1//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the PTX instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13include "NVPTXInstrFormats.td" 14 15// A NOP instruction 16let hasSideEffects = false in { 17 def NOP : NVPTXInst<(outs), (ins), "", []>; 18} 19 20let OperandType = "OPERAND_IMMEDIATE" in { 21 def f16imm : Operand<f16>; 22} 23 24// List of vector specific properties 25def isVecLD : VecInstTypeEnum<1>; 26def isVecST : VecInstTypeEnum<2>; 27def isVecBuild : VecInstTypeEnum<3>; 28def isVecShuffle : VecInstTypeEnum<4>; 29def isVecExtract : VecInstTypeEnum<5>; 30def isVecInsert : VecInstTypeEnum<6>; 31def isVecDest : VecInstTypeEnum<7>; 32def isVecOther : VecInstTypeEnum<15>; 33 34//===----------------------------------------------------------------------===// 35// NVPTX Operand Definitions. 36//===----------------------------------------------------------------------===// 37 38def brtarget : Operand<OtherVT>; 39 40// CVT conversion modes 41// These must match the enum in NVPTX.h 42def CvtNONE : PatLeaf<(i32 0x0)>; 43def CvtRNI : PatLeaf<(i32 0x1)>; 44def CvtRZI : PatLeaf<(i32 0x2)>; 45def CvtRMI : PatLeaf<(i32 0x3)>; 46def CvtRPI : PatLeaf<(i32 0x4)>; 47def CvtRN : PatLeaf<(i32 0x5)>; 48def CvtRZ : PatLeaf<(i32 0x6)>; 49def CvtRM : PatLeaf<(i32 0x7)>; 50def CvtRP : PatLeaf<(i32 0x8)>; 51 52def CvtNONE_FTZ : PatLeaf<(i32 0x10)>; 53def CvtRNI_FTZ : PatLeaf<(i32 0x11)>; 54def CvtRZI_FTZ : PatLeaf<(i32 0x12)>; 55def CvtRMI_FTZ : PatLeaf<(i32 0x13)>; 56def CvtRPI_FTZ : PatLeaf<(i32 0x14)>; 57def CvtRN_FTZ : PatLeaf<(i32 0x15)>; 58def CvtRZ_FTZ : PatLeaf<(i32 0x16)>; 59def CvtRM_FTZ : PatLeaf<(i32 0x17)>; 60def CvtRP_FTZ : PatLeaf<(i32 0x18)>; 61 62def CvtSAT : PatLeaf<(i32 0x20)>; 63def CvtSAT_FTZ : PatLeaf<(i32 0x30)>; 64 65def CvtMode : Operand<i32> { 66 let PrintMethod = "printCvtMode"; 67} 68 69// Compare modes 70// These must match the enum in NVPTX.h 71def CmpEQ : PatLeaf<(i32 0)>; 72def CmpNE : PatLeaf<(i32 1)>; 73def CmpLT : PatLeaf<(i32 2)>; 74def CmpLE : PatLeaf<(i32 3)>; 75def CmpGT : PatLeaf<(i32 4)>; 76def CmpGE : PatLeaf<(i32 5)>; 77def CmpEQU : PatLeaf<(i32 10)>; 78def CmpNEU : PatLeaf<(i32 11)>; 79def CmpLTU : PatLeaf<(i32 12)>; 80def CmpLEU : PatLeaf<(i32 13)>; 81def CmpGTU : PatLeaf<(i32 14)>; 82def CmpGEU : PatLeaf<(i32 15)>; 83def CmpNUM : PatLeaf<(i32 16)>; 84def CmpNAN : PatLeaf<(i32 17)>; 85 86def CmpEQ_FTZ : PatLeaf<(i32 0x100)>; 87def CmpNE_FTZ : PatLeaf<(i32 0x101)>; 88def CmpLT_FTZ : PatLeaf<(i32 0x102)>; 89def CmpLE_FTZ : PatLeaf<(i32 0x103)>; 90def CmpGT_FTZ : PatLeaf<(i32 0x104)>; 91def CmpGE_FTZ : PatLeaf<(i32 0x105)>; 92def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>; 93def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>; 94def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>; 95def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>; 96def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>; 97def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>; 98def CmpNUM_FTZ : PatLeaf<(i32 0x110)>; 99def CmpNAN_FTZ : PatLeaf<(i32 0x111)>; 100 101def CmpMode : Operand<i32> { 102 let PrintMethod = "printCmpMode"; 103} 104def VecElement : Operand<i32> { 105 let PrintMethod = "printVecElement"; 106} 107 108//===----------------------------------------------------------------------===// 109// NVPTX Instruction Predicate Definitions 110//===----------------------------------------------------------------------===// 111 112 113def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">; 114def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">; 115def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">; 116def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">; 117def hasVote : Predicate<"Subtarget->hasVote()">; 118def hasDouble : Predicate<"Subtarget->hasDouble()">; 119def hasLDG : Predicate<"Subtarget->hasLDG()">; 120def hasLDU : Predicate<"Subtarget->hasLDU()">; 121 122def doF32FTZ : Predicate<"useF32FTZ()">; 123def doNoF32FTZ : Predicate<"!useF32FTZ()">; 124 125def doMulWide : Predicate<"doMulWide">; 126 127def allowFMA : Predicate<"allowFMA()">; 128def noFMA : Predicate<"!allowFMA()">; 129def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">; 130 131def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">; 132def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">; 133 134def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">; 135def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">; 136 137def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">; 138def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">; 139 140def True : Predicate<"true">; 141 142def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">; 143def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">; 144def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">; 145def hasPTX63 : Predicate<"Subtarget->getPTXVersion() >= 63">; 146def hasPTX64 : Predicate<"Subtarget->getPTXVersion() >= 64">; 147def hasPTX65 : Predicate<"Subtarget->getPTXVersion() >= 65">; 148def hasPTX70 : Predicate<"Subtarget->getPTXVersion() >= 70">; 149def hasPTX71 : Predicate<"Subtarget->getPTXVersion() >= 71">; 150 151def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">; 152def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">; 153def hasSM72 : Predicate<"Subtarget->getSmVersion() >= 72">; 154def hasSM75 : Predicate<"Subtarget->getSmVersion() >= 75">; 155def hasSM80 : Predicate<"Subtarget->getSmVersion() >= 80">; 156 157// non-sync shfl instructions are not available on sm_70+ in PTX6.4+ 158def hasSHFL : Predicate<"!(Subtarget->getSmVersion() >= 70" 159 "&& Subtarget->getPTXVersion() >= 64)">; 160 161def useShortPtr : Predicate<"useShortPointers()">; 162def useFP16Math: Predicate<"Subtarget->allowFP16Math()">; 163 164//===----------------------------------------------------------------------===// 165// Some Common Instruction Class Templates 166//===----------------------------------------------------------------------===// 167 168// Template for instructions which take three int64, int32, or int16 args. 169// The instructions are named "<OpcStr><Width>" (e.g. "add.s64"). 170multiclass I3<string OpcStr, SDNode OpNode> { 171 def i64rr : 172 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), 173 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 174 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; 175 def i64ri : 176 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), 177 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 178 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; 179 def i32rr : 180 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 181 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 182 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 183 def i32ri : 184 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 185 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 186 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 187 def i16rr : 188 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 189 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 190 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; 191 def i16ri : 192 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 193 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 194 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>; 195} 196 197// Template for instructions which take 3 int32 args. The instructions are 198// named "<OpcStr>.s32" (e.g. "addc.cc.s32"). 199multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> { 200 def i32rr : 201 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 202 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), 203 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 204 def i32ri : 205 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 206 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), 207 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 208} 209 210// Template for instructions which take three fp64 or fp32 args. The 211// instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64"). 212// 213// Also defines ftz (flush subnormal inputs and results to sign-preserving 214// zero) variants for fp32 functions. 215// 216// This multiclass should be used for nodes that cannot be folded into FMAs. 217// For nodes that can be folded into FMAs (i.e. adds and muls), use 218// F3_fma_component. 219multiclass F3<string OpcStr, SDNode OpNode> { 220 def f64rr : 221 NVPTXInst<(outs Float64Regs:$dst), 222 (ins Float64Regs:$a, Float64Regs:$b), 223 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 224 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>; 225 def f64ri : 226 NVPTXInst<(outs Float64Regs:$dst), 227 (ins Float64Regs:$a, f64imm:$b), 228 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 229 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>; 230 def f32rr_ftz : 231 NVPTXInst<(outs Float32Regs:$dst), 232 (ins Float32Regs:$a, Float32Regs:$b), 233 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 234 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 235 Requires<[doF32FTZ]>; 236 def f32ri_ftz : 237 NVPTXInst<(outs Float32Regs:$dst), 238 (ins Float32Regs:$a, f32imm:$b), 239 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 240 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 241 Requires<[doF32FTZ]>; 242 def f32rr : 243 NVPTXInst<(outs Float32Regs:$dst), 244 (ins Float32Regs:$a, Float32Regs:$b), 245 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 246 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>; 247 def f32ri : 248 NVPTXInst<(outs Float32Regs:$dst), 249 (ins Float32Regs:$a, f32imm:$b), 250 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 251 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>; 252} 253 254// Template for instructions which take three FP args. The 255// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64"). 256// 257// Also defines ftz (flush subnormal inputs and results to sign-preserving 258// zero) variants for fp32/fp16 functions. 259// 260// This multiclass should be used for nodes that can be folded to make fma ops. 261// In this case, we use the ".rn" variant when FMA is disabled, as this behaves 262// just like the non ".rn" op, but prevents ptxas from creating FMAs. 263multiclass F3_fma_component<string OpcStr, SDNode OpNode> { 264 def f64rr : 265 NVPTXInst<(outs Float64Regs:$dst), 266 (ins Float64Regs:$a, Float64Regs:$b), 267 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 268 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, 269 Requires<[allowFMA]>; 270 def f64ri : 271 NVPTXInst<(outs Float64Regs:$dst), 272 (ins Float64Regs:$a, f64imm:$b), 273 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 274 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, 275 Requires<[allowFMA]>; 276 def f32rr_ftz : 277 NVPTXInst<(outs Float32Regs:$dst), 278 (ins Float32Regs:$a, Float32Regs:$b), 279 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 280 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 281 Requires<[allowFMA, doF32FTZ]>; 282 def f32ri_ftz : 283 NVPTXInst<(outs Float32Regs:$dst), 284 (ins Float32Regs:$a, f32imm:$b), 285 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 286 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 287 Requires<[allowFMA, doF32FTZ]>; 288 def f32rr : 289 NVPTXInst<(outs Float32Regs:$dst), 290 (ins Float32Regs:$a, Float32Regs:$b), 291 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 292 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 293 Requires<[allowFMA]>; 294 def f32ri : 295 NVPTXInst<(outs Float32Regs:$dst), 296 (ins Float32Regs:$a, f32imm:$b), 297 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 298 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 299 Requires<[allowFMA]>; 300 301 def f16rr_ftz : 302 NVPTXInst<(outs Float16Regs:$dst), 303 (ins Float16Regs:$a, Float16Regs:$b), 304 !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), 305 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 306 Requires<[useFP16Math, allowFMA, doF32FTZ]>; 307 def f16rr : 308 NVPTXInst<(outs Float16Regs:$dst), 309 (ins Float16Regs:$a, Float16Regs:$b), 310 !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), 311 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 312 Requires<[useFP16Math, allowFMA]>; 313 314 def f16x2rr_ftz : 315 NVPTXInst<(outs Float16x2Regs:$dst), 316 (ins Float16x2Regs:$a, Float16x2Regs:$b), 317 !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), 318 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 319 Requires<[useFP16Math, allowFMA, doF32FTZ]>; 320 def f16x2rr : 321 NVPTXInst<(outs Float16x2Regs:$dst), 322 (ins Float16x2Regs:$a, Float16x2Regs:$b), 323 !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), 324 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 325 Requires<[useFP16Math, allowFMA]>; 326 327 // These have strange names so we don't perturb existing mir tests. 328 def _rnf64rr : 329 NVPTXInst<(outs Float64Regs:$dst), 330 (ins Float64Regs:$a, Float64Regs:$b), 331 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), 332 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, 333 Requires<[noFMA]>; 334 def _rnf64ri : 335 NVPTXInst<(outs Float64Regs:$dst), 336 (ins Float64Regs:$a, f64imm:$b), 337 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), 338 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, 339 Requires<[noFMA]>; 340 def _rnf32rr_ftz : 341 NVPTXInst<(outs Float32Regs:$dst), 342 (ins Float32Regs:$a, Float32Regs:$b), 343 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), 344 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 345 Requires<[noFMA, doF32FTZ]>; 346 def _rnf32ri_ftz : 347 NVPTXInst<(outs Float32Regs:$dst), 348 (ins Float32Regs:$a, f32imm:$b), 349 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), 350 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 351 Requires<[noFMA, doF32FTZ]>; 352 def _rnf32rr : 353 NVPTXInst<(outs Float32Regs:$dst), 354 (ins Float32Regs:$a, Float32Regs:$b), 355 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), 356 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 357 Requires<[noFMA]>; 358 def _rnf32ri : 359 NVPTXInst<(outs Float32Regs:$dst), 360 (ins Float32Regs:$a, f32imm:$b), 361 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), 362 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 363 Requires<[noFMA]>; 364 def _rnf16rr_ftz : 365 NVPTXInst<(outs Float16Regs:$dst), 366 (ins Float16Regs:$a, Float16Regs:$b), 367 !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"), 368 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 369 Requires<[useFP16Math, noFMA, doF32FTZ]>; 370 def _rnf16rr : 371 NVPTXInst<(outs Float16Regs:$dst), 372 (ins Float16Regs:$a, Float16Regs:$b), 373 !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"), 374 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 375 Requires<[useFP16Math, noFMA]>; 376 def _rnf16x2rr_ftz : 377 NVPTXInst<(outs Float16x2Regs:$dst), 378 (ins Float16x2Regs:$a, Float16x2Regs:$b), 379 !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"), 380 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 381 Requires<[useFP16Math, noFMA, doF32FTZ]>; 382 def _rnf16x2rr : 383 NVPTXInst<(outs Float16x2Regs:$dst), 384 (ins Float16x2Regs:$a, Float16x2Regs:$b), 385 !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"), 386 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 387 Requires<[useFP16Math, noFMA]>; 388} 389 390// Template for operations which take two f32 or f64 operands. Provides three 391// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush 392// subnormal inputs and results to zero). 393multiclass F2<string OpcStr, SDNode OpNode> { 394 def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a), 395 !strconcat(OpcStr, ".f64 \t$dst, $a;"), 396 [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>; 397 def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), 398 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"), 399 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>, 400 Requires<[doF32FTZ]>; 401 def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), 402 !strconcat(OpcStr, ".f32 \t$dst, $a;"), 403 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>; 404} 405 406//===----------------------------------------------------------------------===// 407// NVPTX Instructions. 