1//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the PTX instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13include "NVPTXInstrFormats.td" 14 15// A NOP instruction 16let hasSideEffects = 0 in { 17 def NOP : NVPTXInst<(outs), (ins), "", []>; 18} 19 20let OperandType = "OPERAND_IMMEDIATE" in { 21 def f16imm : Operand<f16>; 22} 23 24// List of vector specific properties 25def isVecLD : VecInstTypeEnum<1>; 26def isVecST : VecInstTypeEnum<2>; 27def isVecBuild : VecInstTypeEnum<3>; 28def isVecShuffle : VecInstTypeEnum<4>; 29def isVecExtract : VecInstTypeEnum<5>; 30def isVecInsert : VecInstTypeEnum<6>; 31def isVecDest : VecInstTypeEnum<7>; 32def isVecOther : VecInstTypeEnum<15>; 33 34//===----------------------------------------------------------------------===// 35// NVPTX Operand Definitions. 36//===----------------------------------------------------------------------===// 37 38def brtarget : Operand<OtherVT>; 39 40// CVT conversion modes 41// These must match the enum in NVPTX.h 42def CvtNONE : PatLeaf<(i32 0x0)>; 43def CvtRNI : PatLeaf<(i32 0x1)>; 44def CvtRZI : PatLeaf<(i32 0x2)>; 45def CvtRMI : PatLeaf<(i32 0x3)>; 46def CvtRPI : PatLeaf<(i32 0x4)>; 47def CvtRN : PatLeaf<(i32 0x5)>; 48def CvtRZ : PatLeaf<(i32 0x6)>; 49def CvtRM : PatLeaf<(i32 0x7)>; 50def CvtRP : PatLeaf<(i32 0x8)>; 51 52def CvtNONE_FTZ : PatLeaf<(i32 0x10)>; 53def CvtRNI_FTZ : PatLeaf<(i32 0x11)>; 54def CvtRZI_FTZ : PatLeaf<(i32 0x12)>; 55def CvtRMI_FTZ : PatLeaf<(i32 0x13)>; 56def CvtRPI_FTZ : PatLeaf<(i32 0x14)>; 57def CvtRN_FTZ : PatLeaf<(i32 0x15)>; 58def CvtRZ_FTZ : PatLeaf<(i32 0x16)>; 59def CvtRM_FTZ : PatLeaf<(i32 0x17)>; 60def CvtRP_FTZ : PatLeaf<(i32 0x18)>; 61 62def CvtSAT : PatLeaf<(i32 0x20)>; 63def CvtSAT_FTZ : PatLeaf<(i32 0x30)>; 64 65def CvtMode : Operand<i32> { 66 let PrintMethod = "printCvtMode"; 67} 68 69// Compare modes 70// These must match the enum in NVPTX.h 71def CmpEQ : PatLeaf<(i32 0)>; 72def CmpNE : PatLeaf<(i32 1)>; 73def CmpLT : PatLeaf<(i32 2)>; 74def CmpLE : PatLeaf<(i32 3)>; 75def CmpGT : PatLeaf<(i32 4)>; 76def CmpGE : PatLeaf<(i32 5)>; 77def CmpEQU : PatLeaf<(i32 10)>; 78def CmpNEU : PatLeaf<(i32 11)>; 79def CmpLTU : PatLeaf<(i32 12)>; 80def CmpLEU : PatLeaf<(i32 13)>; 81def CmpGTU : PatLeaf<(i32 14)>; 82def CmpGEU : PatLeaf<(i32 15)>; 83def CmpNUM : PatLeaf<(i32 16)>; 84def CmpNAN : PatLeaf<(i32 17)>; 85 86def CmpEQ_FTZ : PatLeaf<(i32 0x100)>; 87def CmpNE_FTZ : PatLeaf<(i32 0x101)>; 88def CmpLT_FTZ : PatLeaf<(i32 0x102)>; 89def CmpLE_FTZ : PatLeaf<(i32 0x103)>; 90def CmpGT_FTZ : PatLeaf<(i32 0x104)>; 91def CmpGE_FTZ : PatLeaf<(i32 0x105)>; 92def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>; 93def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>; 94def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>; 95def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>; 96def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>; 97def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>; 98def CmpNUM_FTZ : PatLeaf<(i32 0x110)>; 99def CmpNAN_FTZ : PatLeaf<(i32 0x111)>; 100 101def CmpMode : Operand<i32> { 102 let PrintMethod = "printCmpMode"; 103} 104def VecElement : Operand<i32> { 105 let PrintMethod = "printVecElement"; 106} 107 108//===----------------------------------------------------------------------===// 109// NVPTX Instruction Predicate Definitions 110//===----------------------------------------------------------------------===// 111 112 113def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">; 114def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">; 115def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">; 116def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">; 117def hasVote : Predicate<"Subtarget->hasVote()">; 118def hasDouble : Predicate<"Subtarget->hasDouble()">; 119def hasLDG : Predicate<"Subtarget->hasLDG()">; 120def hasLDU : Predicate<"Subtarget->hasLDU()">; 121 122def doF32FTZ : Predicate<"useF32FTZ()">; 123def doNoF32FTZ : Predicate<"!useF32FTZ()">; 124 125def doMulWide : Predicate<"doMulWide">; 126 127def allowFMA : Predicate<"allowFMA()">; 128def noFMA : Predicate<"!allowFMA()">; 129def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">; 130 131def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">; 132def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">; 133 134def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">; 135def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">; 136 137def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">; 138def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">; 139 140def true : Predicate<"true">; 141 142def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">; 143def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">; 144def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">; 145def hasPTX63 : Predicate<"Subtarget->getPTXVersion() >= 63">; 146 147def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">; 148def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">; 149def hasSM72 : Predicate<"Subtarget->getSmVersion() >= 72">; 150def hasSM75 : Predicate<"Subtarget->getSmVersion() >= 75">; 151 152def useShortPtr : Predicate<"useShortPointers()">; 153def useFP16Math: Predicate<"Subtarget->allowFP16Math()">; 154 155//===----------------------------------------------------------------------===// 156// Some Common Instruction Class Templates 157//===----------------------------------------------------------------------===// 158 159// Template for instructions which take three int64, int32, or int16 args. 160// The instructions are named "<OpcStr><Width>" (e.g. "add.s64"). 161multiclass I3<string OpcStr, SDNode OpNode> { 162 def i64rr : 163 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), 164 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 165 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; 166 def i64ri : 167 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), 168 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 169 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; 170 def i32rr : 171 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 172 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 173 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 174 def i32ri : 175 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 176 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 177 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 178 def i16rr : 179 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 180 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 181 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; 182 def i16ri : 183 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 184 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 185 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>; 186} 187 188// Template for instructions which take 3 int32 args. The instructions are 189// named "<OpcStr>.s32" (e.g. "addc.cc.s32"). 190multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> { 191 def i32rr : 192 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 193 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), 194 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 195 def i32ri : 196 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 197 !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), 198 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 199} 200 201// Template for instructions which take three fp64 or fp32 args. The 202// instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64"). 203// 204// Also defines ftz (flush subnormal inputs and results to sign-preserving 205// zero) variants for fp32 functions. 206// 207// This multiclass should be used for nodes that cannot be folded into FMAs. 208// For nodes that can be folded into FMAs (i.e. adds and muls), use 209// F3_fma_component. 210multiclass F3<string OpcStr, SDNode OpNode> { 211 def f64rr : 212 NVPTXInst<(outs Float64Regs:$dst), 213 (ins Float64Regs:$a, Float64Regs:$b), 214 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 215 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>; 216 def f64ri : 217 NVPTXInst<(outs Float64Regs:$dst), 218 (ins Float64Regs:$a, f64imm:$b), 219 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 220 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>; 221 def f32rr_ftz : 222 NVPTXInst<(outs Float32Regs:$dst), 223 (ins Float32Regs:$a, Float32Regs:$b), 224 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 225 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 226 Requires<[doF32FTZ]>; 227 def f32ri_ftz : 228 NVPTXInst<(outs Float32Regs:$dst), 229 (ins Float32Regs:$a, f32imm:$b), 230 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 231 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 232 Requires<[doF32FTZ]>; 233 def f32rr : 234 NVPTXInst<(outs Float32Regs:$dst), 235 (ins Float32Regs:$a, Float32Regs:$b), 236 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 237 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>; 238 def f32ri : 239 NVPTXInst<(outs Float32Regs:$dst), 240 (ins Float32Regs:$a, f32imm:$b), 241 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 242 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>; 243} 244 245// Template for instructions which take three FP args. The 246// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64"). 247// 248// Also defines ftz (flush subnormal inputs and results to sign-preserving 249// zero) variants for fp32/fp16 functions. 250// 251// This multiclass should be used for nodes that can be folded to make fma ops. 252// In this case, we use the ".rn" variant when FMA is disabled, as this behaves 253// just like the non ".rn" op, but prevents ptxas from creating FMAs. 254multiclass F3_fma_component<string OpcStr, SDNode OpNode> { 255 def f64rr : 256 NVPTXInst<(outs Float64Regs:$dst), 257 (ins Float64Regs:$a, Float64Regs:$b), 258 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 259 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, 260 Requires<[allowFMA]>; 261 def f64ri : 262 NVPTXInst<(outs Float64Regs:$dst), 263 (ins Float64Regs:$a, f64imm:$b), 264 !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), 265 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, 266 Requires<[allowFMA]>; 267 def f32rr_ftz : 268 NVPTXInst<(outs Float32Regs:$dst), 269 (ins Float32Regs:$a, Float32Regs:$b), 270 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 271 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 272 Requires<[allowFMA, doF32FTZ]>; 273 def f32ri_ftz : 274 NVPTXInst<(outs Float32Regs:$dst), 275 (ins Float32Regs:$a, f32imm:$b), 276 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), 277 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 278 Requires<[allowFMA, doF32FTZ]>; 279 def f32rr : 280 NVPTXInst<(outs Float32Regs:$dst), 281 (ins Float32Regs:$a, Float32Regs:$b), 282 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 283 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 284 Requires<[allowFMA]>; 285 def f32ri : 286 NVPTXInst<(outs Float32Regs:$dst), 287 (ins Float32Regs:$a, f32imm:$b), 288 !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), 289 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 290 Requires<[allowFMA]>; 291 292 def f16rr_ftz : 293 NVPTXInst<(outs Float16Regs:$dst), 294 (ins Float16Regs:$a, Float16Regs:$b), 295 !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), 296 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 297 Requires<[useFP16Math, allowFMA, doF32FTZ]>; 298 def f16rr : 299 NVPTXInst<(outs Float16Regs:$dst), 300 (ins Float16Regs:$a, Float16Regs:$b), 301 !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), 302 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 303 Requires<[useFP16Math, allowFMA]>; 304 305 def f16x2rr_ftz : 306 NVPTXInst<(outs Float16x2Regs:$dst), 307 (ins Float16x2Regs:$a, Float16x2Regs:$b), 308 !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), 309 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 310 Requires<[useFP16Math, allowFMA, doF32FTZ]>; 311 def f16x2rr : 312 NVPTXInst<(outs Float16x2Regs:$dst), 313 (ins Float16x2Regs:$a, Float16x2Regs:$b), 314 !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), 315 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 316 Requires<[useFP16Math, allowFMA]>; 317 318 // These have strange names so we don't perturb existing mir tests. 319 def _rnf64rr : 320 NVPTXInst<(outs Float64Regs:$dst), 321 (ins Float64Regs:$a, Float64Regs:$b), 322 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), 323 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, 324 Requires<[noFMA]>; 325 def _rnf64ri : 326 NVPTXInst<(outs Float64Regs:$dst), 327 (ins Float64Regs:$a, f64imm:$b), 328 !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), 329 [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, 330 Requires<[noFMA]>; 331 def _rnf32rr_ftz : 332 NVPTXInst<(outs Float32Regs:$dst), 333 (ins Float32Regs:$a, Float32Regs:$b), 334 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), 335 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 336 Requires<[noFMA, doF32FTZ]>; 337 def _rnf32ri_ftz : 338 NVPTXInst<(outs Float32Regs:$dst), 339 (ins Float32Regs:$a, f32imm:$b), 340 !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), 341 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 342 Requires<[noFMA, doF32FTZ]>; 343 def _rnf32rr : 344 NVPTXInst<(outs Float32Regs:$dst), 345 (ins Float32Regs:$a, Float32Regs:$b), 346 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), 347 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, 348 Requires<[noFMA]>; 349 def _rnf32ri : 350 NVPTXInst<(outs Float32Regs:$dst), 351 (ins Float32Regs:$a, f32imm:$b), 352 !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), 353 [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, 354 Requires<[noFMA]>; 355 def _rnf16rr_ftz : 356 NVPTXInst<(outs Float16Regs:$dst), 357 (ins Float16Regs:$a, Float16Regs:$b), 358 !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"), 359 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 360 Requires<[useFP16Math, noFMA, doF32FTZ]>; 361 def _rnf16rr : 362 NVPTXInst<(outs Float16Regs:$dst), 363 (ins Float16Regs:$a, Float16Regs:$b), 364 !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"), 365 [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, 366 Requires<[useFP16Math, noFMA]>; 367 def _rnf16x2rr_ftz : 368 NVPTXInst<(outs Float16x2Regs:$dst), 369 (ins Float16x2Regs:$a, Float16x2Regs:$b), 370 !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"), 371 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 372 Requires<[useFP16Math, noFMA, doF32FTZ]>; 373 def _rnf16x2rr : 374 NVPTXInst<(outs Float16x2Regs:$dst), 375 (ins Float16x2Regs:$a, Float16x2Regs:$b), 376 !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"), 377 [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, 378 Requires<[useFP16Math, noFMA]>; 379} 380 381// Template for operations which take two f32 or f64 operands. Provides three 382// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush 383// subnormal inputs and results to zero). 384multiclass F2<string OpcStr, SDNode OpNode> { 385 def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a), 386 !strconcat(OpcStr, ".f64 \t$dst, $a;"), 387 [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>; 388 def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), 389 !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"), 390 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>, 391 Requires<[doF32FTZ]>; 392 def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), 393 !strconcat(OpcStr, ".f32 \t$dst, $a;"), 394 [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>; 395} 396 397//===----------------------------------------------------------------------===// 398// NVPTX Instructions. 