dst), 274 (ins Float32Regs:$a, Float32Regs:$b), 275 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 276 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 277 Requires<[allowFMA, doF32FTZ]>; 278 def f32ri_ftz : 279 NVPTXInst<(outs Float32Regs:$dst), 280 (ins Float32Regs:$a, f32imm:$b), 281 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 282 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 283 Requires<[allowFMA, doF32FTZ]>; 284 def f32rr : 285 NVPTXInst<(outs Float32Regs:$dst), 286 (ins Float32Regs:$a, Float32Regs:$b), 287 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 288 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 289 Requires<[allowFMA]>; 290 def f32ri : 291 NVPTXInst<(outs Float32Regs:$dst), 292 (ins Float32Regs:$a, f32imm:$b), 293 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 294 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 295 Requires<[allowFMA]>; 296 297 def f16rr_ftz : 298 NVPTXInst<(outs Float16Regs:$dst), 299 (ins Float16Regs:$a, Float16Regs:$b), 300 !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), 301 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 302 Requires<[useFP16Math, allowFMA, doF32FTZ]>; 303 def f16rr : 304 NVPTXInst<(outs Float16Regs:$dst), 305 (ins Float16Regs:$a, Float16Regs:$b), 306 !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), 307 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 308 Requires<[useFP16Math, allowFMA]>; 309 310 def f16x2rr_ftz : 311 NVPTXInst<(outs Float16x2Regs:$dst), 312 (ins Float16x2Regs:$a, Float16x2Regs:$b), 313 !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), 314 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 315 Requires<[useFP16Math, allowFMA, doF32FTZ]>; 316 def f16x2rr : 317 NVPTXInst<(outs Float16x2Regs:$dst), 318 (ins Float16x2Regs:$a, Float16x2Regs:$b), 319 !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), 320 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 321 Requires<[useFP16Math, allowFMA]>; 322 323 // These have strange names so we don't perturb existing mir tests. 324 def _rnf64rr : 325 NVPTXInst<(outs Float64Regs:$dst), 326 (ins Float64Regs:$a, Float64Regs:$b), 327 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), 328 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, 329 Requires<[noFMA]>; 330 def _rnf64ri : 331 NVPTXInst<(outs Float64Regs:$dst), 332 (ins Float64Regs:$a, f64imm:$b), 333 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), 334 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, 335 Requires<[noFMA]>; 336 def _rnf32rr_ftz : 337 NVPTXInst<(outs Float32Regs:$dst), 338 (ins Float32Regs:$a, Float32Regs:$b), 339 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), 340 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 341 Requires<[noFMA, doF32FTZ]>; 342 def _rnf32ri_ftz : 343 NVPTXInst<(outs Float32Regs:$dst), 344 (ins Float32Regs:$a, f32imm:$b), 345 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), 346 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 347 Requires<[noFMA, doF32FTZ]>; 348 def _rnf32rr : 349 NVPTXInst<(outs Float32Regs:$dst), 350 (ins Float32Regs:$a, Float32Regs:$b), 351 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), 352 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 353 Requires<[noFMA]>; 354 def _rnf32ri : 355 NVPTXInst<(outs Float32Regs:$dst), 356 (ins Float32Regs:$a, f32imm:$b), 357 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), 358 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 359 Requires<[noFMA]>; 360 def _rnf16rr_ftz : 361 NVPTXInst<(outs Float16Regs:$dst), 362 (ins Float16Regs:$a, Float16Regs:$b), 363 !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"), 364 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 365 Requires<[useFP16Math, noFMA, doF32FTZ]>; 366 def _rnf16rr : 367 NVPTXInst<(outs Float16Regs:$dst), 368 (ins Float16Regs:$a, Float16Regs:$b), 369 !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"), 370 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 371 Requires<[useFP16Math, noFMA]>; 372 def _rnf16x2rr_ftz : 373 NVPTXInst<(outs Float16x2Regs:$dst), 374 (ins Float16x2Regs:$a, Float16x2Regs:$b), 375 !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"), 376 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 377 Requires<[useFP16Math, noFMA, doF32FTZ]>; 378 def _rnf16x2rr : 379 NVPTXInst<(outs Float16x2Regs:$dst), 380 (ins Float16x2Regs:$a, Float16x2Regs:$b), 381 !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"), 382 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 383 Requires<[useFP16Math, noFMA]>; 384} 385 386// Template for operations which take two f32 or f64 operands. Provides three 387// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush 388// subnormal inputs and results to zero). 389multiclass F2<string OpcStr, SDNode OpNode> { 390 def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a), 391 !strconcat(OpcStr, ".f64 \t$dst, $a;"), 392 [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>; 393 def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), 394 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"), 395 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>, 396 Requires<[doF32FTZ]>; 397 def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), 398 !strconcat(OpcStr, ".f32 \t$dst, $a;"), 399 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>; 400} 401 402//===----------------------------------------------------------------------===// 403// NVPTX Instructions. 404//===----------------------------------------------------------------------===// 405 406//----------------------------------- 407// Type Conversion 408//----------------------------------- 409 410let hasSideEffects = 0 in { 411 // Generate a cvt to the given type from all possible types. Each instance 412 // takes a CvtMode immediate that defines the conversion mode to use. It can 413 // be CvtNONE to omit a conversion mode. 414 multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> { 415 def _s8 : 416 NVPTXInst<(outs RC:$dst), 417 (ins Int16Regs:$src, CvtMode:$mode), 418 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 419 FromName, ".s8 \t$dst, $src;"), []>; 420 def _u8 : 421 NVPTXInst<(outs RC:$dst), 422 (ins Int16Regs:$src, CvtMode:$mode), 423 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 424 FromName, ".u8 \t$dst, $src;"), []>; 425 def _s16 : 426 NVPTXInst<(outs RC:$dst), 427 (ins Int16Regs:$src, CvtMode:$mode), 428 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 429 FromName, ".s16 \t$dst, $src;"), []>; 430 def _u16 : 431 NVPTXInst<(outs RC:$dst), 432 (ins Int16Regs:$src, CvtMode:$mode), 433 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 434 FromName, ".u16 \t$dst, $src;"), []>; 435 def _s32 : 436 NVPTXInst<(outs RC:$dst), 437 (ins Int32Regs:$src, CvtMode:$mode), 438 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 439 FromName, ".s32 \t$dst, $src;"), []>; 440 def _u32 : 441 NVPTXInst<(outs RC:$dst), 442 (ins Int32Regs:$src, CvtMode:$mode), 443 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 444 FromName, ".u32 \t$dst, $src;"), []>; 445 def _s64 : 446 NVPTXInst<(outs RC:$dst), 447 (ins Int64Regs:$src, CvtMode:$mode), 448 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 449 FromName, ".s64 \t$dst, $src;"), []>; 450 def _u64 : 451 NVPTXInst<(outs RC:$dst), 452 (ins Int64Regs:$src, CvtMode:$mode), 453 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 454 FromName, ".u64 \t$dst, $src;"), []>; 455 def _f16 : 456 NVPTXInst<(outs RC:$dst), 457 (ins Float16Regs:$src, CvtMode:$mode), 458 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 459 FromName, ".f16 \t$dst, $src;"), []>; 460 def _f32 : 461 NVPTXInst<(outs RC:$dst), 462 (ins Float32Regs:$src, CvtMode:$mode), 463 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 464 FromName, ".f32 \t$dst, $src;"), []>; 465 def _f64 : 466 NVPTXInst<(outs RC:$dst), 467 (ins Float64Regs:$src, CvtMode:$mode), 468 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 469 FromName, ".f64 \t$dst, $src;"), []>; 470 } 471 472 // Generate cvts from all types to all types. 473 defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>; 474 defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>; 475 defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>; 476 defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>; 477 defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>; 478 defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>; 479 defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>; 480 defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>; 481 defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>; 482 defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>; 483 defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>; 484 485 // These cvts are different from those above: The source and dest registers 486 // are of the same type. 487 def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 488 "cvt.s16.s8 \t$dst, $src;", []>; 489 def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 490 "cvt.s32.s8 \t$dst, $src;", []>; 491 def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 492 "cvt.s32.s16 \t$dst, $src;", []>; 493 def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 494 "cvt.s64.s8 \t$dst, $src;", []>; 495 def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 496 "cvt.s64.s16 \t$dst, $src;", []>; 497 def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 498 "cvt.s64.s32 \t$dst, $src;", []>; 499} 500 501//----------------------------------- 502// Integer Arithmetic 503//----------------------------------- 504 505// Template for xor masquerading as int1 arithmetic. 506multiclass ADD_SUB_i1<SDNode OpNode> { 507 def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), 508 "xor.pred \t$dst, $a, $b;", 509 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; 510 def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), 511 "xor.pred \t$dst, $a, $b;", 512 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>; 513} 514 515// int1 addition and subtraction are both just xor. 516defm ADD_i1 : ADD_SUB_i1<add>; 517defm SUB_i1 : ADD_SUB_i1<sub>; 518 519// int16, int32, and int64 signed addition. Since nvptx is 2's complement, we 520// also use these for unsigned arithmetic. 521defm ADD : I3<"add.s", add>; 522defm SUB : I3<"sub.s", sub>; 523 524// int32 addition and subtraction with carry-out. 525// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?). 526defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>; 527defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>; 528 529// int32 addition and subtraction with carry-in and carry-out. 530defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>; 531defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>; 532 533defm MULT : I3<"mul.lo.s", mul>; 534 535defm MULTHS : I3<"mul.hi.s", mulhs>; 536defm MULTHU : I3<"mul.hi.u", mulhu>; 537 538defm SDIV : I3<"div.s", sdiv>; 539defm UDIV : I3<"div.u", udiv>; 540 541// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM 542// will lower it. 543defm SREM : I3<"rem.s", srem>; 544defm UREM : I3<"rem.u", urem>; 545 546// Integer absolute value. NumBits should be one minus the bit width of RC. 547// This idiom implements the algorithm at 548// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs. 549multiclass ABS<RegisterClass RC, string SizeName> { 550 def : NVPTXInst<(outs RC:$dst), (ins RC:$a), 551 !strconcat("abs", SizeName, " \t$dst, $a;"), 552 [(set RC:$dst, (abs RC:$a))]>; 553} 554defm ABS_16 : ABS<Int16Regs, ".s16">; 555defm ABS_32 : ABS<Int32Regs, ".s32">; 556defm ABS_64 : ABS<Int64Regs, ".s64">; 557 558// Integer min/max. 559defm SMAX : I3<"max.s", smax>; 560defm UMAX : I3<"max.u", umax>; 561defm SMIN : I3<"min.s", smin>; 562defm UMIN : I3<"min.u", umin>; 563 564// 565// Wide multiplication 566// 567def MULWIDES64 : 568 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 569 "mul.wide.s32 \t$dst, $a, $b;", []>; 570def MULWIDES64Imm : 571 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 572 "mul.wide.s32 \t$dst, $a, $b;", []>; 573def MULWIDES64Imm64 : 574 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), 575 "mul.wide.s32 \t$dst, $a, $b;", []>; 576 577def MULWIDEU64 : 578 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 579 "mul.wide.u32 \t$dst, $a, $b;", []>; 580def MULWIDEU64Imm : 581 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 582 "mul.wide.u32 \t$dst, $a, $b;", []>; 583def MULWIDEU64Imm64 : 584 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), 585 "mul.wide.u32 \t$dst, $a, $b;", []>; 586 587def MULWIDES32 : 588 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 589 "mul.wide.s16 \t$dst, $a, $b;", []>; 590def MULWIDES32Imm : 591 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 592 "mul.wide.s16 \t$dst, $a, $b;", []>; 593def MULWIDES32Imm32 : 594 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 595 "mul.wide.s16 \t$dst, $a, $b;", []>; 596 597def MULWIDEU32 : 598 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 599 "mul.wide.u16 \t$dst, $a, $b;", []>; 600def MULWIDEU32Imm : 601 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 602 "mul.wide.u16 \t$dst, $a, $b;", []>; 603def MULWIDEU32Imm32 : 604 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 605 "mul.wide.u16 \t$dst, $a, $b;", []>; 606 607def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>; 608def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>; 609def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>; 610 611// Matchers for signed, unsigned mul.wide ISD nodes. 612def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)), 613 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, 614 Requires<[doMulWide]>; 615def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)), 616 (MULWIDES32Imm Int16Regs:$a, imm:$b)>, 617 Requires<[doMulWide]>; 618def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)), 619 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, 620 Requires<[doMulWide]>; 621def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)), 622 (MULWIDEU32Imm Int16Regs:$a, imm:$b)>, 623 Requires<[doMulWide]>; 624 625def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)), 626 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, 627 Requires<[doMulWide]>; 628def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)), 629 (MULWIDES64Imm Int32Regs:$a, imm:$b)>, 630 Requires<[doMulWide]>; 631def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)), 632 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, 633 Requires<[doMulWide]>; 634def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)), 635 (MULWIDEU64Imm Int32Regs:$a, imm:$b)>, 636 Requires<[doMulWide]>; 637 638// Predicates used for converting some patterns to mul.wide. 639def SInt32Const : PatLeaf<(imm), [{ 640 const APInt &v = N->getAPIntValue(); 641 return v.isSignedIntN(32); 642}]>; 643 644def UInt32Const : PatLeaf<(imm), [{ 645 const APInt &v = N->getAPIntValue(); 646 return v.isIntN(32); 647}]>; 648 649def SInt16Const : PatLeaf<(imm), [{ 650 const APInt &v = N->getAPIntValue(); 651 return v.isSignedIntN(16); 652}]>; 653 654def UInt16Const : PatLeaf<(imm), [{ 655 const APInt &v = N->getAPIntValue(); 656 return v.isIntN(16); 657}]>; 658 659def Int5Const : PatLeaf<(imm), [{ 660 // Check if 0 <= v < 32; only then will the result of (x << v) be an int32. 