1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "NVPTXISelLowering.h" 15 #include "MCTargetDesc/NVPTXBaseInfo.h" 16 #include "NVPTX.h" 17 #include "NVPTXSubtarget.h" 18 #include "NVPTXTargetMachine.h" 19 #include "NVPTXTargetObjectFile.h" 20 #include "NVPTXUtilities.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/CodeGen/TargetCallingConv.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/Argument.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CodeGen.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MachineValueType.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <iterator> 59 #include <sstream> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 #define DEBUG_TYPE "nvptx-lower" 65 66 using namespace llvm; 67 68 static std::atomic<unsigned> GlobalUniqueCallSite; 69 70 static cl::opt<bool> sched4reg( 71 "nvptx-sched4reg", 72 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false)); 73 74 static cl::opt<unsigned> 75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden, 76 cl::desc("NVPTX Specific: FMA contraction (0: don't do it" 77 " 1: do it 2: do it aggressively"), 78 cl::init(2)); 79 80 static cl::opt<int> UsePrecDivF32( 81 "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden, 82 cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" 83 " IEEE Compliant F32 div.rnd if available."), 84 cl::init(2)); 85 86 static cl::opt<bool> UsePrecSqrtF32( 87 "nvptx-prec-sqrtf32", cl::Hidden, 88 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), 89 cl::init(true)); 90 91 int NVPTXTargetLowering::getDivF32Level() const { 92 if (UsePrecDivF32.getNumOccurrences() > 0) { 93 // If nvptx-prec-div32=N is used on the command-line, always honor it 94 return UsePrecDivF32; 95 } else { 96 // Otherwise, use div.approx if fast math is enabled 97 if (getTargetMachine().Options.UnsafeFPMath) 98 return 0; 99 else 100 return 2; 101 } 102 } 103 104 bool NVPTXTargetLowering::usePrecSqrtF32() const { 105 if (UsePrecSqrtF32.getNumOccurrences() > 0) { 106 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it 107 return UsePrecSqrtF32; 108 } else { 109 // Otherwise, use sqrt.approx if fast math is enabled 110 return !getTargetMachine().Options.UnsafeFPMath; 111 } 112 } 113 114 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const { 115 return MF.getDenormalMode(APFloat::IEEEsingle()).Output == 116 DenormalMode::PreserveSign; 117 } 118 119 static bool IsPTXVectorType(MVT VT) { 120 switch (VT.SimpleTy) { 121 default: 122 return false; 123 case MVT::v2i1: 124 case MVT::v4i1: 125 case MVT::v2i8: 126 case MVT::v4i8: 127 case MVT::v2i16: 128 case MVT::v4i16: 129 case MVT::v2i32: 130 case MVT::v4i32: 131 case MVT::v2i64: 132 case MVT::v2f16: 133 case MVT::v4f16: 134 case MVT::v8f16: // <4 x f16x2> 135 case MVT::v2f32: 136 case MVT::v4f32: 137 case MVT::v2f64: 138 return true; 139 } 140 } 141 142 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive 143 /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors 144 /// into their primitive components. 145 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the 146 /// same number of types as the Ins/Outs arrays in LowerFormalArguments, 147 /// LowerCall, and LowerReturn. 148 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, 149 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 150 SmallVectorImpl<uint64_t> *Offsets = nullptr, 151 uint64_t StartingOffset = 0) { 152 SmallVector<EVT, 16> TempVTs; 153 SmallVector<uint64_t, 16> TempOffsets; 154 155 // Special case for i128 - decompose to (i64, i64) 156 if (Ty->isIntegerTy(128)) { 157 ValueVTs.push_back(EVT(MVT::i64)); 158 ValueVTs.push_back(EVT(MVT::i64)); 159 160 if (Offsets) { 161 Offsets->push_back(StartingOffset + 0); 162 Offsets->push_back(StartingOffset + 8); 163 } 164 165 return; 166 } 167 168 // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs. 169 if (StructType *STy = dyn_cast<StructType>(Ty)) { 170 auto const *SL = DL.getStructLayout(STy); 171 auto ElementNum = 0; 172 for(auto *EI : STy->elements()) { 173 ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets, 174 StartingOffset + SL->getElementOffset(ElementNum)); 175 ++ElementNum; 176 } 177 return; 178 } 179 180 ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset); 181 for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) { 182 EVT VT = TempVTs[i]; 183 uint64_t Off = TempOffsets[i]; 184 // Split vectors into individual elements, except for v2f16, which 185 // we will pass as a single scalar. 186 if (VT.isVector()) { 187 unsigned NumElts = VT.getVectorNumElements(); 188 EVT EltVT = VT.getVectorElementType(); 189 // Vectors with an even number of f16 elements will be passed to 190 // us as an array of v2f16 elements. We must match this so we 191 // stay in sync with Ins/Outs. 192 if (EltVT == MVT::f16 && NumElts % 2 == 0) { 193 EltVT = MVT::v2f16; 194 NumElts /= 2; 195 } 196 for (unsigned j = 0; j != NumElts; ++j) { 197 ValueVTs.push_back(EltVT); 198 if (Offsets) 199 Offsets->push_back(Off + j * EltVT.getStoreSize()); 200 } 201 } else { 202 ValueVTs.push_back(VT); 203 if (Offsets) 204 Offsets->push_back(Off); 205 } 206 } 207 } 208 209 // Check whether we can merge loads/stores of some of the pieces of a 210 // flattened function parameter or return value into a single vector 211 // load/store. 212 // 213 // The flattened parameter is represented as a list of EVTs and 214 // offsets, and the whole structure is aligned to ParamAlignment. This 215 // function determines whether we can load/store pieces of the 216 // parameter starting at index Idx using a single vectorized op of 217 // size AccessSize. If so, it returns the number of param pieces 218 // covered by the vector op. Otherwise, it returns 1. 219 static unsigned CanMergeParamLoadStoresStartingAt( 220 unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs, 221 const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) { 222 223 // Can't vectorize if param alignment is not sufficient. 224 if (ParamAlignment < AccessSize) 225 return 1; 226 // Can't vectorize if offset is not aligned. 227 if (Offsets[Idx] & (AccessSize - 1)) 228 return 1; 229 230 EVT EltVT = ValueVTs[Idx]; 231 unsigned EltSize = EltVT.getStoreSize(); 232 233 // Element is too large to vectorize. 234 if (EltSize >= AccessSize) 235 return 1; 236 237 unsigned NumElts = AccessSize / EltSize; 238 // Can't vectorize if AccessBytes if not a multiple of EltSize. 239 if (AccessSize != EltSize * NumElts) 240 return 1; 241 242 // We don't have enough elements to vectorize. 243 if (Idx + NumElts > ValueVTs.size()) 244 return 1; 245 246 // PTX ISA can only deal with 2- and 4-element vector ops. 247 if (NumElts != 4 && NumElts != 2) 248 return 1; 249 250 for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) { 251 // Types do not match. 252 if (ValueVTs[j] != EltVT) 253 return 1; 254 255 // Elements are not contiguous. 256 if (Offsets[j] - Offsets[j - 1] != EltSize) 257 return 1; 258 } 259 // OK. We can vectorize ValueVTs[i..i+NumElts) 260 return NumElts; 261 } 262 263 // Flags for tracking per-element vectorization state of loads/stores 264 // of a flattened function parameter or return value. 265 enum ParamVectorizationFlags { 266 PVF_INNER = 0x0, // Middle elements of a vector. 267 PVF_FIRST = 0x1, // First element of the vector. 268 PVF_LAST = 0x2, // Last element of the vector. 269 // Scalar is effectively a 1-element vector. 270 PVF_SCALAR = PVF_FIRST | PVF_LAST 271 }; 272 273 // Computes whether and how we can vectorize the loads/stores of a 274 // flattened function parameter or return value. 275 // 276 // The flattened parameter is represented as the list of ValueVTs and 277 // Offsets, and is aligned to ParamAlignment bytes. We return a vector 278 // of the same size as ValueVTs indicating how each piece should be 279 // loaded/stored (i.e. as a scalar, or as part of a vector 280 // load/store). 281 static SmallVector<ParamVectorizationFlags, 16> 282 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs, 283 const SmallVectorImpl<uint64_t> &Offsets, 284 Align ParamAlignment) { 285 // Set vector size to match ValueVTs and mark all elements as 286 // scalars by default. 287 SmallVector<ParamVectorizationFlags, 16> VectorInfo; 288 VectorInfo.assign(ValueVTs.size(), PVF_SCALAR); 289 290 // Check what we can vectorize using 128/64/32-bit accesses. 291 for (int I = 0, E = ValueVTs.size(); I != E; ++I) { 292 // Skip elements we've already processed. 293 assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state."); 294 for (unsigned AccessSize : {16, 8, 4, 2}) { 295 unsigned NumElts = CanMergeParamLoadStoresStartingAt( 296 I, AccessSize, ValueVTs, Offsets, ParamAlignment); 297 // Mark vectorized elements. 298 switch (NumElts) { 299 default: 300 llvm_unreachable("Unexpected return value"); 301 case 1: 302 // Can't vectorize using this size, try next smaller size. 303 continue; 304 case 2: 305 assert(I + 1 < E && "Not enough elements."); 306 VectorInfo[I] = PVF_FIRST; 307 VectorInfo[I + 1] = PVF_LAST; 308 I += 1; 309 break; 310 case 4: 311 assert(I + 3 < E && "Not enough elements."); 312 VectorInfo[I] = PVF_FIRST; 313 VectorInfo[I + 1] = PVF_INNER; 314 VectorInfo[I + 2] = PVF_INNER; 315 VectorInfo[I + 3] = PVF_LAST; 316 I += 3; 317 break; 318 } 319 // Break out of the inner loop because we've already succeeded 320 // using largest possible AccessSize. 321 break; 322 } 323 } 324 return VectorInfo; 325 } 326 327 // NVPTXTargetLowering Constructor. 328 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM, 329 const NVPTXSubtarget &STI) 330 : TargetLowering(TM), nvTM(&TM), STI(STI) { 331 // always lower memset, memcpy, and memmove intrinsics to load/store 332 // instructions, rather 333 // then generating calls to memset, mempcy or memmove. 334 MaxStoresPerMemset = (unsigned) 0xFFFFFFFF; 335 MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF; 336 MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF; 337 338 setBooleanContents(ZeroOrNegativeOneBooleanContent); 339 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 340 341 // Jump is Expensive. Don't create extra control flow for 'and', 'or' 342 // condition branches. 343 setJumpIsExpensive(true); 344 345 // Wide divides are _very_ slow. Try to reduce the width of the divide if 346 // possible. 347 addBypassSlowDiv(64, 32); 348 349 // By default, use the Source scheduling 350 if (sched4reg) 351 setSchedulingPreference(Sched::RegPressure); 352 else 353 setSchedulingPreference(Sched::Source); 354 355 auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, 356 LegalizeAction NoF16Action) { 357 setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action); 358 }; 359 360 addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass); 361 addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass); 362 addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass); 363 addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass); 364 addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass); 365 addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass); 366 addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass); 367 addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass); 368 369 // Conversion to/from FP16/FP16x2 is always legal. 370 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal); 371 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal); 372 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 373 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 374 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand); 375 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand); 376 377 setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote); 378 setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand); 379 380 // Operations not directly supported by NVPTX. 381 for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8, 382 MVT::i16, MVT::i32, MVT::i64}) { 383 setOperationAction(ISD::SELECT_CC, VT, Expand); 384 setOperationAction(ISD::BR_CC, VT, Expand); 385 } 386 387 // Some SIGN_EXTEND_INREG can be done using cvt instruction. 388 // For others we will expand to a SHL/SRA pair. 389 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal); 390 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 391 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); 392 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); 393 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 394 395 setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom); 396 setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom); 397 setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom); 398 setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom); 399 setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom); 400 setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom); 401 402 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 403 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 404 405 // TODO: we may consider expanding ROTL/ROTR on older GPUs. Currently on GPUs 406 // that don't have h/w rotation we lower them to multi-instruction assembly. 407 // See ROT*_sw in NVPTXIntrInfo.td 408 setOperationAction(ISD::ROTL, MVT::i64, Legal); 409 setOperationAction(ISD::ROTR, MVT::i64, Legal); 410 setOperationAction(ISD::ROTL, MVT::i32, Legal); 411 setOperationAction(ISD::ROTR, MVT::i32, Legal); 412 413 setOperationAction(ISD::ROTL, MVT::i16, Expand); 414 setOperationAction(ISD::ROTR, MVT::i16, Expand); 415 setOperationAction(ISD::ROTL, MVT::i8, Expand); 416 setOperationAction(ISD::ROTR, MVT::i8, Expand); 417 setOperationAction(ISD::BSWAP, MVT::i16, Expand); 418 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 419 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 420 421 // Indirect branch is not supported. 422 // This also disables Jump Table creation. 423 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 424 setOperationAction(ISD::BRIND, MVT::Other, Expand); 425 426 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 427 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 428 429 // We want to legalize constant related memmove and memcopy 430 // intrinsics. 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 432 433 // Turn FP extload into load/fpextend 434 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 435 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 436 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 437 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 438 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 439 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 441 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 442 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 443 // Turn FP truncstore into trunc + store. 444 // FIXME: vector types should also be expanded 445 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 446 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 447 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 448 449 // PTX does not support load / store predicate registers 450 setOperationAction(ISD::LOAD, MVT::i1, Custom); 451 setOperationAction(ISD::STORE, MVT::i1, Custom); 452 453 for (MVT VT : MVT::integer_valuetypes()) { 454 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 455 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 456 setTruncStoreAction(VT, MVT::i1, Expand); 457 } 458 459 // This is legal in NVPTX 460 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 461 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 462 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 463 464 // TRAP can be lowered to PTX trap 465 setOperationAction(ISD::TRAP, MVT::Other, Legal); 466 467 // Register custom handling for vector loads/stores 468 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 469 if (IsPTXVectorType(VT)) { 470 setOperationAction(ISD::LOAD, VT, Custom); 471 setOperationAction(ISD::STORE, VT, Custom); 472 setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom); 473 } 474 } 475 476 // Custom handling for i8 intrinsics 477 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 478 479 for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) { 480 setOperationAction(ISD::ABS, Ty, Legal); 481 setOperationAction(ISD::SMIN, Ty, Legal); 482 setOperationAction(ISD::SMAX, Ty, Legal); 483 setOperationAction(ISD::UMIN, Ty, Legal); 484 setOperationAction(ISD::UMAX, Ty, Legal); 485 486 setOperationAction(ISD::CTPOP, Ty, Legal); 487 setOperationAction(ISD::CTLZ, Ty, Legal); 488 } 489 490 setOperationAction(ISD::CTTZ, MVT::i16, Expand); 491 setOperationAction(ISD::CTTZ, MVT::i32, Expand); 492 setOperationAction(ISD::CTTZ, MVT::i64, Expand); 493 494 // PTX does not directly support SELP of i1, so promote to i32 first 495 setOperationAction(ISD::SELECT, MVT::i1, Custom); 496 497 // PTX cannot multiply two i64s in a single instruction. 498 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 499 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 500 501 // We have some custom DAG combine patterns for these nodes 502 setTargetDAGCombine(ISD::ADD); 503 setTargetDAGCombine(ISD::AND); 504 setTargetDAGCombine(ISD::FADD); 505 setTargetDAGCombine(ISD::MUL); 506 setTargetDAGCombine(ISD::SHL); 507 setTargetDAGCombine(ISD::SREM); 508 setTargetDAGCombine(ISD::UREM); 509 510 // setcc for f16x2 needs special handling to prevent legalizer's 511 // attempt to scalarize it due to v2i1 not being legal. 512 if (STI.allowFP16Math()) 513 setTargetDAGCombine(ISD::SETCC); 514 515 // Promote fp16 arithmetic if fp16 hardware isn't available or the 516 // user passed --nvptx-no-fp16-math. The flag is useful because, 517 // although sm_53+ GPUs have some sort of FP16 support in 518 // hardware, only sm_53 and sm_60 have full implementation. Others 519 // only have token amount of hardware and are likely to run faster 520 // by using fp32 units instead. 521 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) { 522 setFP16OperationAction(Op, MVT::f16, Legal, Promote); 523 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); 524 } 525 526 // There's no neg.f16 instruction. Expand to (0-x). 527 setOperationAction(ISD::FNEG, MVT::f16, Expand); 528 setOperationAction(ISD::FNEG, MVT::v2f16, Expand); 529 530 // (would be) Library functions. 531 532 // These map to conversion instructions for scalar FP types. 533 for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, 534 ISD::FTRUNC}) { 535 setOperationAction(Op, MVT::f16, Legal); 536 setOperationAction(Op, MVT::f32, Legal); 537 setOperationAction(Op, MVT::f64, Legal); 538 setOperationAction(Op, MVT::v2f16, Expand); 539 } 540 541 setOperationAction(ISD::FROUND, MVT::f16, Promote); 542 setOperationAction(ISD::FROUND, MVT::v2f16, Expand); 543 setOperationAction(ISD::FROUND, MVT::f32, Custom); 544 setOperationAction(ISD::FROUND, MVT::f64, Custom); 545 546 547 // 'Expand' implements FCOPYSIGN without calling an external library. 548 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); 549 setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand); 550 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 551 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 552 553 // These map to corresponding instructions for f32/f64. f16 must be 554 // promoted to f32. v2f16 is expanded to f16, which is then promoted 555 // to f32. 556 for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, 557 ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) { 558 setOperationAction(Op, MVT::f16, Promote); 559 setOperationAction(Op, MVT::f32, Legal); 560 setOperationAction(Op, MVT::f64, Legal); 561 setOperationAction(Op, MVT::v2f16, Expand); 562 } 563 setOperationAction(ISD::FMINNUM, MVT::f16, Promote); 564 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); 565 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); 566 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); 567 568 // No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate. 569 // No FPOW or FREM in PTX. 570 571 // Now deduce the information based on the above mentioned 572 // actions 573 computeRegisterProperties(STI.getRegisterInfo()); 574 } 575 576 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { 577 switch ((NVPTXISD::NodeType)Opcode) { 578 case NVPTXISD::FIRST_NUMBER: 579 break; 580 case NVPTXISD::CALL: 581 return "NVPTXISD::CALL"; 582 case NVPTXISD::RET_FLAG: 583 return "NVPTXISD::RET_FLAG"; 584 case NVPTXISD::LOAD_PARAM: 585 return "NVPTXISD::LOAD_PARAM"; 586 case NVPTXISD::Wrapper: 587 return "NVPTXISD::Wrapper"; 588 case NVPTXISD::DeclareParam: 589 return "NVPTXISD::DeclareParam"; 590 case NVPTXISD::DeclareScalarParam: 591 return "NVPTXISD::DeclareScalarParam"; 592 case NVPTXISD::DeclareRet: 593 return "NVPTXISD::DeclareRet"; 594 case NVPTXISD::DeclareScalarRet: 595 return "NVPTXISD::DeclareScalarRet"; 596 case NVPTXISD::DeclareRetParam: 597 return "NVPTXISD::DeclareRetParam"; 598 case NVPTXISD::PrintCall: 599 return "NVPTXISD::PrintCall"; 600 case NVPTXISD::PrintConvergentCall: 601 return "NVPTXISD::PrintConvergentCall"; 602 case NVPTXISD::PrintCallUni: 603 return "NVPTXISD::PrintCallUni"; 604 case NVPTXISD::PrintConvergentCallUni: 605 return "NVPTXISD::PrintConvergentCallUni"; 606 case NVPTXISD::LoadParam: 607 return "NVPTXISD::LoadParam"; 608 case NVPTXISD::LoadParamV2: 609 return "NVPTXISD::LoadParamV2"; 610 case NVPTXISD::LoadParamV4: 611 return "NVPTXISD::LoadParamV4"; 612 case NVPTXISD::StoreParam: 613 return "NVPTXISD::StoreParam"; 614 case NVPTXISD::StoreParamV2: 615 return "NVPTXISD::StoreParamV2"; 616 case NVPTXISD::StoreParamV4: 617 return "NVPTXISD::StoreParamV4"; 618 case NVPTXISD::StoreParamS32: 619 return "NVPTXISD::StoreParamS32"; 620 case NVPTXISD::StoreParamU32: 621 return "NVPTXISD::StoreParamU32"; 622 case NVPTXISD::CallArgBegin: 623 return "NVPTXISD::CallArgBegin"; 624 case NVPTXISD::CallArg: 625 return "NVPTXISD::CallArg"; 626 case NVPTXISD::LastCallArg: 627 return "NVPTXISD::LastCallArg"; 628 case NVPTXISD::CallArgEnd: 629 return "NVPTXISD::CallArgEnd"; 630 case NVPTXISD::CallVoid: 631 return "NVPTXISD::CallVoid"; 632 case NVPTXISD::CallVal: 633 return "NVPTXISD::CallVal"; 634 case NVPTXISD::CallSymbol: 635 return "NVPTXISD::CallSymbol"; 636 case NVPTXISD::Prototype: 637 return "NVPTXISD::Prototype"; 638 case NVPTXISD::MoveParam: 639 return "NVPTXISD::MoveParam"; 640 case NVPTXISD::StoreRetval: 641 return "NVPTXISD::StoreRetval"; 642 case NVPTXISD::StoreRetvalV2: 643 return "NVPTXISD::StoreRetvalV2"; 644 case NVPTXISD::StoreRetvalV4: 645 return "NVPTXISD::StoreRetvalV4"; 646 case NVPTXISD::PseudoUseParam: 647 return "NVPTXISD::PseudoUseParam"; 648 case NVPTXISD::RETURN: 649 return "NVPTXISD::RETURN"; 650 case NVPTXISD::CallSeqBegin: 651 return "NVPTXISD::CallSeqBegin"; 652 case NVPTXISD::CallSeqEnd: 653 return "NVPTXISD::CallSeqEnd"; 654 case NVPTXISD::CallPrototype: 655 return "NVPTXISD::CallPrototype"; 656 case NVPTXISD::ProxyReg: 657 return "NVPTXISD::ProxyReg"; 658 case NVPTXISD::LoadV2: 659 return "NVPTXISD::LoadV2"; 660 case NVPTXISD::LoadV4: 661 return "NVPTXISD::LoadV4"; 662 case NVPTXISD::LDGV2: 663 return "NVPTXISD::LDGV2"; 664 case NVPTXISD::LDGV4: 665 return "NVPTXISD::LDGV4"; 666 case NVPTXISD::LDUV2: 667 return "NVPTXISD::LDUV2"; 668 case NVPTXISD::LDUV4: 669 return "NVPTXISD::LDUV4"; 670 case NVPTXISD::StoreV2: 671 return "NVPTXISD::StoreV2"; 672 case NVPTXISD::StoreV4: 673 return "NVPTXISD::StoreV4"; 674 case NVPTXISD::FUN_SHFL_CLAMP: 675 return "NVPTXISD::FUN_SHFL_CLAMP"; 676 case NVPTXISD::FUN_SHFR_CLAMP: 677 return "NVPTXISD::FUN_SHFR_CLAMP"; 678 case NVPTXISD::IMAD: 679 return "NVPTXISD::IMAD"; 680 case NVPTXISD::SETP_F16X2: 681 return "NVPTXISD::SETP_F16X2"; 682 case NVPTXISD::Dummy: 683 return "NVPTXISD::Dummy"; 684 case NVPTXISD::MUL_WIDE_SIGNED: 685 return "NVPTXISD::MUL_WIDE_SIGNED"; 686 case NVPTXISD::MUL_WIDE_UNSIGNED: 687 return "NVPTXISD::MUL_WIDE_UNSIGNED"; 688 case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32"; 689 case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat"; 690 case NVPTXISD::Tex1DFloatFloatLevel: 691 return "NVPTXISD::Tex1DFloatFloatLevel"; 692 case NVPTXISD::Tex1DFloatFloatGrad: 693 return "NVPTXISD::Tex1DFloatFloatGrad"; 694 case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32"; 695 case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float"; 696 case NVPTXISD::Tex1DS32FloatLevel: 697 return "NVPTXISD::Tex1DS32FloatLevel"; 698 case NVPTXISD::Tex1DS32FloatGrad: 699 return "NVPTXISD::Tex1DS32FloatGrad"; 700 case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32"; 701 case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float"; 702 case NVPTXISD::Tex1DU32FloatLevel: 703 return "NVPTXISD::Tex1DU32FloatLevel"; 704 case NVPTXISD::Tex1DU32FloatGrad: 705 return "NVPTXISD::Tex1DU32FloatGrad"; 706 case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32"; 707 case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat"; 708 case NVPTXISD::Tex1DArrayFloatFloatLevel: 709 return "NVPTXISD::Tex1DArrayFloatFloatLevel"; 710 case NVPTXISD::Tex1DArrayFloatFloatGrad: 711 return "NVPTXISD::Tex1DArrayFloatFloatGrad"; 712 case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32"; 713 case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float"; 714 case NVPTXISD::Tex1DArrayS32FloatLevel: 715 return "NVPTXISD::Tex1DArrayS32FloatLevel"; 716 case NVPTXISD::Tex1DArrayS32FloatGrad: 717 return "NVPTXISD::Tex1DArrayS32FloatGrad"; 718 case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32"; 719 case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float"; 720 case NVPTXISD::Tex1DArrayU32FloatLevel: 721 return "NVPTXISD::Tex1DArrayU32FloatLevel"; 722 case NVPTXISD::Tex1DArrayU32FloatGrad: 723 return "NVPTXISD::Tex1DArrayU32FloatGrad"; 724 