xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/SelectionDAGNodes.h"
29 #include "llvm/CodeGen/TargetCallingConv.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CodeGen.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MachineValueType.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <iterator>
58 #include <sstream>
59 #include <string>
60 #include <utility>
61 #include <vector>
62 
63 #define DEBUG_TYPE "nvptx-lower"
64 
65 using namespace llvm;
66 
67 static unsigned int uniqueCallSite = 0;
68 
69 static cl::opt<bool> sched4reg(
70     "nvptx-sched4reg",
71     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
72 
73 static cl::opt<unsigned>
74 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
75                     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
76                              " 1: do it  2: do it aggressively"),
77                     cl::init(2));
78 
79 static cl::opt<int> UsePrecDivF32(
80     "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
81     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
82              " IEEE Compliant F32 div.rnd if available."),
83     cl::init(2));
84 
85 static cl::opt<bool> UsePrecSqrtF32(
86     "nvptx-prec-sqrtf32", cl::Hidden,
87     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
88     cl::init(true));
89 
90 static cl::opt<bool> FtzEnabled(
91     "nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
92     cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
93     cl::init(false));
94 
95 int NVPTXTargetLowering::getDivF32Level() const {
96   if (UsePrecDivF32.getNumOccurrences() > 0) {
97     // If nvptx-prec-div32=N is used on the command-line, always honor it
98     return UsePrecDivF32;
99   } else {
100     // Otherwise, use div.approx if fast math is enabled
101     if (getTargetMachine().Options.UnsafeFPMath)
102       return 0;
103     else
104       return 2;
105   }
106 }
107 
108 bool NVPTXTargetLowering::usePrecSqrtF32() const {
109   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
110     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
111     return UsePrecSqrtF32;
112   } else {
113     // Otherwise, use sqrt.approx if fast math is enabled
114     return !getTargetMachine().Options.UnsafeFPMath;
115   }
116 }
117 
118 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
119   // TODO: Get rid of this flag; there can be only one way to do this.
120   if (FtzEnabled.getNumOccurrences() > 0) {
121     // If nvptx-f32ftz is used on the command-line, always honor it
122     return FtzEnabled;
123   } else {
124     const Function &F = MF.getFunction();
125     // Otherwise, check for an nvptx-f32ftz attribute on the function
126     if (F.hasFnAttribute("nvptx-f32ftz"))
127       return F.getFnAttribute("nvptx-f32ftz").getValueAsString() == "true";
128     else
129       return false;
130   }
131 }
132 
133 static bool IsPTXVectorType(MVT VT) {
134   switch (VT.SimpleTy) {
135   default:
136     return false;
137   case MVT::v2i1:
138   case MVT::v4i1:
139   case MVT::v2i8:
140   case MVT::v4i8:
141   case MVT::v2i16:
142   case MVT::v4i16:
143   case MVT::v2i32:
144   case MVT::v4i32:
145   case MVT::v2i64:
146   case MVT::v2f16:
147   case MVT::v4f16:
148   case MVT::v8f16: // <4 x f16x2>
149   case MVT::v2f32:
150   case MVT::v4f32:
151   case MVT::v2f64:
152     return true;
153   }
154 }
155 
156 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
157 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
158 /// into their primitive components.
159 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
160 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
161 /// LowerCall, and LowerReturn.
162 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
163                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
164                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
165                                uint64_t StartingOffset = 0) {
166   SmallVector<EVT, 16> TempVTs;
167   SmallVector<uint64_t, 16> TempOffsets;
168 
169   // Special case for i128 - decompose to (i64, i64)
170   if (Ty->isIntegerTy(128)) {
171     ValueVTs.push_back(EVT(MVT::i64));
172     ValueVTs.push_back(EVT(MVT::i64));
173 
174     if (Offsets) {
175       Offsets->push_back(StartingOffset + 0);
176       Offsets->push_back(StartingOffset + 8);
177     }
178 
179     return;
180   }
181 
182   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
183   if (StructType *STy = dyn_cast<StructType>(Ty)) {
184     auto const *SL = DL.getStructLayout(STy);
185     auto ElementNum = 0;
186     for(auto *EI : STy->elements()) {
187       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
188                          StartingOffset + SL->getElementOffset(ElementNum));
189       ++ElementNum;
190     }
191     return;
192   }
193 
194   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
195   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
196     EVT VT = TempVTs[i];
197     uint64_t Off = TempOffsets[i];
198     // Split vectors into individual elements, except for v2f16, which
199     // we will pass as a single scalar.
200     if (VT.isVector()) {
201       unsigned NumElts = VT.getVectorNumElements();
202       EVT EltVT = VT.getVectorElementType();
203       // Vectors with an even number of f16 elements will be passed to
204       // us as an array of v2f16 elements. We must match this so we
205       // stay in sync with Ins/Outs.
206       if (EltVT == MVT::f16 && NumElts % 2 == 0) {
207         EltVT = MVT::v2f16;
208         NumElts /= 2;
209       }
210       for (unsigned j = 0; j != NumElts; ++j) {
211         ValueVTs.push_back(EltVT);
212         if (Offsets)
213           Offsets->push_back(Off + j * EltVT.getStoreSize());
214       }
215     } else {
216       ValueVTs.push_back(VT);
217       if (Offsets)
218         Offsets->push_back(Off);
219     }
220   }
221 }
222 
223 // Check whether we can merge loads/stores of some of the pieces of a
224 // flattened function parameter or return value into a single vector
225 // load/store.
226 //
227 // The flattened parameter is represented as a list of EVTs and
228 // offsets, and the whole structure is aligned to ParamAlignment. This
229 // function determines whether we can load/store pieces of the
230 // parameter starting at index Idx using a single vectorized op of
231 // size AccessSize. If so, it returns the number of param pieces
232 // covered by the vector op. Otherwise, it returns 1.
233 static unsigned CanMergeParamLoadStoresStartingAt(
234     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
235     const SmallVectorImpl<uint64_t> &Offsets, unsigned ParamAlignment) {
236   assert(isPowerOf2_32(AccessSize) && "must be a power of 2!");
237 
238   // Can't vectorize if param alignment is not sufficient.
239   if (AccessSize > ParamAlignment)
240     return 1;
241   // Can't vectorize if offset is not aligned.
242   if (Offsets[Idx] & (AccessSize - 1))
243     return 1;
244 
245   EVT EltVT = ValueVTs[Idx];
246   unsigned EltSize = EltVT.getStoreSize();
247 
248   // Element is too large to vectorize.
249   if (EltSize >= AccessSize)
250     return 1;
251 
252   unsigned NumElts = AccessSize / EltSize;
253   // Can't vectorize if AccessBytes if not a multiple of EltSize.
254   if (AccessSize != EltSize * NumElts)
255     return 1;
256 
257   // We don't have enough elements to vectorize.
258   if (Idx + NumElts > ValueVTs.size())
259     return 1;
260 
261   // PTX ISA can only deal with 2- and 4-element vector ops.
262   if (NumElts != 4 && NumElts != 2)
263     return 1;
264 
265   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
266     // Types do not match.
267     if (ValueVTs[j] != EltVT)
268       return 1;
269 
270     // Elements are not contiguous.
271     if (Offsets[j] - Offsets[j - 1] != EltSize)
272       return 1;
273   }
274   // OK. We can vectorize ValueVTs[i..i+NumElts)
275   return NumElts;
276 }
277 
278 // Flags for tracking per-element vectorization state of loads/stores
279 // of a flattened function parameter or return value.
280 enum ParamVectorizationFlags {
281   PVF_INNER = 0x0, // Middle elements of a vector.
282   PVF_FIRST = 0x1, // First element of the vector.
283   PVF_LAST = 0x2,  // Last element of the vector.
284   // Scalar is effectively a 1-element vector.
285   PVF_SCALAR = PVF_FIRST | PVF_LAST
286 };
287 
288 // Computes whether and how we can vectorize the loads/stores of a
289 // flattened function parameter or return value.
290 //
291 // The flattened parameter is represented as the list of ValueVTs and
292 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
293 // of the same size as ValueVTs indicating how each piece should be
294 // loaded/stored (i.e. as a scalar, or as part of a vector
295 // load/store).
296 static SmallVector<ParamVectorizationFlags, 16>
297 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
298                      const SmallVectorImpl<uint64_t> &Offsets,
299                      unsigned ParamAlignment) {
300   // Set vector size to match ValueVTs and mark all elements as
301   // scalars by default.
302   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
303   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
304 
305   // Check what we can vectorize using 128/64/32-bit accesses.
306   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
307     // Skip elements we've already processed.
308     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
309     for (unsigned AccessSize : {16, 8, 4, 2}) {
310       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
311           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
312       // Mark vectorized elements.
313       switch (NumElts) {
314       default:
315         llvm_unreachable("Unexpected return value");
316       case 1:
317         // Can't vectorize using this size, try next smaller size.
318         continue;
319       case 2:
320         assert(I + 1 < E && "Not enough elements.");
321         VectorInfo[I] = PVF_FIRST;
322         VectorInfo[I + 1] = PVF_LAST;
323         I += 1;
324         break;
325       case 4:
326         assert(I + 3 < E && "Not enough elements.");
327         VectorInfo[I] = PVF_FIRST;
328         VectorInfo[I + 1] = PVF_INNER;
329         VectorInfo[I + 2] = PVF_INNER;
330         VectorInfo[I + 3] = PVF_LAST;
331         I += 3;
332         break;
333       }
334       // Break out of the inner loop because we've already succeeded
335       // using largest possible AccessSize.
336       break;
337     }
338   }
339   return VectorInfo;
340 }
341 
342 // NVPTXTargetLowering Constructor.
343 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
344                                          const NVPTXSubtarget &STI)
345     : TargetLowering(TM), nvTM(&TM), STI(STI) {
346   // always lower memset, memcpy, and memmove intrinsics to load/store
347   // instructions, rather
348   // then generating calls to memset, mempcy or memmove.
349   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
350   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
351   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
352 
353   setBooleanContents(ZeroOrNegativeOneBooleanContent);
354   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
355 
356   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
357   // condition branches.
358   setJumpIsExpensive(true);
359 
360   // Wide divides are _very_ slow. Try to reduce the width of the divide if
361   // possible.
362   addBypassSlowDiv(64, 32);
363 
364   // By default, use the Source scheduling
365   if (sched4reg)
366     setSchedulingPreference(Sched::RegPressure);
367   else
368     setSchedulingPreference(Sched::Source);
369 
370   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
371                                     LegalizeAction NoF16Action) {
372     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
373   };
374 
375   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
376   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
377   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
378   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
379   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
380   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
381   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
382   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
383 
384   // Conversion to/from FP16/FP16x2 is always legal.
385   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
386   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
387   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
388   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
389   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
390   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
391 
392   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
393   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
394 
395   // Operations not directly supported by NVPTX.
396   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
397                  MVT::i16, MVT::i32, MVT::i64}) {
398     setOperationAction(ISD::SELECT_CC, VT, Expand);
399     setOperationAction(ISD::BR_CC, VT, Expand);
400   }
401 
402   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
403   // For others we will expand to a SHL/SRA pair.
404   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
405   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
406   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
407   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
408   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
409 
410   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
411   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
412   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
413   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
414   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
415   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
416 
417   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
418   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
419 
420   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
421   // that don't have h/w rotation we lower them to multi-instruction assembly.
422   // See ROT*_sw in NVPTXIntrInfo.td
423   setOperationAction(ISD::ROTL, MVT::i64, Legal);
424   setOperationAction(ISD::ROTR, MVT::i64, Legal);
425   setOperationAction(ISD::ROTL, MVT::i32, Legal);
426   setOperationAction(ISD::ROTR, MVT::i32, Legal);
427 
428   setOperationAction(ISD::ROTL, MVT::i16, Expand);
429   setOperationAction(ISD::ROTR, MVT::i16, Expand);
430   setOperationAction(ISD::ROTL, MVT::i8, Expand);
431   setOperationAction(ISD::ROTR, MVT::i8, Expand);
432   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
433   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
434   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
435 
436   // Indirect branch is not supported.
437   // This also disables Jump Table creation.
438   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
439   setOperationAction(ISD::BRIND, MVT::Other, Expand);
440 
441   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
442   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
443 
444   // We want to legalize constant related memmove and memcopy
445   // intrinsics.
446   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
447 
448   // Turn FP extload into load/fpextend
449   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
450   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
451   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
452   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
453   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
454   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
455   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
456   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
457   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
458   // Turn FP truncstore into trunc + store.
459   // FIXME: vector types should also be expanded
460   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
461   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
462   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
463 
464   // PTX does not support load / store predicate registers
465   setOperationAction(ISD::LOAD, MVT::i1, Custom);
466   setOperationAction(ISD::STORE, MVT::i1, Custom);
467 
468   for (MVT VT : MVT::integer_valuetypes()) {
469     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
470     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
471     setTruncStoreAction(VT, MVT::i1, Expand);
472   }
473 
474   // This is legal in NVPTX
475   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
476   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
477   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
478 
479   // TRAP can be lowered to PTX trap
480   setOperationAction(ISD::TRAP, MVT::Other, Legal);
481 
482   // Register custom handling for vector loads/stores
483   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
484     if (IsPTXVectorType(VT)) {
485       setOperationAction(ISD::LOAD, VT, Custom);
486       setOperationAction(ISD::STORE, VT, Custom);
487       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
488     }
489   }
490 
491   // Custom handling for i8 intrinsics
492   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
493 
494   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
495     setOperationAction(ISD::ABS,  Ty, Legal);
496     setOperationAction(ISD::SMIN, Ty, Legal);
497     setOperationAction(ISD::SMAX, Ty, Legal);
498     setOperationAction(ISD::UMIN, Ty, Legal);
499     setOperationAction(ISD::UMAX, Ty, Legal);
500 
501     setOperationAction(ISD::CTPOP, Ty, Legal);
502     setOperationAction(ISD::CTLZ, Ty, Legal);
503   }
504 
505   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
506   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
507   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
508 
509   // PTX does not directly support SELP of i1, so promote to i32 first
510   setOperationAction(ISD::SELECT, MVT::i1, Custom);
511 
512   // PTX cannot multiply two i64s in a single instruction.
513   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
514   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
515 
516   // We have some custom DAG combine patterns for these nodes
517   setTargetDAGCombine(ISD::ADD);
518   setTargetDAGCombine(ISD::AND);
519   setTargetDAGCombine(ISD::FADD);
520   setTargetDAGCombine(ISD::MUL);
521   setTargetDAGCombine(ISD::SHL);
522   setTargetDAGCombine(ISD::SREM);
523   setTargetDAGCombine(ISD::UREM);
524 
525   // setcc for f16x2 needs special handling to prevent legalizer's
526   // attempt to scalarize it due to v2i1 not being legal.
527   if (STI.allowFP16Math())
528     setTargetDAGCombine(ISD::SETCC);
529 
530   // Promote fp16 arithmetic if fp16 hardware isn't available or the
531   // user passed --nvptx-no-fp16-math. The flag is useful because,
532   // although sm_53+ GPUs have some sort of FP16 support in
533   // hardware, only sm_53 and sm_60 have full implementation. Others
534   // only have token amount of hardware and are likely to run faster
535   // by using fp32 units instead.
536   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
537     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
538     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
539   }
540 
541   // There's no neg.f16 instruction. Expand to (0-x).
542   setOperationAction(ISD::FNEG, MVT::f16, Expand);
543   setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
544 
545   // (would be) Library functions.
546 
547   // These map to conversion instructions for scalar FP types.
548   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
549                          ISD::FTRUNC}) {
550     setOperationAction(Op, MVT::f16, Legal);
551     setOperationAction(Op, MVT::f32, Legal);
552     setOperationAction(Op, MVT::f64, Legal);
553     setOperationAction(Op, MVT::v2f16, Expand);
554   }
555 
556   setOperationAction(ISD::FROUND, MVT::f16, Promote);
557   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
558   setOperationAction(ISD::FROUND, MVT::f32, Custom);
559   setOperationAction(ISD::FROUND, MVT::f64, Custom);
560 
561 
562   // 'Expand' implements FCOPYSIGN without calling an external library.
563   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
564   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
565   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
566   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
567 
568   // These map to corresponding instructions for f32/f64. f16 must be
569   // promoted to f32. v2f16 is expanded to f16, which is then promoted
570   // to f32.
571   for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
572                          ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
573     setOperationAction(Op, MVT::f16, Promote);
574     setOperationAction(Op, MVT::f32, Legal);
575     setOperationAction(Op, MVT::f64, Legal);
576     setOperationAction(Op, MVT::v2f16, Expand);
577   }
578   setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
579   setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
580   setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
581   setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
582 
583   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
584   // No FPOW or FREM in PTX.
