xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp (revision 55141f2c8991b2a6adbf30bb0fe3e6cbc303f06d)
1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetCallingConv.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cmath>
58 #include <cstdint>
59 #include <iterator>
60 #include <sstream>
61 #include <string>
62 #include <utility>
63 #include <vector>
64 
65 #define DEBUG_TYPE "nvptx-lower"
66 
67 using namespace llvm;
68 
69 static std::atomic<unsigned> GlobalUniqueCallSite;
70 
71 static cl::opt<bool> sched4reg(
72     "nvptx-sched4reg",
73     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
74 
75 static cl::opt<unsigned> FMAContractLevelOpt(
76     "nvptx-fma-level", cl::Hidden,
77     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
78              " 1: do it  2: do it aggressively"),
79     cl::init(2));
80 
81 static cl::opt<int> UsePrecDivF32(
82     "nvptx-prec-divf32", cl::Hidden,
83     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
84              " IEEE Compliant F32 div.rnd if available."),
85     cl::init(2));
86 
87 static cl::opt<bool> UsePrecSqrtF32(
88     "nvptx-prec-sqrtf32", cl::Hidden,
89     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
90     cl::init(true));
91 
92 int NVPTXTargetLowering::getDivF32Level() const {
93   if (UsePrecDivF32.getNumOccurrences() > 0) {
94     // If nvptx-prec-div32=N is used on the command-line, always honor it
95     return UsePrecDivF32;
96   } else {
97     // Otherwise, use div.approx if fast math is enabled
98     if (getTargetMachine().Options.UnsafeFPMath)
99       return 0;
100     else
101       return 2;
102   }
103 }
104 
105 bool NVPTXTargetLowering::usePrecSqrtF32() const {
106   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
107     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
108     return UsePrecSqrtF32;
109   } else {
110     // Otherwise, use sqrt.approx if fast math is enabled
111     return !getTargetMachine().Options.UnsafeFPMath;
112   }
113 }
114 
115 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
116   return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
117          DenormalMode::PreserveSign;
118 }
119 
120 static bool IsPTXVectorType(MVT VT) {
121   switch (VT.SimpleTy) {
122   default:
123     return false;
124   case MVT::v2i1:
125   case MVT::v4i1:
126   case MVT::v2i8:
127   case MVT::v4i8:
128   case MVT::v2i16:
129   case MVT::v4i16:
130   case MVT::v2i32:
131   case MVT::v4i32:
132   case MVT::v2i64:
133   case MVT::v2f16:
134   case MVT::v4f16:
135   case MVT::v8f16: // <4 x f16x2>
136   case MVT::v2bf16:
137   case MVT::v4bf16:
138   case MVT::v8bf16: // <4 x bf16x2>
139   case MVT::v2f32:
140   case MVT::v4f32:
141   case MVT::v2f64:
142     return true;
143   }
144 }
145 
146 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
147 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
148 /// into their primitive components.
149 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
150 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
151 /// LowerCall, and LowerReturn.
152 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
153                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
154                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
155                                uint64_t StartingOffset = 0) {
156   SmallVector<EVT, 16> TempVTs;
157   SmallVector<uint64_t, 16> TempOffsets;
158 
159   // Special case for i128 - decompose to (i64, i64)
160   if (Ty->isIntegerTy(128)) {
161     ValueVTs.push_back(EVT(MVT::i64));
162     ValueVTs.push_back(EVT(MVT::i64));
163 
164     if (Offsets) {
165       Offsets->push_back(StartingOffset + 0);
166       Offsets->push_back(StartingOffset + 8);
167     }
168 
169     return;
170   }
171 
172   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
173   if (StructType *STy = dyn_cast<StructType>(Ty)) {
174     auto const *SL = DL.getStructLayout(STy);
175     auto ElementNum = 0;
176     for(auto *EI : STy->elements()) {
177       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
178                          StartingOffset + SL->getElementOffset(ElementNum));
179       ++ElementNum;
180     }
181     return;
182   }
183 
184   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
185   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
186     EVT VT = TempVTs[i];
187     uint64_t Off = TempOffsets[i];
188     // Split vectors into individual elements, except for v2f16, which
189     // we will pass as a single scalar.
190     if (VT.isVector()) {
191       unsigned NumElts = VT.getVectorNumElements();
192       EVT EltVT = VT.getVectorElementType();
193       // Vectors with an even number of f16 elements will be passed to
194       // us as an array of v2f16/v2bf16 elements. We must match this so we
195       // stay in sync with Ins/Outs.
196       if ((EltVT == MVT::f16 || EltVT == MVT::bf16) && NumElts % 2 == 0) {
197         EltVT = EltVT == MVT::f16 ? MVT::v2f16 : MVT::v2bf16;
198         NumElts /= 2;
199       }
200       for (unsigned j = 0; j != NumElts; ++j) {
201         ValueVTs.push_back(EltVT);
202         if (Offsets)
203           Offsets->push_back(Off + j * EltVT.getStoreSize());
204       }
205     } else {
206       ValueVTs.push_back(VT);
207       if (Offsets)
208         Offsets->push_back(Off);
209     }
210   }
211 }
212 
213 /// PromoteScalarIntegerPTX
214 /// Used to make sure the arguments/returns are suitable for passing
215 /// and promote them to a larger size if they're not.
216 ///
217 /// The promoted type is placed in \p PromoteVT if the function returns true.
218 static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT) {
219   if (VT.isScalarInteger()) {
220     switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
221     default:
222       llvm_unreachable(
223           "Promotion is not suitable for scalars of size larger than 64-bits");
224     case 1:
225       *PromotedVT = MVT::i1;
226       break;
227     case 2:
228     case 4:
229     case 8:
230       *PromotedVT = MVT::i8;
231       break;
232     case 16:
233       *PromotedVT = MVT::i16;
234       break;
235     case 32:
236       *PromotedVT = MVT::i32;
237       break;
238     case 64:
239       *PromotedVT = MVT::i64;
240       break;
241     }
242     return EVT(*PromotedVT) != VT;
243   }
244   return false;
245 }
246 
247 // Check whether we can merge loads/stores of some of the pieces of a
248 // flattened function parameter or return value into a single vector
249 // load/store.
250 //
251 // The flattened parameter is represented as a list of EVTs and
252 // offsets, and the whole structure is aligned to ParamAlignment. This
253 // function determines whether we can load/store pieces of the
254 // parameter starting at index Idx using a single vectorized op of
255 // size AccessSize. If so, it returns the number of param pieces
256 // covered by the vector op. Otherwise, it returns 1.
257 static unsigned CanMergeParamLoadStoresStartingAt(
258     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
259     const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
260 
261   // Can't vectorize if param alignment is not sufficient.
262   if (ParamAlignment < AccessSize)
263     return 1;
264   // Can't vectorize if offset is not aligned.
265   if (Offsets[Idx] & (AccessSize - 1))
266     return 1;
267 
268   EVT EltVT = ValueVTs[Idx];
269   unsigned EltSize = EltVT.getStoreSize();
270 
271   // Element is too large to vectorize.
272   if (EltSize >= AccessSize)
273     return 1;
274 
275   unsigned NumElts = AccessSize / EltSize;
276   // Can't vectorize if AccessBytes if not a multiple of EltSize.
277   if (AccessSize != EltSize * NumElts)
278     return 1;
279 
280   // We don't have enough elements to vectorize.
281   if (Idx + NumElts > ValueVTs.size())
282     return 1;
283 
284   // PTX ISA can only deal with 2- and 4-element vector ops.
285   if (NumElts != 4 && NumElts != 2)
286     return 1;
287 
288   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
289     // Types do not match.
290     if (ValueVTs[j] != EltVT)
291       return 1;
292 
293     // Elements are not contiguous.
294     if (Offsets[j] - Offsets[j - 1] != EltSize)
295       return 1;
296   }
297   // OK. We can vectorize ValueVTs[i..i+NumElts)
298   return NumElts;
299 }
300 
301 // Flags for tracking per-element vectorization state of loads/stores
302 // of a flattened function parameter or return value.
303 enum ParamVectorizationFlags {
304   PVF_INNER = 0x0, // Middle elements of a vector.
305   PVF_FIRST = 0x1, // First element of the vector.
306   PVF_LAST = 0x2,  // Last element of the vector.
307   // Scalar is effectively a 1-element vector.
308   PVF_SCALAR = PVF_FIRST | PVF_LAST
309 };
310 
311 // Computes whether and how we can vectorize the loads/stores of a
312 // flattened function parameter or return value.
313 //
314 // The flattened parameter is represented as the list of ValueVTs and
315 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
316 // of the same size as ValueVTs indicating how each piece should be
317 // loaded/stored (i.e. as a scalar, or as part of a vector
318 // load/store).
319 static SmallVector<ParamVectorizationFlags, 16>
320 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
321                      const SmallVectorImpl<uint64_t> &Offsets,
322                      Align ParamAlignment, bool IsVAArg = false) {
323   // Set vector size to match ValueVTs and mark all elements as
324   // scalars by default.
325   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
326   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
327 
328   if (IsVAArg)
329     return VectorInfo;
330 
331   // Check what we can vectorize using 128/64/32-bit accesses.
332   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
333     // Skip elements we've already processed.
334     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
335     for (unsigned AccessSize : {16, 8, 4, 2}) {
336       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
337           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
338       // Mark vectorized elements.
339       switch (NumElts) {
340       default:
341         llvm_unreachable("Unexpected return value");
342       case 1:
343         // Can't vectorize using this size, try next smaller size.
344         continue;
345       case 2:
346         assert(I + 1 < E && "Not enough elements.");
347         VectorInfo[I] = PVF_FIRST;
348         VectorInfo[I + 1] = PVF_LAST;
349         I += 1;
350         break;
351       case 4:
352         assert(I + 3 < E && "Not enough elements.");
353         VectorInfo[I] = PVF_FIRST;
354         VectorInfo[I + 1] = PVF_INNER;
355         VectorInfo[I + 2] = PVF_INNER;
356         VectorInfo[I + 3] = PVF_LAST;
357         I += 3;
358         break;
359       }
360       // Break out of the inner loop because we've already succeeded
361       // using largest possible AccessSize.
362       break;
363     }
364   }
365   return VectorInfo;
366 }
367 
368 // NVPTXTargetLowering Constructor.
369 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
370                                          const NVPTXSubtarget &STI)
371     : TargetLowering(TM), nvTM(&TM), STI(STI) {
372   // always lower memset, memcpy, and memmove intrinsics to load/store
373   // instructions, rather
374   // then generating calls to memset, mempcy or memmove.
375   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
376   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
377   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
378 
379   setBooleanContents(ZeroOrNegativeOneBooleanContent);
380   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
381 
382   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
383   // condition branches.
384   setJumpIsExpensive(true);
385 
386   // Wide divides are _very_ slow. Try to reduce the width of the divide if
387   // possible.
388   addBypassSlowDiv(64, 32);
389 
390   // By default, use the Source scheduling
391   if (sched4reg)
392     setSchedulingPreference(Sched::RegPressure);
393   else
394     setSchedulingPreference(Sched::Source);
395 
396   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
397                                     LegalizeAction NoF16Action) {
398     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
399   };
400 
401   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
402   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
403   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
404   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
405   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
406   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
407   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
408   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
409   addRegisterClass(MVT::bf16, &NVPTX::Float16RegsRegClass);
410   addRegisterClass(MVT::v2bf16, &NVPTX::Float16x2RegsRegClass);
411 
412   // Conversion to/from FP16/FP16x2 is always legal.
413   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
414   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
415   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
416   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
417   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
418   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
419 
420   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
421   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
422 
423   // Operations not directly supported by NVPTX.
424   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
425                  MVT::i16, MVT::i32, MVT::i64}) {
426     setOperationAction(ISD::SELECT_CC, VT, Expand);
427     setOperationAction(ISD::BR_CC, VT, Expand);
428   }
429 
430   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
431   // For others we will expand to a SHL/SRA pair.
432   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
433   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
434   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
435   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
436   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
437 
438   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
439   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
440   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
441   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
442   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
443   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
444 
445   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
446   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
447 
448   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
449   // that don't have h/w rotation we lower them to multi-instruction assembly.