408//===----------------------------------------------------------------------===// 409 410//----------------------------------- 411// Type Conversion 412//----------------------------------- 413 414let hasSideEffects = false in { 415 // Generate a cvt to the given type from all possible types. Each instance 416 // takes a CvtMode immediate that defines the conversion mode to use. It can 417 // be CvtNONE to omit a conversion mode. 418 multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> { 419 def _s8 : 420 NVPTXInst<(outs RC:$dst), 421 (ins Int16Regs:$src, CvtMode:$mode), 422 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 423 FromName, ".s8 \t$dst, $src;"), []>; 424 def _u8 : 425 NVPTXInst<(outs RC:$dst), 426 (ins Int16Regs:$src, CvtMode:$mode), 427 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 428 FromName, ".u8 \t$dst, $src;"), []>; 429 def _s16 : 430 NVPTXInst<(outs RC:$dst), 431 (ins Int16Regs:$src, CvtMode:$mode), 432 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 433 FromName, ".s16 \t$dst, $src;"), []>; 434 def _u16 : 435 NVPTXInst<(outs RC:$dst), 436 (ins Int16Regs:$src, CvtMode:$mode), 437 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 438 FromName, ".u16 \t$dst, $src;"), []>; 439 def _s32 : 440 NVPTXInst<(outs RC:$dst), 441 (ins Int32Regs:$src, CvtMode:$mode), 442 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 443 FromName, ".s32 \t$dst, $src;"), []>; 444 def _u32 : 445 NVPTXInst<(outs RC:$dst), 446 (ins Int32Regs:$src, CvtMode:$mode), 447 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 448 FromName, ".u32 \t$dst, $src;"), []>; 449 def _s64 : 450 NVPTXInst<(outs RC:$dst), 451 (ins Int64Regs:$src, CvtMode:$mode), 452 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 453 FromName, ".s64 \t$dst, $src;"), []>; 454 def _u64 : 455 NVPTXInst<(outs RC:$dst), 456 (ins Int64Regs:$src, CvtMode:$mode), 457 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 458 FromName, ".u64 \t$dst, $src;"), []>; 459 def _f16 : 460 NVPTXInst<(outs RC:$dst), 461 (ins Float16Regs:$src, CvtMode:$mode), 462 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 463 FromName, ".f16 \t$dst, $src;"), []>; 464 def _f32 : 465 NVPTXInst<(outs RC:$dst), 466 (ins Float32Regs:$src, CvtMode:$mode), 467 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 468 FromName, ".f32 \t$dst, $src;"), []>; 469 def _f64 : 470 NVPTXInst<(outs RC:$dst), 471 (ins Float64Regs:$src, CvtMode:$mode), 472 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 473 FromName, ".f64 \t$dst, $src;"), []>; 474 } 475 476 // Generate cvts from all types to all types. 477 defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>; 478 defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>; 479 defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>; 480 defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>; 481 defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>; 482 defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>; 483 defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>; 484 defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>; 485 defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>; 486 defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>; 487 defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>; 488 489 // These cvts are different from those above: The source and dest registers 490 // are of the same type. 491 def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 492 "cvt.s16.s8 \t$dst, $src;", []>; 493 def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 494 "cvt.s32.s8 \t$dst, $src;", []>; 495 def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 496 "cvt.s32.s16 \t$dst, $src;", []>; 497 def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 498 "cvt.s64.s8 \t$dst, $src;", []>; 499 def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 500 "cvt.s64.s16 \t$dst, $src;", []>; 501 def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 502 "cvt.s64.s32 \t$dst, $src;", []>; 503} 504 505//----------------------------------- 506// Integer Arithmetic 507//----------------------------------- 508 509// Template for xor masquerading as int1 arithmetic. 510multiclass ADD_SUB_i1<SDNode OpNode> { 511 def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), 512 "xor.pred \t$dst, $a, $b;", 513 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; 514 def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), 515 "xor.pred \t$dst, $a, $b;", 516 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>; 517} 518 519// int1 addition and subtraction are both just xor. 520defm ADD_i1 : ADD_SUB_i1<add>; 521defm SUB_i1 : ADD_SUB_i1<sub>; 522 523// int16, int32, and int64 signed addition. Since nvptx is 2's complement, we 524// also use these for unsigned arithmetic. 525defm ADD : I3<"add.s", add>; 526defm SUB : I3<"sub.s", sub>; 527 528// int32 addition and subtraction with carry-out. 529// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?). 530defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>; 531defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>; 532 533// int32 addition and subtraction with carry-in and carry-out. 534defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>; 535defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>; 536 537defm MULT : I3<"mul.lo.s", mul>; 538 539defm MULTHS : I3<"mul.hi.s", mulhs>; 540defm MULTHU : I3<"mul.hi.u", mulhu>; 541 542defm SDIV : I3<"div.s", sdiv>; 543defm UDIV : I3<"div.u", udiv>; 544 545// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM 546// will lower it. 547defm SREM : I3<"rem.s", srem>; 548defm UREM : I3<"rem.u", urem>; 549 550// Integer absolute value. NumBits should be one minus the bit width of RC. 551// This idiom implements the algorithm at 552// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs. 553multiclass ABS<RegisterClass RC, string SizeName> { 554 def : NVPTXInst<(outs RC:$dst), (ins RC:$a), 555 !strconcat("abs", SizeName, " \t$dst, $a;"), 556 [(set RC:$dst, (abs RC:$a))]>; 557} 558defm ABS_16 : ABS<Int16Regs, ".s16">; 559defm ABS_32 : ABS<Int32Regs, ".s32">; 560defm ABS_64 : ABS<Int64Regs, ".s64">; 561 562// Integer min/max. 563defm SMAX : I3<"max.s", smax>; 564defm UMAX : I3<"max.u", umax>; 565defm SMIN : I3<"min.s", smin>; 566defm UMIN : I3<"min.u", umin>; 567 568// 569// Wide multiplication 570// 571def MULWIDES64 : 572 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 573 "mul.wide.s32 \t$dst, $a, $b;", []>; 574def MULWIDES64Imm : 575 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 576 "mul.wide.s32 \t$dst, $a, $b;", []>; 577def MULWIDES64Imm64 : 578 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), 579 "mul.wide.s32 \t$dst, $a, $b;", []>; 580 581def MULWIDEU64 : 582 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 583 "mul.wide.u32 \t$dst, $a, $b;", []>; 584def MULWIDEU64Imm : 585 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 586 "mul.wide.u32 \t$dst, $a, $b;", []>; 587def MULWIDEU64Imm64 : 588 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), 589 "mul.wide.u32 \t$dst, $a, $b;", []>; 590 591def MULWIDES32 : 592 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 593 "mul.wide.s16 \t$dst, $a, $b;", []>; 594def MULWIDES32Imm : 595 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 596 "mul.wide.s16 \t$dst, $a, $b;", []>; 597def MULWIDES32Imm32 : 598 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 599 "mul.wide.s16 \t$dst, $a, $b;", []>; 600 601def MULWIDEU32 : 602 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 603 "mul.wide.u16 \t$dst, $a, $b;", []>; 604def MULWIDEU32Imm : 605 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 606 "mul.wide.u16 \t$dst, $a, $b;", []>; 607def MULWIDEU32Imm32 : 608 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 609 "mul.wide.u16 \t$dst, $a, $b;", []>; 610 611def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>; 612def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>; 613def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>; 614 615// Matchers for signed, unsigned mul.wide ISD nodes. 616def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)), 617 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, 618 Requires<[doMulWide]>; 619def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)), 620 (MULWIDES32Imm Int16Regs:$a, imm:$b)>, 621 Requires<[doMulWide]>; 622def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)), 623 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, 624 Requires<[doMulWide]>; 625def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)), 626 (MULWIDEU32Imm Int16Regs:$a, imm:$b)>, 627 Requires<[doMulWide]>; 628 629def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)), 630 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, 631 Requires<[doMulWide]>; 632def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)), 633 (MULWIDES64Imm Int32Regs:$a, imm:$b)>, 634 Requires<[doMulWide]>; 635def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)), 636 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, 637 Requires<[doMulWide]>; 638def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)), 639 (MULWIDEU64Imm Int32Regs:$a, imm:$b)>, 640 Requires<[doMulWide]>; 641 642// Predicates used for converting some patterns to mul.wide. 643def SInt32Const : PatLeaf<(imm), [{ 644 const APInt &v = N->getAPIntValue(); 645 return v.isSignedIntN(32); 646}]>; 647 648def UInt32Const : PatLeaf<(imm), [{ 649 const APInt &v = N->getAPIntValue(); 650 return v.isIntN(32); 651}]>; 652 653def SInt16Const : PatLeaf<(imm), [{ 654 const APInt &v = N->getAPIntValue(); 655 return v.isSignedIntN(16); 656}]>; 657 658def UInt16Const : PatLeaf<(imm), [{ 659 const APInt &v = N->getAPIntValue(); 660 return v.isIntN(16); 661}]>; 662 663def Int5Const : PatLeaf<(imm), [{ 664 // Check if 0 <= v < 32; only then will the result of (x << v) be an int32. 665 const APInt &v = N->getAPIntValue(); 666 return v.sge(0) && v.slt(32); 667}]>; 668 669def Int4Const : PatLeaf<(imm), [{ 670 // Check if 0 <= v < 16; only then will the result of (x << v) be an int16. 671 const APInt &v = N->getAPIntValue(); 672 return v.sge(0) && v.slt(16); 673}]>; 674 675def SHL2MUL32 : SDNodeXForm<imm, [{ 676 const APInt &v = N->getAPIntValue(); 677 APInt temp(32, 1); 678 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32); 679}]>; 680 681def SHL2MUL16 : SDNodeXForm<imm, [{ 682 const APInt &v = N->getAPIntValue(); 683 APInt temp(16, 1); 684 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16); 685}]>; 686 687// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide. 688def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)), 689 (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, 690 Requires<[doMulWide]>; 691def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)), 692 (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, 693 Requires<[doMulWide]>; 694 695def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)), 696 (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, 697 Requires<[doMulWide]>; 698def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)), 699 (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, 700 Requires<[doMulWide]>; 701 702// Convert "sign/zero-extend then multiply" to mul.wide. 703def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)), 704 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, 705 Requires<[doMulWide]>; 706def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)), 707 (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>, 708 Requires<[doMulWide]>; 709 710def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)), 711 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, 712 Requires<[doMulWide]>; 713def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)), 714 (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>, 715 Requires<[doMulWide]>; 716 717def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)), 718 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, 719 Requires<[doMulWide]>; 720def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)), 721 (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>, 722 Requires<[doMulWide]>; 723 724def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)), 725 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, 726 Requires<[doMulWide]>; 727def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)), 728 (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>, 729 Requires<[doMulWide]>; 730 731// 732// Integer multiply-add 733// 734def SDTIMAD : 735 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>, 736 SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; 737def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>; 738 739def MAD16rrr : 740 NVPTXInst<(outs Int16Regs:$dst), 741 (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c), 742 "mad.lo.s16 \t$dst, $a, $b, $c;", 743 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>; 744def MAD16rri : 745 NVPTXInst<(outs Int16Regs:$dst), 746 (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c), 747 "mad.lo.s16 \t$dst, $a, $b, $c;", 748 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>; 749def MAD16rir : 750 NVPTXInst<(outs Int16Regs:$dst), 751 (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c), 752 "mad.lo.s16 \t$dst, $a, $b, $c;", 753 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>; 754def MAD16rii : 755 NVPTXInst<(outs Int16Regs:$dst), 756 (ins Int16Regs:$a, i16imm:$b, i16imm:$c), 757 "mad.lo.s16 \t$dst, $a, $b, $c;", 758 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>; 759 760def MAD32rrr : 761 NVPTXInst<(outs Int32Regs:$dst), 762 (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c), 763 "mad.lo.s32 \t$dst, $a, $b, $c;", 764 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>; 765def MAD32rri : 766 NVPTXInst<(outs Int32Regs:$dst), 767 (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c), 768 "mad.lo.s32 \t$dst, $a, $b, $c;", 769 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>; 770def MAD32rir : 771 NVPTXInst<(outs Int32Regs:$dst), 772 (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c), 773 "mad.lo.s32 \t$dst, $a, $b, $c;", 774 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>; 775def MAD32rii : 776 NVPTXInst<(outs Int32Regs:$dst), 777 (ins Int32Regs:$a, i32imm:$b, i32imm:$c), 778 "mad.lo.s32 \t$dst, $a, $b, $c;", 779 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>; 780 781def MAD64rrr : 782 NVPTXInst<(outs Int64Regs:$dst), 783 (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c), 784 "mad.lo.s64 \t$dst, $a, $b, $c;", 785 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>; 786def MAD64rri : 787 NVPTXInst<(outs Int64Regs:$dst), 788 (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c), 789 "mad.lo.s64 \t$dst, $a, $b, $c;", 790 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>; 791def MAD64rir : 792 NVPTXInst<(outs Int64Regs:$dst), 793 (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c), 794 "mad.lo.s64 \t$dst, $a, $b, $c;", 795 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>; 796def MAD64rii : 797 NVPTXInst<(outs Int64Regs:$dst), 798 (ins Int64Regs:$a, i64imm:$b, i64imm:$c), 799 "mad.lo.s64 \t$dst, $a, $b, $c;", 800 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>; 801 802def INEG16 : 803 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 804 "neg.s16 \t$dst, $src;", 805 [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>; 806def INEG32 : 807 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 808 "neg.s32 \t$dst, $src;", 809 [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>; 810def INEG64 : 811 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 812 "neg.s64 \t$dst, $src;", 813 [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>; 814 815//----------------------------------- 816// Floating Point Arithmetic 817//----------------------------------- 818 819// Constant 1.0f 820def FloatConst1 : PatLeaf<(fpimm), [{ 821 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() && 822 N->getValueAPF().convertToFloat() == 1.0f; 823}]>; 824// Constant 1.0 (double) 825def DoubleConst1 : PatLeaf<(fpimm), [{ 826 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() && 827 N->getValueAPF().convertToDouble() == 1.0; 828}]>; 829 830// Loads FP16 constant into a register. 