661 const APInt &v = N->getAPIntValue(); 662 return v.sge(0) && v.slt(32); 663}]>; 664 665def Int4Const : PatLeaf<(imm), [{ 666 // Check if 0 <= v < 16; only then will the result of (x << v) be an int16. 667 const APInt &v = N->getAPIntValue(); 668 return v.sge(0) && v.slt(16); 669}]>; 670 671def SHL2MUL32 : SDNodeXForm<imm, [{ 672 const APInt &v = N->getAPIntValue(); 673 APInt temp(32, 1); 674 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32); 675}]>; 676 677def SHL2MUL16 : SDNodeXForm<imm, [{ 678 const APInt &v = N->getAPIntValue(); 679 APInt temp(16, 1); 680 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16); 681}]>; 682 683// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide. 684def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)), 685 (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, 686 Requires<[doMulWide]>; 687def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)), 688 (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, 689 Requires<[doMulWide]>; 690 691def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)), 692 (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, 693 Requires<[doMulWide]>; 694def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)), 695 (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, 696 Requires<[doMulWide]>; 697 698// Convert "sign/zero-extend then multiply" to mul.wide. 699def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)), 700 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, 701 Requires<[doMulWide]>; 702def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)), 703 (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>, 704 Requires<[doMulWide]>; 705 706def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)), 707 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, 708 Requires<[doMulWide]>; 709def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)), 710 (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>, 711 Requires<[doMulWide]>; 712 713def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)), 714 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, 715 Requires<[doMulWide]>; 716def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)), 717 (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>, 718 Requires<[doMulWide]>; 719 720def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)), 721 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, 722 Requires<[doMulWide]>; 723def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)), 724 (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>, 725 Requires<[doMulWide]>; 726 727// 728// Integer multiply-add 729// 730def SDTIMAD : 731 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>, 732 SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; 733def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>; 734 735def MAD16rrr : 736 NVPTXInst<(outs Int16Regs:$dst), 737 (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c), 738 "mad.lo.s16 \t$dst, $a, $b, $c;", 739 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>; 740def MAD16rri : 741 NVPTXInst<(outs Int16Regs:$dst), 742 (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c), 743 "mad.lo.s16 \t$dst, $a, $b, $c;", 744 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>; 745def MAD16rir : 746 NVPTXInst<(outs Int16Regs:$dst), 747 (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c), 748 "mad.lo.s16 \t$dst, $a, $b, $c;", 749 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>; 750def MAD16rii : 751 NVPTXInst<(outs Int16Regs:$dst), 752 (ins Int16Regs:$a, i16imm:$b, i16imm:$c), 753 "mad.lo.s16 \t$dst, $a, $b, $c;", 754 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>; 755 756def MAD32rrr : 757 NVPTXInst<(outs Int32Regs:$dst), 758 (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c), 759 "mad.lo.s32 \t$dst, $a, $b, $c;", 760 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>; 761def MAD32rri : 762 NVPTXInst<(outs Int32Regs:$dst), 763 (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c), 764 "mad.lo.s32 \t$dst, $a, $b, $c;", 765 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>; 766def MAD32rir : 767 NVPTXInst<(outs Int32Regs:$dst), 768 (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c), 769 "mad.lo.s32 \t$dst, $a, $b, $c;", 770 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>; 771def MAD32rii : 772 NVPTXInst<(outs Int32Regs:$dst), 773 (ins Int32Regs:$a, i32imm:$b, i32imm:$c), 774 "mad.lo.s32 \t$dst, $a, $b, $c;", 775 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>; 776 777def MAD64rrr : 778 NVPTXInst<(outs Int64Regs:$dst), 779 (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c), 780 "mad.lo.s64 \t$dst, $a, $b, $c;", 781 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>; 782def MAD64rri : 783 NVPTXInst<(outs Int64Regs:$dst), 784 (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c), 785 "mad.lo.s64 \t$dst, $a, $b, $c;", 786 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>; 787def MAD64rir : 788 NVPTXInst<(outs Int64Regs:$dst), 789 (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c), 790 "mad.lo.s64 \t$dst, $a, $b, $c;", 791 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>; 792def MAD64rii : 793 NVPTXInst<(outs Int64Regs:$dst), 794 (ins Int64Regs:$a, i64imm:$b, i64imm:$c), 795 "mad.lo.s64 \t$dst, $a, $b, $c;", 796 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>; 797 798def INEG16 : 799 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 800 "neg.s16 \t$dst, $src;", 801 [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>; 802def INEG32 : 803 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 804 "neg.s32 \t$dst, $src;", 805 [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>; 806def INEG64 : 807 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 808 "neg.s64 \t$dst, $src;", 809 [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>; 810 811//----------------------------------- 812// Floating Point Arithmetic 813//----------------------------------- 814 815// Constant 1.0f 816def FloatConst1 : PatLeaf<(fpimm), [{ 817 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() && 818 N->getValueAPF().convertToFloat() == 1.0f; 819}]>; 820// Constant 1.0 (double) 821def DoubleConst1 : PatLeaf<(fpimm), [{ 822 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() && 823 N->getValueAPF().convertToDouble() == 1.0; 824}]>; 825 826// Loads FP16 constant into a register. 827// 828// ptxas does not have hex representation for fp16, so we can't use 829// fp16 immediate values in .f16 instructions. Instead we have to load 830// the constant into a register using mov.b16. 831def LOAD_CONST_F16 : 832 NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a), 833 "mov.b16 \t$dst, $a;", []>; 834 835defm FADD : F3_fma_component<"add", fadd>; 836defm FSUB : F3_fma_component<"sub", fsub>; 837defm FMUL : F3_fma_component<"mul", fmul>; 838 839defm FMIN : F3<"min", fminnum>; 840defm FMAX : F3<"max", fmaxnum>; 841 842defm FABS : F2<"abs", fabs>; 843defm FNEG : F2<"neg", fneg>; 844defm FSQRT : F2<"sqrt.rn", fsqrt>; 845 846// 847// F64 division 848// 849def FDIV641r : 850 NVPTXInst<(outs Float64Regs:$dst), 851 (ins f64imm:$a, Float64Regs:$b), 852 "rcp.rn.f64 \t$dst, $b;", 853 [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>; 854def FDIV64rr : 855 NVPTXInst<(outs Float64Regs:$dst), 856 (ins Float64Regs:$a, Float64Regs:$b), 857 "div.rn.f64 \t$dst, $a, $b;", 858 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>; 859def FDIV64ri : 860 NVPTXInst<(outs Float64Regs:$dst), 861 (ins Float64Regs:$a, f64imm:$b), 862 "div.rn.f64 \t$dst, $a, $b;", 863 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>; 864 865// 866// F32 Approximate reciprocal 867// 868def FDIV321r_ftz : 869 NVPTXInst<(outs Float32Regs:$dst), 870 (ins f32imm:$a, Float32Regs:$b), 871 "rcp.approx.ftz.f32 \t$dst, $b;", 872 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 873 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 874def FDIV321r : 875 NVPTXInst<(outs Float32Regs:$dst), 876 (ins f32imm:$a, Float32Regs:$b), 877 "rcp.approx.f32 \t$dst, $b;", 878 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 879 Requires<[do_DIVF32_APPROX]>; 880// 881// F32 Approximate division 882// 883def FDIV32approxrr_ftz : 884 NVPTXInst<(outs Float32Regs:$dst), 885 (ins Float32Regs:$a, Float32Regs:$b), 886 "div.approx.ftz.f32 \t$dst, $a, $b;", 887 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 888 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 889def FDIV32approxri_ftz : 890 NVPTXInst<(outs Float32Regs:$dst), 891 (ins Float32Regs:$a, f32imm:$b), 892 "div.approx.ftz.f32 \t$dst, $a, $b;", 893 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 894 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 895def FDIV32approxrr : 896 NVPTXInst<(outs Float32Regs:$dst), 897 (ins Float32Regs:$a, Float32Regs:$b), 898 "div.approx.f32 \t$dst, $a, $b;", 899 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 900 Requires<[do_DIVF32_APPROX]>; 901def FDIV32approxri : 902 NVPTXInst<(outs Float32Regs:$dst), 903 (ins Float32Regs:$a, f32imm:$b), 904 "div.approx.f32 \t$dst, $a, $b;", 905 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 906 Requires<[do_DIVF32_APPROX]>; 907// 908// F32 Semi-accurate reciprocal 909// 910// rcp.approx gives the same result as div.full(1.0f, a) and is faster. 911// 912def FDIV321r_approx_ftz : 913 NVPTXInst<(outs Float32Regs:$dst), 914 (ins f32imm:$a, Float32Regs:$b), 915 "rcp.approx.ftz.f32 \t$dst, $b;", 916 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 917 Requires<[do_DIVF32_FULL, doF32FTZ]>; 918def FDIV321r_approx : 919 NVPTXInst<(outs Float32Regs:$dst), 920 (ins f32imm:$a, Float32Regs:$b), 921 "rcp.approx.f32 \t$dst, $b;", 922 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 923 Requires<[do_DIVF32_FULL]>; 924// 925// F32 Semi-accurate division 926// 927def FDIV32rr_ftz : 928 NVPTXInst<(outs Float32Regs:$dst), 929 (ins Float32Regs:$a, Float32Regs:$b), 930 "div.full.ftz.f32 \t$dst, $a, $b;", 931 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 932 Requires<[do_DIVF32_FULL, doF32FTZ]>; 933def FDIV32ri_ftz : 934 NVPTXInst<(outs Float32Regs:$dst), 935 (ins Float32Regs:$a, f32imm:$b), 936 "div.full.ftz.f32 \t$dst, $a, $b;", 937 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 938 Requires<[do_DIVF32_FULL, doF32FTZ]>; 939def FDIV32rr : 940 NVPTXInst<(outs Float32Regs:$dst), 941 (ins Float32Regs:$a, Float32Regs:$b), 942 "div.full.f32 \t$dst, $a, $b;", 943 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 944 Requires<[do_DIVF32_FULL]>; 945def FDIV32ri : 946 NVPTXInst<(outs Float32Regs:$dst), 947 (ins Float32Regs:$a, f32imm:$b), 948 "div.full.f32 \t$dst, $a, $b;", 949 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 950 Requires<[do_DIVF32_FULL]>; 951// 952// F32 Accurate reciprocal 953// 954def FDIV321r_prec_ftz : 955 NVPTXInst<(outs Float32Regs:$dst), 956 (ins f32imm:$a, Float32Regs:$b), 957 "rcp.rn.ftz.f32 \t$dst, $b;", 958 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 959 Requires<[doF32FTZ]>; 960def FDIV321r_prec : 961 NVPTXInst<(outs Float32Regs:$dst), 962 (ins f32imm:$a, Float32Regs:$b), 963 "rcp.rn.f32 \t$dst, $b;", 964 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>; 965// 966// F32 Accurate division 967// 968def FDIV32rr_prec_ftz : 969 NVPTXInst<(outs Float32Regs:$dst), 970 (ins Float32Regs:$a, Float32Regs:$b), 971 "div.rn.ftz.f32 \t$dst, $a, $b;", 972 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 973 Requires<[doF32FTZ]>; 974def FDIV32ri_prec_ftz : 975 NVPTXInst<(outs Float32Regs:$dst), 976 (ins Float32Regs:$a, f32imm:$b), 977 "div.rn.ftz.f32 \t$dst, $a, $b;", 978 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 979 Requires<[doF32FTZ]>; 980def FDIV32rr_prec : 981 NVPTXInst<(outs Float32Regs:$dst), 982 (ins Float32Regs:$a, Float32Regs:$b), 983 "div.rn.f32 \t$dst, $a, $b;", 984 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>; 985def FDIV32ri_prec : 986 NVPTXInst<(outs Float32Regs:$dst), 987 (ins Float32Regs:$a, f32imm:$b), 988 "div.rn.f32 \t$dst, $a, $b;", 989 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>; 990 991// 992// FMA 993// 994 995multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> { 996 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), 997 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 998 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, 999 Requires<[Pred]>; 1000 def rri : NVPTXInst<(outs RC:$dst), 1001 (ins RC:$a, RC:$b, ImmCls:$c), 1002 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1003 [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>, 1004 Requires<[Pred]>; 1005 def rir : NVPTXInst<(outs RC:$dst), 1006 (ins RC:$a, ImmCls:$b, RC:$c), 1007 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1008 [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>, 1009 Requires<[Pred]>; 1010 def rii : NVPTXInst<(outs RC:$dst), 1011 (ins RC:$a, ImmCls:$b, ImmCls:$c), 1012 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1013 [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>, 1014 Requires<[Pred]>; 1015} 1016 1017multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> { 1018 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), 1019 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1020 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, 1021 Requires<[useFP16Math, Pred]>; 1022} 1023 1024defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>; 1025defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, true>; 1026defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>; 1027defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, true>; 1028defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>; 1029defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>; 1030defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>; 1031 1032// sin/cos 1033def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1034 "sin.approx.f32 \t$dst, $src;", 1035 [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>, 1036 Requires<[allowUnsafeFPMath]>; 1037def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1038 "cos.approx.f32 \t$dst, $src;", 1039 [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>, 1040 Requires<[allowUnsafeFPMath]>; 1041 