450   // See ROT*_sw in NVPTXIntrInfo.td
451   setOperationAction(ISD::ROTL, MVT::i64, Legal);
452   setOperationAction(ISD::ROTR, MVT::i64, Legal);
453   setOperationAction(ISD::ROTL, MVT::i32, Legal);
454   setOperationAction(ISD::ROTR, MVT::i32, Legal);
455 
456   setOperationAction(ISD::ROTL, MVT::i16, Expand);
457   setOperationAction(ISD::ROTR, MVT::i16, Expand);
458   setOperationAction(ISD::ROTL, MVT::i8, Expand);
459   setOperationAction(ISD::ROTR, MVT::i8, Expand);
460   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
461   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
462   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
463 
464   // Indirect branch is not supported.
465   // This also disables Jump Table creation.
466   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
467   setOperationAction(ISD::BRIND, MVT::Other, Expand);
468 
469   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
470   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
471 
472   // We want to legalize constant related memmove and memcopy
473   // intrinsics.
474   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
475 
476   // Turn FP extload into load/fpextend
477   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
478   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
479   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
480   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
481   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
482   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
483   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
484   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
485   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
486   // Turn FP truncstore into trunc + store.
487   // FIXME: vector types should also be expanded
488   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
489   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
490   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
491 
492   // PTX does not support load / store predicate registers
493   setOperationAction(ISD::LOAD, MVT::i1, Custom);
494   setOperationAction(ISD::STORE, MVT::i1, Custom);
495 
496   for (MVT VT : MVT::integer_valuetypes()) {
497     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
498     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
499     setTruncStoreAction(VT, MVT::i1, Expand);
500   }
501 
502   // This is legal in NVPTX
503   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
504   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
505   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
506   setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
507 
508   // TRAP can be lowered to PTX trap
509   setOperationAction(ISD::TRAP, MVT::Other, Legal);
510 
511   // Register custom handling for vector loads/stores
512   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
513     if (IsPTXVectorType(VT)) {
514       setOperationAction(ISD::LOAD, VT, Custom);
515       setOperationAction(ISD::STORE, VT, Custom);
516       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
517     }
518   }
519 
520   // Support varargs.
521   setOperationAction(ISD::VASTART, MVT::Other, Custom);
522   setOperationAction(ISD::VAARG, MVT::Other, Custom);
523   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
524   setOperationAction(ISD::VAEND, MVT::Other, Expand);
525 
526   // Custom handling for i8 intrinsics
527   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
528 
529   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
530     setOperationAction(ISD::ABS,  Ty, Legal);
531     setOperationAction(ISD::SMIN, Ty, Legal);
532     setOperationAction(ISD::SMAX, Ty, Legal);
533     setOperationAction(ISD::UMIN, Ty, Legal);
534     setOperationAction(ISD::UMAX, Ty, Legal);
535 
536     setOperationAction(ISD::CTPOP, Ty, Legal);
537     setOperationAction(ISD::CTLZ, Ty, Legal);
538   }
539 
540   setOperationAction(ISD::ADDC, MVT::i32, Legal);
541   setOperationAction(ISD::ADDE, MVT::i32, Legal);
542   setOperationAction(ISD::SUBC, MVT::i32, Legal);
543   setOperationAction(ISD::SUBE, MVT::i32, Legal);
544   if (STI.getPTXVersion() >= 43) {
545     setOperationAction(ISD::ADDC, MVT::i64, Legal);
546     setOperationAction(ISD::ADDE, MVT::i64, Legal);
547     setOperationAction(ISD::SUBC, MVT::i64, Legal);
548     setOperationAction(ISD::SUBE, MVT::i64, Legal);
549   }
550 
551   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
552   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
553   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
554 
555   // PTX does not directly support SELP of i1, so promote to i32 first
556   setOperationAction(ISD::SELECT, MVT::i1, Custom);
557 
558   // PTX cannot multiply two i64s in a single instruction.
559   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
560   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
561 
562   // We have some custom DAG combine patterns for these nodes
563   setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::FADD, ISD::MUL, ISD::SHL,
564                        ISD::SREM, ISD::UREM});
565 
566   // setcc for f16x2 needs special handling to prevent legalizer's
567   // attempt to scalarize it due to v2i1 not being legal.
568   if (STI.allowFP16Math())
569     setTargetDAGCombine(ISD::SETCC);
570 
571   // Promote fp16 arithmetic if fp16 hardware isn't available or the
572   // user passed --nvptx-no-fp16-math. The flag is useful because,
573   // although sm_53+ GPUs have some sort of FP16 support in
574   // hardware, only sm_53 and sm_60 have full implementation. Others
575   // only have token amount of hardware and are likely to run faster
576   // by using fp32 units instead.
577   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
578     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
579     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
580   }
581 
582   // f16/f16x2 neg was introduced in PTX 60, SM_53.
583   const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
584                                         STI.getPTXVersion() >= 60 &&
585                                         STI.allowFP16Math();
586   for (const auto &VT : {MVT::f16, MVT::v2f16})
587     setOperationAction(ISD::FNEG, VT,
588                        IsFP16FP16x2NegAvailable ? Legal : Expand);
589 
590   // (would be) Library functions.
591 
592   // These map to conversion instructions for scalar FP types.
593   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
594                          ISD::FROUNDEVEN, ISD::FTRUNC}) {
595     setOperationAction(Op, MVT::f16, Legal);
596     setOperationAction(Op, MVT::f32, Legal);
597     setOperationAction(Op, MVT::f64, Legal);
598     setOperationAction(Op, MVT::v2f16, Expand);
599   }
600 
601   setOperationAction(ISD::FROUND, MVT::f16, Promote);
602   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
603   setOperationAction(ISD::FROUND, MVT::f32, Custom);
604   setOperationAction(ISD::FROUND, MVT::f64, Custom);
605 
606 
607   // 'Expand' implements FCOPYSIGN without calling an external library.
608   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
609   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
610   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
611   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
612 
613   // These map to corresponding instructions for f32/f64. f16 must be
614   // promoted to f32. v2f16 is expanded to f16, which is then promoted
615   // to f32.
616   for (const auto &Op :
617        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FABS}) {
618     setOperationAction(Op, MVT::f16, Promote);
619     setOperationAction(Op, MVT::f32, Legal);
620     setOperationAction(Op, MVT::f64, Legal);
621     setOperationAction(Op, MVT::v2f16, Expand);
622   }
623   // max.f16, max.f16x2 and max.NaN are supported on sm_80+.
624   auto GetMinMaxAction = [&](LegalizeAction NotSm80Action) {
625     bool IsAtLeastSm80 = STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
626     return IsAtLeastSm80 ? Legal : NotSm80Action;
627   };
628   for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) {
629     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Promote), Promote);
630     setOperationAction(Op, MVT::f32, Legal);
631     setOperationAction(Op, MVT::f64, Legal);
632     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
633   }
634   for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
635     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Expand), Expand);
636     setOperationAction(Op, MVT::f32, GetMinMaxAction(Expand));
637     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
638   }
639 
640   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
641   // No FPOW or FREM in PTX.
642 
643   // Now deduce the information based on the above mentioned
644   // actions
645   computeRegisterProperties(STI.getRegisterInfo());
646 
647   setMinCmpXchgSizeInBits(32);
648 }
649 
650 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
651   switch ((NVPTXISD::NodeType)Opcode) {
652   case NVPTXISD::FIRST_NUMBER:
653     break;
654   case NVPTXISD::CALL:
655     return "NVPTXISD::CALL";
656   case NVPTXISD::RET_FLAG:
657     return "NVPTXISD::RET_FLAG";
658   case NVPTXISD::LOAD_PARAM:
659     return "NVPTXISD::LOAD_PARAM";
660   case NVPTXISD::Wrapper:
661     return "NVPTXISD::Wrapper";
662   case NVPTXISD::DeclareParam:
663     return "NVPTXISD::DeclareParam";
664   case NVPTXISD::DeclareScalarParam:
665     return "NVPTXISD::DeclareScalarParam";
666   case NVPTXISD::DeclareRet:
667     return "NVPTXISD::DeclareRet";
668   case NVPTXISD::DeclareScalarRet:
669     return "NVPTXISD::DeclareScalarRet";
670   case NVPTXISD::DeclareRetParam:
671     return "NVPTXISD::DeclareRetParam";
672   case NVPTXISD::PrintCall:
673     return "NVPTXISD::PrintCall";
674   case NVPTXISD::PrintConvergentCall:
675     return "NVPTXISD::PrintConvergentCall";
676   case NVPTXISD::PrintCallUni:
677     return "NVPTXISD::PrintCallUni";
678   case NVPTXISD::PrintConvergentCallUni:
679     return "NVPTXISD::PrintConvergentCallUni";
680   case NVPTXISD::LoadParam:
681     return "NVPTXISD::LoadParam";
682   case NVPTXISD::LoadParamV2:
683     return "NVPTXISD::LoadParamV2";
684   case NVPTXISD::LoadParamV4:
685     return "NVPTXISD::LoadParamV4";
686   case NVPTXISD::StoreParam:
687     return "NVPTXISD::StoreParam";
688   case NVPTXISD::StoreParamV2:
689     return "NVPTXISD::StoreParamV2";
690   case NVPTXISD::StoreParamV4:
691     return "NVPTXISD::StoreParamV4";
692   case NVPTXISD::StoreParamS32:
693     return "NVPTXISD::StoreParamS32";
694   case NVPTXISD::StoreParamU32:
695     return "NVPTXISD::StoreParamU32";
696   case NVPTXISD::CallArgBegin:
697     return "NVPTXISD::CallArgBegin";
698   case NVPTXISD::CallArg:
699     return "NVPTXISD::CallArg";
700   case NVPTXISD::LastCallArg:
701     return "NVPTXISD::LastCallArg";
702   case NVPTXISD::CallArgEnd:
703     return "NVPTXISD::CallArgEnd";
704   case NVPTXISD::CallVoid:
705     return "NVPTXISD::CallVoid";
706   case NVPTXISD::CallVal:
707     return "NVPTXISD::CallVal";
708   case NVPTXISD::CallSymbol:
709     return "NVPTXISD::CallSymbol";
710   case NVPTXISD::Prototype:
711     return "NVPTXISD::Prototype";
712   case NVPTXISD::MoveParam:
713     return "NVPTXISD::MoveParam";
714   case NVPTXISD::StoreRetval:
715     return "NVPTXISD::StoreRetval";
716   case NVPTXISD::StoreRetvalV2:
717     return "NVPTXISD::StoreRetvalV2";
718   case NVPTXISD::StoreRetvalV4:
719     return "NVPTXISD::StoreRetvalV4";
720   case NVPTXISD::PseudoUseParam:
721     return "NVPTXISD::PseudoUseParam";
722   case NVPTXISD::RETURN:
723     return "NVPTXISD::RETURN";
724   case NVPTXISD::CallSeqBegin:
725     return "NVPTXISD::CallSeqBegin";
726   case NVPTXISD::CallSeqEnd:
727     return "NVPTXISD::CallSeqEnd";
728   case NVPTXISD::CallPrototype:
729     return "NVPTXISD::CallPrototype";
730   case NVPTXISD::ProxyReg:
731     return "NVPTXISD::ProxyReg";
732   case NVPTXISD::LoadV2:
733     return "NVPTXISD::LoadV2";
734   case NVPTXISD::LoadV4:
735     return "NVPTXISD::LoadV4";
736   case NVPTXISD::LDGV2:
737     return "NVPTXISD::LDGV2";
738   case NVPTXISD::LDGV4:
739     return "NVPTXISD::LDGV4";
740   case NVPTXISD::LDUV2:
741     return "NVPTXISD::LDUV2";
742   case NVPTXISD::LDUV4:
743     return "NVPTXISD::LDUV4";
744   case NVPTXISD::StoreV2:
745     return "NVPTXISD::StoreV2";
746   case NVPTXISD::StoreV4:
747     return "NVPTXISD::StoreV4";
748   case NVPTXISD::FUN_SHFL_CLAMP:
749     return "NVPTXISD::FUN_SHFL_CLAMP";
750   case NVPTXISD::FUN_SHFR_CLAMP:
751     return "NVPTXISD::FUN_SHFR_CLAMP";
752   case NVPTXISD::IMAD:
753     return "NVPTXISD::IMAD";
754   case NVPTXISD::SETP_F16X2:
755     return "NVPTXISD::SETP_F16X2";
756   case NVPTXISD::Dummy:
757     return "NVPTXISD::Dummy";
758   case NVPTXISD::MUL_WIDE_SIGNED:
759     return "NVPTXISD::MUL_WIDE_SIGNED";
760   case NVPTXISD::MUL_WIDE_UNSIGNED:
761     return "NVPTXISD::MUL_WIDE_UNSIGNED";
762   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
763   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
764   case NVPTXISD::Tex1DFloatFloatLevel:
765     return "NVPTXISD::Tex1DFloatFloatLevel";
766   case NVPTXISD::Tex1DFloatFloatGrad:
767     return "NVPTXISD::Tex1DFloatFloatGrad";
768   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
769   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
770   case NVPTXISD::Tex1DS32FloatLevel:
771     return "NVPTXISD::Tex1DS32FloatLevel";
772   case NVPTXISD::Tex1DS32FloatGrad:
773     return "NVPTXISD::Tex1DS32FloatGrad";
774   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
775   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
776   case NVPTXISD::Tex1DU32FloatLevel:
777     return "NVPTXISD::Tex1DU32FloatLevel";
778   case NVPTXISD::Tex1DU32FloatGrad:
779     return "NVPTXISD::Tex1DU32FloatGrad";
780   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
781   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
782   case NVPTXISD::Tex1DArrayFloatFloatLevel:
783     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
784   case NVPTXISD::Tex1DArrayFloatFloatGrad:
785     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
786   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
787   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
788   case NVPTXISD::Tex1DArrayS32FloatLevel:
789     return "NVPTXISD::Tex1DArrayS32FloatLevel";
790   case NVPTXISD::Tex1DArrayS32FloatGrad:
791     return "NVPTXISD::Tex1DArrayS32FloatGrad";
792   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
793   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
794   case NVPTXISD::Tex1DArrayU32FloatLevel:
795     return "NVPTXISD::Tex1DArrayU32FloatLevel";
796   case NVPTXISD::Tex1DArrayU32FloatGrad:
797     return "NVPTXISD::Tex1DArrayU32FloatGrad";
798   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
799   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
800   case NVPTXISD::Tex2DFloatFloatLevel:
801     return "NVPTXISD::Tex2DFloatFloatLevel";
802   case NVPTXISD::Tex2DFloatFloatGrad:
803     return "NVPTXISD::Tex2DFloatFloatGrad";
804   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
805   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
806   case NVPTXISD::Tex2DS32FloatLevel:
807     return "NVPTXISD::Tex2DS32FloatLevel";
808   case NVPTXISD::Tex2DS32FloatGrad:
809     return "NVPTXISD::Tex2DS32FloatGrad";
810   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