831// 832// ptxas does not have hex representation for fp16, so we can't use 833// fp16 immediate values in .f16 instructions. Instead we have to load 834// the constant into a register using mov.b16. 835def LOAD_CONST_F16 : 836 NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a), 837 "mov.b16 \t$dst, $a;", []>; 838 839defm FADD : F3_fma_component<"add", fadd>; 840defm FSUB : F3_fma_component<"sub", fsub>; 841defm FMUL : F3_fma_component<"mul", fmul>; 842 843defm FMIN : F3<"min", fminnum>; 844defm FMAX : F3<"max", fmaxnum>; 845 846defm FABS : F2<"abs", fabs>; 847defm FNEG : F2<"neg", fneg>; 848defm FSQRT : F2<"sqrt.rn", fsqrt>; 849 850// 851// F64 division 852// 853def FDIV641r : 854 NVPTXInst<(outs Float64Regs:$dst), 855 (ins f64imm:$a, Float64Regs:$b), 856 "rcp.rn.f64 \t$dst, $b;", 857 [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>; 858def FDIV64rr : 859 NVPTXInst<(outs Float64Regs:$dst), 860 (ins Float64Regs:$a, Float64Regs:$b), 861 "div.rn.f64 \t$dst, $a, $b;", 862 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>; 863def FDIV64ri : 864 NVPTXInst<(outs Float64Regs:$dst), 865 (ins Float64Regs:$a, f64imm:$b), 866 "div.rn.f64 \t$dst, $a, $b;", 867 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>; 868 869// 870// F32 Approximate reciprocal 871// 872def FDIV321r_ftz : 873 NVPTXInst<(outs Float32Regs:$dst), 874 (ins f32imm:$a, Float32Regs:$b), 875 "rcp.approx.ftz.f32 \t$dst, $b;", 876 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 877 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 878def FDIV321r : 879 NVPTXInst<(outs Float32Regs:$dst), 880 (ins f32imm:$a, Float32Regs:$b), 881 "rcp.approx.f32 \t$dst, $b;", 882 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 883 Requires<[do_DIVF32_APPROX]>; 884// 885// F32 Approximate division 886// 887def FDIV32approxrr_ftz : 888 NVPTXInst<(outs Float32Regs:$dst), 889 (ins Float32Regs:$a, Float32Regs:$b), 890 "div.approx.ftz.f32 \t$dst, $a, $b;", 891 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 892 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 893def FDIV32approxri_ftz : 894 NVPTXInst<(outs Float32Regs:$dst), 895 (ins Float32Regs:$a, f32imm:$b), 896 "div.approx.ftz.f32 \t$dst, $a, $b;", 897 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 898 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 899def FDIV32approxrr : 900 NVPTXInst<(outs Float32Regs:$dst), 901 (ins Float32Regs:$a, Float32Regs:$b), 902 "div.approx.f32 \t$dst, $a, $b;", 903 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 904 Requires<[do_DIVF32_APPROX]>; 905def FDIV32approxri : 906 NVPTXInst<(outs Float32Regs:$dst), 907 (ins Float32Regs:$a, f32imm:$b), 908 "div.approx.f32 \t$dst, $a, $b;", 909 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 910 Requires<[do_DIVF32_APPROX]>; 911// 912// F32 Semi-accurate reciprocal 913// 914// rcp.approx gives the same result as div.full(1.0f, a) and is faster. 915// 916def FDIV321r_approx_ftz : 917 NVPTXInst<(outs Float32Regs:$dst), 918 (ins f32imm:$a, Float32Regs:$b), 919 "rcp.approx.ftz.f32 \t$dst, $b;", 920 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 921 Requires<[do_DIVF32_FULL, doF32FTZ]>; 922def FDIV321r_approx : 923 NVPTXInst<(outs Float32Regs:$dst), 924 (ins f32imm:$a, Float32Regs:$b), 925 "rcp.approx.f32 \t$dst, $b;", 926 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 927 Requires<[do_DIVF32_FULL]>; 928// 929// F32 Semi-accurate division 930// 931def FDIV32rr_ftz : 932 NVPTXInst<(outs Float32Regs:$dst), 933 (ins Float32Regs:$a, Float32Regs:$b), 934 "div.full.ftz.f32 \t$dst, $a, $b;", 935 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 936 Requires<[do_DIVF32_FULL, doF32FTZ]>; 937def FDIV32ri_ftz : 938 NVPTXInst<(outs Float32Regs:$dst), 939 (ins Float32Regs:$a, f32imm:$b), 940 "div.full.ftz.f32 \t$dst, $a, $b;", 941 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 942 Requires<[do_DIVF32_FULL, doF32FTZ]>; 943def FDIV32rr : 944 NVPTXInst<(outs Float32Regs:$dst), 945 (ins Float32Regs:$a, Float32Regs:$b), 946 "div.full.f32 \t$dst, $a, $b;", 947 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 948 Requires<[do_DIVF32_FULL]>; 949def FDIV32ri : 950 NVPTXInst<(outs Float32Regs:$dst), 951 (ins Float32Regs:$a, f32imm:$b), 952 "div.full.f32 \t$dst, $a, $b;", 953 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 954 Requires<[do_DIVF32_FULL]>; 955// 956// F32 Accurate reciprocal 957// 958def FDIV321r_prec_ftz : 959 NVPTXInst<(outs Float32Regs:$dst), 960 (ins f32imm:$a, Float32Regs:$b), 961 "rcp.rn.ftz.f32 \t$dst, $b;", 962 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 963 Requires<[doF32FTZ]>; 964def FDIV321r_prec : 965 NVPTXInst<(outs Float32Regs:$dst), 966 (ins f32imm:$a, Float32Regs:$b), 967 "rcp.rn.f32 \t$dst, $b;", 968 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>; 969// 970// F32 Accurate division 971// 972def FDIV32rr_prec_ftz : 973 NVPTXInst<(outs Float32Regs:$dst), 974 (ins Float32Regs:$a, Float32Regs:$b), 975 "div.rn.ftz.f32 \t$dst, $a, $b;", 976 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 977 Requires<[doF32FTZ]>; 978def FDIV32ri_prec_ftz : 979 NVPTXInst<(outs Float32Regs:$dst), 980 (ins Float32Regs:$a, f32imm:$b), 981 "div.rn.ftz.f32 \t$dst, $a, $b;", 982 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 983 Requires<[doF32FTZ]>; 984def FDIV32rr_prec : 985 NVPTXInst<(outs Float32Regs:$dst), 986 (ins Float32Regs:$a, Float32Regs:$b), 987 "div.rn.f32 \t$dst, $a, $b;", 988 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>; 989def FDIV32ri_prec : 990 NVPTXInst<(outs Float32Regs:$dst), 991 (ins Float32Regs:$a, f32imm:$b), 992 "div.rn.f32 \t$dst, $a, $b;", 993 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>; 994 995// 996// FMA 997// 998 999multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> { 1000 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), 1001 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1002 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, 1003 Requires<[Pred]>; 1004 def rri : NVPTXInst<(outs RC:$dst), 1005 (ins RC:$a, RC:$b, ImmCls:$c), 1006 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1007 [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>, 1008 Requires<[Pred]>; 1009 def rir : NVPTXInst<(outs RC:$dst), 1010 (ins RC:$a, ImmCls:$b, RC:$c), 1011 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1012 [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>, 1013 Requires<[Pred]>; 1014 def rii : NVPTXInst<(outs RC:$dst), 1015 (ins RC:$a, ImmCls:$b, ImmCls:$c), 1016 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1017 [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>, 1018 Requires<[Pred]>; 1019} 1020 1021multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> { 1022 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), 1023 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1024 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, 1025 Requires<[useFP16Math, Pred]>; 1026} 1027 1028defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>; 1029defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, True>; 1030defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>; 1031defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, True>; 1032defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>; 1033defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, True>; 1034defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, True>; 1035 1036// sin/cos 1037def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1038 "sin.approx.f32 \t$dst, $src;", 1039 [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>, 1040 Requires<[allowUnsafeFPMath]>; 1041def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1042 "cos.approx.f32 \t$dst, $src;", 1043 [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>, 1044 Requires<[allowUnsafeFPMath]>; 1045 1046// Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)), 1047// i.e. "poor man's fmod()" 1048 1049// frem - f32 FTZ 1050def : Pat<(frem Float32Regs:$x, Float32Regs:$y), 1051 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32 1052 (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRZI_FTZ), 1053 Float32Regs:$y))>, 1054 Requires<[doF32FTZ]>; 1055def : Pat<(frem Float32Regs:$x, fpimm:$y), 1056 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32 1057 (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRZI_FTZ), 1058 fpimm:$y))>, 1059 Requires<[doF32FTZ]>; 1060 1061// frem - f32 1062def : Pat<(frem Float32Regs:$x, Float32Regs:$y), 1063 (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32 1064 (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRZI), 1065 Float32Regs:$y))>; 1066def : Pat<(frem Float32Regs:$x, fpimm:$y), 1067 (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32 1068 (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRZI), 1069 fpimm:$y))>; 1070 1071// frem - f64 1072def : Pat<(frem Float64Regs:$x, Float64Regs:$y), 1073 (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64 1074 (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRZI), 1075 Float64Regs:$y))>; 1076def : Pat<(frem Float64Regs:$x, fpimm:$y), 1077 (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64 1078 (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRZI), 1079 fpimm:$y))>; 1080 1081//----------------------------------- 1082// Bitwise operations 1083//----------------------------------- 1084 1085// Template for three-arg bitwise operations. Takes three args, Creates .b16, 1086// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr. 1087multiclass BITWISE<string OpcStr, SDNode OpNode> { 1088 def b1rr : 1089 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), 1090 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), 1091 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; 1092 def b1ri : 1093 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), 1094 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), 1095 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>; 1096 def b16rr : 1097 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 1098 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), 1099 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; 1100 def b16ri : 1101 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 1102 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), 1103 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>; 1104 def b32rr : 1105 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 1106 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), 1107 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 1108 def b32ri : 1109 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 1110 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), 1111 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 1112 def b64rr : 1113 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), 1114 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), 1115 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; 1116 def b64ri : 1117 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), 1118 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), 1119 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; 1120} 1121 1122defm OR : BITWISE<"or", or>; 1123defm AND : BITWISE<"and", and>; 1124defm XOR : BITWISE<"xor", xor>; 1125 1126def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src), 1127 "not.pred \t$dst, $src;", 1128 [(set Int1Regs:$dst, (not Int1Regs:$src))]>; 1129def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 1130 "not.b16 \t$dst, $src;", 1131 [(set Int16Regs:$dst, (not Int16Regs:$src))]>; 1132def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 1133 "not.b32 \t$dst, $src;", 1134 [(set Int32Regs:$dst, (not Int32Regs:$src))]>; 1135def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 1136 "not.b64 \t$dst, $src;", 1137 [(set Int64Regs:$dst, (not Int64Regs:$src))]>; 1138 1139// Template for left/right shifts. Takes three operands, 1140// [dest (reg), src (reg), shift (reg or imm)]. 1141// dest and src may be int64, int32, or int16, but shift is always int32. 1142// 1143// This template also defines a 32-bit shift (imm, imm) instruction. 1144multiclass SHIFT<string OpcStr, SDNode OpNode> { 1145 def i64rr : 1146 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b), 1147 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 1148 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>; 1149 def i64ri : 1150 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b), 1151 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 1152 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>; 1153 def i32rr : 1154 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 1155 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1156 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 1157 def i32ri : 1158 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 1159 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1160 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>; 1161 def i32ii : 1162 NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b), 1163 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1164 [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>; 1165 def i16rr : 1166 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b), 1167 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 1168 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>; 1169 def i16ri : 1170 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 1171 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 1172 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>; 1173} 1174 1175defm SHL : SHIFT<"shl.b", shl>; 1176defm SRA : SHIFT<"shr.s", sra>; 1177defm SRL : SHIFT<"shr.u", srl>; 1178 1179// Bit-reverse 1180def BREV32 : 1181 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), 1182 "brev.b32 \t$dst, $a;", 1183 [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>; 1184def BREV64 : 1185 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a), 1186 "brev.b64 \t$dst, $a;", 1187 [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>; 1188 1189// 1190// Rotate: Use ptx shf instruction if available. 1191// 1192 1193// 32 bit r2 = rotl r1, n 1194// => 1195// r2 = shf.l r1, r1, n 1196def ROTL32imm_hw : 1197 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), 1198 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", 1199 [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>, 1200 Requires<[hasHWROT32]>; 1201 1202def ROTL32reg_hw : 1203 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1204 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", 1205 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, 1206 Requires<[hasHWROT32]>; 1207 1208// 32 bit r2 = rotr r1, n 1209// => 1210// r2 = shf.r r1, r1, n 1211def ROTR32imm_hw : 1212 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), 1213 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", 1214 [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>, 1215 Requires<[hasHWROT32]>; 1216 1217def ROTR32reg_hw : 1218 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1219 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", 1220 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, 1221 Requires<[hasHWROT32]>; 1222 1223// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1. 1224def ROT32imm_sw : 1225 NVPTXInst<(outs Int32Regs:$dst), 1226 (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2), 1227 "{{\n\t" 1228 ".reg .b32 %lhs;\n\t" 1229 ".reg .b32 %rhs;\n\t" 1230 "shl.b32 \t%lhs, $src, $amt1;\n\t" 1231 "shr.b32 \t%rhs, $src, $amt2;\n\t" 1232 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1233 "}}", 1234 []>; 1235 1236def SUB_FRM_32 : SDNodeXForm<imm, [{ 1237 return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32); 1238}]>; 1239 1240def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)), 1241 (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>, 1242 Requires<[noHWROT32]>; 1243def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)), 1244 (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>, 1245 Requires<[noHWROT32]>; 1246 1247// 32-bit software rotate left by register. 