585 
586   // Now deduce the information based on the above mentioned
587   // actions
588   computeRegisterProperties(STI.getRegisterInfo());
589 }
590 
591 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
592   switch ((NVPTXISD::NodeType)Opcode) {
593   case NVPTXISD::FIRST_NUMBER:
594     break;
595   case NVPTXISD::CALL:
596     return "NVPTXISD::CALL";
597   case NVPTXISD::RET_FLAG:
598     return "NVPTXISD::RET_FLAG";
599   case NVPTXISD::LOAD_PARAM:
600     return "NVPTXISD::LOAD_PARAM";
601   case NVPTXISD::Wrapper:
602     return "NVPTXISD::Wrapper";
603   case NVPTXISD::DeclareParam:
604     return "NVPTXISD::DeclareParam";
605   case NVPTXISD::DeclareScalarParam:
606     return "NVPTXISD::DeclareScalarParam";
607   case NVPTXISD::DeclareRet:
608     return "NVPTXISD::DeclareRet";
609   case NVPTXISD::DeclareScalarRet:
610     return "NVPTXISD::DeclareScalarRet";
611   case NVPTXISD::DeclareRetParam:
612     return "NVPTXISD::DeclareRetParam";
613   case NVPTXISD::PrintCall:
614     return "NVPTXISD::PrintCall";
615   case NVPTXISD::PrintConvergentCall:
616     return "NVPTXISD::PrintConvergentCall";
617   case NVPTXISD::PrintCallUni:
618     return "NVPTXISD::PrintCallUni";
619   case NVPTXISD::PrintConvergentCallUni:
620     return "NVPTXISD::PrintConvergentCallUni";
621   case NVPTXISD::LoadParam:
622     return "NVPTXISD::LoadParam";
623   case NVPTXISD::LoadParamV2:
624     return "NVPTXISD::LoadParamV2";
625   case NVPTXISD::LoadParamV4:
626     return "NVPTXISD::LoadParamV4";
627   case NVPTXISD::StoreParam:
628     return "NVPTXISD::StoreParam";
629   case NVPTXISD::StoreParamV2:
630     return "NVPTXISD::StoreParamV2";
631   case NVPTXISD::StoreParamV4:
632     return "NVPTXISD::StoreParamV4";
633   case NVPTXISD::StoreParamS32:
634     return "NVPTXISD::StoreParamS32";
635   case NVPTXISD::StoreParamU32:
636     return "NVPTXISD::StoreParamU32";
637   case NVPTXISD::CallArgBegin:
638     return "NVPTXISD::CallArgBegin";
639   case NVPTXISD::CallArg:
640     return "NVPTXISD::CallArg";
641   case NVPTXISD::LastCallArg:
642     return "NVPTXISD::LastCallArg";
643   case NVPTXISD::CallArgEnd:
644     return "NVPTXISD::CallArgEnd";
645   case NVPTXISD::CallVoid:
646     return "NVPTXISD::CallVoid";
647   case NVPTXISD::CallVal:
648     return "NVPTXISD::CallVal";
649   case NVPTXISD::CallSymbol:
650     return "NVPTXISD::CallSymbol";
651   case NVPTXISD::Prototype:
652     return "NVPTXISD::Prototype";
653   case NVPTXISD::MoveParam:
654     return "NVPTXISD::MoveParam";
655   case NVPTXISD::StoreRetval:
656     return "NVPTXISD::StoreRetval";
657   case NVPTXISD::StoreRetvalV2:
658     return "NVPTXISD::StoreRetvalV2";
659   case NVPTXISD::StoreRetvalV4:
660     return "NVPTXISD::StoreRetvalV4";
661   case NVPTXISD::PseudoUseParam:
662     return "NVPTXISD::PseudoUseParam";
663   case NVPTXISD::RETURN:
664     return "NVPTXISD::RETURN";
665   case NVPTXISD::CallSeqBegin:
666     return "NVPTXISD::CallSeqBegin";
667   case NVPTXISD::CallSeqEnd:
668     return "NVPTXISD::CallSeqEnd";
669   case NVPTXISD::CallPrototype:
670     return "NVPTXISD::CallPrototype";
671   case NVPTXISD::ProxyReg:
672     return "NVPTXISD::ProxyReg";
673   case NVPTXISD::LoadV2:
674     return "NVPTXISD::LoadV2";
675   case NVPTXISD::LoadV4:
676     return "NVPTXISD::LoadV4";
677   case NVPTXISD::LDGV2:
678     return "NVPTXISD::LDGV2";
679   case NVPTXISD::LDGV4:
680     return "NVPTXISD::LDGV4";
681   case NVPTXISD::LDUV2:
682     return "NVPTXISD::LDUV2";
683   case NVPTXISD::LDUV4:
684     return "NVPTXISD::LDUV4";
685   case NVPTXISD::StoreV2:
686     return "NVPTXISD::StoreV2";
687   case NVPTXISD::StoreV4:
688     return "NVPTXISD::StoreV4";
689   case NVPTXISD::FUN_SHFL_CLAMP:
690     return "NVPTXISD::FUN_SHFL_CLAMP";
691   case NVPTXISD::FUN_SHFR_CLAMP:
692     return "NVPTXISD::FUN_SHFR_CLAMP";
693   case NVPTXISD::IMAD:
694     return "NVPTXISD::IMAD";
695   case NVPTXISD::SETP_F16X2:
696     return "NVPTXISD::SETP_F16X2";
697   case NVPTXISD::Dummy:
698     return "NVPTXISD::Dummy";
699   case NVPTXISD::MUL_WIDE_SIGNED:
700     return "NVPTXISD::MUL_WIDE_SIGNED";
701   case NVPTXISD::MUL_WIDE_UNSIGNED:
702     return "NVPTXISD::MUL_WIDE_UNSIGNED";
703   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
704   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
705   case NVPTXISD::Tex1DFloatFloatLevel:
706     return "NVPTXISD::Tex1DFloatFloatLevel";
707   case NVPTXISD::Tex1DFloatFloatGrad:
708     return "NVPTXISD::Tex1DFloatFloatGrad";
709   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
710   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
711   case NVPTXISD::Tex1DS32FloatLevel:
712     return "NVPTXISD::Tex1DS32FloatLevel";
713   case NVPTXISD::Tex1DS32FloatGrad:
714     return "NVPTXISD::Tex1DS32FloatGrad";
715   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
716   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
717   case NVPTXISD::Tex1DU32FloatLevel:
718     return "NVPTXISD::Tex1DU32FloatLevel";
719   case NVPTXISD::Tex1DU32FloatGrad:
720     return "NVPTXISD::Tex1DU32FloatGrad";
721   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
722   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
723   case NVPTXISD::Tex1DArrayFloatFloatLevel:
724     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
725   case NVPTXISD::Tex1DArrayFloatFloatGrad:
726     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
727   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
728   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
729   case NVPTXISD::Tex1DArrayS32FloatLevel:
730     return "NVPTXISD::Tex1DArrayS32FloatLevel";
731   case NVPTXISD::Tex1DArrayS32FloatGrad:
732     return "NVPTXISD::Tex1DArrayS32FloatGrad";
733   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
734   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
735   case NVPTXISD::Tex1DArrayU32FloatLevel:
736     return "NVPTXISD::Tex1DArrayU32FloatLevel";
737   case NVPTXISD::Tex1DArrayU32FloatGrad:
738     return "NVPTXISD::Tex1DArrayU32FloatGrad";
739   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
740   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
741   case NVPTXISD::Tex2DFloatFloatLevel:
742     return "NVPTXISD::Tex2DFloatFloatLevel";
743   case NVPTXISD::Tex2DFloatFloatGrad:
744     return "NVPTXISD::Tex2DFloatFloatGrad";
745   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
746   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
747   case NVPTXISD::Tex2DS32FloatLevel:
748     return "NVPTXISD::Tex2DS32FloatLevel";
749   case NVPTXISD::Tex2DS32FloatGrad:
750     return "NVPTXISD::Tex2DS32FloatGrad";
751   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
752   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
753   case NVPTXISD::Tex2DU32FloatLevel:
754     return "NVPTXISD::Tex2DU32FloatLevel";
755   case NVPTXISD::Tex2DU32FloatGrad:
756     return "NVPTXISD::Tex2DU32FloatGrad";
757   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
758   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
759   case NVPTXISD::Tex2DArrayFloatFloatLevel:
760     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
761   case NVPTXISD::Tex2DArrayFloatFloatGrad:
762     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
763   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
764   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
765   case NVPTXISD::Tex2DArrayS32FloatLevel:
766     return "NVPTXISD::Tex2DArrayS32FloatLevel";
767   case NVPTXISD::Tex2DArrayS32FloatGrad:
768     return "NVPTXISD::Tex2DArrayS32FloatGrad";
769   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
770   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
771   case NVPTXISD::Tex2DArrayU32FloatLevel:
772     return "NVPTXISD::Tex2DArrayU32FloatLevel";
773   case NVPTXISD::Tex2DArrayU32FloatGrad:
774     return "NVPTXISD::Tex2DArrayU32FloatGrad";
775   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
776   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
777   case NVPTXISD::Tex3DFloatFloatLevel:
778     return "NVPTXISD::Tex3DFloatFloatLevel";
779   case NVPTXISD::Tex3DFloatFloatGrad:
780     return "NVPTXISD::Tex3DFloatFloatGrad";
781   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
782   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
783   case NVPTXISD::Tex3DS32FloatLevel:
784     return "NVPTXISD::Tex3DS32FloatLevel";
785   case NVPTXISD::Tex3DS32FloatGrad:
786     return "NVPTXISD::Tex3DS32FloatGrad";
787   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
788   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
789   case NVPTXISD::Tex3DU32FloatLevel:
790     return "NVPTXISD::Tex3DU32FloatLevel";
791   case NVPTXISD::Tex3DU32FloatGrad:
792     return "NVPTXISD::Tex3DU32FloatGrad";
793   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
794   case NVPTXISD::TexCubeFloatFloatLevel:
795     return "NVPTXISD::TexCubeFloatFloatLevel";
796   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
797   case NVPTXISD::TexCubeS32FloatLevel:
798     return "NVPTXISD::TexCubeS32FloatLevel";
799   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
800   case NVPTXISD::TexCubeU32FloatLevel:
801     return "NVPTXISD::TexCubeU32FloatLevel";
802   case NVPTXISD::TexCubeArrayFloatFloat:
803     return "NVPTXISD::TexCubeArrayFloatFloat";
804   case NVPTXISD::TexCubeArrayFloatFloatLevel:
805     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
806   case NVPTXISD::TexCubeArrayS32Float:
807     return "NVPTXISD::TexCubeArrayS32Float";
808   case NVPTXISD::TexCubeArrayS32FloatLevel:
809     return "NVPTXISD::TexCubeArrayS32FloatLevel";
810   case NVPTXISD::TexCubeArrayU32Float:
811     return "NVPTXISD::TexCubeArrayU32Float";
812   case NVPTXISD::TexCubeArrayU32FloatLevel:
813     return "NVPTXISD::TexCubeArrayU32FloatLevel";
814   case NVPTXISD::Tld4R2DFloatFloat:
815     return "NVPTXISD::Tld4R2DFloatFloat";
816   case NVPTXISD::Tld4G2DFloatFloat:
817     return "NVPTXISD::Tld4G2DFloatFloat";
818   case NVPTXISD::Tld4B2DFloatFloat:
819     return "NVPTXISD::Tld4B2DFloatFloat";
820   case NVPTXISD::Tld4A2DFloatFloat:
821     return "NVPTXISD::Tld4A2DFloatFloat";
822   case NVPTXISD::Tld4R2DS64Float:
823     return "NVPTXISD::Tld4R2DS64Float";
824   case NVPTXISD::Tld4G2DS64Float:
825     return "NVPTXISD::Tld4G2DS64Float";
826   case NVPTXISD::Tld4B2DS64Float:
827     return "NVPTXISD::Tld4B2DS64Float";
828   case NVPTXISD::Tld4A2DS64Float:
829     return "NVPTXISD::Tld4A2DS64Float";
830   case NVPTXISD::Tld4R2DU64Float:
831     return "NVPTXISD::Tld4R2DU64Float";
832   case NVPTXISD::Tld4G2DU64Float:
833     return "NVPTXISD::Tld4G2DU64Float";
834   case NVPTXISD::Tld4B2DU64Float:
835     return "NVPTXISD::Tld4B2DU64Float";
836   case NVPTXISD::Tld4A2DU64Float:
837     return "NVPTXISD::Tld4A2DU64Float";
838 
839   case NVPTXISD::TexUnified1DFloatS32:
840     return "NVPTXISD::TexUnified1DFloatS32";
841   case NVPTXISD::TexUnified1DFloatFloat:
842     return "NVPTXISD::TexUnified1DFloatFloat";
843   case NVPTXISD::TexUnified1DFloatFloatLevel:
844     return "NVPTXISD::TexUnified1DFloatFloatLevel";
845   case NVPTXISD::TexUnified1DFloatFloatGrad:
846     return "NVPTXISD::TexUnified1DFloatFloatGrad";
847   case NVPTXISD::TexUnified1DS32S32:
848     return "NVPTXISD::TexUnified1DS32S32";
849   case NVPTXISD::TexUnified1DS32Float:
850     return "NVPTXISD::TexUnified1DS32Float";
851   case NVPTXISD::TexUnified1DS32FloatLevel:
852     return "NVPTXISD::TexUnified1DS32FloatLevel";
853   case NVPTXISD::TexUnified1DS32FloatGrad:
854     return "NVPTXISD::TexUnified1DS32FloatGrad";
855   case NVPTXISD::TexUnified1DU32S32:
856     return "NVPTXISD::TexUnified1DU32S32";
857   case NVPTXISD::TexUnified1DU32Float:
858     return "NVPTXISD::TexUnified1DU32Float";
859   case NVPTXISD::TexUnified1DU32FloatLevel:
860     return "NVPTXISD::TexUnified1DU32FloatLevel";
861   case NVPTXISD::TexUnified1DU32FloatGrad:
862     return "NVPTXISD::TexUnified1DU32FloatGrad";
863   case NVPTXISD::TexUnified1DArrayFloatS32:
864     return "NVPTXISD::TexUnified1DArrayFloatS32";
865   case NVPTXISD::TexUnified1DArrayFloatFloat:
866     return "NVPTXISD::TexUnified1DArrayFloatFloat";
867   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
868     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
869   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
870     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
871   case NVPTXISD::TexUnified1DArrayS32S32:
872     return "NVPTXISD::TexUnified1DArrayS32S32";
873   case NVPTXISD::TexUnified1DArrayS32Float:
874     return "NVPTXISD::TexUnified1DArrayS32Float";
875   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
876     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
877   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
878     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
879   case NVPTXISD::TexUnified1DArrayU32S32:
880     return "NVPTXISD::TexUnified1DArrayU32S32";
881   case NVPTXISD::TexUnified1DArrayU32Float:
882     return "NVPTXISD::TexUnified1DArrayU32Float";
883   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
884     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
885   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
886     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
887   case NVPTXISD::TexUnified2DFloatS32:
888     return "NVPTXISD::TexUnified2DFloatS32";
889   case NVPTXISD::TexUnified2DFloatFloat:
890     return "NVPTXISD::TexUnified2DFloatFloat";
891   case NVPTXISD::TexUnified2DFloatFloatLevel:
892     return "NVPTXISD::TexUnified2DFloatFloatLevel";
893   case NVPTXISD::TexUnified2DFloatFloatGrad:
894     return "NVPTXISD::TexUnified2DFloatFloatGrad";
895   case NVPTXISD::TexUnified2DS32S32:
896     return "NVPTXISD::TexUnified2DS32S32";
897   case NVPTXISD::TexUnified2DS32Float:
898     return "NVPTXISD::TexUnified2DS32Float";
899   case NVPTXISD::TexUnified2DS32FloatLevel:
900     return "NVPTXISD::TexUnified2DS32FloatLevel";
901   case NVPTXISD::TexUnified2DS32FloatGrad:
902     return "NVPTXISD::TexUnified2DS32FloatGrad";
903   case NVPTXISD::TexUnified2DU32S32:
904     return "NVPTXISD::TexUnified2DU32S32";
905   case NVPTXISD::TexUnified2DU32Float:
906     return "NVPTXISD::TexUnified2DU32Float";
907   case NVPTXISD::TexUnified2DU32FloatLevel:
908     return "NVPTXISD::TexUnified2DU32FloatLevel";
909   case NVPTXISD::TexUnified2DU32FloatGrad:
910     return "NVPTXISD::TexUnified2DU32FloatGrad";
911   case NVPTXISD::TexUnified2DArrayFloatS32:
912     return "NVPTXISD::TexUnified2DArrayFloatS32";
913   case NVPTXISD::TexUnified2DArrayFloatFloat:
914     return "NVPTXISD::TexUnified2DArrayFloatFloat";
915   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
916     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
917   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
918     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
919   case NVPTXISD::TexUnified2DArrayS32S32:
920     return "NVPTXISD::TexUnified2DArrayS32S32";
921   case NVPTXISD::TexUnified2DArrayS32Float:
922     return "NVPTXISD::TexUnified2DArrayS32Float";
923   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
924     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
925   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
926     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
927   case NVPTXISD::TexUnified2DArrayU32S32:
928     return "NVPTXISD::TexUnified2DArrayU32S32";
929   case NVPTXISD::TexUnified2DArrayU32Float:
930     return "NVPTXISD::TexUnified2DArrayU32Float";
931   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
932     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
933   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
934     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
935   case NVPTXISD::TexUnified3DFloatS32:
936     return "NVPTXISD::TexUnified3DFloatS32";
937   case NVPTXISD::TexUnified3DFloatFloat:
938     return "NVPTXISD::TexUnified3DFloatFloat";
939   case NVPTXISD::TexUnified3DFloatFloatLevel:
940     return "NVPTXISD::TexUnified3DFloatFloatLevel";
941   case NVPTXISD::TexUnified3DFloatFloatGrad:
942     return "NVPTXISD::TexUnified3DFloatFloatGrad";
943   case NVPTXISD::TexUnified3DS32S32:
944     return "NVPTXISD::TexUnified3DS32S32";
945   case NVPTXISD::TexUnified3DS32Float:
946     return "NVPTXISD::TexUnified3DS32Float";
947   case NVPTXISD::TexUnified3DS32FloatLevel:
948     return "NVPTXISD::TexUnified3DS32FloatLevel";
949   case NVPTXISD::TexUnified3DS32FloatGrad:
950     return "NVPTXISD::TexUnified3DS32FloatGrad";
951   case NVPTXISD::TexUnified3DU32S32:
952     return "NVPTXISD::TexUnified3DU32S32";
953   case NVPTXISD::TexUnified3DU32Float:
954     return "NVPTXISD::TexUnified3DU32Float";
955   case NVPTXISD::TexUnified3DU32FloatLevel:
956     return "NVPTXISD::TexUnified3DU32FloatLevel";
957   case NVPTXISD::TexUnified3DU32FloatGrad:
958     return "NVPTXISD::TexUnified3DU32FloatGrad";
959   case NVPTXISD::TexUnifiedCubeFloatFloat:
960     return "NVPTXISD::TexUnifiedCubeFloatFloat";
961   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
962     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
963   case NVPTXISD::TexUnifiedCubeS32Float:
964     return "NVPTXISD::TexUnifiedCubeS32Float";
965   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
966     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
967   case NVPTXISD::TexUnifiedCubeU32Float:
968     return "NVPTXISD::TexUnifiedCubeU32Float";
969   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
970     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
971   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
972     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
973   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
974     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
975   case NVPTXISD::TexUnifiedCubeArrayS32Float:
976     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
977   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
978     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
979   case NVPTXISD::TexUnifiedCubeArrayU32Float:
980     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
981   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
982     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
983   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
984     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
985   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
986     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
987   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
988     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
989   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
990     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
991   case NVPTXISD::Tld4UnifiedR2DS64Float:
992     return "NVPTXISD::Tld4UnifiedR2DS64Float";
993   case NVPTXISD::Tld4UnifiedG2DS64Float:
994     return "NVPTXISD::Tld4UnifiedG2DS64Float";
995   case NVPTXISD::Tld4UnifiedB2DS64Float:
996     return "NVPTXISD::Tld4UnifiedB2DS64Float";
997   case NVPTXISD::Tld4UnifiedA2DS64Float:
998     return "NVPTXISD::Tld4UnifiedA2DS64Float";
999   case NVPTXISD::Tld4UnifiedR2DU64Float:
1000     return "NVPTXISD::Tld4UnifiedR2DU64Float";
1001   case NVPTXISD::Tld4UnifiedG2DU64Float:
1002     return "NVPTXISD::Tld4UnifiedG2DU64Float";
1003   case NVPTXISD::Tld4UnifiedB2DU64Float:
1004     return "NVPTXISD::Tld4UnifiedB2DU64Float";
1005   case NVPTXISD::Tld4UnifiedA2DU64Float:
1006     return "NVPTXISD::Tld4UnifiedA2DU64Float";
1007 
1008   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
1009   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
1010   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
1011   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
1012   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
1013   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
1014   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1015   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1016   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1017   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1018   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1019 
1020   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1021   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1022   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1023   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1024   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1025   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1026   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1027   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1028   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1029   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1030   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1031 
1032   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1033   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1034   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1035   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1036   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1037   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1038   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1039   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1040   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1041   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1042   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1043 
1044   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1045   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1046   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1047   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1048   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1049   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1050   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1051   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1052   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1053   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1054   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1055 
1056   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1057   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1058   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1059   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1060   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1061   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1062   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1063   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1064   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1065   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1066   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1067 
1068   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1069   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1070   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1071   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1072   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1073   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1074   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1075   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1076   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1077   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1078   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1079 
1080   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1081   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1082   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1083   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1084   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1085   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1086   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1087   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1088   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1089   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1090   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1091 
1092   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1093   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1094   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1095   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1096   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1097   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1098   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1099   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1100   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1101   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1102   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1103 
1104   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1105   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1106   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1107   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1108   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1109   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1110   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1111   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1112   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1113   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1114   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1115 
1116   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1117   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1118   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1119   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1120   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1121   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1122   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1123   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1124   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1125   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1126   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1127 
1128   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1129   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1130   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1131   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1132   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1133   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1134   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1135   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1136   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1137   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1138   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1139 
1140   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1141   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1142   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1143   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1144   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1145   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1146   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1147   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1148   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1149   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1150   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1151 
1152   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1153   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1154   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1155   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1156   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1157   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1158   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1159   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1160   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1161   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1162   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1163 
1164   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1165   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1166   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1167   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1168   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1169   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1170   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1171   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1172   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1173   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1174   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1175 
1176   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1177   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1178   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1179   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1180   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1181   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1182   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1183   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1184   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1185   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1186   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1187   }
1188   return nullptr;
1189 }
1190 
1191 TargetLoweringBase::LegalizeTypeAction
1192 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1193   if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
1194     return TypeSplitVector;
1195   if (VT == MVT::v2f16)
1196     return TypeLegal;
1197   return TargetLoweringBase::getPreferredVectorAction(VT);
1198 }
1199 
1200 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1201                                              int Enabled, int &ExtraSteps,
1202                                              bool &UseOneConst,
1203                                              bool Reciprocal) const {
1204   if (!(Enabled == ReciprocalEstimate::Enabled ||
1205         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1206     return SDValue();
1207 
1208   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1209     ExtraSteps = 0;
1210 
1211   SDLoc DL(Operand);
1212   EVT VT = Operand.getValueType();
1213   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1214 
1215   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1216     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1217                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1218   };
1219 
1220   // The sqrt and rsqrt refinement processes assume we always start out with an
1221   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1222   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1223   // any refinement, we must return a regular sqrt.