1042// Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)), 1043// i.e. "poor man's fmod()" 1044 1045// frem - f32 FTZ 1046def : Pat<(frem Float32Regs:$x, Float32Regs:$y), 1047 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32 1048 (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ), 1049 Float32Regs:$y))>, 1050 Requires<[doF32FTZ]>; 1051def : Pat<(frem Float32Regs:$x, fpimm:$y), 1052 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32 1053 (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ), 1054 fpimm:$y))>, 1055 Requires<[doF32FTZ]>; 1056 1057// frem - f32 1058def : Pat<(frem Float32Regs:$x, Float32Regs:$y), 1059 (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32 1060 (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI), 1061 Float32Regs:$y))>; 1062def : Pat<(frem Float32Regs:$x, fpimm:$y), 1063 (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32 1064 (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI), 1065 fpimm:$y))>; 1066 1067// frem - f64 1068def : Pat<(frem Float64Regs:$x, Float64Regs:$y), 1069 (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64 1070 (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI), 1071 Float64Regs:$y))>; 1072def : Pat<(frem Float64Regs:$x, fpimm:$y), 1073 (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64 1074 (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI), 1075 fpimm:$y))>; 1076 1077//----------------------------------- 1078// Bitwise operations 1079//----------------------------------- 1080 1081// Template for three-arg bitwise operations. Takes three args, Creates .b16, 1082// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr. 1083multiclass BITWISE<string OpcStr, SDNode OpNode> { 1084 def b1rr : 1085 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), 1086 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), 1087 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; 1088 def b1ri : 1089 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), 1090 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), 1091 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>; 1092 def b16rr : 1093 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 1094 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), 1095 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; 1096 def b16ri : 1097 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 1098 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), 1099 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>; 1100 def b32rr : 1101 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 1102 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), 1103 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 1104 def b32ri : 1105 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 1106 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), 1107 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 1108 def b64rr : 1109 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), 1110 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), 1111 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; 1112 def b64ri : 1113 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), 1114 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), 1115 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; 1116} 1117 1118defm OR : BITWISE<"or", or>; 1119defm AND : BITWISE<"and", and>; 1120defm XOR : BITWISE<"xor", xor>; 1121 1122def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src), 1123 "not.pred \t$dst, $src;", 1124 [(set Int1Regs:$dst, (not Int1Regs:$src))]>; 1125def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 1126 "not.b16 \t$dst, $src;", 1127 [(set Int16Regs:$dst, (not Int16Regs:$src))]>; 1128def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 1129 "not.b32 \t$dst, $src;", 1130 [(set Int32Regs:$dst, (not Int32Regs:$src))]>; 1131def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 1132 "not.b64 \t$dst, $src;", 1133 [(set Int64Regs:$dst, (not Int64Regs:$src))]>; 1134 1135// Template for left/right shifts. Takes three operands, 1136// [dest (reg), src (reg), shift (reg or imm)]. 1137// dest and src may be int64, int32, or int16, but shift is always int32. 1138// 1139// This template also defines a 32-bit shift (imm, imm) instruction. 1140multiclass SHIFT<string OpcStr, SDNode OpNode> { 1141 def i64rr : 1142 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b), 1143 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 1144 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>; 1145 def i64ri : 1146 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b), 1147 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 1148 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>; 1149 def i32rr : 1150 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 1151 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1152 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 1153 def i32ri : 1154 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 1155 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1156 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>; 1157 def i32ii : 1158 NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b), 1159 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1160 [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>; 1161 def i16rr : 1162 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b), 1163 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 1164 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>; 1165 def i16ri : 1166 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 1167 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 1168 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>; 1169} 1170 1171defm SHL : SHIFT<"shl.b", shl>; 1172defm SRA : SHIFT<"shr.s", sra>; 1173defm SRL : SHIFT<"shr.u", srl>; 1174 1175// Bit-reverse 1176def BREV32 : 1177 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), 1178 "brev.b32 \t$dst, $a;", 1179 [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>; 1180def BREV64 : 1181 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a), 1182 "brev.b64 \t$dst, $a;", 1183 [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>; 1184 1185// 1186// Rotate: Use ptx shf instruction if available. 1187// 1188 1189// 32 bit r2 = rotl r1, n 1190// => 1191// r2 = shf.l r1, r1, n 1192def ROTL32imm_hw : 1193 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), 1194 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", 1195 [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>, 1196 Requires<[hasHWROT32]>; 1197 1198def ROTL32reg_hw : 1199 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1200 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", 1201 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, 1202 Requires<[hasHWROT32]>; 1203 1204// 32 bit r2 = rotr r1, n 1205// => 1206// r2 = shf.r r1, r1, n 1207def ROTR32imm_hw : 1208 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), 1209 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", 1210 [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>, 1211 Requires<[hasHWROT32]>; 1212 1213def ROTR32reg_hw : 1214 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1215 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", 1216 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, 1217 Requires<[hasHWROT32]>; 1218 1219// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1. 1220def ROT32imm_sw : 1221 NVPTXInst<(outs Int32Regs:$dst), 1222 (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2), 1223 "{{\n\t" 1224 ".reg .b32 %lhs;\n\t" 1225 ".reg .b32 %rhs;\n\t" 1226 "shl.b32 \t%lhs, $src, $amt1;\n\t" 1227 "shr.b32 \t%rhs, $src, $amt2;\n\t" 1228 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1229 "}}", 1230 []>; 1231 1232def SUB_FRM_32 : SDNodeXForm<imm, [{ 1233 return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32); 1234}]>; 1235 1236def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)), 1237 (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>, 1238 Requires<[noHWROT32]>; 1239def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)), 1240 (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>, 1241 Requires<[noHWROT32]>; 1242 1243// 32-bit software rotate left by register. 1244def ROTL32reg_sw : 1245 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1246 "{{\n\t" 1247 ".reg .b32 %lhs;\n\t" 1248 ".reg .b32 %rhs;\n\t" 1249 ".reg .b32 %amt2;\n\t" 1250 "shl.b32 \t%lhs, $src, $amt;\n\t" 1251 "sub.s32 \t%amt2, 32, $amt;\n\t" 1252 "shr.b32 \t%rhs, $src, %amt2;\n\t" 1253 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1254 "}}", 1255 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, 1256 Requires<[noHWROT32]>; 1257 1258// 32-bit software rotate right by register. 1259def ROTR32reg_sw : 1260 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1261 "{{\n\t" 1262 ".reg .b32 %lhs;\n\t" 1263 ".reg .b32 %rhs;\n\t" 1264 ".reg .b32 %amt2;\n\t" 1265 "shr.b32 \t%lhs, $src, $amt;\n\t" 1266 "sub.s32 \t%amt2, 32, $amt;\n\t" 1267 "shl.b32 \t%rhs, $src, %amt2;\n\t" 1268 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1269 "}}", 1270 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, 1271 Requires<[noHWROT32]>; 1272 1273// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1. 1274def ROT64imm_sw : 1275 NVPTXInst<(outs Int64Regs:$dst), 1276 (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2), 1277 "{{\n\t" 1278 ".reg .b64 %lhs;\n\t" 1279 ".reg .b64 %rhs;\n\t" 1280 "shl.b64 \t%lhs, $src, $amt1;\n\t" 1281 "shr.b64 \t%rhs, $src, $amt2;\n\t" 1282 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1283 "}}", 1284 []>; 1285 1286def SUB_FRM_64 : SDNodeXForm<imm, [{ 1287 return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32); 1288}]>; 1289 1290def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)), 1291 (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>; 1292def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)), 1293 (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>; 1294 1295// 64-bit software rotate left by register. 1296def ROTL64reg_sw : 1297 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), 1298 "{{\n\t" 1299 ".reg .b64 %lhs;\n\t" 1300 ".reg .b64 %rhs;\n\t" 1301 ".reg .u32 %amt2;\n\t" 1302 "shl.b64 \t%lhs, $src, $amt;\n\t" 1303 "sub.u32 \t%amt2, 64, $amt;\n\t" 1304 "shr.b64 \t%rhs, $src, %amt2;\n\t" 1305 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1306 "}}", 1307 [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>; 1308 1309def ROTR64reg_sw : 1310 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), 1311 "{{\n\t" 1312 ".reg .b64 %lhs;\n\t" 1313 ".reg .b64 %rhs;\n\t" 1314 ".reg .u32 %amt2;\n\t" 1315 "shr.b64 \t%lhs, $src, $amt;\n\t" 1316 "sub.u32 \t%amt2, 64, $amt;\n\t" 1317 "shl.b64 \t%rhs, $src, %amt2;\n\t" 1318 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1319 "}}", 1320 [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>; 1321 1322// 1323// Funnnel shift in clamp mode 1324// 1325 1326// Create SDNodes so they can be used in the DAG code, e.g. 1327// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts) 1328def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>; 1329def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>; 1330 1331def FUNSHFLCLAMP : 1332 NVPTXInst<(outs Int32Regs:$dst), 1333 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), 1334 "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;", 1335 [(set Int32Regs:$dst, 1336 (FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; 1337 1338def FUNSHFRCLAMP : 1339 NVPTXInst<(outs Int32Regs:$dst), 1340 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), 1341 "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;", 1342 [(set Int32Regs:$dst, 1343 (FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; 1344 1345// 1346// BFE - bit-field extract 1347// 1348 1349// Template for BFE instructions. Takes four args, 1350// [dest (reg), src (reg), start (reg or imm), end (reg or imm)]. 1351// Start may be an imm only if end is also an imm. FIXME: Is this a 1352// restriction in PTX? 1353// 1354// dest and src may be int32 or int64, but start and end are always int32. 1355multiclass BFE<string TyStr, RegisterClass RC> { 1356 def rrr 1357 : NVPTXInst<(outs RC:$d), 1358 (ins RC:$a, Int32Regs:$b, Int32Regs:$c), 1359 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1360 def rri 1361 : NVPTXInst<(outs RC:$d), 1362 (ins RC:$a, Int32Regs:$b, i32imm:$c), 1363 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1364 def rii 1365 : NVPTXInst<(outs RC:$d), 1366 (ins RC:$a, i32imm:$b, i32imm:$c), 1367 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1368} 1369 1370let hasSideEffects = 0 in { 1371 defm BFE_S32 : BFE<"s32", Int32Regs>; 1372 defm BFE_U32 : BFE<"u32", Int32Regs>; 1373 defm BFE_S64 : BFE<"s64", Int64Regs>; 1374 defm BFE_U64 : BFE<"u64", Int64Regs>; 1375} 1376 1377//----------------------------------- 1378// Comparison instructions (setp, set) 1379//----------------------------------- 1380 1381// FIXME: This doesn't cover versions of set and setp that combine with a 1382// boolean predicate, e.g. setp.eq.and.b16. 1383 1384let hasSideEffects = 0 in { 1385 multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> { 1386 def rr : 1387 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), 1388 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1389 " \t$dst, $a, $b;"), []>; 1390 def ri : 1391 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), 1392 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1393 " \t$dst, $a, $b;"), []>; 1394 def ir : 1395 NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), 1396 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1397 " \t$dst, $a, $b;"), []>; 1398 } 1399} 1400 1401defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>; 1402defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>; 1403defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>; 1404defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>; 1405defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>; 1406defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>; 1407defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>; 1408defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>; 1409defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>; 1410defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>; 1411defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>; 1412def SETP_f16rr : 1413 NVPTXInst<(outs Int1Regs:$dst), 1414 (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp), 1415 "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;", 1416 []>, Requires<[useFP16Math]>; 1417 1418def SETP_f16x2rr : 1419 NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), 1420 (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp), 1421 "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;", 1422 []>, 1423 Requires<[useFP16Math]>; 1424 1425 1426// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form 1427// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination 1428// reg, either u32, s32, or f32. Anyway these aren't used at the moment. 