case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32"; 725 case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat"; 726 case NVPTXISD::Tex2DFloatFloatLevel: 727 return "NVPTXISD::Tex2DFloatFloatLevel"; 728 case NVPTXISD::Tex2DFloatFloatGrad: 729 return "NVPTXISD::Tex2DFloatFloatGrad"; 730 case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32"; 731 case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float"; 732 case NVPTXISD::Tex2DS32FloatLevel: 733 return "NVPTXISD::Tex2DS32FloatLevel"; 734 case NVPTXISD::Tex2DS32FloatGrad: 735 return "NVPTXISD::Tex2DS32FloatGrad"; 736 case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32"; 737 case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float"; 738 case NVPTXISD::Tex2DU32FloatLevel: 739 return "NVPTXISD::Tex2DU32FloatLevel"; 740 case NVPTXISD::Tex2DU32FloatGrad: 741 return "NVPTXISD::Tex2DU32FloatGrad"; 742 case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32"; 743 case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat"; 744 case NVPTXISD::Tex2DArrayFloatFloatLevel: 745 return "NVPTXISD::Tex2DArrayFloatFloatLevel"; 746 case NVPTXISD::Tex2DArrayFloatFloatGrad: 747 return "NVPTXISD::Tex2DArrayFloatFloatGrad"; 748 case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32"; 749 case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float"; 750 case NVPTXISD::Tex2DArrayS32FloatLevel: 751 return "NVPTXISD::Tex2DArrayS32FloatLevel"; 752 case NVPTXISD::Tex2DArrayS32FloatGrad: 753 return "NVPTXISD::Tex2DArrayS32FloatGrad"; 754 case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32"; 755 case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float"; 756 case NVPTXISD::Tex2DArrayU32FloatLevel: 757 return "NVPTXISD::Tex2DArrayU32FloatLevel"; 758 case NVPTXISD::Tex2DArrayU32FloatGrad: 759 return "NVPTXISD::Tex2DArrayU32FloatGrad"; 760 case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32"; 761 case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat"; 762 case NVPTXISD::Tex3DFloatFloatLevel: 763 return "NVPTXISD::Tex3DFloatFloatLevel"; 764 case NVPTXISD::Tex3DFloatFloatGrad: 765 return "NVPTXISD::Tex3DFloatFloatGrad"; 766 case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32"; 767 case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float"; 768 case NVPTXISD::Tex3DS32FloatLevel: 769 return "NVPTXISD::Tex3DS32FloatLevel"; 770 case NVPTXISD::Tex3DS32FloatGrad: 771 return "NVPTXISD::Tex3DS32FloatGrad"; 772 case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32"; 773 case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float"; 774 case NVPTXISD::Tex3DU32FloatLevel: 775 return "NVPTXISD::Tex3DU32FloatLevel"; 776 case NVPTXISD::Tex3DU32FloatGrad: 777 return "NVPTXISD::Tex3DU32FloatGrad"; 778 case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat"; 779 case NVPTXISD::TexCubeFloatFloatLevel: 780 return "NVPTXISD::TexCubeFloatFloatLevel"; 781 case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float"; 782 case NVPTXISD::TexCubeS32FloatLevel: 783 return "NVPTXISD::TexCubeS32FloatLevel"; 784 case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float"; 785 case NVPTXISD::TexCubeU32FloatLevel: 786 return "NVPTXISD::TexCubeU32FloatLevel"; 787 case NVPTXISD::TexCubeArrayFloatFloat: 788 return "NVPTXISD::TexCubeArrayFloatFloat"; 789 case NVPTXISD::TexCubeArrayFloatFloatLevel: 790 return "NVPTXISD::TexCubeArrayFloatFloatLevel"; 791 case NVPTXISD::TexCubeArrayS32Float: 792 return "NVPTXISD::TexCubeArrayS32Float"; 793 case NVPTXISD::TexCubeArrayS32FloatLevel: 794 return "NVPTXISD::TexCubeArrayS32FloatLevel"; 795 case NVPTXISD::TexCubeArrayU32Float: 796 return "NVPTXISD::TexCubeArrayU32Float"; 797 case NVPTXISD::TexCubeArrayU32FloatLevel: 798 return "NVPTXISD::TexCubeArrayU32FloatLevel"; 799 case NVPTXISD::Tld4R2DFloatFloat: 800 return "NVPTXISD::Tld4R2DFloatFloat"; 801 case NVPTXISD::Tld4G2DFloatFloat: 802 return "NVPTXISD::Tld4G2DFloatFloat"; 803 case NVPTXISD::Tld4B2DFloatFloat: 804 return "NVPTXISD::Tld4B2DFloatFloat"; 805 case NVPTXISD::Tld4A2DFloatFloat: 806 return "NVPTXISD::Tld4A2DFloatFloat"; 807 case NVPTXISD::Tld4R2DS64Float: 808 return "NVPTXISD::Tld4R2DS64Float"; 809 case NVPTXISD::Tld4G2DS64Float: 810 return "NVPTXISD::Tld4G2DS64Float"; 811 case NVPTXISD::Tld4B2DS64Float: 812 return "NVPTXISD::Tld4B2DS64Float"; 813 case NVPTXISD::Tld4A2DS64Float: 814 return "NVPTXISD::Tld4A2DS64Float"; 815 case NVPTXISD::Tld4R2DU64Float: 816 return "NVPTXISD::Tld4R2DU64Float"; 817 case NVPTXISD::Tld4G2DU64Float: 818 return "NVPTXISD::Tld4G2DU64Float"; 819 case NVPTXISD::Tld4B2DU64Float: 820 return "NVPTXISD::Tld4B2DU64Float"; 821 case NVPTXISD::Tld4A2DU64Float: 822 return "NVPTXISD::Tld4A2DU64Float"; 823 824 case NVPTXISD::TexUnified1DFloatS32: 825 return "NVPTXISD::TexUnified1DFloatS32"; 826 case NVPTXISD::TexUnified1DFloatFloat: 827 return "NVPTXISD::TexUnified1DFloatFloat"; 828 case NVPTXISD::TexUnified1DFloatFloatLevel: 829 return "NVPTXISD::TexUnified1DFloatFloatLevel"; 830 case NVPTXISD::TexUnified1DFloatFloatGrad: 831 return "NVPTXISD::TexUnified1DFloatFloatGrad"; 832 case NVPTXISD::TexUnified1DS32S32: 833 return "NVPTXISD::TexUnified1DS32S32"; 834 case NVPTXISD::TexUnified1DS32Float: 835 return "NVPTXISD::TexUnified1DS32Float"; 836 case NVPTXISD::TexUnified1DS32FloatLevel: 837 return "NVPTXISD::TexUnified1DS32FloatLevel"; 838 case NVPTXISD::TexUnified1DS32FloatGrad: 839 return "NVPTXISD::TexUnified1DS32FloatGrad"; 840 case NVPTXISD::TexUnified1DU32S32: 841 return "NVPTXISD::TexUnified1DU32S32"; 842 case NVPTXISD::TexUnified1DU32Float: 843 return "NVPTXISD::TexUnified1DU32Float"; 844 case NVPTXISD::TexUnified1DU32FloatLevel: 845 return "NVPTXISD::TexUnified1DU32FloatLevel"; 846 case NVPTXISD::TexUnified1DU32FloatGrad: 847 return "NVPTXISD::TexUnified1DU32FloatGrad"; 848 case NVPTXISD::TexUnified1DArrayFloatS32: 849 return "NVPTXISD::TexUnified1DArrayFloatS32"; 850 case NVPTXISD::TexUnified1DArrayFloatFloat: 851 return "NVPTXISD::TexUnified1DArrayFloatFloat"; 852 case NVPTXISD::TexUnified1DArrayFloatFloatLevel: 853 return "NVPTXISD::TexUnified1DArrayFloatFloatLevel"; 854 case NVPTXISD::TexUnified1DArrayFloatFloatGrad: 855 return "NVPTXISD::TexUnified1DArrayFloatFloatGrad"; 856 case NVPTXISD::TexUnified1DArrayS32S32: 857 return "NVPTXISD::TexUnified1DArrayS32S32"; 858 case NVPTXISD::TexUnified1DArrayS32Float: 859 return "NVPTXISD::TexUnified1DArrayS32Float"; 860 case NVPTXISD::TexUnified1DArrayS32FloatLevel: 861 return "NVPTXISD::TexUnified1DArrayS32FloatLevel"; 862 case NVPTXISD::TexUnified1DArrayS32FloatGrad: 863 return "NVPTXISD::TexUnified1DArrayS32FloatGrad"; 864 case NVPTXISD::TexUnified1DArrayU32S32: 865 return "NVPTXISD::TexUnified1DArrayU32S32"; 866 case NVPTXISD::TexUnified1DArrayU32Float: 867 return "NVPTXISD::TexUnified1DArrayU32Float"; 868 case NVPTXISD::TexUnified1DArrayU32FloatLevel: 869 return "NVPTXISD::TexUnified1DArrayU32FloatLevel"; 870 case NVPTXISD::TexUnified1DArrayU32FloatGrad: 871 return "NVPTXISD::TexUnified1DArrayU32FloatGrad"; 872 case NVPTXISD::TexUnified2DFloatS32: 873 return "NVPTXISD::TexUnified2DFloatS32"; 874 case NVPTXISD::TexUnified2DFloatFloat: 875 return "NVPTXISD::TexUnified2DFloatFloat"; 876 case NVPTXISD::TexUnified2DFloatFloatLevel: 877 return "NVPTXISD::TexUnified2DFloatFloatLevel"; 878 case NVPTXISD::TexUnified2DFloatFloatGrad: 879 return "NVPTXISD::TexUnified2DFloatFloatGrad"; 880 case NVPTXISD::TexUnified2DS32S32: 881 return "NVPTXISD::TexUnified2DS32S32"; 882 case NVPTXISD::TexUnified2DS32Float: 883 return "NVPTXISD::TexUnified2DS32Float"; 884 case NVPTXISD::TexUnified2DS32FloatLevel: 885 return "NVPTXISD::TexUnified2DS32FloatLevel"; 886 case NVPTXISD::TexUnified2DS32FloatGrad: 887 return "NVPTXISD::TexUnified2DS32FloatGrad"; 888 case NVPTXISD::TexUnified2DU32S32: 889 return "NVPTXISD::TexUnified2DU32S32"; 890 case NVPTXISD::TexUnified2DU32Float: 891 return "NVPTXISD::TexUnified2DU32Float"; 892 case NVPTXISD::TexUnified2DU32FloatLevel: 893 return "NVPTXISD::TexUnified2DU32FloatLevel"; 894 case NVPTXISD::TexUnified2DU32FloatGrad: 895 return "NVPTXISD::TexUnified2DU32FloatGrad"; 896 case NVPTXISD::TexUnified2DArrayFloatS32: 897 return "NVPTXISD::TexUnified2DArrayFloatS32"; 898 case NVPTXISD::TexUnified2DArrayFloatFloat: 899 return "NVPTXISD::TexUnified2DArrayFloatFloat"; 900 case NVPTXISD::TexUnified2DArrayFloatFloatLevel: 901 return "NVPTXISD::TexUnified2DArrayFloatFloatLevel"; 902 case NVPTXISD::TexUnified2DArrayFloatFloatGrad: 903 return "NVPTXISD::TexUnified2DArrayFloatFloatGrad"; 904 case NVPTXISD::TexUnified2DArrayS32S32: 905 return "NVPTXISD::TexUnified2DArrayS32S32"; 906 case NVPTXISD::TexUnified2DArrayS32Float: 907 return "NVPTXISD::TexUnified2DArrayS32Float"; 908 case NVPTXISD::TexUnified2DArrayS32FloatLevel: 909 return "NVPTXISD::TexUnified2DArrayS32FloatLevel"; 910 case NVPTXISD::TexUnified2DArrayS32FloatGrad: 911 return "NVPTXISD::TexUnified2DArrayS32FloatGrad"; 912 case NVPTXISD::TexUnified2DArrayU32S32: 913 return "NVPTXISD::TexUnified2DArrayU32S32"; 914 case NVPTXISD::TexUnified2DArrayU32Float: 915 return "NVPTXISD::TexUnified2DArrayU32Float"; 916 case NVPTXISD::TexUnified2DArrayU32FloatLevel: 917 return "NVPTXISD::TexUnified2DArrayU32FloatLevel"; 918 case NVPTXISD::TexUnified2DArrayU32FloatGrad: 919 return "NVPTXISD::TexUnified2DArrayU32FloatGrad"; 920 case NVPTXISD::TexUnified3DFloatS32: 921 return "NVPTXISD::TexUnified3DFloatS32"; 922 case NVPTXISD::TexUnified3DFloatFloat: 923 return "NVPTXISD::TexUnified3DFloatFloat"; 924 case NVPTXISD::TexUnified3DFloatFloatLevel: 925 return "NVPTXISD::TexUnified3DFloatFloatLevel"; 926 case NVPTXISD::TexUnified3DFloatFloatGrad: 927 return "NVPTXISD::TexUnified3DFloatFloatGrad"; 928 case NVPTXISD::TexUnified3DS32S32: 929 return "NVPTXISD::TexUnified3DS32S32"; 930 case NVPTXISD::TexUnified3DS32Float: 931 return "NVPTXISD::TexUnified3DS32Float"; 932 case NVPTXISD::TexUnified3DS32FloatLevel: 933 return "NVPTXISD::TexUnified3DS32FloatLevel"; 934 case NVPTXISD::TexUnified3DS32FloatGrad: 935 return "NVPTXISD::TexUnified3DS32FloatGrad"; 936 case NVPTXISD::TexUnified3DU32S32: 937 return "NVPTXISD::TexUnified3DU32S32"; 938 case NVPTXISD::TexUnified3DU32Float: 939 return "NVPTXISD::TexUnified3DU32Float"; 940 case NVPTXISD::TexUnified3DU32FloatLevel: 941 return "NVPTXISD::TexUnified3DU32FloatLevel"; 942 case NVPTXISD::TexUnified3DU32FloatGrad: 943 return "NVPTXISD::TexUnified3DU32FloatGrad"; 944 case NVPTXISD::TexUnifiedCubeFloatFloat: 945 return "NVPTXISD::TexUnifiedCubeFloatFloat"; 946 case NVPTXISD::TexUnifiedCubeFloatFloatLevel: 947 return "NVPTXISD::TexUnifiedCubeFloatFloatLevel"; 948 case NVPTXISD::TexUnifiedCubeS32Float: 949 return "NVPTXISD::TexUnifiedCubeS32Float"; 950 case NVPTXISD::TexUnifiedCubeS32FloatLevel: 951 return "NVPTXISD::TexUnifiedCubeS32FloatLevel"; 952 case NVPTXISD::TexUnifiedCubeU32Float: 953 return "NVPTXISD::TexUnifiedCubeU32Float"; 954 case NVPTXISD::TexUnifiedCubeU32FloatLevel: 955 return "NVPTXISD::TexUnifiedCubeU32FloatLevel"; 956 case NVPTXISD::TexUnifiedCubeArrayFloatFloat: 957 return "NVPTXISD::TexUnifiedCubeArrayFloatFloat"; 958 case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel: 959 return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel"; 960 case NVPTXISD::TexUnifiedCubeArrayS32Float: 961 return "NVPTXISD::TexUnifiedCubeArrayS32Float"; 962 case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel: 963 return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel"; 964 case NVPTXISD::TexUnifiedCubeArrayU32Float: 965 return "NVPTXISD::TexUnifiedCubeArrayU32Float"; 966 case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel: 967 return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel"; 968 case NVPTXISD::Tld4UnifiedR2DFloatFloat: 969 return "NVPTXISD::Tld4UnifiedR2DFloatFloat"; 970 case NVPTXISD::Tld4UnifiedG2DFloatFloat: 971 return "NVPTXISD::Tld4UnifiedG2DFloatFloat"; 972 case NVPTXISD::Tld4UnifiedB2DFloatFloat: 973 return "NVPTXISD::Tld4UnifiedB2DFloatFloat"; 974 case NVPTXISD::Tld4UnifiedA2DFloatFloat: 975 return "NVPTXISD::Tld4UnifiedA2DFloatFloat"; 976 case NVPTXISD::Tld4UnifiedR2DS64Float: 977 return "NVPTXISD::Tld4UnifiedR2DS64Float"; 978 case NVPTXISD::Tld4UnifiedG2DS64Float: 979 return "NVPTXISD::Tld4UnifiedG2DS64Float"; 980 case NVPTXISD::Tld4UnifiedB2DS64Float: 981 return "NVPTXISD::Tld4UnifiedB2DS64Float"; 982 case NVPTXISD::Tld4UnifiedA2DS64Float: 983 return "NVPTXISD::Tld4UnifiedA2DS64Float"; 984 case NVPTXISD::Tld4UnifiedR2DU64Float: 985 return "NVPTXISD::Tld4UnifiedR2DU64Float"; 986 case NVPTXISD::Tld4UnifiedG2DU64Float: 987 return "NVPTXISD::Tld4UnifiedG2DU64Float"; 988 case NVPTXISD::Tld4UnifiedB2DU64Float: 989 return "NVPTXISD::Tld4UnifiedB2DU64Float"; 990 case NVPTXISD::Tld4UnifiedA2DU64Float: 991 return "NVPTXISD::Tld4UnifiedA2DU64Float"; 992 993 case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp"; 994 case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp"; 995 case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp"; 996 case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp"; 997 case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp"; 998 case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp"; 999 case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp"; 1000 case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp"; 1001 case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp"; 1002 case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp"; 1003 case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp"; 1004 1005 case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp"; 1006 case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp"; 1007 case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp"; 1008 case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp"; 1009 case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp"; 1010 case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp"; 1011 case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp"; 1012 case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp"; 1013 case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp"; 1014 case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp"; 1015 case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp"; 1016 1017 case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp"; 1018 case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp"; 1019 case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp"; 1020 case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp"; 1021 case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp"; 1022 case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp"; 1023 case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp"; 1024 case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp"; 1025 case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp"; 1026 case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp"; 1027 case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp"; 1028 1029 case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp"; 1030 case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp"; 1031 case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp"; 1032 case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp"; 1033 case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp"; 1034 case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp"; 1035 case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp"; 1036 case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp"; 1037 case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp"; 1038 case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp"; 1039 case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp"; 1040 1041 case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp"; 1042 case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp"; 1043 case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp"; 1044 case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp"; 1045 case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp"; 1046 case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp"; 1047 case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp"; 1048 case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp"; 1049 case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp"; 1050 case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp"; 1051 case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp"; 1052 1053 case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap"; 1054 case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap"; 1055 case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap"; 1056 case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap"; 1057 case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap"; 1058 case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap"; 1059 case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap"; 1060 case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap"; 1061 case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap"; 1062 case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap"; 1063 case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap"; 1064 1065 case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap"; 1066 case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap"; 1067 case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap"; 1068 case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap"; 1069 case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap"; 1070 case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap"; 1071 case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap"; 1072 case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap"; 1073 case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap"; 1074 case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap"; 1075 case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap"; 1076 1077 case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap"; 1078 case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap"; 1079 case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap"; 1080 case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap"; 1081 case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap"; 1082 case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap"; 1083 case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap"; 1084 case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap"; 1085 case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap"; 1086 case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap"; 1087 case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap"; 1088 1089 case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap"; 1090 case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap"; 1091 case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap"; 1092 case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap"; 1093 case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap"; 1094 case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap"; 1095 case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap"; 1096 case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap"; 1097 case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap"; 1098 case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap"; 1099 case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap"; 1100 1101 case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap"; 1102 case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap"; 1103 case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap"; 1104 case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap"; 1105 case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap"; 1106 case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap"; 1107 case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap"; 1108 case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap"; 1109 case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap"; 1110 case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap"; 1111 case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap"; 1112 1113 case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero"; 1114 case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero"; 1115 case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero"; 1116 case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero"; 1117 case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero"; 1118 case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero"; 1119 case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero"; 1120 case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero"; 1121 case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero"; 1122 case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero"; 1123 case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero"; 1124 1125 case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero"; 1126 case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero"; 1127 case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero"; 1128 case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero"; 1129 case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero"; 1130 case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero"; 1131 case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero"; 1132 case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero"; 1133 case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero"; 1134 case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero"; 1135 case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero"; 1136 1137 case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero"; 1138 case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero"; 1139 case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero"; 1140 case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero"; 1141 case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero"; 1142 case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero"; 1143 case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero"; 1144 case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero"; 1145 case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero"; 1146 case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero"; 1147 case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero"; 1148 1149 case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero"; 1150 case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero"; 1151 case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero"; 1152 case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero"; 1153 case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero"; 1154 case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero"; 1155 case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero"; 1156 case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero"; 1157 case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero"; 1158 case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero"; 1159 case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero"; 1160 1161 case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero"; 1162 case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero"; 1163 case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero"; 1164 case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero"; 1165 case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero"; 1166 case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero"; 1167 case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero"; 1168 case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero"; 1169 case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero"; 1170 case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero"; 1171 case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero"; 1172 } 1173 return nullptr; 1174 } 1175 1176 TargetLoweringBase::LegalizeTypeAction 1177 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const { 1178 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1179 VT.getScalarType() == MVT::i1) 1180 return TypeSplitVector; 1181 if (VT == MVT::v2f16) 1182 return TypeLegal; 1183 return TargetLoweringBase::getPreferredVectorAction(VT); 1184 } 1185 1186 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 1187 int Enabled, int &ExtraSteps, 1188 bool &UseOneConst, 1189 bool Reciprocal) const { 1190 if (!(Enabled == ReciprocalEstimate::Enabled || 1191 (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32()))) 1192 return SDValue(); 1193 1194 if (ExtraSteps == ReciprocalEstimate::Unspecified) 1195 ExtraSteps = 0; 1196 1197 SDLoc DL(Operand); 1198 EVT VT = Operand.getValueType(); 1199 bool Ftz = useF32FTZ(DAG.getMachineFunction()); 1200 1201 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) { 1202 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 1203 DAG.getConstant(IID, DL, MVT::i32), Operand); 1204 }; 1205 1206 // The sqrt and rsqrt refinement processes assume we always start out with an 1207 // approximation of the rsqrt. Therefore, if we're going to do any refinement 1208 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing 1209 // any refinement, we must return a regular sqrt. 1210 if (Reciprocal || ExtraSteps > 0) { 1211 if (VT == MVT::f32) 1212 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f 1213 : Intrinsic::nvvm_rsqrt_approx_f); 1214 else if (VT == MVT::f64) 1215 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d); 1216 else 1217 return SDValue(); 1218 } else { 1219 if (VT == MVT::f32) 1220 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f 1221 : Intrinsic::nvvm_sqrt_approx_f); 1222 else { 1223 // There's no sqrt.approx.f64 instruction, so we emit 1224 // reciprocal(rsqrt(x)). This is faster than 1225 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain 1226 // x * rsqrt(x).) 