811   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
812   case NVPTXISD::Tex2DU32FloatLevel:
813     return "NVPTXISD::Tex2DU32FloatLevel";
814   case NVPTXISD::Tex2DU32FloatGrad:
815     return "NVPTXISD::Tex2DU32FloatGrad";
816   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
817   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
818   case NVPTXISD::Tex2DArrayFloatFloatLevel:
819     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
820   case NVPTXISD::Tex2DArrayFloatFloatGrad:
821     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
822   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
823   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
824   case NVPTXISD::Tex2DArrayS32FloatLevel:
825     return "NVPTXISD::Tex2DArrayS32FloatLevel";
826   case NVPTXISD::Tex2DArrayS32FloatGrad:
827     return "NVPTXISD::Tex2DArrayS32FloatGrad";
828   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
829   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
830   case NVPTXISD::Tex2DArrayU32FloatLevel:
831     return "NVPTXISD::Tex2DArrayU32FloatLevel";
832   case NVPTXISD::Tex2DArrayU32FloatGrad:
833     return "NVPTXISD::Tex2DArrayU32FloatGrad";
834   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
835   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
836   case NVPTXISD::Tex3DFloatFloatLevel:
837     return "NVPTXISD::Tex3DFloatFloatLevel";
838   case NVPTXISD::Tex3DFloatFloatGrad:
839     return "NVPTXISD::Tex3DFloatFloatGrad";
840   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
841   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
842   case NVPTXISD::Tex3DS32FloatLevel:
843     return "NVPTXISD::Tex3DS32FloatLevel";
844   case NVPTXISD::Tex3DS32FloatGrad:
845     return "NVPTXISD::Tex3DS32FloatGrad";
846   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
847   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
848   case NVPTXISD::Tex3DU32FloatLevel:
849     return "NVPTXISD::Tex3DU32FloatLevel";
850   case NVPTXISD::Tex3DU32FloatGrad:
851     return "NVPTXISD::Tex3DU32FloatGrad";
852   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
853   case NVPTXISD::TexCubeFloatFloatLevel:
854     return "NVPTXISD::TexCubeFloatFloatLevel";
855   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
856   case NVPTXISD::TexCubeS32FloatLevel:
857     return "NVPTXISD::TexCubeS32FloatLevel";
858   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
859   case NVPTXISD::TexCubeU32FloatLevel:
860     return "NVPTXISD::TexCubeU32FloatLevel";
861   case NVPTXISD::TexCubeArrayFloatFloat:
862     return "NVPTXISD::TexCubeArrayFloatFloat";
863   case NVPTXISD::TexCubeArrayFloatFloatLevel:
864     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
865   case NVPTXISD::TexCubeArrayS32Float:
866     return "NVPTXISD::TexCubeArrayS32Float";
867   case NVPTXISD::TexCubeArrayS32FloatLevel:
868     return "NVPTXISD::TexCubeArrayS32FloatLevel";
869   case NVPTXISD::TexCubeArrayU32Float:
870     return "NVPTXISD::TexCubeArrayU32Float";
871   case NVPTXISD::TexCubeArrayU32FloatLevel:
872     return "NVPTXISD::TexCubeArrayU32FloatLevel";
873   case NVPTXISD::Tld4R2DFloatFloat:
874     return "NVPTXISD::Tld4R2DFloatFloat";
875   case NVPTXISD::Tld4G2DFloatFloat:
876     return "NVPTXISD::Tld4G2DFloatFloat";
877   case NVPTXISD::Tld4B2DFloatFloat:
878     return "NVPTXISD::Tld4B2DFloatFloat";
879   case NVPTXISD::Tld4A2DFloatFloat:
880     return "NVPTXISD::Tld4A2DFloatFloat";
881   case NVPTXISD::Tld4R2DS64Float:
882     return "NVPTXISD::Tld4R2DS64Float";
883   case NVPTXISD::Tld4G2DS64Float:
884     return "NVPTXISD::Tld4G2DS64Float";
885   case NVPTXISD::Tld4B2DS64Float:
886     return "NVPTXISD::Tld4B2DS64Float";
887   case NVPTXISD::Tld4A2DS64Float:
888     return "NVPTXISD::Tld4A2DS64Float";
889   case NVPTXISD::Tld4R2DU64Float:
890     return "NVPTXISD::Tld4R2DU64Float";
891   case NVPTXISD::Tld4G2DU64Float:
892     return "NVPTXISD::Tld4G2DU64Float";
893   case NVPTXISD::Tld4B2DU64Float:
894     return "NVPTXISD::Tld4B2DU64Float";
895   case NVPTXISD::Tld4A2DU64Float:
896     return "NVPTXISD::Tld4A2DU64Float";
897 
898   case NVPTXISD::TexUnified1DFloatS32:
899     return "NVPTXISD::TexUnified1DFloatS32";
900   case NVPTXISD::TexUnified1DFloatFloat:
901     return "NVPTXISD::TexUnified1DFloatFloat";
902   case NVPTXISD::TexUnified1DFloatFloatLevel:
903     return "NVPTXISD::TexUnified1DFloatFloatLevel";
904   case NVPTXISD::TexUnified1DFloatFloatGrad:
905     return "NVPTXISD::TexUnified1DFloatFloatGrad";
906   case NVPTXISD::TexUnified1DS32S32:
907     return "NVPTXISD::TexUnified1DS32S32";
908   case NVPTXISD::TexUnified1DS32Float:
909     return "NVPTXISD::TexUnified1DS32Float";
910   case NVPTXISD::TexUnified1DS32FloatLevel:
911     return "NVPTXISD::TexUnified1DS32FloatLevel";
912   case NVPTXISD::TexUnified1DS32FloatGrad:
913     return "NVPTXISD::TexUnified1DS32FloatGrad";
914   case NVPTXISD::TexUnified1DU32S32:
915     return "NVPTXISD::TexUnified1DU32S32";
916   case NVPTXISD::TexUnified1DU32Float:
917     return "NVPTXISD::TexUnified1DU32Float";
918   case NVPTXISD::TexUnified1DU32FloatLevel:
919     return "NVPTXISD::TexUnified1DU32FloatLevel";
920   case NVPTXISD::TexUnified1DU32FloatGrad:
921     return "NVPTXISD::TexUnified1DU32FloatGrad";
922   case NVPTXISD::TexUnified1DArrayFloatS32:
923     return "NVPTXISD::TexUnified1DArrayFloatS32";
924   case NVPTXISD::TexUnified1DArrayFloatFloat:
925     return "NVPTXISD::TexUnified1DArrayFloatFloat";
926   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
927     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
928   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
929     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
930   case NVPTXISD::TexUnified1DArrayS32S32:
931     return "NVPTXISD::TexUnified1DArrayS32S32";
932   case NVPTXISD::TexUnified1DArrayS32Float:
933     return "NVPTXISD::TexUnified1DArrayS32Float";
934   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
935     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
936   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
937     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
938   case NVPTXISD::TexUnified1DArrayU32S32:
939     return "NVPTXISD::TexUnified1DArrayU32S32";
940   case NVPTXISD::TexUnified1DArrayU32Float:
941     return "NVPTXISD::TexUnified1DArrayU32Float";
942   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
943     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
944   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
945     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
946   case NVPTXISD::TexUnified2DFloatS32:
947     return "NVPTXISD::TexUnified2DFloatS32";
948   case NVPTXISD::TexUnified2DFloatFloat:
949     return "NVPTXISD::TexUnified2DFloatFloat";
950   case NVPTXISD::TexUnified2DFloatFloatLevel:
951     return "NVPTXISD::TexUnified2DFloatFloatLevel";
952   case NVPTXISD::TexUnified2DFloatFloatGrad:
953     return "NVPTXISD::TexUnified2DFloatFloatGrad";
954   case NVPTXISD::TexUnified2DS32S32:
955     return "NVPTXISD::TexUnified2DS32S32";
956   case NVPTXISD::TexUnified2DS32Float:
957     return "NVPTXISD::TexUnified2DS32Float";
958   case NVPTXISD::TexUnified2DS32FloatLevel:
959     return "NVPTXISD::TexUnified2DS32FloatLevel";
960   case NVPTXISD::TexUnified2DS32FloatGrad:
961     return "NVPTXISD::TexUnified2DS32FloatGrad";
962   case NVPTXISD::TexUnified2DU32S32:
963     return "NVPTXISD::TexUnified2DU32S32";
964   case NVPTXISD::TexUnified2DU32Float:
965     return "NVPTXISD::TexUnified2DU32Float";
966   case NVPTXISD::TexUnified2DU32FloatLevel:
967     return "NVPTXISD::TexUnified2DU32FloatLevel";
968   case NVPTXISD::TexUnified2DU32FloatGrad:
969     return "NVPTXISD::TexUnified2DU32FloatGrad";
970   case NVPTXISD::TexUnified2DArrayFloatS32:
971     return "NVPTXISD::TexUnified2DArrayFloatS32";
972   case NVPTXISD::TexUnified2DArrayFloatFloat:
973     return "NVPTXISD::TexUnified2DArrayFloatFloat";
974   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
975     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
976   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
977     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
978   case NVPTXISD::TexUnified2DArrayS32S32:
979     return "NVPTXISD::TexUnified2DArrayS32S32";
980   case NVPTXISD::TexUnified2DArrayS32Float:
981     return "NVPTXISD::TexUnified2DArrayS32Float";
982   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
983     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
984   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
985     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
986   case NVPTXISD::TexUnified2DArrayU32S32:
987     return "NVPTXISD::TexUnified2DArrayU32S32";
988   case NVPTXISD::TexUnified2DArrayU32Float:
989     return "NVPTXISD::TexUnified2DArrayU32Float";
990   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
991     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
992   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
993     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
994   case NVPTXISD::TexUnified3DFloatS32:
995     return "NVPTXISD::TexUnified3DFloatS32";
996   case NVPTXISD::TexUnified3DFloatFloat:
997     return "NVPTXISD::TexUnified3DFloatFloat";
998   case NVPTXISD::TexUnified3DFloatFloatLevel:
999     return "NVPTXISD::TexUnified3DFloatFloatLevel";
1000   case NVPTXISD::TexUnified3DFloatFloatGrad:
1001     return "NVPTXISD::TexUnified3DFloatFloatGrad";
1002   case NVPTXISD::TexUnified3DS32S32:
1003     return "NVPTXISD::TexUnified3DS32S32";
1004   case NVPTXISD::TexUnified3DS32Float:
1005     return "NVPTXISD::TexUnified3DS32Float";
1006   case NVPTXISD::TexUnified3DS32FloatLevel:
1007     return "NVPTXISD::TexUnified3DS32FloatLevel";
1008   case NVPTXISD::TexUnified3DS32FloatGrad:
1009     return "NVPTXISD::TexUnified3DS32FloatGrad";
1010   case NVPTXISD::TexUnified3DU32S32:
1011     return "NVPTXISD::TexUnified3DU32S32";
1012   case NVPTXISD::TexUnified3DU32Float:
1013     return "NVPTXISD::TexUnified3DU32Float";
1014   case NVPTXISD::TexUnified3DU32FloatLevel:
1015     return "NVPTXISD::TexUnified3DU32FloatLevel";
1016   case NVPTXISD::TexUnified3DU32FloatGrad:
1017     return "NVPTXISD::TexUnified3DU32FloatGrad";
1018   case NVPTXISD::TexUnifiedCubeFloatFloat:
1019     return "NVPTXISD::TexUnifiedCubeFloatFloat";
1020   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
1021     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
1022   case NVPTXISD::TexUnifiedCubeS32Float:
1023     return "NVPTXISD::TexUnifiedCubeS32Float";
1024   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
1025     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
1026   case NVPTXISD::TexUnifiedCubeU32Float:
1027     return "NVPTXISD::TexUnifiedCubeU32Float";
1028   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
1029     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
1030   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
1031     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
1032   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
1033     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
1034   case NVPTXISD::TexUnifiedCubeArrayS32Float:
1035     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
1036   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
1037     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
1038   case NVPTXISD::TexUnifiedCubeArrayU32Float:
1039     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
1040   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
1041     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
1042   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
1043     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
1044   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
1045     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
1046   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
1047     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
1048   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
1049     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
1050   case NVPTXISD::Tld4UnifiedR2DS64Float:
1051     return "NVPTXISD::Tld4UnifiedR2DS64Float";
1052   case NVPTXISD::Tld4UnifiedG2DS64Float:
1053     return "NVPTXISD::Tld4UnifiedG2DS64Float";
1054   case NVPTXISD::Tld4UnifiedB2DS64Float:
1055     return "NVPTXISD::Tld4UnifiedB2DS64Float";
1056   case NVPTXISD::Tld4UnifiedA2DS64Float:
1057     return "NVPTXISD::Tld4UnifiedA2DS64Float";
1058   case NVPTXISD::Tld4UnifiedR2DU64Float:
1059     return "NVPTXISD::Tld4UnifiedR2DU64Float";
1060   case NVPTXISD::Tld4UnifiedG2DU64Float:
1061     return "NVPTXISD::Tld4UnifiedG2DU64Float";
1062   case NVPTXISD::Tld4UnifiedB2DU64Float:
1063     return "NVPTXISD::Tld4UnifiedB2DU64Float";
1064   case NVPTXISD::Tld4UnifiedA2DU64Float:
1065     return "NVPTXISD::Tld4UnifiedA2DU64Float";
1066 
1067   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
1068   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
1069   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
1070   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
1071   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
1072   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
1073   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1074   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1075   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1076   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1077   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1078 
1079   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1080   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1081   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1082   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1083   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1084   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1085   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1086   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1087   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1088   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1089   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1090 
1091   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1092   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1093   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1094   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1095   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1096   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1097   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1098   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1099   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1100   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1101   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1102 
1103   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1104   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1105   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1106   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1107   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1108   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1109   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1110   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1111   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1112   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1113   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1114 