399//===----------------------------------------------------------------------===// 400 401//----------------------------------- 402// Type Conversion 403//----------------------------------- 404 405let hasSideEffects = 0 in { 406 // Generate a cvt to the given type from all possible types. Each instance 407 // takes a CvtMode immediate that defines the conversion mode to use. It can 408 // be CvtNONE to omit a conversion mode. 409 multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> { 410 def _s8 : 411 NVPTXInst<(outs RC:$dst), 412 (ins Int16Regs:$src, CvtMode:$mode), 413 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 414 FromName, ".s8 \t$dst, $src;"), []>; 415 def _u8 : 416 NVPTXInst<(outs RC:$dst), 417 (ins Int16Regs:$src, CvtMode:$mode), 418 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 419 FromName, ".u8 \t$dst, $src;"), []>; 420 def _s16 : 421 NVPTXInst<(outs RC:$dst), 422 (ins Int16Regs:$src, CvtMode:$mode), 423 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 424 FromName, ".s16 \t$dst, $src;"), []>; 425 def _u16 : 426 NVPTXInst<(outs RC:$dst), 427 (ins Int16Regs:$src, CvtMode:$mode), 428 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 429 FromName, ".u16 \t$dst, $src;"), []>; 430 def _s32 : 431 NVPTXInst<(outs RC:$dst), 432 (ins Int32Regs:$src, CvtMode:$mode), 433 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 434 FromName, ".s32 \t$dst, $src;"), []>; 435 def _u32 : 436 NVPTXInst<(outs RC:$dst), 437 (ins Int32Regs:$src, CvtMode:$mode), 438 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 439 FromName, ".u32 \t$dst, $src;"), []>; 440 def _s64 : 441 NVPTXInst<(outs RC:$dst), 442 (ins Int64Regs:$src, CvtMode:$mode), 443 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 444 FromName, ".s64 \t$dst, $src;"), []>; 445 def _u64 : 446 NVPTXInst<(outs RC:$dst), 447 (ins Int64Regs:$src, CvtMode:$mode), 448 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 449 FromName, ".u64 \t$dst, $src;"), []>; 450 def _f16 : 451 NVPTXInst<(outs RC:$dst), 452 (ins Float16Regs:$src, CvtMode:$mode), 453 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 454 FromName, ".f16 \t$dst, $src;"), []>; 455 def _f32 : 456 NVPTXInst<(outs RC:$dst), 457 (ins Float32Regs:$src, CvtMode:$mode), 458 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 459 FromName, ".f32 \t$dst, $src;"), []>; 460 def _f64 : 461 NVPTXInst<(outs RC:$dst), 462 (ins Float64Regs:$src, CvtMode:$mode), 463 !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", 464 FromName, ".f64 \t$dst, $src;"), []>; 465 } 466 467 // Generate cvts from all types to all types. 468 defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>; 469 defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>; 470 defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>; 471 defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>; 472 defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>; 473 defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>; 474 defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>; 475 defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>; 476 defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>; 477 defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>; 478 defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>; 479 480 // These cvts are different from those above: The source and dest registers 481 // are of the same type. 482 def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 483 "cvt.s16.s8 \t$dst, $src;", []>; 484 def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 485 "cvt.s32.s8 \t$dst, $src;", []>; 486 def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 487 "cvt.s32.s16 \t$dst, $src;", []>; 488 def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 489 "cvt.s64.s8 \t$dst, $src;", []>; 490 def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 491 "cvt.s64.s16 \t$dst, $src;", []>; 492 def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 493 "cvt.s64.s32 \t$dst, $src;", []>; 494} 495 496//----------------------------------- 497// Integer Arithmetic 498//----------------------------------- 499 500// Template for xor masquerading as int1 arithmetic. 501multiclass ADD_SUB_i1<SDNode OpNode> { 502 def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), 503 "xor.pred \t$dst, $a, $b;", 504 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; 505 def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), 506 "xor.pred \t$dst, $a, $b;", 507 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>; 508} 509 510// int1 addition and subtraction are both just xor. 511defm ADD_i1 : ADD_SUB_i1<add>; 512defm SUB_i1 : ADD_SUB_i1<sub>; 513 514// int16, int32, and int64 signed addition. Since nvptx is 2's complement, we 515// also use these for unsigned arithmetic. 516defm ADD : I3<"add.s", add>; 517defm SUB : I3<"sub.s", sub>; 518 519// int32 addition and subtraction with carry-out. 520// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?). 521defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>; 522defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>; 523 524// int32 addition and subtraction with carry-in and carry-out. 525defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>; 526defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>; 527 528defm MULT : I3<"mul.lo.s", mul>; 529 530defm MULTHS : I3<"mul.hi.s", mulhs>; 531defm MULTHU : I3<"mul.hi.u", mulhu>; 532 533defm SDIV : I3<"div.s", sdiv>; 534defm UDIV : I3<"div.u", udiv>; 535 536// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM 537// will lower it. 538defm SREM : I3<"rem.s", srem>; 539defm UREM : I3<"rem.u", urem>; 540 541// Integer absolute value. NumBits should be one minus the bit width of RC. 542// This idiom implements the algorithm at 543// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs. 544multiclass ABS<RegisterClass RC, string SizeName> { 545 def : NVPTXInst<(outs RC:$dst), (ins RC:$a), 546 !strconcat("abs", SizeName, " \t$dst, $a;"), 547 [(set RC:$dst, (abs RC:$a))]>; 548} 549defm ABS_16 : ABS<Int16Regs, ".s16">; 550defm ABS_32 : ABS<Int32Regs, ".s32">; 551defm ABS_64 : ABS<Int64Regs, ".s64">; 552 553// Integer min/max. 554defm SMAX : I3<"max.s", smax>; 555defm UMAX : I3<"max.u", umax>; 556defm SMIN : I3<"min.s", smin>; 557defm UMIN : I3<"min.u", umin>; 558 559// 560// Wide multiplication 561// 562def MULWIDES64 : 563 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 564 "mul.wide.s32 \t$dst, $a, $b;", []>; 565def MULWIDES64Imm : 566 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 567 "mul.wide.s32 \t$dst, $a, $b;", []>; 568def MULWIDES64Imm64 : 569 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), 570 "mul.wide.s32 \t$dst, $a, $b;", []>; 571 572def MULWIDEU64 : 573 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 574 "mul.wide.u32 \t$dst, $a, $b;", []>; 575def MULWIDEU64Imm : 576 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 577 "mul.wide.u32 \t$dst, $a, $b;", []>; 578def MULWIDEU64Imm64 : 579 NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), 580 "mul.wide.u32 \t$dst, $a, $b;", []>; 581 582def MULWIDES32 : 583 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 584 "mul.wide.s16 \t$dst, $a, $b;", []>; 585def MULWIDES32Imm : 586 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 587 "mul.wide.s16 \t$dst, $a, $b;", []>; 588def MULWIDES32Imm32 : 589 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 590 "mul.wide.s16 \t$dst, $a, $b;", []>; 591 592def MULWIDEU32 : 593 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 594 "mul.wide.u16 \t$dst, $a, $b;", []>; 595def MULWIDEU32Imm : 596 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 597 "mul.wide.u16 \t$dst, $a, $b;", []>; 598def MULWIDEU32Imm32 : 599 NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 600 "mul.wide.u16 \t$dst, $a, $b;", []>; 601 602def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>; 603def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>; 604def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>; 605 606// Matchers for signed, unsigned mul.wide ISD nodes. 607def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)), 608 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, 609 Requires<[doMulWide]>; 610def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)), 611 (MULWIDES32Imm Int16Regs:$a, imm:$b)>, 612 Requires<[doMulWide]>; 613def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)), 614 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, 615 Requires<[doMulWide]>; 616def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)), 617 (MULWIDEU32Imm Int16Regs:$a, imm:$b)>, 618 Requires<[doMulWide]>; 619 620def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)), 621 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, 622 Requires<[doMulWide]>; 623def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)), 624 (MULWIDES64Imm Int32Regs:$a, imm:$b)>, 625 Requires<[doMulWide]>; 626def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)), 627 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, 628 Requires<[doMulWide]>; 629def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)), 630 (MULWIDEU64Imm Int32Regs:$a, imm:$b)>, 631 Requires<[doMulWide]>; 632 633// Predicates used for converting some patterns to mul.wide. 634def SInt32Const : PatLeaf<(imm), [{ 635 const APInt &v = N->getAPIntValue(); 636 return v.isSignedIntN(32); 637}]>; 638 639def UInt32Const : PatLeaf<(imm), [{ 640 const APInt &v = N->getAPIntValue(); 641 return v.isIntN(32); 642}]>; 643 644def SInt16Const : PatLeaf<(imm), [{ 645 const APInt &v = N->getAPIntValue(); 646 return v.isSignedIntN(16); 647}]>; 648 649def UInt16Const : PatLeaf<(imm), [{ 650 const APInt &v = N->getAPIntValue(); 651 return v.isIntN(16); 652}]>; 653 654def Int5Const : PatLeaf<(imm), [{ 655 // Check if 0 <= v < 32; only then will the result of (x << v) be an int32. 656 const APInt &v = N->getAPIntValue(); 657 return v.sge(0) && v.slt(32); 658}]>; 659 660def Int4Const : PatLeaf<(imm), [{ 661 // Check if 0 <= v < 16; only then will the result of (x << v) be an int16. 662 const APInt &v = N->getAPIntValue(); 663 return v.sge(0) && v.slt(16); 664}]>; 665 666def SHL2MUL32 : SDNodeXForm<imm, [{ 667 const APInt &v = N->getAPIntValue(); 668 APInt temp(32, 1); 669 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32); 670}]>; 671 672def SHL2MUL16 : SDNodeXForm<imm, [{ 673 const APInt &v = N->getAPIntValue(); 674 APInt temp(16, 1); 675 return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16); 676}]>; 677 678// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide. 679def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)), 680 (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, 681 Requires<[doMulWide]>; 682def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)), 683 (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, 684 Requires<[doMulWide]>; 685 686def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)), 687 (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, 688 Requires<[doMulWide]>; 689def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)), 690 (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, 691 Requires<[doMulWide]>; 692 693// Convert "sign/zero-extend then multiply" to mul.wide. 694def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)), 695 (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, 696 Requires<[doMulWide]>; 697def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)), 698 (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>, 699 Requires<[doMulWide]>; 700 701def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)), 702 (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, 703 Requires<[doMulWide]>; 704def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)), 705 (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>, 706 Requires<[doMulWide]>; 707 708def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)), 709 (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, 710 Requires<[doMulWide]>; 711def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)), 712 (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>, 713 Requires<[doMulWide]>; 714 715def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)), 716 (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, 717 Requires<[doMulWide]>; 718def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)), 719 (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>, 720 Requires<[doMulWide]>; 721 722// 723// Integer multiply-add 724// 725def SDTIMAD : 726 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>, 727 SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; 728def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>; 729 730def MAD16rrr : 731 NVPTXInst<(outs Int16Regs:$dst), 732 (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c), 733 "mad.lo.s16 \t$dst, $a, $b, $c;", 734 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>; 735def MAD16rri : 736 NVPTXInst<(outs Int16Regs:$dst), 737 (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c), 738 "mad.lo.s16 \t$dst, $a, $b, $c;", 739 [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>; 740def MAD16rir : 741 NVPTXInst<(outs Int16Regs:$dst), 742 (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c), 743 "mad.lo.s16 \t$dst, $a, $b, $c;", 744 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>; 745def MAD16rii : 746 NVPTXInst<(outs Int16Regs:$dst), 747 (ins Int16Regs:$a, i16imm:$b, i16imm:$c), 748 "mad.lo.s16 \t$dst, $a, $b, $c;", 749 [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>; 750 751def MAD32rrr : 752 NVPTXInst<(outs Int32Regs:$dst), 753 (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c), 754 "mad.lo.s32 \t$dst, $a, $b, $c;", 755 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>; 756def MAD32rri : 757 NVPTXInst<(outs Int32Regs:$dst), 758 (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c), 759 "mad.lo.s32 \t$dst, $a, $b, $c;", 760 [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>; 761def MAD32rir : 762 NVPTXInst<(outs Int32Regs:$dst), 763 (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c), 764 "mad.lo.s32 \t$dst, $a, $b, $c;", 765 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>; 766def MAD32rii : 767 NVPTXInst<(outs Int32Regs:$dst), 768 (ins Int32Regs:$a, i32imm:$b, i32imm:$c), 769 "mad.lo.s32 \t$dst, $a, $b, $c;", 770 [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>; 771 772def MAD64rrr : 773 NVPTXInst<(outs Int64Regs:$dst), 774 (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c), 775 "mad.lo.s64 \t$dst, $a, $b, $c;", 776 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>; 777def MAD64rri : 778 NVPTXInst<(outs Int64Regs:$dst), 779 (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c), 780 "mad.lo.s64 \t$dst, $a, $b, $c;", 781 [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>; 782def MAD64rir : 783 NVPTXInst<(outs Int64Regs:$dst), 784 (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c), 785 "mad.lo.s64 \t$dst, $a, $b, $c;", 786 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>; 787def MAD64rii : 788 NVPTXInst<(outs Int64Regs:$dst), 789 (ins Int64Regs:$a, i64imm:$b, i64imm:$c), 790 "mad.lo.s64 \t$dst, $a, $b, $c;", 791 [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>; 792 793def INEG16 : 794 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 795 "neg.s16 \t$dst, $src;", 796 [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>; 797def INEG32 : 798 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 799 "neg.s32 \t$dst, $src;", 800 [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>; 801def INEG64 : 802 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 803 "neg.s64 \t$dst, $src;", 804 [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>; 805 806//----------------------------------- 807// Floating Point Arithmetic 808//----------------------------------- 809 810// Constant 1.0f 811def FloatConst1 : PatLeaf<(fpimm), [{ 812 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() && 813 N->getValueAPF().convertToFloat() == 1.0f; 814}]>; 815// Constant 1.0 (double) 816def DoubleConst1 : PatLeaf<(fpimm), [{ 817 return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() && 818 N->getValueAPF().convertToDouble() == 1.0; 819}]>; 820 821// Loads FP16 constant into a register. 