1227 return DAG.getNode( 1228 ISD::INTRINSIC_WO_CHAIN, DL, VT, 1229 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32), 1230 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d)); 1231 } 1232 } 1233 } 1234 1235 SDValue 1236 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { 1237 SDLoc dl(Op); 1238 const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op); 1239 auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace()); 1240 Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT); 1241 return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op); 1242 } 1243 1244 std::string NVPTXTargetLowering::getPrototype( 1245 const DataLayout &DL, Type *retTy, const ArgListTy &Args, 1246 const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment, 1247 const CallBase &CB, unsigned UniqueCallSite) const { 1248 auto PtrVT = getPointerTy(DL); 1249 1250 bool isABI = (STI.getSmVersion() >= 20); 1251 assert(isABI && "Non-ABI compilation is not supported"); 1252 if (!isABI) 1253 return ""; 1254 1255 std::stringstream O; 1256 O << "prototype_" << UniqueCallSite << " : .callprototype "; 1257 1258 if (retTy->getTypeID() == Type::VoidTyID) { 1259 O << "()"; 1260 } else { 1261 O << "("; 1262 if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) { 1263 unsigned size = 0; 1264 if (auto *ITy = dyn_cast<IntegerType>(retTy)) { 1265 size = ITy->getBitWidth(); 1266 } else { 1267 assert(retTy->isFloatingPointTy() && 1268 "Floating point type expected here"); 1269 size = retTy->getPrimitiveSizeInBits(); 1270 } 1271 // PTX ABI requires all scalar return values to be at least 32 1272 // bits in size. fp16 normally uses .b16 as its storage type in 1273 // PTX, so its size must be adjusted here, too. 1274 if (size < 32) 1275 size = 32; 1276 1277 O << ".param .b" << size << " _"; 1278 } else if (isa<PointerType>(retTy)) { 1279 O << ".param .b" << PtrVT.getSizeInBits() << " _"; 1280 } else if (retTy->isAggregateType() || retTy->isVectorTy() || 1281 retTy->isIntegerTy(128)) { 1282 O << ".param .align " << (retAlignment ? retAlignment->value() : 0) 1283 << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]"; 1284 } else { 1285 llvm_unreachable("Unknown return type"); 1286 } 1287 O << ") "; 1288 } 1289 O << "_ ("; 1290 1291 bool first = true; 1292 1293 unsigned OIdx = 0; 1294 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { 1295 Type *Ty = Args[i].Ty; 1296 if (!first) { 1297 O << ", "; 1298 } 1299 first = false; 1300 1301 if (!Outs[OIdx].Flags.isByVal()) { 1302 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { 1303 unsigned align = 0; 1304 const CallInst *CallI = cast<CallInst>(&CB); 1305 // +1 because index 0 is reserved for return type alignment 1306 if (!getAlign(*CallI, i + 1, align)) 1307 align = DL.getABITypeAlignment(Ty); 1308 unsigned sz = DL.getTypeAllocSize(Ty); 1309 O << ".param .align " << align << " .b8 "; 1310 O << "_"; 1311 O << "[" << sz << "]"; 1312 // update the index for Outs 1313 SmallVector<EVT, 16> vtparts; 1314 ComputeValueVTs(*this, DL, Ty, vtparts); 1315 if (unsigned len = vtparts.size()) 1316 OIdx += len - 1; 1317 continue; 1318 } 1319 // i8 types in IR will be i16 types in SDAG 1320 assert((getValueType(DL, Ty) == Outs[OIdx].VT || 1321 (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && 1322 "type mismatch between callee prototype and arguments"); 1323 // scalar type 1324 unsigned sz = 0; 1325 if (isa<IntegerType>(Ty)) { 1326 sz = cast<IntegerType>(Ty)->getBitWidth(); 1327 if (sz < 32) 1328 sz = 32; 1329 } else if (isa<PointerType>(Ty)) { 1330 sz = PtrVT.getSizeInBits(); 1331 } else if (Ty->isHalfTy()) 1332 // PTX ABI requires all scalar parameters to be at least 32 1333 // bits in size. fp16 normally uses .b16 as its storage type 1334 // in PTX, so its size must be adjusted here, too. 1335 sz = 32; 1336 else 1337 sz = Ty->getPrimitiveSizeInBits(); 1338 O << ".param .b" << sz << " "; 1339 O << "_"; 1340 continue; 1341 } 1342 auto *PTy = dyn_cast<PointerType>(Ty); 1343 assert(PTy && "Param with byval attribute should be a pointer type"); 1344 Type *ETy = PTy->getElementType(); 1345 1346 Align align = Outs[OIdx].Flags.getNonZeroByValAlign(); 1347 unsigned sz = DL.getTypeAllocSize(ETy); 1348 O << ".param .align " << align.value() << " .b8 "; 1349 O << "_"; 1350 O << "[" << sz << "]"; 1351 } 1352 O << ");"; 1353 return O.str(); 1354 } 1355 1356 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee, 1357 const CallBase *CB, Type *Ty, 1358 unsigned Idx, 1359 const DataLayout &DL) const { 1360 if (!CB) { 1361 // CallSite is zero, fallback to ABI type alignment 1362 return DL.getABITypeAlign(Ty); 1363 } 1364 1365 unsigned Alignment = 0; 1366 const Function *DirectCallee = CB->getCalledFunction(); 1367 1368 if (!DirectCallee) { 1369 // We don't have a direct function symbol, but that may be because of 1370 // constant cast instructions in the call. 1371 1372 // With bitcast'd call targets, the instruction will be the call 1373 if (const auto *CI = dyn_cast<CallInst>(CB)) { 1374 // Check if we have call alignment metadata 1375 if (getAlign(*CI, Idx, Alignment)) 1376 return Align(Alignment); 1377 1378 const Value *CalleeV = CI->getCalledOperand(); 1379 // Ignore any bitcast instructions 1380 while (isa<ConstantExpr>(CalleeV)) { 1381 const ConstantExpr *CE = cast<ConstantExpr>(CalleeV); 1382 if (!CE->isCast()) 1383 break; 1384 // Look through the bitcast 1385 CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0); 1386 } 1387 1388 // We have now looked past all of the bitcasts. Do we finally have a 1389 // Function? 1390 if (const auto *CalleeF = dyn_cast<Function>(CalleeV)) 1391 DirectCallee = CalleeF; 1392 } 1393 } 1394 1395 // Check for function alignment information if we found that the 1396 // ultimate target is a Function 1397 if (DirectCallee) 1398 if (getAlign(*DirectCallee, Idx, Alignment)) 1399 return Align(Alignment); 1400 1401 // Call is indirect or alignment information is not available, fall back to 1402 // the ABI type alignment 1403 return DL.getABITypeAlign(Ty); 1404 } 1405 1406 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1407 SmallVectorImpl<SDValue> &InVals) const { 1408 SelectionDAG &DAG = CLI.DAG; 1409 SDLoc dl = CLI.DL; 1410 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1411 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1412 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1413 SDValue Chain = CLI.Chain; 1414 SDValue Callee = CLI.Callee; 1415 bool &isTailCall = CLI.IsTailCall; 1416 ArgListTy &Args = CLI.getArgs(); 1417 Type *RetTy = CLI.RetTy; 1418 const CallBase *CB = CLI.CB; 1419 const DataLayout &DL = DAG.getDataLayout(); 1420 1421 bool isABI = (STI.getSmVersion() >= 20); 1422 assert(isABI && "Non-ABI compilation is not supported"); 1423 if (!isABI) 1424 return Chain; 1425 1426 unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1); 1427 SDValue tempChain = Chain; 1428 Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl); 1429 SDValue InFlag = Chain.getValue(1); 1430 1431 unsigned paramCount = 0; 1432 // Args.size() and Outs.size() need not match. 1433 // Outs.size() will be larger 1434 // * if there is an aggregate argument with multiple fields (each field 1435 // showing up separately in Outs) 1436 // * if there is a vector argument with more than typical vector-length 1437 // elements (generally if more than 4) where each vector element is 1438 // individually present in Outs. 1439 // So a different index should be used for indexing into Outs/OutVals. 1440 // See similar issue in LowerFormalArguments. 1441 unsigned OIdx = 0; 1442 // Declare the .params or .reg need to pass values 1443 // to the function 1444 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { 1445 EVT VT = Outs[OIdx].VT; 1446 Type *Ty = Args[i].Ty; 1447 1448 if (!Outs[OIdx].Flags.isByVal()) { 1449 SmallVector<EVT, 16> VTs; 1450 SmallVector<uint64_t, 16> Offsets; 1451 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets); 1452 Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL); 1453 unsigned AllocSize = DL.getTypeAllocSize(Ty); 1454 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1455 bool NeedAlign; // Does argument declaration specify alignment? 1456 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { 1457 // declare .param .align <align> .b8 .param<n>[<size>]; 1458 SDValue DeclareParamOps[] = { 1459 Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), 1460 DAG.getConstant(paramCount, dl, MVT::i32), 1461 DAG.getConstant(AllocSize, dl, MVT::i32), InFlag}; 1462 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, 1463 DeclareParamOps); 1464 NeedAlign = true; 1465 } else { 1466 // declare .param .b<size> .param<n>; 1467 if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) { 1468 // PTX ABI requires integral types to be at least 32 bits in 1469 // size. FP16 is loaded/stored using i16, so it's handled 1470 // here as well. 1471 AllocSize = 4; 1472 } 1473 SDValue DeclareScalarParamOps[] = { 1474 Chain, DAG.getConstant(paramCount, dl, MVT::i32), 1475 DAG.getConstant(AllocSize * 8, dl, MVT::i32), 1476 DAG.getConstant(0, dl, MVT::i32), InFlag}; 1477 Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs, 1478 DeclareScalarParamOps); 1479 NeedAlign = false; 1480 } 1481 InFlag = Chain.getValue(1); 1482 1483 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter 1484 // than 32-bits are sign extended or zero extended, depending on 1485 // whether they are signed or unsigned types. This case applies 1486 // only to scalar parameters and not to aggregate values. 1487 bool ExtendIntegerParam = 1488 Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32; 1489 1490 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign); 1491 SmallVector<SDValue, 6> StoreOperands; 1492 for (unsigned j = 0, je = VTs.size(); j != je; ++j) { 1493 // New store. 1494 if (VectorInfo[j] & PVF_FIRST) { 1495 assert(StoreOperands.empty() && "Unfinished preceding store."); 1496 StoreOperands.push_back(Chain); 1497 StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32)); 1498 StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32)); 1499 } 1500 1501 EVT EltVT = VTs[j]; 1502 SDValue StVal = OutVals[OIdx]; 1503 if (ExtendIntegerParam) { 1504 assert(VTs.size() == 1 && "Scalar can't have multiple parts."); 1505 // zext/sext to i32 1506 StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND 1507 : ISD::ZERO_EXTEND, 1508 dl, MVT::i32, StVal); 1509 } else if (EltVT.getSizeInBits() < 16) { 1510 // Use 16-bit registers for small stores as it's the 1511 // smallest general purpose register size supported by NVPTX. 1512 StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal); 1513 } 1514 1515 // Record the value to store. 1516 StoreOperands.push_back(StVal); 1517 1518 if (VectorInfo[j] & PVF_LAST) { 1519 unsigned NumElts = StoreOperands.size() - 3; 1520 NVPTXISD::NodeType Op; 1521 switch (NumElts) { 1522 case 1: 1523 Op = NVPTXISD::StoreParam; 1524 break; 1525 case 2: 1526 Op = NVPTXISD::StoreParamV2; 1527 break; 1528 case 4: 1529 Op = NVPTXISD::StoreParamV4; 1530 break; 1531 default: 1532 llvm_unreachable("Invalid vector info."); 1533 } 1534 1535 StoreOperands.push_back(InFlag); 1536 1537 // Adjust type of the store op if we've extended the scalar 1538 // return value. 1539 EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j]; 1540 MaybeAlign EltAlign; 1541 if (NeedAlign) 1542 EltAlign = commonAlignment(ArgAlign, Offsets[j]); 1543 1544 Chain = DAG.getMemIntrinsicNode( 1545 Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands, 1546 TheStoreType, MachinePointerInfo(), EltAlign, 1547 MachineMemOperand::MOStore); 1548 InFlag = Chain.getValue(1); 1549 1550 // Cleanup. 1551 StoreOperands.clear(); 1552 } 1553 ++OIdx; 1554 } 1555 assert(StoreOperands.empty() && "Unfinished parameter store."); 1556 if (VTs.size() > 0) 1557 --OIdx; 1558 ++paramCount; 1559 continue; 1560 } 1561 1562 // ByVal arguments 1563 SmallVector<EVT, 16> VTs; 1564 SmallVector<uint64_t, 16> Offsets; 1565 auto *PTy = dyn_cast<PointerType>(Args[i].Ty); 1566 assert(PTy && "Type of a byval parameter should be pointer"); 1567 ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0); 1568 1569 // declare .param .align <align> .b8 .param<n>[<size>]; 1570 unsigned sz = Outs[OIdx].Flags.getByValSize(); 1571 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1572 Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign(); 1573 // The ByValAlign in the Outs[OIdx].Flags is alway set at this point, 1574 // so we don't need to worry about natural alignment or not. 1575 // See TargetLowering::LowerCallTo(). 1576 1577 // Enforce minumum alignment of 4 to work around ptxas miscompile 1578 // for sm_50+. See corresponding alignment adjustment in 1579 // emitFunctionParamList() for details. 1580 if (ArgAlign < Align(4)) 1581 ArgAlign = Align(4); 1582 SDValue DeclareParamOps[] = { 1583 Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), 1584 DAG.getConstant(paramCount, dl, MVT::i32), 1585 DAG.getConstant(sz, dl, MVT::i32), InFlag}; 1586 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, 1587 DeclareParamOps); 1588 InFlag = Chain.getValue(1); 1589 for (unsigned j = 0, je = VTs.size(); j != je; ++j) { 1590 EVT elemtype = VTs[j]; 1591 int curOffset = Offsets[j]; 1592 unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset); 1593 auto PtrVT = getPointerTy(DL); 1594 SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx], 1595 DAG.getConstant(curOffset, dl, PtrVT)); 1596 SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr, 1597 MachinePointerInfo(), PartAlign); 1598 if (elemtype.getSizeInBits() < 16) { 1599 theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal); 1600 } 1601 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1602 SDValue CopyParamOps[] = { Chain, 1603 DAG.getConstant(paramCount, dl, MVT::i32), 1604 DAG.getConstant(curOffset, dl, MVT::i32), 1605 theVal, InFlag }; 1606 Chain = DAG.getMemIntrinsicNode( 1607 NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype, 1608 MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore); 1609 1610 InFlag = Chain.getValue(1); 1611 } 1612 ++paramCount; 1613 } 1614 1615 GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode()); 1616 MaybeAlign retAlignment = None; 1617 1618 // Handle Result 1619 if (Ins.size() > 0) { 1620 SmallVector<EVT, 16> resvtparts; 1621 ComputeValueVTs(*this, DL, RetTy, resvtparts); 1622 1623 // Declare 1624 // .param .align 16 .b8 retval0[<size-in-bytes>], or 1625 // .param .b<size-in-bits> retval0 1626 unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy); 1627 // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for 1628 // these three types to match the logic in 1629 // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype. 1630 // Plus, this behavior is consistent with nvcc's. 1631 if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() || 1632 (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) { 1633 // Scalar needs to be at least 32bit wide 1634 if (resultsz < 32) 1635 resultsz = 32; 1636 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1637 SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), 1638 DAG.getConstant(resultsz, dl, MVT::i32), 1639 DAG.getConstant(0, dl, MVT::i32), InFlag }; 1640 Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs, 1641 DeclareRetOps); 1642 InFlag = Chain.getValue(1); 1643 } else { 1644 retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL); 1645 assert(retAlignment && "retAlignment is guaranteed to be set"); 1646 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1647 SDValue DeclareRetOps[] = { 1648 Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32), 1649 DAG.getConstant(resultsz / 8, dl, MVT::i32), 1650 DAG.getConstant(0, dl, MVT::i32), InFlag}; 1651 Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs, 1652 DeclareRetOps); 1653 InFlag = Chain.getValue(1); 1654 } 1655 } 1656 1657 // Both indirect calls and libcalls have nullptr Func. In order to distinguish 1658 // between them we must rely on the call site value which is valid for 1659 // indirect calls but is always null for libcalls. 1660 bool isIndirectCall = !Func && CB; 1661 1662 if (isa<ExternalSymbolSDNode>(Callee)) { 1663 Function* CalleeFunc = nullptr; 1664 1665 // Try to find the callee in the current module. 1666 Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc); 1667 assert(CalleeFunc != nullptr && "Libcall callee must be set."); 1668 1669 // Set the "libcall callee" attribute to indicate that the function 1670 // must always have a declaration. 1671 CalleeFunc->addFnAttr("nvptx-libcall-callee", "true"); 1672 } 1673 1674 if (isIndirectCall) { 1675 // This is indirect function call case : PTX requires a prototype of the 1676 // form 1677 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); 1678 // to be emitted, and the label has to used as the last arg of call 1679 // instruction. 1680 // The prototype is embedded in a string and put as the operand for a 1681 // CallPrototype SDNode which will print out to the value of the string. 1682 SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1683 std::string Proto = 1684 getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite); 1685 const char *ProtoStr = 1686 nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str(); 1687 SDValue ProtoOps[] = { 1688 Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag, 1689 }; 1690 Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps); 1691 InFlag = Chain.getValue(1); 1692 } 1693 // Op to just print "call" 1694 SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1695 SDValue PrintCallOps[] = { 1696 Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag 1697 }; 1698 // We model convergent calls as separate opcodes. 1699 unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni; 1700 if (CLI.IsConvergent) 1701 Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni 1702 : NVPTXISD::PrintConvergentCall; 1703 Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps); 1704 InFlag = Chain.getValue(1); 1705 1706 // Ops to print out the function name 1707 SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1708 SDValue CallVoidOps[] = { Chain, Callee, InFlag }; 1709 Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps); 1710 InFlag = Chain.getValue(1); 1711 1712 // Ops to print out the param list 1713 SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1714 SDValue CallArgBeginOps[] = { Chain, InFlag }; 1715 Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs, 1716 CallArgBeginOps); 1717 InFlag = Chain.getValue(1); 1718 1719 for (unsigned i = 0, e = paramCount; i != e; ++i) { 1720 unsigned opcode; 1721 if (i == (e - 1)) 1722 opcode = NVPTXISD::LastCallArg; 1723 else 1724 opcode = NVPTXISD::CallArg; 1725 SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1726 SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), 1727 DAG.getConstant(i, dl, MVT::i32), InFlag }; 1728 Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps); 1729 InFlag = Chain.getValue(1); 1730 } 1731 SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1732 SDValue CallArgEndOps[] = { Chain, 1733 DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32), 1734 InFlag }; 1735 Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps); 1736 InFlag = Chain.getValue(1); 1737 1738 if (isIndirectCall) { 1739 SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1740 SDValue PrototypeOps[] = { 1741 Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag}; 1742 Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps); 1743 InFlag = Chain.getValue(1); 1744 } 1745 1746 SmallVector<SDValue, 16> ProxyRegOps; 1747 SmallVector<Optional<MVT>, 16> ProxyRegTruncates; 1748 1749 // Generate loads from param memory/moves from registers for result 1750 if (Ins.size() > 0) { 1751 SmallVector<EVT, 16> VTs; 1752 SmallVector<uint64_t, 16> Offsets; 1753 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0); 1754 assert(VTs.size() == Ins.size() && "Bad value decomposition"); 1755 1756 Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL); 1757 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign); 1758 1759 SmallVector<EVT, 6> LoadVTs; 1760 int VecIdx = -1; // Index of the first element of the vector. 1761 1762 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than 1763 // 32-bits are sign extended or zero extended, depending on whether 1764 // they are signed or unsigned types. 1765 bool ExtendIntegerRetVal = 1766 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; 1767 1768 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 1769 bool needTruncate = false; 1770 EVT TheLoadType = VTs[i]; 1771 EVT EltType = Ins[i].VT; 1772 Align EltAlign = commonAlignment(RetAlign, Offsets[i]); 1773 if (ExtendIntegerRetVal) { 1774 TheLoadType = MVT::i32; 1775 EltType = MVT::i32; 1776 needTruncate = true; 1777 } else if (TheLoadType.getSizeInBits() < 16) { 1778 if (VTs[i].isInteger()) 1779 needTruncate = true; 1780 EltType = MVT::i16; 1781 } 1782 1783 // Record index of the very first element of the vector. 1784 if (VectorInfo[i] & PVF_FIRST) { 1785 assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list."); 1786 VecIdx = i; 1787 } 1788 1789 LoadVTs.push_back(EltType); 1790 1791 if (VectorInfo[i] & PVF_LAST) { 1792 unsigned NumElts = LoadVTs.size(); 1793 LoadVTs.push_back(MVT::Other); 1794 LoadVTs.push_back(MVT::Glue); 1795 NVPTXISD::NodeType Op; 1796 switch (NumElts) { 1797 case 1: 1798 Op = NVPTXISD::LoadParam; 1799 break; 1800 case 2: 1801 Op = NVPTXISD::LoadParamV2; 1802 break; 1803 case 4: 1804 Op = NVPTXISD::LoadParamV4; 1805 break; 1806 default: 1807 llvm_unreachable("Invalid vector info."); 1808 } 1809 1810 SDValue LoadOperands[] = { 1811 Chain, DAG.getConstant(1, dl, MVT::i32), 1812 DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag}; 1813 SDValue RetVal = DAG.getMemIntrinsicNode( 1814 Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType, 1815 MachinePointerInfo(), EltAlign, 1816 MachineMemOperand::MOLoad); 1817 1818 for (unsigned j = 0; j < NumElts; ++j) { 1819 ProxyRegOps.push_back(RetVal.getValue(j)); 1820 1821 if (needTruncate) 1822 ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT)); 1823 else 1824 ProxyRegTruncates.push_back(Optional<MVT>()); 1825 } 1826 1827 Chain = RetVal.getValue(NumElts); 1828 InFlag = RetVal.getValue(NumElts + 1); 1829 1830 // Cleanup 1831 VecIdx = -1; 1832 LoadVTs.clear(); 1833 } 1834 } 1835 } 1836 1837 Chain = DAG.getCALLSEQ_END( 1838 Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true), 1839 DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl); 1840 InFlag = Chain.getValue(1); 1841 1842 // Append ProxyReg instructions to the chain to make sure that `callseq_end` 1843 // will not get lost. Otherwise, during libcalls expansion, the nodes can become 1844 // dangling. 1845 for (unsigned i = 0; i < ProxyRegOps.size(); ++i) { 1846 SDValue Ret = DAG.getNode( 1847 NVPTXISD::ProxyReg, dl, 1848 DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue), 1849 { Chain, ProxyRegOps[i], InFlag } 1850 ); 1851 1852 Chain = Ret.getValue(1); 1853 InFlag = Ret.getValue(2); 1854 1855 if (ProxyRegTruncates[i].hasValue()) { 1856 Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret); 1857 } 1858 1859 InVals.push_back(Ret); 1860 } 1861 1862 // set isTailCall to false for now, until we figure out how to express 1863 // tail call optimization in PTX 1864 isTailCall = false; 1865 return Chain; 1866 } 1867 1868 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() 1869 // (see LegalizeDAG.cpp). This is slow and uses local memory. 1870 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 1871 SDValue 1872 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { 1873 SDNode *Node = Op.getNode(); 1874 SDLoc dl(Node); 1875 SmallVector<SDValue, 8> Ops; 1876 unsigned NumOperands = Node->getNumOperands(); 1877 for (unsigned i = 0; i < NumOperands; ++i) { 1878 SDValue SubOp = Node->getOperand(i); 1879 EVT VVT = SubOp.getNode()->getValueType(0); 1880 EVT EltVT = VVT.getVectorElementType(); 1881 unsigned NumSubElem = VVT.getVectorNumElements(); 1882 for (unsigned j = 0; j < NumSubElem; ++j) { 1883 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, 1884 DAG.getIntPtrConstant(j, dl))); 1885 } 1886 } 1887 return DAG.getBuildVector(Node->getValueType(0), dl, Ops); 1888 } 1889 1890 // We can init constant f16x2 with a single .b32 move. Normally it 1891 // would get lowered as two constant loads and vector-packing move. 1892 // mov.b16 %h1, 0x4000; 1893 // mov.b16 %h2, 0x3C00; 1894 // mov.b32 %hh2, {%h2, %h1}; 1895 // Instead we want just a constant move: 1896 // mov.b32 %hh2, 0x40003C00 1897 // 1898 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0 1899 // generates good SASS in both cases. 1900 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1901 SelectionDAG &DAG) const { 1902 //return Op; 1903 if (!(Op->getValueType(0) == MVT::v2f16 && 1904 isa<ConstantFPSDNode>(Op->getOperand(0)) && 1905 isa<ConstantFPSDNode>(Op->getOperand(1)))) 1906 return Op; 1907 1908 APInt E0 = 1909 cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt(); 1910 APInt E1 = 1911 cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt(); 1912 SDValue Const = 1913 DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32); 1914 return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const); 1915 } 1916 1917 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 1918 SelectionDAG &DAG) const { 1919 SDValue Index = Op->getOperand(1); 1920 // Constant index will be matched by tablegen. 