1224   if (Reciprocal || ExtraSteps > 0) {
1225     if (VT == MVT::f32)
1226       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1227                                    : Intrinsic::nvvm_rsqrt_approx_f);
1228     else if (VT == MVT::f64)
1229       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1230     else
1231       return SDValue();
1232   } else {
1233     if (VT == MVT::f32)
1234       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1235                                    : Intrinsic::nvvm_sqrt_approx_f);
1236     else {
1237       // There's no sqrt.approx.f64 instruction, so we emit
1238       // reciprocal(rsqrt(x)).  This is faster than
1239       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1240       // x * rsqrt(x).)
1241       return DAG.getNode(
1242           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1243           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1244           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1245     }
1246   }
1247 }
1248 
1249 SDValue
1250 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1251   SDLoc dl(Op);
1252   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1253   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1254   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1255   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1256 }
1257 
1258 std::string NVPTXTargetLowering::getPrototype(
1259     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1260     const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
1261     ImmutableCallSite CS) const {
1262   auto PtrVT = getPointerTy(DL);
1263 
1264   bool isABI = (STI.getSmVersion() >= 20);
1265   assert(isABI && "Non-ABI compilation is not supported");
1266   if (!isABI)
1267     return "";
1268 
1269   std::stringstream O;
1270   O << "prototype_" << uniqueCallSite << " : .callprototype ";
1271 
1272   if (retTy->getTypeID() == Type::VoidTyID) {
1273     O << "()";
1274   } else {
1275     O << "(";
1276     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1277       unsigned size = 0;
1278       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1279         size = ITy->getBitWidth();
1280       } else {
1281         assert(retTy->isFloatingPointTy() &&
1282                "Floating point type expected here");
1283         size = retTy->getPrimitiveSizeInBits();
1284       }
1285       // PTX ABI requires all scalar return values to be at least 32
1286       // bits in size.  fp16 normally uses .b16 as its storage type in
1287       // PTX, so its size must be adjusted here, too.
1288       if (size < 32)
1289         size = 32;
1290 
1291       O << ".param .b" << size << " _";
1292     } else if (isa<PointerType>(retTy)) {
1293       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1294     } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1295                retTy->isIntegerTy(128)) {
1296       O << ".param .align " << retAlignment << " .b8 _["
1297         << DL.getTypeAllocSize(retTy) << "]";
1298     } else {
1299       llvm_unreachable("Unknown return type");
1300     }
1301     O << ") ";
1302   }
1303   O << "_ (";
1304 
1305   bool first = true;
1306 
1307   unsigned OIdx = 0;
1308   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1309     Type *Ty = Args[i].Ty;
1310     if (!first) {
1311       O << ", ";
1312     }
1313     first = false;
1314 
1315     if (!Outs[OIdx].Flags.isByVal()) {
1316       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1317         unsigned align = 0;
1318         const CallInst *CallI = cast<CallInst>(CS.getInstruction());
1319         // +1 because index 0 is reserved for return type alignment
1320         if (!getAlign(*CallI, i + 1, align))
1321           align = DL.getABITypeAlignment(Ty);
1322         unsigned sz = DL.getTypeAllocSize(Ty);
1323         O << ".param .align " << align << " .b8 ";
1324         O << "_";
1325         O << "[" << sz << "]";
1326         // update the index for Outs
1327         SmallVector<EVT, 16> vtparts;
1328         ComputeValueVTs(*this, DL, Ty, vtparts);
1329         if (unsigned len = vtparts.size())
1330           OIdx += len - 1;
1331         continue;
1332       }
1333       // i8 types in IR will be i16 types in SDAG
1334       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1335               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1336              "type mismatch between callee prototype and arguments");
1337       // scalar type
1338       unsigned sz = 0;
1339       if (isa<IntegerType>(Ty)) {
1340         sz = cast<IntegerType>(Ty)->getBitWidth();
1341         if (sz < 32)
1342           sz = 32;
1343       } else if (isa<PointerType>(Ty)) {
1344         sz = PtrVT.getSizeInBits();
1345       } else if (Ty->isHalfTy())
1346         // PTX ABI requires all scalar parameters to be at least 32
1347         // bits in size.  fp16 normally uses .b16 as its storage type
1348         // in PTX, so its size must be adjusted here, too.
1349         sz = 32;
1350       else
1351         sz = Ty->getPrimitiveSizeInBits();
1352       O << ".param .b" << sz << " ";
1353       O << "_";
1354       continue;
1355     }
1356     auto *PTy = dyn_cast<PointerType>(Ty);
1357     assert(PTy && "Param with byval attribute should be a pointer type");
1358     Type *ETy = PTy->getElementType();
1359 
1360     unsigned align = Outs[OIdx].Flags.getByValAlign();
1361     unsigned sz = DL.getTypeAllocSize(ETy);
1362     O << ".param .align " << align << " .b8 ";
1363     O << "_";
1364     O << "[" << sz << "]";
1365   }
1366   O << ");";
1367   return O.str();
1368 }
1369 
1370 unsigned NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1371                                                    ImmutableCallSite CS,
1372                                                    Type *Ty, unsigned Idx,
1373                                                    const DataLayout &DL) const {
1374   if (!CS) {
1375     // CallSite is zero, fallback to ABI type alignment
1376     return DL.getABITypeAlignment(Ty);
1377   }
1378 
1379   unsigned Align = 0;
1380   const Value *DirectCallee = CS.getCalledFunction();
1381 
1382   if (!DirectCallee) {
1383     // We don't have a direct function symbol, but that may be because of
1384     // constant cast instructions in the call.
1385     const Instruction *CalleeI = CS.getInstruction();
1386     assert(CalleeI && "Call target is not a function or derived value?");
1387 
1388     // With bitcast'd call targets, the instruction will be the call
1389     if (isa<CallInst>(CalleeI)) {
1390       // Check if we have call alignment metadata
1391       if (getAlign(*cast<CallInst>(CalleeI), Idx, Align))
1392         return Align;
1393 
1394       const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
1395       // Ignore any bitcast instructions
1396       while (isa<ConstantExpr>(CalleeV)) {
1397         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1398         if (!CE->isCast())
1399           break;
1400         // Look through the bitcast
1401         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1402       }
1403 
1404       // We have now looked past all of the bitcasts.  Do we finally have a
1405       // Function?
1406       if (isa<Function>(CalleeV))
1407         DirectCallee = CalleeV;
1408     }
1409   }
1410 
1411   // Check for function alignment information if we found that the
1412   // ultimate target is a Function
1413   if (DirectCallee)
1414     if (getAlign(*cast<Function>(DirectCallee), Idx, Align))
1415       return Align;
1416 
1417   // Call is indirect or alignment information is not available, fall back to
1418   // the ABI type alignment
1419   return DL.getABITypeAlignment(Ty);
1420 }
1421 
1422 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1423                                        SmallVectorImpl<SDValue> &InVals) const {
1424   SelectionDAG &DAG = CLI.DAG;
1425   SDLoc dl = CLI.DL;
1426   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1427   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1428   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1429   SDValue Chain = CLI.Chain;
1430   SDValue Callee = CLI.Callee;
1431   bool &isTailCall = CLI.IsTailCall;
1432   ArgListTy &Args = CLI.getArgs();
1433   Type *RetTy = CLI.RetTy;
1434   ImmutableCallSite CS = CLI.CS;
1435   const DataLayout &DL = DAG.getDataLayout();
1436 
1437   bool isABI = (STI.getSmVersion() >= 20);
1438   assert(isABI && "Non-ABI compilation is not supported");
1439   if (!isABI)
1440     return Chain;
1441 
1442   SDValue tempChain = Chain;
1443   Chain = DAG.getCALLSEQ_START(Chain, uniqueCallSite, 0, dl);
1444   SDValue InFlag = Chain.getValue(1);
1445 
1446   unsigned paramCount = 0;
1447   // Args.size() and Outs.size() need not match.
1448   // Outs.size() will be larger
1449   //   * if there is an aggregate argument with multiple fields (each field
1450   //     showing up separately in Outs)
1451   //   * if there is a vector argument with more than typical vector-length
1452   //     elements (generally if more than 4) where each vector element is
1453   //     individually present in Outs.
1454   // So a different index should be used for indexing into Outs/OutVals.
1455   // See similar issue in LowerFormalArguments.
1456   unsigned OIdx = 0;
1457   // Declare the .params or .reg need to pass values
1458   // to the function
1459   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1460     EVT VT = Outs[OIdx].VT;
1461     Type *Ty = Args[i].Ty;
1462 
1463     if (!Outs[OIdx].Flags.isByVal()) {
1464       SmallVector<EVT, 16> VTs;
1465       SmallVector<uint64_t, 16> Offsets;
1466       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1467       unsigned ArgAlign =
1468           getArgumentAlignment(Callee, CS, Ty, paramCount + 1, DL);
1469       unsigned AllocSize = DL.getTypeAllocSize(Ty);
1470       SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1471       bool NeedAlign; // Does argument declaration specify alignment?
1472       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1473         // declare .param .align <align> .b8 .param<n>[<size>];
1474         SDValue DeclareParamOps[] = {
1475             Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1476             DAG.getConstant(paramCount, dl, MVT::i32),
1477             DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1478         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1479                             DeclareParamOps);
1480         NeedAlign = true;
1481       } else {
1482         // declare .param .b<size> .param<n>;
1483         if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1484           // PTX ABI requires integral types to be at least 32 bits in
1485           // size. FP16 is loaded/stored using i16, so it's handled
1486           // here as well.
1487           AllocSize = 4;
1488         }
1489         SDValue DeclareScalarParamOps[] = {
1490             Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1491             DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1492             DAG.getConstant(0, dl, MVT::i32), InFlag};
1493         Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1494                             DeclareScalarParamOps);
1495         NeedAlign = false;
1496       }
1497       InFlag = Chain.getValue(1);
1498 
1499       // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1500       // than 32-bits are sign extended or zero extended, depending on
1501       // whether they are signed or unsigned types. This case applies
1502       // only to scalar parameters and not to aggregate values.
1503       bool ExtendIntegerParam =
1504           Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1505 
1506       auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1507       SmallVector<SDValue, 6> StoreOperands;
1508       for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1509         // New store.
1510         if (VectorInfo[j] & PVF_FIRST) {
1511           assert(StoreOperands.empty() && "Unfinished preceding store.");
1512           StoreOperands.push_back(Chain);
1513           StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1514           StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1515         }
1516 
1517         EVT EltVT = VTs[j];
1518         SDValue StVal = OutVals[OIdx];
1519         if (ExtendIntegerParam) {
1520           assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1521           // zext/sext to i32
1522           StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1523                                                         : ISD::ZERO_EXTEND,
1524                               dl, MVT::i32, StVal);
1525         } else if (EltVT.getSizeInBits() < 16) {
1526           // Use 16-bit registers for small stores as it's the
1527           // smallest general purpose register size supported by NVPTX.
1528           StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1529         }
1530 
1531         // Record the value to store.
1532         StoreOperands.push_back(StVal);
1533 
1534         if (VectorInfo[j] & PVF_LAST) {
1535           unsigned NumElts = StoreOperands.size() - 3;
1536           NVPTXISD::NodeType Op;
1537           switch (NumElts) {
1538           case 1:
1539             Op = NVPTXISD::StoreParam;
1540             break;
1541           case 2:
1542             Op = NVPTXISD::StoreParamV2;
1543             break;
1544           case 4:
1545             Op = NVPTXISD::StoreParamV4;
1546             break;
1547           default:
1548             llvm_unreachable("Invalid vector info.");
1549           }
1550 
1551           StoreOperands.push_back(InFlag);
1552 
1553           // Adjust type of the store op if we've extended the scalar
1554           // return value.
1555           EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1556           unsigned EltAlign =
1557               NeedAlign ? GreatestCommonDivisor64(ArgAlign, Offsets[j]) : 0;
1558 
1559           Chain = DAG.getMemIntrinsicNode(
1560               Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1561               TheStoreType, MachinePointerInfo(), EltAlign,
1562               MachineMemOperand::MOStore);
1563           InFlag = Chain.getValue(1);
1564 
1565           // Cleanup.
1566           StoreOperands.clear();
1567         }
1568         ++OIdx;
1569       }
1570       assert(StoreOperands.empty() && "Unfinished parameter store.");
1571       if (VTs.size() > 0)
1572         --OIdx;
1573       ++paramCount;
1574       continue;
1575     }
1576 
1577     // ByVal arguments
1578     SmallVector<EVT, 16> VTs;
1579     SmallVector<uint64_t, 16> Offsets;
1580     auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1581     assert(PTy && "Type of a byval parameter should be pointer");
1582     ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
1583 
1584     // declare .param .align <align> .b8 .param<n>[<size>];
1585     unsigned sz = Outs[OIdx].Flags.getByValSize();
1586     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1587     unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
1588     // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1589     // so we don't need to worry about natural alignment or not.
1590     // See TargetLowering::LowerCallTo().
1591 
1592     // Enforce minumum alignment of 4 to work around ptxas miscompile
1593     // for sm_50+. See corresponding alignment adjustment in
1594     // emitFunctionParamList() for details.
1595     if (ArgAlign < 4)
1596       ArgAlign = 4;
1597     SDValue DeclareParamOps[] = {Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1598                                  DAG.getConstant(paramCount, dl, MVT::i32),
1599                                  DAG.getConstant(sz, dl, MVT::i32), InFlag};
1600     Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1601                         DeclareParamOps);
1602     InFlag = Chain.getValue(1);
1603     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1604       EVT elemtype = VTs[j];
1605       int curOffset = Offsets[j];
1606       unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
1607       auto PtrVT = getPointerTy(DL);
1608       SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1609                                     DAG.getConstant(curOffset, dl, PtrVT));
1610       SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1611                                    MachinePointerInfo(), PartAlign);
1612       if (elemtype.getSizeInBits() < 16) {
1613         theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1614       }
1615       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1616       SDValue CopyParamOps[] = { Chain,
1617                                  DAG.getConstant(paramCount, dl, MVT::i32),
1618                                  DAG.getConstant(curOffset, dl, MVT::i32),
1619                                  theVal, InFlag };
1620       Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
1621                                       CopyParamOps, elemtype,
1622                                       MachinePointerInfo(), /* Align */ 0,
1623                                       MachineMemOperand::MOStore);
1624 
1625       InFlag = Chain.getValue(1);
1626     }
1627     ++paramCount;
1628   }
1629 
1630   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1631   unsigned retAlignment = 0;
1632 
1633   // Handle Result
1634   if (Ins.size() > 0) {
1635     SmallVector<EVT, 16> resvtparts;
1636     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1637 
1638     // Declare
1639     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1640     //  .param .b<size-in-bits> retval0
1641     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1642     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1643     // these three types to match the logic in
1644     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1645     // Plus, this behavior is consistent with nvcc's.
1646     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1647         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1648       // Scalar needs to be at least 32bit wide
1649       if (resultsz < 32)
1650         resultsz = 32;
1651       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1652       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1653                                   DAG.getConstant(resultsz, dl, MVT::i32),
1654                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1655       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1656                           DeclareRetOps);
1657       InFlag = Chain.getValue(1);
1658     } else {
1659       retAlignment = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1660       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1661       SDValue DeclareRetOps[] = { Chain,
1662                                   DAG.getConstant(retAlignment, dl, MVT::i32),
1663                                   DAG.getConstant(resultsz / 8, dl, MVT::i32),
1664                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1665       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1666                           DeclareRetOps);
1667       InFlag = Chain.getValue(1);
1668     }
1669   }
1670 
1671   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1672   // between them we must rely on the call site value which is valid for
1673   // indirect calls but is always null for libcalls.
1674   bool isIndirectCall = !Func && CS;
1675 
1676   if (isa<ExternalSymbolSDNode>(Callee)) {
1677     Function* CalleeFunc = nullptr;
1678 
1679     // Try to find the callee in the current module.
1680     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1681     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1682 
1683     // Set the "libcall callee" attribute to indicate that the function
1684     // must always have a declaration.
1685     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1686   }
1687 
1688   if (isIndirectCall) {
1689     // This is indirect function call case : PTX requires a prototype of the
1690     // form
1691     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1692     // to be emitted, and the label has to used as the last arg of call
1693     // instruction.
1694     // The prototype is embedded in a string and put as the operand for a
1695     // CallPrototype SDNode which will print out to the value of the string.
1696     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1697     std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, CS);
1698     const char *ProtoStr =
1699       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1700     SDValue ProtoOps[] = {
1701       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1702     };
1703     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1704     InFlag = Chain.getValue(1);
1705   }
1706   // Op to just print "call"
1707   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1708   SDValue PrintCallOps[] = {
1709     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1710   };
1711   // We model convergent calls as separate opcodes.
1712   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1713   if (CLI.IsConvergent)
1714     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1715                                               : NVPTXISD::PrintConvergentCall;
1716   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1717   InFlag = Chain.getValue(1);
1718 
1719   // Ops to print out the function name
1720   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1721   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1722   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1723   InFlag = Chain.getValue(1);
1724 
1725   // Ops to print out the param list
1726   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1727   SDValue CallArgBeginOps[] = { Chain, InFlag };
1728   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1729                       CallArgBeginOps);
1730   InFlag = Chain.getValue(1);
1731 
1732   for (unsigned i = 0, e = paramCount; i != e; ++i) {
1733     unsigned opcode;
1734     if (i == (e - 1))
1735       opcode = NVPTXISD::LastCallArg;
1736     else
1737       opcode = NVPTXISD::CallArg;
1738     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1739     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1740                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1741     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1742     InFlag = Chain.getValue(1);
1743   }
1744   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1745   SDValue CallArgEndOps[] = { Chain,
1746                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1747                               InFlag };
1748   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1749   InFlag = Chain.getValue(1);
1750 
1751   if (isIndirectCall) {
1752     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1753     SDValue PrototypeOps[] = { Chain,
1754                                DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1755                                InFlag };
1756     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1757     InFlag = Chain.getValue(1);
1758   }
1759 
1760   SmallVector<SDValue, 16> ProxyRegOps;
1761   SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1762 
1763   // Generate loads from param memory/moves from registers for result
1764   if (Ins.size() > 0) {
1765     SmallVector<EVT, 16> VTs;
1766     SmallVector<uint64_t, 16> Offsets;
1767     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1768     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1769 
1770     unsigned RetAlign = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1771     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1772 
1773     SmallVector<EVT, 6> LoadVTs;
1774     int VecIdx = -1; // Index of the first element of the vector.
1775 
1776     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1777     // 32-bits are sign extended or zero extended, depending on whether
1778     // they are signed or unsigned types.
1779     bool ExtendIntegerRetVal =
1780         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1781 
1782     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1783       bool needTruncate = false;
1784       EVT TheLoadType = VTs[i];
1785       EVT EltType = Ins[i].VT;
1786       unsigned EltAlign = GreatestCommonDivisor64(RetAlign, Offsets[i]);
1787       if (ExtendIntegerRetVal) {
1788         TheLoadType = MVT::i32;
1789         EltType = MVT::i32;
1790         needTruncate = true;
1791       } else if (TheLoadType.getSizeInBits() < 16) {
1792         if (VTs[i].isInteger())
1793           needTruncate = true;
1794         EltType = MVT::i16;
1795       }
1796 
1797       // Record index of the very first element of the vector.