1429 1430let hasSideEffects = 0 in { 1431 multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> { 1432 def rr : NVPTXInst<(outs Int32Regs:$dst), 1433 (ins RC:$a, RC:$b, CmpMode:$cmp), 1434 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1435 def ri : NVPTXInst<(outs Int32Regs:$dst), 1436 (ins RC:$a, ImmCls:$b, CmpMode:$cmp), 1437 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1438 def ir : NVPTXInst<(outs Int32Regs:$dst), 1439 (ins ImmCls:$a, RC:$b, CmpMode:$cmp), 1440 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1441 } 1442} 1443 1444defm SET_b16 : SET<"b16", Int16Regs, i16imm>; 1445defm SET_s16 : SET<"s16", Int16Regs, i16imm>; 1446defm SET_u16 : SET<"u16", Int16Regs, i16imm>; 1447defm SET_b32 : SET<"b32", Int32Regs, i32imm>; 1448defm SET_s32 : SET<"s32", Int32Regs, i32imm>; 1449defm SET_u32 : SET<"u32", Int32Regs, i32imm>; 1450defm SET_b64 : SET<"b64", Int64Regs, i64imm>; 1451defm SET_s64 : SET<"s64", Int64Regs, i64imm>; 1452defm SET_u64 : SET<"u64", Int64Regs, i64imm>; 1453defm SET_f16 : SET<"f16", Float16Regs, f16imm>; 1454defm SET_f32 : SET<"f32", Float32Regs, f32imm>; 1455defm SET_f64 : SET<"f64", Float64Regs, f64imm>; 1456 1457//----------------------------------- 1458// Selection instructions (selp) 1459//----------------------------------- 1460 1461// FIXME: Missing slct 1462 1463// selp instructions that don't have any pattern matches; we explicitly use 1464// them within this file. 1465let hasSideEffects = 0 in { 1466 multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> { 1467 def rr : NVPTXInst<(outs RC:$dst), 1468 (ins RC:$a, RC:$b, Int1Regs:$p), 1469 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1470 def ri : NVPTXInst<(outs RC:$dst), 1471 (ins RC:$a, ImmCls:$b, Int1Regs:$p), 1472 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1473 def ir : NVPTXInst<(outs RC:$dst), 1474 (ins ImmCls:$a, RC:$b, Int1Regs:$p), 1475 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1476 def ii : NVPTXInst<(outs RC:$dst), 1477 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), 1478 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1479 } 1480 1481 multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls, 1482 SDNode ImmNode> { 1483 def rr : 1484 NVPTXInst<(outs RC:$dst), 1485 (ins RC:$a, RC:$b, Int1Regs:$p), 1486 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1487 [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>; 1488 def ri : 1489 NVPTXInst<(outs RC:$dst), 1490 (ins RC:$a, ImmCls:$b, Int1Regs:$p), 1491 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1492 [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>; 1493 def ir : 1494 NVPTXInst<(outs RC:$dst), 1495 (ins ImmCls:$a, RC:$b, Int1Regs:$p), 1496 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1497 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>; 1498 def ii : 1499 NVPTXInst<(outs RC:$dst), 1500 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), 1501 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1502 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>; 1503 } 1504} 1505 1506// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as 1507// good. 1508defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>; 1509defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>; 1510defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>; 1511defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>; 1512defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>; 1513defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>; 1514defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>; 1515defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>; 1516defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>; 1517defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>; 1518defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>; 1519defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>; 1520 1521def SELP_f16x2rr : 1522 NVPTXInst<(outs Float16x2Regs:$dst), 1523 (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p), 1524 "selp.b32 \t$dst, $a, $b, $p;", 1525 [(set Float16x2Regs:$dst, 1526 (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>; 1527 1528//----------------------------------- 1529// Data Movement (Load / Store, Move) 1530//----------------------------------- 1531 1532def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], 1533 [SDNPWantRoot]>; 1534def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex], 1535 [SDNPWantRoot]>; 1536def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>; 1537 1538def MEMri : Operand<i32> { 1539 let PrintMethod = "printMemOperand"; 1540 let MIOperandInfo = (ops Int32Regs, i32imm); 1541} 1542def MEMri64 : Operand<i64> { 1543 let PrintMethod = "printMemOperand"; 1544 let MIOperandInfo = (ops Int64Regs, i64imm); 1545} 1546 1547def imem : Operand<iPTR> { 1548 let PrintMethod = "printOperand"; 1549} 1550 1551def imemAny : Operand<iPTRAny> { 1552 let PrintMethod = "printOperand"; 1553} 1554 1555def LdStCode : Operand<i32> { 1556 let PrintMethod = "printLdStCode"; 1557} 1558 1559def MmaCode : Operand<i32> { 1560 let PrintMethod = "printMmaCode"; 1561} 1562 1563def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; 1564def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>; 1565 1566// Load a memory address into a u32 or u64 register. 1567def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a), 1568 "mov.u32 \t$dst, $a;", 1569 [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>; 1570def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a), 1571 "mov.u64 \t$dst, $a;", 1572 [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>; 1573 1574// Get pointer to local stack. 1575let hasSideEffects = 0 in { 1576 def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num), 1577 "mov.u32 \t$d, __local_depot$num;", []>; 1578 def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num), 1579 "mov.u64 \t$d, __local_depot$num;", []>; 1580} 1581 1582 1583// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp 1584let IsSimpleMove=1, hasSideEffects=0 in { 1585 def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss), 1586 "mov.pred \t$dst, $sss;", []>; 1587 def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss), 1588 "mov.u16 \t$dst, $sss;", []>; 1589 def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss), 1590 "mov.u32 \t$dst, $sss;", []>; 1591 def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), 1592 "mov.u64 \t$dst, $sss;", []>; 1593 1594 def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src), 1595 // We have to use .b16 here as there's no mov.f16. 1596 "mov.b16 \t$dst, $src;", []>; 1597 def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1598 "mov.f32 \t$dst, $src;", []>; 1599 def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src), 1600 "mov.f64 \t$dst, $src;", []>; 1601} 1602 1603def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src), 1604 "mov.pred \t$dst, $src;", 1605 [(set Int1Regs:$dst, imm:$src)]>; 1606def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src), 1607 "mov.u16 \t$dst, $src;", 1608 [(set Int16Regs:$dst, imm:$src)]>; 1609def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src), 1610 "mov.u32 \t$dst, $src;", 1611 [(set Int32Regs:$dst, imm:$src)]>; 1612def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src), 1613 "mov.u64 \t$dst, $src;", 1614 [(set Int64Regs:$dst, imm:$src)]>; 1615 1616def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src), 1617 "mov.f32 \t$dst, $src;", 1618 [(set Float32Regs:$dst, fpimm:$src)]>; 1619def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src), 1620 "mov.f64 \t$dst, $src;", 1621 [(set Float64Regs:$dst, fpimm:$src)]>; 1622 1623def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>; 1624 1625//---- Copy Frame Index ---- 1626def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr), 1627 "add.u32 \t$dst, ${addr:add};", 1628 [(set Int32Regs:$dst, ADDRri:$addr)]>; 1629def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr), 1630 "add.u64 \t$dst, ${addr:add};", 1631 [(set Int64Regs:$dst, ADDRri64:$addr)]>; 1632 1633//----------------------------------- 1634// Comparison and Selection 1635//----------------------------------- 1636 1637multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode, 1638 Instruction setp_16rr, 1639 Instruction setp_16ri, 1640 Instruction setp_16ir, 1641 Instruction setp_32rr, 1642 Instruction setp_32ri, 1643 Instruction setp_32ir, 1644 Instruction setp_64rr, 1645 Instruction setp_64ri, 1646 Instruction setp_64ir, 1647 Instruction set_16rr, 1648 Instruction set_16ri, 1649 Instruction set_16ir, 1650 Instruction set_32rr, 1651 Instruction set_32ri, 1652 Instruction set_32ir, 1653 Instruction set_64rr, 1654 Instruction set_64ri, 1655 Instruction set_64ir> { 1656 // i16 -> pred 1657 def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)), 1658 (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; 1659 def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)), 1660 (setp_16ri Int16Regs:$a, imm:$b, Mode)>; 1661 def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)), 1662 (setp_16ir imm:$a, Int16Regs:$b, Mode)>; 1663 // i32 -> pred 1664 def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)), 1665 (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; 1666 def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)), 1667 (setp_32ri Int32Regs:$a, imm:$b, Mode)>; 1668 def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)), 1669 (setp_32ir imm:$a, Int32Regs:$b, Mode)>; 1670 // i64 -> pred 1671 def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)), 1672 (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; 1673 def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)), 1674 (setp_64ri Int64Regs:$a, imm:$b, Mode)>; 1675 def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)), 1676 (setp_64ir imm:$a, Int64Regs:$b, Mode)>; 1677 1678 // i16 -> i32 1679 def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)), 1680 (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; 1681 def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)), 1682 (set_16ri Int16Regs:$a, imm:$b, Mode)>; 1683 def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)), 1684 (set_16ir imm:$a, Int16Regs:$b, Mode)>; 1685 // i32 -> i32 1686 def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)), 1687 (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; 1688 def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)), 1689 (set_32ri Int32Regs:$a, imm:$b, Mode)>; 1690 def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)), 1691 (set_32ir imm:$a, Int32Regs:$b, Mode)>; 1692 // i64 -> i32 1693 def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)), 1694 (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; 1695 def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)), 1696 (set_64ri Int64Regs:$a, imm:$b, Mode)>; 1697 def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)), 1698 (set_64ir imm:$a, Int64Regs:$b, Mode)>; 1699} 1700 1701multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode> 1702 : ISET_FORMAT<OpNode, Mode, 1703 SETP_s16rr, SETP_s16ri, SETP_s16ir, 1704 SETP_s32rr, SETP_s32ri, SETP_s32ir, 1705 SETP_s64rr, SETP_s64ri, SETP_s64ir, 1706 SET_s16rr, SET_s16ri, SET_s16ir, 1707 SET_s32rr, SET_s32ri, SET_s32ir, 1708 SET_s64rr, SET_s64ri, SET_s64ir> { 1709 // TableGen doesn't like empty multiclasses. 1710 def : PatLeaf<(i32 0)>; 1711} 1712 1713multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode> 1714 : ISET_FORMAT<OpNode, Mode, 1715 SETP_u16rr, SETP_u16ri, SETP_u16ir, 1716 SETP_u32rr, SETP_u32ri, SETP_u32ir, 1717 SETP_u64rr, SETP_u64ri, SETP_u64ir, 1718 SET_u16rr, SET_u16ri, SET_u16ir, 1719 SET_u32rr, SET_u32ri, SET_u32ir, 1720 SET_u64rr, SET_u64ri, SET_u64ir> { 1721 // TableGen doesn't like empty multiclasses. 1722 def : PatLeaf<(i32 0)>; 1723} 1724 1725defm : ISET_FORMAT_SIGNED<setgt, CmpGT>; 1726defm : ISET_FORMAT_SIGNED<setlt, CmpLT>; 1727defm : ISET_FORMAT_SIGNED<setge, CmpGE>; 1728defm : ISET_FORMAT_SIGNED<setle, CmpLE>; 1729defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>; 1730defm : ISET_FORMAT_SIGNED<setne, CmpNE>; 1731defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>; 1732defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>; 1733defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>; 1734defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>; 1735defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>; 1736defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>; 1737 1738// i1 compares 1739def : Pat<(setne Int1Regs:$a, Int1Regs:$b), 1740 (XORb1rr Int1Regs:$a, Int1Regs:$b)>; 1741def : Pat<(setune Int1Regs:$a, Int1Regs:$b), 1742 (XORb1rr Int1Regs:$a, Int1Regs:$b)>; 1743 1744def : Pat<(seteq Int1Regs:$a, Int1Regs:$b), 1745 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1746def : Pat<(setueq Int1Regs:$a, Int1Regs:$b), 1747 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1748 1749// i1 compare -> i32 1750def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), 1751 (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1752def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), 1753 (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1754 1755 1756 1757multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> { 1758 // f16 -> pred 1759 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), 1760 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, 1761 Requires<[useFP16Math,doF32FTZ]>; 1762 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), 1763 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, 1764 Requires<[useFP16Math]>; 1765 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), 1766 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, 1767 Requires<[useFP16Math,doF32FTZ]>; 1768 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), 1769 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, 1770 Requires<[useFP16Math]>; 1771 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), 1772 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, 1773 Requires<[useFP16Math,doF32FTZ]>; 1774 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), 1775 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, 1776 Requires<[useFP16Math]>; 1777 1778 // f32 -> pred 1779 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), 1780 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, 1781 Requires<[doF32FTZ]>; 1782 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), 1783 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; 1784 