1115   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1116   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1117   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1118   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1119   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1120   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1121   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1122   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1123   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1124   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1125   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1126 
1127   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1128   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1129   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1130   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1131   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1132   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1133   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1134   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1135   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1136   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1137   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1138 
1139   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1140   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1141   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1142   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1143   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1144   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1145   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1146   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1147   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1148   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1149   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1150 
1151   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1152   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1153   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1154   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1155   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1156   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1157   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1158   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1159   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1160   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1161   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1162 
1163   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1164   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1165   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1166   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1167   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1168   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1169   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1170   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1171   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1172   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1173   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1174 
1175   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1176   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1177   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1178   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1179   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1180   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1181   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1182   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1183   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1184   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1185   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1186 
1187   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1188   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1189   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1190   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1191   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1192   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1193   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1194   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1195   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1196   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1197   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1198 
1199   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1200   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1201   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1202   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1203   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1204   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1205   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1206   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1207   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1208   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1209   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1210 
1211   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1212   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1213   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1214   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1215   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1216   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1217   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1218   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1219   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1220   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1221   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1222 
1223   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1224   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1225   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1226   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1227   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1228   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1229   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1230   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1231   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1232   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1233   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1234 
1235   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1236   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1237   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1238   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1239   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1240   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1241   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1242   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1243   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1244   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1245   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1246   }
1247   return nullptr;
1248 }
1249 
1250 TargetLoweringBase::LegalizeTypeAction
1251 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1252   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1253       VT.getScalarType() == MVT::i1)
1254     return TypeSplitVector;
1255   if (VT == MVT::v2f16)
1256     return TypeLegal;
1257   return TargetLoweringBase::getPreferredVectorAction(VT);
1258 }
1259 
1260 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1261                                              int Enabled, int &ExtraSteps,
1262                                              bool &UseOneConst,
1263                                              bool Reciprocal) const {
1264   if (!(Enabled == ReciprocalEstimate::Enabled ||
1265         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1266     return SDValue();
1267 
1268   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1269     ExtraSteps = 0;
1270 
1271   SDLoc DL(Operand);
1272   EVT VT = Operand.getValueType();
1273   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1274 
1275   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1276     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1277                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1278   };
1279 
1280   // The sqrt and rsqrt refinement processes assume we always start out with an
1281   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1282   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1283   // any refinement, we must return a regular sqrt.
1284   if (Reciprocal || ExtraSteps > 0) {
1285     if (VT == MVT::f32)
1286       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1287                                    : Intrinsic::nvvm_rsqrt_approx_f);
1288     else if (VT == MVT::f64)
1289       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1290     else
1291       return SDValue();
1292   } else {
1293     if (VT == MVT::f32)
1294       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1295                                    : Intrinsic::nvvm_sqrt_approx_f);
1296     else {
1297       // There's no sqrt.approx.f64 instruction, so we emit
1298       // reciprocal(rsqrt(x)).  This is faster than
1299       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1300       // x * rsqrt(x).)
1301       return DAG.getNode(
1302           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1303           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1304           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1305     }
1306   }
1307 }
1308 
1309 SDValue
1310 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1311   SDLoc dl(Op);
1312   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1313   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1314   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1315   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1316 }
1317 
1318 std::string NVPTXTargetLowering::getPrototype(
1319     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1320     const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
1321     std::optional<std::pair<unsigned, const APInt &>> VAInfo,
1322     const CallBase &CB, unsigned UniqueCallSite) const {
1323   auto PtrVT = getPointerTy(DL);
1324 
1325   bool isABI = (STI.getSmVersion() >= 20);
1326   assert(isABI && "Non-ABI compilation is not supported");
1327   if (!isABI)
1328     return "";
1329 
1330   std::string Prototype;
1331   raw_string_ostream O(Prototype);
1332   O << "prototype_" << UniqueCallSite << " : .callprototype ";
1333 
1334   if (retTy->getTypeID() == Type::VoidTyID) {
1335     O << "()";
1336   } else {
1337     O << "(";
1338     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1339       unsigned size = 0;
1340       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1341         size = ITy->getBitWidth();
1342       } else {
1343         assert(retTy->isFloatingPointTy() &&
1344                "Floating point type expected here");
1345         size = retTy->getPrimitiveSizeInBits();
1346       }
1347       // PTX ABI requires all scalar return values to be at least 32
1348       // bits in size.  fp16 normally uses .b16 as its storage type in
1349       // PTX, so its size must be adjusted here, too.
1350       size = promoteScalarArgumentSize(size);
1351 
1352       O << ".param .b" << size << " _";
1353     } else if (isa<PointerType>(retTy)) {
1354       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1355     } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1356                retTy->isIntegerTy(128)) {
1357       O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
1358         << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
1359     } else {
1360       llvm_unreachable("Unknown return type");
1361     }
1362     O << ") ";
1363   }
1364   O << "_ (";
1365 
1366   bool first = true;
1367 
1368   const Function *F = CB.getFunction();
1369   unsigned NumArgs = VAInfo ? VAInfo->first : Args.size();
1370   for (unsigned i = 0, OIdx = 0; i != NumArgs; ++i, ++OIdx) {
1371     Type *Ty = Args[i].Ty;
1372     if (!first) {
1373       O << ", ";
1374     }
1375     first = false;
1376 
1377     if (!Outs[OIdx].Flags.isByVal()) {
1378       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1379         unsigned ParamAlign = 0;
1380         const CallInst *CallI = cast<CallInst>(&CB);
1381         // +1 because index 0 is reserved for return type alignment
1382         if (!getAlign(*CallI, i + 1, ParamAlign))
1383           ParamAlign = getFunctionParamOptimizedAlign(F, Ty, DL).value();
1384         O << ".param .align " << ParamAlign << " .b8 ";
1385         O << "_";
1386         O << "[" << DL.getTypeAllocSize(Ty) << "]";
1387         // update the index for Outs
1388         SmallVector<EVT, 16> vtparts;
1389         ComputeValueVTs(*this, DL, Ty, vtparts);
1390         if (unsigned len = vtparts.size())
1391           OIdx += len - 1;
1392         continue;
1393       }
1394       // i8 types in IR will be i16 types in SDAG
1395       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1396               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1397              "type mismatch between callee prototype and arguments");
1398       // scalar type
1399       unsigned sz = 0;
1400       if (isa<IntegerType>(Ty)) {
1401         sz = cast<IntegerType>(Ty)->getBitWidth();
1402         sz = promoteScalarArgumentSize(sz);
1403       } else if (isa<PointerType>(Ty)) {
1404         sz = PtrVT.getSizeInBits();
1405       } else if (Ty->isHalfTy())
1406         // PTX ABI requires all scalar parameters to be at least 32
1407         // bits in size.  fp16 normally uses .b16 as its storage type
1408         // in PTX, so its size must be adjusted here, too.
1409         sz = 32;
1410       else
1411         sz = Ty->getPrimitiveSizeInBits();
1412       O << ".param .b" << sz << " ";
1413       O << "_";
1414       continue;
1415     }
1416 
1417     Type *ETy = Args[i].IndirectType;
1418     Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1419     Align ParamByValAlign =
1420         getFunctionByValParamAlign(F, ETy, InitialAlign, DL);
1421 
1422     O << ".param .align " << ParamByValAlign.value() << " .b8 ";
1423     O << "_";
1424     O << "[" << Outs[OIdx].Flags.getByValSize() << "]";
1425   }
1426 
1427   if (VAInfo)
1428     O << (first ? "" : ",") << " .param .align " << VAInfo->second
1429       << " .b8 _[]\n";
1430   O << ")";
1431   if (shouldEmitPTXNoReturn(&CB, *nvTM))
1432     O << " .noreturn";
1433   O << ";";
1434 
1435   return Prototype;
1436 }
1437 
1438 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1439                                                 const CallBase *CB, Type *Ty,
1440                                                 unsigned Idx,
1441                                                 const DataLayout &DL) const {
1442   if (!CB) {
1443     // CallSite is zero, fallback to ABI type alignment
1444     return DL.getABITypeAlign(Ty);
1445   }
1446 
1447   unsigned Alignment = 0;
1448   const Function *DirectCallee = CB->getCalledFunction();
1449 
1450   if (!DirectCallee) {
1451     // We don't have a direct function symbol, but that may be because of
1452     // constant cast instructions in the call.