1798       if (VectorInfo[i] & PVF_FIRST) {
1799         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1800         VecIdx = i;
1801       }
1802 
1803       LoadVTs.push_back(EltType);
1804 
1805       if (VectorInfo[i] & PVF_LAST) {
1806         unsigned NumElts = LoadVTs.size();
1807         LoadVTs.push_back(MVT::Other);
1808         LoadVTs.push_back(MVT::Glue);
1809         NVPTXISD::NodeType Op;
1810         switch (NumElts) {
1811         case 1:
1812           Op = NVPTXISD::LoadParam;
1813           break;
1814         case 2:
1815           Op = NVPTXISD::LoadParamV2;
1816           break;
1817         case 4:
1818           Op = NVPTXISD::LoadParamV4;
1819           break;
1820         default:
1821           llvm_unreachable("Invalid vector info.");
1822         }
1823 
1824         SDValue LoadOperands[] = {
1825             Chain, DAG.getConstant(1, dl, MVT::i32),
1826             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1827         SDValue RetVal = DAG.getMemIntrinsicNode(
1828             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1829             MachinePointerInfo(), EltAlign,
1830             MachineMemOperand::MOLoad);
1831 
1832         for (unsigned j = 0; j < NumElts; ++j) {
1833           ProxyRegOps.push_back(RetVal.getValue(j));
1834 
1835           if (needTruncate)
1836             ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1837           else
1838             ProxyRegTruncates.push_back(Optional<MVT>());
1839         }
1840 
1841         Chain = RetVal.getValue(NumElts);
1842         InFlag = RetVal.getValue(NumElts + 1);
1843 
1844         // Cleanup
1845         VecIdx = -1;
1846         LoadVTs.clear();
1847       }
1848     }
1849   }
1850 
1851   Chain = DAG.getCALLSEQ_END(Chain,
1852                              DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1853                              DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1854                                                    true),
1855                              InFlag, dl);
1856   InFlag = Chain.getValue(1);
1857   uniqueCallSite++;
1858 
1859   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1860   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1861   // dangling.
1862   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1863     SDValue Ret = DAG.getNode(
1864       NVPTXISD::ProxyReg, dl,
1865       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1866       { Chain, ProxyRegOps[i], InFlag }
1867     );
1868 
1869     Chain = Ret.getValue(1);
1870     InFlag = Ret.getValue(2);
1871 
1872     if (ProxyRegTruncates[i].hasValue()) {
1873       Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
1874     }
1875 
1876     InVals.push_back(Ret);
1877   }
1878 
1879   // set isTailCall to false for now, until we figure out how to express
1880   // tail call optimization in PTX
1881   isTailCall = false;
1882   return Chain;
1883 }
1884 
1885 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1886 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1887 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1888 SDValue
1889 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1890   SDNode *Node = Op.getNode();
1891   SDLoc dl(Node);
1892   SmallVector<SDValue, 8> Ops;
1893   unsigned NumOperands = Node->getNumOperands();
1894   for (unsigned i = 0; i < NumOperands; ++i) {
1895     SDValue SubOp = Node->getOperand(i);
1896     EVT VVT = SubOp.getNode()->getValueType(0);
1897     EVT EltVT = VVT.getVectorElementType();
1898     unsigned NumSubElem = VVT.getVectorNumElements();
1899     for (unsigned j = 0; j < NumSubElem; ++j) {
1900       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1901                                 DAG.getIntPtrConstant(j, dl)));
1902     }
1903   }
1904   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1905 }
1906 
1907 // We can init constant f16x2 with a single .b32 move.  Normally it
1908 // would get lowered as two constant loads and vector-packing move.
1909 //        mov.b16         %h1, 0x4000;
1910 //        mov.b16         %h2, 0x3C00;
1911 //        mov.b32         %hh2, {%h2, %h1};
1912 // Instead we want just a constant move:
1913 //        mov.b32         %hh2, 0x40003C00
1914 //
1915 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1916 // generates good SASS in both cases.
1917 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1918                                                SelectionDAG &DAG) const {
1919   //return Op;
1920   if (!(Op->getValueType(0) == MVT::v2f16 &&
1921         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1922         isa<ConstantFPSDNode>(Op->getOperand(1))))
1923     return Op;
1924 
1925   APInt E0 =
1926       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1927   APInt E1 =
1928       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1929   SDValue Const =
1930       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1931   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1932 }
1933 
1934 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1935                                                      SelectionDAG &DAG) const {
1936   SDValue Index = Op->getOperand(1);
1937   // Constant index will be matched by tablegen.
1938   if (isa<ConstantSDNode>(Index.getNode()))
1939     return Op;
1940 
1941   // Extract individual elements and select one of them.
1942   SDValue Vector = Op->getOperand(0);
1943   EVT VectorVT = Vector.getValueType();
1944   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1945   EVT EltVT = VectorVT.getVectorElementType();
1946 
1947   SDLoc dl(Op.getNode());
1948   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1949                            DAG.getIntPtrConstant(0, dl));
1950   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1951                            DAG.getIntPtrConstant(1, dl));
1952   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1953                          ISD::CondCode::SETEQ);
1954 }
1955 
1956 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1957 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1958 ///    amount, or
1959 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1960 ///    amount.
1961 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1962                                                   SelectionDAG &DAG) const {
1963   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1964   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1965 
1966   EVT VT = Op.getValueType();
1967   unsigned VTBits = VT.getSizeInBits();
1968   SDLoc dl(Op);
1969   SDValue ShOpLo = Op.getOperand(0);
1970   SDValue ShOpHi = Op.getOperand(1);
1971   SDValue ShAmt  = Op.getOperand(2);
1972   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1973 
1974   if (VTBits == 32 && STI.getSmVersion() >= 35) {
1975     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1976     // {dHi, dLo} = {aHi, aLo} >> Amt
1977     //   dHi = aHi >> Amt
1978     //   dLo = shf.r.clamp aLo, aHi, Amt
1979 
1980     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1981     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1982                              ShAmt);
1983 
1984     SDValue Ops[2] = { Lo, Hi };
1985     return DAG.getMergeValues(Ops, dl);
1986   }
1987   else {
1988     // {dHi, dLo} = {aHi, aLo} >> Amt
1989     // - if (Amt>=size) then
1990     //      dLo = aHi >> (Amt-size)
1991     //      dHi = aHi >> Amt (this is either all 0 or all 1)
1992     //   else
1993     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1994     //      dHi = aHi >> Amt
1995 
1996     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1997                                    DAG.getConstant(VTBits, dl, MVT::i32),
1998                                    ShAmt);
1999     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2000     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2001                                      DAG.getConstant(VTBits, dl, MVT::i32));
2002     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2003     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2004     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2005 
2006     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2007                                DAG.getConstant(VTBits, dl, MVT::i32),
2008                                ISD::SETGE);
2009     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2010     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2011 
2012     SDValue Ops[2] = { Lo, Hi };
2013     return DAG.getMergeValues(Ops, dl);
2014   }
2015 }
2016 
2017 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2018 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2019 ///    amount, or
2020 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2021 ///    amount.
2022 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2023                                                  SelectionDAG &DAG) const {
2024   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2025   assert(Op.getOpcode() == ISD::SHL_PARTS);
2026 
2027   EVT VT = Op.getValueType();
2028   unsigned VTBits = VT.getSizeInBits();
2029   SDLoc dl(Op);
2030   SDValue ShOpLo = Op.getOperand(0);
2031   SDValue ShOpHi = Op.getOperand(1);
2032   SDValue ShAmt  = Op.getOperand(2);
2033 
2034   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2035     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2036     // {dHi, dLo} = {aHi, aLo} << Amt
2037     //   dHi = shf.l.clamp aLo, aHi, Amt
2038     //   dLo = aLo << Amt
2039 
2040     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2041                              ShAmt);
2042     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2043 
2044     SDValue Ops[2] = { Lo, Hi };
2045     return DAG.getMergeValues(Ops, dl);
2046   }
2047   else {
2048     // {dHi, dLo} = {aHi, aLo} << Amt
2049     // - if (Amt>=size) then
2050     //      dLo = aLo << Amt (all 0)
2051     //      dLo = aLo << (Amt-size)
2052     //   else
2053     //      dLo = aLo << Amt
2054     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2055 
2056     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2057                                    DAG.getConstant(VTBits, dl, MVT::i32),
2058                                    ShAmt);
2059     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2060     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2061                                      DAG.getConstant(VTBits, dl, MVT::i32));
2062     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2063     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2064     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2065 
2066     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2067                                DAG.getConstant(VTBits, dl, MVT::i32),
2068                                ISD::SETGE);
2069     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2070     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2071 
2072     SDValue Ops[2] = { Lo, Hi };
2073     return DAG.getMergeValues(Ops, dl);
2074   }
2075 }
2076 
2077 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2078   EVT VT = Op.getValueType();
2079 
2080   if (VT == MVT::f32)
2081     return LowerFROUND32(Op, DAG);
2082 
2083   if (VT == MVT::f64)
2084     return LowerFROUND64(Op, DAG);
2085 
2086   llvm_unreachable("unhandled type");
2087 }
2088 
2089 // This is the the rounding method used in CUDA libdevice in C like code:
2090 // float roundf(float A)
2091 // {
2092 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2093 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2094 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2095 // }
2096 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2097                                            SelectionDAG &DAG) const {
2098   SDLoc SL(Op);
2099   SDValue A = Op.getOperand(0);
2100   EVT VT = Op.getValueType();
2101 
2102   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2103 
2104   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2105   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2106   const int SignBitMask = 0x80000000;
2107   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2108                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2109   const int PointFiveInBits = 0x3F000000;
2110   SDValue PointFiveWithSignRaw =
2111       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2112                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2113   SDValue PointFiveWithSign =
2114       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2115   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2116   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2117 
2118   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2119   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2120   SDValue IsLarge =
2121       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2122                    ISD::SETOGT);
2123   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2124 
2125   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2126   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2127                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2128   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2129   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2130 }
2131 
2132 // The implementation of round(double) is similar to that of round(float) in
2133 // that they both separate the value range into three regions and use a method
2134 // specific to the region to round the values. However, round(double) first
2135 // calculates the round of the absolute value and then adds the sign back while
2136 // round(float) directly rounds the value with sign.
2137 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2138                                            SelectionDAG &DAG) const {
2139   SDLoc SL(Op);
2140   SDValue A = Op.getOperand(0);
2141   EVT VT = Op.getValueType();
2142 
2143   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2144 
2145   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2146   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2147                                   DAG.getConstantFP(0.5, SL, VT));
2148   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2149 
2150   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2151   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2152   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2153                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2154   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2155                          DAG.getConstantFP(0, SL, VT),
2156                          RoundedA);
2157 
2158   // Add sign to rounded_A
2159   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2160   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2161 
2162   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2163   SDValue IsLarge =
2164       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2165                    ISD::SETOGT);
2166   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2167 }
2168 
2169 
2170 
2171 SDValue
2172 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2173   switch (Op.getOpcode()) {
2174   case ISD::RETURNADDR:
2175     return SDValue();
2176   case ISD::FRAMEADDR:
2177     return SDValue();
2178   case ISD::GlobalAddress:
2179     return LowerGlobalAddress(Op, DAG);
2180   case ISD::INTRINSIC_W_CHAIN:
2181     return Op;
2182   case ISD::BUILD_VECTOR:
2183     return LowerBUILD_VECTOR(Op, DAG);
2184   case ISD::EXTRACT_SUBVECTOR:
2185     return Op;
2186   case ISD::EXTRACT_VECTOR_ELT:
2187     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2188   case ISD::CONCAT_VECTORS:
2189     return LowerCONCAT_VECTORS(Op, DAG);
2190   case ISD::STORE:
2191     return LowerSTORE(Op, DAG);
2192   case ISD::LOAD:
2193     return LowerLOAD(Op, DAG);
2194   case ISD::SHL_PARTS:
2195     return LowerShiftLeftParts(Op, DAG);
2196   case ISD::SRA_PARTS:
2197   case ISD::SRL_PARTS:
2198     return LowerShiftRightParts(Op, DAG);
2199   case ISD::SELECT:
2200     return LowerSelect(Op, DAG);
2201   case ISD::FROUND:
2202     return LowerFROUND(Op, DAG);
2203   default:
2204     llvm_unreachable("Custom lowering not defined for operation");
2205   }
2206 }
2207 
2208 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2209   SDValue Op0 = Op->getOperand(0);
2210   SDValue Op1 = Op->getOperand(1);
2211   SDValue Op2 = Op->getOperand(2);
2212   SDLoc DL(Op.getNode());
2213 
2214   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2215 
2216   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2217   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2218   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2219   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2220 
2221   return Trunc;
2222 }
2223 
2224 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2225   if (Op.getValueType() == MVT::i1)
2226     return LowerLOADi1(Op, DAG);
2227 
2228   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2229   // loads and have to handle it here.
2230   if (Op.getValueType() == MVT::v2f16) {
2231     LoadSDNode *Load = cast<LoadSDNode>(Op);
2232     EVT MemVT = Load->getMemoryVT();
2233     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2234                                         MemVT, *Load->getMemOperand())) {
2235       SDValue Ops[2];
2236       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2237       return DAG.getMergeValues(Ops, SDLoc(Op));
2238     }
2239   }
2240 
2241   return SDValue();
2242 }
2243 
2244 // v = ld i1* addr
2245 //   =>
2246 // v1 = ld i8* addr (-> i16)
2247 // v = trunc i16 to i1
2248 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2249   SDNode *Node = Op.getNode();
2250   LoadSDNode *LD = cast<LoadSDNode>(Node);
2251   SDLoc dl(Node);
2252   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2253   assert(Node->getValueType(0) == MVT::i1 &&
2254          "Custom lowering for i1 load only");
2255   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2256                               LD->getPointerInfo(), LD->getAlignment(),
2257                               LD->getMemOperand()->getFlags());
2258   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2259   // The legalizer (the caller) is expecting two values from the legalized
2260   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2261   // in LegalizeDAG.cpp which also uses MergeValues.
2262   SDValue Ops[] = { result, LD->getChain() };
2263   return DAG.getMergeValues(Ops, dl);
2264 }
2265 
2266 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2267   StoreSDNode *Store = cast<StoreSDNode>(Op);
2268   EVT VT = Store->getMemoryVT();
2269 
2270   if (VT == MVT::i1)
2271     return LowerSTOREi1(Op, DAG);
2272 
2273   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2274   // stores and have to handle it here.
2275   if (VT == MVT::v2f16 &&
2276       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2277                                       VT, *Store->getMemOperand()))
2278     return expandUnalignedStore(Store, DAG);
2279 
2280   if (VT.isVector())
2281     return LowerSTOREVector(Op, DAG);
2282 
2283   return SDValue();
2284 }
2285 
2286 SDValue
2287 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2288   SDNode *N = Op.getNode();
2289   SDValue Val = N->getOperand(1);
2290   SDLoc DL(N);
2291   EVT ValVT = Val.getValueType();
2292 
2293   if (ValVT.isVector()) {
2294     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2295     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2296     // but I'm leaving that as a TODO for now.
2297     if (!ValVT.isSimple())
2298       return SDValue();
2299     switch (ValVT.getSimpleVT().SimpleTy) {
2300     default:
2301       return SDValue();
2302     case MVT::v2i8:
2303     case MVT::v2i16:
2304     case MVT::v2i32:
2305     case MVT::v2i64:
2306     case MVT::v2f16:
2307     case MVT::v2f32:
2308     case MVT::v2f64:
2309     case MVT::v4i8:
2310     case MVT::v4i16:
2311     case MVT::v4i32:
2312     case MVT::v4f16:
2313     case MVT::v4f32:
2314     case MVT::v8f16: // <4 x f16x2>
2315       // This is a "native" vector type
2316       break;
2317     }
2318 
2319     MemSDNode *MemSD = cast<MemSDNode>(N);
2320     const DataLayout &TD = DAG.getDataLayout();
2321 
2322     unsigned Align = MemSD->getAlignment();
2323     unsigned PrefAlign =
2324         TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
2325     if (Align < PrefAlign) {
2326       // This store is not sufficiently aligned, so bail out and let this vector
2327       // store be scalarized.  Note that we may still be able to emit smaller
2328       // vector stores.  For example, if we are storing a <4 x float> with an
2329       // alignment of 8, this check will fail but the legalizer will try again
2330       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2331       return SDValue();
2332     }
2333 
2334     unsigned Opcode = 0;
2335     EVT EltVT = ValVT.getVectorElementType();
2336     unsigned NumElts = ValVT.getVectorNumElements();
2337 
2338     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2339     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2340     // stored type to i16 and propagate the "real" type as the memory type.
2341     bool NeedExt = false;
2342     if (EltVT.getSizeInBits() < 16)
2343       NeedExt = true;
2344 
2345     bool StoreF16x2 = false;
2346     switch (NumElts) {
2347     default:
2348       return SDValue();
2349     case 2:
2350       Opcode = NVPTXISD::StoreV2;
2351       break;
2352     case 4:
2353       Opcode = NVPTXISD::StoreV4;
2354       break;
2355     case 8:
2356       // v8f16 is a special case. PTX doesn't have st.v8.f16
2357       // instruction. Instead, we split the vector into v2f16 chunks and
2358       // store them with st.v4.b32.
2359       assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2360       Opcode = NVPTXISD::StoreV4;
2361       StoreF16x2 = true;
2362       break;
2363     }
2364 
2365     SmallVector<SDValue, 8> Ops;
2366 
2367     // First is the chain
2368     Ops.push_back(N->getOperand(0));
2369 
2370     if (StoreF16x2) {
2371       // Combine f16,f16 -> v2f16
2372       NumElts /= 2;
2373       for (unsigned i = 0; i < NumElts; ++i) {
2374         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2375                                  DAG.getIntPtrConstant(i * 2, DL));
2376         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2377                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2378         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2379         Ops.push_back(V2);
2380       }
2381     } else {
2382       // Then the split values
2383       for (unsigned i = 0; i < NumElts; ++i) {
2384         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2385                                      DAG.getIntPtrConstant(i, DL));
2386         if (NeedExt)
2387           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2388         Ops.push_back(ExtVal);
2389       }
2390     }
2391 
2392     // Then any remaining arguments
2393     Ops.append(N->op_begin() + 2, N->op_end());
2394 
2395     SDValue NewSt =
2396         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2397                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2398 
2399     // return DCI.CombineTo(N, NewSt, true);
2400     return NewSt;
2401   }
2402 
2403   return SDValue();
2404 }
2405 
2406 // st i1 v, addr
2407 //    =>
2408 // v1 = zxt v to i16
2409 // st.u8 i16, addr
2410 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2411   SDNode *Node = Op.getNode();
2412   SDLoc dl(Node);
2413   StoreSDNode *ST = cast<StoreSDNode>(Node);
2414   SDValue Tmp1 = ST->getChain();
2415   SDValue Tmp2 = ST->getBasePtr();
2416   SDValue Tmp3 = ST->getValue();
2417   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2418   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2419   SDValue Result =
2420       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2421                         ST->getAlignment(), ST->getMemOperand()->getFlags());
2422   return Result;
2423 }
2424 
2425 SDValue
2426 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2427   std::string ParamSym;
2428   raw_string_ostream ParamStr(ParamSym);
2429 
2430   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2431   ParamStr.flush();
2432 
2433   std::string *SavedStr =
2434     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2435   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2436 }
2437 
2438 // Check to see if the kernel argument is image*_t or sampler_t
2439 
2440 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2441   static const char *const specialTypes[] = { "struct._image2d_t",
2442                                               "struct._image3d_t",
2443                                               "struct._sampler_t" };
2444 
2445   Type *Ty = arg->getType();
2446   auto *PTy = dyn_cast<PointerType>(Ty);
2447 
2448   if (!PTy)
2449     return false;
2450 
2451   if (!context)
2452     return false;
2453 
2454   auto *STy = dyn_cast<StructType>(PTy->getElementType());
2455   if (!STy || STy->isLiteral())
2456     return false;
2457 
2458   return std::find(std::begin(specialTypes), std::end(specialTypes),
2459                    STy->getName()) != std::end(specialTypes);
2460 }
2461 
2462 SDValue NVPTXTargetLowering::LowerFormalArguments(
2463     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2464     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2465     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2466   MachineFunction &MF = DAG.getMachineFunction();
2467   const DataLayout &DL = DAG.getDataLayout();
2468   auto PtrVT = getPointerTy(DAG.getDataLayout());
2469 
2470   const Function *F = &MF.getFunction();
2471   const AttributeList &PAL = F->getAttributes();
2472   const TargetLowering *TLI = STI.getTargetLowering();
2473 
2474   SDValue Root = DAG.getRoot();
2475   std::vector<SDValue> OutChains;
2476 
2477   bool isABI = (STI.getSmVersion() >= 20);
2478   assert(isABI && "Non-ABI compilation is not supported");
2479   if (!isABI)
2480     return Chain;
2481 
2482   std::vector<Type *> argTypes;
2483   std::vector<const Argument *> theArgs;
2484   for (const Argument &I : F->args()) {
2485     theArgs.push_back(&I);
2486     argTypes.push_back(I.getType());
2487   }
2488   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2489   // Ins.size() will be larger
2490   //   * if there is an aggregate argument with multiple fields (each field
2491   //     showing up separately in Ins)
2492   //   * if there is a vector argument with more than typical vector-length
2493   //     elements (generally if more than 4) where each vector element is
2494   //     individually present in Ins.