1248def ROTL32reg_sw : 1249 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1250 "{{\n\t" 1251 ".reg .b32 %lhs;\n\t" 1252 ".reg .b32 %rhs;\n\t" 1253 ".reg .b32 %amt2;\n\t" 1254 "shl.b32 \t%lhs, $src, $amt;\n\t" 1255 "sub.s32 \t%amt2, 32, $amt;\n\t" 1256 "shr.b32 \t%rhs, $src, %amt2;\n\t" 1257 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1258 "}}", 1259 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, 1260 Requires<[noHWROT32]>; 1261 1262// 32-bit software rotate right by register. 1263def ROTR32reg_sw : 1264 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1265 "{{\n\t" 1266 ".reg .b32 %lhs;\n\t" 1267 ".reg .b32 %rhs;\n\t" 1268 ".reg .b32 %amt2;\n\t" 1269 "shr.b32 \t%lhs, $src, $amt;\n\t" 1270 "sub.s32 \t%amt2, 32, $amt;\n\t" 1271 "shl.b32 \t%rhs, $src, %amt2;\n\t" 1272 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1273 "}}", 1274 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, 1275 Requires<[noHWROT32]>; 1276 1277// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1. 1278def ROT64imm_sw : 1279 NVPTXInst<(outs Int64Regs:$dst), 1280 (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2), 1281 "{{\n\t" 1282 ".reg .b64 %lhs;\n\t" 1283 ".reg .b64 %rhs;\n\t" 1284 "shl.b64 \t%lhs, $src, $amt1;\n\t" 1285 "shr.b64 \t%rhs, $src, $amt2;\n\t" 1286 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1287 "}}", 1288 []>; 1289 1290def SUB_FRM_64 : SDNodeXForm<imm, [{ 1291 return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32); 1292}]>; 1293 1294def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)), 1295 (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>; 1296def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)), 1297 (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>; 1298 1299// 64-bit software rotate left by register. 1300def ROTL64reg_sw : 1301 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), 1302 "{{\n\t" 1303 ".reg .b64 %lhs;\n\t" 1304 ".reg .b64 %rhs;\n\t" 1305 ".reg .u32 %amt2;\n\t" 1306 "shl.b64 \t%lhs, $src, $amt;\n\t" 1307 "sub.u32 \t%amt2, 64, $amt;\n\t" 1308 "shr.b64 \t%rhs, $src, %amt2;\n\t" 1309 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1310 "}}", 1311 [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>; 1312 1313def ROTR64reg_sw : 1314 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), 1315 "{{\n\t" 1316 ".reg .b64 %lhs;\n\t" 1317 ".reg .b64 %rhs;\n\t" 1318 ".reg .u32 %amt2;\n\t" 1319 "shr.b64 \t%lhs, $src, $amt;\n\t" 1320 "sub.u32 \t%amt2, 64, $amt;\n\t" 1321 "shl.b64 \t%rhs, $src, %amt2;\n\t" 1322 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1323 "}}", 1324 [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>; 1325 1326// 1327// Funnnel shift in clamp mode 1328// 1329 1330// Create SDNodes so they can be used in the DAG code, e.g. 1331// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts) 1332def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>; 1333def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>; 1334 1335def FUNSHFLCLAMP : 1336 NVPTXInst<(outs Int32Regs:$dst), 1337 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), 1338 "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;", 1339 [(set Int32Regs:$dst, 1340 (FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; 1341 1342def FUNSHFRCLAMP : 1343 NVPTXInst<(outs Int32Regs:$dst), 1344 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), 1345 "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;", 1346 [(set Int32Regs:$dst, 1347 (FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; 1348 1349// 1350// BFE - bit-field extract 1351// 1352 1353// Template for BFE instructions. Takes four args, 1354// [dest (reg), src (reg), start (reg or imm), end (reg or imm)]. 1355// Start may be an imm only if end is also an imm. FIXME: Is this a 1356// restriction in PTX? 1357// 1358// dest and src may be int32 or int64, but start and end are always int32. 1359multiclass BFE<string TyStr, RegisterClass RC> { 1360 def rrr 1361 : NVPTXInst<(outs RC:$d), 1362 (ins RC:$a, Int32Regs:$b, Int32Regs:$c), 1363 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1364 def rri 1365 : NVPTXInst<(outs RC:$d), 1366 (ins RC:$a, Int32Regs:$b, i32imm:$c), 1367 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1368 def rii 1369 : NVPTXInst<(outs RC:$d), 1370 (ins RC:$a, i32imm:$b, i32imm:$c), 1371 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1372} 1373 1374let hasSideEffects = false in { 1375 defm BFE_S32 : BFE<"s32", Int32Regs>; 1376 defm BFE_U32 : BFE<"u32", Int32Regs>; 1377 defm BFE_S64 : BFE<"s64", Int64Regs>; 1378 defm BFE_U64 : BFE<"u64", Int64Regs>; 1379} 1380 1381//----------------------------------- 1382// Comparison instructions (setp, set) 1383//----------------------------------- 1384 1385// FIXME: This doesn't cover versions of set and setp that combine with a 1386// boolean predicate, e.g. setp.eq.and.b16. 1387 1388let hasSideEffects = false in { 1389 multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> { 1390 def rr : 1391 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), 1392 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1393 " \t$dst, $a, $b;"), []>; 1394 def ri : 1395 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), 1396 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1397 " \t$dst, $a, $b;"), []>; 1398 def ir : 1399 NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), 1400 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1401 " \t$dst, $a, $b;"), []>; 1402 } 1403} 1404 1405defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>; 1406defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>; 1407defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>; 1408defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>; 1409defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>; 1410defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>; 1411defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>; 1412defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>; 1413defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>; 1414defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>; 1415defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>; 1416def SETP_f16rr : 1417 NVPTXInst<(outs Int1Regs:$dst), 1418 (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp), 1419 "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;", 1420 []>, Requires<[useFP16Math]>; 1421 1422def SETP_f16x2rr : 1423 NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), 1424 (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp), 1425 "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;", 1426 []>, 1427 Requires<[useFP16Math]>; 1428 1429 1430// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form 1431// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination 1432// reg, either u32, s32, or f32. Anyway these aren't used at the moment. 1433 1434let hasSideEffects = false in { 1435 multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> { 1436 def rr : NVPTXInst<(outs Int32Regs:$dst), 1437 (ins RC:$a, RC:$b, CmpMode:$cmp), 1438 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1439 def ri : NVPTXInst<(outs Int32Regs:$dst), 1440 (ins RC:$a, ImmCls:$b, CmpMode:$cmp), 1441 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1442 def ir : NVPTXInst<(outs Int32Regs:$dst), 1443 (ins ImmCls:$a, RC:$b, CmpMode:$cmp), 1444 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1445 } 1446} 1447 1448defm SET_b16 : SET<"b16", Int16Regs, i16imm>; 1449defm SET_s16 : SET<"s16", Int16Regs, i16imm>; 1450defm SET_u16 : SET<"u16", Int16Regs, i16imm>; 1451defm SET_b32 : SET<"b32", Int32Regs, i32imm>; 1452defm SET_s32 : SET<"s32", Int32Regs, i32imm>; 1453defm SET_u32 : SET<"u32", Int32Regs, i32imm>; 1454defm SET_b64 : SET<"b64", Int64Regs, i64imm>; 1455defm SET_s64 : SET<"s64", Int64Regs, i64imm>; 1456defm SET_u64 : SET<"u64", Int64Regs, i64imm>; 1457defm SET_f16 : SET<"f16", Float16Regs, f16imm>; 1458defm SET_f32 : SET<"f32", Float32Regs, f32imm>; 1459defm SET_f64 : SET<"f64", Float64Regs, f64imm>; 1460 1461//----------------------------------- 1462// Selection instructions (selp) 1463//----------------------------------- 1464 1465// FIXME: Missing slct 1466 1467// selp instructions that don't have any pattern matches; we explicitly use 1468// them within this file. 1469let hasSideEffects = false in { 1470 multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> { 1471 def rr : NVPTXInst<(outs RC:$dst), 1472 (ins RC:$a, RC:$b, Int1Regs:$p), 1473 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1474 def ri : NVPTXInst<(outs RC:$dst), 1475 (ins RC:$a, ImmCls:$b, Int1Regs:$p), 1476 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1477 def ir : NVPTXInst<(outs RC:$dst), 1478 (ins ImmCls:$a, RC:$b, Int1Regs:$p), 1479 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1480 def ii : NVPTXInst<(outs RC:$dst), 1481 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), 1482 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1483 } 1484 1485 multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls, 1486 SDNode ImmNode> { 1487 def rr : 1488 NVPTXInst<(outs RC:$dst), 1489 (ins RC:$a, RC:$b, Int1Regs:$p), 1490 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1491 [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>; 1492 def ri : 1493 NVPTXInst<(outs RC:$dst), 1494 (ins RC:$a, ImmCls:$b, Int1Regs:$p), 1495 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1496 [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>; 1497 def ir : 1498 NVPTXInst<(outs RC:$dst), 1499 (ins ImmCls:$a, RC:$b, Int1Regs:$p), 1500 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1501 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>; 1502 def ii : 1503 NVPTXInst<(outs RC:$dst), 1504 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), 1505 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1506 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>; 1507 } 1508} 1509 1510// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as 1511// good. 1512defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>; 1513defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>; 1514defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>; 1515defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>; 1516defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>; 1517defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>; 1518defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>; 1519defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>; 1520defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>; 1521defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>; 1522defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>; 1523defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>; 1524 1525def SELP_f16x2rr : 1526 NVPTXInst<(outs Float16x2Regs:$dst), 1527 (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p), 1528 "selp.b32 \t$dst, $a, $b, $p;", 1529 [(set Float16x2Regs:$dst, 1530 (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>; 1531 1532//----------------------------------- 1533// Data Movement (Load / Store, Move) 1534//----------------------------------- 1535 1536def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], 1537 [SDNPWantRoot]>; 1538def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex], 1539 [SDNPWantRoot]>; 1540def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>; 1541 1542def MEMri : Operand<i32> { 1543 let PrintMethod = "printMemOperand"; 1544 let MIOperandInfo = (ops Int32Regs, i32imm); 1545} 1546def MEMri64 : Operand<i64> { 1547 let PrintMethod = "printMemOperand"; 1548 let MIOperandInfo = (ops Int64Regs, i64imm); 1549} 1550 1551def imem : Operand<iPTR> { 1552 let PrintMethod = "printOperand"; 1553} 1554 1555def imemAny : Operand<iPTRAny> { 1556 let PrintMethod = "printOperand"; 1557} 1558 1559def LdStCode : Operand<i32> { 1560 let PrintMethod = "printLdStCode"; 1561} 1562 1563def MmaCode : Operand<i32> { 1564 let PrintMethod = "printMmaCode"; 1565} 1566 1567def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; 1568def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>; 1569 1570// Load a memory address into a u32 or u64 register. 1571def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a), 1572 "mov.u32 \t$dst, $a;", 1573 [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>; 1574def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a), 1575 "mov.u64 \t$dst, $a;", 1576 [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>; 1577 1578// Get pointer to local stack. 1579let hasSideEffects = false in { 1580 def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num), 1581 "mov.u32 \t$d, __local_depot$num;", []>; 1582 def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num), 1583 "mov.u64 \t$d, __local_depot$num;", []>; 1584} 1585 1586 1587// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp 1588let IsSimpleMove=1, hasSideEffects=0 in { 1589 def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss), 1590 "mov.pred \t$dst, $sss;", []>; 1591 def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss), 1592 "mov.u16 \t$dst, $sss;", []>; 1593 def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss), 1594 "mov.u32 \t$dst, $sss;", []>; 1595 def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), 1596 "mov.u64 \t$dst, $sss;", []>; 1597 1598 def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src), 1599 // We have to use .b16 here as there's no mov.f16. 1600 "mov.b16 \t$dst, $src;", []>; 1601 def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1602 "mov.f32 \t$dst, $src;", []>; 1603 def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src), 1604 "mov.f64 \t$dst, $src;", []>; 1605} 1606 1607def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src), 1608 "mov.pred \t$dst, $src;", 1609 [(set Int1Regs:$dst, imm:$src)]>; 1610def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src), 1611 "mov.u16 \t$dst, $src;", 1612 [(set Int16Regs:$dst, imm:$src)]>; 1613def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src), 1614 "mov.u32 \t$dst, $src;", 1615 [(set Int32Regs:$dst, imm:$src)]>; 1616def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src), 1617 "mov.u64 \t$dst, $src;", 1618 [(set Int64Regs:$dst, imm:$src)]>; 1619 1620def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src), 1621 "mov.f32 \t$dst, $src;", 1622 [(set Float32Regs:$dst, fpimm:$src)]>; 1623def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src), 1624 "mov.f64 \t$dst, $src;", 1625 [(set Float64Regs:$dst, fpimm:$src)]>; 1626 1627def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>; 1628 1629//---- Copy Frame Index ---- 1630def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr), 1631 "add.u32 \t$dst, ${addr:add};", 1632 [(set Int32Regs:$dst, ADDRri:$addr)]>; 1633def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr), 1634 "add.u64 \t$dst, ${addr:add};", 1635 [(set Int64Regs:$dst, ADDRri64:$addr)]>; 1636 1637//----------------------------------- 1638// Comparison and Selection 1639//----------------------------------- 1640 1641multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode, 1642 Instruction setp_16rr, 1643 Instruction setp_16ri, 1644 Instruction setp_16ir, 1645 Instruction setp_32rr, 1646 Instruction setp_32ri, 1647 Instruction setp_32ir, 1648 Instruction setp_64rr, 1649 Instruction setp_64ri, 1650 Instruction setp_64ir, 1651 Instruction set_16rr, 1652 Instruction set_16ri, 1653 Instruction set_16ir, 1654 Instruction set_32rr, 1655 Instruction set_32ri, 1656 Instruction set_32ir, 1657 Instruction set_64rr, 1658 Instruction set_64ri, 1659 Instruction set_64ir> { 1660 // i16 -> pred 1661 def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)), 1662 (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; 1663 def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)), 1664 (setp_16ri Int16Regs:$a, imm:$b, Mode)>; 1665 def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)), 1666 (setp_16ir imm:$a, Int16Regs:$b, Mode)>; 1667 // i32 -> pred 1668 def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)), 1669 (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; 1670 def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)), 1671 (setp_32ri Int32Regs:$a, imm:$b, Mode)>; 1672 def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)), 1673 (setp_32ir imm:$a, Int32Regs:$b, Mode)>; 1674 // i64 -> pred 1675 def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)), 1676 (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; 1677 def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)), 1678 (setp_64ri Int64Regs:$a, imm:$b, Mode)>; 1679 def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)), 1680 (setp_64ir imm:$a, Int64Regs:$b, Mode)>; 1681 1682 // i16 -> i32 1683 def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)), 1684 (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; 1685 def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)), 1686 (set_16ri Int16Regs:$a, imm:$b, Mode)>; 1687 def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)), 1688 (set_16ir imm:$a, Int16Regs:$b, Mode)>; 1689 // i32 -> i32 1690 def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)), 1691 (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; 1692 def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)), 1693 (set_32ri Int32Regs:$a, imm:$b, Mode)>; 1694 def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)), 1695 (set_32ir imm:$a, Int32Regs:$b, Mode)>; 1696 // i64 -> i32 1697 def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)), 1698 (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; 1699 def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)), 1700 (set_64ri Int64Regs:$a, imm:$b, Mode)>; 1701 def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)), 1702 (set_64ir imm:$a, Int64Regs:$b, Mode)>; 1703} 1704 1705multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode> 1706 : ISET_FORMAT<OpNode, Mode, 1707 SETP_s16rr, SETP_s16ri, SETP_s16ir, 1708 SETP_s32rr, SETP_s32ri, SETP_s32ir, 1709 SETP_s64rr, SETP_s64ri, SETP_s64ir, 1710 SET_s16rr, SET_s16ri, SET_s16ir, 1711 SET_s32rr, SET_s32ri, SET_s32ir, 1712 SET_s64rr, SET_s64ri, SET_s64ir> { 1713 // TableGen doesn't like empty multiclasses. 