822// 823// ptxas does not have hex representation for fp16, so we can't use 824// fp16 immediate values in .f16 instructions. Instead we have to load 825// the constant into a register using mov.b16. 826def LOAD_CONST_F16 : 827 NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a), 828 "mov.b16 \t$dst, $a;", []>; 829 830defm FADD : F3_fma_component<"add", fadd>; 831defm FSUB : F3_fma_component<"sub", fsub>; 832defm FMUL : F3_fma_component<"mul", fmul>; 833 834defm FMIN : F3<"min", fminnum>; 835defm FMAX : F3<"max", fmaxnum>; 836 837defm FABS : F2<"abs", fabs>; 838defm FNEG : F2<"neg", fneg>; 839defm FSQRT : F2<"sqrt.rn", fsqrt>; 840 841// 842// F64 division 843// 844def FDIV641r : 845 NVPTXInst<(outs Float64Regs:$dst), 846 (ins f64imm:$a, Float64Regs:$b), 847 "rcp.rn.f64 \t$dst, $b;", 848 [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>; 849def FDIV64rr : 850 NVPTXInst<(outs Float64Regs:$dst), 851 (ins Float64Regs:$a, Float64Regs:$b), 852 "div.rn.f64 \t$dst, $a, $b;", 853 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>; 854def FDIV64ri : 855 NVPTXInst<(outs Float64Regs:$dst), 856 (ins Float64Regs:$a, f64imm:$b), 857 "div.rn.f64 \t$dst, $a, $b;", 858 [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>; 859 860// 861// F32 Approximate reciprocal 862// 863def FDIV321r_ftz : 864 NVPTXInst<(outs Float32Regs:$dst), 865 (ins f32imm:$a, Float32Regs:$b), 866 "rcp.approx.ftz.f32 \t$dst, $b;", 867 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 868 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 869def FDIV321r : 870 NVPTXInst<(outs Float32Regs:$dst), 871 (ins f32imm:$a, Float32Regs:$b), 872 "rcp.approx.f32 \t$dst, $b;", 873 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 874 Requires<[do_DIVF32_APPROX]>; 875// 876// F32 Approximate division 877// 878def FDIV32approxrr_ftz : 879 NVPTXInst<(outs Float32Regs:$dst), 880 (ins Float32Regs:$a, Float32Regs:$b), 881 "div.approx.ftz.f32 \t$dst, $a, $b;", 882 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 883 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 884def FDIV32approxri_ftz : 885 NVPTXInst<(outs Float32Regs:$dst), 886 (ins Float32Regs:$a, f32imm:$b), 887 "div.approx.ftz.f32 \t$dst, $a, $b;", 888 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 889 Requires<[do_DIVF32_APPROX, doF32FTZ]>; 890def FDIV32approxrr : 891 NVPTXInst<(outs Float32Regs:$dst), 892 (ins Float32Regs:$a, Float32Regs:$b), 893 "div.approx.f32 \t$dst, $a, $b;", 894 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 895 Requires<[do_DIVF32_APPROX]>; 896def FDIV32approxri : 897 NVPTXInst<(outs Float32Regs:$dst), 898 (ins Float32Regs:$a, f32imm:$b), 899 "div.approx.f32 \t$dst, $a, $b;", 900 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 901 Requires<[do_DIVF32_APPROX]>; 902// 903// F32 Semi-accurate reciprocal 904// 905// rcp.approx gives the same result as div.full(1.0f, a) and is faster. 906// 907def FDIV321r_approx_ftz : 908 NVPTXInst<(outs Float32Regs:$dst), 909 (ins f32imm:$a, Float32Regs:$b), 910 "rcp.approx.ftz.f32 \t$dst, $b;", 911 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 912 Requires<[do_DIVF32_FULL, doF32FTZ]>; 913def FDIV321r_approx : 914 NVPTXInst<(outs Float32Regs:$dst), 915 (ins f32imm:$a, Float32Regs:$b), 916 "rcp.approx.f32 \t$dst, $b;", 917 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 918 Requires<[do_DIVF32_FULL]>; 919// 920// F32 Semi-accurate division 921// 922def FDIV32rr_ftz : 923 NVPTXInst<(outs Float32Regs:$dst), 924 (ins Float32Regs:$a, Float32Regs:$b), 925 "div.full.ftz.f32 \t$dst, $a, $b;", 926 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 927 Requires<[do_DIVF32_FULL, doF32FTZ]>; 928def FDIV32ri_ftz : 929 NVPTXInst<(outs Float32Regs:$dst), 930 (ins Float32Regs:$a, f32imm:$b), 931 "div.full.ftz.f32 \t$dst, $a, $b;", 932 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 933 Requires<[do_DIVF32_FULL, doF32FTZ]>; 934def FDIV32rr : 935 NVPTXInst<(outs Float32Regs:$dst), 936 (ins Float32Regs:$a, Float32Regs:$b), 937 "div.full.f32 \t$dst, $a, $b;", 938 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 939 Requires<[do_DIVF32_FULL]>; 940def FDIV32ri : 941 NVPTXInst<(outs Float32Regs:$dst), 942 (ins Float32Regs:$a, f32imm:$b), 943 "div.full.f32 \t$dst, $a, $b;", 944 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 945 Requires<[do_DIVF32_FULL]>; 946// 947// F32 Accurate reciprocal 948// 949def FDIV321r_prec_ftz : 950 NVPTXInst<(outs Float32Regs:$dst), 951 (ins f32imm:$a, Float32Regs:$b), 952 "rcp.rn.ftz.f32 \t$dst, $b;", 953 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, 954 Requires<[doF32FTZ]>; 955def FDIV321r_prec : 956 NVPTXInst<(outs Float32Regs:$dst), 957 (ins f32imm:$a, Float32Regs:$b), 958 "rcp.rn.f32 \t$dst, $b;", 959 [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>; 960// 961// F32 Accurate division 962// 963def FDIV32rr_prec_ftz : 964 NVPTXInst<(outs Float32Regs:$dst), 965 (ins Float32Regs:$a, Float32Regs:$b), 966 "div.rn.ftz.f32 \t$dst, $a, $b;", 967 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, 968 Requires<[doF32FTZ]>; 969def FDIV32ri_prec_ftz : 970 NVPTXInst<(outs Float32Regs:$dst), 971 (ins Float32Regs:$a, f32imm:$b), 972 "div.rn.ftz.f32 \t$dst, $a, $b;", 973 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, 974 Requires<[doF32FTZ]>; 975def FDIV32rr_prec : 976 NVPTXInst<(outs Float32Regs:$dst), 977 (ins Float32Regs:$a, Float32Regs:$b), 978 "div.rn.f32 \t$dst, $a, $b;", 979 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>; 980def FDIV32ri_prec : 981 NVPTXInst<(outs Float32Regs:$dst), 982 (ins Float32Regs:$a, f32imm:$b), 983 "div.rn.f32 \t$dst, $a, $b;", 984 [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>; 985 986// 987// FMA 988// 989 990multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> { 991 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), 992 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 993 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, 994 Requires<[Pred]>; 995 def rri : NVPTXInst<(outs RC:$dst), 996 (ins RC:$a, RC:$b, ImmCls:$c), 997 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 998 [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>, 999 Requires<[Pred]>; 1000 def rir : NVPTXInst<(outs RC:$dst), 1001 (ins RC:$a, ImmCls:$b, RC:$c), 1002 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1003 [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>, 1004 Requires<[Pred]>; 1005 def rii : NVPTXInst<(outs RC:$dst), 1006 (ins RC:$a, ImmCls:$b, ImmCls:$c), 1007 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1008 [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>, 1009 Requires<[Pred]>; 1010} 1011 1012multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> { 1013 def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), 1014 !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), 1015 [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, 1016 Requires<[useFP16Math, Pred]>; 1017} 1018 1019defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>; 1020defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, true>; 1021defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>; 1022defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, true>; 1023defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>; 1024defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>; 1025defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>; 1026 1027// sin/cos 1028def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1029 "sin.approx.f32 \t$dst, $src;", 1030 [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>, 1031 Requires<[allowUnsafeFPMath]>; 1032def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1033 "cos.approx.f32 \t$dst, $src;", 1034 [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>, 1035 Requires<[allowUnsafeFPMath]>; 1036 1037// Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)), 1038// i.e. "poor man's fmod()" 1039 1040// frem - f32 FTZ 1041def : Pat<(frem Float32Regs:$x, Float32Regs:$y), 1042 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32 1043 (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ), 1044 Float32Regs:$y))>, 1045 Requires<[doF32FTZ]>; 1046def : Pat<(frem Float32Regs:$x, fpimm:$y), 1047 (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32 1048 (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ), 1049 fpimm:$y))>, 1050 Requires<[doF32FTZ]>; 1051 1052// frem - f32 1053def : Pat<(frem Float32Regs:$x, Float32Regs:$y), 1054 (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32 1055 (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI), 1056 Float32Regs:$y))>; 1057def : Pat<(frem Float32Regs:$x, fpimm:$y), 1058 (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32 1059 (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI), 1060 fpimm:$y))>; 1061 1062// frem - f64 1063def : Pat<(frem Float64Regs:$x, Float64Regs:$y), 1064 (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64 1065 (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI), 1066 Float64Regs:$y))>; 1067def : Pat<(frem Float64Regs:$x, fpimm:$y), 1068 (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64 1069 (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI), 1070 fpimm:$y))>; 1071 1072//----------------------------------- 1073// Bitwise operations 1074//----------------------------------- 1075 1076// Template for three-arg bitwise operations. Takes three args, Creates .b16, 1077// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr. 1078multiclass BITWISE<string OpcStr, SDNode OpNode> { 1079 def b1rr : 1080 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), 1081 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), 1082 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; 1083 def b1ri : 1084 NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), 1085 !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), 1086 [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>; 1087 def b16rr : 1088 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), 1089 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), 1090 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; 1091 def b16ri : 1092 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), 1093 !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), 1094 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>; 1095 def b32rr : 1096 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 1097 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), 1098 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 1099 def b32ri : 1100 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 1101 !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), 1102 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; 1103 def b64rr : 1104 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), 1105 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), 1106 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; 1107 def b64ri : 1108 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), 1109 !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), 1110 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; 1111} 1112 1113defm OR : BITWISE<"or", or>; 1114defm AND : BITWISE<"and", and>; 1115defm XOR : BITWISE<"xor", xor>; 1116 1117def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src), 1118 "not.pred \t$dst, $src;", 1119 [(set Int1Regs:$dst, (not Int1Regs:$src))]>; 1120def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 1121 "not.b16 \t$dst, $src;", 1122 [(set Int16Regs:$dst, (not Int16Regs:$src))]>; 1123def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), 1124 "not.b32 \t$dst, $src;", 1125 [(set Int32Regs:$dst, (not Int32Regs:$src))]>; 1126def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), 1127 "not.b64 \t$dst, $src;", 1128 [(set Int64Regs:$dst, (not Int64Regs:$src))]>; 1129 1130// Template for left/right shifts. Takes three operands, 1131// [dest (reg), src (reg), shift (reg or imm)]. 1132// dest and src may be int64, int32, or int16, but shift is always int32. 1133// 1134// This template also defines a 32-bit shift (imm, imm) instruction. 1135multiclass SHIFT<string OpcStr, SDNode OpNode> { 1136 def i64rr : 1137 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b), 1138 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 1139 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>; 1140 def i64ri : 1141 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b), 1142 !strconcat(OpcStr, "64 \t$dst, $a, $b;"), 1143 [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>; 1144 def i32rr : 1145 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), 1146 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1147 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; 1148 def i32ri : 1149 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), 1150 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1151 [(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>; 1152 def i32ii : 1153 NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b), 1154 !strconcat(OpcStr, "32 \t$dst, $a, $b;"), 1155 [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>; 1156 def i16rr : 1157 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b), 1158 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 1159 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>; 1160 def i16ri : 1161 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b), 1162 !strconcat(OpcStr, "16 \t$dst, $a, $b;"), 1163 [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>; 1164} 1165 1166defm SHL : SHIFT<"shl.b", shl>; 1167defm SRA : SHIFT<"shr.s", sra>; 1168defm SRL : SHIFT<"shr.u", srl>; 1169 1170// Bit-reverse 1171def BREV32 : 1172 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), 1173 "brev.b32 \t$dst, $a;", 1174 [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>; 1175def BREV64 : 1176 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a), 1177 "brev.b64 \t$dst, $a;", 1178 [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>; 1179 1180// 1181// Rotate: Use ptx shf instruction if available. 1182// 1183 1184// 32 bit r2 = rotl r1, n 1185// => 1186// r2 = shf.l r1, r1, n 1187def ROTL32imm_hw : 1188 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), 1189 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", 1190 [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>, 1191 Requires<[hasHWROT32]>; 1192 1193def ROTL32reg_hw : 1194 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1195 "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", 1196 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, 1197 Requires<[hasHWROT32]>; 1198 1199// 32 bit r2 = rotr r1, n 1200// => 1201// r2 = shf.r r1, r1, n 1202def ROTR32imm_hw : 1203 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), 1204 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", 1205 [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>, 1206 Requires<[hasHWROT32]>; 1207 1208def ROTR32reg_hw : 1209 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1210 "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", 1211 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, 1212 Requires<[hasHWROT32]>; 1213 1214// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1. 1215def ROT32imm_sw : 1216 NVPTXInst<(outs Int32Regs:$dst), 1217 (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2), 1218 "{{\n\t" 1219 ".reg .b32 %lhs;\n\t" 1220 ".reg .b32 %rhs;\n\t" 1221 "shl.b32 \t%lhs, $src, $amt1;\n\t" 1222 "shr.b32 \t%rhs, $src, $amt2;\n\t" 1223 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1224 "}}", 1225 []>; 1226 1227def SUB_FRM_32 : SDNodeXForm<imm, [{ 1228 return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32); 1229}]>; 1230 1231def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)), 1232 (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>, 1233 Requires<[noHWROT32]>; 1234def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)), 1235 (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>, 1236 Requires<[noHWROT32]>; 1237 1238// 32-bit software rotate left by register. 