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), 1785 (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, 1786 Requires<[doF32FTZ]>; 1787 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), 1788 (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>; 1789 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), 1790 (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, 1791 Requires<[doF32FTZ]>; 1792 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), 1793 (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>; 1794 1795 // f64 -> pred 1796 def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)), 1797 (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; 1798 def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)), 1799 (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>; 1800 def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)), 1801 (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>; 1802 1803 // f16 -> i32 1804 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), 1805 (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, 1806 Requires<[useFP16Math, doF32FTZ]>; 1807 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), 1808 (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, 1809 Requires<[useFP16Math]>; 1810 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), 1811 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, 1812 Requires<[useFP16Math, doF32FTZ]>; 1813 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), 1814 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, 1815 Requires<[useFP16Math]>; 1816 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), 1817 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, 1818 Requires<[useFP16Math, doF32FTZ]>; 1819 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), 1820 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, 1821 Requires<[useFP16Math]>; 1822 1823 // f32 -> i32 1824 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), 1825 (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, 1826 Requires<[doF32FTZ]>; 1827 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), 1828 (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; 1829 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), 1830 (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, 1831 Requires<[doF32FTZ]>; 1832 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), 1833 (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>; 1834 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), 1835 (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, 1836 Requires<[doF32FTZ]>; 1837 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), 1838 (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>; 1839 1840 // f64 -> i32 1841 def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)), 1842 (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; 1843 def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)), 1844 (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>; 1845 def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)), 1846 (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>; 1847} 1848 1849defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>; 1850defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>; 1851defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>; 1852defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>; 1853defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>; 1854defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>; 1855 1856defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>; 1857defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>; 1858defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>; 1859defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>; 1860defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>; 1861defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>; 1862 1863defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>; 1864defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>; 1865defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>; 1866defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>; 1867defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>; 1868defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>; 1869 1870defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>; 1871defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>; 1872 1873// FIXME: What is this doing here? Can it be deleted? 1874// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad, 1875// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 1876 1877def SDTDeclareParamProfile : 1878 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; 1879def SDTDeclareScalarParamProfile : 1880 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; 1881def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; 1882def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>; 1883def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>; 1884def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 1885def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 1886def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; 1887def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>; 1888def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>; 1889def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; 1890def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; 1891def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>; 1892def SDTCallVoidProfile : SDTypeProfile<0, 1, []>; 1893def SDTCallValProfile : SDTypeProfile<1, 0, []>; 1894def SDTMoveParamProfile : SDTypeProfile<1, 1, []>; 1895def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; 1896def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>; 1897def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>; 1898def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>; 1899def SDTProxyRegProfile : SDTypeProfile<1, 1, []>; 1900 1901def DeclareParam : 1902 SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile, 1903 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1904def DeclareScalarParam : 1905 SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile, 1906 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1907def DeclareRetParam : 1908 SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile, 1909 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1910def DeclareRet : 1911 SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile, 1912 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1913def LoadParam : 1914 SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile, 1915 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1916def LoadParamV2 : 1917 SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile, 1918 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1919def LoadParamV4 : 1920 SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile, 1921 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1922def PrintCall : 1923 SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile, 1924 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1925def PrintConvergentCall : 1926 SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile, 1927 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1928def PrintCallUni : 1929 SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile, 1930 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1931def PrintConvergentCallUni : 1932 SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile, 1933 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1934def StoreParam : 1935 SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile, 1936 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1937def StoreParamV2 : 1938 SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile, 1939 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1940def StoreParamV4 : 1941 SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile, 1942 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1943def StoreParamU32 : 1944 SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile, 1945 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1946def StoreParamS32 : 1947 SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile, 1948 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1949def CallArgBegin : 1950 SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile, 1951 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1952def CallArg : 1953 SDNode<"NVPTXISD::CallArg", SDTCallArgProfile, 1954 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1955def LastCallArg : 1956 SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile, 1957 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1958def CallArgEnd : 1959 SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile, 1960 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1961def CallVoid : 1962 SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile, 1963 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1964def Prototype : 1965 SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile, 1966 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1967def CallVal : 1968 SDNode<"NVPTXISD::CallVal", SDTCallValProfile, 1969 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1970def MoveParam : 1971 SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>; 1972def StoreRetval : 1973 SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile, 1974 [SDNPHasChain, SDNPSideEffect]>; 1975def StoreRetvalV2 : 1976 SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile, 1977 [SDNPHasChain, SDNPSideEffect]>; 1978def StoreRetvalV4 : 1979 SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile, 1980 [SDNPHasChain, SDNPSideEffect]>; 1981def PseudoUseParam : 1982 SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile, 1983 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1984def RETURNNode : 1985 SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile, 1986 [SDNPHasChain, SDNPSideEffect]>; 1987def ProxyReg : 1988 SDNode<"NVPTXISD::ProxyReg", SDTProxyRegProfile, 1989 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1990 1991let mayLoad = 1 in { 1992 class LoadParamMemInst<NVPTXRegClass regclass, string opstr> : 1993 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), 1994 !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"), 1995 []>; 1996 1997 class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> : 1998 NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b), 1999 !strconcat("ld.param.v2", opstr, 2000 " \t{{$dst, $dst2}}, [retval0+$b];"), []>; 2001 2002 class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> : 2003 NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3, 2004 regclass:$dst4), 2005 (ins i32imm:$b), 2006 !strconcat("ld.param.v4", opstr, 2007 " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), 2008 []>; 2009} 2010 2011class LoadParamRegInst<NVPTXRegClass regclass, string opstr> : 2012 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), 2013 !strconcat("mov", opstr, " \t$dst, retval$b;"), 2014 [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>; 2015 2016let mayStore = 1 in { 2017 class StoreParamInst<NVPTXRegClass regclass, string opstr> : 2018 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b), 2019 !strconcat("st.param", opstr, " \t[param$a+$b], $val;"), 2020 []>; 2021 2022 class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> : 2023 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, 2024 i32imm:$a, i32imm:$b), 2025 !strconcat("st.param.v2", opstr, 2026 " \t[param$a+$b], {{$val, $val2}};"), 2027 []>; 2028 2029 class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> : 2030 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3, 2031 regclass:$val4, i32imm:$a, 2032 i32imm:$b), 2033 !strconcat("st.param.v4", opstr, 2034 " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"), 2035 []>; 2036 2037 class StoreRetvalInst<NVPTXRegClass regclass, string opstr> : 2038 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a), 2039 !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"), 2040 []>; 2041 2042 class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> : 2043 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a), 2044 !strconcat("st.param.v2", opstr, 2045 " \t[func_retval0+$a], {{$val, $val2}};"), 2046 []>; 2047 2048 class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> : 2049 NVPTXInst<(outs), 2050 (ins regclass:$val, regclass:$val2, regclass:$val3, 2051 regclass:$val4, i32imm:$a), 2052 !strconcat("st.param.v4", opstr, 2053 " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), 2054 []>; 2055} 2056 2057let isCall=1 in { 2058 multiclass CALL<string OpcStr, SDNode OpNode> { 2059 def PrintCallNoRetInst : NVPTXInst<(outs), (ins), 2060 !strconcat(OpcStr, " "), [(OpNode (i32 0))]>; 2061 def PrintCallRetInst1 : NVPTXInst<(outs), (ins), 2062 !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>; 2063 def PrintCallRetInst2 : NVPTXInst<(outs), (ins), 2064 !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>; 2065 def PrintCallRetInst3 : NVPTXInst<(outs), (ins), 2066 !