1453 
1454     // With bitcast'd call targets, the instruction will be the call
1455     if (const auto *CI = dyn_cast<CallInst>(CB)) {
1456       // Check if we have call alignment metadata
1457       if (getAlign(*CI, Idx, Alignment))
1458         return Align(Alignment);
1459     }
1460     DirectCallee = getMaybeBitcastedCallee(CB);
1461   }
1462 
1463   // Check for function alignment information if we found that the
1464   // ultimate target is a Function
1465   if (DirectCallee) {
1466     if (getAlign(*DirectCallee, Idx, Alignment))
1467       return Align(Alignment);
1468     // If alignment information is not available, fall back to the
1469     // default function param optimized type alignment
1470     return getFunctionParamOptimizedAlign(DirectCallee, Ty, DL);
1471   }
1472 
1473   // Call is indirect, fall back to the ABI type alignment
1474   return DL.getABITypeAlign(Ty);
1475 }
1476 
1477 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1478                                        SmallVectorImpl<SDValue> &InVals) const {
1479 
1480   if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
1481     report_fatal_error(
1482         "Support for variadic functions (unsized array parameter) introduced "
1483         "in PTX ISA version 6.0 and requires target sm_30.");
1484 
1485   SelectionDAG &DAG = CLI.DAG;
1486   SDLoc dl = CLI.DL;
1487   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1488   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1489   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1490   SDValue Chain = CLI.Chain;
1491   SDValue Callee = CLI.Callee;
1492   bool &isTailCall = CLI.IsTailCall;
1493   ArgListTy &Args = CLI.getArgs();
1494   Type *RetTy = CLI.RetTy;
1495   const CallBase *CB = CLI.CB;
1496   const DataLayout &DL = DAG.getDataLayout();
1497 
1498   bool isABI = (STI.getSmVersion() >= 20);
1499   assert(isABI && "Non-ABI compilation is not supported");
1500   if (!isABI)
1501     return Chain;
1502 
1503   // Variadic arguments.
1504   //
1505   // Normally, for each argument, we declare a param scalar or a param
1506   // byte array in the .param space, and store the argument value to that
1507   // param scalar or array starting at offset 0.
1508   //
1509   // In the case of the first variadic argument, we declare a vararg byte array
1510   // with size 0. The exact size of this array isn't known at this point, so
1511   // it'll be patched later. All the variadic arguments will be stored to this
1512   // array at a certain offset (which gets tracked by 'VAOffset'). The offset is
1513   // initially set to 0, so it can be used for non-variadic arguments (which use
1514   // 0 offset) to simplify the code.
1515   //
1516   // After all vararg is processed, 'VAOffset' holds the size of the
1517   // vararg byte array.
1518 
1519   SDValue VADeclareParam;                 // vararg byte array
1520   unsigned FirstVAArg = CLI.NumFixedArgs; // position of the first variadic
1521   unsigned VAOffset = 0;                  // current offset in the param array
1522 
1523   unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1);
1524   SDValue TempChain = Chain;
1525   Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
1526   SDValue InFlag = Chain.getValue(1);
1527 
1528   unsigned ParamCount = 0;
1529   // Args.size() and Outs.size() need not match.
1530   // Outs.size() will be larger
1531   //   * if there is an aggregate argument with multiple fields (each field
1532   //     showing up separately in Outs)
1533   //   * if there is a vector argument with more than typical vector-length
1534   //     elements (generally if more than 4) where each vector element is
1535   //     individually present in Outs.
1536   // So a different index should be used for indexing into Outs/OutVals.
1537   // See similar issue in LowerFormalArguments.
1538   unsigned OIdx = 0;
1539   // Declare the .params or .reg need to pass values
1540   // to the function
1541   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1542     EVT VT = Outs[OIdx].VT;
1543     Type *Ty = Args[i].Ty;
1544     bool IsVAArg = (i >= CLI.NumFixedArgs);
1545     bool IsByVal = Outs[OIdx].Flags.isByVal();
1546 
1547     SmallVector<EVT, 16> VTs;
1548     SmallVector<uint64_t, 16> Offsets;
1549 
1550     assert((!IsByVal || Args[i].IndirectType) &&
1551            "byval arg must have indirect type");
1552     Type *ETy = (IsByVal ? Args[i].IndirectType : Ty);
1553     ComputePTXValueVTs(*this, DL, ETy, VTs, &Offsets, IsByVal ? 0 : VAOffset);
1554 
1555     Align ArgAlign;
1556     if (IsByVal) {
1557       // The ByValAlign in the Outs[OIdx].Flags is always set at this point,
1558       // so we don't need to worry whether it's naturally aligned or not.
1559       // See TargetLowering::LowerCallTo().
1560       Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1561       ArgAlign = getFunctionByValParamAlign(CB->getCalledFunction(), ETy,
1562                                             InitialAlign, DL);
1563       if (IsVAArg)
1564         VAOffset = alignTo(VAOffset, ArgAlign);
1565     } else {
1566       ArgAlign = getArgumentAlignment(Callee, CB, Ty, ParamCount + 1, DL);
1567     }
1568 
1569     unsigned TypeSize =
1570         (IsByVal ? Outs[OIdx].Flags.getByValSize() : DL.getTypeAllocSize(Ty));
1571     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1572 
1573     bool NeedAlign; // Does argument declaration specify alignment?
1574     if (IsVAArg) {
1575       if (ParamCount == FirstVAArg) {
1576         SDValue DeclareParamOps[] = {
1577             Chain, DAG.getConstant(STI.getMaxRequiredAlignment(), dl, MVT::i32),
1578             DAG.getConstant(ParamCount, dl, MVT::i32),
1579             DAG.getConstant(1, dl, MVT::i32), InFlag};
1580         VADeclareParam = Chain = DAG.getNode(NVPTXISD::DeclareParam, dl,
1581                                              DeclareParamVTs, DeclareParamOps);
1582       }
1583       NeedAlign = IsByVal || Ty->isAggregateType() || Ty->isVectorTy() ||
1584                   Ty->isIntegerTy(128);
1585     } else if (IsByVal || Ty->isAggregateType() || Ty->isVectorTy() ||
1586                Ty->isIntegerTy(128)) {
1587       // declare .param .align <align> .b8 .param<n>[<size>];
1588       SDValue DeclareParamOps[] = {
1589           Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1590           DAG.getConstant(ParamCount, dl, MVT::i32),
1591           DAG.getConstant(TypeSize, dl, MVT::i32), InFlag};
1592       Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1593                           DeclareParamOps);
1594       NeedAlign = true;
1595     } else {
1596       // declare .param .b<size> .param<n>;
1597       if (VT.isInteger() || VT.isFloatingPoint()) {
1598         // PTX ABI requires integral types to be at least 32 bits in
1599         // size. FP16 is loaded/stored using i16, so it's handled
1600         // here as well.
1601         TypeSize = promoteScalarArgumentSize(TypeSize * 8) / 8;
1602       }
1603       SDValue DeclareScalarParamOps[] = {
1604           Chain, DAG.getConstant(ParamCount, dl, MVT::i32),
1605           DAG.getConstant(TypeSize * 8, dl, MVT::i32),
1606           DAG.getConstant(0, dl, MVT::i32), InFlag};
1607       Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1608                           DeclareScalarParamOps);
1609       NeedAlign = false;
1610     }
1611     InFlag = Chain.getValue(1);
1612 
1613     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1614     // than 32-bits are sign extended or zero extended, depending on
1615     // whether they are signed or unsigned types. This case applies
1616     // only to scalar parameters and not to aggregate values.
1617     bool ExtendIntegerParam =
1618         Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1619 
1620     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg);
1621     SmallVector<SDValue, 6> StoreOperands;
1622     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1623       EVT EltVT = VTs[j];
1624       int CurOffset = Offsets[j];
1625       MaybeAlign PartAlign;
1626       if (NeedAlign)
1627         PartAlign = commonAlignment(ArgAlign, CurOffset);
1628 
1629       // New store.
1630       if (VectorInfo[j] & PVF_FIRST) {
1631         assert(StoreOperands.empty() && "Unfinished preceding store.");
1632         StoreOperands.push_back(Chain);
1633         StoreOperands.push_back(
1634             DAG.getConstant(IsVAArg ? FirstVAArg : ParamCount, dl, MVT::i32));
1635         StoreOperands.push_back(DAG.getConstant(
1636             IsByVal ? CurOffset + VAOffset : (IsVAArg ? VAOffset : CurOffset),
1637             dl, MVT::i32));
1638       }
1639 
1640       SDValue StVal = OutVals[OIdx];
1641 
1642       MVT PromotedVT;
1643       if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
1644         EltVT = EVT(PromotedVT);
1645       }
1646       if (PromoteScalarIntegerPTX(StVal.getValueType(), &PromotedVT)) {
1647         llvm::ISD::NodeType Ext =
1648             Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1649         StVal = DAG.getNode(Ext, dl, PromotedVT, StVal);
1650       }
1651 
1652       if (IsByVal) {
1653         auto PtrVT = getPointerTy(DL);
1654         SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StVal,
1655                                       DAG.getConstant(CurOffset, dl, PtrVT));
1656         StVal = DAG.getLoad(EltVT, dl, TempChain, srcAddr, MachinePointerInfo(),
1657                             PartAlign);
1658       } else if (ExtendIntegerParam) {
1659         assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1660         // zext/sext to i32
1661         StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1662                                                       : ISD::ZERO_EXTEND,
1663                             dl, MVT::i32, StVal);
1664       }
1665 
1666       if (!ExtendIntegerParam && EltVT.getSizeInBits() < 16) {
1667         // Use 16-bit registers for small stores as it's the
1668         // smallest general purpose register size supported by NVPTX.
1669         StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1670       }
1671 
1672       // Record the value to store.
1673       StoreOperands.push_back(StVal);
1674 
1675       if (VectorInfo[j] & PVF_LAST) {
1676         unsigned NumElts = StoreOperands.size() - 3;
1677         NVPTXISD::NodeType Op;
1678         switch (NumElts) {
1679         case 1:
1680           Op = NVPTXISD::StoreParam;
1681           break;
1682         case 2:
1683           Op = NVPTXISD::StoreParamV2;
1684           break;
1685         case 4:
1686           Op = NVPTXISD::StoreParamV4;
1687           break;
1688         default:
1689           llvm_unreachable("Invalid vector info.");
1690         }
1691 
1692         StoreOperands.push_back(InFlag);
1693 
1694         // Adjust type of the store op if we've extended the scalar
1695         // return value.
1696         EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1697 
1698         Chain = DAG.getMemIntrinsicNode(
1699             Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1700             TheStoreType, MachinePointerInfo(), PartAlign,
1701             MachineMemOperand::MOStore);
1702         InFlag = Chain.getValue(1);
1703 
1704         // Cleanup.
1705         StoreOperands.clear();
1706 
1707         // TODO: We may need to support vector types that can be passed
1708         // as scalars in variadic arguments.
1709         if (!IsByVal && IsVAArg) {
1710           assert(NumElts == 1 &&
1711                  "Vectorization is expected to be disabled for variadics.");
1712           VAOffset += DL.getTypeAllocSize(
1713               TheStoreType.getTypeForEVT(*DAG.getContext()));
1714         }
1715       }
1716       if (!IsByVal)
1717         ++OIdx;
1718     }
1719     assert(StoreOperands.empty() && "Unfinished parameter store.");
1720     if (!IsByVal && VTs.size() > 0)
1721       --OIdx;
1722     ++ParamCount;
1723     if (IsByVal && IsVAArg)
1724       VAOffset += TypeSize;
1725   }
1726 
1727   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1728   MaybeAlign retAlignment = std::nullopt;
1729 
1730   // Handle Result
1731   if (Ins.size() > 0) {
1732     SmallVector<EVT, 16> resvtparts;
1733     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1734 
1735     // Declare
1736     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1737     //  .param .b<size-in-bits> retval0
1738     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1739     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1740     // these three types to match the logic in
1741     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1742     // Plus, this behavior is consistent with nvcc's.
1743     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1744         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1745       resultsz = promoteScalarArgumentSize(resultsz);
1746       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1747       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1748                                   DAG.getConstant(resultsz, dl, MVT::i32),
1749                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1750       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1751                           DeclareRetOps);
1752       InFlag = Chain.getValue(1);
1753     } else {
1754       retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1755       assert(retAlignment && "retAlignment is guaranteed to be set");
1756       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1757       SDValue DeclareRetOps[] = {
1758           Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
1759           DAG.getConstant(resultsz / 8, dl, MVT::i32),
1760           DAG.getConstant(0, dl, MVT::i32), InFlag};
1761       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1762                           DeclareRetOps);
1763       InFlag = Chain.getValue(1);
1764     }
1765   }
1766 
1767   bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs);
1768   // Set the size of the vararg param byte array if the callee is a variadic
1769   // function and the variadic part is not empty.