1921 if (isa<ConstantSDNode>(Index.getNode())) 1922 return Op; 1923 1924 // Extract individual elements and select one of them. 1925 SDValue Vector = Op->getOperand(0); 1926 EVT VectorVT = Vector.getValueType(); 1927 assert(VectorVT == MVT::v2f16 && "Unexpected vector type."); 1928 EVT EltVT = VectorVT.getVectorElementType(); 1929 1930 SDLoc dl(Op.getNode()); 1931 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, 1932 DAG.getIntPtrConstant(0, dl)); 1933 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, 1934 DAG.getIntPtrConstant(1, dl)); 1935 return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1, 1936 ISD::CondCode::SETEQ); 1937 } 1938 1939 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which 1940 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift 1941 /// amount, or 1942 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift 1943 /// amount. 1944 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op, 1945 SelectionDAG &DAG) const { 1946 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 1947 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 1948 1949 EVT VT = Op.getValueType(); 1950 unsigned VTBits = VT.getSizeInBits(); 1951 SDLoc dl(Op); 1952 SDValue ShOpLo = Op.getOperand(0); 1953 SDValue ShOpHi = Op.getOperand(1); 1954 SDValue ShAmt = Op.getOperand(2); 1955 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 1956 1957 if (VTBits == 32 && STI.getSmVersion() >= 35) { 1958 // For 32bit and sm35, we can use the funnel shift 'shf' instruction. 1959 // {dHi, dLo} = {aHi, aLo} >> Amt 1960 // dHi = aHi >> Amt 1961 // dLo = shf.r.clamp aLo, aHi, Amt 1962 1963 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 1964 SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi, 1965 ShAmt); 1966 1967 SDValue Ops[2] = { Lo, Hi }; 1968 return DAG.getMergeValues(Ops, dl); 1969 } 1970 else { 1971 // {dHi, dLo} = {aHi, aLo} >> Amt 1972 // - if (Amt>=size) then 1973 // dLo = aHi >> (Amt-size) 1974 // dHi = aHi >> Amt (this is either all 0 or all 1) 1975 // else 1976 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt)) 1977 // dHi = aHi >> Amt 1978 1979 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 1980 DAG.getConstant(VTBits, dl, MVT::i32), 1981 ShAmt); 1982 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 1983 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 1984 DAG.getConstant(VTBits, dl, MVT::i32)); 1985 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 1986 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 1987 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 1988 1989 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, 1990 DAG.getConstant(VTBits, dl, MVT::i32), 1991 ISD::SETGE); 1992 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 1993 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); 1994 1995 SDValue Ops[2] = { Lo, Hi }; 1996 return DAG.getMergeValues(Ops, dl); 1997 } 1998 } 1999 2000 /// LowerShiftLeftParts - Lower SHL_PARTS, which 2001 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift 2002 /// amount, or 2003 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift 2004 /// amount. 2005 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op, 2006 SelectionDAG &DAG) const { 2007 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 2008 assert(Op.getOpcode() == ISD::SHL_PARTS); 2009 2010 EVT VT = Op.getValueType(); 2011 unsigned VTBits = VT.getSizeInBits(); 2012 SDLoc dl(Op); 2013 SDValue ShOpLo = Op.getOperand(0); 2014 SDValue ShOpHi = Op.getOperand(1); 2015 SDValue ShAmt = Op.getOperand(2); 2016 2017 if (VTBits == 32 && STI.getSmVersion() >= 35) { 2018 // For 32bit and sm35, we can use the funnel shift 'shf' instruction. 2019 // {dHi, dLo} = {aHi, aLo} << Amt 2020 // dHi = shf.l.clamp aLo, aHi, Amt 2021 // dLo = aLo << Amt 2022 2023 SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi, 2024 ShAmt); 2025 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 2026 2027 SDValue Ops[2] = { Lo, Hi }; 2028 return DAG.getMergeValues(Ops, dl); 2029 } 2030 else { 2031 // {dHi, dLo} = {aHi, aLo} << Amt 2032 // - if (Amt>=size) then 2033 // dLo = aLo << Amt (all 0) 2034 // dLo = aLo << (Amt-size) 2035 // else 2036 // dLo = aLo << Amt 2037 // dHi = (aHi << Amt) | (aLo >> (size-Amt)) 2038 2039 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 2040 DAG.getConstant(VTBits, dl, MVT::i32), 2041 ShAmt); 2042 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 2043 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 2044 DAG.getConstant(VTBits, dl, MVT::i32)); 2045 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 2046 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2047 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 2048 2049 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, 2050 DAG.getConstant(VTBits, dl, MVT::i32), 2051 ISD::SETGE); 2052 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 2053 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); 2054 2055 SDValue Ops[2] = { Lo, Hi }; 2056 return DAG.getMergeValues(Ops, dl); 2057 } 2058 } 2059 2060 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2061 EVT VT = Op.getValueType(); 2062 2063 if (VT == MVT::f32) 2064 return LowerFROUND32(Op, DAG); 2065 2066 if (VT == MVT::f64) 2067 return LowerFROUND64(Op, DAG); 2068 2069 llvm_unreachable("unhandled type"); 2070 } 2071 2072 // This is the the rounding method used in CUDA libdevice in C like code: 2073 // float roundf(float A) 2074 // { 2075 // float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)); 2076 // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; 2077 // return abs(A) < 0.5 ? (float)(int)A : RoundedA; 2078 // } 2079 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op, 2080 SelectionDAG &DAG) const { 2081 SDLoc SL(Op); 2082 SDValue A = Op.getOperand(0); 2083 EVT VT = Op.getValueType(); 2084 2085 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); 2086 2087 // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)) 2088 SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A); 2089 const int SignBitMask = 0x80000000; 2090 SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast, 2091 DAG.getConstant(SignBitMask, SL, MVT::i32)); 2092 const int PointFiveInBits = 0x3F000000; 2093 SDValue PointFiveWithSignRaw = 2094 DAG.getNode(ISD::OR, SL, MVT::i32, Sign, 2095 DAG.getConstant(PointFiveInBits, SL, MVT::i32)); 2096 SDValue PointFiveWithSign = 2097 DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw); 2098 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign); 2099 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); 2100 2101 // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; 2102 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2103 SDValue IsLarge = 2104 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT), 2105 ISD::SETOGT); 2106 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); 2107 2108 // return abs(A) < 0.5 ? (float)(int)A : RoundedA; 2109 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, 2110 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); 2111 SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A); 2112 return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA); 2113 } 2114 2115 // The implementation of round(double) is similar to that of round(float) in 2116 // that they both separate the value range into three regions and use a method 2117 // specific to the region to round the values. However, round(double) first 2118 // calculates the round of the absolute value and then adds the sign back while 2119 // round(float) directly rounds the value with sign. 2120 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op, 2121 SelectionDAG &DAG) const { 2122 SDLoc SL(Op); 2123 SDValue A = Op.getOperand(0); 2124 EVT VT = Op.getValueType(); 2125 2126 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); 2127 2128 // double RoundedA = (double) (int) (abs(A) + 0.5f); 2129 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA, 2130 DAG.getConstantFP(0.5, SL, VT)); 2131 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); 2132 2133 // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA; 2134 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2135 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, 2136 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); 2137 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall, 2138 DAG.getConstantFP(0, SL, VT), 2139 RoundedA); 2140 2141 // Add sign to rounded_A 2142 RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A); 2143 DAG.getNode(ISD::FTRUNC, SL, VT, A); 2144 2145 // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA; 2146 SDValue IsLarge = 2147 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT), 2148 ISD::SETOGT); 2149 return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); 2150 } 2151 2152 2153 2154 SDValue 2155 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 2156 switch (Op.getOpcode()) { 2157 case ISD::RETURNADDR: 2158 return SDValue(); 2159 case ISD::FRAMEADDR: 2160 return SDValue(); 2161 case ISD::GlobalAddress: 2162 return LowerGlobalAddress(Op, DAG); 2163 case ISD::INTRINSIC_W_CHAIN: 2164 return Op; 2165 case ISD::BUILD_VECTOR: 2166 return LowerBUILD_VECTOR(Op, DAG); 2167 case ISD::EXTRACT_SUBVECTOR: 2168 return Op; 2169 case ISD::EXTRACT_VECTOR_ELT: 2170 return LowerEXTRACT_VECTOR_ELT(Op, DAG); 2171 case ISD::CONCAT_VECTORS: 2172 return LowerCONCAT_VECTORS(Op, DAG); 2173 case ISD::STORE: 2174 return LowerSTORE(Op, DAG); 2175 case ISD::LOAD: 2176 return LowerLOAD(Op, DAG); 2177 case ISD::SHL_PARTS: 2178 return LowerShiftLeftParts(Op, DAG); 2179 case ISD::SRA_PARTS: 2180 case ISD::SRL_PARTS: 2181 return LowerShiftRightParts(Op, DAG); 2182 case ISD::SELECT: 2183 return LowerSelect(Op, DAG); 2184 case ISD::FROUND: 2185 return LowerFROUND(Op, DAG); 2186 default: 2187 llvm_unreachable("Custom lowering not defined for operation"); 2188 } 2189 } 2190 2191 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const { 2192 SDValue Op0 = Op->getOperand(0); 2193 SDValue Op1 = Op->getOperand(1); 2194 SDValue Op2 = Op->getOperand(2); 2195 SDLoc DL(Op.getNode()); 2196 2197 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1"); 2198 2199 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1); 2200 Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2); 2201 SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2); 2202 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select); 2203 2204 return Trunc; 2205 } 2206 2207 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 2208 if (Op.getValueType() == MVT::i1) 2209 return LowerLOADi1(Op, DAG); 2210 2211 // v2f16 is legal, so we can't rely on legalizer to handle unaligned 2212 // loads and have to handle it here. 2213 if (Op.getValueType() == MVT::v2f16) { 2214 LoadSDNode *Load = cast<LoadSDNode>(Op); 2215 EVT MemVT = Load->getMemoryVT(); 2216 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2217 MemVT, *Load->getMemOperand())) { 2218 SDValue Ops[2]; 2219 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 2220 return DAG.getMergeValues(Ops, SDLoc(Op)); 2221 } 2222 } 2223 2224 return SDValue(); 2225 } 2226 2227 // v = ld i1* addr 2228 // => 2229 // v1 = ld i8* addr (-> i16) 2230 // v = trunc i16 to i1 2231 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const { 2232 SDNode *Node = Op.getNode(); 2233 LoadSDNode *LD = cast<LoadSDNode>(Node); 2234 SDLoc dl(Node); 2235 assert(LD->getExtensionType() == ISD::NON_EXTLOAD); 2236 assert(Node->getValueType(0) == MVT::i1 && 2237 "Custom lowering for i1 load only"); 2238 SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(), 2239 LD->getPointerInfo(), LD->getAlignment(), 2240 LD->getMemOperand()->getFlags()); 2241 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD); 2242 // The legalizer (the caller) is expecting two values from the legalized 2243 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad() 2244 // in LegalizeDAG.cpp which also uses MergeValues. 2245 SDValue Ops[] = { result, LD->getChain() }; 2246 return DAG.getMergeValues(Ops, dl); 2247 } 2248 2249 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 2250 StoreSDNode *Store = cast<StoreSDNode>(Op); 2251 EVT VT = Store->getMemoryVT(); 2252 2253 if (VT == MVT::i1) 2254 return LowerSTOREi1(Op, DAG); 2255 2256 // v2f16 is legal, so we can't rely on legalizer to handle unaligned 2257 // stores and have to handle it here. 2258 if (VT == MVT::v2f16 && 2259 !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2260 VT, *Store->getMemOperand())) 2261 return expandUnalignedStore(Store, DAG); 2262 2263 if (VT.isVector()) 2264 return LowerSTOREVector(Op, DAG); 2265 2266 return SDValue(); 2267 } 2268 2269 SDValue 2270 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const { 2271 SDNode *N = Op.getNode(); 2272 SDValue Val = N->getOperand(1); 2273 SDLoc DL(N); 2274 EVT ValVT = Val.getValueType(); 2275 2276 if (ValVT.isVector()) { 2277 // We only handle "native" vector sizes for now, e.g. <4 x double> is not 2278 // legal. We can (and should) split that into 2 stores of <2 x double> here 2279 // but I'm leaving that as a TODO for now. 2280 if (!ValVT.isSimple()) 2281 return SDValue(); 2282 switch (ValVT.getSimpleVT().SimpleTy) { 2283 default: 2284 return SDValue(); 2285 case MVT::v2i8: 2286 case MVT::v2i16: 2287 case MVT::v2i32: 2288 case MVT::v2i64: 2289 case MVT::v2f16: 2290 case MVT::v2f32: 2291 case MVT::v2f64: 2292 case MVT::v4i8: 2293 case MVT::v4i16: 2294 case MVT::v4i32: 2295 case MVT::v4f16: 2296 case MVT::v4f32: 2297 case MVT::v8f16: // <4 x f16x2> 2298 // This is a "native" vector type 2299 break; 2300 } 2301 2302 MemSDNode *MemSD = cast<MemSDNode>(N); 2303 const DataLayout &TD = DAG.getDataLayout(); 2304 2305 Align Alignment = MemSD->getAlign(); 2306 Align PrefAlign = 2307 TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext())); 2308 if (Alignment < PrefAlign) { 2309 // This store is not sufficiently aligned, so bail out and let this vector 2310 // store be scalarized. Note that we may still be able to emit smaller 2311 // vector stores. For example, if we are storing a <4 x float> with an 2312 // alignment of 8, this check will fail but the legalizer will try again 2313 // with 2 x <2 x float>, which will succeed with an alignment of 8. 2314 return SDValue(); 2315 } 2316 2317 unsigned Opcode = 0; 2318 EVT EltVT = ValVT.getVectorElementType(); 2319 unsigned NumElts = ValVT.getVectorNumElements(); 2320 2321 // Since StoreV2 is a target node, we cannot rely on DAG type legalization. 2322 // Therefore, we must ensure the type is legal. For i1 and i8, we set the 2323 // stored type to i16 and propagate the "real" type as the memory type. 2324 bool NeedExt = false; 2325 if (EltVT.getSizeInBits() < 16) 2326 NeedExt = true; 2327 2328 bool StoreF16x2 = false; 2329 switch (NumElts) { 2330 default: 2331 return SDValue(); 2332 case 2: 2333 Opcode = NVPTXISD::StoreV2; 2334 break; 2335 case 4: 2336 Opcode = NVPTXISD::StoreV4; 2337 break; 2338 case 8: 2339 // v8f16 is a special case. PTX doesn't have st.v8.f16 2340 // instruction. Instead, we split the vector into v2f16 chunks and 2341 // store them with st.v4.b32. 2342 assert(EltVT == MVT::f16 && "Wrong type for the vector."); 2343 Opcode = NVPTXISD::StoreV4; 2344 StoreF16x2 = true; 2345 break; 2346 } 2347 2348 SmallVector<SDValue, 8> Ops; 2349 2350 // First is the chain 2351 Ops.push_back(N->getOperand(0)); 2352 2353 if (StoreF16x2) { 2354 // Combine f16,f16 -> v2f16 2355 NumElts /= 2; 2356 for (unsigned i = 0; i < NumElts; ++i) { 2357 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, 2358 DAG.getIntPtrConstant(i * 2, DL)); 2359 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, 2360 DAG.getIntPtrConstant(i * 2 + 1, DL)); 2361 SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1); 2362 Ops.push_back(V2); 2363 } 2364 } else { 2365 // Then the split values 2366 for (unsigned i = 0; i < NumElts; ++i) { 2367 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val, 2368 DAG.getIntPtrConstant(i, DL)); 2369 if (NeedExt) 2370 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal); 2371 Ops.push_back(ExtVal); 2372 } 2373 } 2374 2375 // Then any remaining arguments 2376 Ops.append(N->op_begin() + 2, N->op_end()); 2377 2378 SDValue NewSt = 2379 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops, 2380 MemSD->getMemoryVT(), MemSD->getMemOperand()); 2381 2382 // return DCI.CombineTo(N, NewSt, true); 2383 return NewSt; 2384 } 2385 2386 return SDValue(); 2387 } 2388 2389 // st i1 v, addr 2390 // => 2391 // v1 = zxt v to i16 2392 // st.u8 i16, addr 2393 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const { 2394 SDNode *Node = Op.getNode(); 2395 SDLoc dl(Node); 2396 StoreSDNode *ST = cast<StoreSDNode>(Node); 2397 SDValue Tmp1 = ST->getChain(); 2398 SDValue Tmp2 = ST->getBasePtr(); 2399 SDValue Tmp3 = ST->getValue(); 2400 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only"); 2401 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3); 2402 SDValue Result = 2403 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8, 2404 ST->getAlignment(), ST->getMemOperand()->getFlags()); 2405 return Result; 2406 } 2407 2408 SDValue 2409 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const { 2410 std::string ParamSym; 2411 raw_string_ostream ParamStr(ParamSym); 2412 2413 ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx; 2414 ParamStr.flush(); 2415 2416 std::string *SavedStr = 2417 nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str()); 2418 return DAG.getTargetExternalSymbol(SavedStr->c_str(), v); 2419 } 2420 2421 // Check to see if the kernel argument is image*_t or sampler_t 2422 2423 static bool isImageOrSamplerVal(const Value *arg, const Module *context) { 2424 static const char *const specialTypes[] = { "struct._image2d_t", 2425 "struct._image3d_t", 2426 "struct._sampler_t" }; 2427 2428 Type *Ty = arg->getType(); 2429 auto *PTy = dyn_cast<PointerType>(Ty); 2430 2431 if (!PTy) 2432 return false; 2433 2434 if (!context) 2435 return false; 2436 2437 auto *STy = dyn_cast<StructType>(PTy->getElementType()); 2438 if (!STy || STy->isLiteral()) 2439 return false; 2440 2441 return llvm::is_contained(specialTypes, STy->getName()); 2442 } 2443 2444 SDValue NVPTXTargetLowering::LowerFormalArguments( 2445 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2446 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2447 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2448 MachineFunction &MF = DAG.getMachineFunction(); 2449 const DataLayout &DL = DAG.getDataLayout(); 2450 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2451 2452 const Function *F = &MF.getFunction(); 2453 const AttributeList &PAL = F->getAttributes(); 2454 const TargetLowering *TLI = STI.getTargetLowering(); 2455 2456 SDValue Root = DAG.getRoot(); 2457 std::vector<SDValue> OutChains; 2458 2459 bool isABI = (STI.getSmVersion() >= 20); 2460 assert(isABI && "Non-ABI compilation is not supported"); 2461 if (!isABI) 2462 return Chain; 2463 2464 std::vector<Type *> argTypes; 2465 std::vector<const Argument *> theArgs; 2466 for (const Argument &I : F->args()) { 2467 theArgs.push_back(&I); 2468 argTypes.push_back(I.getType()); 2469 } 2470 // argTypes.size() (or theArgs.size()) and Ins.size() need not match. 2471 // Ins.size() will be larger 2472 // * if there is an aggregate argument with multiple fields (each field 2473 // showing up separately in Ins) 2474 // * if there is a vector argument with more than typical vector-length 2475 // elements (generally if more than 4) where each vector element is 2476 // individually present in Ins. 2477 // So a different index should be used for indexing into Ins. 2478 // See similar issue in LowerCall. 2479 unsigned InsIdx = 0; 2480 2481 int idx = 0; 2482 for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) { 2483 Type *Ty = argTypes[i]; 2484 2485 // If the kernel argument is image*_t or sampler_t, convert it to 2486 // a i32 constant holding the parameter position. This can later 2487 // matched in the AsmPrinter to output the correct mangled name. 2488 if (isImageOrSamplerVal( 2489 theArgs[i], 2490 (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent() 2491 : nullptr))) { 2492 assert(isKernelFunction(*F) && 2493 "Only kernels can have image/sampler params"); 2494 InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32)); 2495 continue; 2496 } 2497 2498 if (theArgs[i]->use_empty()) { 2499 // argument is dead 2500 if (Ty->isAggregateType() || Ty->isIntegerTy(128)) { 2501 SmallVector<EVT, 16> vtparts; 2502 2503 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts); 2504 assert(vtparts.size() > 0 && "empty aggregate type not expected"); 2505 for (unsigned parti = 0, parte = vtparts.size(); parti != parte; 2506 ++parti) { 2507 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); 2508 ++InsIdx; 2509 } 2510 if (vtparts.size() > 0) 2511 --InsIdx; 2512 continue; 2513 } 2514 if (Ty->isVectorTy()) { 2515 EVT ObjectVT = getValueType(DL, Ty); 2516 unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT); 2517 for (unsigned parti = 0; parti < NumRegs; ++parti) { 2518 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); 2519 ++InsIdx; 2520 } 2521 if (NumRegs > 0) 2522 --InsIdx; 2523 continue; 2524 } 2525 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); 2526 continue; 2527 } 2528 2529 // In the following cases, assign a node order of "idx+1" 2530 // to newly created nodes. The SDNodes for params have to 2531 // appear in the same order as their order of appearance 2532 // in the original function. "idx+1" holds that order. 2533 if (!PAL.hasParamAttr(i, Attribute::ByVal)) { 2534 bool aggregateIsPacked = false; 2535 if (StructType *STy = dyn_cast<StructType>(Ty)) 2536 aggregateIsPacked = STy->isPacked(); 2537 2538 SmallVector<EVT, 16> VTs; 2539 SmallVector<uint64_t, 16> Offsets; 2540 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0); 2541 assert(VTs.size() > 0 && "Unexpected empty type."); 2542 auto VectorInfo = 2543 VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty)); 2544 2545 SDValue Arg = getParamSymbol(DAG, idx, PtrVT); 2546 int VecIdx = -1; // Index of the first element of the current vector. 2547 for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) { 2548 if (VectorInfo[parti] & PVF_FIRST) { 2549 assert(VecIdx == -1 && "Orphaned vector."); 2550 VecIdx = parti; 2551 } 2552 2553 // That's the last element of this store op. 2554 if (VectorInfo[parti] & PVF_LAST) { 2555 unsigned NumElts = parti - VecIdx + 1; 2556 EVT EltVT = VTs[parti]; 2557 // i1 is loaded/stored as i8. 2558 EVT LoadVT = EltVT; 2559 if (EltVT == MVT::i1) 2560 LoadVT = MVT::i8; 2561 else if (EltVT == MVT::v2f16) 2562 // getLoad needs a vector type, but it can't handle 2563 // vectors which contain v2f16 elements. So we must load 2564 // using i32 here and then bitcast back. 2565 LoadVT = MVT::i32; 2566 2567 EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts); 2568 SDValue VecAddr = 2569 DAG.getNode(ISD::ADD, dl, PtrVT, Arg, 2570 DAG.getConstant(Offsets[VecIdx], dl, PtrVT)); 2571 Value *srcValue = Constant::getNullValue(PointerType::get( 2572 EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM)); 2573 SDValue P = 2574 DAG.getLoad(VecVT, dl, Root, VecAddr, 2575 MachinePointerInfo(srcValue), aggregateIsPacked, 2576 MachineMemOperand::MODereferenceable | 2577 MachineMemOperand::MOInvariant); 2578 if (P.getNode()) 2579 P.getNode()->setIROrder(idx + 1); 2580 for (unsigned j = 0; j < NumElts; ++j) { 2581 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P, 2582 DAG.getIntPtrConstant(j, dl)); 2583 // We've loaded i1 as an i8 and now must truncate it back to i1 2584 if (EltVT == MVT::i1) 2585 Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt); 2586 // v2f16 was loaded as an i32. Now we must bitcast it back. 2587 else if (EltVT == MVT::v2f16) 2588 Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt); 2589 // Extend the element if necessary (e.g. an i8 is loaded 2590 // into an i16 register) 2591 if (Ins[InsIdx].VT.isInteger() && 2592 Ins[InsIdx].VT.getFixedSizeInBits() > 2593 LoadVT.getFixedSizeInBits()) { 2594 unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND 2595 : ISD::ZERO_EXTEND; 2596 Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt); 2597 } 2598 InVals.push_back(Elt); 2599 } 2600 2601 // Reset vector tracking state. 2602 VecIdx = -1; 2603 } 2604 ++InsIdx; 2605 } 2606 if (VTs.size() > 0) 2607 --InsIdx; 2608 continue; 2609 } 2610 2611 // Param has ByVal attribute 2612 // Return MoveParam(param symbol). 2613 // Ideally, the param symbol can be returned directly, 2614 // but when SDNode builder decides to use it in a CopyToReg(), 2615 // machine instruction fails because TargetExternalSymbol 2616 // (not lowered) is target dependent, and CopyToReg assumes 2617 // the source is lowered. 2618 EVT ObjectVT = getValueType(DL, Ty); 2619 assert(ObjectVT == Ins[InsIdx].VT && 2620 "Ins type did not match function type"); 2621 SDValue Arg = getParamSymbol(DAG, idx, PtrVT); 2622 SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); 2623 if (p.getNode()) 2624 p.getNode()->setIROrder(idx + 1); 2625 InVals.push_back(p); 2626 } 2627 2628 // Clang will check explicit VarArg and issue error if any. However, Clang 2629 // will let code with 2630 // implicit var arg like f() pass. See bug 617733. 2631 // We treat this case as if the arg list is empty. 