1714 def : PatLeaf<(i32 0)>; 1715} 1716 1717multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode> 1718 : ISET_FORMAT<OpNode, Mode, 1719 SETP_u16rr, SETP_u16ri, SETP_u16ir, 1720 SETP_u32rr, SETP_u32ri, SETP_u32ir, 1721 SETP_u64rr, SETP_u64ri, SETP_u64ir, 1722 SET_u16rr, SET_u16ri, SET_u16ir, 1723 SET_u32rr, SET_u32ri, SET_u32ir, 1724 SET_u64rr, SET_u64ri, SET_u64ir> { 1725 // TableGen doesn't like empty multiclasses. 1726 def : PatLeaf<(i32 0)>; 1727} 1728 1729defm : ISET_FORMAT_SIGNED<setgt, CmpGT>; 1730defm : ISET_FORMAT_SIGNED<setlt, CmpLT>; 1731defm : ISET_FORMAT_SIGNED<setge, CmpGE>; 1732defm : ISET_FORMAT_SIGNED<setle, CmpLE>; 1733defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>; 1734defm : ISET_FORMAT_SIGNED<setne, CmpNE>; 1735defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>; 1736defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>; 1737defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>; 1738defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>; 1739defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>; 1740defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>; 1741 1742// i1 compares 1743def : Pat<(setne Int1Regs:$a, Int1Regs:$b), 1744 (XORb1rr Int1Regs:$a, Int1Regs:$b)>; 1745def : Pat<(setune Int1Regs:$a, Int1Regs:$b), 1746 (XORb1rr Int1Regs:$a, Int1Regs:$b)>; 1747 1748def : Pat<(seteq Int1Regs:$a, Int1Regs:$b), 1749 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1750def : Pat<(setueq Int1Regs:$a, Int1Regs:$b), 1751 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1752 1753// i1 compare -> i32 1754def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), 1755 (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1756def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), 1757 (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1758 1759 1760 1761multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> { 1762 // f16 -> pred 1763 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), 1764 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, 1765 Requires<[useFP16Math,doF32FTZ]>; 1766 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), 1767 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, 1768 Requires<[useFP16Math]>; 1769 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), 1770 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, 1771 Requires<[useFP16Math,doF32FTZ]>; 1772 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), 1773 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, 1774 Requires<[useFP16Math]>; 1775 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), 1776 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, 1777 Requires<[useFP16Math,doF32FTZ]>; 1778 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), 1779 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, 1780 Requires<[useFP16Math]>; 1781 1782 // f32 -> pred 1783 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), 1784 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, 1785 Requires<[doF32FTZ]>; 1786 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), 1787 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; 1788 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), 1789 (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, 1790 Requires<[doF32FTZ]>; 1791 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), 1792 (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>; 1793 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), 1794 (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, 1795 Requires<[doF32FTZ]>; 1796 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), 1797 (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>; 1798 1799 // f64 -> pred 1800 def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)), 1801 (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; 1802 def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)), 1803 (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>; 1804 def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)), 1805 (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>; 1806 1807 // f16 -> i32 1808 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), 1809 (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, 1810 Requires<[useFP16Math, doF32FTZ]>; 1811 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), 1812 (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, 1813 Requires<[useFP16Math]>; 1814 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), 1815 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, 1816 Requires<[useFP16Math, doF32FTZ]>; 1817 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), 1818 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, 1819 Requires<[useFP16Math]>; 1820 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), 1821 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, 1822 Requires<[useFP16Math, doF32FTZ]>; 1823 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), 1824 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, 1825 Requires<[useFP16Math]>; 1826 1827 // f32 -> i32 1828 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), 1829 (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, 1830 Requires<[doF32FTZ]>; 1831 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), 1832 (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; 1833 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), 1834 (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, 1835 Requires<[doF32FTZ]>; 1836 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), 1837 (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>; 1838 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), 1839 (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, 1840 Requires<[doF32FTZ]>; 1841 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), 1842 (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>; 1843 1844 // f64 -> i32 1845 def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)), 1846 (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; 1847 def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)), 1848 (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>; 1849 def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)), 1850 (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>; 1851} 1852 1853defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>; 1854defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>; 1855defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>; 1856defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>; 1857defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>; 1858defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>; 1859 1860defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>; 1861defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>; 1862defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>; 1863defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>; 1864defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>; 1865defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>; 1866 1867defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>; 1868defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>; 1869defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>; 1870defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>; 1871defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>; 1872defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>; 1873 1874defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>; 1875defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>; 1876 1877// FIXME: What is this doing here? Can it be deleted? 1878// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad, 1879// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 1880 1881def SDTDeclareParamProfile : 1882 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; 1883def SDTDeclareScalarParamProfile : 1884 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; 1885def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; 1886def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>; 1887def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>; 1888def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 1889def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 1890def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; 1891def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>; 1892def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>; 1893def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; 1894def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; 1895def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>; 1896def SDTCallVoidProfile : SDTypeProfile<0, 1, []>; 1897def SDTCallValProfile : SDTypeProfile<1, 0, []>; 1898def SDTMoveParamProfile : SDTypeProfile<1, 1, []>; 1899def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; 1900def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>; 1901def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>; 1902def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>; 1903def SDTProxyRegProfile : SDTypeProfile<1, 1, []>; 1904 1905def DeclareParam : 1906 SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile, 1907 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1908def DeclareScalarParam : 1909 SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile, 1910 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1911def DeclareRetParam : 1912 SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile, 1913 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1914def DeclareRet : 1915 SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile, 1916 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1917def LoadParam : 1918 SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile, 1919 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1920def LoadParamV2 : 1921 SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile, 1922 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1923def LoadParamV4 : 1924 SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile, 1925 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1926def PrintCall : 1927 SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile, 1928 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1929def PrintConvergentCall : 1930 SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile, 1931 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1932def PrintCallUni : 1933 SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile, 1934 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1935def PrintConvergentCallUni : 1936 SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile, 1937 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1938def StoreParam : 1939 SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile, 1940 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1941def StoreParamV2 : 1942 SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile, 1943 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1944def StoreParamV4 : 1945 SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile, 1946 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1947def StoreParamU32 : 1948 SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile, 1949 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1950def StoreParamS32 : 1951 SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile, 1952 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1953def CallArgBegin : 1954 SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile, 1955 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1956def CallArg : 1957 SDNode<"NVPTXISD::CallArg", SDTCallArgProfile, 1958 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1959def LastCallArg : 1960 SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile, 1961 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1962def CallArgEnd : 1963 SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile, 1964 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1965def CallVoid : 1966 SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile, 1967 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1968def Prototype : 1969 SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile, 1970 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1971def CallVal : 1972 SDNode<"NVPTXISD::CallVal", SDTCallValProfile, 1973 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1974def MoveParam : 1975 SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>; 1976def StoreRetval : 1977 SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile, 1978 [SDNPHasChain, SDNPSideEffect]>; 1979def StoreRetvalV2 : 1980 SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile, 1981 [SDNPHasChain, SDNPSideEffect]>; 1982def StoreRetvalV4 : 1983 SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile, 1984 [SDNPHasChain, SDNPSideEffect]>; 1985def PseudoUseParam : 1986 SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile, 1987 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1988def RETURNNode : 1989 SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile, 1990 [SDNPHasChain, SDNPSideEffect]>; 1991def ProxyReg : 1992 SDNode<"NVPTXISD::ProxyReg", SDTProxyRegProfile, 1993 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1994 1995let mayLoad = true in { 1996 class LoadParamMemInst<NVPTXRegClass regclass, string opstr> : 1997 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), 1998 !