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>; 2067 def PrintCallRetInst4 : NVPTXInst<(outs), (ins), 2068 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "), 2069 [(OpNode (i32 4))]>; 2070 def PrintCallRetInst5 : NVPTXInst<(outs), (ins), 2071 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "), 2072 [(OpNode (i32 5))]>; 2073 def PrintCallRetInst6 : NVPTXInst<(outs), (ins), 2074 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2075 "retval5), "), 2076 [(OpNode (i32 6))]>; 2077 def PrintCallRetInst7 : NVPTXInst<(outs), (ins), 2078 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2079 "retval5, retval6), "), 2080 [(OpNode (i32 7))]>; 2081 def PrintCallRetInst8 : NVPTXInst<(outs), (ins), 2082 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2083 "retval5, retval6, retval7), "), 2084 [(OpNode (i32 8))]>; 2085 } 2086} 2087 2088defm Call : CALL<"call", PrintCall>; 2089defm CallUni : CALL<"call.uni", PrintCallUni>; 2090 2091// Convergent call instructions. These are identical to regular calls, except 2092// they have the isConvergent bit set. 2093let isConvergent=1 in { 2094 defm ConvergentCall : CALL<"call", PrintConvergentCall>; 2095 defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>; 2096} 2097 2098def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">; 2099def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">; 2100def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">; 2101def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">; 2102def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">; 2103def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">; 2104def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">; 2105def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">; 2106def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">; 2107def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">; 2108def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">; 2109def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">; 2110def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">; 2111def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">; 2112def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">; 2113def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">; 2114def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">; 2115def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">; 2116def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">; 2117def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">; 2118def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">; 2119def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">; 2120 2121def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">; 2122def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">; 2123 2124def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">; 2125def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">; 2126def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">; 2127def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">; 2128def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">; 2129def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">; 2130 2131def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">; 2132def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">; 2133def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">; 2134 2135def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">; 2136def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">; 2137def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">; 2138def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">; 2139def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">; 2140def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">; 2141def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">; 2142def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">; 2143def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">; 2144def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">; 2145def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">; 2146 2147def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">; 2148def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">; 2149def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">; 2150def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">; 2151def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">; 2152def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">; 2153def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">; 2154def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">; 2155def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">; 2156def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">; 2157def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">; 2158 2159def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">; 2160def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">; 2161def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">; 2162def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">; 2163def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">; 2164def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">; 2165def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">; 2166def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">; 2167def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">; 2168def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">; 2169def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">; 2170 2171def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>; 2172def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>; 2173def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>; 2174def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>; 2175 2176class CallArgInst<NVPTXRegClass regclass> : 2177 NVPTXInst<(outs), (ins regclass:$a), "$a, ", 2178 [(CallArg (i32 0), regclass:$a)]>; 2179 2180class LastCallArgInst<NVPTXRegClass regclass> : 2181 NVPTXInst<(outs), (ins regclass:$a), "$a", 2182 [(LastCallArg (i32 0), regclass:$a)]>; 2183 2184def CallArgI64 : CallArgInst<Int64Regs>; 2185def CallArgI32 : CallArgInst<Int32Regs>; 2186def CallArgI16 : CallArgInst<Int16Regs>; 2187def CallArgF64 : CallArgInst<Float64Regs>; 2188def CallArgF32 : CallArgInst<Float32Regs>; 2189 2190def LastCallArgI64 : LastCallArgInst<Int64Regs>; 2191def LastCallArgI32 : LastCallArgInst<Int32Regs>; 2192def LastCallArgI16 : LastCallArgInst<Int16Regs>; 2193def LastCallArgF64 : LastCallArgInst<Float64Regs>; 2194def LastCallArgF32 : LastCallArgInst<Float32Regs>; 2195 2196def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ", 2197 [(CallArg (i32 0), (i32 imm:$a))]>; 2198def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a", 2199 [(LastCallArg (i32 0), (i32 imm:$a))]>; 2200 2201def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ", 2202 [(CallArg (i32 1), (i32 imm:$a))]>; 2203def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a", 2204 [(LastCallArg (i32 1), (i32 imm:$a))]>; 2205 2206def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ", 2207 [(CallVoid (Wrapper tglobaladdr:$addr))]>; 2208def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ", 2209 [(CallVoid Int32Regs:$addr)]>; 2210def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ", 2211 [(CallVoid Int64Regs:$addr)]>; 2212def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;", 2213 [(Prototype (i32 imm:$val))]>; 2214 2215def DeclareRetMemInst : 2216 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num), 2217 ".param .align $align .b8 retval$num[$size];", 2218 [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>; 2219def DeclareRetScalarInst : 2220 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), 2221 ".param .b$size retval$num;", 2222 [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>; 2223def DeclareRetRegInst : 2224 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), 2225 ".reg .b$size retval$num;", 2226 [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>; 2227 2228def DeclareParamInst : 2229 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size), 2230 ".param .align $align .b8 param$a[$size];", 2231 [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>; 2232def DeclareScalarParamInst : 2233 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), 2234 ".param .b$size param$a;", 2235 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>; 2236def DeclareScalarRegInst : 2237 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), 2238 ".reg .b$size param$a;", 2239 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>; 2240 2241class MoveParamInst<NVPTXRegClass regclass, string asmstr> : 2242 NVPTXInst<(outs regclass:$dst), (ins regclass:$src), 2243 !strconcat("mov", asmstr, " \t$dst, $src;"), 2244 [(set regclass:$dst, (MoveParam regclass:$src))]>; 2245 2246def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">; 2247def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">; 2248def MoveParamI16 : 2249 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 2250 "cvt.u16.u32 \t$dst, $src;", 2251 [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>; 2252def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">; 2253def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">; 2254def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">; 2255 2256class PseudoUseParamInst<NVPTXRegClass regclass> : 2257 NVPTXInst<(outs), (ins regclass:$src), 2258 "// Pseudo use of $src", 2259 [(PseudoUseParam regclass:$src)]>; 2260 2261def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>; 2262def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>; 2263def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>; 2264def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>; 2265def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>; 2266 2267class ProxyRegInst<string SzStr, NVPTXRegClass regclass> : 2268 NVPTXInst<(outs regclass:$dst), (ins regclass:$src), 2269 !strconcat("mov.", SzStr, " \t$dst, $src;"), 2270 [(set regclass:$dst, (ProxyReg regclass:$src))]>; 2271 2272let isCodeGenOnly=1, isPseudo=1 in { 2273 def ProxyRegI1 : ProxyRegInst<"pred", Int1Regs>; 2274 def ProxyRegI16 : ProxyRegInst<"b16", Int16Regs>; 2275 def ProxyRegI32 : ProxyRegInst<"b32", Int32Regs>; 2276 def ProxyRegI64 : ProxyRegInst<"b64", Int64Regs>; 2277 def ProxyRegF16 : ProxyRegInst<"b16", Float16Regs>; 2278 def ProxyRegF32 : ProxyRegInst<"f32", Float32Regs>; 2279 def ProxyRegF64 : ProxyRegInst<"f64", Float64Regs>; 2280 def ProxyRegF16x2 : ProxyRegInst<"b32", Float16x2Regs>; 2281} 2282 2283// 2284// Load / Store Handling 2285// 2286multiclass LD<NVPTXRegClass regclass> { 2287 def _avar : NVPTXInst< 2288 (outs regclass:$dst), 2289 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2290 i32imm:$fromWidth, imem:$addr), 2291 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2292 "\t$dst, [$addr];", []>; 2293 def _areg : NVPTXInst< 2294 (outs regclass:$dst), 2295 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2296 i32imm:$fromWidth, Int32Regs:$addr), 2297 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2298 "\t$dst, [$addr];", []>; 2299 def _areg_64 : NVPTXInst< 2300 (outs regclass:$dst), 2301 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2302 i32imm:$fromWidth, Int64Regs:$addr), 2303 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2304 "\t$dst, [$addr];", []>; 2305 def _ari : NVPTXInst< 2306 (outs regclass:$dst), 2307 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2308 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2309 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2310 "\t$dst, [$addr+$offset];", []>; 2311 def _ari_64 : NVPTXInst< 2312 (outs regclass:$dst), 2313 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2314 LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2315 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2316 "\t$dst, [$addr+$offset];", []>; 2317 def _asi : NVPTXInst< 2318 (outs regclass:$dst), 2319 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2320 LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2321 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2322 "\t$dst, [$addr+$offset];", []>; 2323} 2324 2325let mayLoad=1, hasSideEffects=0 in { 2326 defm LD_i8 : LD<Int16Regs>; 2327 defm LD_i16 : LD<Int16Regs>; 2328 defm LD_i32 : LD<Int32Regs>; 2329 defm LD_i64 : LD<Int64Regs>; 2330 defm LD_f16 : LD<Float16Regs>; 2331 defm LD_f16x2 : LD<Float16x2Regs>; 2332 defm LD_f32 : LD<Float32Regs>; 2333 defm LD_f64 : LD<Float64Regs>; 2334} 2335 2336multiclass ST<NVPTXRegClass regclass> { 2337 def _avar : NVPTXInst< 2338 (outs), 2339 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2340 LdStCode:$Sign, i32imm:$toWidth, imem:$addr), 2341 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2342 " \t[$addr], $src;", []>; 2343 def _areg : NVPTXInst< 2344 (outs), 2345 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, 2346 LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr), 2347 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2348 " \t[$addr], $src;", []>; 2349 def _areg_64 : NVPTXInst< 2350 (outs), 2351 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2352 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr), 2353 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2354 " \t[$addr], $src;", []>; 2355 def _ari : NVPTXInst< 2356 (outs), 2357 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2358 LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset), 2359 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2360 " \t[$addr+$offset], $src;", []>; 2361 def _ari_64 : NVPTXInst< 2362 (outs), 2363 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2364 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset), 2365 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2366 " \t[$addr+$offset], $src;", []>; 2367 def _asi : NVPTXInst< 2368 (outs), 2369 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2370 LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset), 2371 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2372 " \t[$addr+$offset], $src;", []>; 2373} 2374 2375let mayStore=1, hasSideEffects=0 in { 2376 defm ST_i8 : ST<Int16Regs>; 2377 defm ST_i16 : ST<Int16Regs>; 2378 defm ST_i32 : ST<Int32Regs>; 2379 defm ST_i64 : ST<Int64Regs>; 2380 defm ST_f16 : ST<Float16Regs>; 2381 defm ST_f16x2 : ST<Float16x2Regs>; 2382 defm ST_f32 : ST<Float32Regs>; 2383 defm ST_f64 : ST<Float64Regs>; 2384} 2385 2386// The following is used only in and after vector elementizations. Vector 2387// elementization happens at the machine instruction level, so the following 2388// instructions never appear in the DAG. 2389multiclass LD_VEC<NVPTXRegClass regclass> { 2390 def _v2_avar : NVPTXInst< 2391 (outs regclass:$dst1, regclass:$dst2), 2392 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2393 i32imm:$fromWidth, imem:$addr), 2394 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2395 "\t{{$dst1, $dst2}}, [$addr];", []>; 2396 def _v2_areg : NVPTXInst< 2397 (outs regclass:$dst1, regclass:$dst2), 2398 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2399 i32imm:$fromWidth, Int32Regs:$addr), 2400 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2401 "\t{{$dst1, $dst2}}, [$addr];", []>; 2402 def _v2_areg_64 : NVPTXInst< 2403 (outs regclass:$dst1, regclass:$dst2), 2404 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2405 i32imm:$fromWidth, Int64Regs:$addr), 2406 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2407 "\t{{$dst1, $dst2}}, [$addr];", []>; 2408 def _v2_ari : NVPTXInst< 2409 (outs regclass:$dst1, regclass:$dst2), 2410 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2411 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2412 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2413 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2414 def _v2_ari_64 : NVPTXInst< 2415 (outs regclass:$dst1, regclass:$dst2), 2416 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2417 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2418 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2419 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2420 def _v2_asi : NVPTXInst< 2421 (outs regclass:$dst1, regclass:$dst2), 2422 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2423 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2424 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2425 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2426 def _v4_avar : NVPTXInst< 2427 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2428 