2632 // if (F.isVarArg()) { 2633 // assert(0 && "VarArg not supported yet!"); 2634 //} 2635 2636 if (!OutChains.empty()) 2637 DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains)); 2638 2639 return Chain; 2640 } 2641 2642 SDValue 2643 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2644 bool isVarArg, 2645 const SmallVectorImpl<ISD::OutputArg> &Outs, 2646 const SmallVectorImpl<SDValue> &OutVals, 2647 const SDLoc &dl, SelectionDAG &DAG) const { 2648 MachineFunction &MF = DAG.getMachineFunction(); 2649 Type *RetTy = MF.getFunction().getReturnType(); 2650 2651 bool isABI = (STI.getSmVersion() >= 20); 2652 assert(isABI && "Non-ABI compilation is not supported"); 2653 if (!isABI) 2654 return Chain; 2655 2656 const DataLayout &DL = DAG.getDataLayout(); 2657 SmallVector<EVT, 16> VTs; 2658 SmallVector<uint64_t, 16> Offsets; 2659 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets); 2660 assert(VTs.size() == OutVals.size() && "Bad return value decomposition"); 2661 2662 auto VectorInfo = VectorizePTXValueVTs( 2663 VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1)); 2664 2665 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than 2666 // 32-bits are sign extended or zero extended, depending on whether 2667 // they are signed or unsigned types. 2668 bool ExtendIntegerRetVal = 2669 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; 2670 2671 SmallVector<SDValue, 6> StoreOperands; 2672 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 2673 // New load/store. Record chain and offset operands. 2674 if (VectorInfo[i] & PVF_FIRST) { 2675 assert(StoreOperands.empty() && "Orphaned operand list."); 2676 StoreOperands.push_back(Chain); 2677 StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32)); 2678 } 2679 2680 SDValue RetVal = OutVals[i]; 2681 if (ExtendIntegerRetVal) { 2682 RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND 2683 : ISD::ZERO_EXTEND, 2684 dl, MVT::i32, RetVal); 2685 } else if (RetVal.getValueSizeInBits() < 16) { 2686 // Use 16-bit registers for small load-stores as it's the 2687 // smallest general purpose register size supported by NVPTX. 2688 RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal); 2689 } 2690 2691 // Record the value to return. 2692 StoreOperands.push_back(RetVal); 2693 2694 // That's the last element of this store op. 2695 if (VectorInfo[i] & PVF_LAST) { 2696 NVPTXISD::NodeType Op; 2697 unsigned NumElts = StoreOperands.size() - 2; 2698 switch (NumElts) { 2699 case 1: 2700 Op = NVPTXISD::StoreRetval; 2701 break; 2702 case 2: 2703 Op = NVPTXISD::StoreRetvalV2; 2704 break; 2705 case 4: 2706 Op = NVPTXISD::StoreRetvalV4; 2707 break; 2708 default: 2709 llvm_unreachable("Invalid vector info."); 2710 } 2711 2712 // Adjust type of load/store op if we've extended the scalar 2713 // return value. 2714 EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i]; 2715 Chain = DAG.getMemIntrinsicNode( 2716 Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType, 2717 MachinePointerInfo(), Align(1), MachineMemOperand::MOStore); 2718 // Cleanup vector state. 2719 StoreOperands.clear(); 2720 } 2721 } 2722 2723 return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain); 2724 } 2725 2726 void NVPTXTargetLowering::LowerAsmOperandForConstraint( 2727 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2728 SelectionDAG &DAG) const { 2729 if (Constraint.length() > 1) 2730 return; 2731 else 2732 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2733 } 2734 2735 static unsigned getOpcForTextureInstr(unsigned Intrinsic) { 2736 switch (Intrinsic) { 2737 default: 2738 return 0; 2739 2740 case Intrinsic::nvvm_tex_1d_v4f32_s32: 2741 return NVPTXISD::Tex1DFloatS32; 2742 case Intrinsic::nvvm_tex_1d_v4f32_f32: 2743 return NVPTXISD::Tex1DFloatFloat; 2744 case Intrinsic::nvvm_tex_1d_level_v4f32_f32: 2745 return NVPTXISD::Tex1DFloatFloatLevel; 2746 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: 2747 return NVPTXISD::Tex1DFloatFloatGrad; 2748 case Intrinsic::nvvm_tex_1d_v4s32_s32: 2749 return NVPTXISD::Tex1DS32S32; 2750 case Intrinsic::nvvm_tex_1d_v4s32_f32: 2751 return NVPTXISD::Tex1DS32Float; 2752 case Intrinsic::nvvm_tex_1d_level_v4s32_f32: 2753 return NVPTXISD::Tex1DS32FloatLevel; 2754 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: 2755 return NVPTXISD::Tex1DS32FloatGrad; 2756 case Intrinsic::nvvm_tex_1d_v4u32_s32: 2757 return NVPTXISD::Tex1DU32S32; 2758 case Intrinsic::nvvm_tex_1d_v4u32_f32: 2759 return NVPTXISD::Tex1DU32Float; 2760 case Intrinsic::nvvm_tex_1d_level_v4u32_f32: 2761 return NVPTXISD::Tex1DU32FloatLevel; 2762 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: 2763 return NVPTXISD::Tex1DU32FloatGrad; 2764 2765 case Intrinsic::nvvm_tex_1d_array_v4f32_s32: 2766 return NVPTXISD::Tex1DArrayFloatS32; 2767 case Intrinsic::nvvm_tex_1d_array_v4f32_f32: 2768 return NVPTXISD::Tex1DArrayFloatFloat; 2769 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: 2770 return NVPTXISD::Tex1DArrayFloatFloatLevel; 2771 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: 2772 return NVPTXISD::Tex1DArrayFloatFloatGrad; 2773 case Intrinsic::nvvm_tex_1d_array_v4s32_s32: 2774 return NVPTXISD::Tex1DArrayS32S32; 2775 case Intrinsic::nvvm_tex_1d_array_v4s32_f32: 2776 return NVPTXISD::Tex1DArrayS32Float; 2777 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: 2778 return NVPTXISD::Tex1DArrayS32FloatLevel; 2779 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: 2780 return NVPTXISD::Tex1DArrayS32FloatGrad; 2781 case Intrinsic::nvvm_tex_1d_array_v4u32_s32: 2782 return NVPTXISD::Tex1DArrayU32S32; 2783 case Intrinsic::nvvm_tex_1d_array_v4u32_f32: 2784 return NVPTXISD::Tex1DArrayU32Float; 2785 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: 2786 return NVPTXISD::Tex1DArrayU32FloatLevel; 2787 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: 2788 return NVPTXISD::Tex1DArrayU32FloatGrad; 2789 2790 case Intrinsic::nvvm_tex_2d_v4f32_s32: 2791 return NVPTXISD::Tex2DFloatS32; 2792 case Intrinsic::nvvm_tex_2d_v4f32_f32: 2793 return NVPTXISD::Tex2DFloatFloat; 2794 case Intrinsic::nvvm_tex_2d_level_v4f32_f32: 2795 return NVPTXISD::Tex2DFloatFloatLevel; 2796 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: 2797 return NVPTXISD::Tex2DFloatFloatGrad; 2798 case Intrinsic::nvvm_tex_2d_v4s32_s32: 2799 return NVPTXISD::Tex2DS32S32; 2800 case Intrinsic::nvvm_tex_2d_v4s32_f32: 2801 return NVPTXISD::Tex2DS32Float; 2802 case Intrinsic::nvvm_tex_2d_level_v4s32_f32: 2803 return NVPTXISD::Tex2DS32FloatLevel; 2804 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: 2805 return NVPTXISD::Tex2DS32FloatGrad; 2806 case Intrinsic::nvvm_tex_2d_v4u32_s32: 2807 return NVPTXISD::Tex2DU32S32; 2808 case Intrinsic::nvvm_tex_2d_v4u32_f32: 2809 return NVPTXISD::Tex2DU32Float; 2810 case Intrinsic::nvvm_tex_2d_level_v4u32_f32: 2811 return NVPTXISD::Tex2DU32FloatLevel; 2812 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: 2813 return NVPTXISD::Tex2DU32FloatGrad; 2814 2815 case Intrinsic::nvvm_tex_2d_array_v4f32_s32: 2816 return NVPTXISD::Tex2DArrayFloatS32; 2817 case Intrinsic::nvvm_tex_2d_array_v4f32_f32: 2818 return NVPTXISD::Tex2DArrayFloatFloat; 2819 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: 2820 return NVPTXISD::Tex2DArrayFloatFloatLevel; 2821 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: 2822 return NVPTXISD::Tex2DArrayFloatFloatGrad; 2823 case Intrinsic::nvvm_tex_2d_array_v4s32_s32: 2824 return NVPTXISD::Tex2DArrayS32S32; 2825 case Intrinsic::nvvm_tex_2d_array_v4s32_f32: 2826 return NVPTXISD::Tex2DArrayS32Float; 2827 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: 2828 return NVPTXISD::Tex2DArrayS32FloatLevel; 2829 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: 2830 return NVPTXISD::Tex2DArrayS32FloatGrad; 2831 case Intrinsic::nvvm_tex_2d_array_v4u32_s32: 2832 return NVPTXISD::Tex2DArrayU32S32; 2833 case Intrinsic::nvvm_tex_2d_array_v4u32_f32: 2834 return NVPTXISD::Tex2DArrayU32Float; 2835 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: 2836 return NVPTXISD::Tex2DArrayU32FloatLevel; 2837 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: 2838 return NVPTXISD::Tex2DArrayU32FloatGrad; 2839 2840 case Intrinsic::nvvm_tex_3d_v4f32_s32: 2841 return NVPTXISD::Tex3DFloatS32; 2842 case Intrinsic::nvvm_tex_3d_v4f32_f32: 2843 return NVPTXISD::Tex3DFloatFloat; 2844 case Intrinsic::nvvm_tex_3d_level_v4f32_f32: 2845 return NVPTXISD::Tex3DFloatFloatLevel; 2846 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: 2847 return NVPTXISD::Tex3DFloatFloatGrad; 2848 case Intrinsic::nvvm_tex_3d_v4s32_s32: 2849 return NVPTXISD::Tex3DS32S32; 2850 case Intrinsic::nvvm_tex_3d_v4s32_f32: 2851 return NVPTXISD::Tex3DS32Float; 2852 case Intrinsic::nvvm_tex_3d_level_v4s32_f32: 2853 return NVPTXISD::Tex3DS32FloatLevel; 2854 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: 2855 return NVPTXISD::Tex3DS32FloatGrad; 2856 case Intrinsic::nvvm_tex_3d_v4u32_s32: 2857 return NVPTXISD::Tex3DU32S32; 2858 case Intrinsic::nvvm_tex_3d_v4u32_f32: 2859 return NVPTXISD::Tex3DU32Float; 2860 case Intrinsic::nvvm_tex_3d_level_v4u32_f32: 2861 return NVPTXISD::Tex3DU32FloatLevel; 2862 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: 2863 return NVPTXISD::Tex3DU32FloatGrad; 2864 2865 case Intrinsic::nvvm_tex_cube_v4f32_f32: 2866 return NVPTXISD::TexCubeFloatFloat; 2867 case Intrinsic::nvvm_tex_cube_level_v4f32_f32: 2868 return NVPTXISD::TexCubeFloatFloatLevel; 2869 case Intrinsic::nvvm_tex_cube_v4s32_f32: 2870 return NVPTXISD::TexCubeS32Float; 2871 case Intrinsic::nvvm_tex_cube_level_v4s32_f32: 2872 return NVPTXISD::TexCubeS32FloatLevel; 2873 case Intrinsic::nvvm_tex_cube_v4u32_f32: 2874 return NVPTXISD::TexCubeU32Float; 2875 case Intrinsic::nvvm_tex_cube_level_v4u32_f32: 2876 return NVPTXISD::TexCubeU32FloatLevel; 2877 2878 case Intrinsic::nvvm_tex_cube_array_v4f32_f32: 2879 return NVPTXISD::TexCubeArrayFloatFloat; 2880 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: 2881 return NVPTXISD::TexCubeArrayFloatFloatLevel; 2882 case Intrinsic::nvvm_tex_cube_array_v4s32_f32: 2883 return NVPTXISD::TexCubeArrayS32Float; 2884 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: 2885 return NVPTXISD::TexCubeArrayS32FloatLevel; 2886 case Intrinsic::nvvm_tex_cube_array_v4u32_f32: 2887 return NVPTXISD::TexCubeArrayU32Float; 2888 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: 2889 return NVPTXISD::TexCubeArrayU32FloatLevel; 2890 2891 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: 2892 return NVPTXISD::Tld4R2DFloatFloat; 2893 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: 2894 return NVPTXISD::Tld4G2DFloatFloat; 2895 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: 2896 return NVPTXISD::Tld4B2DFloatFloat; 2897 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: 2898 return NVPTXISD::Tld4A2DFloatFloat; 2899 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: 2900 return NVPTXISD::Tld4R2DS64Float; 2901 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: 2902 return NVPTXISD::Tld4G2DS64Float; 2903 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: 2904 return NVPTXISD::Tld4B2DS64Float; 2905 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: 2906 return NVPTXISD::Tld4A2DS64Float; 2907 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: 2908 return NVPTXISD::Tld4R2DU64Float; 2909 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: 2910 return NVPTXISD::Tld4G2DU64Float; 2911 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: 2912 return NVPTXISD::Tld4B2DU64Float; 2913 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: 2914 return NVPTXISD::Tld4A2DU64Float; 2915 2916 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: 2917 return NVPTXISD::TexUnified1DFloatS32; 2918 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: 2919 return NVPTXISD::TexUnified1DFloatFloat; 2920 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: 2921 return NVPTXISD::TexUnified1DFloatFloatLevel; 2922 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: 2923 return NVPTXISD::TexUnified1DFloatFloatGrad; 2924 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: 2925 return NVPTXISD::TexUnified1DS32S32; 2926 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: 2927 return NVPTXISD::TexUnified1DS32Float; 2928 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: 2929 return NVPTXISD::TexUnified1DS32FloatLevel; 2930 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: 2931 return NVPTXISD::TexUnified1DS32FloatGrad; 2932 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: 2933 return NVPTXISD::TexUnified1DU32S32; 2934 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: 2935 return NVPTXISD::TexUnified1DU32Float; 2936 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: 2937 return NVPTXISD::TexUnified1DU32FloatLevel; 2938 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: 2939 return NVPTXISD::TexUnified1DU32FloatGrad; 2940 2941 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: 2942 return NVPTXISD::TexUnified1DArrayFloatS32; 2943 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: 2944 return NVPTXISD::TexUnified1DArrayFloatFloat; 2945 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: 2946 return NVPTXISD::TexUnified1DArrayFloatFloatLevel; 2947 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: 2948 return NVPTXISD::TexUnified1DArrayFloatFloatGrad; 2949 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: 2950 return NVPTXISD::TexUnified1DArrayS32S32; 2951 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: 2952 return NVPTXISD::TexUnified1DArrayS32Float; 2953 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: 2954 return NVPTXISD::TexUnified1DArrayS32FloatLevel; 2955 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: 2956 return NVPTXISD::TexUnified1DArrayS32FloatGrad; 2957 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: 2958 return NVPTXISD::TexUnified1DArrayU32S32; 2959 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: 2960 return NVPTXISD::TexUnified1DArrayU32Float; 2961 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: 2962 return NVPTXISD::TexUnified1DArrayU32FloatLevel; 2963 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: 2964 return NVPTXISD::TexUnified1DArrayU32FloatGrad; 2965 2966 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: 2967 return NVPTXISD::TexUnified2DFloatS32; 2968 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: 2969 return NVPTXISD::TexUnified2DFloatFloat; 2970 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: 2971 return NVPTXISD::TexUnified2DFloatFloatLevel; 2972 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: 2973 return NVPTXISD::TexUnified2DFloatFloatGrad; 2974 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: 2975 return NVPTXISD::TexUnified2DS32S32; 2976 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: 2977 return NVPTXISD::TexUnified2DS32Float; 2978 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: 2979 return NVPTXISD::TexUnified2DS32FloatLevel; 2980 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: 2981 return NVPTXISD::TexUnified2DS32FloatGrad; 2982 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: 2983 return NVPTXISD::TexUnified2DU32S32; 2984 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: 2985 return NVPTXISD::TexUnified2DU32Float; 2986 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: 2987 return NVPTXISD::TexUnified2DU32FloatLevel; 2988 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: 2989 return NVPTXISD::TexUnified2DU32FloatGrad; 2990 2991 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: 2992 return NVPTXISD::TexUnified2DArrayFloatS32; 2993 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: 2994 return NVPTXISD::TexUnified2DArrayFloatFloat; 2995 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: 2996 return NVPTXISD::TexUnified2DArrayFloatFloatLevel; 2997 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: 2998 return NVPTXISD::TexUnified2DArrayFloatFloatGrad; 2999 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: 3000 return NVPTXISD::TexUnified2DArrayS32S32; 3001 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: 3002 return NVPTXISD::TexUnified2DArrayS32Float; 3003 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: 3004 return NVPTXISD::TexUnified2DArrayS32FloatLevel; 3005 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: 3006 return NVPTXISD::TexUnified2DArrayS32FloatGrad; 3007 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: 3008 return NVPTXISD::TexUnified2DArrayU32S32; 3009 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: 3010 return NVPTXISD::TexUnified2DArrayU32Float; 3011 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: 3012 return NVPTXISD::TexUnified2DArrayU32FloatLevel; 3013 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: 3014 return NVPTXISD::TexUnified2DArrayU32FloatGrad; 3015 3016 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: 3017 return NVPTXISD::TexUnified3DFloatS32; 3018 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: 3019 return NVPTXISD::TexUnified3DFloatFloat; 3020 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: 3021 return NVPTXISD::TexUnified3DFloatFloatLevel; 3022 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: 3023 return NVPTXISD::TexUnified3DFloatFloatGrad; 3024 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: 3025 return NVPTXISD::TexUnified3DS32S32; 3026 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: 3027 return NVPTXISD::TexUnified3DS32Float; 3028 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: 3029 return NVPTXISD::TexUnified3DS32FloatLevel; 3030 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: 3031 return NVPTXISD::TexUnified3DS32FloatGrad; 3032 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: 3033 return NVPTXISD::TexUnified3DU32S32; 3034 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: 3035 return NVPTXISD::TexUnified3DU32Float; 3036 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: 3037 return NVPTXISD::TexUnified3DU32FloatLevel; 3038 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: 3039 return NVPTXISD::TexUnified3DU32FloatGrad; 3040 3041 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: 3042 return NVPTXISD::TexUnifiedCubeFloatFloat; 3043 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: 3044 return NVPTXISD::TexUnifiedCubeFloatFloatLevel; 3045 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: 3046 return NVPTXISD::TexUnifiedCubeS32Float; 3047 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: 3048 return NVPTXISD::TexUnifiedCubeS32FloatLevel; 3049 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: 3050 return NVPTXISD::TexUnifiedCubeU32Float; 3051 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: 3052 return NVPTXISD::TexUnifiedCubeU32FloatLevel; 3053 3054 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: 3055 return NVPTXISD::TexUnifiedCubeArrayFloatFloat; 3056 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: 3057 return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel; 3058 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: 3059 return NVPTXISD::TexUnifiedCubeArrayS32Float; 3060 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: 3061 return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel; 3062 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: 3063 return NVPTXISD::TexUnifiedCubeArrayU32Float; 3064 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: 3065 return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel; 3066 3067 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: 3068 return NVPTXISD::Tld4UnifiedR2DFloatFloat; 3069 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: 3070 return NVPTXISD::Tld4UnifiedG2DFloatFloat; 3071 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: 3072 return NVPTXISD::Tld4UnifiedB2DFloatFloat; 3073 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: 3074 return NVPTXISD::Tld4UnifiedA2DFloatFloat; 3075 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: 3076 return NVPTXISD::Tld4UnifiedR2DS64Float; 3077 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: 3078 return NVPTXISD::Tld4UnifiedG2DS64Float; 3079 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: 3080 return NVPTXISD::Tld4UnifiedB2DS64Float; 3081 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: 3082 return NVPTXISD::Tld4UnifiedA2DS64Float; 3083 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: 3084 return NVPTXISD::Tld4UnifiedR2DU64Float; 3085 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: 3086 return NVPTXISD::Tld4UnifiedG2DU64Float; 3087 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: 3088 return NVPTXISD::Tld4UnifiedB2DU64Float; 3089 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: 3090 return NVPTXISD::Tld4UnifiedA2DU64Float; 3091 } 3092 } 3093 3094 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) { 3095 switch (Intrinsic) { 3096 default: 3097 return 0; 3098 case Intrinsic::nvvm_suld_1d_i8_clamp: 3099 return NVPTXISD::Suld1DI8Clamp; 3100 case Intrinsic::nvvm_suld_1d_i16_clamp: 3101 return NVPTXISD::Suld1DI16Clamp; 3102 case Intrinsic::nvvm_suld_1d_i32_clamp: 3103 return NVPTXISD::Suld1DI32Clamp; 3104 case Intrinsic::nvvm_suld_1d_i64_clamp: 3105 return NVPTXISD::Suld1DI64Clamp; 3106 case Intrinsic::nvvm_suld_1d_v2i8_clamp: 3107 return NVPTXISD::Suld1DV2I8Clamp; 3108 case Intrinsic::nvvm_suld_1d_v2i16_clamp: 3109 return NVPTXISD::Suld1DV2I16Clamp; 3110 case Intrinsic::nvvm_suld_1d_v2i32_clamp: 3111 return NVPTXISD::Suld1DV2I32Clamp; 3112 case Intrinsic::nvvm_suld_1d_v2i64_clamp: 3113 return NVPTXISD::Suld1DV2I64Clamp; 3114 case Intrinsic::nvvm_suld_1d_v4i8_clamp: 3115 return NVPTXISD::Suld1DV4I8Clamp; 3116 case Intrinsic::nvvm_suld_1d_v4i16_clamp: 3117 return NVPTXISD::Suld1DV4I16Clamp; 3118 case Intrinsic::nvvm_suld_1d_v4i32_clamp: 3119 return NVPTXISD::Suld1DV4I32Clamp; 3120 case Intrinsic::nvvm_suld_1d_array_i8_clamp: 3121 return NVPTXISD::Suld1DArrayI8Clamp; 3122 case Intrinsic::nvvm_suld_1d_array_i16_clamp: 3123 return NVPTXISD::Suld1DArrayI16Clamp; 3124 case Intrinsic::nvvm_suld_1d_array_i32_clamp: 3125 return NVPTXISD::Suld1DArrayI32Clamp; 3126 case Intrinsic::nvvm_suld_1d_array_i64_clamp: 3127 return NVPTXISD::Suld1DArrayI64Clamp; 3128 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: 3129 return NVPTXISD::Suld1DArrayV2I8Clamp; 3130 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: 3131 return NVPTXISD::Suld1DArrayV2I16Clamp; 3132 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: 3133 return NVPTXISD::Suld1DArrayV2I32Clamp; 3134 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: 3135 return NVPTXISD::Suld1DArrayV2I64Clamp; 3136 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: 3137 return NVPTXISD::Suld1DArrayV4I8Clamp; 3138 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: 3139 return NVPTXISD::Suld1DArrayV4I16Clamp; 3140 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: 3141 return NVPTXISD::Suld1DArrayV4I32Clamp; 3142 case Intrinsic::nvvm_suld_2d_i8_clamp: 3143 return NVPTXISD::Suld2DI8Clamp; 3144 case Intrinsic::nvvm_suld_2d_i16_clamp: 3145 return NVPTXISD::Suld2DI16Clamp; 3146 case Intrinsic::nvvm_suld_2d_i32_clamp: 3147 return NVPTXISD::Suld2DI32Clamp; 3148 case Intrinsic::nvvm_suld_2d_i64_clamp: 3149 return NVPTXISD::Suld2DI64Clamp; 3150 case Intrinsic::nvvm_suld_2d_v2i8_clamp: 3151 return NVPTXISD::Suld2DV2I8Clamp; 3152 case Intrinsic::nvvm_suld_2d_v2i16_clamp: 3153 return NVPTXISD::Suld2DV2I16Clamp; 3154 case Intrinsic::nvvm_suld_2d_v2i32_clamp: 3155 return NVPTXISD::Suld2DV2I32Clamp; 3156 case Intrinsic::nvvm_suld_2d_v2i64_clamp: 3157 return NVPTXISD::Suld2DV2I64Clamp; 3158 case Intrinsic::nvvm_suld_2d_v4i8_clamp: 3159 return NVPTXISD::Suld2DV4I8Clamp; 3160 case Intrinsic::nvvm_suld_2d_v4i16_clamp: 3161 return NVPTXISD::Suld2DV4I16Clamp; 3162 case Intrinsic::nvvm_suld_2d_v4i32_clamp: 3163 return NVPTXISD::Suld2DV4I32Clamp; 3164 case Intrinsic::nvvm_suld_2d_array_i8_clamp: 3165 return NVPTXISD::Suld2DArrayI8Clamp; 3166 case Intrinsic::nvvm_suld_2d_array_i16_clamp: 3167 return NVPTXISD::Suld2DArrayI16Clamp; 3168 case Intrinsic::nvvm_suld_2d_array_i32_clamp: 3169 return NVPTXISD::Suld2DArrayI32Clamp; 3170 case Intrinsic::nvvm_suld_2d_array_i64_clamp: 3171 return NVPTXISD::Suld2DArrayI64Clamp; 3172 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: 3173 return NVPTXISD::Suld2DArrayV2I8Clamp; 3174 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: 3175 return NVPTXISD::Suld2DArrayV2I16Clamp; 3176 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: 3177 return NVPTXISD::Suld2DArrayV2I32Clamp; 3178 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: 3179 return NVPTXISD::Suld2DArrayV2I64Clamp; 3180 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: 3181 return NVPTXISD::Suld2DArrayV4I8Clamp; 3182 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: 3183 return NVPTXISD::Suld2DArrayV4I16Clamp; 3184 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: 3185 return NVPTXISD::Suld2DArrayV4I32Clamp; 3186 case Intrinsic::nvvm_suld_3d_i8_clamp: 3187 return NVPTXISD::Suld3DI8Clamp; 3188 case Intrinsic::nvvm_suld_3d_i16_clamp: 3189 return NVPTXISD::Suld3DI16Clamp; 3190 case Intrinsic::nvvm_suld_3d_i32_clamp: 3191 return NVPTXISD::Suld3DI32Clamp; 3192 case Intrinsic::nvvm_suld_3d_i64_clamp: 3193 return NVPTXISD::Suld3DI64Clamp; 3194 case Intrinsic::nvvm_suld_3d_v2i8_clamp: 3195 return NVPTXISD::Suld3DV2I8Clamp; 3196 case Intrinsic::nvvm_suld_3d_v2i16_clamp: 3197 return NVPTXISD::Suld3DV2I16Clamp; 3198 case Intrinsic::nvvm_suld_3d_v2i32_clamp: 3199 return NVPTXISD::Suld3DV2I32Clamp; 3200 case Intrinsic::nvvm_suld_3d_v2i64_clamp: 3201 return NVPTXISD::Suld3DV2I64Clamp; 3202 case Intrinsic::nvvm_suld_3d_v4i8_clamp: 3203 return NVPTXISD::Suld3DV4I8Clamp; 3204 case Intrinsic::nvvm_suld_3d_v4i16_clamp: 3205 return NVPTXISD::Suld3DV4I16Clamp; 3206 case Intrinsic::nvvm_suld_3d_v4i32_clamp: 3207 return NVPTXISD::Suld3DV4I32Clamp; 3208 case Intrinsic::nvvm_suld_1d_i8_trap: 3209 return NVPTXISD::Suld1DI8Trap; 3210 case Intrinsic::nvvm_suld_1d_i16_trap: 3211 return NVPTXISD::Suld1DI16Trap; 3212 case Intrinsic::nvvm_suld_1d_i32_trap: 3213 return