1239def ROTL32reg_sw : 1240 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1241 "{{\n\t" 1242 ".reg .b32 %lhs;\n\t" 1243 ".reg .b32 %rhs;\n\t" 1244 ".reg .b32 %amt2;\n\t" 1245 "shl.b32 \t%lhs, $src, $amt;\n\t" 1246 "sub.s32 \t%amt2, 32, $amt;\n\t" 1247 "shr.b32 \t%rhs, $src, %amt2;\n\t" 1248 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1249 "}}", 1250 [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, 1251 Requires<[noHWROT32]>; 1252 1253// 32-bit software rotate right by register. 1254def ROTR32reg_sw : 1255 NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), 1256 "{{\n\t" 1257 ".reg .b32 %lhs;\n\t" 1258 ".reg .b32 %rhs;\n\t" 1259 ".reg .b32 %amt2;\n\t" 1260 "shr.b32 \t%lhs, $src, $amt;\n\t" 1261 "sub.s32 \t%amt2, 32, $amt;\n\t" 1262 "shl.b32 \t%rhs, $src, %amt2;\n\t" 1263 "add.u32 \t$dst, %lhs, %rhs;\n\t" 1264 "}}", 1265 [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, 1266 Requires<[noHWROT32]>; 1267 1268// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1. 1269def ROT64imm_sw : 1270 NVPTXInst<(outs Int64Regs:$dst), 1271 (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2), 1272 "{{\n\t" 1273 ".reg .b64 %lhs;\n\t" 1274 ".reg .b64 %rhs;\n\t" 1275 "shl.b64 \t%lhs, $src, $amt1;\n\t" 1276 "shr.b64 \t%rhs, $src, $amt2;\n\t" 1277 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1278 "}}", 1279 []>; 1280 1281def SUB_FRM_64 : SDNodeXForm<imm, [{ 1282 return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32); 1283}]>; 1284 1285def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)), 1286 (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>; 1287def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)), 1288 (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>; 1289 1290// 64-bit software rotate left by register. 1291def ROTL64reg_sw : 1292 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), 1293 "{{\n\t" 1294 ".reg .b64 %lhs;\n\t" 1295 ".reg .b64 %rhs;\n\t" 1296 ".reg .u32 %amt2;\n\t" 1297 "shl.b64 \t%lhs, $src, $amt;\n\t" 1298 "sub.u32 \t%amt2, 64, $amt;\n\t" 1299 "shr.b64 \t%rhs, $src, %amt2;\n\t" 1300 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1301 "}}", 1302 [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>; 1303 1304def ROTR64reg_sw : 1305 NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), 1306 "{{\n\t" 1307 ".reg .b64 %lhs;\n\t" 1308 ".reg .b64 %rhs;\n\t" 1309 ".reg .u32 %amt2;\n\t" 1310 "shr.b64 \t%lhs, $src, $amt;\n\t" 1311 "sub.u32 \t%amt2, 64, $amt;\n\t" 1312 "shl.b64 \t%rhs, $src, %amt2;\n\t" 1313 "add.u64 \t$dst, %lhs, %rhs;\n\t" 1314 "}}", 1315 [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>; 1316 1317// 1318// Funnnel shift in clamp mode 1319// 1320 1321// Create SDNodes so they can be used in the DAG code, e.g. 1322// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts) 1323def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>; 1324def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>; 1325 1326def FUNSHFLCLAMP : 1327 NVPTXInst<(outs Int32Regs:$dst), 1328 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), 1329 "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;", 1330 [(set Int32Regs:$dst, 1331 (FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; 1332 1333def FUNSHFRCLAMP : 1334 NVPTXInst<(outs Int32Regs:$dst), 1335 (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), 1336 "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;", 1337 [(set Int32Regs:$dst, 1338 (FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; 1339 1340// 1341// BFE - bit-field extract 1342// 1343 1344// Template for BFE instructions. Takes four args, 1345// [dest (reg), src (reg), start (reg or imm), end (reg or imm)]. 1346// Start may be an imm only if end is also an imm. FIXME: Is this a 1347// restriction in PTX? 1348// 1349// dest and src may be int32 or int64, but start and end are always int32. 1350multiclass BFE<string TyStr, RegisterClass RC> { 1351 def rrr 1352 : NVPTXInst<(outs RC:$d), 1353 (ins RC:$a, Int32Regs:$b, Int32Regs:$c), 1354 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1355 def rri 1356 : NVPTXInst<(outs RC:$d), 1357 (ins RC:$a, Int32Regs:$b, i32imm:$c), 1358 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1359 def rii 1360 : NVPTXInst<(outs RC:$d), 1361 (ins RC:$a, i32imm:$b, i32imm:$c), 1362 !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; 1363} 1364 1365let hasSideEffects = 0 in { 1366 defm BFE_S32 : BFE<"s32", Int32Regs>; 1367 defm BFE_U32 : BFE<"u32", Int32Regs>; 1368 defm BFE_S64 : BFE<"s64", Int64Regs>; 1369 defm BFE_U64 : BFE<"u64", Int64Regs>; 1370} 1371 1372//----------------------------------- 1373// Comparison instructions (setp, set) 1374//----------------------------------- 1375 1376// FIXME: This doesn't cover versions of set and setp that combine with a 1377// boolean predicate, e.g. setp.eq.and.b16. 1378 1379let hasSideEffects = 0 in { 1380 multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> { 1381 def rr : 1382 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), 1383 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1384 " \t$dst, $a, $b;"), []>; 1385 def ri : 1386 NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), 1387 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1388 " \t$dst, $a, $b;"), []>; 1389 def ir : 1390 NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), 1391 !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, 1392 " \t$dst, $a, $b;"), []>; 1393 } 1394} 1395 1396defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>; 1397defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>; 1398defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>; 1399defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>; 1400defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>; 1401defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>; 1402defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>; 1403defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>; 1404defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>; 1405defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>; 1406defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>; 1407def SETP_f16rr : 1408 NVPTXInst<(outs Int1Regs:$dst), 1409 (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp), 1410 "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;", 1411 []>, Requires<[useFP16Math]>; 1412 1413def SETP_f16x2rr : 1414 NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), 1415 (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp), 1416 "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;", 1417 []>, 1418 Requires<[useFP16Math]>; 1419 1420 1421// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form 1422// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination 1423// reg, either u32, s32, or f32. Anyway these aren't used at the moment. 1424 1425let hasSideEffects = 0 in { 1426 multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> { 1427 def rr : NVPTXInst<(outs Int32Regs:$dst), 1428 (ins RC:$a, RC:$b, CmpMode:$cmp), 1429 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1430 def ri : NVPTXInst<(outs Int32Regs:$dst), 1431 (ins RC:$a, ImmCls:$b, CmpMode:$cmp), 1432 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1433 def ir : NVPTXInst<(outs Int32Regs:$dst), 1434 (ins ImmCls:$a, RC:$b, CmpMode:$cmp), 1435 !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; 1436 } 1437} 1438 1439defm SET_b16 : SET<"b16", Int16Regs, i16imm>; 1440defm SET_s16 : SET<"s16", Int16Regs, i16imm>; 1441defm SET_u16 : SET<"u16", Int16Regs, i16imm>; 1442defm SET_b32 : SET<"b32", Int32Regs, i32imm>; 1443defm SET_s32 : SET<"s32", Int32Regs, i32imm>; 1444defm SET_u32 : SET<"u32", Int32Regs, i32imm>; 1445defm SET_b64 : SET<"b64", Int64Regs, i64imm>; 1446defm SET_s64 : SET<"s64", Int64Regs, i64imm>; 1447defm SET_u64 : SET<"u64", Int64Regs, i64imm>; 1448defm SET_f16 : SET<"f16", Float16Regs, f16imm>; 1449defm SET_f32 : SET<"f32", Float32Regs, f32imm>; 1450defm SET_f64 : SET<"f64", Float64Regs, f64imm>; 1451 1452//----------------------------------- 1453// Selection instructions (selp) 1454//----------------------------------- 1455 1456// FIXME: Missing slct 1457 1458// selp instructions that don't have any pattern matches; we explicitly use 1459// them within this file. 1460let hasSideEffects = 0 in { 1461 multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> { 1462 def rr : NVPTXInst<(outs RC:$dst), 1463 (ins RC:$a, RC:$b, Int1Regs:$p), 1464 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1465 def ri : NVPTXInst<(outs RC:$dst), 1466 (ins RC:$a, ImmCls:$b, Int1Regs:$p), 1467 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1468 def ir : NVPTXInst<(outs RC:$dst), 1469 (ins ImmCls:$a, RC:$b, Int1Regs:$p), 1470 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1471 def ii : NVPTXInst<(outs RC:$dst), 1472 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), 1473 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; 1474 } 1475 1476 multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls, 1477 SDNode ImmNode> { 1478 def rr : 1479 NVPTXInst<(outs RC:$dst), 1480 (ins RC:$a, RC:$b, Int1Regs:$p), 1481 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1482 [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>; 1483 def ri : 1484 NVPTXInst<(outs RC:$dst), 1485 (ins RC:$a, ImmCls:$b, Int1Regs:$p), 1486 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1487 [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>; 1488 def ir : 1489 NVPTXInst<(outs RC:$dst), 1490 (ins ImmCls:$a, RC:$b, Int1Regs:$p), 1491 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1492 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>; 1493 def ii : 1494 NVPTXInst<(outs RC:$dst), 1495 (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), 1496 !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), 1497 [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>; 1498 } 1499} 1500 1501// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as 1502// good. 1503defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>; 1504defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>; 1505defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>; 1506defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>; 1507defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>; 1508defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>; 1509defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>; 1510defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>; 1511defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>; 1512defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>; 1513defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>; 1514defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>; 1515 1516def SELP_f16x2rr : 1517 NVPTXInst<(outs Float16x2Regs:$dst), 1518 (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p), 1519 "selp.b32 \t$dst, $a, $b, $p;", 1520 [(set Float16x2Regs:$dst, 1521 (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>; 1522 1523//----------------------------------- 1524// Data Movement (Load / Store, Move) 1525//----------------------------------- 1526 1527def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], 1528 [SDNPWantRoot]>; 1529def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex], 1530 [SDNPWantRoot]>; 1531def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>; 1532 1533def MEMri : Operand<i32> { 1534 let PrintMethod = "printMemOperand"; 1535 let MIOperandInfo = (ops Int32Regs, i32imm); 1536} 1537def MEMri64 : Operand<i64> { 1538 let PrintMethod = "printMemOperand"; 1539 let MIOperandInfo = (ops Int64Regs, i64imm); 1540} 1541 1542def imem : Operand<iPTR> { 1543 let PrintMethod = "printOperand"; 1544} 1545 1546def imemAny : Operand<iPTRAny> { 1547 let PrintMethod = "printOperand"; 1548} 1549 1550def LdStCode : Operand<i32> { 1551 let PrintMethod = "printLdStCode"; 1552} 1553 1554def MmaCode : Operand<i32> { 1555 let PrintMethod = "printMmaCode"; 1556} 1557 1558def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; 1559def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>; 1560 1561// Load a memory address into a u32 or u64 register. 1562def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a), 1563 "mov.u32 \t$dst, $a;", 1564 [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>; 1565def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a), 1566 "mov.u64 \t$dst, $a;", 1567 [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>; 1568 1569// Get pointer to local stack. 1570let hasSideEffects = 0 in { 1571 def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num), 1572 "mov.u32 \t$d, __local_depot$num;", []>; 1573 def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num), 1574 "mov.u64 \t$d, __local_depot$num;", []>; 1575} 1576 1577 1578// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp 1579let IsSimpleMove=1, hasSideEffects=0 in { 1580 def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss), 1581 "mov.pred \t$dst, $sss;", []>; 1582 def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss), 1583 "mov.u16 \t$dst, $sss;", []>; 1584 def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss), 1585 "mov.u32 \t$dst, $sss;", []>; 1586 def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), 1587 "mov.u64 \t$dst, $sss;", []>; 1588 1589 def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src), 1590 // We have to use .b16 here as there's no mov.f16. 1591 "mov.b16 \t$dst, $src;", []>; 1592 def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), 1593 "mov.f32 \t$dst, $src;", []>; 1594 def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src), 1595 "mov.f64 \t$dst, $src;", []>; 1596} 1597 1598def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src), 1599 "mov.pred \t$dst, $src;", 1600 [(set Int1Regs:$dst, imm:$src)]>; 1601def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src), 1602 "mov.u16 \t$dst, $src;", 1603 [(set Int16Regs:$dst, imm:$src)]>; 1604def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src), 1605 "mov.u32 \t$dst, $src;", 1606 [(set Int32Regs:$dst, imm:$src)]>; 1607def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src), 1608 "mov.u64 \t$dst, $src;", 1609 [(set Int64Regs:$dst, imm:$src)]>; 1610 1611def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src), 1612 "mov.f32 \t$dst, $src;", 1613 [(set Float32Regs:$dst, fpimm:$src)]>; 1614def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src), 1615 "mov.f64 \t$dst, $src;", 1616 [(set Float64Regs:$dst, fpimm:$src)]>; 1617 1618def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>; 1619 1620//---- Copy Frame Index ---- 1621def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr), 1622 "add.u32 \t$dst, ${addr:add};", 1623 [(set Int32Regs:$dst, ADDRri:$addr)]>; 1624def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr), 1625 "add.u64 \t$dst, ${addr:add};", 1626 [(set Int64Regs:$dst, ADDRri64:$addr)]>; 1627 1628//----------------------------------- 1629// Comparison and Selection 1630//----------------------------------- 1631 1632multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode, 1633 Instruction setp_16rr, 1634 Instruction setp_16ri, 1635 Instruction setp_16ir, 1636 Instruction setp_32rr, 1637 Instruction setp_32ri, 1638 Instruction setp_32ir, 1639 Instruction setp_64rr, 1640 Instruction setp_64ri, 1641 Instruction setp_64ir, 1642 Instruction set_16rr, 1643 Instruction set_16ri, 1644 Instruction set_16ir, 1645 Instruction set_32rr, 1646 Instruction set_32ri, 1647 Instruction set_32ir, 1648 Instruction set_64rr, 1649 Instruction set_64ri, 1650 Instruction set_64ir> { 1651 // i16 -> pred 1652 def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)), 1653 (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; 1654 def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)), 1655 (setp_16ri Int16Regs:$a, imm:$b, Mode)>; 1656 def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)), 1657 (setp_16ir imm:$a, Int16Regs:$b, Mode)>; 1658 // i32 -> pred 1659 def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)), 1660 (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; 1661 def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)), 1662 (setp_32ri Int32Regs:$a, imm:$b, Mode)>; 1663 def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)), 1664 (setp_32ir imm:$a, Int32Regs:$b, Mode)>; 1665 // i64 -> pred 1666 def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)), 1667 (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; 1668 def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)), 1669 (setp_64ri Int64Regs:$a, imm:$b, Mode)>; 1670 def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)), 1671 (setp_64ir imm:$a, Int64Regs:$b, Mode)>; 1672 1673 // i16 -> i32 1674 def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)), 1675 (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; 1676 def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)), 1677 (set_16ri Int16Regs:$a, imm:$b, Mode)>; 1678 def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)), 1679 (set_16ir imm:$a, Int16Regs:$b, Mode)>; 1680 // i32 -> i32 1681 def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)), 1682 (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; 1683 def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)), 1684 (set_32ri Int32Regs:$a, imm:$b, Mode)>; 1685 def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)), 1686 (set_32ir imm:$a, Int32Regs:$b, Mode)>; 1687 // i64 -> i32 1688 def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)), 1689 (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; 1690 def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)), 1691 (set_64ri Int64Regs:$a, imm:$b, Mode)>; 1692 def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)), 1693 (set_64ir imm:$a, Int64Regs:$b, Mode)>; 1694} 1695 1696multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode> 1697 : ISET_FORMAT<OpNode, Mode, 1698 SETP_s16rr, SETP_s16ri, SETP_s16ir, 1699 SETP_s32rr, SETP_s32ri, SETP_s32ir, 1700 SETP_s64rr, SETP_s64ri, SETP_s64ir, 1701 SET_s16rr, SET_s16ri, SET_s16ir, 1702 SET_s32rr, SET_s32ri, SET_s32ir, 1703 SET_s64rr, SET_s64ri, SET_s64ir> { 1704 // TableGen doesn't like empty multiclasses. 