2495   // So a different index should be used for indexing into Ins.
2496   // See similar issue in LowerCall.
2497   unsigned InsIdx = 0;
2498 
2499   int idx = 0;
2500   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2501     Type *Ty = argTypes[i];
2502 
2503     // If the kernel argument is image*_t or sampler_t, convert it to
2504     // a i32 constant holding the parameter position. This can later
2505     // matched in the AsmPrinter to output the correct mangled name.
2506     if (isImageOrSamplerVal(
2507             theArgs[i],
2508             (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2509                                      : nullptr))) {
2510       assert(isKernelFunction(*F) &&
2511              "Only kernels can have image/sampler params");
2512       InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2513       continue;
2514     }
2515 
2516     if (theArgs[i]->use_empty()) {
2517       // argument is dead
2518       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2519         SmallVector<EVT, 16> vtparts;
2520 
2521         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2522         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2523         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2524              ++parti) {
2525           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2526           ++InsIdx;
2527         }
2528         if (vtparts.size() > 0)
2529           --InsIdx;
2530         continue;
2531       }
2532       if (Ty->isVectorTy()) {
2533         EVT ObjectVT = getValueType(DL, Ty);
2534         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2535         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2536           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2537           ++InsIdx;
2538         }
2539         if (NumRegs > 0)
2540           --InsIdx;
2541         continue;
2542       }
2543       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2544       continue;
2545     }
2546 
2547     // In the following cases, assign a node order of "idx+1"
2548     // to newly created nodes. The SDNodes for params have to
2549     // appear in the same order as their order of appearance
2550     // in the original function. "idx+1" holds that order.
2551     if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
2552       bool aggregateIsPacked = false;
2553       if (StructType *STy = dyn_cast<StructType>(Ty))
2554         aggregateIsPacked = STy->isPacked();
2555 
2556       SmallVector<EVT, 16> VTs;
2557       SmallVector<uint64_t, 16> Offsets;
2558       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2559       assert(VTs.size() > 0 && "Unexpected empty type.");
2560       auto VectorInfo =
2561           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlignment(Ty));
2562 
2563       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2564       int VecIdx = -1; // Index of the first element of the current vector.
2565       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2566         if (VectorInfo[parti] & PVF_FIRST) {
2567           assert(VecIdx == -1 && "Orphaned vector.");
2568           VecIdx = parti;
2569         }
2570 
2571         // That's the last element of this store op.
2572         if (VectorInfo[parti] & PVF_LAST) {
2573           unsigned NumElts = parti - VecIdx + 1;
2574           EVT EltVT = VTs[parti];
2575           // i1 is loaded/stored as i8.
2576           EVT LoadVT = EltVT;
2577           if (EltVT == MVT::i1)
2578             LoadVT = MVT::i8;
2579           else if (EltVT == MVT::v2f16)
2580             // getLoad needs a vector type, but it can't handle
2581             // vectors which contain v2f16 elements. So we must load
2582             // using i32 here and then bitcast back.
2583             LoadVT = MVT::i32;
2584 
2585           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2586           SDValue VecAddr =
2587               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2588                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2589           Value *srcValue = Constant::getNullValue(PointerType::get(
2590               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2591           SDValue P =
2592               DAG.getLoad(VecVT, dl, Root, VecAddr,
2593                           MachinePointerInfo(srcValue), aggregateIsPacked,
2594                           MachineMemOperand::MODereferenceable |
2595                               MachineMemOperand::MOInvariant);
2596           if (P.getNode())
2597             P.getNode()->setIROrder(idx + 1);
2598           for (unsigned j = 0; j < NumElts; ++j) {
2599             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2600                                       DAG.getIntPtrConstant(j, dl));
2601             // We've loaded i1 as an i8 and now must truncate it back to i1
2602             if (EltVT == MVT::i1)
2603               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2604             // v2f16 was loaded as an i32. Now we must bitcast it back.
2605             else if (EltVT == MVT::v2f16)
2606               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2607             // Extend the element if necessary (e.g. an i8 is loaded
2608             // into an i16 register)
2609             if (Ins[InsIdx].VT.isInteger() &&
2610                 Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
2611               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2612                                                            : ISD::ZERO_EXTEND;
2613               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2614             }
2615             InVals.push_back(Elt);
2616           }
2617 
2618           // Reset vector tracking state.
2619           VecIdx = -1;
2620         }
2621         ++InsIdx;
2622       }
2623       if (VTs.size() > 0)
2624         --InsIdx;
2625       continue;
2626     }
2627 
2628     // Param has ByVal attribute
2629     // Return MoveParam(param symbol).
2630     // Ideally, the param symbol can be returned directly,
2631     // but when SDNode builder decides to use it in a CopyToReg(),
2632     // machine instruction fails because TargetExternalSymbol
2633     // (not lowered) is target dependent, and CopyToReg assumes
2634     // the source is lowered.
2635     EVT ObjectVT = getValueType(DL, Ty);
2636     assert(ObjectVT == Ins[InsIdx].VT &&
2637            "Ins type did not match function type");
2638     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2639     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2640     if (p.getNode())
2641       p.getNode()->setIROrder(idx + 1);
2642     InVals.push_back(p);
2643   }
2644 
2645   // Clang will check explicit VarArg and issue error if any. However, Clang
2646   // will let code with
2647   // implicit var arg like f() pass. See bug 617733.
2648   // We treat this case as if the arg list is empty.
2649   // if (F.isVarArg()) {
2650   // assert(0 && "VarArg not supported yet!");
2651   //}
2652 
2653   if (!OutChains.empty())
2654     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2655 
2656   return Chain;
2657 }
2658 
2659 SDValue
2660 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2661                                  bool isVarArg,
2662                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2663                                  const SmallVectorImpl<SDValue> &OutVals,
2664                                  const SDLoc &dl, SelectionDAG &DAG) const {
2665   MachineFunction &MF = DAG.getMachineFunction();
2666   Type *RetTy = MF.getFunction().getReturnType();
2667 
2668   bool isABI = (STI.getSmVersion() >= 20);
2669   assert(isABI && "Non-ABI compilation is not supported");
2670   if (!isABI)
2671     return Chain;
2672 
2673   const DataLayout DL = DAG.getDataLayout();
2674   SmallVector<EVT, 16> VTs;
2675   SmallVector<uint64_t, 16> Offsets;
2676   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2677   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2678 
2679   auto VectorInfo = VectorizePTXValueVTs(
2680       VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlignment(RetTy) : 1);
2681 
2682   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2683   // 32-bits are sign extended or zero extended, depending on whether
2684   // they are signed or unsigned types.
2685   bool ExtendIntegerRetVal =
2686       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2687 
2688   SmallVector<SDValue, 6> StoreOperands;
2689   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2690     // New load/store. Record chain and offset operands.
2691     if (VectorInfo[i] & PVF_FIRST) {
2692       assert(StoreOperands.empty() && "Orphaned operand list.");
2693       StoreOperands.push_back(Chain);
2694       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2695     }
2696 
2697     SDValue RetVal = OutVals[i];
2698     if (ExtendIntegerRetVal) {
2699       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2700                                                   : ISD::ZERO_EXTEND,
2701                            dl, MVT::i32, RetVal);
2702     } else if (RetVal.getValueSizeInBits() < 16) {
2703       // Use 16-bit registers for small load-stores as it's the
2704       // smallest general purpose register size supported by NVPTX.
2705       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2706     }
2707 
2708     // Record the value to return.
2709     StoreOperands.push_back(RetVal);
2710 
2711     // That's the last element of this store op.
2712     if (VectorInfo[i] & PVF_LAST) {
2713       NVPTXISD::NodeType Op;
2714       unsigned NumElts = StoreOperands.size() - 2;
2715       switch (NumElts) {
2716       case 1:
2717         Op = NVPTXISD::StoreRetval;
2718         break;
2719       case 2:
2720         Op = NVPTXISD::StoreRetvalV2;
2721         break;
2722       case 4:
2723         Op = NVPTXISD::StoreRetvalV4;
2724         break;
2725       default:
2726         llvm_unreachable("Invalid vector info.");
2727       }
2728 
2729       // Adjust type of load/store op if we've extended the scalar
2730       // return value.
2731       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2732       Chain = DAG.getMemIntrinsicNode(Op, dl, DAG.getVTList(MVT::Other),
2733                                       StoreOperands, TheStoreType,
2734                                       MachinePointerInfo(), /* Align */ 1,
2735                                       MachineMemOperand::MOStore);
2736       // Cleanup vector state.
2737       StoreOperands.clear();
2738     }
2739   }
2740 
2741   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2742 }
2743 
2744 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2745     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2746     SelectionDAG &DAG) const {
2747   if (Constraint.length() > 1)
2748     return;
2749   else
2750     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2751 }
2752 
2753 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2754   switch (Intrinsic) {
2755   default:
2756     return 0;
2757 
2758   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2759     return NVPTXISD::Tex1DFloatS32;
2760   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2761     return NVPTXISD::Tex1DFloatFloat;
2762   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2763     return NVPTXISD::Tex1DFloatFloatLevel;
2764   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2765     return NVPTXISD::Tex1DFloatFloatGrad;
2766   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2767     return NVPTXISD::Tex1DS32S32;
2768   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2769     return NVPTXISD::Tex1DS32Float;
2770   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2771     return NVPTXISD::Tex1DS32FloatLevel;
2772   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2773     return NVPTXISD::Tex1DS32FloatGrad;
2774   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2775     return NVPTXISD::Tex1DU32S32;
2776   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2777     return NVPTXISD::Tex1DU32Float;
2778   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2779     return NVPTXISD::Tex1DU32FloatLevel;
2780   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2781     return NVPTXISD::Tex1DU32FloatGrad;
2782 
2783   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2784     return NVPTXISD::Tex1DArrayFloatS32;
2785   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2786     return NVPTXISD::Tex1DArrayFloatFloat;
2787   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2788     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2789   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2790     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2791   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2792     return NVPTXISD::Tex1DArrayS32S32;
2793   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2794     return NVPTXISD::Tex1DArrayS32Float;
2795   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2796     return NVPTXISD::Tex1DArrayS32FloatLevel;
2797   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2798     return NVPTXISD::Tex1DArrayS32FloatGrad;
2799   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2800     return NVPTXISD::Tex1DArrayU32S32;
2801   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2802     return NVPTXISD::Tex1DArrayU32Float;
2803   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2804     return NVPTXISD::Tex1DArrayU32FloatLevel;
2805   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2806     return NVPTXISD::Tex1DArrayU32FloatGrad;
2807 
2808   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2809     return NVPTXISD::Tex2DFloatS32;
2810   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2811     return NVPTXISD::Tex2DFloatFloat;
2812   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2813     return NVPTXISD::Tex2DFloatFloatLevel;
2814   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2815     return NVPTXISD::Tex2DFloatFloatGrad;
2816   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2817     return NVPTXISD::Tex2DS32S32;
2818   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2819     return NVPTXISD::Tex2DS32Float;
2820   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2821     return NVPTXISD::Tex2DS32FloatLevel;
2822   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2823     return NVPTXISD::Tex2DS32FloatGrad;
2824   case Intrinsic::nvvm_tex_2d_v4u32_s32:
2825     return NVPTXISD::Tex2DU32S32;
2826   case Intrinsic::nvvm_tex_2d_v4u32_f32:
2827     return NVPTXISD::Tex2DU32Float;
2828   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2829     return NVPTXISD::Tex2DU32FloatLevel;
2830   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2831     return NVPTXISD::Tex2DU32FloatGrad;
2832 
2833   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2834     return NVPTXISD::Tex2DArrayFloatS32;
2835   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2836     return NVPTXISD::Tex2DArrayFloatFloat;
2837   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2838     return NVPTXISD::Tex2DArrayFloatFloatLevel;
2839   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2840     return NVPTXISD::Tex2DArrayFloatFloatGrad;
2841   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2842     return NVPTXISD::Tex2DArrayS32S32;
2843   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2844     return NVPTXISD::Tex2DArrayS32Float;
2845   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2846     return NVPTXISD::Tex2DArrayS32FloatLevel;
2847   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2848     return NVPTXISD::Tex2DArrayS32FloatGrad;
2849   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2850     return NVPTXISD::Tex2DArrayU32S32;
2851   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2852     return NVPTXISD::Tex2DArrayU32Float;
2853   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2854     return NVPTXISD::Tex2DArrayU32FloatLevel;
2855   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2856     return NVPTXISD::Tex2DArrayU32FloatGrad;
2857 
2858   case Intrinsic::nvvm_tex_3d_v4f32_s32:
2859     return NVPTXISD::Tex3DFloatS32;
2860   case Intrinsic::nvvm_tex_3d_v4f32_f32:
2861     return NVPTXISD::Tex3DFloatFloat;
2862   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2863     return NVPTXISD::Tex3DFloatFloatLevel;
2864   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2865     return NVPTXISD::Tex3DFloatFloatGrad;
2866   case Intrinsic::nvvm_tex_3d_v4s32_s32:
2867     return NVPTXISD::Tex3DS32S32;
2868   case Intrinsic::nvvm_tex_3d_v4s32_f32:
2869     return NVPTXISD::Tex3DS32Float;
2870   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2871     return NVPTXISD::Tex3DS32FloatLevel;
2872   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2873     return NVPTXISD::Tex3DS32FloatGrad;
2874   case Intrinsic::nvvm_tex_3d_v4u32_s32:
2875     return NVPTXISD::Tex3DU32S32;
2876   case Intrinsic::nvvm_tex_3d_v4u32_f32:
2877     return NVPTXISD::Tex3DU32Float;
2878   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2879     return NVPTXISD::Tex3DU32FloatLevel;
2880   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2881     return NVPTXISD::Tex3DU32FloatGrad;
2882 
2883   case Intrinsic::nvvm_tex_cube_v4f32_f32:
2884     return NVPTXISD::TexCubeFloatFloat;
2885   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2886     return NVPTXISD::TexCubeFloatFloatLevel;
2887   case Intrinsic::nvvm_tex_cube_v4s32_f32:
2888     return NVPTXISD::TexCubeS32Float;
2889   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2890     return NVPTXISD::TexCubeS32FloatLevel;
2891   case Intrinsic::nvvm_tex_cube_v4u32_f32:
2892     return NVPTXISD::TexCubeU32Float;
2893   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2894     return NVPTXISD::TexCubeU32FloatLevel;
2895 
2896   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2897     return NVPTXISD::TexCubeArrayFloatFloat;
2898   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2899     return NVPTXISD::TexCubeArrayFloatFloatLevel;
2900   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2901     return NVPTXISD::TexCubeArrayS32Float;
2902   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2903     return NVPTXISD::TexCubeArrayS32FloatLevel;
2904   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2905     return NVPTXISD::TexCubeArrayU32Float;
2906   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2907     return NVPTXISD::TexCubeArrayU32FloatLevel;
2908 
2909   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2910     return NVPTXISD::Tld4R2DFloatFloat;
2911   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2912     return NVPTXISD::Tld4G2DFloatFloat;
2913   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2914     return NVPTXISD::Tld4B2DFloatFloat;
2915   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2916     return NVPTXISD::Tld4A2DFloatFloat;
2917   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2918     return NVPTXISD::Tld4R2DS64Float;
2919   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2920     return NVPTXISD::Tld4G2DS64Float;
2921   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2922     return NVPTXISD::Tld4B2DS64Float;
2923   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2924     return NVPTXISD::Tld4A2DS64Float;
2925   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2926     return NVPTXISD::Tld4R2DU64Float;
2927   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2928     return NVPTXISD::Tld4G2DU64Float;
2929   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2930     return NVPTXISD::Tld4B2DU64Float;
2931   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2932     return NVPTXISD::Tld4A2DU64Float;
2933 
2934   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2935     return NVPTXISD::TexUnified1DFloatS32;
2936   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2937     return NVPTXISD::TexUnified1DFloatFloat;
2938   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2939     return NVPTXISD::TexUnified1DFloatFloatLevel;
2940   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2941     return NVPTXISD::TexUnified1DFloatFloatGrad;
2942   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2943     return NVPTXISD::TexUnified1DS32S32;
2944   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2945     return NVPTXISD::TexUnified1DS32Float;
2946   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2947     return NVPTXISD::TexUnified1DS32FloatLevel;
2948   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2949     return NVPTXISD::TexUnified1DS32FloatGrad;
2950   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2951     return NVPTXISD::TexUnified1DU32S32;
2952   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2953     return NVPTXISD::TexUnified1DU32Float;
2954   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2955     return NVPTXISD::TexUnified1DU32FloatLevel;
2956   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2957     return NVPTXISD::TexUnified1DU32FloatGrad;
2958 
2959   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2960     return NVPTXISD::TexUnified1DArrayFloatS32;
2961   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2962     return NVPTXISD::TexUnified1DArrayFloatFloat;
2963   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2964     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2965   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2966     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2967   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2968     return NVPTXISD::TexUnified1DArrayS32S32;
2969   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2970     return NVPTXISD::TexUnified1DArrayS32Float;
2971   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2972     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2973   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2974     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2975   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2976     return NVPTXISD::TexUnified1DArrayU32S32;
2977   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2978     return NVPTXISD::TexUnified1DArrayU32Float;
2979   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2980     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2981   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2982     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2983 
2984   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2985     return NVPTXISD::TexUnified2DFloatS32;
2986   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2987     return NVPTXISD::TexUnified2DFloatFloat;
2988   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2989     return NVPTXISD::TexUnified2DFloatFloatLevel;
2990   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2991     return NVPTXISD::TexUnified2DFloatFloatGrad;
2992   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2993     return NVPTXISD::TexUnified2DS32S32;
2994   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2995     return NVPTXISD::TexUnified2DS32Float;
2996   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2997     return NVPTXISD::TexUnified2DS32FloatLevel;
2998   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2999     return NVPTXISD::TexUnified2DS32FloatGrad;
3000   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3001     return NVPTXISD::TexUnified2DU32S32;