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2429 i32imm:$fromWidth, imem:$addr), 2430 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2431 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2432 def _v4_areg : NVPTXInst< 2433 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2434 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2435 i32imm:$fromWidth, Int32Regs:$addr), 2436 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2437 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2438 def _v4_areg_64 : NVPTXInst< 2439 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2440 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2441 i32imm:$fromWidth, Int64Regs:$addr), 2442 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2443 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2444 def _v4_ari : NVPTXInst< 2445 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2446 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2447 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2448 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2449 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2450 def _v4_ari_64 : NVPTXInst< 2451 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2452 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2453 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2454 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2455 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2456 def _v4_asi : NVPTXInst< 2457 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2458 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2459 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2460 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2461 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2462} 2463let mayLoad=1, hasSideEffects=0 in { 2464 defm LDV_i8 : LD_VEC<Int16Regs>; 2465 defm LDV_i16 : LD_VEC<Int16Regs>; 2466 defm LDV_i32 : LD_VEC<Int32Regs>; 2467 defm LDV_i64 : LD_VEC<Int64Regs>; 2468 defm LDV_f16 : LD_VEC<Float16Regs>; 2469 defm LDV_f16x2 : LD_VEC<Float16x2Regs>; 2470 defm LDV_f32 : LD_VEC<Float32Regs>; 2471 defm LDV_f64 : LD_VEC<Float64Regs>; 2472} 2473 2474multiclass ST_VEC<NVPTXRegClass regclass> { 2475 def _v2_avar : NVPTXInst< 2476 (outs), 2477 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2478 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), 2479 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2480 "\t[$addr], {{$src1, $src2}};", []>; 2481 def _v2_areg : NVPTXInst< 2482 (outs), 2483 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2484 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), 2485 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2486 "\t[$addr], {{$src1, $src2}};", []>; 2487 def _v2_areg_64 : NVPTXInst< 2488 (outs), 2489 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2490 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), 2491 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2492 "\t[$addr], {{$src1, $src2}};", []>; 2493 def _v2_ari : NVPTXInst< 2494 (outs), 2495 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2496 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, 2497 i32imm:$offset), 2498 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2499 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2500 def _v2_ari_64 : NVPTXInst< 2501 (outs), 2502 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2503 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, 2504 i32imm:$offset), 2505 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2506 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2507 def _v2_asi : NVPTXInst< 2508 (outs), 2509 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2510 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, 2511 i32imm:$offset), 2512 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2513 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2514 def _v4_avar : NVPTXInst< 2515 (outs), 2516 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2517 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2518 i32imm:$fromWidth, imem:$addr), 2519 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2520 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2521 def _v4_areg : NVPTXInst< 2522 (outs), 2523 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2524 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2525 i32imm:$fromWidth, Int32Regs:$addr), 2526 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2527 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2528 def _v4_areg_64 : NVPTXInst< 2529 (outs), 2530 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2531 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2532 i32imm:$fromWidth, Int64Regs:$addr), 2533 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2534 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2535 def _v4_ari : NVPTXInst< 2536 (outs), 2537 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2538 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2539 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2540 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2541 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2542 def _v4_ari_64 : NVPTXInst< 2543 (outs), 2544 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2545 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2546 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2547 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2548 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2549 def _v4_asi : NVPTXInst< 2550 (outs), 2551 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2552 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2553 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2554 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}" 2555 "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2556} 2557 2558let mayStore=1, hasSideEffects=0 in { 2559 defm STV_i8 : ST_VEC<Int16Regs>; 2560 defm STV_i16 : ST_VEC<Int16Regs>; 2561 defm STV_i32 : ST_VEC<Int32Regs>; 2562 defm STV_i64 : ST_VEC<Int64Regs>; 2563 defm STV_f16 : ST_VEC<Float16Regs>; 2564 defm STV_f16x2 : ST_VEC<Float16x2Regs>; 2565 defm STV_f32 : ST_VEC<Float32Regs>; 2566 defm STV_f64 : ST_VEC<Float64Regs>; 2567} 2568 2569//---- Conversion ---- 2570 2571class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn, 2572 NVPTXRegClass regclassOut> : 2573 NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a), 2574 !strconcat("mov.b", SzStr, " \t$d, $a;"), 2575 [(set regclassOut:$d, (bitconvert regclassIn:$a))]>; 2576 2577def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>; 2578def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>; 2579def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>; 2580def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>; 2581def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>; 2582def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>; 2583def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>; 2584def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>; 2585 2586// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where 2587// we cannot specify floating-point literals in isel patterns. Therefore, we 2588// use an integer selp to select either 1 or 0 and then cvt to floating-point. 2589 2590// sint -> f16 2591def : Pat<(f16 (sint_to_fp Int1Regs:$a)), 2592 (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2593def : Pat<(f16 (sint_to_fp Int16Regs:$a)), 2594 (CVT_f16_s16 Int16Regs:$a, CvtRN)>; 2595def : Pat<(f16 (sint_to_fp Int32Regs:$a)), 2596 (CVT_f16_s32 Int32Regs:$a, CvtRN)>; 2597def : Pat<(f16 (sint_to_fp Int64Regs:$a)), 2598 (CVT_f16_s64 Int64Regs:$a, CvtRN)>; 2599 2600// uint -> f16 2601def : Pat<(f16 (uint_to_fp Int1Regs:$a)), 2602 (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2603def : Pat<(f16 (uint_to_fp Int16Regs:$a)), 2604 (CVT_f16_u16 Int16Regs:$a, CvtRN)>; 2605def : Pat<(f16 (uint_to_fp Int32Regs:$a)), 2606 (CVT_f16_u32 Int32Regs:$a, CvtRN)>; 2607def : Pat<(f16 (uint_to_fp Int64Regs:$a)), 2608 (CVT_f16_u64 Int64Regs:$a, CvtRN)>; 2609 2610// sint -> f32 2611def : Pat<(f32 (sint_to_fp Int1Regs:$a)), 2612 (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2613def : Pat<(f32 (sint_to_fp Int16Regs:$a)), 2614 (CVT_f32_s16 Int16Regs:$a, CvtRN)>; 2615def : Pat<(f32 (sint_to_fp Int32Regs:$a)), 2616 (CVT_f32_s32 Int32Regs:$a, CvtRN)>; 2617def : Pat<(f32 (sint_to_fp Int64Regs:$a)), 2618 (CVT_f32_s64 Int64Regs:$a, CvtRN)>; 2619 2620// uint -> f32 2621def : Pat<(f32 (uint_to_fp Int1Regs:$a)), 2622 (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2623def : Pat<(f32 (uint_to_fp Int16Regs:$a)), 2624 (CVT_f32_u16 Int16Regs:$a, CvtRN)>; 2625def : Pat<(f32 (uint_to_fp Int32Regs:$a)), 2626 (CVT_f32_u32 Int32Regs:$a, CvtRN)>; 2627def : Pat<(f32 (uint_to_fp Int64Regs:$a)), 2628 (CVT_f32_u64 Int64Regs:$a, CvtRN)>; 2629 2630// sint -> f64 2631def : Pat<(f64 (sint_to_fp Int1Regs:$a)), 2632 (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2633def : Pat<(f64 (sint_to_fp Int16Regs:$a)), 2634 (CVT_f64_s16 Int16Regs:$a, CvtRN)>; 2635def : Pat<(f64 (sint_to_fp Int32Regs:$a)), 2636 (CVT_f64_s32 Int32Regs:$a, CvtRN)>; 2637def : Pat<(f64 (sint_to_fp Int64Regs:$a)), 2638 (CVT_f64_s64 Int64Regs:$a, CvtRN)>; 2639 2640// uint -> f64 2641def : Pat<(f64 (uint_to_fp Int1Regs:$a)), 2642 (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2643def : Pat<(f64 (uint_to_fp Int16Regs:$a)), 2644 (CVT_f64_u16 Int16Regs:$a, CvtRN)>; 2645def : Pat<(f64 (uint_to_fp Int32Regs:$a)), 2646 (CVT_f64_u32 Int32Regs:$a, CvtRN)>; 2647def : Pat<(f64 (uint_to_fp Int64Regs:$a)), 2648 (CVT_f64_u64 Int64Regs:$a, CvtRN)>; 2649 2650 2651// f16 -> sint 2652def : Pat<(i1 (fp_to_sint Float16Regs:$a)), 2653 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; 2654def : Pat<(i16 (fp_to_sint Float16Regs:$a)), 2655 (CVT_s16_f16 Float16Regs:$a, CvtRZI)>; 2656def : Pat<(i32 (fp_to_sint Float16Regs:$a)), 2657 (CVT_s32_f16 Float16Regs:$a, CvtRZI)>; 2658def : Pat<(i64 (fp_to_sint Float16Regs:$a)), 2659 (CVT_s64_f16 Float16Regs:$a, CvtRZI)>; 2660 2661// f16 -> uint 2662def : Pat<(i1 (fp_to_uint Float16Regs:$a)), 2663 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; 2664def : Pat<(i16 (fp_to_uint Float16Regs:$a)), 2665 (CVT_u16_f16 Float16Regs:$a, CvtRZI)>; 2666def : Pat<(i32 (fp_to_uint Float16Regs:$a)), 2667 (CVT_u32_f16 Float16Regs:$a, CvtRZI)>; 2668def : Pat<(i64 (fp_to_uint Float16Regs:$a)), 2669 (CVT_u64_f16 Float16Regs:$a, CvtRZI)>; 2670 2671// f32 -> sint 2672def : Pat<(i1 (fp_to_sint Float32Regs:$a)), 2673 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; 2674def : Pat<(i16 (fp_to_sint Float32Regs:$a)), 2675 (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2676def : Pat<(i16 (fp_to_sint Float32Regs:$a)), 2677 (CVT_s16_f32 Float32Regs:$a, CvtRZI)>; 2678def : Pat<(i32 (fp_to_sint Float32Regs:$a)), 2679 (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2680def : Pat<(i32 (fp_to_sint Float32Regs:$a)), 2681 (CVT_s32_f32 Float32Regs:$a, CvtRZI)>; 2682def : Pat<(i64 (fp_to_sint Float32Regs:$a)), 2683 (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2684def : Pat<(i64 (fp_to_sint Float32Regs:$a)), 2685 (CVT_s64_f32 Float32Regs:$a, CvtRZI)>; 2686 2687// f32 -> uint 2688def : Pat<(i1 (fp_to_uint Float32Regs:$a)), 2689 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; 2690def : Pat<(i16 (fp_to_uint Float32Regs:$a)), 2691 (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2692def : Pat<(i16 (fp_to_uint Float32Regs:$a)), 2693 (CVT_u16_f32 Float32Regs:$a, CvtRZI)>; 2694def : Pat<(i32 (fp_to_uint Float32Regs:$a)), 2695 (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2696def : Pat<(i32 (fp_to_uint Float32Regs:$a)), 2697 (CVT_u32_f32 Float32Regs:$a, CvtRZI)>; 2698def : Pat<(i64 (fp_to_uint Float32Regs:$a)), 2699 (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2700def : Pat<(i64 (fp_to_uint Float32Regs:$a)), 2701 (CVT_u64_f32 Float32Regs:$a, CvtRZI)>; 2702 2703// f64 -> sint 2704def : Pat<(i1 (fp_to_sint Float64Regs:$a)), 2705 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; 2706def : Pat<(i16 (fp_to_sint Float64Regs:$a)), 2707 (CVT_s16_f64 Float64Regs:$a, CvtRZI)>; 2708def : Pat<(i32 (fp_to_sint Float64Regs:$a)), 2709 (CVT_s32_f64 Float64Regs:$a, CvtRZI)>; 2710def : Pat<(i64 (fp_to_sint Float64Regs:$a)), 2711 (CVT_s64_f64 Float64Regs:$a, CvtRZI)>; 2712 2713// f64 -> uint 2714def : Pat<(i1 (fp_to_uint Float64Regs:$a)), 2715 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; 2716def : Pat<(i16 (fp_to_uint Float64Regs:$a)), 2717 (CVT_u16_f64 Float64Regs:$a, CvtRZI)>; 2718def : Pat<(i32 (fp_to_uint Float64Regs:$a)), 2719 (CVT_u32_f64 Float64Regs:$a, CvtRZI)>; 2720def : Pat<(i64 (fp_to_uint Float64Regs:$a)), 2721 (CVT_u64_f64 Float64Regs:$a, CvtRZI)>; 2722 2723// sext i1 2724def : Pat<(i16 (sext Int1Regs:$a)), 2725 (SELP_s16ii -1, 0, Int1Regs:$a)>; 2726def : Pat<(i32 (sext Int1Regs:$a)), 2727 (SELP_s32ii -1, 0, Int1Regs:$a)>; 2728def : Pat<(i64 (sext Int1Regs:$a)), 2729 (SELP_s64ii -1, 0, Int1Regs:$a)>; 2730 2731// zext i1 2732def : Pat<(i16 (zext Int1Regs:$a)), 2733 (SELP_u16ii 1, 0, Int1Regs:$a)>; 2734def : Pat<(i32 (zext Int1Regs:$a)), 2735 (SELP_u32ii 1, 0, Int1Regs:$a)>; 2736def : Pat<(i64 (zext Int1Regs:$a)), 2737 (SELP_u64ii 1, 0, Int1Regs:$a)>; 2738 2739// anyext i1 2740def : Pat<(i16 (anyext Int1Regs:$a)), 2741 (SELP_u16ii -1, 0, Int1Regs:$a)>; 2742def : Pat<(i32 (anyext Int1Regs:$a)), 2743 (SELP_u32ii -1, 0, Int1Regs:$a)>; 2744def : Pat<(i64 (anyext Int1Regs:$a)), 2745 (SELP_u64ii -1, 0, Int1Regs:$a)>; 2746 2747// sext i16 2748def : Pat<(i32 (sext Int16Regs:$a)), 2749 (CVT_s32_s16 Int16Regs:$a, CvtNONE)>; 2750def : Pat<(i64 (sext Int16Regs:$a)), 2751 (CVT_s64_s16 Int16Regs:$a, CvtNONE)>; 2752 2753// zext i16 2754def : Pat<(i32 (zext Int16Regs:$a)), 2755 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; 2756def : Pat<(i64 (zext Int16Regs:$a)), 2757 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; 2758 2759// anyext i16 2760def : Pat<(i32 (anyext Int16Regs:$a)), 2761 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; 2762def : Pat<(i64 (anyext Int16Regs:$a)), 2763 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; 2764 2765// sext i32 2766def : Pat<(i64 (sext Int32Regs:$a)), 2767 (CVT_s64_s32 Int32Regs:$a, CvtNONE)>; 2768 2769// zext i32 2770def : Pat<(i64 (zext Int32Regs:$a)), 2771 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; 2772 2773// anyext i32 2774def : Pat<(i64 (anyext Int32Regs:$a)), 2775 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; 2776 2777 2778// truncate i64 2779def : Pat<(i32 (trunc Int64Regs:$a)), 2780 (CVT_u32_u64 Int64Regs:$a, CvtNONE)>; 2781def : Pat<(i16 (trunc Int64Regs:$a)), 2782 (CVT_u16_u64 Int64Regs:$a, CvtNONE)>; 2783def : Pat<(i1 (trunc Int64Regs:$a)), 2784 (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>; 