1770   if (HasVAArgs) {
1771     SDValue DeclareParamOps[] = {
1772         VADeclareParam.getOperand(0), VADeclareParam.getOperand(1),
1773         VADeclareParam.getOperand(2), DAG.getConstant(VAOffset, dl, MVT::i32),
1774         VADeclareParam.getOperand(4)};
1775     DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(),
1776                     VADeclareParam->getVTList(), DeclareParamOps);
1777   }
1778 
1779   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1780   // between them we must rely on the call site value which is valid for
1781   // indirect calls but is always null for libcalls.
1782   bool isIndirectCall = !Func && CB;
1783 
1784   if (isa<ExternalSymbolSDNode>(Callee)) {
1785     Function* CalleeFunc = nullptr;
1786 
1787     // Try to find the callee in the current module.
1788     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1789     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1790 
1791     // Set the "libcall callee" attribute to indicate that the function
1792     // must always have a declaration.
1793     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1794   }
1795 
1796   if (isIndirectCall) {
1797     // This is indirect function call case : PTX requires a prototype of the
1798     // form
1799     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1800     // to be emitted, and the label has to used as the last arg of call
1801     // instruction.
1802     // The prototype is embedded in a string and put as the operand for a
1803     // CallPrototype SDNode which will print out to the value of the string.
1804     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1805     std::string Proto = getPrototype(
1806         DL, RetTy, Args, Outs, retAlignment,
1807         HasVAArgs
1808             ? std::optional<std::pair<unsigned, const APInt &>>(std::make_pair(
1809                   CLI.NumFixedArgs,
1810                   cast<ConstantSDNode>(VADeclareParam->getOperand(1))
1811                       ->getAPIntValue()))
1812             : std::nullopt,
1813         *CB, UniqueCallSite);
1814     const char *ProtoStr = nvTM->getStrPool().save(Proto).data();
1815     SDValue ProtoOps[] = {
1816         Chain,
1817         DAG.getTargetExternalSymbol(ProtoStr, MVT::i32),
1818         InFlag,
1819     };
1820     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1821     InFlag = Chain.getValue(1);
1822   }
1823   // Op to just print "call"
1824   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1825   SDValue PrintCallOps[] = {
1826     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1827   };
1828   // We model convergent calls as separate opcodes.
1829   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1830   if (CLI.IsConvergent)
1831     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1832                                               : NVPTXISD::PrintConvergentCall;
1833   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1834   InFlag = Chain.getValue(1);
1835 
1836   // Ops to print out the function name
1837   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1838   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1839   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1840   InFlag = Chain.getValue(1);
1841 
1842   // Ops to print out the param list
1843   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1844   SDValue CallArgBeginOps[] = { Chain, InFlag };
1845   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1846                       CallArgBeginOps);
1847   InFlag = Chain.getValue(1);
1848 
1849   for (unsigned i = 0, e = std::min(CLI.NumFixedArgs + 1, ParamCount); i != e;
1850        ++i) {
1851     unsigned opcode;
1852     if (i == (e - 1))
1853       opcode = NVPTXISD::LastCallArg;
1854     else
1855       opcode = NVPTXISD::CallArg;
1856     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1857     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1858                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1859     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1860     InFlag = Chain.getValue(1);
1861   }
1862   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1863   SDValue CallArgEndOps[] = { Chain,
1864                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1865                               InFlag };
1866   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1867   InFlag = Chain.getValue(1);
1868 
1869   if (isIndirectCall) {
1870     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1871     SDValue PrototypeOps[] = {
1872         Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag};
1873     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1874     InFlag = Chain.getValue(1);
1875   }
1876 
1877   SmallVector<SDValue, 16> ProxyRegOps;
1878   SmallVector<std::optional<MVT>, 16> ProxyRegTruncates;
1879 
1880   // Generate loads from param memory/moves from registers for result
1881   if (Ins.size() > 0) {
1882     SmallVector<EVT, 16> VTs;
1883     SmallVector<uint64_t, 16> Offsets;
1884     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1885     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1886 
1887     Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1888     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1889 
1890     SmallVector<EVT, 6> LoadVTs;
1891     int VecIdx = -1; // Index of the first element of the vector.
1892 
1893     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1894     // 32-bits are sign extended or zero extended, depending on whether
1895     // they are signed or unsigned types.
1896     bool ExtendIntegerRetVal =
1897         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1898 
1899     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1900       bool needTruncate = false;
1901       EVT TheLoadType = VTs[i];
1902       EVT EltType = Ins[i].VT;
1903       Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
1904       MVT PromotedVT;
1905 
1906       if (PromoteScalarIntegerPTX(TheLoadType, &PromotedVT)) {
1907         TheLoadType = EVT(PromotedVT);
1908         EltType = EVT(PromotedVT);
1909         needTruncate = true;
1910       }
1911 
1912       if (ExtendIntegerRetVal) {
1913         TheLoadType = MVT::i32;
1914         EltType = MVT::i32;
1915         needTruncate = true;
1916       } else if (TheLoadType.getSizeInBits() < 16) {
1917         if (VTs[i].isInteger())
1918           needTruncate = true;
1919         EltType = MVT::i16;
1920       }
1921 
1922       // Record index of the very first element of the vector.
1923       if (VectorInfo[i] & PVF_FIRST) {
1924         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1925         VecIdx = i;
1926       }
1927 
1928       LoadVTs.push_back(EltType);
1929 
1930       if (VectorInfo[i] & PVF_LAST) {
1931         unsigned NumElts = LoadVTs.size();
1932         LoadVTs.push_back(MVT::Other);
1933         LoadVTs.push_back(MVT::Glue);
1934         NVPTXISD::NodeType Op;
1935         switch (NumElts) {
1936         case 1:
1937           Op = NVPTXISD::LoadParam;
1938           break;
1939         case 2:
1940           Op = NVPTXISD::LoadParamV2;
1941           break;
1942         case 4:
1943           Op = NVPTXISD::LoadParamV4;
1944           break;
1945         default:
1946           llvm_unreachable("Invalid vector info.");
1947         }
1948 
1949         SDValue LoadOperands[] = {
1950             Chain, DAG.getConstant(1, dl, MVT::i32),
1951             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1952         SDValue RetVal = DAG.getMemIntrinsicNode(
1953             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1954             MachinePointerInfo(), EltAlign,
1955             MachineMemOperand::MOLoad);
1956 
1957         for (unsigned j = 0; j < NumElts; ++j) {
1958           ProxyRegOps.push_back(RetVal.getValue(j));
1959 
1960           if (needTruncate)
1961             ProxyRegTruncates.push_back(std::optional<MVT>(Ins[VecIdx + j].VT));
1962           else
1963             ProxyRegTruncates.push_back(std::optional<MVT>());
1964         }
1965 
1966         Chain = RetVal.getValue(NumElts);
1967         InFlag = RetVal.getValue(NumElts + 1);
1968 
1969         // Cleanup
1970         VecIdx = -1;
1971         LoadVTs.clear();
1972       }
1973     }
1974   }
1975 
1976   Chain =
1977       DAG.getCALLSEQ_END(Chain, UniqueCallSite, UniqueCallSite + 1, InFlag, dl);
1978   InFlag = Chain.getValue(1);
1979 
1980   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1981   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1982   // dangling.
1983   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1984     SDValue Ret = DAG.getNode(
1985       NVPTXISD::ProxyReg, dl,
1986       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1987       { Chain, ProxyRegOps[i], InFlag }
1988     );
1989 
1990     Chain = Ret.getValue(1);
1991     InFlag = Ret.getValue(2);
1992 
1993     if (ProxyRegTruncates[i]) {
1994       Ret = DAG.getNode(ISD::TRUNCATE, dl, *ProxyRegTruncates[i], Ret);
1995     }
1996 
1997     InVals.push_back(Ret);
1998   }
1999 
2000   // set isTailCall to false for now, until we figure out how to express
2001   // tail call optimization in PTX
2002   isTailCall = false;
2003   return Chain;
2004 }
2005 
2006 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
2007 // (see LegalizeDAG.cpp). This is slow and uses local memory.
2008 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
2009 SDValue
2010 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
2011   SDNode *Node = Op.getNode();
2012   SDLoc dl(Node);
2013   SmallVector<SDValue, 8> Ops;
2014   unsigned NumOperands = Node->getNumOperands();
2015   for (unsigned i = 0; i < NumOperands; ++i) {
2016     SDValue SubOp = Node->getOperand(i);
2017     EVT VVT = SubOp.getNode()->getValueType(0);
2018     EVT EltVT = VVT.getVectorElementType();
2019     unsigned NumSubElem = VVT.getVectorNumElements();
2020     for (unsigned j = 0; j < NumSubElem; ++j) {
2021       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
2022                                 DAG.getIntPtrConstant(j, dl)));
2023     }
2024   }
2025   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
2026 }
2027 
2028 // We can init constant f16x2 with a single .b32 move.  Normally it
2029 // would get lowered as two constant loads and vector-packing move.
2030 //        mov.b16         %h1, 0x4000;
2031 //        mov.b16         %h2, 0x3C00;
2032 //        mov.b32         %hh2, {%h2, %h1};
2033 // Instead we want just a constant move:
2034 //        mov.b32         %hh2, 0x40003C00
2035 //
2036 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
2037 // generates good SASS in both cases.
2038 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2039                                                SelectionDAG &DAG) const {
2040   if (!(Op->getValueType(0) == MVT::v2f16 &&
2041         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
2042         isa<ConstantFPSDNode>(Op->getOperand(1))))
2043     return Op;
2044 
2045   APInt E0 =
2046       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
2047   APInt E1 =
2048       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
2049   SDValue Const =
2050       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
2051   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
2052 }
2053 
2054 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2055                                                      SelectionDAG &DAG) const {
2056   SDValue Index = Op->getOperand(1);
2057   // Constant index will be matched by tablegen.
2058   if (isa<ConstantSDNode>(Index.getNode()))
2059     return Op;
2060 
2061   // Extract individual elements and select one of them.
2062   SDValue Vector = Op->getOperand(0);
2063   EVT VectorVT = Vector.getValueType();
2064   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
2065   EVT EltVT = VectorVT.getVectorElementType();
2066 
2067   SDLoc dl(Op.getNode());
2068   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2069                            DAG.getIntPtrConstant(0, dl));
2070   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2071                            DAG.getIntPtrConstant(1, dl));
2072   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
2073                          ISD::CondCode::SETEQ);
2074 }
2075 
2076 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
2077 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2078 ///    amount, or
2079 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2080 ///    amount.
2081 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
2082                                                   SelectionDAG &DAG) const {
2083   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2084   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2085 
2086   EVT VT = Op.getValueType();
2087   unsigned VTBits = VT.getSizeInBits();
2088   SDLoc dl(Op);
2089   SDValue ShOpLo = Op.getOperand(0);
2090   SDValue ShOpHi = Op.getOperand(1);
2091   SDValue ShAmt  = Op.getOperand(2);
2092   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2093 
2094   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2095     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2096     // {dHi, dLo} = {aHi, aLo} >> Amt
2097     //   dHi = aHi >> Amt
2098     //   dLo = shf.r.clamp aLo, aHi, Amt
2099 
2100     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2101     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
2102                              ShAmt);
2103 
2104     SDValue Ops[2] = { Lo, Hi };
2105     return DAG.getMergeValues(Ops, dl);
2106   }
2107   else {
2108     // {dHi, dLo} = {aHi, aLo} >> Amt
2109     // - if (Amt>=size) then
2110     //      dLo = aHi >> (Amt-size)
2111     //      dHi = aHi >> Amt (this is either all 0 or all 1)
2112     //   else
2113     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
2114     //      dHi = aHi >> Amt
2115 
2116     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2117                                    DAG.getConstant(VTBits, dl, MVT::i32),
2118                                    ShAmt);
2119     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2120     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2121                                      DAG.getConstant(VTBits, dl, MVT::i32));
2122     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2123     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2124     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2125 
2126     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2127                                DAG.getConstant(VTBits, dl, MVT::i32),
2128                                ISD::SETGE);
2129     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2130     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2131 
2132     SDValue Ops[2] = { Lo, Hi };
2133     return DAG.getMergeValues(Ops, dl);
2134   }
2135 }
2136 
2137 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2138 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2139 ///    amount, or
2140 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2141 ///    amount.