3002   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3003     return NVPTXISD::TexUnified2DU32Float;
3004   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3005     return NVPTXISD::TexUnified2DU32FloatLevel;
3006   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3007     return NVPTXISD::TexUnified2DU32FloatGrad;
3008 
3009   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3010     return NVPTXISD::TexUnified2DArrayFloatS32;
3011   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3012     return NVPTXISD::TexUnified2DArrayFloatFloat;
3013   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3014     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
3015   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3016     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3017   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3018     return NVPTXISD::TexUnified2DArrayS32S32;
3019   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3020     return NVPTXISD::TexUnified2DArrayS32Float;
3021   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3022     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3023   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3024     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3025   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3026     return NVPTXISD::TexUnified2DArrayU32S32;
3027   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3028     return NVPTXISD::TexUnified2DArrayU32Float;
3029   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3030     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3031   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3032     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3033 
3034   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3035     return NVPTXISD::TexUnified3DFloatS32;
3036   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3037     return NVPTXISD::TexUnified3DFloatFloat;
3038   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3039     return NVPTXISD::TexUnified3DFloatFloatLevel;
3040   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3041     return NVPTXISD::TexUnified3DFloatFloatGrad;
3042   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3043     return NVPTXISD::TexUnified3DS32S32;
3044   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3045     return NVPTXISD::TexUnified3DS32Float;
3046   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3047     return NVPTXISD::TexUnified3DS32FloatLevel;
3048   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3049     return NVPTXISD::TexUnified3DS32FloatGrad;
3050   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3051     return NVPTXISD::TexUnified3DU32S32;
3052   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3053     return NVPTXISD::TexUnified3DU32Float;
3054   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3055     return NVPTXISD::TexUnified3DU32FloatLevel;
3056   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3057     return NVPTXISD::TexUnified3DU32FloatGrad;
3058 
3059   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3060     return NVPTXISD::TexUnifiedCubeFloatFloat;
3061   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3062     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3063   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3064     return NVPTXISD::TexUnifiedCubeS32Float;
3065   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3066     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3067   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3068     return NVPTXISD::TexUnifiedCubeU32Float;
3069   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3070     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3071 
3072   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3073     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3074   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3075     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3076   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3077     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3078   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3079     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3080   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3081     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3082   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3083     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3084 
3085   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3086     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3087   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3088     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3089   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3090     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3091   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3092     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3093   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3094     return NVPTXISD::Tld4UnifiedR2DS64Float;
3095   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3096     return NVPTXISD::Tld4UnifiedG2DS64Float;
3097   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3098     return NVPTXISD::Tld4UnifiedB2DS64Float;
3099   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3100     return NVPTXISD::Tld4UnifiedA2DS64Float;
3101   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3102     return NVPTXISD::Tld4UnifiedR2DU64Float;
3103   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3104     return NVPTXISD::Tld4UnifiedG2DU64Float;
3105   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3106     return NVPTXISD::Tld4UnifiedB2DU64Float;
3107   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3108     return NVPTXISD::Tld4UnifiedA2DU64Float;
3109   }
3110 }
3111 
3112 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3113   switch (Intrinsic) {
3114   default:
3115     return 0;
3116   case Intrinsic::nvvm_suld_1d_i8_clamp:
3117     return NVPTXISD::Suld1DI8Clamp;
3118   case Intrinsic::nvvm_suld_1d_i16_clamp:
3119     return NVPTXISD::Suld1DI16Clamp;
3120   case Intrinsic::nvvm_suld_1d_i32_clamp:
3121     return NVPTXISD::Suld1DI32Clamp;
3122   case Intrinsic::nvvm_suld_1d_i64_clamp:
3123     return NVPTXISD::Suld1DI64Clamp;
3124   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3125     return NVPTXISD::Suld1DV2I8Clamp;
3126   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3127     return NVPTXISD::Suld1DV2I16Clamp;
3128   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3129     return NVPTXISD::Suld1DV2I32Clamp;
3130   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3131     return NVPTXISD::Suld1DV2I64Clamp;
3132   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3133     return NVPTXISD::Suld1DV4I8Clamp;
3134   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3135     return NVPTXISD::Suld1DV4I16Clamp;
3136   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3137     return NVPTXISD::Suld1DV4I32Clamp;
3138   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3139     return NVPTXISD::Suld1DArrayI8Clamp;
3140   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3141     return NVPTXISD::Suld1DArrayI16Clamp;
3142   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3143     return NVPTXISD::Suld1DArrayI32Clamp;
3144   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3145     return NVPTXISD::Suld1DArrayI64Clamp;
3146   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3147     return NVPTXISD::Suld1DArrayV2I8Clamp;
3148   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3149     return NVPTXISD::Suld1DArrayV2I16Clamp;
3150   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3151     return NVPTXISD::Suld1DArrayV2I32Clamp;
3152   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3153     return NVPTXISD::Suld1DArrayV2I64Clamp;
3154   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3155     return NVPTXISD::Suld1DArrayV4I8Clamp;
3156   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3157     return NVPTXISD::Suld1DArrayV4I16Clamp;
3158   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3159     return NVPTXISD::Suld1DArrayV4I32Clamp;
3160   case Intrinsic::nvvm_suld_2d_i8_clamp:
3161     return NVPTXISD::Suld2DI8Clamp;
3162   case Intrinsic::nvvm_suld_2d_i16_clamp:
3163     return NVPTXISD::Suld2DI16Clamp;
3164   case Intrinsic::nvvm_suld_2d_i32_clamp:
3165     return NVPTXISD::Suld2DI32Clamp;
3166   case Intrinsic::nvvm_suld_2d_i64_clamp:
3167     return NVPTXISD::Suld2DI64Clamp;
3168   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3169     return NVPTXISD::Suld2DV2I8Clamp;
3170   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3171     return NVPTXISD::Suld2DV2I16Clamp;
3172   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3173     return NVPTXISD::Suld2DV2I32Clamp;
3174   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3175     return NVPTXISD::Suld2DV2I64Clamp;
3176   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3177     return NVPTXISD::Suld2DV4I8Clamp;
3178   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3179     return NVPTXISD::Suld2DV4I16Clamp;
3180   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3181     return NVPTXISD::Suld2DV4I32Clamp;
3182   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3183     return NVPTXISD::Suld2DArrayI8Clamp;
3184   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3185     return NVPTXISD::Suld2DArrayI16Clamp;
3186   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3187     return NVPTXISD::Suld2DArrayI32Clamp;
3188   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3189     return NVPTXISD::Suld2DArrayI64Clamp;
3190   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3191     return NVPTXISD::Suld2DArrayV2I8Clamp;
3192   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3193     return NVPTXISD::Suld2DArrayV2I16Clamp;
3194   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3195     return NVPTXISD::Suld2DArrayV2I32Clamp;
3196   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3197     return NVPTXISD::Suld2DArrayV2I64Clamp;
3198   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3199     return NVPTXISD::Suld2DArrayV4I8Clamp;
3200   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3201     return NVPTXISD::Suld2DArrayV4I16Clamp;
3202   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3203     return NVPTXISD::Suld2DArrayV4I32Clamp;
3204   case Intrinsic::nvvm_suld_3d_i8_clamp:
3205     return NVPTXISD::Suld3DI8Clamp;
3206   case Intrinsic::nvvm_suld_3d_i16_clamp:
3207     return NVPTXISD::Suld3DI16Clamp;
3208   case Intrinsic::nvvm_suld_3d_i32_clamp:
3209     return NVPTXISD::Suld3DI32Clamp;
3210   case Intrinsic::nvvm_suld_3d_i64_clamp:
3211     return NVPTXISD::Suld3DI64Clamp;
3212   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3213     return NVPTXISD::Suld3DV2I8Clamp;
3214   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3215     return NVPTXISD::Suld3DV2I16Clamp;
3216   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3217     return NVPTXISD::Suld3DV2I32Clamp;
3218   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3219     return NVPTXISD::Suld3DV2I64Clamp;
3220   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3221     return NVPTXISD::Suld3DV4I8Clamp;
3222   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3223     return NVPTXISD::Suld3DV4I16Clamp;
3224   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3225     return NVPTXISD::Suld3DV4I32Clamp;
3226   case Intrinsic::nvvm_suld_1d_i8_trap:
3227     return NVPTXISD::Suld1DI8Trap;
3228   case Intrinsic::nvvm_suld_1d_i16_trap:
3229     return NVPTXISD::Suld1DI16Trap;
3230   case Intrinsic::nvvm_suld_1d_i32_trap:
3231     return NVPTXISD::Suld1DI32Trap;
3232   case Intrinsic::nvvm_suld_1d_i64_trap:
3233     return NVPTXISD::Suld1DI64Trap;
3234   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3235     return NVPTXISD::Suld1DV2I8Trap;
3236   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3237     return NVPTXISD::Suld1DV2I16Trap;
3238   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3239     return NVPTXISD::Suld1DV2I32Trap;
3240   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3241     return NVPTXISD::Suld1DV2I64Trap;
3242   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3243     return NVPTXISD::Suld1DV4I8Trap;
3244   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3245     return NVPTXISD::Suld1DV4I16Trap;
3246   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3247     return NVPTXISD::Suld1DV4I32Trap;
3248   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3249     return NVPTXISD::Suld1DArrayI8Trap;
3250   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3251     return NVPTXISD::Suld1DArrayI16Trap;
3252   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3253     return NVPTXISD::Suld1DArrayI32Trap;
3254   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3255     return NVPTXISD::Suld1DArrayI64Trap;
3256   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3257     return NVPTXISD::Suld1DArrayV2I8Trap;
3258   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3259     return NVPTXISD::Suld1DArrayV2I16Trap;
3260   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3261     return NVPTXISD::Suld1DArrayV2I32Trap;
3262   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3263     return NVPTXISD::Suld1DArrayV2I64Trap;
3264   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3265     return NVPTXISD::Suld1DArrayV4I8Trap;
3266   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3267     return NVPTXISD::Suld1DArrayV4I16Trap;
3268   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3269     return NVPTXISD::Suld1DArrayV4I32Trap;
3270   case Intrinsic::nvvm_suld_2d_i8_trap:
3271     return NVPTXISD::Suld2DI8Trap;
3272   case Intrinsic::nvvm_suld_2d_i16_trap:
3273     return NVPTXISD::Suld2DI16Trap;
3274   case Intrinsic::nvvm_suld_2d_i32_trap:
3275     return NVPTXISD::Suld2DI32Trap;
3276   case Intrinsic::nvvm_suld_2d_i64_trap:
3277     return NVPTXISD::Suld2DI64Trap;
3278   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3279     return NVPTXISD::Suld2DV2I8Trap;
3280   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3281     return NVPTXISD::Suld2DV2I16Trap;
3282   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3283     return NVPTXISD::Suld2DV2I32Trap;
3284   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3285     return NVPTXISD::Suld2DV2I64Trap;
3286   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3287     return NVPTXISD::Suld2DV4I8Trap;
3288   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3289     return NVPTXISD::Suld2DV4I16Trap;
3290   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3291     return NVPTXISD::Suld2DV4I32Trap;
3292   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3293     return NVPTXISD::Suld2DArrayI8Trap;
3294   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3295     return NVPTXISD::Suld2DArrayI16Trap;
3296   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3297     return NVPTXISD::Suld2DArrayI32Trap;
3298   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3299     return NVPTXISD::Suld2DArrayI64Trap;
3300   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3301     return NVPTXISD::Suld2DArrayV2I8Trap;
3302   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3303     return NVPTXISD::Suld2DArrayV2I16Trap;
3304   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3305     return NVPTXISD::Suld2DArrayV2I32Trap;
3306   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3307     return NVPTXISD::Suld2DArrayV2I64Trap;
3308   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3309     return NVPTXISD::Suld2DArrayV4I8Trap;
3310   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3311     return NVPTXISD::Suld2DArrayV4I16Trap;
3312   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3313     return NVPTXISD::Suld2DArrayV4I32Trap;
3314   case Intrinsic::nvvm_suld_3d_i8_trap:
3315     return NVPTXISD::Suld3DI8Trap;
3316   case Intrinsic::nvvm_suld_3d_i16_trap:
3317     return NVPTXISD::Suld3DI16Trap;
3318   case Intrinsic::nvvm_suld_3d_i32_trap:
3319     return NVPTXISD::Suld3DI32Trap;
3320   case Intrinsic::nvvm_suld_3d_i64_trap:
3321     return NVPTXISD::Suld3DI64Trap;
3322   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3323     return NVPTXISD::Suld3DV2I8Trap;
3324   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3325     return NVPTXISD::Suld3DV2I16Trap;
3326   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3327     return NVPTXISD::Suld3DV2I32Trap;
3328   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3329     return NVPTXISD::Suld3DV2I64Trap;
3330   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3331     return NVPTXISD::Suld3DV4I8Trap;
3332   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3333     return NVPTXISD::Suld3DV4I16Trap;
3334   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3335     return NVPTXISD::Suld3DV4I32Trap;
3336   case Intrinsic::nvvm_suld_1d_i8_zero:
3337     return NVPTXISD::Suld1DI8Zero;
3338   case Intrinsic::nvvm_suld_1d_i16_zero:
3339     return NVPTXISD::Suld1DI16Zero;
3340   case Intrinsic::nvvm_suld_1d_i32_zero:
3341     return NVPTXISD::Suld1DI32Zero;
3342   case Intrinsic::nvvm_suld_1d_i64_zero:
3343     return NVPTXISD::Suld1DI64Zero;
3344   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3345     return NVPTXISD::Suld1DV2I8Zero;
3346   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3347     return NVPTXISD::Suld1DV2I16Zero;
3348   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3349     return NVPTXISD::Suld1DV2I32Zero;
3350   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3351     return NVPTXISD::Suld1DV2I64Zero;
3352   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3353     return NVPTXISD::Suld1DV4I8Zero;
3354   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3355     return NVPTXISD::Suld1DV4I16Zero;
3356   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3357     return NVPTXISD::Suld1DV4I32Zero;
3358   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3359     return NVPTXISD::Suld1DArrayI8Zero;
3360   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3361     return NVPTXISD::Suld1DArrayI16Zero;
3362   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3363     return NVPTXISD::Suld1DArrayI32Zero;
3364   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3365     return NVPTXISD::Suld1DArrayI64Zero;
3366   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3367     return NVPTXISD::Suld1DArrayV2I8Zero;
3368   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3369     return NVPTXISD::Suld1DArrayV2I16Zero;
3370   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3371     return NVPTXISD::Suld1DArrayV2I32Zero;
3372   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3373     return NVPTXISD::Suld1DArrayV2I64Zero;
3374   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3375     return NVPTXISD::Suld1DArrayV4I8Zero;
3376   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3377     return NVPTXISD::Suld1DArrayV4I16Zero;
3378   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3379     return NVPTXISD::Suld1DArrayV4I32Zero;
3380   case Intrinsic::nvvm_suld_2d_i8_zero:
3381     return NVPTXISD::Suld2DI8Zero;
3382   case Intrinsic::nvvm_suld_2d_i16_zero:
3383     return NVPTXISD::Suld2DI16Zero;
3384   case Intrinsic::nvvm_suld_2d_i32_zero:
3385     return NVPTXISD::Suld2DI32Zero;
3386   case Intrinsic::nvvm_suld_2d_i64_zero:
3387     return NVPTXISD::Suld2DI64Zero;
3388   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3389     return NVPTXISD::Suld2DV2I8Zero;
3390   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3391     return NVPTXISD::Suld2DV2I16Zero;
3392   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3393     return NVPTXISD::Suld2DV2I32Zero;
3394   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3395     return NVPTXISD::Suld2DV2I64Zero;
3396   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3397     return NVPTXISD::Suld2DV4I8Zero;
3398   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3399     return NVPTXISD::Suld2DV4I16Zero;
3400   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3401     return NVPTXISD::Suld2DV4I32Zero;
3402   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3403     return NVPTXISD::Suld2DArrayI8Zero;
3404   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3405     return NVPTXISD::Suld2DArrayI16Zero;
3406   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3407     return NVPTXISD::Suld2DArrayI32Zero;
3408   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3409     return NVPTXISD::Suld2DArrayI64Zero;
3410   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3411     return NVPTXISD::Suld2DArrayV2I8Zero;
3412   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3413     return NVPTXISD::Suld2DArrayV2I16Zero;
3414   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3415     return NVPTXISD::Suld2DArrayV2I32Zero;
3416   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3417     return NVPTXISD::Suld2DArrayV2I64Zero;
3418   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3419     return NVPTXISD::Suld2DArrayV4I8Zero;
3420   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3421     return NVPTXISD::Suld2DArrayV4I16Zero;
3422   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3423     return NVPTXISD::Suld2DArrayV4I32Zero;
3424   case Intrinsic::nvvm_suld_3d_i8_zero:
3425     return NVPTXISD::Suld3DI8Zero;
3426   case Intrinsic::nvvm_suld_3d_i16_zero:
3427     return NVPTXISD::Suld3DI16Zero;
3428   case Intrinsic::nvvm_suld_3d_i32_zero:
3429     return NVPTXISD::Suld3DI32Zero;
3430   case Intrinsic::nvvm_suld_3d_i64_zero:
3431     return NVPTXISD::Suld3DI64Zero;
3432   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3433     return NVPTXISD::Suld3DV2I8Zero;
3434   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3435     return NVPTXISD::Suld3DV2I16Zero;
3436   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3437     return NVPTXISD::Suld3DV2I32Zero;
3438   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3439     return NVPTXISD::Suld3DV2I64Zero;
3440   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3441     return NVPTXISD::Suld3DV4I8Zero;
3442   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3443     return NVPTXISD::Suld3DV4I16Zero;
3444   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3445     return NVPTXISD::Suld3DV4I32Zero;
3446   }
3447 }
3448 
3449 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3450 // TgtMemIntrinsic
3451 // because we need the information that is only available in the "Value" type
3452 // of destination
3453 // pointer. In particular, the address space information.
3454 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3455     IntrinsicInfo &Info, const CallInst &I,
3456     MachineFunction &MF, unsigned Intrinsic) const {
3457   switch (Intrinsic) {
3458   default:
3459     return false;
3460   case Intrinsic::nvvm_match_all_sync_i32p:
3461   case Intrinsic::nvvm_match_all_sync_i64p:
3462     Info.opc = ISD::INTRINSIC_W_CHAIN;
3463     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3464     // in order to model data exchange with other threads, but perform no real
3465     // memory accesses.
3466     Info.memVT = MVT::i1;
3467 
3468     // Our result depends on both our and other thread's arguments.