NVPTXISD::Suld1DI32Trap; 3214 case Intrinsic::nvvm_suld_1d_i64_trap: 3215 return NVPTXISD::Suld1DI64Trap; 3216 case Intrinsic::nvvm_suld_1d_v2i8_trap: 3217 return NVPTXISD::Suld1DV2I8Trap; 3218 case Intrinsic::nvvm_suld_1d_v2i16_trap: 3219 return NVPTXISD::Suld1DV2I16Trap; 3220 case Intrinsic::nvvm_suld_1d_v2i32_trap: 3221 return NVPTXISD::Suld1DV2I32Trap; 3222 case Intrinsic::nvvm_suld_1d_v2i64_trap: 3223 return NVPTXISD::Suld1DV2I64Trap; 3224 case Intrinsic::nvvm_suld_1d_v4i8_trap: 3225 return NVPTXISD::Suld1DV4I8Trap; 3226 case Intrinsic::nvvm_suld_1d_v4i16_trap: 3227 return NVPTXISD::Suld1DV4I16Trap; 3228 case Intrinsic::nvvm_suld_1d_v4i32_trap: 3229 return NVPTXISD::Suld1DV4I32Trap; 3230 case Intrinsic::nvvm_suld_1d_array_i8_trap: 3231 return NVPTXISD::Suld1DArrayI8Trap; 3232 case Intrinsic::nvvm_suld_1d_array_i16_trap: 3233 return NVPTXISD::Suld1DArrayI16Trap; 3234 case Intrinsic::nvvm_suld_1d_array_i32_trap: 3235 return NVPTXISD::Suld1DArrayI32Trap; 3236 case Intrinsic::nvvm_suld_1d_array_i64_trap: 3237 return NVPTXISD::Suld1DArrayI64Trap; 3238 case Intrinsic::nvvm_suld_1d_array_v2i8_trap: 3239 return NVPTXISD::Suld1DArrayV2I8Trap; 3240 case Intrinsic::nvvm_suld_1d_array_v2i16_trap: 3241 return NVPTXISD::Suld1DArrayV2I16Trap; 3242 case Intrinsic::nvvm_suld_1d_array_v2i32_trap: 3243 return NVPTXISD::Suld1DArrayV2I32Trap; 3244 case Intrinsic::nvvm_suld_1d_array_v2i64_trap: 3245 return NVPTXISD::Suld1DArrayV2I64Trap; 3246 case Intrinsic::nvvm_suld_1d_array_v4i8_trap: 3247 return NVPTXISD::Suld1DArrayV4I8Trap; 3248 case Intrinsic::nvvm_suld_1d_array_v4i16_trap: 3249 return NVPTXISD::Suld1DArrayV4I16Trap; 3250 case Intrinsic::nvvm_suld_1d_array_v4i32_trap: 3251 return NVPTXISD::Suld1DArrayV4I32Trap; 3252 case Intrinsic::nvvm_suld_2d_i8_trap: 3253 return NVPTXISD::Suld2DI8Trap; 3254 case Intrinsic::nvvm_suld_2d_i16_trap: 3255 return NVPTXISD::Suld2DI16Trap; 3256 case Intrinsic::nvvm_suld_2d_i32_trap: 3257 return NVPTXISD::Suld2DI32Trap; 3258 case Intrinsic::nvvm_suld_2d_i64_trap: 3259 return NVPTXISD::Suld2DI64Trap; 3260 case Intrinsic::nvvm_suld_2d_v2i8_trap: 3261 return NVPTXISD::Suld2DV2I8Trap; 3262 case Intrinsic::nvvm_suld_2d_v2i16_trap: 3263 return NVPTXISD::Suld2DV2I16Trap; 3264 case Intrinsic::nvvm_suld_2d_v2i32_trap: 3265 return NVPTXISD::Suld2DV2I32Trap; 3266 case Intrinsic::nvvm_suld_2d_v2i64_trap: 3267 return NVPTXISD::Suld2DV2I64Trap; 3268 case Intrinsic::nvvm_suld_2d_v4i8_trap: 3269 return NVPTXISD::Suld2DV4I8Trap; 3270 case Intrinsic::nvvm_suld_2d_v4i16_trap: 3271 return NVPTXISD::Suld2DV4I16Trap; 3272 case Intrinsic::nvvm_suld_2d_v4i32_trap: 3273 return NVPTXISD::Suld2DV4I32Trap; 3274 case Intrinsic::nvvm_suld_2d_array_i8_trap: 3275 return NVPTXISD::Suld2DArrayI8Trap; 3276 case Intrinsic::nvvm_suld_2d_array_i16_trap: 3277 return NVPTXISD::Suld2DArrayI16Trap; 3278 case Intrinsic::nvvm_suld_2d_array_i32_trap: 3279 return NVPTXISD::Suld2DArrayI32Trap; 3280 case Intrinsic::nvvm_suld_2d_array_i64_trap: 3281 return NVPTXISD::Suld2DArrayI64Trap; 3282 case Intrinsic::nvvm_suld_2d_array_v2i8_trap: 3283 return NVPTXISD::Suld2DArrayV2I8Trap; 3284 case Intrinsic::nvvm_suld_2d_array_v2i16_trap: 3285 return NVPTXISD::Suld2DArrayV2I16Trap; 3286 case Intrinsic::nvvm_suld_2d_array_v2i32_trap: 3287 return NVPTXISD::Suld2DArrayV2I32Trap; 3288 case Intrinsic::nvvm_suld_2d_array_v2i64_trap: 3289 return NVPTXISD::Suld2DArrayV2I64Trap; 3290 case Intrinsic::nvvm_suld_2d_array_v4i8_trap: 3291 return NVPTXISD::Suld2DArrayV4I8Trap; 3292 case Intrinsic::nvvm_suld_2d_array_v4i16_trap: 3293 return NVPTXISD::Suld2DArrayV4I16Trap; 3294 case Intrinsic::nvvm_suld_2d_array_v4i32_trap: 3295 return NVPTXISD::Suld2DArrayV4I32Trap; 3296 case Intrinsic::nvvm_suld_3d_i8_trap: 3297 return NVPTXISD::Suld3DI8Trap; 3298 case Intrinsic::nvvm_suld_3d_i16_trap: 3299 return NVPTXISD::Suld3DI16Trap; 3300 case Intrinsic::nvvm_suld_3d_i32_trap: 3301 return NVPTXISD::Suld3DI32Trap; 3302 case Intrinsic::nvvm_suld_3d_i64_trap: 3303 return NVPTXISD::Suld3DI64Trap; 3304 case Intrinsic::nvvm_suld_3d_v2i8_trap: 3305 return NVPTXISD::Suld3DV2I8Trap; 3306 case Intrinsic::nvvm_suld_3d_v2i16_trap: 3307 return NVPTXISD::Suld3DV2I16Trap; 3308 case Intrinsic::nvvm_suld_3d_v2i32_trap: 3309 return NVPTXISD::Suld3DV2I32Trap; 3310 case Intrinsic::nvvm_suld_3d_v2i64_trap: 3311 return NVPTXISD::Suld3DV2I64Trap; 3312 case Intrinsic::nvvm_suld_3d_v4i8_trap: 3313 return NVPTXISD::Suld3DV4I8Trap; 3314 case Intrinsic::nvvm_suld_3d_v4i16_trap: 3315 return NVPTXISD::Suld3DV4I16Trap; 3316 case Intrinsic::nvvm_suld_3d_v4i32_trap: 3317 return NVPTXISD::Suld3DV4I32Trap; 3318 case Intrinsic::nvvm_suld_1d_i8_zero: 3319 return NVPTXISD::Suld1DI8Zero; 3320 case Intrinsic::nvvm_suld_1d_i16_zero: 3321 return NVPTXISD::Suld1DI16Zero; 3322 case Intrinsic::nvvm_suld_1d_i32_zero: 3323 return NVPTXISD::Suld1DI32Zero; 3324 case Intrinsic::nvvm_suld_1d_i64_zero: 3325 return NVPTXISD::Suld1DI64Zero; 3326 case Intrinsic::nvvm_suld_1d_v2i8_zero: 3327 return NVPTXISD::Suld1DV2I8Zero; 3328 case Intrinsic::nvvm_suld_1d_v2i16_zero: 3329 return NVPTXISD::Suld1DV2I16Zero; 3330 case Intrinsic::nvvm_suld_1d_v2i32_zero: 3331 return NVPTXISD::Suld1DV2I32Zero; 3332 case Intrinsic::nvvm_suld_1d_v2i64_zero: 3333 return NVPTXISD::Suld1DV2I64Zero; 3334 case Intrinsic::nvvm_suld_1d_v4i8_zero: 3335 return NVPTXISD::Suld1DV4I8Zero; 3336 case Intrinsic::nvvm_suld_1d_v4i16_zero: 3337 return NVPTXISD::Suld1DV4I16Zero; 3338 case Intrinsic::nvvm_suld_1d_v4i32_zero: 3339 return NVPTXISD::Suld1DV4I32Zero; 3340 case Intrinsic::nvvm_suld_1d_array_i8_zero: 3341 return NVPTXISD::Suld1DArrayI8Zero; 3342 case Intrinsic::nvvm_suld_1d_array_i16_zero: 3343 return NVPTXISD::Suld1DArrayI16Zero; 3344 case Intrinsic::nvvm_suld_1d_array_i32_zero: 3345 return NVPTXISD::Suld1DArrayI32Zero; 3346 case Intrinsic::nvvm_suld_1d_array_i64_zero: 3347 return NVPTXISD::Suld1DArrayI64Zero; 3348 case Intrinsic::nvvm_suld_1d_array_v2i8_zero: 3349 return NVPTXISD::Suld1DArrayV2I8Zero; 3350 case Intrinsic::nvvm_suld_1d_array_v2i16_zero: 3351 return NVPTXISD::Suld1DArrayV2I16Zero; 3352 case Intrinsic::nvvm_suld_1d_array_v2i32_zero: 3353 return NVPTXISD::Suld1DArrayV2I32Zero; 3354 case Intrinsic::nvvm_suld_1d_array_v2i64_zero: 3355 return NVPTXISD::Suld1DArrayV2I64Zero; 3356 case Intrinsic::nvvm_suld_1d_array_v4i8_zero: 3357 return NVPTXISD::Suld1DArrayV4I8Zero; 3358 case Intrinsic::nvvm_suld_1d_array_v4i16_zero: 3359 return NVPTXISD::Suld1DArrayV4I16Zero; 3360 case Intrinsic::nvvm_suld_1d_array_v4i32_zero: 3361 return NVPTXISD::Suld1DArrayV4I32Zero; 3362 case Intrinsic::nvvm_suld_2d_i8_zero: 3363 return NVPTXISD::Suld2DI8Zero; 3364 case Intrinsic::nvvm_suld_2d_i16_zero: 3365 return NVPTXISD::Suld2DI16Zero; 3366 case Intrinsic::nvvm_suld_2d_i32_zero: 3367 return NVPTXISD::Suld2DI32Zero; 3368 case Intrinsic::nvvm_suld_2d_i64_zero: 3369 return NVPTXISD::Suld2DI64Zero; 3370 case Intrinsic::nvvm_suld_2d_v2i8_zero: 3371 return NVPTXISD::Suld2DV2I8Zero; 3372 case Intrinsic::nvvm_suld_2d_v2i16_zero: 3373 return NVPTXISD::Suld2DV2I16Zero; 3374 case Intrinsic::nvvm_suld_2d_v2i32_zero: 3375 return NVPTXISD::Suld2DV2I32Zero; 3376 case Intrinsic::nvvm_suld_2d_v2i64_zero: 3377 return NVPTXISD::Suld2DV2I64Zero; 3378 case Intrinsic::nvvm_suld_2d_v4i8_zero: 3379 return NVPTXISD::Suld2DV4I8Zero; 3380 case Intrinsic::nvvm_suld_2d_v4i16_zero: 3381 return NVPTXISD::Suld2DV4I16Zero; 3382 case Intrinsic::nvvm_suld_2d_v4i32_zero: 3383 return NVPTXISD::Suld2DV4I32Zero; 3384 case Intrinsic::nvvm_suld_2d_array_i8_zero: 3385 return NVPTXISD::Suld2DArrayI8Zero; 3386 case Intrinsic::nvvm_suld_2d_array_i16_zero: 3387 return NVPTXISD::Suld2DArrayI16Zero; 3388 case Intrinsic::nvvm_suld_2d_array_i32_zero: 3389 return NVPTXISD::Suld2DArrayI32Zero; 3390 case Intrinsic::nvvm_suld_2d_array_i64_zero: 3391 return NVPTXISD::Suld2DArrayI64Zero; 3392 case Intrinsic::nvvm_suld_2d_array_v2i8_zero: 3393 return NVPTXISD::Suld2DArrayV2I8Zero; 3394 case Intrinsic::nvvm_suld_2d_array_v2i16_zero: 3395 return NVPTXISD::Suld2DArrayV2I16Zero; 3396 case Intrinsic::nvvm_suld_2d_array_v2i32_zero: 3397 return NVPTXISD::Suld2DArrayV2I32Zero; 3398 case Intrinsic::nvvm_suld_2d_array_v2i64_zero: 3399 return NVPTXISD::Suld2DArrayV2I64Zero; 3400 case Intrinsic::nvvm_suld_2d_array_v4i8_zero: 3401 return NVPTXISD::Suld2DArrayV4I8Zero; 3402 case Intrinsic::nvvm_suld_2d_array_v4i16_zero: 3403 return NVPTXISD::Suld2DArrayV4I16Zero; 3404 case Intrinsic::nvvm_suld_2d_array_v4i32_zero: 3405 return NVPTXISD::Suld2DArrayV4I32Zero; 3406 case Intrinsic::nvvm_suld_3d_i8_zero: 3407 return NVPTXISD::Suld3DI8Zero; 3408 case Intrinsic::nvvm_suld_3d_i16_zero: 3409 return NVPTXISD::Suld3DI16Zero; 3410 case Intrinsic::nvvm_suld_3d_i32_zero: 3411 return NVPTXISD::Suld3DI32Zero; 3412 case Intrinsic::nvvm_suld_3d_i64_zero: 3413 return NVPTXISD::Suld3DI64Zero; 3414 case Intrinsic::nvvm_suld_3d_v2i8_zero: 3415 return NVPTXISD::Suld3DV2I8Zero; 3416 case Intrinsic::nvvm_suld_3d_v2i16_zero: 3417 return NVPTXISD::Suld3DV2I16Zero; 3418 case Intrinsic::nvvm_suld_3d_v2i32_zero: 3419 return NVPTXISD::Suld3DV2I32Zero; 3420 case Intrinsic::nvvm_suld_3d_v2i64_zero: 3421 return NVPTXISD::Suld3DV2I64Zero; 3422 case Intrinsic::nvvm_suld_3d_v4i8_zero: 3423 return NVPTXISD::Suld3DV4I8Zero; 3424 case Intrinsic::nvvm_suld_3d_v4i16_zero: 3425 return NVPTXISD::Suld3DV4I16Zero; 3426 case Intrinsic::nvvm_suld_3d_v4i32_zero: 3427 return NVPTXISD::Suld3DV4I32Zero; 3428 } 3429 } 3430 3431 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as 3432 // TgtMemIntrinsic 3433 // because we need the information that is only available in the "Value" type 3434 // of destination 3435 // pointer. In particular, the address space information. 3436 bool NVPTXTargetLowering::getTgtMemIntrinsic( 3437 IntrinsicInfo &Info, const CallInst &I, 3438 MachineFunction &MF, unsigned Intrinsic) const { 3439 switch (Intrinsic) { 3440 default: 3441 return false; 3442 case Intrinsic::nvvm_match_all_sync_i32p: 3443 case Intrinsic::nvvm_match_all_sync_i64p: 3444 Info.opc = ISD::INTRINSIC_W_CHAIN; 3445 // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute 3446 // in order to model data exchange with other threads, but perform no real 3447 // memory accesses. 3448 Info.memVT = MVT::i1; 3449 3450 // Our result depends on both our and other thread's arguments. 3451 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 3452 return true; 3453 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col: 3454 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row: 3455 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride: 3456 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride: 3457 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col: 3458 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row: 3459 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride: 3460 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride: 3461 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col: 3462 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row: 3463 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride: 3464 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride: 3465 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col: 3466 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row: 3467 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride: 3468 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride: 3469 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col: 3470 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row: 3471 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride: 3472 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride: 3473 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col: 3474 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row: 3475 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride: 3476 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: { 3477 Info.opc = ISD::INTRINSIC_W_CHAIN; 3478 Info.memVT = MVT::v8f16; 3479 Info.ptrVal = I.getArgOperand(0); 3480 Info.offset = 0; 3481 Info.flags = MachineMemOperand::MOLoad; 3482 Info.align = Align(16); 3483 return true; 3484 } 3485 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col: 3486 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride: 3487 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride: 3488 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col: 3489 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row: 3490 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride: 3491 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride: 3492 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row: 3493 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col: 3494 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride: 3495 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row: 3496 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride: 3497 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col: 3498 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride: 3499 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride: 3500 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col: 3501 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row: 3502 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride: 3503 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride: 3504 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: 3505 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col: 3506 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride: 3507 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row: 3508 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: { 3509 Info.opc = ISD::INTRINSIC_W_CHAIN; 3510 Info.memVT = MVT::v2i32; 3511 Info.ptrVal = I.getArgOperand(0); 3512 Info.offset = 0; 3513 Info.flags = MachineMemOperand::MOLoad; 3514 Info.align = Align(8); 3515 return true; 3516 } 3517 3518 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col: 3519 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride: 3520 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride: 3521 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col: 3522 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row: 3523 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride: 3524 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride: 3525 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row: 3526 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col: 3527 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride: 3528 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row: 3529 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride: 3530 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col: 3531 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride: 3532 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row: 3533 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride: 3534 3535 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col: 3536 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride: 3537 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride: 3538 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col: 3539 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row: 3540 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride: 3541 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride: 3542 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: 3543 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col: 3544 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride: 3545 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row: 3546 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride: 3547 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col: 3548 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride: 3549 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row: 3550 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride: 3551 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16: 3552 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: { 3553 Info.opc = ISD::INTRINSIC_W_CHAIN; 3554 Info.memVT = MVT::v4i32; 3555 Info.ptrVal = I.getArgOperand(0); 3556 Info.offset = 0; 3557 Info.flags = MachineMemOperand::MOLoad; 3558 Info.align = Align(16); 3559 return true; 3560 } 3561 3562 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col: 3563 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride: 3564 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride: 3565 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col: 3566 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row: 3567 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride: 3568 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride: 3569 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row: 3570 3571 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col: 3572 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride: 3573 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride: 3574 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col: 3575 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row: 3576 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride: 3577 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride: 3578 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row: 3579 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row: 3580 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride: 3581 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col: 3582 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride: 3583 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row: 3584 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride: 3585 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride: 3586 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row: 3587 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col: 3588 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride: 3589 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride: 3590 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: 3591 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16: 3592 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: { 3593 Info.opc = ISD::INTRINSIC_W_CHAIN; 3594 Info.memVT = MVT::i32; 3595 Info.ptrVal = I.getArgOperand(0); 3596 Info.offset = 0; 3597 Info.flags = MachineMemOperand::MOLoad; 3598 Info.align = Align(4); 3599 return true; 3600 } 3601 3602 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col: 3603 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row: 3604 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride: 3605 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride: 3606 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col: 3607 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row: 3608 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride: 3609 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride: 3610 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col: 3611 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row: 3612 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride: 3613 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: { 3614 Info.opc = ISD::INTRINSIC_W_CHAIN; 3615 Info.memVT = MVT::v4f16; 3616 Info.ptrVal = I.getArgOperand(0); 3617 Info.offset = 0; 3618 Info.flags = MachineMemOperand::MOLoad; 3619 Info.align = Align(16); 3620 return true; 3621 } 3622 3623 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col: 3624 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row: 3625 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride: 3626 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride: 3627 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col: 3628 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row: 3629 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride: 3630 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride: 3631 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col: 3632 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row: 3633 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride: 3634 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: 3635 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col: 3636 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row: 3637 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride: 3638 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: { 3639 Info.opc = ISD::INTRINSIC_W_CHAIN; 3640 Info.memVT = MVT::v8f32; 3641 Info.ptrVal = I.getArgOperand(0); 3642 Info.offset = 0; 3643 Info.flags = MachineMemOperand::MOLoad; 3644 Info.align = Align(16); 3645 return true; 3646 } 3647 3648 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col: 3649 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride: 3650 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row: 3651 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride: 3652 3653 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col: 3654 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride: 3655 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row: 3656 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride: 3657 3658 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col: 3659 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride: 3660 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row: 3661 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride: 3662 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col: 3663 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride: 3664 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row: 3665 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride: 3666 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col: 3667 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride: 3668 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row: 3669 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: { 3670 Info.opc = ISD::INTRINSIC_W_CHAIN; 3671 Info.memVT = MVT::v8i32; 3672 Info.ptrVal = I.getArgOperand(0); 3673 Info.offset = 0; 3674 Info.flags = MachineMemOperand::MOLoad; 3675 Info.align = Align(16); 3676 return true; 3677 } 3678 3679 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col: 3680 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride: 3681 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row: 3682 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride: 3683 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col: 3684 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride: 3685 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row: 3686 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: 3687 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16: 3688 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: { 3689 Info.opc = ISD::INTRINSIC_W_CHAIN; 3690 Info.memVT = MVT::v2i32; 3691 Info.ptrVal = I.getArgOperand(0); 3692 Info.offset = 0; 3693 Info.flags = MachineMemOperand::MOLoad; 3694 Info.align = Align(8); 3695 return true; 3696 } 3697 3698 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col: 3699 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride: 3700 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row: 3701 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride: 3702 3703 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col: 3704 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride: 3705 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row: 3706 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: { 3707 Info.opc = ISD::INTRINSIC_W_CHAIN; 3708 Info.memVT = MVT::f64; 3709 Info.ptrVal = I.getArgOperand(0); 3710 Info.offset = 0; 3711 Info.flags = MachineMemOperand::MOLoad; 3712 Info.align = Align(8); 3713 return true; 3714 } 3715 3716 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col: 3717 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride: 3718 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row: 3719 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: { 3720 Info.opc = ISD::INTRINSIC_W_CHAIN; 3721 Info.memVT = MVT::v2f64; 3722 Info.ptrVal = I.getArgOperand(0); 3723 Info.offset = 0; 3724 Info.flags = MachineMemOperand::MOLoad; 3725 Info.align = Align(16); 3726 return true; 3727 } 3728 3729 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col: 3730 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row: 3731 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride: 3732 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride: 3733 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col: 3734 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row: 3735 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride: 3736 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride: 3737 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col: 3738 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row: 3739 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride: 3740 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: { 3741 Info.opc = ISD::INTRINSIC_VOID; 3742 Info.memVT = MVT::v4f16; 3743 Info.ptrVal = I.getArgOperand(0); 3744 Info.offset = 0; 3745 Info.flags = MachineMemOperand::MOStore; 3746 Info.align = Align(16); 3747 return true; 3748 } 3749 3750 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col: 3751 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row: 3752 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride: 3753 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride: 3754 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col: 3755 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row: 3756 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride: 3757 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride: 