2142 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2143                                                  SelectionDAG &DAG) const {
2144   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2145   assert(Op.getOpcode() == ISD::SHL_PARTS);
2146 
2147   EVT VT = Op.getValueType();
2148   unsigned VTBits = VT.getSizeInBits();
2149   SDLoc dl(Op);
2150   SDValue ShOpLo = Op.getOperand(0);
2151   SDValue ShOpHi = Op.getOperand(1);
2152   SDValue ShAmt  = Op.getOperand(2);
2153 
2154   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2155     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2156     // {dHi, dLo} = {aHi, aLo} << Amt
2157     //   dHi = shf.l.clamp aLo, aHi, Amt
2158     //   dLo = aLo << Amt
2159 
2160     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2161                              ShAmt);
2162     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2163 
2164     SDValue Ops[2] = { Lo, Hi };
2165     return DAG.getMergeValues(Ops, dl);
2166   }
2167   else {
2168     // {dHi, dLo} = {aHi, aLo} << Amt
2169     // - if (Amt>=size) then
2170     //      dLo = aLo << Amt (all 0)
2171     //      dLo = aLo << (Amt-size)
2172     //   else
2173     //      dLo = aLo << Amt
2174     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2175 
2176     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2177                                    DAG.getConstant(VTBits, dl, MVT::i32),
2178                                    ShAmt);
2179     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2180     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2181                                      DAG.getConstant(VTBits, dl, MVT::i32));
2182     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2183     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2184     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2185 
2186     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2187                                DAG.getConstant(VTBits, dl, MVT::i32),
2188                                ISD::SETGE);
2189     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2190     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2191 
2192     SDValue Ops[2] = { Lo, Hi };
2193     return DAG.getMergeValues(Ops, dl);
2194   }
2195 }
2196 
2197 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2198   EVT VT = Op.getValueType();
2199 
2200   if (VT == MVT::f32)
2201     return LowerFROUND32(Op, DAG);
2202 
2203   if (VT == MVT::f64)
2204     return LowerFROUND64(Op, DAG);
2205 
2206   llvm_unreachable("unhandled type");
2207 }
2208 
2209 // This is the the rounding method used in CUDA libdevice in C like code:
2210 // float roundf(float A)
2211 // {
2212 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2213 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2214 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2215 // }
2216 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2217                                            SelectionDAG &DAG) const {
2218   SDLoc SL(Op);
2219   SDValue A = Op.getOperand(0);
2220   EVT VT = Op.getValueType();
2221 
2222   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2223 
2224   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2225   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2226   const int SignBitMask = 0x80000000;
2227   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2228                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2229   const int PointFiveInBits = 0x3F000000;
2230   SDValue PointFiveWithSignRaw =
2231       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2232                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2233   SDValue PointFiveWithSign =
2234       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2235   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2236   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2237 
2238   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2239   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2240   SDValue IsLarge =
2241       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2242                    ISD::SETOGT);
2243   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2244 
2245   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2246   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2247                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2248   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2249   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2250 }
2251 
2252 // The implementation of round(double) is similar to that of round(float) in
2253 // that they both separate the value range into three regions and use a method
2254 // specific to the region to round the values. However, round(double) first
2255 // calculates the round of the absolute value and then adds the sign back while
2256 // round(float) directly rounds the value with sign.
2257 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2258                                            SelectionDAG &DAG) const {
2259   SDLoc SL(Op);
2260   SDValue A = Op.getOperand(0);
2261   EVT VT = Op.getValueType();
2262 
2263   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2264 
2265   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2266   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2267                                   DAG.getConstantFP(0.5, SL, VT));
2268   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2269 
2270   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2271   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2272   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2273                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2274   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2275                          DAG.getConstantFP(0, SL, VT),
2276                          RoundedA);
2277 
2278   // Add sign to rounded_A
2279   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2280   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2281 
2282   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2283   SDValue IsLarge =
2284       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2285                    ISD::SETOGT);
2286   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2287 }
2288 
2289 
2290 
2291 SDValue
2292 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2293   switch (Op.getOpcode()) {
2294   case ISD::RETURNADDR:
2295     return SDValue();
2296   case ISD::FRAMEADDR:
2297     return SDValue();
2298   case ISD::GlobalAddress:
2299     return LowerGlobalAddress(Op, DAG);
2300   case ISD::INTRINSIC_W_CHAIN:
2301     return Op;
2302   case ISD::BUILD_VECTOR:
2303     return LowerBUILD_VECTOR(Op, DAG);
2304   case ISD::EXTRACT_SUBVECTOR:
2305     return Op;
2306   case ISD::EXTRACT_VECTOR_ELT:
2307     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2308   case ISD::CONCAT_VECTORS:
2309     return LowerCONCAT_VECTORS(Op, DAG);
2310   case ISD::STORE:
2311     return LowerSTORE(Op, DAG);
2312   case ISD::LOAD:
2313     return LowerLOAD(Op, DAG);
2314   case ISD::SHL_PARTS:
2315     return LowerShiftLeftParts(Op, DAG);
2316   case ISD::SRA_PARTS:
2317   case ISD::SRL_PARTS:
2318     return LowerShiftRightParts(Op, DAG);
2319   case ISD::SELECT:
2320     return LowerSelect(Op, DAG);
2321   case ISD::FROUND:
2322     return LowerFROUND(Op, DAG);
2323   case ISD::VAARG:
2324     return LowerVAARG(Op, DAG);
2325   case ISD::VASTART:
2326     return LowerVASTART(Op, DAG);
2327   default:
2328     llvm_unreachable("Custom lowering not defined for operation");
2329   }
2330 }
2331 
2332 // This function is almost a copy of SelectionDAG::expandVAArg().
2333 // The only diff is that this one produces loads from local address space.
2334 SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2335   const TargetLowering *TLI = STI.getTargetLowering();
2336   SDLoc DL(Op);
2337 
2338   SDNode *Node = Op.getNode();
2339   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2340   EVT VT = Node->getValueType(0);
2341   auto *Ty = VT.getTypeForEVT(*DAG.getContext());
2342   SDValue Tmp1 = Node->getOperand(0);
2343   SDValue Tmp2 = Node->getOperand(1);
2344   const MaybeAlign MA(Node->getConstantOperandVal(3));
2345 
2346   SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL,
2347                                    Tmp1, Tmp2, MachinePointerInfo(V));
2348   SDValue VAList = VAListLoad;
2349 
2350   if (MA && *MA > TLI->getMinStackArgumentAlignment()) {
2351     VAList = DAG.getNode(
2352         ISD::ADD, DL, VAList.getValueType(), VAList,
2353         DAG.getConstant(MA->value() - 1, DL, VAList.getValueType()));
2354 
2355     VAList = DAG.getNode(
2356         ISD::AND, DL, VAList.getValueType(), VAList,
2357         DAG.getConstant(-(int64_t)MA->value(), DL, VAList.getValueType()));
2358   }
2359 
2360   // Increment the pointer, VAList, to the next vaarg
2361   Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2362                      DAG.getConstant(DAG.getDataLayout().getTypeAllocSize(Ty),
2363                                      DL, VAList.getValueType()));
2364 
2365   // Store the incremented VAList to the legalized pointer
2366   Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2,
2367                       MachinePointerInfo(V));
2368 
2369   const Value *SrcV =
2370       Constant::getNullValue(PointerType::get(Ty, ADDRESS_SPACE_LOCAL));
2371 
2372   // Load the actual argument out of the pointer VAList
2373   return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV));
2374 }
2375 
2376 SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2377   const TargetLowering *TLI = STI.getTargetLowering();
2378   SDLoc DL(Op);
2379   EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout());
2380 
2381   // Store the address of unsized array <function>_vararg[] in the ap object.
2382   SDValue Arg = getParamSymbol(DAG, /* vararg */ -1, PtrVT);
2383   SDValue VAReg = DAG.getNode(NVPTXISD::Wrapper, DL, PtrVT, Arg);
2384 
2385   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2386   return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1),
2387                       MachinePointerInfo(SV));
2388 }
2389 
2390 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2391   SDValue Op0 = Op->getOperand(0);
2392   SDValue Op1 = Op->getOperand(1);
2393   SDValue Op2 = Op->getOperand(2);
2394   SDLoc DL(Op.getNode());
2395 
2396   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2397 
2398   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2399   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2400   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2401   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2402 
2403   return Trunc;
2404 }
2405 
2406 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2407   if (Op.getValueType() == MVT::i1)
2408     return LowerLOADi1(Op, DAG);
2409 
2410   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2411   // loads and have to handle it here.
2412   if (Op.getValueType() == MVT::v2f16) {
2413     LoadSDNode *Load = cast<LoadSDNode>(Op);
2414     EVT MemVT = Load->getMemoryVT();
2415     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2416                                         MemVT, *Load->getMemOperand())) {
2417       SDValue Ops[2];
2418       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2419       return DAG.getMergeValues(Ops, SDLoc(Op));
2420     }
2421   }
2422 
2423   return SDValue();
2424 }
2425 
2426 // v = ld i1* addr
2427 //   =>
2428 // v1 = ld i8* addr (-> i16)
2429 // v = trunc i16 to i1
2430 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2431   SDNode *Node = Op.getNode();
2432   LoadSDNode *LD = cast<LoadSDNode>(Node);
2433   SDLoc dl(Node);
2434   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2435   assert(Node->getValueType(0) == MVT::i1 &&
2436          "Custom lowering for i1 load only");
2437   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2438                               LD->getPointerInfo(), LD->getAlign(),
2439                               LD->getMemOperand()->getFlags());
2440   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2441   // The legalizer (the caller) is expecting two values from the legalized
2442   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2443   // in LegalizeDAG.cpp which also uses MergeValues.
2444   SDValue Ops[] = { result, LD->getChain() };
2445   return DAG.getMergeValues(Ops, dl);
2446 }
2447 
2448 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2449   StoreSDNode *Store = cast<StoreSDNode>(Op);
2450   EVT VT = Store->getMemoryVT();
2451 
2452   if (VT == MVT::i1)
2453     return LowerSTOREi1(Op, DAG);
2454 
2455   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2456   // stores and have to handle it here.
2457   if (VT == MVT::v2f16 &&
2458       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2459                                       VT, *Store->getMemOperand()))
2460     return expandUnalignedStore(Store, DAG);
2461 
2462   if (VT.isVector())
2463     return LowerSTOREVector(Op, DAG);
2464 
2465   return SDValue();
2466 }
2467 
2468 SDValue
2469 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2470   SDNode *N = Op.getNode();
2471   SDValue Val = N->getOperand(1);
2472   SDLoc DL(N);
2473   EVT ValVT = Val.getValueType();
2474 
2475   if (ValVT.isVector()) {
2476     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2477     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2478     // but I'm leaving that as a TODO for now.
2479     if (!ValVT.isSimple())
2480       return SDValue();
2481     switch (ValVT.getSimpleVT().SimpleTy) {
2482     default:
2483       return SDValue();
2484     case MVT::v2i8:
2485     case MVT::v2i16:
2486     case MVT::v2i32:
2487     case MVT::v2i64:
2488     case MVT::v2f16:
2489     case MVT::v2bf16:
2490     case MVT::v2f32:
2491     case MVT::v2f64:
2492     case MVT::v4i8:
2493     case MVT::v4i16:
2494     case MVT::v4i32:
2495     case MVT::v4f16:
2496     case MVT::v4bf16:
2497     case MVT::v4f32:
2498     case MVT::v8f16: // <4 x f16x2>
2499     case MVT::v8bf16: // <4 x bf16x2>
2500       // This is a "native" vector type
2501       break;
2502     }
2503 
2504     MemSDNode *MemSD = cast<MemSDNode>(N);
2505     const DataLayout &TD = DAG.getDataLayout();
2506 
2507     Align Alignment = MemSD->getAlign();
2508     Align PrefAlign =
2509         TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
2510     if (Alignment < PrefAlign) {
2511       // This store is not sufficiently aligned, so bail out and let this vector
2512       // store be scalarized.  Note that we may still be able to emit smaller
2513       // vector stores.  For example, if we are storing a <4 x float> with an
2514       // alignment of 8, this check will fail but the legalizer will try again
2515       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2516       return SDValue();
2517     }
2518 
2519     unsigned Opcode = 0;
2520     EVT EltVT = ValVT.getVectorElementType();
2521     unsigned NumElts = ValVT.getVectorNumElements();
2522 
2523     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2524     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2525     // stored type to i16 and propagate the "real" type as the memory type.