1705 def : PatLeaf<(i32 0)>; 1706} 1707 1708multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode> 1709 : ISET_FORMAT<OpNode, Mode, 1710 SETP_u16rr, SETP_u16ri, SETP_u16ir, 1711 SETP_u32rr, SETP_u32ri, SETP_u32ir, 1712 SETP_u64rr, SETP_u64ri, SETP_u64ir, 1713 SET_u16rr, SET_u16ri, SET_u16ir, 1714 SET_u32rr, SET_u32ri, SET_u32ir, 1715 SET_u64rr, SET_u64ri, SET_u64ir> { 1716 // TableGen doesn't like empty multiclasses. 1717 def : PatLeaf<(i32 0)>; 1718} 1719 1720defm : ISET_FORMAT_SIGNED<setgt, CmpGT>; 1721defm : ISET_FORMAT_SIGNED<setlt, CmpLT>; 1722defm : ISET_FORMAT_SIGNED<setge, CmpGE>; 1723defm : ISET_FORMAT_SIGNED<setle, CmpLE>; 1724defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>; 1725defm : ISET_FORMAT_SIGNED<setne, CmpNE>; 1726defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>; 1727defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>; 1728defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>; 1729defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>; 1730defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>; 1731defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>; 1732 1733// i1 compares 1734def : Pat<(setne Int1Regs:$a, Int1Regs:$b), 1735 (XORb1rr Int1Regs:$a, Int1Regs:$b)>; 1736def : Pat<(setune Int1Regs:$a, Int1Regs:$b), 1737 (XORb1rr Int1Regs:$a, Int1Regs:$b)>; 1738 1739def : Pat<(seteq Int1Regs:$a, Int1Regs:$b), 1740 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1741def : Pat<(setueq Int1Regs:$a, Int1Regs:$b), 1742 (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1743 1744// i1 compare -> i32 1745def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), 1746 (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1747def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), 1748 (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; 1749 1750 1751 1752multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> { 1753 // f16 -> pred 1754 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), 1755 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, 1756 Requires<[useFP16Math,doF32FTZ]>; 1757 def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), 1758 (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, 1759 Requires<[useFP16Math]>; 1760 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), 1761 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, 1762 Requires<[useFP16Math,doF32FTZ]>; 1763 def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), 1764 (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, 1765 Requires<[useFP16Math]>; 1766 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), 1767 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, 1768 Requires<[useFP16Math,doF32FTZ]>; 1769 def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), 1770 (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, 1771 Requires<[useFP16Math]>; 1772 1773 // f32 -> pred 1774 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), 1775 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, 1776 Requires<[doF32FTZ]>; 1777 def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), 1778 (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; 1779 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), 1780 (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, 1781 Requires<[doF32FTZ]>; 1782 def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), 1783 (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>; 1784 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), 1785 (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, 1786 Requires<[doF32FTZ]>; 1787 def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), 1788 (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>; 1789 1790 // f64 -> pred 1791 def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)), 1792 (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; 1793 def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)), 1794 (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>; 1795 def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)), 1796 (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>; 1797 1798 // f16 -> i32 1799 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), 1800 (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, 1801 Requires<[useFP16Math, doF32FTZ]>; 1802 def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), 1803 (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, 1804 Requires<[useFP16Math]>; 1805 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), 1806 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, 1807 Requires<[useFP16Math, doF32FTZ]>; 1808 def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), 1809 (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, 1810 Requires<[useFP16Math]>; 1811 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), 1812 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, 1813 Requires<[useFP16Math, doF32FTZ]>; 1814 def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), 1815 (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, 1816 Requires<[useFP16Math]>; 1817 1818 // f32 -> i32 1819 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), 1820 (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, 1821 Requires<[doF32FTZ]>; 1822 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), 1823 (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; 1824 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), 1825 (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, 1826 Requires<[doF32FTZ]>; 1827 def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), 1828 (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>; 1829 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), 1830 (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, 1831 Requires<[doF32FTZ]>; 1832 def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), 1833 (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>; 1834 1835 // f64 -> i32 1836 def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)), 1837 (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; 1838 def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)), 1839 (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>; 1840 def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)), 1841 (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>; 1842} 1843 1844defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>; 1845defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>; 1846defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>; 1847defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>; 1848defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>; 1849defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>; 1850 1851defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>; 1852defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>; 1853defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>; 1854defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>; 1855defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>; 1856defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>; 1857 1858defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>; 1859defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>; 1860defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>; 1861defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>; 1862defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>; 1863defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>; 1864 1865defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>; 1866defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>; 1867 1868// FIXME: What is this doing here? Can it be deleted? 1869// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad, 1870// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 1871 1872def SDTDeclareParamProfile : 1873 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; 1874def SDTDeclareScalarParamProfile : 1875 SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; 1876def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; 1877def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>; 1878def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>; 1879def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 1880def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 1881def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; 1882def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>; 1883def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>; 1884def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; 1885def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; 1886def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>; 1887def SDTCallVoidProfile : SDTypeProfile<0, 1, []>; 1888def SDTCallValProfile : SDTypeProfile<1, 0, []>; 1889def SDTMoveParamProfile : SDTypeProfile<1, 1, []>; 1890def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; 1891def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>; 1892def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>; 1893def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>; 1894def SDTProxyRegProfile : SDTypeProfile<1, 1, []>; 1895 1896def DeclareParam : 1897 SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile, 1898 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1899def DeclareScalarParam : 1900 SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile, 1901 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1902def DeclareRetParam : 1903 SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile, 1904 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1905def DeclareRet : 1906 SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile, 1907 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1908def LoadParam : 1909 SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile, 1910 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1911def LoadParamV2 : 1912 SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile, 1913 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1914def LoadParamV4 : 1915 SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile, 1916 [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; 1917def PrintCall : 1918 SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile, 1919 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1920def PrintConvergentCall : 1921 SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile, 1922 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1923def PrintCallUni : 1924 SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile, 1925 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1926def PrintConvergentCallUni : 1927 SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile, 1928 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1929def StoreParam : 1930 SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile, 1931 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1932def StoreParamV2 : 1933 SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile, 1934 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1935def StoreParamV4 : 1936 SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile, 1937 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1938def StoreParamU32 : 1939 SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile, 1940 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1941def StoreParamS32 : 1942 SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile, 1943 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1944def CallArgBegin : 1945 SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile, 1946 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1947def CallArg : 1948 SDNode<"NVPTXISD::CallArg", SDTCallArgProfile, 1949 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1950def LastCallArg : 1951 SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile, 1952 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1953def CallArgEnd : 1954 SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile, 1955 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1956def CallVoid : 1957 SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile, 1958 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1959def Prototype : 1960 SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile, 1961 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1962def CallVal : 1963 SDNode<"NVPTXISD::CallVal", SDTCallValProfile, 1964 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1965def MoveParam : 1966 SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>; 1967def StoreRetval : 1968 SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile, 1969 [SDNPHasChain, SDNPSideEffect]>; 1970def StoreRetvalV2 : 1971 SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile, 1972 [SDNPHasChain, SDNPSideEffect]>; 1973def StoreRetvalV4 : 1974 SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile, 1975 [SDNPHasChain, SDNPSideEffect]>; 1976def PseudoUseParam : 1977 SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile, 1978 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1979def RETURNNode : 1980 SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile, 1981 [SDNPHasChain, SDNPSideEffect]>; 1982def ProxyReg : 1983 SDNode<"NVPTXISD::ProxyReg", SDTProxyRegProfile, 1984 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 1985 1986let mayLoad = 1 in { 1987 class LoadParamMemInst<NVPTXRegClass regclass, string opstr> : 1988 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), 1989 !