3758 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col: 3759 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row: 3760 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride: 3761 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: 3762 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col: 3763 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row: 3764 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride: 3765 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: { 3766 Info.opc = ISD::INTRINSIC_VOID; 3767 Info.memVT = MVT::v8f32; 3768 Info.ptrVal = I.getArgOperand(0); 3769 Info.offset = 0; 3770 Info.flags = MachineMemOperand::MOStore; 3771 Info.align = Align(16); 3772 return true; 3773 } 3774 3775 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col: 3776 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride: 3777 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row: 3778 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride: 3779 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col: 3780 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride: 3781 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row: 3782 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride: 3783 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col: 3784 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride: 3785 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row: 3786 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: { 3787 Info.opc = ISD::INTRINSIC_VOID; 3788 Info.memVT = MVT::v8i32; 3789 Info.ptrVal = I.getArgOperand(0); 3790 Info.offset = 0; 3791 Info.flags = MachineMemOperand::MOStore; 3792 Info.align = Align(16); 3793 return true; 3794 } 3795 3796 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col: 3797 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride: 3798 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row: 3799 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride: 3800 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col: 3801 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride: 3802 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row: 3803 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: { 3804 Info.opc = ISD::INTRINSIC_VOID; 3805 Info.memVT = MVT::v2i32; 3806 Info.ptrVal = I.getArgOperand(0); 3807 Info.offset = 0; 3808 Info.flags = MachineMemOperand::MOStore; 3809 Info.align = Align(8); 3810 return true; 3811 } 3812 3813 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col: 3814 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride: 3815 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row: 3816 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: { 3817 Info.opc = ISD::INTRINSIC_VOID; 3818 Info.memVT = MVT::v2f64; 3819 Info.ptrVal = I.getArgOperand(0); 3820 Info.offset = 0; 3821 Info.flags = MachineMemOperand::MOStore; 3822 Info.align = Align(16); 3823 return true; 3824 } 3825 3826 case Intrinsic::nvvm_atomic_load_inc_32: 3827 case Intrinsic::nvvm_atomic_load_dec_32: 3828 3829 case Intrinsic::nvvm_atomic_add_gen_f_cta: 3830 case Intrinsic::nvvm_atomic_add_gen_f_sys: 3831 case Intrinsic::nvvm_atomic_add_gen_i_cta: 3832 case Intrinsic::nvvm_atomic_add_gen_i_sys: 3833 case Intrinsic::nvvm_atomic_and_gen_i_cta: 3834 case Intrinsic::nvvm_atomic_and_gen_i_sys: 3835 case Intrinsic::nvvm_atomic_cas_gen_i_cta: 3836 case Intrinsic::nvvm_atomic_cas_gen_i_sys: 3837 case Intrinsic::nvvm_atomic_dec_gen_i_cta: 3838 case Intrinsic::nvvm_atomic_dec_gen_i_sys: 3839 case Intrinsic::nvvm_atomic_inc_gen_i_cta: 3840 case Intrinsic::nvvm_atomic_inc_gen_i_sys: 3841 case Intrinsic::nvvm_atomic_max_gen_i_cta: 3842 case Intrinsic::nvvm_atomic_max_gen_i_sys: 3843 case Intrinsic::nvvm_atomic_min_gen_i_cta: 3844 case Intrinsic::nvvm_atomic_min_gen_i_sys: 3845 case Intrinsic::nvvm_atomic_or_gen_i_cta: 3846 case Intrinsic::nvvm_atomic_or_gen_i_sys: 3847 case Intrinsic::nvvm_atomic_exch_gen_i_cta: 3848 case Intrinsic::nvvm_atomic_exch_gen_i_sys: 3849 case Intrinsic::nvvm_atomic_xor_gen_i_cta: 3850 case Intrinsic::nvvm_atomic_xor_gen_i_sys: { 3851 auto &DL = I.getModule()->getDataLayout(); 3852 Info.opc = ISD::INTRINSIC_W_CHAIN; 3853 Info.memVT = getValueType(DL, I.getType()); 3854 Info.ptrVal = I.getArgOperand(0); 3855 Info.offset = 0; 3856 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 3857 Info.align.reset(); 3858 return true; 3859 } 3860 3861 case Intrinsic::nvvm_ldu_global_i: 3862 case Intrinsic::nvvm_ldu_global_f: 3863 case Intrinsic::nvvm_ldu_global_p: { 3864 auto &DL = I.getModule()->getDataLayout(); 3865 Info.opc = ISD::INTRINSIC_W_CHAIN; 3866 if (Intrinsic == Intrinsic::nvvm_ldu_global_i) 3867 Info.memVT = getValueType(DL, I.getType()); 3868 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p) 3869 Info.memVT = getPointerTy(DL); 3870 else 3871 Info.memVT = getValueType(DL, I.getType()); 3872 Info.ptrVal = I.getArgOperand(0); 3873 Info.offset = 0; 3874 Info.flags = MachineMemOperand::MOLoad; 3875 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 3876 3877 return true; 3878 } 3879 case Intrinsic::nvvm_ldg_global_i: 3880 case Intrinsic::nvvm_ldg_global_f: 3881 case Intrinsic::nvvm_ldg_global_p: { 3882 auto &DL = I.getModule()->getDataLayout(); 3883 3884 Info.opc = ISD::INTRINSIC_W_CHAIN; 3885 if (Intrinsic == Intrinsic::nvvm_ldg_global_i) 3886 Info.memVT = getValueType(DL, I.getType()); 3887 else if(Intrinsic == Intrinsic::nvvm_ldg_global_p) 3888 Info.memVT = getPointerTy(DL); 3889 else 3890 Info.memVT = getValueType(DL, I.getType()); 3891 Info.ptrVal = I.getArgOperand(0); 3892 Info.offset = 0; 3893 Info.flags = MachineMemOperand::MOLoad; 3894 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 3895 3896 return true; 3897 } 3898 3899 case Intrinsic::nvvm_tex_1d_v4f32_s32: 3900 case Intrinsic::nvvm_tex_1d_v4f32_f32: 3901 case Intrinsic::nvvm_tex_1d_level_v4f32_f32: 3902 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: 3903 case Intrinsic::nvvm_tex_1d_array_v4f32_s32: 3904 case Intrinsic::nvvm_tex_1d_array_v4f32_f32: 3905 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: 3906 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: 3907 case Intrinsic::nvvm_tex_2d_v4f32_s32: 3908 case Intrinsic::nvvm_tex_2d_v4f32_f32: 3909 case Intrinsic::nvvm_tex_2d_level_v4f32_f32: 3910 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: 3911 case Intrinsic::nvvm_tex_2d_array_v4f32_s32: 3912 case Intrinsic::nvvm_tex_2d_array_v4f32_f32: 3913 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: 3914 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: 3915 case Intrinsic::nvvm_tex_3d_v4f32_s32: 3916 case Intrinsic::nvvm_tex_3d_v4f32_f32: 3917 case Intrinsic::nvvm_tex_3d_level_v4f32_f32: 3918 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: 3919 case Intrinsic::nvvm_tex_cube_v4f32_f32: 3920 case Intrinsic::nvvm_tex_cube_level_v4f32_f32: 3921 case Intrinsic::nvvm_tex_cube_array_v4f32_f32: 3922 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: 3923 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: 3924 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: 3925 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: 3926 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: 3927 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: 3928 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: 3929 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: 3930 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: 3931 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: 3932 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: 3933 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: 3934 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: 3935 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: 3936 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: 3937 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: 3938 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: 3939 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: 3940 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: 3941 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: 3942 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: 3943 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: 3944 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: 3945 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: 3946 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: 3947 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: 3948 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: 3949 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: 3950 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: 3951 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: 3952 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: 3953 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: 3954 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: 3955 Info.opc = getOpcForTextureInstr(Intrinsic); 3956 Info.memVT = MVT::v4f32; 3957 Info.ptrVal = nullptr; 3958 Info.offset = 0; 3959 Info.flags = MachineMemOperand::MOLoad; 3960 Info.align = Align(16); 3961 return true; 3962 3963 case Intrinsic::nvvm_tex_1d_v4s32_s32: 3964 case Intrinsic::nvvm_tex_1d_v4s32_f32: 3965 case Intrinsic::nvvm_tex_1d_level_v4s32_f32: 3966 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: 3967 case Intrinsic::nvvm_tex_1d_array_v4s32_s32: 3968 case Intrinsic::nvvm_tex_1d_array_v4s32_f32: 3969 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: 3970 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: 3971 case Intrinsic::nvvm_tex_2d_v4s32_s32: 3972 case Intrinsic::nvvm_tex_2d_v4s32_f32: 3973 case Intrinsic::nvvm_tex_2d_level_v4s32_f32: 3974 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: 3975 case Intrinsic::nvvm_tex_2d_array_v4s32_s32: 3976 case Intrinsic::nvvm_tex_2d_array_v4s32_f32: 3977 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: 3978 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: 3979 case Intrinsic::nvvm_tex_3d_v4s32_s32: 3980 case Intrinsic::nvvm_tex_3d_v4s32_f32: 3981 case Intrinsic::nvvm_tex_3d_level_v4s32_f32: 3982 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: 3983 case Intrinsic::nvvm_tex_cube_v4s32_f32: 3984 case Intrinsic::nvvm_tex_cube_level_v4s32_f32: 3985 case Intrinsic::nvvm_tex_cube_array_v4s32_f32: 3986 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: 3987 case Intrinsic::nvvm_tex_cube_v4u32_f32: 3988 case Intrinsic::nvvm_tex_cube_level_v4u32_f32: 3989 case Intrinsic::nvvm_tex_cube_array_v4u32_f32: 3990 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: 3991 case Intrinsic::nvvm_tex_1d_v4u32_s32: 3992 case Intrinsic::nvvm_tex_1d_v4u32_f32: 3993 case Intrinsic::nvvm_tex_1d_level_v4u32_f32: 3994 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: 3995 case Intrinsic::nvvm_tex_1d_array_v4u32_s32: 3996 case Intrinsic::nvvm_tex_1d_array_v4u32_f32: 3997 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: 3998 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: 3999 case Intrinsic::nvvm_tex_2d_v4u32_s32: 4000 case Intrinsic::nvvm_tex_2d_v4u32_f32: 4001 case Intrinsic::nvvm_tex_2d_level_v4u32_f32: 4002 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: 4003 case Intrinsic::nvvm_tex_2d_array_v4u32_s32: 4004 case Intrinsic::nvvm_tex_2d_array_v4u32_f32: 4005 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: 4006 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: 4007 case Intrinsic::nvvm_tex_3d_v4u32_s32: 4008 case Intrinsic::nvvm_tex_3d_v4u32_f32: 4009 case Intrinsic::nvvm_tex_3d_level_v4u32_f32: 4010 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: 4011 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: 4012 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: 4013 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: 4014 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: 4015 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: 4016 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: 4017 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: 4018 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: 4019 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: 4020 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: 4021 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: 4022 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: 4023 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: 4024 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: 4025 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: 4026 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: 4027 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: 4028 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: 4029 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: 4030 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: 4031 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: 4032 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: 4033 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: 4034 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: 4035 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: 4036 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: 4037 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: 4038 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: 4039 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: 4040 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: 4041 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: 4042 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: 4043 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: 4044 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: 4045 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: 4046 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: 4047 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: 4048 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: 4049 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: 4050 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: 4051 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: 4052 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: 4053 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: 4054 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: 4055 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: 4056 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: 4057 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: 4058 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: 4059 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: 4060 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: 4061 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: 4062 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: 4063 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: 4064 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: 4065 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: 4066 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: 4067 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: 4068 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: 4069 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: 4070 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: 4071 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: 4072 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: 4073 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: 4074 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: 4075 Info.opc = getOpcForTextureInstr(Intrinsic); 4076 Info.memVT = MVT::v4i32; 4077 Info.ptrVal = nullptr; 4078 Info.offset = 0; 4079 Info.flags = MachineMemOperand::MOLoad; 4080 Info.align = Align(16); 4081 return true; 4082 4083 case Intrinsic::nvvm_suld_1d_i8_clamp: 4084 case Intrinsic::nvvm_suld_1d_v2i8_clamp: 4085 case Intrinsic::nvvm_suld_1d_v4i8_clamp: 4086 case Intrinsic::nvvm_suld_1d_array_i8_clamp: 4087 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: 4088 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: 4089 case Intrinsic::nvvm_suld_2d_i8_clamp: 4090 case Intrinsic::nvvm_suld_2d_v2i8_clamp: 4091 case Intrinsic::nvvm_suld_2d_v4i8_clamp: 4092 case Intrinsic::nvvm_suld_2d_array_i8_clamp: 4093 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: 4094 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: 4095 case Intrinsic::nvvm_suld_3d_i8_clamp: 4096 case Intrinsic::nvvm_suld_3d_v2i8_clamp: 4097 case Intrinsic::nvvm_suld_3d_v4i8_clamp: 4098 case Intrinsic::nvvm_suld_1d_i8_trap: 4099 case Intrinsic::nvvm_suld_1d_v2i8_trap: 4100 case Intrinsic::nvvm_suld_1d_v4i8_trap: 4101 case Intrinsic::nvvm_suld_1d_array_i8_trap: 4102 case Intrinsic::nvvm_suld_1d_array_v2i8_trap: 4103 case Intrinsic::nvvm_suld_1d_array_v4i8_trap: 4104 case Intrinsic::nvvm_suld_2d_i8_trap: 4105 case Intrinsic::nvvm_suld_2d_v2i8_trap: 4106 case Intrinsic::nvvm_suld_2d_v4i8_trap: 4107 case Intrinsic::nvvm_suld_2d_array_i8_trap: 4108 case Intrinsic::nvvm_suld_2d_array_v2i8_trap: 4109 case Intrinsic::nvvm_suld_2d_array_v4i8_trap: 4110 case Intrinsic::nvvm_suld_3d_i8_trap: 4111 case Intrinsic::nvvm_suld_3d_v2i8_trap: 4112 case Intrinsic::nvvm_suld_3d_v4i8_trap: 4113 case Intrinsic::nvvm_suld_1d_i8_zero: 4114 case Intrinsic::nvvm_suld_1d_v2i8_zero: 4115 case Intrinsic::nvvm_suld_1d_v4i8_zero: 4116 case Intrinsic::nvvm_suld_1d_array_i8_zero: 4117 case Intrinsic::nvvm_suld_1d_array_v2i8_zero: 4118 case Intrinsic::nvvm_suld_1d_array_v4i8_zero: 4119 case Intrinsic::nvvm_suld_2d_i8_zero: 4120 case Intrinsic::nvvm_suld_2d_v2i8_zero: 4121 case Intrinsic::nvvm_suld_2d_v4i8_zero: 4122 case Intrinsic::nvvm_suld_2d_array_i8_zero: 4123 case Intrinsic::nvvm_suld_2d_array_v2i8_zero: 4124 case Intrinsic::nvvm_suld_2d_array_v4i8_zero: 4125 case Intrinsic::nvvm_suld_3d_i8_zero: 4126 case Intrinsic::nvvm_suld_3d_v2i8_zero: 4127 case Intrinsic::nvvm_suld_3d_v4i8_zero: 4128 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4129 Info.memVT = MVT::i8; 4130 Info.ptrVal = nullptr; 4131 Info.offset = 0; 4132 Info.flags = MachineMemOperand::MOLoad; 4133 Info.align = Align(16); 4134 return true; 4135 4136 case Intrinsic::nvvm_suld_1d_i16_clamp: 4137 case Intrinsic::nvvm_suld_1d_v2i16_clamp: 4138 case Intrinsic::nvvm_suld_1d_v4i16_clamp: 4139 case Intrinsic::nvvm_suld_1d_array_i16_clamp: 4140 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: 4141 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: 4142 case Intrinsic::nvvm_suld_2d_i16_clamp: 4143 case Intrinsic::nvvm_suld_2d_v2i16_clamp: 4144 case Intrinsic::nvvm_suld_2d_v4i16_clamp: 4145 case Intrinsic::nvvm_suld_2d_array_i16_clamp: 4146 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: 4147 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: 4148 case Intrinsic::nvvm_suld_3d_i16_clamp: 4149 case Intrinsic::nvvm_suld_3d_v2i16_clamp: 4150 case Intrinsic::nvvm_suld_3d_v4i16_clamp: 4151 case Intrinsic::nvvm_suld_1d_i16_trap: 4152 case Intrinsic::nvvm_suld_1d_v2i16_trap: 4153 case Intrinsic::nvvm_suld_1d_v4i16_trap: 4154 case Intrinsic::nvvm_suld_1d_array_i16_trap: 4155 case Intrinsic::nvvm_suld_1d_array_v2i16_trap: 4156 case Intrinsic::nvvm_suld_1d_array_v4i16_trap: 4157 case Intrinsic::nvvm_suld_2d_i16_trap: 4158 case Intrinsic::nvvm_suld_2d_v2i16_trap: 4159 case Intrinsic::nvvm_suld_2d_v4i16_trap: 4160 case Intrinsic::nvvm_suld_2d_array_i16_trap: 4161 case Intrinsic::nvvm_suld_2d_array_v2i16_trap: 4162 case Intrinsic::nvvm_suld_2d_array_v4i16_trap: 4163 case Intrinsic::nvvm_suld_3d_i16_trap: 4164 case Intrinsic::nvvm_suld_3d_v2i16_trap: 4165 case Intrinsic::nvvm_suld_3d_v4i16_trap: 4166 case Intrinsic::nvvm_suld_1d_i16_zero: 4167 case Intrinsic::nvvm_suld_1d_v2i16_zero: 4168 case Intrinsic::nvvm_suld_1d_v4i16_zero: 4169 case Intrinsic::nvvm_suld_1d_array_i16_zero: 4170 case Intrinsic::nvvm_suld_1d_array_v2i16_zero: 4171 case Intrinsic::nvvm_suld_1d_array_v4i16_zero: 4172 case Intrinsic::nvvm_suld_2d_i16_zero: 4173 case Intrinsic::nvvm_suld_2d_v2i16_zero: 4174 case Intrinsic::nvvm_suld_2d_v4i16_zero: 4175 case Intrinsic::nvvm_suld_2d_array_i16_zero: 4176 case Intrinsic::nvvm_suld_2d_array_v2i16_zero: 4177 case Intrinsic::nvvm_suld_2d_array_v4i16_zero: 4178 case Intrinsic::nvvm_suld_3d_i16_zero: 4179 case Intrinsic::nvvm_suld_3d_v2i16_zero: 4180 case Intrinsic::nvvm_suld_3d_v4i16_zero: 4181 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4182 Info.memVT = MVT::i16; 4183 Info.ptrVal = nullptr; 4184 Info.offset = 0; 4185 Info.flags = MachineMemOperand::MOLoad; 4186 Info.align = Align(16); 4187 return true; 4188 4189 case Intrinsic::nvvm_suld_1d_i32_clamp: 4190 case Intrinsic::nvvm_suld_1d_v2i32_clamp: 4191 case Intrinsic::nvvm_suld_1d_v4i32_clamp: 4192 case Intrinsic::nvvm_suld_1d_array_i32_clamp: 4193 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: 4194 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: 4195 case Intrinsic::nvvm_suld_2d_i32_clamp: 4196 case Intrinsic::nvvm_suld_2d_v2i32_clamp: 4197 case Intrinsic::nvvm_suld_2d_v4i32_clamp: 4198 case Intrinsic::nvvm_suld_2d_array_i32_clamp: 4199 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: 4200 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: 4201 case Intrinsic::nvvm_suld_3d_i32_clamp: 4202 case Intrinsic::nvvm_suld_3d_v2i32_clamp: 4203 case Intrinsic::nvvm_suld_3d_v4i32_clamp: 4204 case Intrinsic::nvvm_suld_1d_i32_trap: 4205 case Intrinsic::nvvm_suld_1d_v2i32_trap: 4206 case Intrinsic::nvvm_suld_1d_v4i32_trap: 4207 case Intrinsic::nvvm_suld_1d_array_i32_trap: 4208 case Intrinsic::nvvm_suld_1d_array_v2i32_trap: 4209 case Intrinsic::nvvm_suld_1d_array_v4i32_trap: 4210 case Intrinsic::nvvm_suld_2d_i32_trap: 4211 case Intrinsic::nvvm_suld_2d_v2i32_trap: 4212 case Intrinsic::nvvm_suld_2d_v4i32_trap: 4213 case Intrinsic::nvvm_suld_2d_array_i32_trap: 4214 case Intrinsic::nvvm_suld_2d_array_v2i32_trap: 4215 case Intrinsic::nvvm_suld_2d_array_v4i32_trap: 4216 case Intrinsic::nvvm_suld_3d_i32_trap: 4217 case Intrinsic::nvvm_suld_3d_v2i32_trap: 4218 case Intrinsic::nvvm_suld_3d_v4i32_trap: 4219 case Intrinsic::nvvm_suld_1d_i32_zero: 4220 case Intrinsic::nvvm_suld_1d_v2i32_zero: 4221 case Intrinsic::nvvm_suld_1d_v4i32_zero: 4222 case Intrinsic::nvvm_suld_1d_array_i32_zero: 4223 case Intrinsic::nvvm_suld_1d_array_v2i32_zero: 4224 case Intrinsic::nvvm_suld_1d_array_v4i32_zero: 4225 case Intrinsic::nvvm_suld_2d_i32_zero: 4226 case Intrinsic::nvvm_suld_2d_v2i32_zero: 4227 case Intrinsic::nvvm_suld_2d_v4i32_zero: 4228 case Intrinsic::nvvm_suld_2d_array_i32_zero: 4229 case Intrinsic::nvvm_suld_2d_array_v2i32_zero: 4230 case Intrinsic::nvvm_suld_2d_array_v4i32_zero: 4231 case Intrinsic::nvvm_suld_3d_i32_zero: 4232 case Intrinsic::nvvm_suld_3d_v2i32_zero: 4233 case Intrinsic::nvvm_suld_3d_v4i32_zero: 4234 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4235 Info.memVT = MVT::i32; 4236 Info.ptrVal = nullptr; 4237 Info.offset = 0; 4238 Info.flags = MachineMemOperand::MOLoad; 4239 Info.align = Align(16); 4240 return true; 4241 4242 case Intrinsic::nvvm_suld_1d_i64_clamp: 4243 case Intrinsic::nvvm_suld_1d_v2i64_clamp: 4244 case Intrinsic::nvvm_suld_1d_array_i64_clamp: 4245 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: 4246 case Intrinsic::nvvm_suld_2d_i64_clamp: 4247 case Intrinsic::nvvm_suld_2d_v2i64_clamp: 4248 case Intrinsic::nvvm_suld_2d_array_i64_clamp: 4249 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: 4250 case Intrinsic::nvvm_suld_3d_i64_clamp: 4251 case Intrinsic::nvvm_suld_3d_v2i64_clamp: 4252 case Intrinsic::nvvm_suld_1d_i64_trap: 4253 case Intrinsic::nvvm_suld_1d_v2i64_trap: 4254 case Intrinsic::nvvm_suld_1d_array_i64_trap: 4255 case Intrinsic::nvvm_suld_1d_array_v2i64_trap: 4256 case Intrinsic::nvvm_suld_2d_i64_trap: 4257 case Intrinsic::nvvm_suld_2d_v2i64_trap: 4258 case Intrinsic::nvvm_suld_2d_array_i64_trap: 4259 case Intrinsic::nvvm_suld_2d_array_v2i64_trap: 4260 case Intrinsic::nvvm_suld_3d_i64_trap: 4261 case Intrinsic::nvvm_suld_3d_v2i64_trap: 4262 case Intrinsic::nvvm_suld_1d_i64_zero: 4263 case Intrinsic::nvvm_suld_1d_v2i64_zero: 4264 case Intrinsic::nvvm_suld_1d_array_i64_zero: 4265 case Intrinsic::nvvm_suld_1d_array_v2i64_zero: 4266 case Intrinsic::nvvm_suld_2d_i64_zero: 4267 case Intrinsic::nvvm_suld_2d_v2i64_zero: 4268 case Intrinsic::nvvm_suld_2d_array_i64_zero: 4269 case Intrinsic::nvvm_suld_2d_array_v2i64_zero: 4270 case Intrinsic::nvvm_suld_3d_i64_zero: 4271 case Intrinsic::nvvm_suld_3d_v2i64_zero: 4272 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4273 Info.memVT = MVT::i64; 4274 Info.ptrVal = nullptr; 4275 Info.offset = 0; 4276 Info.flags = MachineMemOperand::MOLoad; 4277 Info.align = Align(16); 4278 return true; 4279 } 4280 return false; 4281 } 4282 4283 /// isLegalAddressingMode - Return true if the addressing mode represented 4284 /// by AM is legal for this target, for a load/store of the specified type. 4285 /// Used to guide target specific optimizations, like loop strength reduction 4286 /// (LoopStrengthReduce.cpp) and memory optimization for address mode 4287 /// (CodeGenPrepare.cpp) 4288 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL, 4289 const AddrMode &AM, Type *Ty, 4290 unsigned AS, Instruction *I) const { 4291 // AddrMode - This represents an addressing mode of: 4292 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg 4293 // 4294 // The legal address modes are 4295 // - [avar] 4296 // - [areg] 4297 // - [areg+immoff] 4298 // - [immAddr] 4299 4300 if (AM.BaseGV) { 4301 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale; 4302 } 4303 4304 switch (AM.Scale) { 4305 case 0: // "r", "r+i" or "i" is allowed 4306 break; 4307 case 1: 4308 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed. 4309 return false; 4310 // Otherwise we have r+i. 4311 break; 4312 default: 4313 // No scale > 1 is allowed 4314 return false; 4315 } 4316 return true; 4317 } 4318 4319 //===----------------------------------------------------------------------===// 4320 // NVPTX Inline Assembly Support 4321 //===----------------------------------------------------------------------===// 4322 4323 /// getConstraintType - Given a constraint letter, return the type of 4324 /// constraint it is for this target. 