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"), 1999 []>; 2000 2001 class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> : 2002 NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b), 2003 !strconcat("ld.param.v2", opstr, 2004 " \t{{$dst, $dst2}}, [retval0+$b];"), []>; 2005 2006 class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> : 2007 NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3, 2008 regclass:$dst4), 2009 (ins i32imm:$b), 2010 !strconcat("ld.param.v4", opstr, 2011 " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), 2012 []>; 2013} 2014 2015class LoadParamRegInst<NVPTXRegClass regclass, string opstr> : 2016 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), 2017 !strconcat("mov", opstr, " \t$dst, retval$b;"), 2018 [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>; 2019 2020let mayStore = true in { 2021 class StoreParamInst<NVPTXRegClass regclass, string opstr> : 2022 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b), 2023 !strconcat("st.param", opstr, " \t[param$a+$b], $val;"), 2024 []>; 2025 2026 class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> : 2027 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, 2028 i32imm:$a, i32imm:$b), 2029 !strconcat("st.param.v2", opstr, 2030 " \t[param$a+$b], {{$val, $val2}};"), 2031 []>; 2032 2033 class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> : 2034 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3, 2035 regclass:$val4, i32imm:$a, 2036 i32imm:$b), 2037 !strconcat("st.param.v4", opstr, 2038 " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"), 2039 []>; 2040 2041 class StoreRetvalInst<NVPTXRegClass regclass, string opstr> : 2042 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a), 2043 !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"), 2044 []>; 2045 2046 class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> : 2047 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a), 2048 !strconcat("st.param.v2", opstr, 2049 " \t[func_retval0+$a], {{$val, $val2}};"), 2050 []>; 2051 2052 class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> : 2053 NVPTXInst<(outs), 2054 (ins regclass:$val, regclass:$val2, regclass:$val3, 2055 regclass:$val4, i32imm:$a), 2056 !strconcat("st.param.v4", opstr, 2057 " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), 2058 []>; 2059} 2060 2061let isCall=1 in { 2062 multiclass CALL<string OpcStr, SDNode OpNode> { 2063 def PrintCallNoRetInst : NVPTXInst<(outs), (ins), 2064 !strconcat(OpcStr, " "), [(OpNode (i32 0))]>; 2065 def PrintCallRetInst1 : NVPTXInst<(outs), (ins), 2066 !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>; 2067 def PrintCallRetInst2 : NVPTXInst<(outs), (ins), 2068 !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>; 2069 def PrintCallRetInst3 : NVPTXInst<(outs), (ins), 2070 !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>; 2071 def PrintCallRetInst4 : NVPTXInst<(outs), (ins), 2072 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "), 2073 [(OpNode (i32 4))]>; 2074 def PrintCallRetInst5 : NVPTXInst<(outs), (ins), 2075 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "), 2076 [(OpNode (i32 5))]>; 2077 def PrintCallRetInst6 : NVPTXInst<(outs), (ins), 2078 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2079 "retval5), "), 2080 [(OpNode (i32 6))]>; 2081 def PrintCallRetInst7 : NVPTXInst<(outs), (ins), 2082 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2083 "retval5, retval6), "), 2084 [(OpNode (i32 7))]>; 2085 def PrintCallRetInst8 : NVPTXInst<(outs), (ins), 2086 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2087 "retval5, retval6, retval7), "), 2088 [(OpNode (i32 8))]>; 2089 } 2090} 2091 2092defm Call : CALL<"call", PrintCall>; 2093defm CallUni : CALL<"call.uni", PrintCallUni>; 2094 2095// Convergent call instructions. These are identical to regular calls, except 2096// they have the isConvergent bit set. 2097let isConvergent=1 in { 2098 defm ConvergentCall : CALL<"call", PrintConvergentCall>; 2099 defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>; 2100} 2101 2102def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">; 2103def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">; 2104def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">; 2105def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">; 2106def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">; 2107def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">; 2108def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">; 2109def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">; 2110def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">; 2111def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">; 2112def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">; 2113def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">; 2114def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">; 2115def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">; 2116def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">; 2117def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">; 2118def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">; 2119def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">; 2120def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">; 2121def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">; 2122def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">; 2123def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">; 2124 2125def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">; 2126def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">; 2127 2128def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">; 2129def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">; 2130def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">; 2131def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">; 2132def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">; 2133def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">; 2134 2135def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">; 2136def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">; 2137def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">; 2138 2139def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">; 2140def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">; 2141def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">; 2142def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">; 2143def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">; 2144def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">; 2145def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">; 2146def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">; 2147def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">; 2148def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">; 2149def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">; 2150 2151def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">; 2152def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">; 2153def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">; 2154def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">; 2155def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">; 2156def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">; 2157def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">; 2158def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">; 2159def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">; 2160def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">; 2161def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">; 2162 2163def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">; 2164def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">; 2165def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">; 2166def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">; 2167def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">; 2168def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">; 2169def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">; 2170def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">; 2171def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">; 2172def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">; 2173def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">; 2174 2175def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>; 2176def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>; 2177def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>; 2178def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>; 2179 2180class CallArgInst<NVPTXRegClass regclass> : 2181 NVPTXInst<(outs), (ins regclass:$a), "$a, ", 2182 [(CallArg (i32 0), regclass:$a)]>; 2183 2184class LastCallArgInst<NVPTXRegClass regclass> : 2185 NVPTXInst<(outs), (ins regclass:$a), "$a", 2186 [(LastCallArg (i32 0), regclass:$a)]>; 2187 2188def CallArgI64 : CallArgInst<Int64Regs>; 2189def CallArgI32 : CallArgInst<Int32Regs>; 2190def CallArgI16 : CallArgInst<Int16Regs>; 2191def CallArgF64 : CallArgInst<Float64Regs>; 2192def CallArgF32 : CallArgInst<Float32Regs>; 2193 2194def LastCallArgI64 : LastCallArgInst<Int64Regs>; 2195def LastCallArgI32 : LastCallArgInst<Int32Regs>; 2196def LastCallArgI16 : LastCallArgInst<Int16Regs>; 2197def LastCallArgF64 : LastCallArgInst<Float64Regs>; 2198def LastCallArgF32 : LastCallArgInst<Float32Regs>; 2199 2200def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ", 2201 [(CallArg (i32 0), (i32 imm:$a))]>; 2202def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a", 2203 [(LastCallArg (i32 0), (i32 imm:$a))]>; 2204 2205def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ", 2206 [(CallArg (i32 1), (i32 imm:$a))]>; 2207def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a", 2208 [(LastCallArg (i32 1), (i32 imm:$a))]>; 2209 2210def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ", 2211 [(CallVoid (Wrapper tglobaladdr:$addr))]>; 2212def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ", 2213 [(CallVoid Int32Regs:$addr)]>; 2214def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ", 2215 [(CallVoid Int64Regs:$addr)]>; 2216def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;", 2217 [(Prototype (i32 imm:$val))]>; 2218 2219def DeclareRetMemInst : 2220 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num), 2221 ".param .align $align .b8 retval$num[$size];", 2222 [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>; 2223def DeclareRetScalarInst : 2224 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), 2225 ".param .b$size retval$num;", 2226 [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>; 2227def DeclareRetRegInst : 2228 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), 2229 ".reg .b$size retval$num;", 2230 [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>; 2231 2232def DeclareParamInst : 2233 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size), 2234 ".param .align $align .b8 param$a[$size];", 2235 [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>; 2236def DeclareScalarParamInst : 2237 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), 2238 ".param .b$size param$a;", 2239 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>; 2240def DeclareScalarRegInst : 2241 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), 2242 ".reg .b$size param$a;", 2243 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>; 2244 2245class MoveParamInst<NVPTXRegClass regclass, string asmstr> : 2246 NVPTXInst<(outs regclass:$dst), (ins regclass:$src), 2247 !strconcat("mov", asmstr, " \t$dst, $src;"), 2248 [(set regclass:$dst, (MoveParam regclass:$src))]>; 2249 2250class MoveParamSymbolInst<NVPTXRegClass regclass, Operand srcty, 2251 string asmstr> : 2252 NVPTXInst<(outs regclass:$dst), (ins srcty:$src), 2253 !strconcat("mov", asmstr, " \t$dst, $src;"), 2254 [(set regclass:$dst, (MoveParam texternalsym:$src))]>; 2255 2256def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">; 2257def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">; 2258 2259def MoveParamSymbolI64 : MoveParamSymbolInst<Int64Regs, i64imm, ".b64">; 2260def MoveParamSymbolI32 : MoveParamSymbolInst<Int32Regs, i32imm, ".b32">; 2261 2262def MoveParamI16 : 2263 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 2264 "cvt.u16.u32 \t$dst, $src;", 2265 [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>; 2266def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">; 2267def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">; 2268def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">; 2269 2270class PseudoUseParamInst<NVPTXRegClass regclass> : 2271 NVPTXInst<(outs), (ins regclass:$src), 2272 "// Pseudo use of $src", 2273 [(PseudoUseParam regclass:$src)]>; 2274 2275def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>; 2276def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>; 2277def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>; 2278def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>; 2279def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>; 2280 2281class ProxyRegInst<string SzStr, NVPTXRegClass regclass> : 2282 NVPTXInst<(outs regclass:$dst), (ins regclass:$src), 2283 !strconcat("mov.", SzStr, " \t$dst, $src;"), 2284 [(set regclass:$dst, (ProxyReg regclass:$src))]>; 2285 2286let isCodeGenOnly=1, isPseudo=1 in { 2287 def ProxyRegI1 : ProxyRegInst<"pred", Int1Regs>; 2288 def ProxyRegI16 : ProxyRegInst<"b16", Int16Regs>; 2289 def ProxyRegI32 : ProxyRegInst<"b32", Int32Regs>; 2290 def ProxyRegI64 : ProxyRegInst<"b64", Int64Regs>; 2291 def ProxyRegF16 : ProxyRegInst<"b16", Float16Regs>; 2292 def ProxyRegF32 : ProxyRegInst<"f32", Float32Regs>; 2293 def ProxyRegF64 : ProxyRegInst<"f64", Float64Regs>; 2294 def ProxyRegF16x2 : ProxyRegInst<"b32", Float16x2Regs>; 2295} 2296 2297// 2298// Load / Store Handling 2299// 2300multiclass LD<NVPTXRegClass regclass> { 2301 def _avar : NVPTXInst< 2302 (outs regclass:$dst), 2303 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2304 i32imm:$fromWidth, imem:$addr), 2305 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2306 "\t$dst, [$addr];", []>; 2307 def _areg : NVPTXInst< 2308 (outs regclass:$dst), 2309 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2310 i32imm:$fromWidth, Int32Regs:$addr), 2311 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2312 "\t$dst, [$addr];", []>; 2313 def _areg_64 : NVPTXInst< 2314 (outs regclass:$dst), 2315 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2316 i32imm:$fromWidth, Int64Regs:$addr), 2317 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2318 "\t$dst, [$addr];", []>; 2319 def _ari : NVPTXInst< 2320 (outs regclass:$dst), 2321 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2322 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2323 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2324 "\t$dst, [$addr+$offset];", []>; 2325 def _ari_64 : NVPTXInst< 2326 (outs regclass:$dst), 2327 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2328 LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2329 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2330 "\t$dst, [$addr+$offset];", []>; 2331 def _asi : NVPTXInst< 2332 (outs regclass:$dst), 2333 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2334 LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2335 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2336 "\t$dst, [$addr+$offset];", []>; 2337} 2338 2339let mayLoad=1, hasSideEffects=0 in { 2340 defm LD_i8 : LD<Int16Regs>; 2341 defm LD_i16 : LD<Int16Regs>; 2342 defm LD_i32 : LD<Int32Regs>; 2343 defm LD_i64 : LD<Int64Regs>; 2344 defm LD_f16 : LD<Float16Regs>; 2345 defm LD_f16x2 : LD<Float16x2Regs>; 2346 defm LD_f32 : LD<Float32Regs>; 2347 defm LD_f64 : LD<Float64Regs>; 2348} 2349 2350multiclass ST<NVPTXRegClass regclass> { 2351 def _avar : NVPTXInst< 2352 (outs), 2353 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2354 LdStCode:$Sign, i32imm:$toWidth, imem:$addr), 2355 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2356 " \t[$addr], $src;", []>; 2357 def _areg : NVPTXInst< 2358 (outs), 2359 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, 2360 LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr), 2361 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2362 " \t[$addr], $src;", []>; 2363 def _areg_64 : NVPTXInst< 2364 (outs), 2365 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2366 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr), 2367 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2368 " \t[$addr], $src;", []>; 2369 def _ari : NVPTXInst< 2370 (outs), 2371 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2372 LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset), 2373 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2374 " \t[$addr+$offset], $src;", []>; 2375 def _ari_64 : NVPTXInst< 2376 (outs), 2377 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2378 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset), 