3469     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3470     return true;
3471   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3472   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3473   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3474   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3475   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3476   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3477   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3478   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3479   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3480   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3481   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3482   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3483   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3484   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3485   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3486   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3487   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3488   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3489   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3490   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3491   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3492   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3493   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3494   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3495     Info.opc = ISD::INTRINSIC_W_CHAIN;
3496     Info.memVT = MVT::v8f16;
3497     Info.ptrVal = I.getArgOperand(0);
3498     Info.offset = 0;
3499     Info.flags = MachineMemOperand::MOLoad;
3500     Info.align = Align(16);
3501     return true;
3502   }
3503   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3504   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3505   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3506   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3507   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3508   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3509   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3510   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3511   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3512   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3513   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3514   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3515   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3516   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3517   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3518   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: {
3519     Info.opc = ISD::INTRINSIC_W_CHAIN;
3520     Info.memVT = MVT::v2i32;
3521     Info.ptrVal = I.getArgOperand(0);
3522     Info.offset = 0;
3523     Info.flags = MachineMemOperand::MOLoad;
3524     Info.align = Align(8);
3525     return true;
3526   }
3527 
3528   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3529   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3530   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3531   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3532   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3533   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3534   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3535   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3536 
3537   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3538   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3539   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3540   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3541   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3542   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3543   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3544   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: {
3545     Info.opc = ISD::INTRINSIC_W_CHAIN;
3546     Info.memVT = MVT::v4i32;
3547     Info.ptrVal = I.getArgOperand(0);
3548     Info.offset = 0;
3549     Info.flags = MachineMemOperand::MOLoad;
3550     Info.align = Align(16);
3551     return true;
3552   }
3553 
3554   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3555   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3556   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3557   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3558   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3559   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3560   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3561   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3562 
3563   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3564   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3565   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3566   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3567   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3568   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3569   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3570   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3571   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3572   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3573   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3574   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3575   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3576   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3577   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3578   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3579   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3580   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3581   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3582   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: {
3583     Info.opc = ISD::INTRINSIC_W_CHAIN;
3584     Info.memVT = MVT::i32;
3585     Info.ptrVal = I.getArgOperand(0);
3586     Info.offset = 0;
3587     Info.flags = MachineMemOperand::MOLoad;
3588     Info.align = Align(4);
3589     return true;
3590   }
3591 
3592   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3593   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3594   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3595   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3596   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3597   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3598   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3599   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3600   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3601   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3602   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3603   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3604     Info.opc = ISD::INTRINSIC_W_CHAIN;
3605     Info.memVT = MVT::v4f16;
3606     Info.ptrVal = I.getArgOperand(0);
3607     Info.offset = 0;
3608     Info.flags = MachineMemOperand::MOLoad;
3609     Info.align = Align(16);
3610     return true;
3611   }
3612 
3613   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3614   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3615   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3616   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3617   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3618   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3619   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3620   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3621   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3622   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3623   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3624   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: {
3625     Info.opc = ISD::INTRINSIC_W_CHAIN;
3626     Info.memVT = MVT::v8f32;
3627     Info.ptrVal = I.getArgOperand(0);
3628     Info.offset = 0;
3629     Info.flags = MachineMemOperand::MOLoad;
3630     Info.align = Align(16);
3631     return true;
3632   }
3633 
3634   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3635   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3636   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3637   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3638   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3639   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3640   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3641   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3642   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3643   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3644   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3645   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3646     Info.opc = ISD::INTRINSIC_W_CHAIN;
3647     Info.memVT = MVT::v8i32;
3648     Info.ptrVal = I.getArgOperand(0);
3649     Info.offset = 0;
3650     Info.flags = MachineMemOperand::MOLoad;
3651     Info.align = Align(16);
3652     return true;
3653   }
3654 
3655   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3656   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3657   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3658   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3659   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3660   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3661   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3662   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: {
3663     Info.opc = ISD::INTRINSIC_W_CHAIN;
3664     Info.memVT = MVT::v2i32;
3665     Info.ptrVal = I.getArgOperand(0);
3666     Info.offset = 0;
3667     Info.flags = MachineMemOperand::MOLoad;
3668     Info.align = Align(8);
3669     return true;
3670   }
3671 
3672   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3673   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3674   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3675   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3676   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3677   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3678   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3679   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3680   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3681   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3682   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3683   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3684     Info.opc = ISD::INTRINSIC_VOID;
3685     Info.memVT = MVT::v4f16;
3686     Info.ptrVal = I.getArgOperand(0);
3687     Info.offset = 0;
3688     Info.flags = MachineMemOperand::MOStore;
3689     Info.align = Align(16);
3690     return true;
3691   }
3692 
3693   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3694   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3695   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3696   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3697   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3698   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3699   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3700   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3701   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3702   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3703   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3704   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: {
3705     Info.opc = ISD::INTRINSIC_VOID;
3706     Info.memVT = MVT::v8f32;
3707     Info.ptrVal = I.getArgOperand(0);
3708     Info.offset = 0;
3709     Info.flags = MachineMemOperand::MOStore;
3710     Info.align = Align(16);
3711     return true;
3712   }
3713 
3714   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3715   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3716   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3717   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3718   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3719   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3720   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3721   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3722   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3723   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3724   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3725   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3726     Info.opc = ISD::INTRINSIC_VOID;
3727     Info.memVT = MVT::v8i32;
3728     Info.ptrVal = I.getArgOperand(0);
3729     Info.offset = 0;
3730     Info.flags = MachineMemOperand::MOStore;
3731     Info.align = Align(16);
3732     return true;
3733   }
3734 
3735   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3736   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3737   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3738   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3739   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3740   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3741   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3742   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3743     Info.opc = ISD::INTRINSIC_VOID;
3744     Info.memVT = MVT::v2i32;
3745     Info.ptrVal = I.getArgOperand(0);
3746     Info.offset = 0;
3747     Info.flags = MachineMemOperand::MOStore;
3748     Info.align = Align(8);
3749     return true;
3750   }
3751 
3752   case Intrinsic::nvvm_atomic_load_inc_32:
3753   case Intrinsic::nvvm_atomic_load_dec_32:
3754 
3755   case Intrinsic::nvvm_atomic_add_gen_f_cta:
3756   case Intrinsic::nvvm_atomic_add_gen_f_sys:
3757   case Intrinsic::nvvm_atomic_add_gen_i_cta:
3758   case Intrinsic::nvvm_atomic_add_gen_i_sys:
3759   case Intrinsic::nvvm_atomic_and_gen_i_cta:
3760   case Intrinsic::nvvm_atomic_and_gen_i_sys:
3761   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3762   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3763   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3764   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3765   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3766   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3767   case Intrinsic::nvvm_atomic_max_gen_i_cta:
3768   case Intrinsic::nvvm_atomic_max_gen_i_sys:
3769   case Intrinsic::nvvm_atomic_min_gen_i_cta:
3770   case Intrinsic::nvvm_atomic_min_gen_i_sys:
3771   case Intrinsic::nvvm_atomic_or_gen_i_cta:
3772   case Intrinsic::nvvm_atomic_or_gen_i_sys:
3773   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3774   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3775   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3776   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3777     auto &DL = I.getModule()->getDataLayout();
3778     Info.opc = ISD::INTRINSIC_W_CHAIN;
3779     Info.memVT = getValueType(DL, I.getType());
3780     Info.ptrVal = I.getArgOperand(0);
3781     Info.offset = 0;
3782     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3783     Info.align.reset();
3784     return true;
3785   }
3786 
3787   case Intrinsic::nvvm_ldu_global_i:
3788   case Intrinsic::nvvm_ldu_global_f:
3789   case Intrinsic::nvvm_ldu_global_p: {
3790     auto &DL = I.getModule()->getDataLayout();
3791     Info.opc = ISD::INTRINSIC_W_CHAIN;
3792     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3793       Info.memVT = getValueType(DL, I.getType());
3794     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3795       Info.memVT = getPointerTy(DL);
3796     else
3797       Info.memVT = getValueType(DL, I.getType());
3798     Info.ptrVal = I.getArgOperand(0);
3799     Info.offset = 0;
3800     Info.flags = MachineMemOperand::MOLoad;
3801     Info.align =
3802         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3803 
3804     return true;
3805   }
3806   case Intrinsic::nvvm_ldg_global_i:
3807   case Intrinsic::nvvm_ldg_global_f:
3808   case Intrinsic::nvvm_ldg_global_p: {
3809     auto &DL = I.getModule()->getDataLayout();
3810 
3811     Info.opc = ISD::INTRINSIC_W_CHAIN;
3812     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3813       Info.memVT = getValueType(DL, I.getType());
3814     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3815       Info.memVT = getPointerTy(DL);
3816     else
3817       Info.memVT = getValueType(DL, I.getType());
3818     Info.ptrVal = I.getArgOperand(0);
3819     Info.offset = 0;
3820     Info.flags = MachineMemOperand::MOLoad;
3821     Info.align =
3822         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3823 
3824     return true;
3825   }
3826 
3827   case Intrinsic::nvvm_tex_1d_v4f32_s32:
3828   case Intrinsic::nvvm_tex_1d_v4f32_f32:
3829   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3830   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3831   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3832   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3833   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3834   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3835   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3836   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3837   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3838   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3839   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3840   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3841   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3842   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3843   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3844   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3845   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3846   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3847   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3848   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3849   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3850   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3851   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3852   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3853   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3854   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3855   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3856   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3857   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3858   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3859   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3860   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3861   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3862   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3863   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3864   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3865   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3866   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3867   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3868   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3869   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3870   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3871   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3872   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3873   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3874   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3875   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3876   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3877   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3878   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3879   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3880   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3881   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3882   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3883     Info.opc = getOpcForTextureInstr(Intrinsic);
3884     Info.memVT = MVT::v4f32;
3885     Info.ptrVal = nullptr;
3886     Info.offset = 0;
3887     Info.flags = MachineMemOperand::MOLoad;
3888     Info.align = Align(16);
3889     return true;
3890 
3891   case Intrinsic::nvvm_tex_1d_v4s32_s32:
3892   case Intrinsic::nvvm_tex_1d_v4s32_f32:
3893   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3894   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3895   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3896   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3897   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3898   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3899   case Intrinsic::nvvm_tex_2d_v4s32_s32:
3900   case Intrinsic::nvvm_tex_2d_v4s32_f32:
3901   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3902   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3903   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3904   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3905   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3906   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3907   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3908   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3909   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3910   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3911   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3912   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3913   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3914   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3915   case Intrinsic::nvvm_tex_cube_v4u32_f32:
3916   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3917   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3918   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3919   case Intrinsic::nvvm_tex_1d_v4u32_s32:
3920   case Intrinsic::nvvm_tex_1d_v4u32_f32:
3921   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3922   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3923   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3924   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3925   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3926   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3927   case Intrinsic::nvvm_tex_2d_v4u32_s32:
3928   case Intrinsic::nvvm_tex_2d_v4u32_f32:
3929   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3930   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3931   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3932   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3933   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3934   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3935   case Intrinsic::nvvm_tex_3d_v4u32_s32:
3936   case Intrinsic::nvvm_tex_3d_v4u32_f32:
3937   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3938   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3939   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3940   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3941   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3942   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3943   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3944   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3945   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3946   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3947   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3948   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3949   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3950   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3951   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3952   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3953   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3954   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3955   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3956   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3957   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3958   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3959   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3960   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3961   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3962   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3963   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3964   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3965   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3966   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3967   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3968   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3969   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3970   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3971   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3972   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3973   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3974   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3975   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3976   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3977   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3978   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3979   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3980   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3981   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3982   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3983   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3984   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3985   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3986   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3987   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3988   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3989   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3990   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3991   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3992   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3993   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3994   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3995   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3996   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3997   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3998   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3999   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4000   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4001   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4002   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4003     Info.opc = getOpcForTextureInstr(Intrinsic);
4004     Info.memVT = MVT::v4i32;
4005     Info.ptrVal = nullptr;
4006     Info.offset = 0;
4007     Info.flags = MachineMemOperand::MOLoad;
4008     Info.align = Align(16);
4009     return true;
4010 
4011   case Intrinsic::nvvm_suld_1d_i8_clamp:
4012   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4013   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4014   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4015   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4016   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4017   case Intrinsic::nvvm_suld_2d_i8_clamp:
4018   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4019   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4020   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4021   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4022   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4023   case Intrinsic::nvvm_suld_3d_i8_clamp:
4024   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4025   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4026   case Intrinsic::nvvm_suld_1d_i8_trap:
4027   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4028   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4029   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4030   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4031   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4032   case Intrinsic::nvvm_suld_2d_i8_trap:
4033   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4034   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4035   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4036   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4037   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4038   case Intrinsic::nvvm_suld_3d_i8_trap:
4039   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4040   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4041   case Intrinsic::nvvm_suld_1d_i8_zero:
4042   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4043   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4044   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4045   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4046   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4047   case Intrinsic::nvvm_suld_2d_i8_zero:
4048   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4049   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4050   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4051   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4052   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4053   case Intrinsic::nvvm_suld_3d_i8_zero:
4054   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4055   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4056     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4057     Info.memVT = MVT::i8;
4058     Info.ptrVal = nullptr;
4059     Info.offset = 0;
4060     Info.flags = MachineMemOperand::MOLoad;
4061     Info.align = Align(16);
4062     return true;
4063 
4064   case Intrinsic::nvvm_suld_1d_i16_clamp:
4065   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4066   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4067   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4068   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4069   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4070   case Intrinsic::nvvm_suld_2d_i16_clamp:
4071   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4072   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4073   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4074   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4075   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4076   case Intrinsic::nvvm_suld_3d_i16_clamp:
4077   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4078   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4079   case Intrinsic::nvvm_suld_1d_i16_trap:
4080   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4081   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4082   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4083   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4084   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4085   case Intrinsic::nvvm_suld_2d_i16_trap:
4086   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4087   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4088   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4089   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4090   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4091   case Intrinsic::nvvm_suld_3d_i16_trap:
4092   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4093   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4094   case Intrinsic::nvvm_suld_1d_i16_zero:
4095   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4096   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4097   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4098   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4099   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4100   case Intrinsic::nvvm_suld_2d_i16_zero:
4101   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4102   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4103   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4104   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4105   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4106   case Intrinsic::nvvm_suld_3d_i16_zero:
4107   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4108   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4109     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4110     Info.memVT = MVT::i16;
4111     Info.ptrVal = nullptr;
4112     Info.offset = 0;
4113     Info.flags = MachineMemOperand::MOLoad;
4114     Info.align = Align(16);
4115     return true;
4116 
4117   case Intrinsic::nvvm_suld_1d_i32_clamp:
4118   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4119   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4120   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4121   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4122   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4123   case Intrinsic::nvvm_suld_2d_i32_clamp:
4124   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4125   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4126   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4127   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4128   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4129   case Intrinsic::nvvm_suld_3d_i32_clamp:
4130   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4131   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4132   case Intrinsic::nvvm_suld_1d_i32_trap:
4133   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4134   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4135   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4136   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4137   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4138   case Intrinsic::nvvm_suld_2d_i32_trap:
4139   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4140   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4141   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4142   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4143   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4144   case Intrinsic::nvvm_suld_3d_i32_trap:
4145   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4146   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4147   case Intrinsic::nvvm_suld_1d_i32_zero:
4148   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4149   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4150   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4151   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4152   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4153   case Intrinsic::nvvm_suld_2d_i32_zero:
4154   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4155   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4156   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4157   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4158   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4159   case Intrinsic::nvvm_suld_3d_i32_zero:
4160   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4161   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4162     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4163     Info.memVT = MVT::i32;
4164     Info.ptrVal = nullptr;
4165     Info.offset = 0;
4166     Info.flags = MachineMemOperand::MOLoad;
4167     Info.align = Align(16);
4168     return true;
4169 
4170   case Intrinsic::nvvm_suld_1d_i64_clamp:
4171   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4172   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4173   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4174   case Intrinsic::nvvm_suld_2d_i64_clamp:
4175   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4176   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4177   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4178   case Intrinsic::nvvm_suld_3d_i64_clamp:
4179   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4180   case Intrinsic::nvvm_suld_1d_i64_trap:
4181   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4182   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4183   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4184   case Intrinsic::nvvm_suld_2d_i64_trap:
4185   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4186   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4187   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4188   case Intrinsic::nvvm_suld_3d_i64_trap:
4189   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4190   case Intrinsic::nvvm_suld_1d_i64_zero:
4191   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4192   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4193   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4194   case Intrinsic::nvvm_suld_2d_i64_zero:
4195   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4196   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4197   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4198   case Intrinsic::nvvm_suld_3d_i64_zero:
4199   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4200     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4201     Info.memVT = MVT::i64;
4202     Info.ptrVal = nullptr;
4203     Info.offset = 0;
4204     Info.flags = MachineMemOperand::MOLoad;
4205     Info.align = Align(16);
4206     return true;
4207   }
4208   return false;
4209 }
4210 
4211 /// isLegalAddressingMode - Return true if the addressing mode represented
4212 /// by AM is legal for this target, for a load/store of the specified type.
4213 /// Used to guide target specific optimizations, like loop strength reduction
4214 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4215 /// (CodeGenPrepare.cpp)
4216 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4217                                                 const AddrMode &AM, Type *Ty,
4218                                                 unsigned AS, Instruction *I) const {
4219   // AddrMode - This represents an addressing mode of:
4220   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4221   //
4222   // The legal address modes are
4223   // - [avar]
4224   // - [areg]
4225   // - [areg+immoff]
4226   // - [immAddr]
4227 
4228   if (AM.BaseGV) {
4229     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4230   }
4231 
4232   switch (AM.Scale) {
4233   case 0: // "r", "r+i" or "i" is allowed
4234     break;
4235   case 1:
4236     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4237       return false;
4238     // Otherwise we have r+i.
4239     break;
4240   default:
4241     // No scale > 1 is allowed
4242     return false;
4243   }
4244   return true;
4245 }
4246 
4247 //===----------------------------------------------------------------------===//
4248 //                         NVPTX Inline Assembly Support
4249 //===----------------------------------------------------------------------===//
4250 
4251 /// getConstraintType - Given a constraint letter, return the type of
4252 /// constraint it is for this target.
4253 NVPTXTargetLowering::ConstraintType
4254 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4255   if (Constraint.size() == 1) {
4256     switch (Constraint[0]) {
4257     default:
4258       break;
4259     case 'b':
4260     case 'r':
4261     case 'h':
4262     case 'c':
4263     case 'l':
4264     case 'f':
4265     case 'd':
4266     case '0':
4267     case 'N':
4268       return C_RegisterClass;
4269     }
4270   }
4271   return TargetLowering::getConstraintType(Constraint);
4272 }
4273 
4274 std::pair<unsigned, const TargetRegisterClass *>
4275 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4276                                                   StringRef Constraint,
4277                                                   MVT VT) const {
4278   if (Constraint.size() == 1) {
4279     switch (Constraint[0]) {
4280     case 'b':
4281       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4282     case 'c':
4283       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4284     case 'h':
4285       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4286     case 'r':
4287       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4288     case 'l':
4289     case 'N':
4290       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4291     case 'f':
4292       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4293     case 'd':
4294       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4295     }
4296   }
4297   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4298 }
4299 
4300 //===----------------------------------------------------------------------===//
4301 //                         NVPTX DAG Combining
4302 //===----------------------------------------------------------------------===//
4303 
4304 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4305                                    CodeGenOpt::Level OptLevel) const {
4306   // Always honor command-line argument
4307   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4308     return FMAContractLevelOpt > 0;
4309 
4310   // Do not contract if we're not optimizing the code.
4311   if (OptLevel == 0)
4312     return false;
4313 
4314   // Honor TargetOptions flags that explicitly say fusion is okay.
4315   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4316     return true;
4317 
4318   return allowUnsafeFPMath(MF);
4319 }
4320 
4321 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4322   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4323   if (MF.getTarget().Options.UnsafeFPMath)
4324     return true;
4325 
4326   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4327   const Function &F = MF.getFunction();
4328   if (F.hasFnAttribute("unsafe-fp-math")) {
4329     Attribute Attr = F.getFnAttribute("unsafe-fp-math");
4330     StringRef Val = Attr.getValueAsString();
4331     if (Val == "true")
4332       return true;
4333   }
4334 
4335   return false;
4336 }
4337 
4338 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4339 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4340 /// called with the default operands, and if that fails, with commuted
4341 /// operands.
4342 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4343                                            TargetLowering::DAGCombinerInfo &DCI,
4344                                              const NVPTXSubtarget &Subtarget,
4345                                              CodeGenOpt::Level OptLevel) {
4346   SelectionDAG  &DAG = DCI.DAG;
4347   // Skip non-integer, non-scalar case
4348   EVT VT=N0.getValueType();
4349   if (VT.isVector())
4350     return SDValue();
4351 
4352   // fold (add (mul a, b), c) -> (mad a, b, c)
4353   //
4354   if (N0.getOpcode() == ISD::MUL) {
4355     assert (VT.isInteger());
4356     // For integer:
4357     // Since integer multiply-add costs the same as integer multiply
4358     // but is more costly than integer add, do the fusion only when
4359     // the mul is only used in the add.
4360     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4361         !N0.getNode()->hasOneUse())
4362       return SDValue();
4363 
4364     // Do the folding
4365     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4366                        N0.getOperand(0), N0.getOperand(1), N1);
4367   }
4368   else if (N0.getOpcode() == ISD::FMUL) {
4369     if (VT == MVT::f32 || VT == MVT::f64) {
4370       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4371           &DAG.getTargetLoweringInfo());
4372       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4373         return SDValue();
4374 
4375       // For floating point:
4376       // Do the fusion only when the mul has less than 5 uses and all
4377       // are add.
4378       // The heuristic is that if a use is not an add, then that use
4379       // cannot be fused into fma, therefore mul is still needed anyway.
4380       // If there are more than 4 uses, even if they are all add, fusing
4381       // them will increase register pressue.
4382       //
4383       int numUses = 0;
4384       int nonAddCount = 0;
4385       for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4386            UE = N0.getNode()->use_end();
4387            UI != UE; ++UI) {
4388         numUses++;
4389         SDNode *User = *UI;
4390         if (User->getOpcode() != ISD::FADD)
4391           ++nonAddCount;
4392       }
4393       if (numUses >= 5)
4394         return SDValue();
4395       if (nonAddCount) {
4396         int orderNo = N->getIROrder();
4397         int orderNo2 = N0.getNode()->getIROrder();
4398         // simple heuristics here for considering potential register
4399         // pressure, the logics here is that the differnce are used
4400         // to measure the distance between def and use, the longer distance
4401         // more likely cause register pressure.
4402         if (orderNo - orderNo2 < 500)
4403           return SDValue();
4404 
4405         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4406         // which guarantees that the FMA will not increase register pressure at node N.