4325 NVPTXTargetLowering::ConstraintType 4326 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const { 4327 if (Constraint.size() == 1) { 4328 switch (Constraint[0]) { 4329 default: 4330 break; 4331 case 'b': 4332 case 'r': 4333 case 'h': 4334 case 'c': 4335 case 'l': 4336 case 'f': 4337 case 'd': 4338 case '0': 4339 case 'N': 4340 return C_RegisterClass; 4341 } 4342 } 4343 return TargetLowering::getConstraintType(Constraint); 4344 } 4345 4346 std::pair<unsigned, const TargetRegisterClass *> 4347 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4348 StringRef Constraint, 4349 MVT VT) const { 4350 if (Constraint.size() == 1) { 4351 switch (Constraint[0]) { 4352 case 'b': 4353 return std::make_pair(0U, &NVPTX::Int1RegsRegClass); 4354 case 'c': 4355 return std::make_pair(0U, &NVPTX::Int16RegsRegClass); 4356 case 'h': 4357 return std::make_pair(0U, &NVPTX::Int16RegsRegClass); 4358 case 'r': 4359 return std::make_pair(0U, &NVPTX::Int32RegsRegClass); 4360 case 'l': 4361 case 'N': 4362 return std::make_pair(0U, &NVPTX::Int64RegsRegClass); 4363 case 'f': 4364 return std::make_pair(0U, &NVPTX::Float32RegsRegClass); 4365 case 'd': 4366 return std::make_pair(0U, &NVPTX::Float64RegsRegClass); 4367 } 4368 } 4369 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4370 } 4371 4372 //===----------------------------------------------------------------------===// 4373 // NVPTX DAG Combining 4374 //===----------------------------------------------------------------------===// 4375 4376 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF, 4377 CodeGenOpt::Level OptLevel) const { 4378 // Always honor command-line argument 4379 if (FMAContractLevelOpt.getNumOccurrences() > 0) 4380 return FMAContractLevelOpt > 0; 4381 4382 // Do not contract if we're not optimizing the code. 4383 if (OptLevel == 0) 4384 return false; 4385 4386 // Honor TargetOptions flags that explicitly say fusion is okay. 4387 if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast) 4388 return true; 4389 4390 return allowUnsafeFPMath(MF); 4391 } 4392 4393 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const { 4394 // Honor TargetOptions flags that explicitly say unsafe math is okay. 4395 if (MF.getTarget().Options.UnsafeFPMath) 4396 return true; 4397 4398 // Allow unsafe math if unsafe-fp-math attribute explicitly says so. 4399 const Function &F = MF.getFunction(); 4400 return F.getFnAttribute("unsafe-fp-math").getValueAsBool(); 4401 } 4402 4403 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with 4404 /// operands N0 and N1. This is a helper for PerformADDCombine that is 4405 /// called with the default operands, and if that fails, with commuted 4406 /// operands. 4407 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, 4408 TargetLowering::DAGCombinerInfo &DCI, 4409 const NVPTXSubtarget &Subtarget, 4410 CodeGenOpt::Level OptLevel) { 4411 SelectionDAG &DAG = DCI.DAG; 4412 // Skip non-integer, non-scalar case 4413 EVT VT=N0.getValueType(); 4414 if (VT.isVector()) 4415 return SDValue(); 4416 4417 // fold (add (mul a, b), c) -> (mad a, b, c) 4418 // 4419 if (N0.getOpcode() == ISD::MUL) { 4420 assert (VT.isInteger()); 4421 // For integer: 4422 // Since integer multiply-add costs the same as integer multiply 4423 // but is more costly than integer add, do the fusion only when 4424 // the mul is only used in the add. 4425 if (OptLevel==CodeGenOpt::None || VT != MVT::i32 || 4426 !N0.getNode()->hasOneUse()) 4427 return SDValue(); 4428 4429 // Do the folding 4430 return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT, 4431 N0.getOperand(0), N0.getOperand(1), N1); 4432 } 4433 else if (N0.getOpcode() == ISD::FMUL) { 4434 if (VT == MVT::f32 || VT == MVT::f64) { 4435 const auto *TLI = static_cast<const NVPTXTargetLowering *>( 4436 &DAG.getTargetLoweringInfo()); 4437 if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel)) 4438 return SDValue(); 4439 4440 // For floating point: 4441 // Do the fusion only when the mul has less than 5 uses and all 4442 // are add. 4443 // The heuristic is that if a use is not an add, then that use 4444 // cannot be fused into fma, therefore mul is still needed anyway. 4445 // If there are more than 4 uses, even if they are all add, fusing 4446 // them will increase register pressue. 4447 // 4448 int numUses = 0; 4449 int nonAddCount = 0; 4450 for (const SDNode *User : N0.getNode()->uses()) { 4451 numUses++; 4452 if (User->getOpcode() != ISD::FADD) 4453 ++nonAddCount; 4454 } 4455 if (numUses >= 5) 4456 return SDValue(); 4457 if (nonAddCount) { 4458 int orderNo = N->getIROrder(); 4459 int orderNo2 = N0.getNode()->getIROrder(); 4460 // simple heuristics here for considering potential register 4461 // pressure, the logics here is that the differnce are used 4462 // to measure the distance between def and use, the longer distance 4463 // more likely cause register pressure. 4464 if (orderNo - orderNo2 < 500) 4465 return SDValue(); 4466 4467 // Now, check if at least one of the FMUL's operands is live beyond the node N, 4468 // which guarantees that the FMA will not increase register pressure at node N. 4469 bool opIsLive = false; 4470 const SDNode *left = N0.getOperand(0).getNode(); 4471 const SDNode *right = N0.getOperand(1).getNode(); 4472 4473 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right)) 4474 opIsLive = true; 4475 4476 if (!opIsLive) 4477 for (const SDNode *User : left->uses()) { 4478 int orderNo3 = User->getIROrder(); 4479 if (orderNo3 > orderNo) { 4480 opIsLive = true; 4481 break; 4482 } 4483 } 4484 4485 if (!opIsLive) 4486 for (const SDNode *User : right->uses()) { 4487 int orderNo3 = User->getIROrder(); 4488 if (orderNo3 > orderNo) { 4489 opIsLive = true; 4490 break; 4491 } 4492 } 4493 4494 if (!opIsLive) 4495 return SDValue(); 4496 } 4497 4498 return DAG.getNode(ISD::FMA, SDLoc(N), VT, 4499 N0.getOperand(0), N0.getOperand(1), N1); 4500 } 4501 } 4502 4503 return SDValue(); 4504 } 4505 4506 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. 4507 /// 4508 static SDValue PerformADDCombine(SDNode *N, 4509 TargetLowering::DAGCombinerInfo &DCI, 4510 const NVPTXSubtarget &Subtarget, 4511 CodeGenOpt::Level OptLevel) { 4512 SDValue N0 = N->getOperand(0); 4513 SDValue N1 = N->getOperand(1); 4514 4515 // First try with the default operand order. 4516 if (SDValue Result = 4517 PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel)) 4518 return Result; 4519 4520 // If that didn't work, try again with the operands commuted. 4521 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel); 4522 } 4523 4524 static SDValue PerformANDCombine(SDNode *N, 4525 TargetLowering::DAGCombinerInfo &DCI) { 4526 // The type legalizer turns a vector load of i8 values into a zextload to i16 4527 // registers, optionally ANY_EXTENDs it (if target type is integer), 4528 // and ANDs off the high 8 bits. Since we turn this load into a 4529 // target-specific DAG node, the DAG combiner fails to eliminate these AND 4530 // nodes. Do that here. 4531 SDValue Val = N->getOperand(0); 4532 SDValue Mask = N->getOperand(1); 4533 4534 if (isa<ConstantSDNode>(Val)) { 4535 std::swap(Val, Mask); 4536 } 4537 4538 SDValue AExt; 4539 // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and 4540 if (Val.getOpcode() == ISD::ANY_EXTEND) { 4541 AExt = Val; 4542 Val = Val->getOperand(0); 4543 } 4544 4545 if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) { 4546 Val = Val->getOperand(0); 4547 } 4548 4549 if (Val->getOpcode() == NVPTXISD::LoadV2 || 4550 Val->getOpcode() == NVPTXISD::LoadV4) { 4551 ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask); 4552 if (!MaskCnst) { 4553 // Not an AND with a constant 4554 return SDValue(); 4555 } 4556 4557 uint64_t MaskVal = MaskCnst->getZExtValue(); 4558 if (MaskVal != 0xff) { 4559 // Not an AND that chops off top 8 bits 4560 return SDValue(); 4561 } 4562 4563 MemSDNode *Mem = dyn_cast<MemSDNode>(Val); 4564 if (!Mem) { 4565 // Not a MemSDNode?!? 4566 return SDValue(); 4567 } 4568 4569 EVT MemVT = Mem->getMemoryVT(); 4570 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) { 4571 // We only handle the i8 case 4572 return SDValue(); 4573 } 4574 4575 unsigned ExtType = 4576 cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))-> 4577 getZExtValue(); 4578 if (ExtType == ISD::SEXTLOAD) { 4579 // If for some reason the load is a sextload, the and is needed to zero 4580 // out the high 8 bits 4581 return SDValue(); 4582 } 4583 4584 bool AddTo = false; 4585 if (AExt.getNode() != nullptr) { 4586 // Re-insert the ext as a zext. 4587 Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 4588 AExt.getValueType(), Val); 4589 AddTo = true; 4590 } 4591 4592 // If we get here, the AND is unnecessary. Just replace it with the load 4593 DCI.CombineTo(N, Val, AddTo); 4594 } 4595 4596 return SDValue(); 4597 } 4598 4599 static SDValue PerformREMCombine(SDNode *N, 4600 TargetLowering::DAGCombinerInfo &DCI, 4601 CodeGenOpt::Level OptLevel) { 4602 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM); 4603 4604 // Don't do anything at less than -O2. 4605 if (OptLevel < CodeGenOpt::Default) 4606 return SDValue(); 4607 4608 SelectionDAG &DAG = DCI.DAG; 4609 SDLoc DL(N); 4610 EVT VT = N->getValueType(0); 4611 bool IsSigned = N->getOpcode() == ISD::SREM; 4612 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV; 4613 4614 const SDValue &Num = N->getOperand(0); 4615 const SDValue &Den = N->getOperand(1); 4616 4617 for (const SDNode *U : Num->uses()) { 4618 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num && 4619 U->getOperand(1) == Den) { 4620 // Num % Den -> Num - (Num / Den) * Den 4621 return DAG.getNode(ISD::SUB, DL, VT, Num, 4622 DAG.getNode(ISD::MUL, DL, VT, 4623 DAG.getNode(DivOpc, DL, VT, Num, Den), 4624 Den)); 4625 } 4626 } 4627 return SDValue(); 4628 } 4629 4630 enum OperandSignedness { 4631 Signed = 0, 4632 Unsigned, 4633 Unknown 4634 }; 4635 4636 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand 4637 /// that can be demoted to \p OptSize bits without loss of information. The 4638 /// signedness of the operand, if determinable, is placed in \p S. 4639 static bool IsMulWideOperandDemotable(SDValue Op, 4640 unsigned OptSize, 4641 OperandSignedness &S) { 4642 S = Unknown; 4643 4644 if (Op.getOpcode() == ISD::SIGN_EXTEND || 4645 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) { 4646 EVT OrigVT = Op.getOperand(0).getValueType(); 4647 if (OrigVT.getFixedSizeInBits() <= OptSize) { 4648 S = Signed; 4649 return true; 4650 } 4651 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) { 4652 EVT OrigVT = Op.getOperand(0).getValueType(); 4653 if (OrigVT.getFixedSizeInBits() <= OptSize) { 4654 S = Unsigned; 4655 return true; 4656 } 4657 } 4658 4659 return false; 4660 } 4661 4662 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can 4663 /// be demoted to \p OptSize bits without loss of information. If the operands 4664 /// contain a constant, it should appear as the RHS operand. The signedness of 4665 /// the operands is placed in \p IsSigned. 4666 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, 4667 unsigned OptSize, 4668 bool &IsSigned) { 4669 OperandSignedness LHSSign; 4670 4671 // The LHS operand must be a demotable op 4672 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign)) 4673 return false; 4674 4675 // We should have been able to determine the signedness from the LHS 4676 if (LHSSign == Unknown) 4677 return false; 4678 4679 IsSigned = (LHSSign == Signed); 4680 4681 // The RHS can be a demotable op or a constant 4682 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) { 4683 const APInt &Val = CI->getAPIntValue(); 4684 if (LHSSign == Unsigned) { 4685 return Val.isIntN(OptSize); 4686 } else { 4687 return Val.isSignedIntN(OptSize); 4688 } 4689 } else { 4690 OperandSignedness RHSSign; 4691 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign)) 4692 return false; 4693 4694 return LHSSign == RHSSign; 4695 } 4696 } 4697 4698 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply 4699 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform 4700 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift 4701 /// amount. 4702 static SDValue TryMULWIDECombine(SDNode *N, 4703 TargetLowering::DAGCombinerInfo &DCI) { 4704 EVT MulType = N->getValueType(0); 4705 if (MulType != MVT::i32 && MulType != MVT::i64) { 4706 return SDValue(); 4707 } 4708 4709 SDLoc DL(N); 4710 unsigned OptSize = MulType.getSizeInBits() >> 1; 4711 SDValue LHS = N->getOperand(0); 4712 SDValue RHS = N->getOperand(1); 4713 4714 // Canonicalize the multiply so the constant (if any) is on the right 4715 if (N->getOpcode() == ISD::MUL) { 4716 if (isa<ConstantSDNode>(LHS)) { 4717 std::swap(LHS, RHS); 4718 } 4719 } 4720 4721 // If we have a SHL, determine the actual multiply amount 4722 if (N->getOpcode() == ISD::SHL) { 4723 ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS); 4724 if (!ShlRHS) { 4725 return SDValue(); 4726 } 4727 4728 APInt ShiftAmt = ShlRHS->getAPIntValue(); 4729 unsigned BitWidth = MulType.getSizeInBits(); 4730 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) { 4731 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt; 4732 RHS = DCI.DAG.getConstant(MulVal, DL, MulType); 4733 } else { 4734 return SDValue(); 4735 } 4736 } 4737 4738 bool Signed; 4739 // Verify that our operands are demotable 4740 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) { 4741 return SDValue(); 4742 } 4743 4744 EVT DemotedVT; 4745 if (MulType == MVT::i32) { 4746 DemotedVT = MVT::i16; 4747 } else { 4748 DemotedVT = MVT::i32; 4749 } 4750 4751 // Truncate the operands to the correct size. Note that these are just for 4752 // type consistency and will (likely) be eliminated in later phases. 4753 SDValue TruncLHS = 4754 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS); 4755 SDValue TruncRHS = 4756 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS); 4757 4758 unsigned Opc; 4759 if (Signed) { 4760 Opc = NVPTXISD::MUL_WIDE_SIGNED; 4761 } else { 4762 Opc = NVPTXISD::MUL_WIDE_UNSIGNED; 4763 } 4764 4765 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS); 4766 } 4767 4768 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes. 4769 static SDValue PerformMULCombine(SDNode *N, 4770 TargetLowering::DAGCombinerInfo &DCI, 4771 CodeGenOpt::Level OptLevel) { 4772 if (OptLevel > 0) { 4773 // Try mul.wide combining at OptLevel > 0 4774 if (SDValue Ret = TryMULWIDECombine(N, DCI)) 4775 return Ret; 4776 } 4777 4778 return SDValue(); 4779 } 4780 4781 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes. 4782 static SDValue PerformSHLCombine(SDNode *N, 4783 TargetLowering::DAGCombinerInfo &DCI, 4784 CodeGenOpt::Level OptLevel) { 4785 if (OptLevel > 0) { 4786 // Try mul.wide combining at OptLevel > 0 4787 if (SDValue Ret = TryMULWIDECombine(N, DCI)) 4788 return Ret; 4789 } 4790 4791 return SDValue(); 4792 } 4793 4794 static SDValue PerformSETCCCombine(SDNode *N, 4795 TargetLowering::DAGCombinerInfo &DCI) { 4796 EVT CCType = N->getValueType(0); 4797 SDValue A = N->getOperand(0); 4798 SDValue B = N->getOperand(1); 4799 4800 if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16) 4801 return SDValue(); 4802 4803 SDLoc DL(N); 4804 // setp.f16x2 returns two scalar predicates, which we need to 4805 // convert back to v2i1. The returned result will be scalarized by 4806 // the legalizer, but the comparison will remain a single vector 4807 // instruction. 4808 SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL, 4809 DCI.DAG.getVTList(MVT::i1, MVT::i1), 4810 {A, B, N->getOperand(2)}); 4811 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0), 4812 CCNode.getValue(1)); 4813 } 4814 4815 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N, 4816 DAGCombinerInfo &DCI) const { 4817 CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel(); 4818 switch (N->getOpcode()) { 4819 default: break; 4820 case ISD::ADD: 4821 case ISD::FADD: 4822 return PerformADDCombine(N, DCI, STI, OptLevel); 4823 case ISD::MUL: 4824 return PerformMULCombine(N, DCI, OptLevel); 4825 case ISD::SHL: 4826 return PerformSHLCombine(N, DCI, OptLevel); 4827 case ISD::AND: 4828 return PerformANDCombine(N, DCI); 4829 case ISD::UREM: 4830 case ISD::SREM: 4831 return PerformREMCombine(N, DCI, OptLevel); 4832 case ISD::SETCC: 4833 return PerformSETCCCombine(N, DCI); 4834 } 4835 return SDValue(); 4836 } 4837 4838 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads. 4839 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG, 4840 SmallVectorImpl<SDValue> &Results) { 4841 EVT ResVT = N->getValueType(0); 4842 SDLoc DL(N); 4843 4844 assert(ResVT.isVector() && "Vector load must have vector type"); 4845 4846 // We only handle "native" vector sizes for now, e.g. <4 x double> is not 4847 // legal. We can (and should) split that into 2 loads of <2 x double> here 4848 // but I'm leaving that as a TODO for now. 4849 assert(ResVT.isSimple() && "Can only handle simple types"); 4850 switch (ResVT.getSimpleVT().SimpleTy) { 4851 default: 4852 return; 4853 case MVT::v2i8: 4854 case MVT::v2i16: 4855 case MVT::v2i32: 4856 case MVT::v2i64: 4857 case MVT::v2f16: 4858 case MVT::v2f32: 4859 case MVT::v2f64: 4860 case MVT::v4i8: 4861 case MVT::v4i16: 4862 case MVT::v4i32: 4863 case MVT::v4f16: 4864 case MVT::v4f32: 4865 case MVT::v8f16: // <4 x f16x2> 4866 // This is a "native" vector type 4867 break; 4868 } 4869 4870 LoadSDNode *LD = cast<LoadSDNode>(N); 4871 4872 Align Alignment = LD->getAlign(); 4873 auto &TD = DAG.getDataLayout(); 4874 Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext())); 4875 if (Alignment < PrefAlign) { 4876 // This load is not sufficiently aligned, so bail out and let this vector 4877 // load be scalarized. Note that we may still be able to emit smaller 4878 // vector loads. For example, if we are loading a <4 x float> with an 4879 // alignment of 8, this check will fail but the legalizer will try again 4880 // with 2 x <2 x float>, which will succeed with an alignment of 8. 4881 return; 4882 } 4883 4884 EVT EltVT = ResVT.getVectorElementType(); 4885 unsigned NumElts = ResVT.getVectorNumElements(); 4886 4887 // Since LoadV2 is a target node, we cannot rely on DAG type legalization. 4888 // Therefore, we must ensure the type is legal. For i1 and i8, we set the 4889 // loaded type to i16 and propagate the "real" type as the memory type. 4890 bool NeedTrunc = false; 4891 if (EltVT.getSizeInBits() < 16) { 4892 EltVT = MVT::i16; 4893 NeedTrunc = true; 4894 } 4895 4896 unsigned Opcode = 0; 4897 SDVTList LdResVTs; 4898 bool LoadF16x2 = false; 4899 4900 switch (NumElts) { 4901 default: 4902 return; 4903 case 2: 4904 Opcode = NVPTXISD::LoadV2; 4905 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); 4906 break; 4907 case 4: { 4908 Opcode = NVPTXISD::LoadV4; 4909 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; 4910 LdResVTs = DAG.getVTList(ListVTs); 4911 break; 4912 } 4913 case 8: { 4914 // v8f16 is a special case. PTX doesn't have ld.v8.f16 4915 // instruction. Instead, we split the vector into v2f16 chunks and 4916 // load them with ld.v4.b32. 4917 assert(EltVT == MVT::f16 && "Unsupported v8 vector type."); 4918 LoadF16x2 = true; 4919 Opcode = NVPTXISD::LoadV4; 4920 EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16, 4921 MVT::Other}; 4922 LdResVTs = DAG.getVTList(ListVTs); 4923 break; 4924 } 4925 } 4926 4927 // Copy regular operands 4928 SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end()); 4929 4930 // The select routine does not have access to the LoadSDNode instance, so 4931 // pass along the extension information 4932 OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL)); 4933 4934 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, 4935 LD->getMemoryVT(), 4936 LD->getMemOperand()); 4937 4938 SmallVector<SDValue, 8> ScalarRes; 4939 if (LoadF16x2) { 4940 // Split v2f16 subvectors back into individual elements. 4941 NumElts /= 2; 4942 for (unsigned i = 0; i < NumElts; ++i) { 4943 SDValue SubVector = NewLD.getValue(i); 4944 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector, 4945 DAG.getIntPtrConstant(0, DL)); 4946 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector, 4947 DAG.getIntPtrConstant(1, DL)); 4948 ScalarRes.push_back(E0); 4949 ScalarRes.push_back(E1); 4950 } 4951 } else { 4952 for (unsigned i = 0; i < NumElts; ++i) { 4953 SDValue Res = NewLD.getValue(i); 4954 if (NeedTrunc) 4955 Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); 4956 ScalarRes.push_back(Res); 4957 } 4958 } 4959 4960 SDValue LoadChain = NewLD.getValue(NumElts); 4961 4962 SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes); 4963 4964 Results.push_back(BuildVec); 4965 Results.push_back(LoadChain); 4966 } 4967 4968 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, 4969 SmallVectorImpl<SDValue> &Results) { 4970 SDValue Chain = N->getOperand(0); 4971 SDValue Intrin = N->getOperand(1); 4972 SDLoc DL(N); 4973 4974 // Get the intrinsic ID 4975 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue(); 4976 switch (IntrinNo) { 4977 default: 4978 return; 4979 case Intrinsic::nvvm_ldg_global_i: 4980 case Intrinsic::nvvm_ldg_global_f: 4981 case Intrinsic::nvvm_ldg_global_p: 4982 case Intrinsic::nvvm_ldu_global_i: 4983 case Intrinsic::nvvm_ldu_global_f: 4984 case Intrinsic::nvvm_ldu_global_p: { 4985 EVT ResVT = N->getValueType(0); 4986 4987 if (ResVT.isVector()) { 4988 // Vector LDG/LDU 4989 4990 unsigned NumElts = ResVT.getVectorNumElements(); 4991 EVT EltVT = ResVT.getVectorElementType(); 4992 4993 // Since LDU/LDG are target nodes, we cannot rely on DAG type 4994 // legalization. 4995 // Therefore, we must ensure the type is legal. For i1 and i8, we set the 4996 // loaded type to i16 and propagate the "real" type as the memory type. 4997 bool NeedTrunc = false; 4998 if (EltVT.getSizeInBits() < 16) { 4999 EltVT = MVT::i16; 5000 NeedTrunc = true; 5001 } 5002 5003 unsigned Opcode = 0; 5004 SDVTList LdResVTs; 5005 5006 switch (NumElts) { 5007 default: 5008 return; 5009 case 2: 5010 switch (IntrinNo) { 5011 default: 5012 return; 5013 case Intrinsic::nvvm_ldg_global_i: 5014 case Intrinsic::nvvm_ldg_global_f: 5015 case Intrinsic::nvvm_ldg_global_p: 5016 Opcode = NVPTXISD::LDGV2; 5017 break; 5018 case Intrinsic::nvvm_ldu_global_i: 5019 case Intrinsic::nvvm_ldu_global_f: 5020 case Intrinsic::nvvm_ldu_global_p: 5021 Opcode = NVPTXISD::LDUV2; 5022 break; 5023 } 5024 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); 5025 break; 5026 case 4: { 5027 switch (IntrinNo) { 5028 default: 5029 return; 5030 case Intrinsic::nvvm_ldg_global_i: 5031 case Intrinsic::nvvm_ldg_global_f: 5032 case Intrinsic::nvvm_ldg_global_p: 5033 Opcode = NVPTXISD::LDGV4; 5034 break; 5035 case Intrinsic::nvvm_ldu_global_i: 5036 case Intrinsic::nvvm_ldu_global_f: 5037 case Intrinsic::nvvm_ldu_global_p: 5038 Opcode = NVPTXISD::LDUV4; 5039 break; 5040 } 5041 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; 5042 LdResVTs = DAG.getVTList(ListVTs); 5043 break; 5044 } 5045 } 5046 5047 SmallVector<SDValue, 8> OtherOps; 5048 5049 // Copy regular operands 5050 5051 OtherOps.push_back(Chain); // Chain 5052 // Skip operand 1 (intrinsic ID) 5053 // Others 5054 OtherOps.append(N->op_begin() + 2, N->op_end()); 5055 5056 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); 5057 5058 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, 5059 MemSD->getMemoryVT(), 5060 MemSD->getMemOperand()); 5061 5062 SmallVector<SDValue, 4> ScalarRes; 5063 5064 for (unsigned i = 0; i < NumElts; ++i) { 5065 SDValue Res = NewLD.getValue(i); 5066 if (NeedTrunc) 5067 Res = 5068 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); 5069 ScalarRes.push_back(Res); 5070 } 5071 5072 SDValue LoadChain = NewLD.getValue(NumElts); 5073 5074 SDValue BuildVec = 5075 DAG.getBuildVector(ResVT, DL, ScalarRes); 5076 5077 Results.push_back(BuildVec); 5078 Results.push_back(LoadChain); 5079 } else { 5080 // i8 LDG/LDU 5081 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && 5082 "Custom handling of non-i8 ldu/ldg?"); 5083 5084 // Just copy all operands as-is 5085 SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end()); 5086 5087 // Force output to i16 5088 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other); 5089 5090 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); 5091 5092 // We make sure the memory type is i8, which will be used during isel 5093 // to select the proper instruction. 5094 SDValue NewLD = 5095 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops, 5096 MVT::i8, MemSD->getMemOperand()); 5097 5098 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, 5099 NewLD.getValue(0))); 5100 Results.push_back(NewLD.getValue(1)); 5101 } 5102 } 5103 } 5104 } 5105 5106 void NVPTXTargetLowering::ReplaceNodeResults( 5107 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 5108 switch (N->getOpcode()) { 5109 default: 5110 report_fatal_error("Unhandled custom legalization"); 5111 case ISD::LOAD: 5112 ReplaceLoadVector(N, DAG, Results); 5113 return; 5114 case ISD::INTRINSIC_W_CHAIN: 5115 ReplaceINTRINSIC_W_CHAIN(N, DAG, Results); 5116 return; 5117 } 5118 } 5119 5120 // Pin NVPTXTargetObjectFile's vtables to this file. 5121 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {} 5122 5123 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal( 5124 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 5125 return getDataSection(); 5126 } 5127