2379 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2380 " \t[$addr+$offset], $src;", []>; 2381 def _asi : NVPTXInst< 2382 (outs), 2383 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2384 LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset), 2385 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2386 " \t[$addr+$offset], $src;", []>; 2387} 2388 2389let mayStore=1, hasSideEffects=0 in { 2390 defm ST_i8 : ST<Int16Regs>; 2391 defm ST_i16 : ST<Int16Regs>; 2392 defm ST_i32 : ST<Int32Regs>; 2393 defm ST_i64 : ST<Int64Regs>; 2394 defm ST_f16 : ST<Float16Regs>; 2395 defm ST_f16x2 : ST<Float16x2Regs>; 2396 defm ST_f32 : ST<Float32Regs>; 2397 defm ST_f64 : ST<Float64Regs>; 2398} 2399 2400// The following is used only in and after vector elementizations. Vector 2401// elementization happens at the machine instruction level, so the following 2402// instructions never appear in the DAG. 2403multiclass LD_VEC<NVPTXRegClass regclass> { 2404 def _v2_avar : NVPTXInst< 2405 (outs regclass:$dst1, regclass:$dst2), 2406 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2407 i32imm:$fromWidth, imem:$addr), 2408 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2409 "\t{{$dst1, $dst2}}, [$addr];", []>; 2410 def _v2_areg : NVPTXInst< 2411 (outs regclass:$dst1, regclass:$dst2), 2412 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2413 i32imm:$fromWidth, Int32Regs:$addr), 2414 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2415 "\t{{$dst1, $dst2}}, [$addr];", []>; 2416 def _v2_areg_64 : NVPTXInst< 2417 (outs regclass:$dst1, regclass:$dst2), 2418 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2419 i32imm:$fromWidth, Int64Regs:$addr), 2420 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2421 "\t{{$dst1, $dst2}}, [$addr];", []>; 2422 def _v2_ari : NVPTXInst< 2423 (outs regclass:$dst1, regclass:$dst2), 2424 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2425 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2426 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2427 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2428 def _v2_ari_64 : NVPTXInst< 2429 (outs regclass:$dst1, regclass:$dst2), 2430 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2431 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2432 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2433 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2434 def _v2_asi : NVPTXInst< 2435 (outs regclass:$dst1, regclass:$dst2), 2436 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2437 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2438 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2439 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2440 def _v4_avar : NVPTXInst< 2441 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2442 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2443 i32imm:$fromWidth, imem:$addr), 2444 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2445 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2446 def _v4_areg : NVPTXInst< 2447 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2448 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2449 i32imm:$fromWidth, Int32Regs:$addr), 2450 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2451 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2452 def _v4_areg_64 : NVPTXInst< 2453 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2454 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2455 i32imm:$fromWidth, Int64Regs:$addr), 2456 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2457 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2458 def _v4_ari : NVPTXInst< 2459 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2460 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2461 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2462 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2463 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2464 def _v4_ari_64 : NVPTXInst< 2465 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2466 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2467 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2468 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2469 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2470 def _v4_asi : NVPTXInst< 2471 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2472 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2473 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2474 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2475 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2476} 2477let mayLoad=1, hasSideEffects=0 in { 2478 defm LDV_i8 : LD_VEC<Int16Regs>; 2479 defm LDV_i16 : LD_VEC<Int16Regs>; 2480 defm LDV_i32 : LD_VEC<Int32Regs>; 2481 defm LDV_i64 : LD_VEC<Int64Regs>; 2482 defm LDV_f16 : LD_VEC<Float16Regs>; 2483 defm LDV_f16x2 : LD_VEC<Float16x2Regs>; 2484 defm LDV_f32 : LD_VEC<Float32Regs>; 2485 defm LDV_f64 : LD_VEC<Float64Regs>; 2486} 2487 2488multiclass ST_VEC<NVPTXRegClass regclass> { 2489 def _v2_avar : NVPTXInst< 2490 (outs), 2491 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2492 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), 2493 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2494 "\t[$addr], {{$src1, $src2}};", []>; 2495 def _v2_areg : NVPTXInst< 2496 (outs), 2497 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2498 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), 2499 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2500 "\t[$addr], {{$src1, $src2}};", []>; 2501 def _v2_areg_64 : NVPTXInst< 2502 (outs), 2503 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2504 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), 2505 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2506 "\t[$addr], {{$src1, $src2}};", []>; 2507 def _v2_ari : NVPTXInst< 2508 (outs), 2509 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2510 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, 2511 i32imm:$offset), 2512 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2513 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2514 def _v2_ari_64 : NVPTXInst< 2515 (outs), 2516 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2517 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, 2518 i32imm:$offset), 2519 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2520 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2521 def _v2_asi : NVPTXInst< 2522 (outs), 2523 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2524 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, 2525 i32imm:$offset), 2526 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2527 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2528 def _v4_avar : NVPTXInst< 2529 (outs), 2530 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2531 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2532 i32imm:$fromWidth, imem:$addr), 2533 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2534 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2535 def _v4_areg : NVPTXInst< 2536 (outs), 2537 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2538 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2539 i32imm:$fromWidth, Int32Regs:$addr), 2540 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2541 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2542 def _v4_areg_64 : NVPTXInst< 2543 (outs), 2544 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2545 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2546 i32imm:$fromWidth, Int64Regs:$addr), 2547 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2548 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2549 def _v4_ari : NVPTXInst< 2550 (outs), 2551 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2552 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2553 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2554 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2555 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2556 def _v4_ari_64 : NVPTXInst< 2557 (outs), 2558 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2559 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2560 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2561 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2562 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2563 def _v4_asi : NVPTXInst< 2564 (outs), 2565 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2566 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2567 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2568 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}" 2569 "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2570} 2571 2572let mayStore=1, hasSideEffects=0 in { 2573 defm STV_i8 : ST_VEC<Int16Regs>; 2574 defm STV_i16 : ST_VEC<Int16Regs>; 2575 defm STV_i32 : ST_VEC<Int32Regs>; 2576 defm STV_i64 : ST_VEC<Int64Regs>; 2577 defm STV_f16 : ST_VEC<Float16Regs>; 2578 defm STV_f16x2 : ST_VEC<Float16x2Regs>; 2579 defm STV_f32 : ST_VEC<Float32Regs>; 2580 defm STV_f64 : ST_VEC<Float64Regs>; 2581} 2582 2583//---- Conversion ---- 2584 2585class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn, 2586 NVPTXRegClass regclassOut> : 2587 NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a), 2588 !strconcat("mov.b", SzStr, " \t$d, $a;"), 2589 [(set regclassOut:$d, (bitconvert regclassIn:$a))]>; 2590 2591def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>; 2592def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>; 2593def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>; 2594def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>; 2595def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>; 2596def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>; 2597def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>; 2598def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>; 2599 2600// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where 2601// we cannot specify floating-point literals in isel patterns. Therefore, we 2602// use an integer selp to select either 1 or 0 and then cvt to floating-point. 2603 2604// sint -> f16 2605def : Pat<(f16 (sint_to_fp Int1Regs:$a)), 2606 (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2607def : Pat<(f16 (sint_to_fp Int16Regs:$a)), 2608 (CVT_f16_s16 Int16Regs:$a, CvtRN)>; 2609def : Pat<(f16 (sint_to_fp Int32Regs:$a)), 2610 (CVT_f16_s32 Int32Regs:$a, CvtRN)>; 2611def : Pat<(f16 (sint_to_fp Int64Regs:$a)), 2612 (CVT_f16_s64 Int64Regs:$a, CvtRN)>; 2613 2614// uint -> f16 2615def : Pat<(f16 (uint_to_fp Int1Regs:$a)), 2616 (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2617def : Pat<(f16 (uint_to_fp Int16Regs:$a)), 2618 (CVT_f16_u16 Int16Regs:$a, CvtRN)>; 2619def : Pat<(f16 (uint_to_fp Int32Regs:$a)), 2620 (CVT_f16_u32 Int32Regs:$a, CvtRN)>; 2621def : Pat<(f16 (uint_to_fp Int64Regs:$a)), 2622 (CVT_f16_u64 Int64Regs:$a, CvtRN)>; 2623 2624// sint -> f32 2625def : Pat<(f32 (sint_to_fp Int1Regs:$a)), 2626 (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2627def : Pat<(f32 (sint_to_fp Int16Regs:$a)), 2628 (CVT_f32_s16 Int16Regs:$a, CvtRN)>; 2629def : Pat<(f32 (sint_to_fp Int32Regs:$a)), 2630 (CVT_f32_s32 Int32Regs:$a, CvtRN)>; 2631def : Pat<(f32 (sint_to_fp Int64Regs:$a)), 2632 (CVT_f32_s64 Int64Regs:$a, CvtRN)>; 2633 2634// uint -> f32 2635def : Pat<(f32 (uint_to_fp Int1Regs:$a)), 2636 (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2637def : Pat<(f32 (uint_to_fp Int16Regs:$a)), 2638 (CVT_f32_u16 Int16Regs:$a, CvtRN)>; 2639def : Pat<(f32 (uint_to_fp Int32Regs:$a)), 2640 (CVT_f32_u32 Int32Regs:$a, CvtRN)>; 2641def : Pat<(f32 (uint_to_fp Int64Regs:$a)), 2642 (CVT_f32_u64 Int64Regs:$a, CvtRN)>; 2643 2644// sint -> f64 2645def : Pat<(f64 (sint_to_fp Int1Regs:$a)), 2646 (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2647def : Pat<(f64 (sint_to_fp Int16Regs:$a)), 2648 (CVT_f64_s16 Int16Regs:$a, CvtRN)>; 2649def : Pat<(f64 (sint_to_fp Int32Regs:$a)), 2650 (CVT_f64_s32 Int32Regs:$a, CvtRN)>; 2651def : Pat<(f64 (sint_to_fp Int64Regs:$a)), 2652 (CVT_f64_s64 Int64Regs:$a, CvtRN)>; 2653 2654// uint -> f64 2655def : Pat<(f64 (uint_to_fp Int1Regs:$a)), 2656 (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2657def : Pat<(f64 (uint_to_fp Int16Regs:$a)), 2658 (CVT_f64_u16 Int16Regs:$a, CvtRN)>; 2659def : Pat<(f64 (uint_to_fp Int32Regs:$a)), 2660 (CVT_f64_u32 Int32Regs:$a, CvtRN)>; 2661def : Pat<(f64 (uint_to_fp Int64Regs:$a)), 2662 (CVT_f64_u64 Int64Regs:$a, CvtRN)>; 2663 2664 2665// f16 -> sint 2666def : Pat<(i1 (fp_to_sint Float16Regs:$a)), 2667 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; 2668def : Pat<(i16 (fp_to_sint Float16Regs:$a)), 2669 (CVT_s16_f16 Float16Regs:$a, CvtRZI)>; 2670def : Pat<(i32 (fp_to_sint Float16Regs:$a)), 2671 (CVT_s32_f16 Float16Regs:$a, CvtRZI)>; 2672def : Pat<(i64 (fp_to_sint Float16Regs:$a)), 2673 (CVT_s64_f16 Float16Regs:$a, CvtRZI)>; 2674 2675// f16 -> uint 2676def : Pat<(i1 (fp_to_uint Float16Regs:$a)), 2677 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; 2678def : Pat<(i16 (fp_to_uint Float16Regs:$a)), 2679 (CVT_u16_f16 Float16Regs:$a, CvtRZI)>; 2680def : Pat<(i32 (fp_to_uint Float16Regs:$a)), 2681 (CVT_u32_f16 Float16Regs:$a, CvtRZI)>; 2682def : Pat<(i64 (fp_to_uint Float16Regs:$a)), 2683 (CVT_u64_f16 Float16Regs:$a, CvtRZI)>; 2684 2685// f32 -> sint 2686def : Pat<(i1 (fp_to_sint Float32Regs:$a)), 2687 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; 2688def : Pat<(i16 (fp_to_sint Float32Regs:$a)), 2689 (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2690def : Pat<(i16 (fp_to_sint Float32Regs:$a)), 2691 (CVT_s16_f32 Float32Regs:$a, CvtRZI)>; 2692def : Pat<(i32 (fp_to_sint Float32Regs:$a)), 2693 (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2694def : Pat<(i32 (fp_to_sint Float32Regs:$a)), 2695 (CVT_s32_f32 Float32Regs:$a, CvtRZI)>; 2696def : Pat<(i64 (fp_to_sint Float32Regs:$a)), 2697 (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2698def : Pat<(i64 (fp_to_sint Float32Regs:$a)), 2699 (CVT_s64_f32 Float32Regs:$a, CvtRZI)>; 2700 2701// f32 -> uint 2702def : Pat<(i1 (fp_to_uint Float32Regs:$a)), 2703 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; 2704def : Pat<(i16 (fp_to_uint Float32Regs:$a)), 2705 (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2706def : Pat<(i16 (fp_to_uint Float32Regs:$a)), 2707 (CVT_u16_f32 Float32Regs:$a, CvtRZI)>; 2708def : Pat<(i32 (fp_to_uint Float32Regs:$a)), 2709 (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2710def : Pat<(i32 (fp_to_uint Float32Regs:$a)), 2711 (CVT_u32_f32 Float32Regs:$a, CvtRZI)>; 2712def : Pat<(i64 (fp_to_uint Float32Regs:$a)), 2713 (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2714def : Pat<(i64 (fp_to_uint Float32Regs:$a)), 2715 (CVT_u64_f32 Float32Regs:$a, CvtRZI)>; 2716 2717// f64 -> sint 2718def : Pat<(i1 (fp_to_sint Float64Regs:$a)), 2719 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; 2720def : Pat<(i16 (fp_to_sint Float64Regs:$a)), 2721 (CVT_s16_f64 Float64Regs:$a, CvtRZI)>; 2722def : Pat<(i32 (fp_to_sint Float64Regs:$a)), 2723 (CVT_s32_f64 Float64Regs:$a, CvtRZI)>; 2724def : Pat<(i64 (fp_to_sint Float64Regs:$a)), 2725 (CVT_s64_f64 Float64Regs:$a, CvtRZI)>; 2726 2727// f64 -> uint 2728def : Pat<(i1 (fp_to_uint Float64Regs:$a)), 2729 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; 2730def : Pat<(i16 (fp_to_uint Float64Regs:$a)), 2731 (CVT_u16_f64 Float64Regs:$a, CvtRZI)>; 2732def : Pat<(i32 (fp_to_uint Float64Regs:$a)), 2733 (CVT_u32_f64 Float64Regs:$a, CvtRZI)>; 2734def : Pat<(i64 (fp_to_uint Float64Regs:$a)), 2735 (CVT_u64_f64 Float64Regs:$a, CvtRZI)>; 2736 2737// sext i1 2738def : Pat<(i16 (sext Int1Regs:$a)), 2739 (SELP_s16ii -1, 0, Int1Regs:$a)>; 2740def : Pat<(i32 (sext Int1Regs:$a)), 2741 (SELP_s32ii -1, 0, Int1Regs:$a)>; 2742def : Pat<(i64 (sext Int1Regs:$a)), 2743 (SELP_s64ii -1, 0, Int1Regs:$a)>; 2744 2745// zext i1 2746def : Pat<(i16 (zext Int1Regs:$a)), 2747 (SELP_u16ii 1, 0, Int1Regs:$a)>; 2748def : Pat<(i32 (zext Int1Regs:$a)), 2749 (SELP_u32ii 1, 0, Int1Regs:$a)>; 2750def : Pat<(i64 (zext Int1Regs:$a)), 2751 (SELP_u64ii 1, 0, Int1Regs:$a)>; 2752 2753// anyext i1 2754def : Pat<(i16 (anyext Int1Regs:$a)), 2755 (SELP_u16ii -1, 0, Int1Regs:$a)>; 2756def : Pat<(i32 (anyext