2785 2786// truncate i32 2787def : Pat<(i16 (trunc Int32Regs:$a)), 2788 (CVT_u16_u32 Int32Regs:$a, CvtNONE)>; 2789def : Pat<(i1 (trunc Int32Regs:$a)), 2790 (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>; 2791 2792// truncate i16 2793def : Pat<(i1 (trunc Int16Regs:$a)), 2794 (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>; 2795 2796// sext_inreg 2797def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>; 2798def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>; 2799def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>; 2800def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>; 2801def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>; 2802def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>; 2803 2804 2805// Select instructions with 32-bit predicates 2806def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b), 2807 (SELP_b16rr Int16Regs:$a, Int16Regs:$b, 2808 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2809def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b), 2810 (SELP_b32rr Int32Regs:$a, Int32Regs:$b, 2811 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2812def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b), 2813 (SELP_b64rr Int64Regs:$a, Int64Regs:$b, 2814 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2815def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b), 2816 (SELP_f16rr Float16Regs:$a, Float16Regs:$b, 2817 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2818def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b), 2819 (SELP_f32rr Float32Regs:$a, Float32Regs:$b, 2820 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2821def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b), 2822 (SELP_f64rr Float64Regs:$a, Float64Regs:$b, 2823 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2824 2825 2826let hasSideEffects = 0 in { 2827 // pack a set of smaller int registers to a larger int register 2828 def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d), 2829 (ins Int16Regs:$s1, Int16Regs:$s2, 2830 Int16Regs:$s3, Int16Regs:$s4), 2831 "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>; 2832 def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d), 2833 (ins Int16Regs:$s1, Int16Regs:$s2), 2834 "mov.b32 \t$d, {{$s1, $s2}};", []>; 2835 def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d), 2836 (ins Int32Regs:$s1, Int32Regs:$s2), 2837 "mov.b64 \t$d, {{$s1, $s2}};", []>; 2838 def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d), 2839 (ins Float32Regs:$s1, Float32Regs:$s2), 2840 "mov.b64 \t$d, {{$s1, $s2}};", []>; 2841 2842 // unpack a larger int register to a set of smaller int registers 2843 def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2, 2844 Int16Regs:$d3, Int16Regs:$d4), 2845 (ins Int64Regs:$s), 2846 "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>; 2847 def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2), 2848 (ins Int32Regs:$s), 2849 "mov.b32 \t{{$d1, $d2}}, $s;", []>; 2850 def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2), 2851 (ins Int64Regs:$s), 2852 "mov.b64 \t{{$d1, $d2}}, $s;", []>; 2853 def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2), 2854 (ins Float64Regs:$s), 2855 "mov.b64 \t{{$d1, $d2}}, $s;", []>; 2856 2857} 2858 2859let hasSideEffects = 0 in { 2860 // Extract element of f16x2 register. PTX does not provide any way 2861 // to access elements of f16x2 vector directly, so we need to 2862 // extract it using a temporary register. 2863 def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst), 2864 (ins Float16x2Regs:$src), 2865 "{{ .reg .b16 \t%tmp_hi;\n\t" 2866 " mov.b32 \t{$dst, %tmp_hi}, $src; }}", 2867 [(set Float16Regs:$dst, 2868 (extractelt (v2f16 Float16x2Regs:$src), 0))]>; 2869 def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst), 2870 (ins Float16x2Regs:$src), 2871 "{{ .reg .b16 \t%tmp_lo;\n\t" 2872 " mov.b32 \t{%tmp_lo, $dst}, $src; }}", 2873 [(set Float16Regs:$dst, 2874 (extractelt (v2f16 Float16x2Regs:$src), 1))]>; 2875 2876 // Coalesce two f16 registers into f16x2 2877 def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst), 2878 (ins Float16Regs:$a, Float16Regs:$b), 2879 "mov.b32 \t$dst, {{$a, $b}};", 2880 [(set Float16x2Regs:$dst, 2881 (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>; 2882 2883 // Directly initializing underlying the b32 register is one less SASS 2884 // instruction than than vector-packing move. 2885 def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src), 2886 "mov.b32 \t$dst, $src;", 2887 []>; 2888 2889 // Split f16x2 into two f16 registers. 2890 def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), 2891 (ins Float16x2Regs:$src), 2892 "mov.b32 \t{{$lo, $hi}}, $src;", 2893 []>; 2894 // Split an i32 into two f16 2895 def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), 2896 (ins Int32Regs:$src), 2897 "mov.b32 \t{{$lo, $hi}}, $src;", 2898 []>; 2899} 2900 2901// Count leading zeros 2902let hasSideEffects = 0 in { 2903 def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), 2904 "clz.b32 \t$d, $a;", []>; 2905 def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), 2906 "clz.b64 \t$d, $a;", []>; 2907} 2908 2909// 32-bit has a direct PTX instruction 2910def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>; 2911 2912// The return type of the ctlz ISD node is the same as its input, but the PTX 2913// ctz instruction always returns a 32-bit value. For ctlz.i64, convert the 2914// ptx value to 64 bits to match the ISD node's semantics, unless we know we're 2915// truncating back down to 32 bits. 2916def : Pat<(i64 (ctlz Int64Regs:$a)), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>; 2917def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>; 2918 2919// For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the 2920// result back to 16-bits if necessary. We also need to subtract 16 because 2921// the high-order 16 zeros were counted. 2922// 2923// TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could 2924// use to save one SASS instruction (on sm_35 anyway): 2925// 2926// mov.b32 $tmp, {0xffff, $a} 2927// ctlz.b32 $result, $tmp 2928// 2929// That is, instead of zero-extending the input to 32 bits, we'd "one-extend" 2930// and then ctlz that value. This way we don't have to subtract 16 from the 2931// result. Unfortunately today we don't have a way to generate 2932// "mov b32reg, {b16imm, b16reg}", so we don't do this optimization. 2933def : Pat<(i16 (ctlz Int16Regs:$a)), 2934 (SUBi16ri (CVT_u16_u32 2935 (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>; 2936def : Pat<(i32 (zext (i16 (ctlz Int16Regs:$a)))), 2937 (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>; 2938 2939// Population count 2940let hasSideEffects = 0 in { 2941 def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), 2942 "popc.b32 \t$d, $a;", []>; 2943 def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), 2944 "popc.b64 \t$d, $a;", []>; 2945} 2946 2947// 32-bit has a direct PTX instruction 2948def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>; 2949 2950// For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit 2951// to match the LLVM semantics. Just as with ctlz.i64, we provide a second 2952// pattern that avoids the type conversion if we're truncating the result to 2953// i32 anyway. 2954def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>; 2955def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>; 2956 2957// For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits. 2958// If we know that we're storing into an i32, we can avoid the final trunc. 2959def : Pat<(ctpop Int16Regs:$a), 2960 (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>; 2961def : Pat<(i32 (zext (i16 (ctpop Int16Regs:$a)))), 2962 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>; 2963 2964// fpround f32 -> f16 2965def : Pat<(f16 (fpround Float32Regs:$a)), 2966 (CVT_f16_f32 Float32Regs:$a, CvtRN)>; 2967 2968// fpround f64 -> f16 2969def : Pat<(f16 (fpround Float64Regs:$a)), 2970 (CVT_f16_f64 Float64Regs:$a, CvtRN)>; 2971 2972// fpround f64 -> f32 2973def : Pat<(f32 (fpround Float64Regs:$a)), 2974 (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; 2975def : Pat<(f32 (fpround Float64Regs:$a)), 2976 (CVT_f32_f64 Float64Regs:$a, CvtRN)>; 2977 2978// fpextend f16 -> f32 2979def : Pat<(f32 (fpextend Float16Regs:$a)), 2980 (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; 2981def : Pat<(f32 (fpextend Float16Regs:$a)), 2982 (CVT_f32_f16 Float16Regs:$a, CvtNONE)>; 2983 2984// fpextend f16 -> f64 2985def : Pat<(f64 (fpextend Float16Regs:$a)), 2986 (CVT_f64_f16 Float16Regs:$a, CvtNONE)>; 2987 2988// fpextend f32 -> f64 2989def : Pat<(f64 (fpextend Float32Regs:$a)), 2990 (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; 2991def : Pat<(f64 (fpextend Float32Regs:$a)), 2992 (CVT_f64_f32 Float32Regs:$a, CvtNONE)>; 2993 2994def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone, 2995 [SDNPHasChain, SDNPOptInGlue]>; 2996 2997// fceil, ffloor, fround, ftrunc. 2998 2999def : Pat<(fceil Float16Regs:$a), 3000 (CVT_f16_f16 Float16Regs:$a, CvtRPI)>; 3001def : Pat<(fceil Float32Regs:$a), 3002 (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; 3003def : Pat<(fceil Float32Regs:$a), 3004 (CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>; 3005def : Pat<(fceil Float64Regs:$a), 3006 (CVT_f64_f64 Float64Regs:$a, CvtRPI)>; 3007 3008def : Pat<(ffloor Float16Regs:$a), 3009 (CVT_f16_f16 Float16Regs:$a, CvtRMI)>; 3010def : Pat<(ffloor Float32Regs:$a), 3011 (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; 3012def : Pat<(ffloor Float32Regs:$a), 3013 (CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>; 3014def : Pat<(ffloor Float64Regs:$a), 3015 (CVT_f64_f64 Float64Regs:$a, CvtRMI)>; 3016 3017def : Pat<(ftrunc Float16Regs:$a), 3018 (CVT_f16_f16 Float16Regs:$a, CvtRZI)>; 3019def : Pat<(ftrunc Float32Regs:$a), 3020 (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 3021def : Pat<(ftrunc Float32Regs:$a), 3022 (CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>; 3023def : Pat<(ftrunc Float64Regs:$a), 3024 (CVT_f64_f64 Float64Regs:$a, CvtRZI)>; 3025 3026// nearbyint and rint are implemented as rounding to nearest even. This isn't 3027// strictly correct, because it causes us to ignore the rounding mode. But it 3028// matches what CUDA's "libm" does. 3029 3030def : Pat<(fnearbyint Float16Regs:$a), 3031 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; 3032def : Pat<(fnearbyint Float32Regs:$a), 3033 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; 3034def : Pat<(fnearbyint Float32Regs:$a), 3035 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; 3036def : Pat<(fnearbyint Float64Regs:$a), 3037 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; 3038 3039def : Pat<(frint Float16Regs:$a), 3040 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; 3041def : Pat<(frint Float32Regs:$a), 3042 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; 3043def : Pat<(frint Float32Regs:$a), 3044 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; 3045def : Pat<(frint Float64Regs:$a), 3046 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; 3047 3048 3049//----------------------------------- 3050// Control-flow 3051//----------------------------------- 3052 3053let isTerminator=1 in { 3054 let isReturn=1, isBarrier=1 in 3055 def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>; 3056 3057 let isBranch=1 in 3058 def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), 3059 "@$a bra \t$target;", 3060 [(brcond Int1Regs:$a, bb:$target)]>; 3061 let isBranch=1 in 3062 def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), 3063 "@!$a bra \t$target;", []>; 3064 3065 let isBranch=1, isBarrier=1 in 3066 def GOTO : NVPTXInst<(outs), (ins brtarget:$target), 3067 "bra.uni \t$target;", [(br bb:$target)]>; 3068} 3069 3070def : Pat<(brcond Int32Regs:$a, bb:$target), 3071 (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>; 3072 3073// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a 3074// conditional branch if the target block is the next block so that the code 3075// can fall through to the target block. The invertion is done by 'xor 3076// condition, 1', which will be translated to (setne condition, -1). Since ptx 3077// supports '@!pred bra target', we should use it. 3078def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target), 3079 (CBranchOther Int1Regs:$a, bb:$target)>; 3080 3081// Call 3082def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, 3083 SDTCisVT<1, i32>]>; 3084def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 3085 3086def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart, 3087 [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; 3088def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd, 3089 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 3090 SDNPSideEffect]>; 3091 3092def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 3093def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall, 3094 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 3095def calltarget : Operand<i32>; 3096let isCall=1 in { 3097 def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>; 3098} 3099 3100def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; 3101def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; 3102 3103// Pseudo instructions. 3104class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> 3105 : NVPTXInst<outs, ins, asmstr, pattern>; 3106 3107def Callseq_Start : 3108 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), 3109 "\\{ // callseq $amt1, $amt2\n" 3110 "\t.reg .b32 temp_param_reg;", 3111 [(callseq_start timm:$amt1, timm:$amt2)]>; 3112def Callseq_End : 3113 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), 3114 "\\} // callseq $amt1", 3115 [(callseq_end timm:$amt1, timm:$amt2)]>; 3116 3117// trap instruction 3118def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>; 3119 3120// Call prototype wrapper 3121def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 3122def CallPrototype : 3123 SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype, 3124 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 3125def ProtoIdent : Operand<i32> { 3126 let PrintMethod = "printProtoIdent"; 3127} 3128def CALL_PROTOTYPE : 3129 NVPTXInst<(outs), (ins ProtoIdent:$ident), 3130 "$ident", [(CallPrototype (i32 texternalsym:$ident))]>; 3131 3132 3133include "NVPTXIntrinsics.td" 3134 3135 3136//----------------------------------- 3137// Notes 3138//----------------------------------- 3139// BSWAP is currently expanded. The following is a more efficient 3140// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register 3141// - for sm_20, use pmpt (use vector scalar mov to get the pack and 3142// unpack). sm_20 supports native 32-bit register, but not native 16-bit 3143// register. 3144