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"), 1990 []>; 1991 1992 class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> : 1993 NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b), 1994 !strconcat("ld.param.v2", opstr, 1995 " \t{{$dst, $dst2}}, [retval0+$b];"), []>; 1996 1997 class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> : 1998 NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3, 1999 regclass:$dst4), 2000 (ins i32imm:$b), 2001 !strconcat("ld.param.v4", opstr, 2002 " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), 2003 []>; 2004} 2005 2006class LoadParamRegInst<NVPTXRegClass regclass, string opstr> : 2007 NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), 2008 !strconcat("mov", opstr, " \t$dst, retval$b;"), 2009 [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>; 2010 2011let mayStore = 1 in { 2012 class StoreParamInst<NVPTXRegClass regclass, string opstr> : 2013 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b), 2014 !strconcat("st.param", opstr, " \t[param$a+$b], $val;"), 2015 []>; 2016 2017 class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> : 2018 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, 2019 i32imm:$a, i32imm:$b), 2020 !strconcat("st.param.v2", opstr, 2021 " \t[param$a+$b], {{$val, $val2}};"), 2022 []>; 2023 2024 class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> : 2025 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3, 2026 regclass:$val4, i32imm:$a, 2027 i32imm:$b), 2028 !strconcat("st.param.v4", opstr, 2029 " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"), 2030 []>; 2031 2032 class StoreRetvalInst<NVPTXRegClass regclass, string opstr> : 2033 NVPTXInst<(outs), (ins regclass:$val, i32imm:$a), 2034 !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"), 2035 []>; 2036 2037 class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> : 2038 NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a), 2039 !strconcat("st.param.v2", opstr, 2040 " \t[func_retval0+$a], {{$val, $val2}};"), 2041 []>; 2042 2043 class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> : 2044 NVPTXInst<(outs), 2045 (ins regclass:$val, regclass:$val2, regclass:$val3, 2046 regclass:$val4, i32imm:$a), 2047 !strconcat("st.param.v4", opstr, 2048 " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), 2049 []>; 2050} 2051 2052let isCall=1 in { 2053 multiclass CALL<string OpcStr, SDNode OpNode> { 2054 def PrintCallNoRetInst : NVPTXInst<(outs), (ins), 2055 !strconcat(OpcStr, " "), [(OpNode (i32 0))]>; 2056 def PrintCallRetInst1 : NVPTXInst<(outs), (ins), 2057 !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>; 2058 def PrintCallRetInst2 : NVPTXInst<(outs), (ins), 2059 !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>; 2060 def PrintCallRetInst3 : NVPTXInst<(outs), (ins), 2061 !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>; 2062 def PrintCallRetInst4 : NVPTXInst<(outs), (ins), 2063 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "), 2064 [(OpNode (i32 4))]>; 2065 def PrintCallRetInst5 : NVPTXInst<(outs), (ins), 2066 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "), 2067 [(OpNode (i32 5))]>; 2068 def PrintCallRetInst6 : NVPTXInst<(outs), (ins), 2069 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2070 "retval5), "), 2071 [(OpNode (i32 6))]>; 2072 def PrintCallRetInst7 : NVPTXInst<(outs), (ins), 2073 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2074 "retval5, retval6), "), 2075 [(OpNode (i32 7))]>; 2076 def PrintCallRetInst8 : NVPTXInst<(outs), (ins), 2077 !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " 2078 "retval5, retval6, retval7), "), 2079 [(OpNode (i32 8))]>; 2080 } 2081} 2082 2083defm Call : CALL<"call", PrintCall>; 2084defm CallUni : CALL<"call.uni", PrintCallUni>; 2085 2086// Convergent call instructions. These are identical to regular calls, except 2087// they have the isConvergent bit set. 2088let isConvergent=1 in { 2089 defm ConvergentCall : CALL<"call", PrintConvergentCall>; 2090 defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>; 2091} 2092 2093def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">; 2094def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">; 2095def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">; 2096def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">; 2097def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">; 2098def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">; 2099def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">; 2100def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">; 2101def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">; 2102def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">; 2103def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">; 2104def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">; 2105def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">; 2106def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">; 2107def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">; 2108def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">; 2109def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">; 2110def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">; 2111def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">; 2112def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">; 2113def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">; 2114def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">; 2115 2116def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">; 2117def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">; 2118 2119def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">; 2120def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">; 2121def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">; 2122def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">; 2123def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">; 2124def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">; 2125 2126def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">; 2127def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">; 2128def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">; 2129 2130def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">; 2131def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">; 2132def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">; 2133def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">; 2134def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">; 2135def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">; 2136def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">; 2137def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">; 2138def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">; 2139def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">; 2140def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">; 2141 2142def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">; 2143def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">; 2144def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">; 2145def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">; 2146def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">; 2147def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">; 2148def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">; 2149def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">; 2150def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">; 2151def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">; 2152def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">; 2153 2154def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">; 2155def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">; 2156def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">; 2157def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">; 2158def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">; 2159def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">; 2160def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">; 2161def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">; 2162def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">; 2163def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">; 2164def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">; 2165 2166def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>; 2167def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>; 2168def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>; 2169def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>; 2170 2171class CallArgInst<NVPTXRegClass regclass> : 2172 NVPTXInst<(outs), (ins regclass:$a), "$a, ", 2173 [(CallArg (i32 0), regclass:$a)]>; 2174 2175class LastCallArgInst<NVPTXRegClass regclass> : 2176 NVPTXInst<(outs), (ins regclass:$a), "$a", 2177 [(LastCallArg (i32 0), regclass:$a)]>; 2178 2179def CallArgI64 : CallArgInst<Int64Regs>; 2180def CallArgI32 : CallArgInst<Int32Regs>; 2181def CallArgI16 : CallArgInst<Int16Regs>; 2182def CallArgF64 : CallArgInst<Float64Regs>; 2183def CallArgF32 : CallArgInst<Float32Regs>; 2184 2185def LastCallArgI64 : LastCallArgInst<Int64Regs>; 2186def LastCallArgI32 : LastCallArgInst<Int32Regs>; 2187def LastCallArgI16 : LastCallArgInst<Int16Regs>; 2188def LastCallArgF64 : LastCallArgInst<Float64Regs>; 2189def LastCallArgF32 : LastCallArgInst<Float32Regs>; 2190 2191def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ", 2192 [(CallArg (i32 0), (i32 imm:$a))]>; 2193def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a", 2194 [(LastCallArg (i32 0), (i32 imm:$a))]>; 2195 2196def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ", 2197 [(CallArg (i32 1), (i32 imm:$a))]>; 2198def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a", 2199 [(LastCallArg (i32 1), (i32 imm:$a))]>; 2200 2201def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ", 2202 [(CallVoid (Wrapper tglobaladdr:$addr))]>; 2203def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ", 2204 [(CallVoid Int32Regs:$addr)]>; 2205def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ", 2206 [(CallVoid Int64Regs:$addr)]>; 2207def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;", 2208 [(Prototype (i32 imm:$val))]>; 2209 2210def DeclareRetMemInst : 2211 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num), 2212 ".param .align $align .b8 retval$num[$size];", 2213 [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>; 2214def DeclareRetScalarInst : 2215 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), 2216 ".param .b$size retval$num;", 2217 [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>; 2218def DeclareRetRegInst : 2219 NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), 2220 ".reg .b$size retval$num;", 2221 [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>; 2222 2223def DeclareParamInst : 2224 NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size), 2225 ".param .align $align .b8 param$a[$size];", 2226 [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>; 2227def DeclareScalarParamInst : 2228 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), 2229 ".param .b$size param$a;", 2230 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>; 2231def DeclareScalarRegInst : 2232 NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), 2233 ".reg .b$size param$a;", 2234 [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>; 2235 2236class MoveParamInst<NVPTXRegClass regclass, string asmstr> : 2237 NVPTXInst<(outs regclass:$dst), (ins regclass:$src), 2238 !strconcat("mov", asmstr, " \t$dst, $src;"), 2239 [(set regclass:$dst, (MoveParam regclass:$src))]>; 2240 2241def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">; 2242def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">; 2243def MoveParamI16 : 2244 NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), 2245 "cvt.u16.u32 \t$dst, $src;", 2246 [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>; 2247def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">; 2248def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">; 2249def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">; 2250 2251class PseudoUseParamInst<NVPTXRegClass regclass> : 2252 NVPTXInst<(outs), (ins regclass:$src), 2253 "// Pseudo use of $src", 2254 [(PseudoUseParam regclass:$src)]>; 2255 2256def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>; 2257def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>; 2258def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>; 2259def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>; 2260def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>; 2261 2262class ProxyRegInst<string SzStr, NVPTXRegClass regclass> : 2263 NVPTXInst<(outs regclass:$dst), (ins regclass:$src), 2264 !strconcat("mov.", SzStr, " \t$dst, $src;"), 2265 [(set regclass:$dst, (ProxyReg regclass:$src))]>; 2266 2267let isCodeGenOnly=1, isPseudo=1 in { 2268 def ProxyRegI1 : ProxyRegInst<"pred", Int1Regs>; 2269 def ProxyRegI16 : ProxyRegInst<"b16", Int16Regs>; 2270 def ProxyRegI32 : ProxyRegInst<"b32", Int32Regs>; 2271 def ProxyRegI64 : ProxyRegInst<"b64", Int64Regs>; 2272 def ProxyRegF16 : ProxyRegInst<"b16", Float16Regs>; 2273 def ProxyRegF32 : ProxyRegInst<"f32", Float32Regs>; 2274 def ProxyRegF64 : ProxyRegInst<"f64", Float64Regs>; 2275 def ProxyRegF16x2 : ProxyRegInst<"b32", Float16x2Regs>; 2276} 2277 2278// 2279// Load / Store Handling 2280// 2281multiclass LD<NVPTXRegClass regclass> { 2282 def _avar : NVPTXInst< 2283 (outs regclass:$dst), 2284 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2285 i32imm:$fromWidth, imem:$addr), 2286 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2287 "\t$dst, [$addr];", []>; 2288 def _areg : NVPTXInst< 2289 (outs regclass:$dst), 2290 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2291 i32imm:$fromWidth, Int32Regs:$addr), 2292 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2293 "\t$dst, [$addr];", []>; 2294 def _areg_64 : NVPTXInst< 2295 (outs regclass:$dst), 2296 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2297 i32imm:$fromWidth, Int64Regs:$addr), 2298 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2299 "\t$dst, [$addr];", []>; 2300 def _ari : NVPTXInst< 2301 (outs regclass:$dst), 2302 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2303 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2304 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2305 "\t$dst, [$addr+$offset];", []>; 2306 def _ari_64 : NVPTXInst< 2307 (outs regclass:$dst), 2308 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2309 LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2310 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2311 "\t$dst, [$addr+$offset];", []>; 2312 def _asi : NVPTXInst< 2313 (outs regclass:$dst), 2314 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2315 LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2316 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2317 "\t$dst, [$addr+$offset];", []>; 2318} 2319 2320let mayLoad=1, hasSideEffects=0 in { 2321 defm LD_i8 : LD<Int16Regs>; 2322 defm LD_i16 : LD<Int16Regs>; 2323 defm LD_i32 : LD<Int32Regs>; 2324 defm LD_i64 : LD<Int64Regs>; 2325 defm LD_f16 : LD<Float16Regs>; 2326 defm LD_f16x2 : LD<Float16x2Regs>; 2327 defm LD_f32 : LD<Float32Regs>; 2328 defm LD_f64 : LD<Float64Regs>; 2329} 2330 2331multiclass ST<NVPTXRegClass regclass> { 2332 def _avar : NVPTXInst< 2333 (outs), 2334 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2335 LdStCode:$Sign, i32imm:$toWidth, imem:$addr), 2336 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2337 " \t[$addr], $src;", []>; 2338 def _areg : NVPTXInst< 2339 (outs), 2340 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, 2341 LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr), 2342 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2343 " \t[$addr], $src;", []>; 2344 def _areg_64 : NVPTXInst< 2345 (outs), 2346 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2347 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr), 2348 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2349 " \t[$addr], $src;", []>; 2350 def _ari : NVPTXInst< 2351 (outs), 2352 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2353 LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset), 2354 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2355 " \t[$addr+$offset], $src;", []>; 2356 def _ari_64 : NVPTXInst< 2357 (outs), 2358 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2359 LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset), 2360 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2361 " \t[$addr+$offset], $src;", []>; 2362 def _asi : NVPTXInst< 2363 (outs), 2364 (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, 2365 LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset), 2366 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" 2367 " \t[$addr+$offset], $src;", []>; 2368} 2369 2370let mayStore=1, hasSideEffects=0 in { 2371 defm ST_i8 : ST<Int16Regs>; 2372 defm ST_i16 : ST<Int16Regs>; 2373 defm ST_i32 : ST<Int32Regs>; 2374 defm ST_i64 : ST<Int64Regs>; 2375 defm ST_f16 : ST<Float16Regs>; 2376 defm ST_f16x2 : ST<Float16x2Regs>; 2377 defm ST_f32 : ST<Float32Regs>; 2378 defm ST_f64 : ST<Float64Regs>; 2379} 2380 2381// The following is used only in and after vector elementizations. Vector 2382// elementization happens at the machine instruction level, so the following 2383// instructions never appear in the DAG. 2384multiclass LD_VEC<NVPTXRegClass regclass> { 2385 def _v2_avar : NVPTXInst< 2386 (outs regclass:$dst1, regclass:$dst2), 2387 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2388 i32imm:$fromWidth, imem:$addr), 2389 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2390 "\t{{$dst1, $dst2}}, [$addr];", []>; 2391 def _v2_areg : NVPTXInst< 2392 (outs regclass:$dst1, regclass:$dst2), 2393 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2394 i32imm:$fromWidth, Int32Regs:$addr), 2395 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2396 "\t{{$dst1, $dst2}}, [$addr];", []>; 2397 def _v2_areg_64 : NVPTXInst< 2398 (outs regclass:$dst1, regclass:$dst2), 2399 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2400 i32imm:$fromWidth, Int64Regs:$addr), 2401 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2402 "\t{{$dst1, $dst2}}, [$addr];", []>; 2403 def _v2_ari : NVPTXInst< 2404 (outs regclass:$dst1, regclass:$dst2), 2405 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2406 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2407 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2408 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2409 def _v2_ari_64 : NVPTXInst< 2410 (outs regclass:$dst1, regclass:$dst2), 2411 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2412 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2413 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2414 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2415 def _v2_asi : NVPTXInst< 2416 (outs regclass:$dst1, regclass:$dst2), 2417 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2418 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2419 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2420 "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; 2421 def _v4_avar : NVPTXInst< 2422 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2423 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2424 i32imm:$fromWidth, imem:$addr), 2425 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2426 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2427 def _v4_areg : NVPTXInst< 2428 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2429 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2430 i32imm:$fromWidth, Int32Regs:$addr), 2431 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2432 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2433 def _v4_areg_64 : NVPTXInst< 2434 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2435 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2436 i32imm:$fromWidth, Int64Regs:$addr), 2437 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2438 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; 2439 def _v4_ari : NVPTXInst< 2440 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2441 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2442 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2443 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2444 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2445 def _v4_ari_64 : NVPTXInst< 2446 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2447 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2448 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2449 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2450 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2451 def _v4_asi : NVPTXInst< 2452 (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), 2453 (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2454 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2455 "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2456 "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; 2457} 2458let mayLoad=1, hasSideEffects=0 in { 2459 defm LDV_i8 : LD_VEC<Int16Regs>; 2460 defm LDV_i16 : LD_VEC<Int16Regs>; 2461 defm LDV_i32 : LD_VEC<Int32Regs>; 2462 defm LDV_i64 : LD_VEC<Int64Regs>; 2463 defm LDV_f16 : LD_VEC<Float16Regs>; 2464 defm LDV_f16x2 : LD_VEC<Float16x2Regs>; 2465 defm LDV_f32 : LD_VEC<Float32Regs>; 2466 defm LDV_f64 : LD_VEC<Float64Regs>; 2467} 2468 2469multiclass ST_VEC<NVPTXRegClass regclass> { 2470 def _v2_avar : NVPTXInst< 2471 (outs), 2472 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2473 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), 2474 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2475 "\t[$addr], {{$src1, $src2}};", []>; 2476 def _v2_areg : NVPTXInst< 2477 (outs), 2478 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2479 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), 2480 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2481 "\t[$addr], {{$src1, $src2}};", []>; 2482 def _v2_areg_64 : NVPTXInst< 2483 (outs), 2484 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2485 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), 2486 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2487 "\t[$addr], {{$src1, $src2}};", []>; 2488 def _v2_ari : NVPTXInst< 2489 (outs), 2490 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2491 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, 2492 i32imm:$offset), 2493 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2494 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2495 def _v2_ari_64 : NVPTXInst< 2496 (outs), 2497 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2498 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, 2499 i32imm:$offset), 2500 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2501 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2502 def _v2_asi : NVPTXInst< 2503 (outs), 2504 (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, 2505 LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, 2506 i32imm:$offset), 2507 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2508 "\t[$addr+$offset], {{$src1, $src2}};", []>; 2509 def _v4_avar : NVPTXInst< 2510 (outs), 2511 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2512 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2513 i32imm:$fromWidth, imem:$addr), 2514 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2515 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2516 def _v4_areg : NVPTXInst< 2517 (outs), 2518 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2519 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2520 i32imm:$fromWidth, Int32Regs:$addr), 2521 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2522 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2523 def _v4_areg_64 : NVPTXInst< 2524 (outs), 2525 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2526 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2527 i32imm:$fromWidth, Int64Regs:$addr), 2528 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2529 "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; 2530 def _v4_ari : NVPTXInst< 2531 (outs), 2532 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2533 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2534 i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), 2535 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2536 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2537 def _v4_ari_64 : NVPTXInst< 2538 (outs), 2539 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2540 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2541 i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), 2542 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " 2543 "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2544 def _v4_asi : NVPTXInst< 2545 (outs), 2546 (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, 2547 LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, 2548 i32imm:$fromWidth, imem:$addr, i32imm:$offset), 2549 "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}" 2550 "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; 2551} 2552 2553let mayStore=1, hasSideEffects=0 in { 2554 defm STV_i8 : ST_VEC<Int16Regs>; 2555 defm STV_i16 : ST_VEC<Int16Regs>; 2556 defm STV_i32 : ST_VEC<Int32Regs>; 2557 defm STV_i64 : ST_VEC<Int64Regs>; 2558 defm STV_f16 : ST_VEC<Float16Regs>; 2559 defm STV_f16x2 : ST_VEC<Float16x2Regs>; 2560 defm STV_f32 : ST_VEC<Float32Regs>; 2561 defm STV_f64 : ST_VEC<Float64Regs>; 2562} 2563 2564//---- Conversion ---- 2565 2566class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn, 2567 NVPTXRegClass regclassOut> : 2568 NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a), 2569 !strconcat("mov.b", SzStr, " \t$d, $a;"), 2570 [(set regclassOut:$d, (bitconvert regclassIn:$a))]>; 2571 2572def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>; 2573def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>; 2574def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>; 2575def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>; 2576def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>; 2577def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>; 2578def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>; 2579def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>; 2580 2581// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where 2582// we cannot specify floating-point literals in isel patterns. Therefore, we 2583// use an integer selp to select either 1 or 0 and then cvt to floating-point. 2584 2585// sint -> f16 2586def : Pat<(f16 (sint_to_fp Int1Regs:$a)), 2587 (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2588def : Pat<(f16 (sint_to_fp Int16Regs:$a)), 2589 (CVT_f16_s16 Int16Regs:$a, CvtRN)>; 2590def : Pat<(f16 (sint_to_fp Int32Regs:$a)), 2591 (CVT_f16_s32 Int32Regs:$a, CvtRN)>; 2592def : Pat<(f16 (sint_to_fp Int64Regs:$a)), 2593 (CVT_f16_s64 Int64Regs:$a, CvtRN)>; 2594 2595// uint -> f16 2596def : Pat<(f16 (uint_to_fp Int1Regs:$a)), 2597 (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2598def : Pat<(f16 (uint_to_fp Int16Regs:$a)), 2599 (CVT_f16_u16 Int16Regs:$a, CvtRN)>; 2600def : Pat<(f16 (uint_to_fp Int32Regs:$a)), 2601 (CVT_f16_u32 Int32Regs:$a, CvtRN)>; 2602def : Pat<(f16 (uint_to_fp Int64Regs:$a)), 2603 (CVT_f16_u64 Int64Regs:$a, CvtRN)>; 2604 2605// sint -> f32 2606def : Pat<(f32 (sint_to_fp Int1Regs:$a)), 2607 (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2608def : Pat<(f32 (sint_to_fp Int16Regs:$a)), 2609 (CVT_f32_s16 Int16Regs:$a, CvtRN)>; 2610def : Pat<(f32 (sint_to_fp Int32Regs:$a)), 2611 (CVT_f32_s32 Int32Regs:$a, CvtRN)>; 2612def : Pat<(f32 (sint_to_fp Int64Regs:$a)), 2613 (CVT_f32_s64 Int64Regs:$a, CvtRN)>; 2614 2615// uint -> f32 2616def : Pat<(f32 (uint_to_fp Int1Regs:$a)), 2617 (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2618def : Pat<(f32 (uint_to_fp Int16Regs:$a)), 2619 (CVT_f32_u16 Int16Regs:$a, CvtRN)>; 2620def : Pat<(f32 (uint_to_fp Int32Regs:$a)), 2621 (CVT_f32_u32 Int32Regs:$a, CvtRN)>; 2622def : Pat<(f32 (uint_to_fp Int64Regs:$a)), 2623 (CVT_f32_u64 Int64Regs:$a, CvtRN)>; 2624 2625// sint -> f64 2626def : Pat<(f64 (sint_to_fp Int1Regs:$a)), 2627 (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2628def : Pat<(f64 (sint_to_fp Int16Regs:$a)), 2629 (CVT_f64_s16 Int16Regs:$a, CvtRN)>; 2630def : Pat<(f64 (sint_to_fp Int32Regs:$a)), 2631 (CVT_f64_s32 Int32Regs:$a, CvtRN)>; 2632def : Pat<(f64 (sint_to_fp Int64Regs:$a)), 2633 (CVT_f64_s64 Int64Regs:$a, CvtRN)>; 2634 2635// uint -> f64 2636def : Pat<(f64 (uint_to_fp Int1Regs:$a)), 2637 (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; 2638def : Pat<(f64 (uint_to_fp Int16Regs:$a)), 2639 (CVT_f64_u16 Int16Regs:$a, CvtRN)>; 2640def : Pat<(f64 (uint_to_fp Int32Regs:$a)), 2641 (CVT_f64_u32 Int32Regs:$a, CvtRN)>; 2642def : Pat<(f64 (uint_to_fp Int64Regs:$a)), 2643 (CVT_f64_u64 Int64Regs:$a, CvtRN)>; 2644 2645 2646// f16 -> sint 2647def : Pat<(i1 (fp_to_sint Float16Regs:$a)), 2648 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; 2649def : Pat<(i16 (fp_to_sint Float16Regs:$a)), 2650 (CVT_s16_f16 Float16Regs:$a, CvtRZI)>; 2651def : Pat<(i32 (fp_to_sint Float16Regs:$a)), 2652 (CVT_s32_f16 Float16Regs:$a, CvtRZI)>; 2653def : Pat<(i64 (fp_to_sint Float16Regs:$a)), 2654 (CVT_s64_f16 Float16Regs:$a, CvtRZI)>; 2655 2656// f16 -> uint 2657def : Pat<(i1 (fp_to_uint Float16Regs:$a)), 2658 (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; 2659def : Pat<(i16 (fp_to_uint Float16Regs:$a)), 2660 (CVT_u16_f16 Float16Regs:$a, CvtRZI)>; 2661def : Pat<(i32 (fp_to_uint Float16Regs:$a)), 2662 (CVT_u32_f16 Float16Regs:$a, CvtRZI)>; 2663def : Pat<(i64 (fp_to_uint Float16Regs:$a)), 2664 (CVT_u64_f16 Float16Regs:$a, CvtRZI)>; 2665 2666// f32 -> sint 2667def : Pat<(i1 (fp_to_sint Float32Regs:$a)), 2668 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; 2669def : Pat<(i16 (fp_to_sint Float32Regs:$a)), 2670 (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2671def : Pat<(i16 (fp_to_sint Float32Regs:$a)), 2672 (CVT_s16_f32 Float32Regs:$a, CvtRZI)>; 2673def : Pat<(i32 (fp_to_sint Float32Regs:$a)), 2674 (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2675def : Pat<(i32 (fp_to_sint Float32Regs:$a)), 2676 (CVT_s32_f32 Float32Regs:$a, CvtRZI)>; 2677def : Pat<(i64 (fp_to_sint Float32Regs:$a)), 2678 (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2679def : Pat<(i64 (fp_to_sint Float32Regs:$a)), 2680 (CVT_s64_f32 Float32Regs:$a, CvtRZI)>; 2681 2682// f32 -> uint 2683def : Pat<(i1 (fp_to_uint Float32Regs:$a)), 2684 (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; 2685def : Pat<(i16 (fp_to_uint Float32Regs:$a)), 2686 (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2687def : Pat<(i16 (fp_to_uint Float32Regs:$a)), 2688 (CVT_u16_f32 Float32Regs:$a, CvtRZI)>; 2689def : Pat<(i32 (fp_to_uint Float32Regs:$a)), 2690 (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2691def : Pat<(i32 (fp_to_uint Float32Regs:$a)), 2692 (CVT_u32_f32 Float32Regs:$a, CvtRZI)>; 2693def : Pat<(i64 (fp_to_uint Float32Regs:$a)), 2694 (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 2695def : Pat<(i64 (fp_to_uint Float32Regs:$a)), 2696 (CVT_u64_f32 Float32Regs:$a, CvtRZI)>; 2697 2698// f64 -> sint 2699def : Pat<(i1 (fp_to_sint Float64Regs:$a)), 2700 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; 2701def : Pat<(i16 (fp_to_sint Float64Regs:$a)), 2702 (CVT_s16_f64 Float64Regs:$a, CvtRZI)>; 2703def : Pat<(i32 (fp_to_sint Float64Regs:$a)), 2704 (CVT_s32_f64 Float64Regs:$a, CvtRZI)>; 2705def : Pat<(i64 (fp_to_sint Float64Regs:$a)), 2706 (CVT_s64_f64 Float64Regs:$a, CvtRZI)>; 2707 2708// f64 -> uint 2709def : Pat<(i1 (fp_to_uint Float64Regs:$a)), 2710 (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; 2711def : Pat<(i16 (fp_to_uint Float64Regs:$a)), 2712 (CVT_u16_f64 Float64Regs:$a, CvtRZI)>; 2713def : Pat<(i32 (fp_to_uint Float64Regs:$a)), 2714 (CVT_u32_f64 Float64Regs:$a, CvtRZI)>; 2715def : Pat<(i64 (fp_to_uint Float64Regs:$a)), 2716 (CVT_u64_f64 Float64Regs:$a, CvtRZI)>; 2717 2718// sext i1 2719def : Pat<(i16 (sext Int1Regs:$a)), 2720 (SELP_s16ii -1, 0, Int1Regs:$a)>; 2721def : Pat<(i32 (sext Int1Regs:$a)), 2722 (SELP_s32ii -1, 0, Int1Regs:$a)>; 2723def : Pat<(i64 (sext Int1Regs:$a)), 2724 (SELP_s64ii -1, 0, Int1Regs:$a)>; 2725 2726// zext i1 2727def : Pat<(i16 (zext Int1Regs:$a)), 2728 (SELP_u16ii 1, 0, Int1Regs:$a)>; 2729def : Pat<(i32 (zext Int1Regs:$a)), 2730 (SELP_u32ii 1, 0, Int1Regs:$a)>; 2731def : Pat<(i64 (zext Int1Regs:$a)), 2732 (SELP_u64ii 1, 0, Int1Regs:$a)>; 2733 2734// anyext i1 2735def : Pat<(i16 (anyext Int1Regs:$a)), 2736 (SELP_u16ii -1, 0, Int1Regs:$a)>; 2737def : Pat<(i32 (anyext Int1Regs:$a)), 2738 (SELP_u32ii -1, 0, Int1Regs:$a)>; 2739def : Pat<(i64 (anyext Int1Regs:$a)), 