Int1Regs:$a)), 2757 (SELP_u32ii -1, 0, Int1Regs:$a)>; 2758def : Pat<(i64 (anyext Int1Regs:$a)), 2759 (SELP_u64ii -1, 0, Int1Regs:$a)>; 2760 2761// sext i16 2762def : Pat<(i32 (sext Int16Regs:$a)), 2763 (CVT_s32_s16 Int16Regs:$a, CvtNONE)>; 2764def : Pat<(i64 (sext Int16Regs:$a)), 2765 (CVT_s64_s16 Int16Regs:$a, CvtNONE)>; 2766 2767// zext i16 2768def : Pat<(i32 (zext Int16Regs:$a)), 2769 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; 2770def : Pat<(i64 (zext Int16Regs:$a)), 2771 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; 2772 2773// anyext i16 2774def : Pat<(i32 (anyext Int16Regs:$a)), 2775 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; 2776def : Pat<(i64 (anyext Int16Regs:$a)), 2777 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; 2778 2779// sext i32 2780def : Pat<(i64 (sext Int32Regs:$a)), 2781 (CVT_s64_s32 Int32Regs:$a, CvtNONE)>; 2782 2783// zext i32 2784def : Pat<(i64 (zext Int32Regs:$a)), 2785 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; 2786 2787// anyext i32 2788def : Pat<(i64 (anyext Int32Regs:$a)), 2789 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; 2790 2791 2792// truncate i64 2793def : Pat<(i32 (trunc Int64Regs:$a)), 2794 (CVT_u32_u64 Int64Regs:$a, CvtNONE)>; 2795def : Pat<(i16 (trunc Int64Regs:$a)), 2796 (CVT_u16_u64 Int64Regs:$a, CvtNONE)>; 2797def : Pat<(i1 (trunc Int64Regs:$a)), 2798 (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>; 2799 2800// truncate i32 2801def : Pat<(i16 (trunc Int32Regs:$a)), 2802 (CVT_u16_u32 Int32Regs:$a, CvtNONE)>; 2803def : Pat<(i1 (trunc Int32Regs:$a)), 2804 (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>; 2805 2806// truncate i16 2807def : Pat<(i1 (trunc Int16Regs:$a)), 2808 (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>; 2809 2810// sext_inreg 2811def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>; 2812def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>; 2813def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>; 2814def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>; 2815def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>; 2816def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>; 2817 2818 2819// Select instructions with 32-bit predicates 2820def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b), 2821 (SELP_b16rr Int16Regs:$a, Int16Regs:$b, 2822 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2823def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b), 2824 (SELP_b32rr Int32Regs:$a, Int32Regs:$b, 2825 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2826def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b), 2827 (SELP_b64rr Int64Regs:$a, Int64Regs:$b, 2828 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2829def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b), 2830 (SELP_f16rr Float16Regs:$a, Float16Regs:$b, 2831 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2832def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b), 2833 (SELP_f32rr Float32Regs:$a, Float32Regs:$b, 2834 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2835def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b), 2836 (SELP_f64rr Float64Regs:$a, Float64Regs:$b, 2837 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2838 2839 2840let hasSideEffects = false in { 2841 // pack a set of smaller int registers to a larger int register 2842 def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d), 2843 (ins Int16Regs:$s1, Int16Regs:$s2, 2844 Int16Regs:$s3, Int16Regs:$s4), 2845 "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>; 2846 def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d), 2847 (ins Int16Regs:$s1, Int16Regs:$s2), 2848 "mov.b32 \t$d, {{$s1, $s2}};", []>; 2849 def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d), 2850 (ins Int32Regs:$s1, Int32Regs:$s2), 2851 "mov.b64 \t$d, {{$s1, $s2}};", []>; 2852 def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d), 2853 (ins Float32Regs:$s1, Float32Regs:$s2), 2854 "mov.b64 \t$d, {{$s1, $s2}};", []>; 2855 2856 // unpack a larger int register to a set of smaller int registers 2857 def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2, 2858 Int16Regs:$d3, Int16Regs:$d4), 2859 (ins Int64Regs:$s), 2860 "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>; 2861 def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2), 2862 (ins Int32Regs:$s), 2863 "mov.b32 \t{{$d1, $d2}}, $s;", []>; 2864 def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2), 2865 (ins Int64Regs:$s), 2866 "mov.b64 \t{{$d1, $d2}}, $s;", []>; 2867 def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2), 2868 (ins Float64Regs:$s), 2869 "mov.b64 \t{{$d1, $d2}}, $s;", []>; 2870 2871} 2872 2873let hasSideEffects = false in { 2874 // Extract element of f16x2 register. PTX does not provide any way 2875 // to access elements of f16x2 vector directly, so we need to 2876 // extract it using a temporary register. 2877 def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst), 2878 (ins Float16x2Regs:$src), 2879 "{{ .reg .b16 \t%tmp_hi;\n\t" 2880 " mov.b32 \t{$dst, %tmp_hi}, $src; }}", 2881 [(set Float16Regs:$dst, 2882 (extractelt (v2f16 Float16x2Regs:$src), 0))]>; 2883 def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst), 2884 (ins Float16x2Regs:$src), 2885 "{{ .reg .b16 \t%tmp_lo;\n\t" 2886 " mov.b32 \t{%tmp_lo, $dst}, $src; }}", 2887 [(set Float16Regs:$dst, 2888 (extractelt (v2f16 Float16x2Regs:$src), 1))]>; 2889 2890 // Coalesce two f16 registers into f16x2 2891 def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst), 2892 (ins Float16Regs:$a, Float16Regs:$b), 2893 "mov.b32 \t$dst, {{$a, $b}};", 2894 [(set Float16x2Regs:$dst, 2895 (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>; 2896 2897 // Directly initializing underlying the b32 register is one less SASS 2898 // instruction than than vector-packing move. 2899 def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src), 2900 "mov.b32 \t$dst, $src;", 2901 []>; 2902 2903 // Split f16x2 into two f16 registers. 2904 def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), 2905 (ins Float16x2Regs:$src), 2906 "mov.b32 \t{{$lo, $hi}}, $src;", 2907 []>; 2908 // Split an i32 into two f16 2909 def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), 2910 (ins Int32Regs:$src), 2911 "mov.b32 \t{{$lo, $hi}}, $src;", 2912 []>; 2913} 2914 2915// Count leading zeros 2916let hasSideEffects = false in { 2917 def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), 2918 "clz.b32 \t$d, $a;", []>; 2919 def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), 2920 "clz.b64 \t$d, $a;", []>; 2921} 2922 2923// 32-bit has a direct PTX instruction 2924def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>; 2925 2926// The return type of the ctlz ISD node is the same as its input, but the PTX 2927// ctz instruction always returns a 32-bit value. For ctlz.i64, convert the 2928// ptx value to 64 bits to match the ISD node's semantics, unless we know we're 2929// truncating back down to 32 bits. 2930def : Pat<(i64 (ctlz Int64Regs:$a)), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>; 2931def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>; 2932 2933// For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the 2934// result back to 16-bits if necessary. We also need to subtract 16 because 2935// the high-order 16 zeros were counted. 2936// 2937// TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could 2938// use to save one SASS instruction (on sm_35 anyway): 2939// 2940// mov.b32 $tmp, {0xffff, $a} 2941// ctlz.b32 $result, $tmp 2942// 2943// That is, instead of zero-extending the input to 32 bits, we'd "one-extend" 2944// and then ctlz that value. This way we don't have to subtract 16 from the 2945// result. Unfortunately today we don't have a way to generate 2946// "mov b32reg, {b16imm, b16reg}", so we don't do this optimization. 2947def : Pat<(i16 (ctlz Int16Regs:$a)), 2948 (SUBi16ri (CVT_u16_u32 2949 (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>; 2950def : Pat<(i32 (zext (i16 (ctlz Int16Regs:$a)))), 2951 (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>; 2952 2953// Population count 2954let hasSideEffects = false in { 2955 def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), 2956 "popc.b32 \t$d, $a;", []>; 2957 def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), 2958 "popc.b64 \t$d, $a;", []>; 2959} 2960 2961// 32-bit has a direct PTX instruction 2962def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>; 2963 2964// For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit 2965// to match the LLVM semantics. Just as with ctlz.i64, we provide a second 2966// pattern that avoids the type conversion if we're truncating the result to 2967// i32 anyway. 2968def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>; 2969def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>; 2970 2971// For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits. 2972// If we know that we're storing into an i32, we can avoid the final trunc. 2973def : Pat<(ctpop Int16Regs:$a), 2974 (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>; 2975def : Pat<(i32 (zext (i16 (ctpop Int16Regs:$a)))), 2976 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>; 2977 2978// fpround f32 -> f16 2979def : Pat<(f16 (fpround Float32Regs:$a)), 2980 (CVT_f16_f32 Float32Regs:$a, CvtRN)>; 2981 2982// fpround f64 -> f16 2983def : Pat<(f16 (fpround Float64Regs:$a)), 2984 (CVT_f16_f64 Float64Regs:$a, CvtRN)>; 2985 2986// fpround f64 -> f32 2987def : Pat<(f32 (fpround Float64Regs:$a)), 2988 (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; 2989def : Pat<(f32 (fpround Float64Regs:$a)), 2990 (CVT_f32_f64 Float64Regs:$a, CvtRN)>; 2991 2992// fpextend f16 -> f32 2993def : Pat<(f32 (fpextend Float16Regs:$a)), 2994 (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; 2995def : Pat<(f32 (fpextend Float16Regs:$a)), 2996 (CVT_f32_f16 Float16Regs:$a, CvtNONE)>; 2997 2998// fpextend f16 -> f64 2999def : Pat<(f64 (fpextend Float16Regs:$a)), 3000 (CVT_f64_f16 Float16Regs:$a, CvtNONE)>; 3001 3002// fpextend f32 -> f64 3003def : Pat<(f64 (fpextend Float32Regs:$a)), 3004 (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; 3005def : Pat<(f64 (fpextend Float32Regs:$a)), 3006 (CVT_f64_f32 Float32Regs:$a, CvtNONE)>; 3007 3008def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone, 3009 [SDNPHasChain, SDNPOptInGlue]>; 3010 3011// fceil, ffloor, fround, ftrunc. 3012 3013def : Pat<(fceil Float16Regs:$a), 3014 (CVT_f16_f16 Float16Regs:$a, CvtRPI)>; 3015def : Pat<(fceil Float32Regs:$a), 3016 (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; 3017def : Pat<(fceil Float32Regs:$a), 3018 (CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>; 3019def : Pat<(fceil Float64Regs:$a), 3020 (CVT_f64_f64 Float64Regs:$a, CvtRPI)>; 3021 3022def : Pat<(ffloor Float16Regs:$a), 3023 (CVT_f16_f16 Float16Regs:$a, CvtRMI)>; 3024def : Pat<(ffloor Float32Regs:$a), 3025 (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; 3026def : Pat<(ffloor Float32Regs:$a), 3027 (CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>; 3028def : Pat<(ffloor Float64Regs:$a), 3029 (CVT_f64_f64 Float64Regs:$a, CvtRMI)>; 3030 3031def : Pat<(ftrunc Float16Regs:$a), 3032 (CVT_f16_f16 Float16Regs:$a, CvtRZI)>; 3033def : Pat<(ftrunc Float32Regs:$a), 3034 (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 3035def : Pat<(ftrunc Float32Regs:$a), 3036 (CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>; 3037def : Pat<(ftrunc Float64Regs:$a), 3038 (CVT_f64_f64 Float64Regs:$a, CvtRZI)>; 3039 3040// nearbyint and rint are implemented as rounding to nearest even. This isn't 3041// strictly correct, because it causes us to ignore the rounding mode. But it 3042// matches what CUDA's "libm" does. 3043 3044def : Pat<(fnearbyint Float16Regs:$a), 3045 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; 3046def : Pat<(fnearbyint Float32Regs:$a), 3047 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; 3048def : Pat<(fnearbyint Float32Regs:$a), 3049 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; 3050def : Pat<(fnearbyint Float64Regs:$a), 3051 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; 3052 3053def : Pat<(frint Float16Regs:$a), 3054 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; 3055def : Pat<(frint Float32Regs:$a), 3056 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; 3057def : Pat<(frint Float32Regs:$a), 3058 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; 3059def : Pat<(frint Float64Regs:$a), 3060 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; 3061 3062 3063//----------------------------------- 3064// Control-flow 3065//----------------------------------- 3066 3067let isTerminator=1 in { 3068 let isReturn=1, isBarrier=1 in 3069 def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>; 3070 3071 let isBranch=1 in 3072 def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), 3073 "@$a bra \t$target;", 3074 [(brcond Int1Regs:$a, bb:$target)]>; 3075 let isBranch=1 in 3076 def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), 3077 "@!$a bra \t$target;", []>; 3078 3079 let isBranch=1, isBarrier=1 in 3080 def GOTO : NVPTXInst<(outs), (ins brtarget:$target), 3081 "bra.uni \t$target;", [(br bb:$target)]>; 3082} 3083 3084def : Pat<(brcond Int32Regs:$a, bb:$target), 3085 (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>; 3086 3087// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a 3088// conditional branch if the target block is the next block so that the code 3089// can fall through to the target block. The invertion is done by 'xor 3090// condition, 1', which will be translated to (setne condition, -1). Since ptx 3091// supports '@!pred bra target', we should use it. 3092def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target), 3093 (CBranchOther Int1Regs:$a, bb:$target)>; 3094 3095// Call 3096def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, 3097 SDTCisVT<1, i32>]>; 3098def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 3099 3100def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart, 3101 [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; 3102def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd, 3103 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 3104 SDNPSideEffect]>; 3105 3106def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 3107def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall, 3108 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 3109def calltarget : Operand<i32>; 3110let isCall=1 in { 3111 def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>; 3112} 3113 3114def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; 3115def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; 3116 3117// Pseudo instructions. 3118class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> 3119 : NVPTXInst<outs, ins, asmstr, pattern>; 3120 3121def Callseq_Start : 3122 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), 3123 "\\{ // callseq $amt1, $amt2\n" 3124 "\t.reg .b32 temp_param_reg;", 3125 [(callseq_start timm:$amt1, timm:$amt2)]>; 3126def Callseq_End : 3127 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), 3128 "\\} // callseq $amt1", 3129 [(callseq_end timm:$amt1, timm:$amt2)]>; 3130 3131// trap instruction 3132def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>; 3133 3134// Call prototype wrapper 3135def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 3136def CallPrototype : 3137 SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype, 3138 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 3139def ProtoIdent : Operand<i32> { 3140 let PrintMethod = "printProtoIdent"; 3141} 3142def CALL_PROTOTYPE : 3143 NVPTXInst<(outs), (ins ProtoIdent:$ident), 3144 "$ident", [(CallPrototype (i32 texternalsym:$ident))]>; 3145 3146 3147include "NVPTXIntrinsics.td" 3148 3149 3150//----------------------------------- 3151// Notes 3152//----------------------------------- 3153// BSWAP is currently expanded. The following is a more efficient 3154// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register 3155// - for sm_20, use pmpt (use vector scalar mov to get the pack and 3156// unpack). sm_20 supports native 32-bit register, but not native 16-bit 3157// register. 3158