4407         bool opIsLive = false;
4408         const SDNode *left = N0.getOperand(0).getNode();
4409         const SDNode *right = N0.getOperand(1).getNode();
4410 
4411         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4412           opIsLive = true;
4413 
4414         if (!opIsLive)
4415           for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4416             SDNode *User = *UI;
4417             int orderNo3 = User->getIROrder();
4418             if (orderNo3 > orderNo) {
4419               opIsLive = true;
4420               break;
4421             }
4422           }
4423 
4424         if (!opIsLive)
4425           for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4426             SDNode *User = *UI;
4427             int orderNo3 = User->getIROrder();
4428             if (orderNo3 > orderNo) {
4429               opIsLive = true;
4430               break;
4431             }
4432           }
4433 
4434         if (!opIsLive)
4435           return SDValue();
4436       }
4437 
4438       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4439                          N0.getOperand(0), N0.getOperand(1), N1);
4440     }
4441   }
4442 
4443   return SDValue();
4444 }
4445 
4446 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4447 ///
4448 static SDValue PerformADDCombine(SDNode *N,
4449                                  TargetLowering::DAGCombinerInfo &DCI,
4450                                  const NVPTXSubtarget &Subtarget,
4451                                  CodeGenOpt::Level OptLevel) {
4452   SDValue N0 = N->getOperand(0);
4453   SDValue N1 = N->getOperand(1);
4454 
4455   // First try with the default operand order.
4456   if (SDValue Result =
4457           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4458     return Result;
4459 
4460   // If that didn't work, try again with the operands commuted.
4461   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4462 }
4463 
4464 static SDValue PerformANDCombine(SDNode *N,
4465                                  TargetLowering::DAGCombinerInfo &DCI) {
4466   // The type legalizer turns a vector load of i8 values into a zextload to i16
4467   // registers, optionally ANY_EXTENDs it (if target type is integer),
4468   // and ANDs off the high 8 bits. Since we turn this load into a
4469   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4470   // nodes. Do that here.
4471   SDValue Val = N->getOperand(0);
4472   SDValue Mask = N->getOperand(1);
4473 
4474   if (isa<ConstantSDNode>(Val)) {
4475     std::swap(Val, Mask);
4476   }
4477 
4478   SDValue AExt;
4479   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4480   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4481     AExt = Val;
4482     Val = Val->getOperand(0);
4483   }
4484 
4485   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4486     Val = Val->getOperand(0);
4487   }
4488 
4489   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4490       Val->getOpcode() == NVPTXISD::LoadV4) {
4491     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4492     if (!MaskCnst) {
4493       // Not an AND with a constant
4494       return SDValue();
4495     }
4496 
4497     uint64_t MaskVal = MaskCnst->getZExtValue();
4498     if (MaskVal != 0xff) {
4499       // Not an AND that chops off top 8 bits
4500       return SDValue();
4501     }
4502 
4503     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4504     if (!Mem) {
4505       // Not a MemSDNode?!?
4506       return SDValue();
4507     }
4508 
4509     EVT MemVT = Mem->getMemoryVT();
4510     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4511       // We only handle the i8 case
4512       return SDValue();
4513     }
4514 
4515     unsigned ExtType =
4516       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4517         getZExtValue();
4518     if (ExtType == ISD::SEXTLOAD) {
4519       // If for some reason the load is a sextload, the and is needed to zero
4520       // out the high 8 bits
4521       return SDValue();
4522     }
4523 
4524     bool AddTo = false;
4525     if (AExt.getNode() != nullptr) {
4526       // Re-insert the ext as a zext.
4527       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4528                             AExt.getValueType(), Val);
4529       AddTo = true;
4530     }
4531 
4532     // If we get here, the AND is unnecessary.  Just replace it with the load
4533     DCI.CombineTo(N, Val, AddTo);
4534   }
4535 
4536   return SDValue();
4537 }
4538 
4539 static SDValue PerformREMCombine(SDNode *N,
4540                                  TargetLowering::DAGCombinerInfo &DCI,
4541                                  CodeGenOpt::Level OptLevel) {
4542   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4543 
4544   // Don't do anything at less than -O2.
4545   if (OptLevel < CodeGenOpt::Default)
4546     return SDValue();
4547 
4548   SelectionDAG &DAG = DCI.DAG;
4549   SDLoc DL(N);
4550   EVT VT = N->getValueType(0);
4551   bool IsSigned = N->getOpcode() == ISD::SREM;
4552   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4553 
4554   const SDValue &Num = N->getOperand(0);
4555   const SDValue &Den = N->getOperand(1);
4556 
4557   for (const SDNode *U : Num->uses()) {
4558     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4559         U->getOperand(1) == Den) {
4560       // Num % Den -> Num - (Num / Den) * Den
4561       return DAG.getNode(ISD::SUB, DL, VT, Num,
4562                          DAG.getNode(ISD::MUL, DL, VT,
4563                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4564                                      Den));
4565     }
4566   }
4567   return SDValue();
4568 }
4569 
4570 enum OperandSignedness {
4571   Signed = 0,
4572   Unsigned,
4573   Unknown
4574 };
4575 
4576 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4577 /// that can be demoted to \p OptSize bits without loss of information. The
4578 /// signedness of the operand, if determinable, is placed in \p S.
4579 static bool IsMulWideOperandDemotable(SDValue Op,
4580                                       unsigned OptSize,
4581                                       OperandSignedness &S) {
4582   S = Unknown;
4583 
4584   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4585       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4586     EVT OrigVT = Op.getOperand(0).getValueType();
4587     if (OrigVT.getSizeInBits() <= OptSize) {
4588       S = Signed;
4589       return true;
4590     }
4591   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4592     EVT OrigVT = Op.getOperand(0).getValueType();
4593     if (OrigVT.getSizeInBits() <= OptSize) {
4594       S = Unsigned;
4595       return true;
4596     }
4597   }
4598 
4599   return false;
4600 }
4601 
4602 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4603 /// be demoted to \p OptSize bits without loss of information. If the operands
4604 /// contain a constant, it should appear as the RHS operand. The signedness of
4605 /// the operands is placed in \p IsSigned.
4606 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4607                                         unsigned OptSize,
4608                                         bool &IsSigned) {
4609   OperandSignedness LHSSign;
4610 
4611   // The LHS operand must be a demotable op
4612   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4613     return false;
4614 
4615   // We should have been able to determine the signedness from the LHS
4616   if (LHSSign == Unknown)
4617     return false;
4618 
4619   IsSigned = (LHSSign == Signed);
4620 
4621   // The RHS can be a demotable op or a constant
4622   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4623     const APInt &Val = CI->getAPIntValue();
4624     if (LHSSign == Unsigned) {
4625       return Val.isIntN(OptSize);
4626     } else {
4627       return Val.isSignedIntN(OptSize);
4628     }
4629   } else {
4630     OperandSignedness RHSSign;
4631     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4632       return false;
4633 
4634     return LHSSign == RHSSign;
4635   }
4636 }
4637 
4638 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4639 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4640 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4641 /// amount.
4642 static SDValue TryMULWIDECombine(SDNode *N,
4643                                  TargetLowering::DAGCombinerInfo &DCI) {
4644   EVT MulType = N->getValueType(0);
4645   if (MulType != MVT::i32 && MulType != MVT::i64) {
4646     return SDValue();
4647   }
4648 
4649   SDLoc DL(N);
4650   unsigned OptSize = MulType.getSizeInBits() >> 1;
4651   SDValue LHS = N->getOperand(0);
4652   SDValue RHS = N->getOperand(1);
4653 
4654   // Canonicalize the multiply so the constant (if any) is on the right
4655   if (N->getOpcode() == ISD::MUL) {
4656     if (isa<ConstantSDNode>(LHS)) {
4657       std::swap(LHS, RHS);
4658     }
4659   }
4660 
4661   // If we have a SHL, determine the actual multiply amount
4662   if (N->getOpcode() == ISD::SHL) {
4663     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4664     if (!ShlRHS) {
4665       return SDValue();
4666     }
4667 
4668     APInt ShiftAmt = ShlRHS->getAPIntValue();
4669     unsigned BitWidth = MulType.getSizeInBits();
4670     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4671       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4672       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4673     } else {
4674       return SDValue();
4675     }
4676   }
4677 
4678   bool Signed;
4679   // Verify that our operands are demotable
4680   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4681     return SDValue();
4682   }
4683 
4684   EVT DemotedVT;
4685   if (MulType == MVT::i32) {
4686     DemotedVT = MVT::i16;
4687   } else {
4688     DemotedVT = MVT::i32;
4689   }
4690 
4691   // Truncate the operands to the correct size. Note that these are just for
4692   // type consistency and will (likely) be eliminated in later phases.
4693   SDValue TruncLHS =
4694     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4695   SDValue TruncRHS =
4696     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4697 
4698   unsigned Opc;
4699   if (Signed) {
4700     Opc = NVPTXISD::MUL_WIDE_SIGNED;
4701   } else {
4702     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4703   }
4704 
4705   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4706 }
4707 
4708 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4709 static SDValue PerformMULCombine(SDNode *N,
4710                                  TargetLowering::DAGCombinerInfo &DCI,
4711                                  CodeGenOpt::Level OptLevel) {
4712   if (OptLevel > 0) {
4713     // Try mul.wide combining at OptLevel > 0
4714     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4715       return Ret;
4716   }
4717 
4718   return SDValue();
4719 }
4720 
4721 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4722 static SDValue PerformSHLCombine(SDNode *N,
4723                                  TargetLowering::DAGCombinerInfo &DCI,
4724                                  CodeGenOpt::Level OptLevel) {
4725   if (OptLevel > 0) {
4726     // Try mul.wide combining at OptLevel > 0
4727     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4728       return Ret;
4729   }
4730 
4731   return SDValue();
4732 }
4733 
4734 static SDValue PerformSETCCCombine(SDNode *N,
4735                                    TargetLowering::DAGCombinerInfo &DCI) {
4736   EVT CCType = N->getValueType(0);
4737   SDValue A = N->getOperand(0);
4738   SDValue B = N->getOperand(1);
4739 
4740   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4741     return SDValue();
4742 
4743   SDLoc DL(N);
4744   // setp.f16x2 returns two scalar predicates, which we need to
4745   // convert back to v2i1. The returned result will be scalarized by
4746   // the legalizer, but the comparison will remain a single vector
4747   // instruction.
4748   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4749                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
4750                                    {A, B, N->getOperand(2)});
4751   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4752                          CCNode.getValue(1));
4753 }
4754 
4755 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4756                                                DAGCombinerInfo &DCI) const {
4757   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4758   switch (N->getOpcode()) {
4759     default: break;
4760     case ISD::ADD:
4761     case ISD::FADD:
4762       return PerformADDCombine(N, DCI, STI, OptLevel);
4763     case ISD::MUL:
4764       return PerformMULCombine(N, DCI, OptLevel);
4765     case ISD::SHL:
4766       return PerformSHLCombine(N, DCI, OptLevel);
4767     case ISD::AND:
4768       return PerformANDCombine(N, DCI);
4769     case ISD::UREM:
4770     case ISD::SREM:
4771       return PerformREMCombine(N, DCI, OptLevel);
4772     case ISD::SETCC:
4773       return PerformSETCCCombine(N, DCI);
4774   }
4775   return SDValue();
4776 }
4777 
4778 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4779 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4780                               SmallVectorImpl<SDValue> &Results) {
4781   EVT ResVT = N->getValueType(0);
4782   SDLoc DL(N);
4783 
4784   assert(ResVT.isVector() && "Vector load must have vector type");
4785 
4786   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4787   // legal.  We can (and should) split that into 2 loads of <2 x double> here
4788   // but I'm leaving that as a TODO for now.
4789   assert(ResVT.isSimple() && "Can only handle simple types");
4790   switch (ResVT.getSimpleVT().SimpleTy) {
4791   default:
4792     return;
4793   case MVT::v2i8:
4794   case MVT::v2i16:
4795   case MVT::v2i32:
4796   case MVT::v2i64:
4797   case MVT::v2f16:
4798   case MVT::v2f32:
4799   case MVT::v2f64:
4800   case MVT::v4i8:
4801   case MVT::v4i16:
4802   case MVT::v4i32:
4803   case MVT::v4f16:
4804   case MVT::v4f32:
4805   case MVT::v8f16: // <4 x f16x2>
4806     // This is a "native" vector type
4807     break;
4808   }
4809 
4810   LoadSDNode *LD = cast<LoadSDNode>(N);
4811 
4812   unsigned Align = LD->getAlignment();
4813   auto &TD = DAG.getDataLayout();
4814   unsigned PrefAlign =
4815       TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
4816   if (Align < PrefAlign) {
4817     // This load is not sufficiently aligned, so bail out and let this vector
4818     // load be scalarized.  Note that we may still be able to emit smaller
4819     // vector loads.  For example, if we are loading a <4 x float> with an
4820     // alignment of 8, this check will fail but the legalizer will try again
4821     // with 2 x <2 x float>, which will succeed with an alignment of 8.
4822     return;
4823   }
4824 
4825   EVT EltVT = ResVT.getVectorElementType();
4826   unsigned NumElts = ResVT.getVectorNumElements();
4827 
4828   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4829   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4830   // loaded type to i16 and propagate the "real" type as the memory type.
4831   bool NeedTrunc = false;
4832   if (EltVT.getSizeInBits() < 16) {
4833     EltVT = MVT::i16;
4834     NeedTrunc = true;
4835   }
4836 
4837   unsigned Opcode = 0;
4838   SDVTList LdResVTs;
4839   bool LoadF16x2 = false;
4840 
4841   switch (NumElts) {
4842   default:
4843     return;
4844   case 2:
4845     Opcode = NVPTXISD::LoadV2;
4846     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4847     break;
4848   case 4: {
4849     Opcode = NVPTXISD::LoadV4;
4850     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4851     LdResVTs = DAG.getVTList(ListVTs);
4852     break;
4853   }
4854   case 8: {
4855     // v8f16 is a special case. PTX doesn't have ld.v8.f16
4856     // instruction. Instead, we split the vector into v2f16 chunks and
4857     // load them with ld.v4.b32.
4858     assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4859     LoadF16x2 = true;
4860     Opcode = NVPTXISD::LoadV4;
4861     EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4862                      MVT::Other};
4863     LdResVTs = DAG.getVTList(ListVTs);
4864     break;
4865   }
4866   }
4867 
4868   // Copy regular operands
4869   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4870 
4871   // The select routine does not have access to the LoadSDNode instance, so
4872   // pass along the extension information
4873   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4874 
4875   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4876                                           LD->getMemoryVT(),
4877                                           LD->getMemOperand());
4878 
4879   SmallVector<SDValue, 8> ScalarRes;
4880   if (LoadF16x2) {
4881     // Split v2f16 subvectors back into individual elements.
4882     NumElts /= 2;
4883     for (unsigned i = 0; i < NumElts; ++i) {
4884       SDValue SubVector = NewLD.getValue(i);
4885       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4886                                DAG.getIntPtrConstant(0, DL));
4887       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4888                                DAG.getIntPtrConstant(1, DL));
4889       ScalarRes.push_back(E0);
4890       ScalarRes.push_back(E1);
4891     }
4892   } else {
4893     for (unsigned i = 0; i < NumElts; ++i) {
4894       SDValue Res = NewLD.getValue(i);
4895       if (NeedTrunc)
4896         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4897       ScalarRes.push_back(Res);
4898     }
4899   }
4900 
4901   SDValue LoadChain = NewLD.getValue(NumElts);
4902 
4903   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4904 
4905   Results.push_back(BuildVec);
4906   Results.push_back(LoadChain);
4907 }
4908 
4909 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4910                                      SmallVectorImpl<SDValue> &Results) {
4911   SDValue Chain = N->getOperand(0);
4912   SDValue Intrin = N->getOperand(1);
4913   SDLoc DL(N);
4914 
4915   // Get the intrinsic ID
4916   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4917   switch (IntrinNo) {
4918   default:
4919     return;
4920   case Intrinsic::nvvm_ldg_global_i:
4921   case Intrinsic::nvvm_ldg_global_f:
4922   case Intrinsic::nvvm_ldg_global_p:
4923   case Intrinsic::nvvm_ldu_global_i:
4924   case Intrinsic::nvvm_ldu_global_f:
4925   case Intrinsic::nvvm_ldu_global_p: {
4926     EVT ResVT = N->getValueType(0);
4927 
4928     if (ResVT.isVector()) {
4929       // Vector LDG/LDU
4930 
4931       unsigned NumElts = ResVT.getVectorNumElements();
4932       EVT EltVT = ResVT.getVectorElementType();
4933 
4934       // Since LDU/LDG are target nodes, we cannot rely on DAG type
4935       // legalization.
4936       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4937       // loaded type to i16 and propagate the "real" type as the memory type.
4938       bool NeedTrunc = false;
4939       if (EltVT.getSizeInBits() < 16) {
4940         EltVT = MVT::i16;
4941         NeedTrunc = true;
4942       }
4943 
4944       unsigned Opcode = 0;
4945       SDVTList LdResVTs;
4946 
4947       switch (NumElts) {
4948       default:
4949         return;
4950       case 2:
4951         switch (IntrinNo) {
4952         default:
4953           return;
4954         case Intrinsic::nvvm_ldg_global_i:
4955         case Intrinsic::nvvm_ldg_global_f:
4956         case Intrinsic::nvvm_ldg_global_p:
4957           Opcode = NVPTXISD::LDGV2;
4958           break;
4959         case Intrinsic::nvvm_ldu_global_i:
4960         case Intrinsic::nvvm_ldu_global_f:
4961         case Intrinsic::nvvm_ldu_global_p:
4962           Opcode = NVPTXISD::LDUV2;
4963           break;
4964         }
4965         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4966         break;
4967       case 4: {
4968         switch (IntrinNo) {
4969         default:
4970           return;
4971         case Intrinsic::nvvm_ldg_global_i:
4972         case Intrinsic::nvvm_ldg_global_f:
4973         case Intrinsic::nvvm_ldg_global_p:
4974           Opcode = NVPTXISD::LDGV4;
4975           break;
4976         case Intrinsic::nvvm_ldu_global_i:
4977         case Intrinsic::nvvm_ldu_global_f:
4978         case Intrinsic::nvvm_ldu_global_p:
4979           Opcode = NVPTXISD::LDUV4;
4980           break;
4981         }
4982         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4983         LdResVTs = DAG.getVTList(ListVTs);
4984         break;
4985       }
4986       }
4987 
4988       SmallVector<SDValue, 8> OtherOps;
4989 
4990       // Copy regular operands
4991 
4992       OtherOps.push_back(Chain); // Chain
4993                                  // Skip operand 1 (intrinsic ID)
4994       // Others
4995       OtherOps.append(N->op_begin() + 2, N->op_end());
4996 
4997       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4998 
4999       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5000                                               MemSD->getMemoryVT(),
5001                                               MemSD->getMemOperand());
5002 
5003       SmallVector<SDValue, 4> ScalarRes;
5004 
5005       for (unsigned i = 0; i < NumElts; ++i) {
5006         SDValue Res = NewLD.getValue(i);
5007         if (NeedTrunc)
5008           Res =
5009               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5010         ScalarRes.push_back(Res);
5011       }
5012 
5013       SDValue LoadChain = NewLD.getValue(NumElts);
5014 
5015       SDValue BuildVec =
5016           DAG.getBuildVector(ResVT, DL, ScalarRes);
5017 
5018       Results.push_back(BuildVec);
5019       Results.push_back(LoadChain);
5020     } else {
5021       // i8 LDG/LDU
5022       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5023              "Custom handling of non-i8 ldu/ldg?");
5024 
5025       // Just copy all operands as-is
5026       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5027 
5028       // Force output to i16
5029       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5030 
5031       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5032 
5033       // We make sure the memory type is i8, which will be used during isel
5034       // to select the proper instruction.
5035       SDValue NewLD =
5036           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5037                                   MVT::i8, MemSD->getMemOperand());
5038 
5039       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5040                                     NewLD.getValue(0)));
5041       Results.push_back(NewLD.getValue(1));
5042     }
5043   }
5044   }
5045 }
5046 
5047 void NVPTXTargetLowering::ReplaceNodeResults(
5048     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5049   switch (N->getOpcode()) {
5050   default:
5051     report_fatal_error("Unhandled custom legalization");
5052   case ISD::LOAD:
5053     ReplaceLoadVector(N, DAG, Results);
5054     return;
5055   case ISD::INTRINSIC_W_CHAIN:
5056     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5057     return;
5058   }
5059 }
5060 
5061 // Pin NVPTXTargetObjectFile's vtables to this file.
5062 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
5063 
5064 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5065     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5066   return getDataSection();
5067 }
5068