2740 (SELP_u64ii -1, 0, Int1Regs:$a)>; 2741 2742// sext i16 2743def : Pat<(i32 (sext Int16Regs:$a)), 2744 (CVT_s32_s16 Int16Regs:$a, CvtNONE)>; 2745def : Pat<(i64 (sext Int16Regs:$a)), 2746 (CVT_s64_s16 Int16Regs:$a, CvtNONE)>; 2747 2748// zext i16 2749def : Pat<(i32 (zext Int16Regs:$a)), 2750 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; 2751def : Pat<(i64 (zext Int16Regs:$a)), 2752 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; 2753 2754// anyext i16 2755def : Pat<(i32 (anyext Int16Regs:$a)), 2756 (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; 2757def : Pat<(i64 (anyext Int16Regs:$a)), 2758 (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; 2759 2760// sext i32 2761def : Pat<(i64 (sext Int32Regs:$a)), 2762 (CVT_s64_s32 Int32Regs:$a, CvtNONE)>; 2763 2764// zext i32 2765def : Pat<(i64 (zext Int32Regs:$a)), 2766 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; 2767 2768// anyext i32 2769def : Pat<(i64 (anyext Int32Regs:$a)), 2770 (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; 2771 2772 2773// truncate i64 2774def : Pat<(i32 (trunc Int64Regs:$a)), 2775 (CVT_u32_u64 Int64Regs:$a, CvtNONE)>; 2776def : Pat<(i16 (trunc Int64Regs:$a)), 2777 (CVT_u16_u64 Int64Regs:$a, CvtNONE)>; 2778def : Pat<(i1 (trunc Int64Regs:$a)), 2779 (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>; 2780 2781// truncate i32 2782def : Pat<(i16 (trunc Int32Regs:$a)), 2783 (CVT_u16_u32 Int32Regs:$a, CvtNONE)>; 2784def : Pat<(i1 (trunc Int32Regs:$a)), 2785 (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>; 2786 2787// truncate i16 2788def : Pat<(i1 (trunc Int16Regs:$a)), 2789 (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>; 2790 2791// sext_inreg 2792def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>; 2793def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>; 2794def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>; 2795def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>; 2796def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>; 2797def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>; 2798 2799 2800// Select instructions with 32-bit predicates 2801def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b), 2802 (SELP_b16rr Int16Regs:$a, Int16Regs:$b, 2803 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2804def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b), 2805 (SELP_b32rr Int32Regs:$a, Int32Regs:$b, 2806 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2807def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b), 2808 (SELP_b64rr Int64Regs:$a, Int64Regs:$b, 2809 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2810def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b), 2811 (SELP_f16rr Float16Regs:$a, Float16Regs:$b, 2812 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2813def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b), 2814 (SELP_f32rr Float32Regs:$a, Float32Regs:$b, 2815 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2816def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b), 2817 (SELP_f64rr Float64Regs:$a, Float64Regs:$b, 2818 (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; 2819 2820 2821let hasSideEffects = 0 in { 2822 // pack a set of smaller int registers to a larger int register 2823 def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d), 2824 (ins Int16Regs:$s1, Int16Regs:$s2, 2825 Int16Regs:$s3, Int16Regs:$s4), 2826 "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>; 2827 def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d), 2828 (ins Int16Regs:$s1, Int16Regs:$s2), 2829 "mov.b32 \t$d, {{$s1, $s2}};", []>; 2830 def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d), 2831 (ins Int32Regs:$s1, Int32Regs:$s2), 2832 "mov.b64 \t$d, {{$s1, $s2}};", []>; 2833 def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d), 2834 (ins Float32Regs:$s1, Float32Regs:$s2), 2835 "mov.b64 \t$d, {{$s1, $s2}};", []>; 2836 2837 // unpack a larger int register to a set of smaller int registers 2838 def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2, 2839 Int16Regs:$d3, Int16Regs:$d4), 2840 (ins Int64Regs:$s), 2841 "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>; 2842 def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2), 2843 (ins Int32Regs:$s), 2844 "mov.b32 \t{{$d1, $d2}}, $s;", []>; 2845 def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2), 2846 (ins Int64Regs:$s), 2847 "mov.b64 \t{{$d1, $d2}}, $s;", []>; 2848 def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2), 2849 (ins Float64Regs:$s), 2850 "mov.b64 \t{{$d1, $d2}}, $s;", []>; 2851 2852} 2853 2854let hasSideEffects = 0 in { 2855 // Extract element of f16x2 register. PTX does not provide any way 2856 // to access elements of f16x2 vector directly, so we need to 2857 // extract it using a temporary register. 2858 def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst), 2859 (ins Float16x2Regs:$src), 2860 "{{ .reg .b16 \t%tmp_hi;\n\t" 2861 " mov.b32 \t{$dst, %tmp_hi}, $src; }}", 2862 [(set Float16Regs:$dst, 2863 (extractelt (v2f16 Float16x2Regs:$src), 0))]>; 2864 def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst), 2865 (ins Float16x2Regs:$src), 2866 "{{ .reg .b16 \t%tmp_lo;\n\t" 2867 " mov.b32 \t{%tmp_lo, $dst}, $src; }}", 2868 [(set Float16Regs:$dst, 2869 (extractelt (v2f16 Float16x2Regs:$src), 1))]>; 2870 2871 // Coalesce two f16 registers into f16x2 2872 def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst), 2873 (ins Float16Regs:$a, Float16Regs:$b), 2874 "mov.b32 \t$dst, {{$a, $b}};", 2875 [(set Float16x2Regs:$dst, 2876 (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>; 2877 2878 // Directly initializing underlying the b32 register is one less SASS 2879 // instruction than than vector-packing move. 2880 def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src), 2881 "mov.b32 \t$dst, $src;", 2882 []>; 2883 2884 // Split f16x2 into two f16 registers. 2885 def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), 2886 (ins Float16x2Regs:$src), 2887 "mov.b32 \t{{$lo, $hi}}, $src;", 2888 []>; 2889 // Split an i32 into two f16 2890 def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), 2891 (ins Int32Regs:$src), 2892 "mov.b32 \t{{$lo, $hi}}, $src;", 2893 []>; 2894} 2895 2896// Count leading zeros 2897let hasSideEffects = 0 in { 2898 def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), 2899 "clz.b32 \t$d, $a;", []>; 2900 def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), 2901 "clz.b64 \t$d, $a;", []>; 2902} 2903 2904// 32-bit has a direct PTX instruction 2905def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>; 2906 2907// The return type of the ctlz ISD node is the same as its input, but the PTX 2908// ctz instruction always returns a 32-bit value. For ctlz.i64, convert the 2909// ptx value to 64 bits to match the ISD node's semantics, unless we know we're 2910// truncating back down to 32 bits. 2911def : Pat<(ctlz Int64Regs:$a), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>; 2912def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>; 2913 2914// For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the 2915// result back to 16-bits if necessary. We also need to subtract 16 because 2916// the high-order 16 zeros were counted. 2917// 2918// TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could 2919// use to save one SASS instruction (on sm_35 anyway): 2920// 2921// mov.b32 $tmp, {0xffff, $a} 2922// ctlz.b32 $result, $tmp 2923// 2924// That is, instead of zero-extending the input to 32 bits, we'd "one-extend" 2925// and then ctlz that value. This way we don't have to subtract 16 from the 2926// result. Unfortunately today we don't have a way to generate 2927// "mov b32reg, {b16imm, b16reg}", so we don't do this optimization. 2928def : Pat<(ctlz Int16Regs:$a), 2929 (SUBi16ri (CVT_u16_u32 2930 (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>; 2931def : Pat<(i32 (zext (ctlz Int16Regs:$a))), 2932 (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>; 2933 2934// Population count 2935let hasSideEffects = 0 in { 2936 def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), 2937 "popc.b32 \t$d, $a;", []>; 2938 def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), 2939 "popc.b64 \t$d, $a;", []>; 2940} 2941 2942// 32-bit has a direct PTX instruction 2943def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>; 2944 2945// For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit 2946// to match the LLVM semantics. Just as with ctlz.i64, we provide a second 2947// pattern that avoids the type conversion if we're truncating the result to 2948// i32 anyway. 2949def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>; 2950def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>; 2951 2952// For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits. 2953// If we know that we're storing into an i32, we can avoid the final trunc. 2954def : Pat<(ctpop Int16Regs:$a), 2955 (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>; 2956def : Pat<(i32 (zext (ctpop Int16Regs:$a))), 2957 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>; 2958 2959// fpround f32 -> f16 2960def : Pat<(f16 (fpround Float32Regs:$a)), 2961 (CVT_f16_f32 Float32Regs:$a, CvtRN)>; 2962 2963// fpround f64 -> f16 2964def : Pat<(f16 (fpround Float64Regs:$a)), 2965 (CVT_f16_f64 Float64Regs:$a, CvtRN)>; 2966 2967// fpround f64 -> f32 2968def : Pat<(f32 (fpround Float64Regs:$a)), 2969 (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; 2970def : Pat<(f32 (fpround Float64Regs:$a)), 2971 (CVT_f32_f64 Float64Regs:$a, CvtRN)>; 2972 2973// fpextend f16 -> f32 2974def : Pat<(f32 (fpextend Float16Regs:$a)), 2975 (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; 2976def : Pat<(f32 (fpextend Float16Regs:$a)), 2977 (CVT_f32_f16 Float16Regs:$a, CvtNONE)>; 2978 2979// fpextend f16 -> f64 2980def : Pat<(f64 (fpextend Float16Regs:$a)), 2981 (CVT_f64_f16 Float16Regs:$a, CvtNONE)>; 2982 2983// fpextend f32 -> f64 2984def : Pat<(f64 (fpextend Float32Regs:$a)), 2985 (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; 2986def : Pat<(f64 (fpextend Float32Regs:$a)), 2987 (CVT_f64_f32 Float32Regs:$a, CvtNONE)>; 2988 2989def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone, 2990 [SDNPHasChain, SDNPOptInGlue]>; 2991 2992// fceil, ffloor, fround, ftrunc. 2993 2994def : Pat<(fceil Float16Regs:$a), 2995 (CVT_f16_f16 Float16Regs:$a, CvtRPI)>; 2996def : Pat<(fceil Float32Regs:$a), 2997 (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; 2998def : Pat<(fceil Float32Regs:$a), 2999 (CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>; 3000def : Pat<(fceil Float64Regs:$a), 3001 (CVT_f64_f64 Float64Regs:$a, CvtRPI)>; 3002 3003def : Pat<(ffloor Float16Regs:$a), 3004 (CVT_f16_f16 Float16Regs:$a, CvtRMI)>; 3005def : Pat<(ffloor Float32Regs:$a), 3006 (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; 3007def : Pat<(ffloor Float32Regs:$a), 3008 (CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>; 3009def : Pat<(ffloor Float64Regs:$a), 3010 (CVT_f64_f64 Float64Regs:$a, CvtRMI)>; 3011 3012def : Pat<(ftrunc Float16Regs:$a), 3013 (CVT_f16_f16 Float16Regs:$a, CvtRZI)>; 3014def : Pat<(ftrunc Float32Regs:$a), 3015 (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; 3016def : Pat<(ftrunc Float32Regs:$a), 3017 (CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>; 3018def : Pat<(ftrunc Float64Regs:$a), 3019 (CVT_f64_f64 Float64Regs:$a, CvtRZI)>; 3020 3021// nearbyint and rint are implemented as rounding to nearest even. This isn't 3022// strictly correct, because it causes us to ignore the rounding mode. But it 3023// matches what CUDA's "libm" does. 3024 3025def : Pat<(fnearbyint Float16Regs:$a), 3026 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; 3027def : Pat<(fnearbyint Float32Regs:$a), 3028 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; 3029def : Pat<(fnearbyint Float32Regs:$a), 3030 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; 3031def : Pat<(fnearbyint Float64Regs:$a), 3032 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; 3033 3034def : Pat<(frint Float16Regs:$a), 3035 (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; 3036def : Pat<(frint Float32Regs:$a), 3037 (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; 3038def : Pat<(frint Float32Regs:$a), 3039 (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; 3040def : Pat<(frint Float64Regs:$a), 3041 (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; 3042 3043 3044//----------------------------------- 3045// Control-flow 3046//----------------------------------- 3047 3048let isTerminator=1 in { 3049 let isReturn=1, isBarrier=1 in 3050 def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>; 3051 3052 let isBranch=1 in 3053 def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), 3054 "@$a bra \t$target;", 3055 [(brcond Int1Regs:$a, bb:$target)]>; 3056 let isBranch=1 in 3057 def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), 3058 "@!$a bra \t$target;", []>; 3059 3060 let isBranch=1, isBarrier=1 in 3061 def GOTO : NVPTXInst<(outs), (ins brtarget:$target), 3062 "bra.uni \t$target;", [(br bb:$target)]>; 3063} 3064 3065def : Pat<(brcond Int32Regs:$a, bb:$target), 3066 (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>; 3067 3068// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a 3069// conditional branch if the target block is the next block so that the code 3070// can fall through to the target block. The invertion is done by 'xor 3071// condition, 1', which will be translated to (setne condition, -1). Since ptx 3072// supports '@!pred bra target', we should use it. 3073def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target), 3074 (CBranchOther Int1Regs:$a, bb:$target)>; 3075 3076// Call 3077def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, 3078 SDTCisVT<1, i32>]>; 3079def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 3080 3081def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart, 3082 [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; 3083def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd, 3084 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 3085 SDNPSideEffect]>; 3086 3087def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 3088def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall, 3089 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 3090def calltarget : Operand<i32>; 3091let isCall=1 in { 3092 def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>; 3093} 3094 3095def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; 3096def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; 3097 3098// Pseudo instructions. 3099class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> 3100 : NVPTXInst<outs, ins, asmstr, pattern>; 3101 3102def Callseq_Start : 3103 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), 3104 "\\{ // callseq $amt1, $amt2\n" 3105 "\t.reg .b32 temp_param_reg;", 3106 [(callseq_start timm:$amt1, timm:$amt2)]>; 3107def Callseq_End : 3108 NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), 3109 "\\} // callseq $amt1", 3110 [(callseq_end timm:$amt1, timm:$amt2)]>; 3111 3112// trap instruction 3113def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>; 3114 3115// Call prototype wrapper 3116def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 3117def CallPrototype : 3118 SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype, 3119 [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; 3120def ProtoIdent : Operand<i32> { 3121 let PrintMethod = "printProtoIdent"; 3122} 3123def CALL_PROTOTYPE : 3124 NVPTXInst<(outs), (ins ProtoIdent:$ident), 3125 "$ident", [(CallPrototype (i32 texternalsym:$ident))]>; 3126 3127 3128include "NVPTXIntrinsics.td" 3129 3130 3131//----------------------------------- 3132// Notes 3133//----------------------------------- 3134// BSWAP is currently expanded. The following is a more efficient 3135// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register 3136// - for sm_20, use pmpt (use vector scalar mov to get the pack and 3137// unpack). sm_20 supports native 32-bit register, but not native 16-bit 3138// register. 3139