2526     bool NeedExt = false;
2527     if (EltVT.getSizeInBits() < 16)
2528       NeedExt = true;
2529 
2530     bool StoreF16x2 = false;
2531     switch (NumElts) {
2532     default:
2533       return SDValue();
2534     case 2:
2535       Opcode = NVPTXISD::StoreV2;
2536       break;
2537     case 4:
2538       Opcode = NVPTXISD::StoreV4;
2539       break;
2540     case 8:
2541       // v8f16 is a special case. PTX doesn't have st.v8.f16
2542       // instruction. Instead, we split the vector into v2f16 chunks and
2543       // store them with st.v4.b32.
2544       assert((EltVT == MVT::f16 || EltVT == MVT::bf16) &&
2545              "Wrong type for the vector.");
2546       Opcode = NVPTXISD::StoreV4;
2547       StoreF16x2 = true;
2548       break;
2549     }
2550 
2551     SmallVector<SDValue, 8> Ops;
2552 
2553     // First is the chain
2554     Ops.push_back(N->getOperand(0));
2555 
2556     if (StoreF16x2) {
2557       // Combine f16,f16 -> v2f16
2558       NumElts /= 2;
2559       for (unsigned i = 0; i < NumElts; ++i) {
2560         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2561                                  DAG.getIntPtrConstant(i * 2, DL));
2562         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2563                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2564         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2565         Ops.push_back(V2);
2566       }
2567     } else {
2568       // Then the split values
2569       for (unsigned i = 0; i < NumElts; ++i) {
2570         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2571                                      DAG.getIntPtrConstant(i, DL));
2572         if (NeedExt)
2573           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2574         Ops.push_back(ExtVal);
2575       }
2576     }
2577 
2578     // Then any remaining arguments
2579     Ops.append(N->op_begin() + 2, N->op_end());
2580 
2581     SDValue NewSt =
2582         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2583                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2584 
2585     // return DCI.CombineTo(N, NewSt, true);
2586     return NewSt;
2587   }
2588 
2589   return SDValue();
2590 }
2591 
2592 // st i1 v, addr
2593 //    =>
2594 // v1 = zxt v to i16
2595 // st.u8 i16, addr
2596 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2597   SDNode *Node = Op.getNode();
2598   SDLoc dl(Node);
2599   StoreSDNode *ST = cast<StoreSDNode>(Node);
2600   SDValue Tmp1 = ST->getChain();
2601   SDValue Tmp2 = ST->getBasePtr();
2602   SDValue Tmp3 = ST->getValue();
2603   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2604   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2605   SDValue Result =
2606       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2607                         ST->getAlign(), ST->getMemOperand()->getFlags());
2608   return Result;
2609 }
2610 
2611 // This creates target external symbol for a function parameter.
2612 // Name of the symbol is composed from its index and the function name.
2613 // Negative index corresponds to special parameter (unsized array) used for
2614 // passing variable arguments.
2615 SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx,
2616                                             EVT v) const {
2617   std::string ParamSym;
2618   raw_string_ostream ParamStr(ParamSym);
2619 
2620   ParamStr << DAG.getMachineFunction().getName();
2621 
2622   if (idx < 0)
2623     ParamStr << "_vararg";
2624   else
2625     ParamStr << "_param_" << idx;
2626 
2627   StringRef SavedStr =
2628     nvTM->getStrPool().save(ParamSym);
2629   return DAG.getTargetExternalSymbol(SavedStr.data(), v);
2630 }
2631 
2632 SDValue NVPTXTargetLowering::LowerFormalArguments(
2633     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2634     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2635     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2636   MachineFunction &MF = DAG.getMachineFunction();
2637   const DataLayout &DL = DAG.getDataLayout();
2638   auto PtrVT = getPointerTy(DAG.getDataLayout());
2639 
2640   const Function *F = &MF.getFunction();
2641   const AttributeList &PAL = F->getAttributes();
2642   const TargetLowering *TLI = STI.getTargetLowering();
2643 
2644   SDValue Root = DAG.getRoot();
2645   std::vector<SDValue> OutChains;
2646 
2647   bool isABI = (STI.getSmVersion() >= 20);
2648   assert(isABI && "Non-ABI compilation is not supported");
2649   if (!isABI)
2650     return Chain;
2651 
2652   std::vector<Type *> argTypes;
2653   std::vector<const Argument *> theArgs;
2654   for (const Argument &I : F->args()) {
2655     theArgs.push_back(&I);
2656     argTypes.push_back(I.getType());
2657   }
2658   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2659   // Ins.size() will be larger
2660   //   * if there is an aggregate argument with multiple fields (each field
2661   //     showing up separately in Ins)
2662   //   * if there is a vector argument with more than typical vector-length
2663   //     elements (generally if more than 4) where each vector element is
2664   //     individually present in Ins.
2665   // So a different index should be used for indexing into Ins.
2666   // See similar issue in LowerCall.
2667   unsigned InsIdx = 0;
2668 
2669   int idx = 0;
2670   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2671     Type *Ty = argTypes[i];
2672 
2673     if (theArgs[i]->use_empty()) {
2674       // argument is dead
2675       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2676         SmallVector<EVT, 16> vtparts;
2677 
2678         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2679         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2680         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2681              ++parti) {
2682           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2683           ++InsIdx;
2684         }
2685         if (vtparts.size() > 0)
2686           --InsIdx;
2687         continue;
2688       }
2689       if (Ty->isVectorTy()) {
2690         EVT ObjectVT = getValueType(DL, Ty);
2691         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2692         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2693           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2694           ++InsIdx;
2695         }
2696         if (NumRegs > 0)
2697           --InsIdx;
2698         continue;
2699       }
2700       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2701       continue;
2702     }
2703 
2704     // In the following cases, assign a node order of "idx+1"
2705     // to newly created nodes. The SDNodes for params have to
2706     // appear in the same order as their order of appearance
2707     // in the original function. "idx+1" holds that order.
2708     if (!PAL.hasParamAttr(i, Attribute::ByVal)) {
2709       bool aggregateIsPacked = false;
2710       if (StructType *STy = dyn_cast<StructType>(Ty))
2711         aggregateIsPacked = STy->isPacked();
2712 
2713       SmallVector<EVT, 16> VTs;
2714       SmallVector<uint64_t, 16> Offsets;
2715       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2716       assert(VTs.size() > 0 && "Unexpected empty type.");
2717       auto VectorInfo =
2718           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
2719 
2720       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2721       int VecIdx = -1; // Index of the first element of the current vector.
2722       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2723         if (VectorInfo[parti] & PVF_FIRST) {
2724           assert(VecIdx == -1 && "Orphaned vector.");
2725           VecIdx = parti;
2726         }
2727 
2728         // That's the last element of this store op.
2729         if (VectorInfo[parti] & PVF_LAST) {
2730           unsigned NumElts = parti - VecIdx + 1;
2731           EVT EltVT = VTs[parti];
2732           // i1 is loaded/stored as i8.
2733           EVT LoadVT = EltVT;
2734           if (EltVT == MVT::i1)
2735             LoadVT = MVT::i8;
2736           else if (EltVT == MVT::v2f16)
2737             // getLoad needs a vector type, but it can't handle
2738             // vectors which contain v2f16 elements. So we must load
2739             // using i32 here and then bitcast back.
2740             LoadVT = MVT::i32;
2741 
2742           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2743           SDValue VecAddr =
2744               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2745                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2746           Value *srcValue = Constant::getNullValue(PointerType::get(
2747               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2748           SDValue P = DAG.getLoad(VecVT, dl, Root, VecAddr,
2749                                   MachinePointerInfo(srcValue),
2750                                   MaybeAlign(aggregateIsPacked ? 1 : 0),
2751                                   MachineMemOperand::MODereferenceable |
2752                                       MachineMemOperand::MOInvariant);
2753           if (P.getNode())
2754             P.getNode()->setIROrder(idx + 1);
2755           for (unsigned j = 0; j < NumElts; ++j) {
2756             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2757                                       DAG.getIntPtrConstant(j, dl));
2758             // We've loaded i1 as an i8 and now must truncate it back to i1
2759             if (EltVT == MVT::i1)
2760               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2761             // v2f16 was loaded as an i32. Now we must bitcast it back.
2762             else if (EltVT == MVT::v2f16)
2763               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2764 
2765             // If a promoted integer type is used, truncate down to the original
2766             MVT PromotedVT;
2767             if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
2768               Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
2769             }
2770 
2771             // Extend the element if necessary (e.g. an i8 is loaded
2772             // into an i16 register)
2773             if (Ins[InsIdx].VT.isInteger() &&
2774                 Ins[InsIdx].VT.getFixedSizeInBits() >
2775                     LoadVT.getFixedSizeInBits()) {
2776               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2777                                                            : ISD::ZERO_EXTEND;
2778               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2779             }
2780             InVals.push_back(Elt);
2781           }
2782 
2783           // Reset vector tracking state.
2784           VecIdx = -1;
2785         }
2786         ++InsIdx;
2787       }
2788       if (VTs.size() > 0)
2789         --InsIdx;
2790       continue;
2791     }
2792 
2793     // Param has ByVal attribute
2794     // Return MoveParam(param symbol).
2795     // Ideally, the param symbol can be returned directly,
2796     // but when SDNode builder decides to use it in a CopyToReg(),
2797     // machine instruction fails because TargetExternalSymbol
2798     // (not lowered) is target dependent, and CopyToReg assumes
2799     // the source is lowered.
2800     EVT ObjectVT = getValueType(DL, Ty);
2801     assert(ObjectVT == Ins[InsIdx].VT &&
2802            "Ins type did not match function type");
2803     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2804     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2805     if (p.getNode())
2806       p.getNode()->setIROrder(idx + 1);
2807     InVals.push_back(p);
2808   }
2809 
2810   if (!OutChains.empty())
2811     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2812 
2813   return Chain;
2814 }
2815 
2816 SDValue
2817 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2818                                  bool isVarArg,
2819                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2820                                  const SmallVectorImpl<SDValue> &OutVals,
2821                                  const SDLoc &dl, SelectionDAG &DAG) const {
2822   const MachineFunction &MF = DAG.getMachineFunction();
2823   const Function &F = MF.getFunction();
2824   Type *RetTy = MF.getFunction().getReturnType();
2825 
2826   bool isABI = (STI.getSmVersion() >= 20);
2827   assert(isABI && "Non-ABI compilation is not supported");
2828   if (!isABI)
2829     return Chain;
2830 
2831   const DataLayout &DL = DAG.getDataLayout();
2832   SmallVector<SDValue, 16> PromotedOutVals;
2833   SmallVector<EVT, 16> VTs;
2834   SmallVector<uint64_t, 16> Offsets;
2835   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2836   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2837 
2838   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2839     SDValue PromotedOutVal = OutVals[i];
2840     MVT PromotedVT;
2841     if (PromoteScalarIntegerPTX(VTs[i], &PromotedVT)) {
2842       VTs[i] = EVT(PromotedVT);
2843     }
2844     if (PromoteScalarIntegerPTX(PromotedOutVal.getValueType(), &PromotedVT)) {
2845       llvm::ISD::NodeType Ext =
2846           Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2847       PromotedOutVal = DAG.getNode(Ext, dl, PromotedVT, PromotedOutVal);
2848     }
2849     PromotedOutVals.push_back(PromotedOutVal);
2850   }
2851 
2852   auto VectorInfo = VectorizePTXValueVTs(
2853       VTs, Offsets,
2854       RetTy->isSized() ? getFunctionParamOptimizedAlign(&F, RetTy, DL)
2855                        : Align(1));
2856 
2857   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2858   // 32-bits are sign extended or zero extended, depending on whether
2859   // they are signed or unsigned types.
2860   bool ExtendIntegerRetVal =
2861       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2862 
2863   SmallVector<SDValue, 6> StoreOperands;
2864   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2865     // New load/store. Record chain and offset operands.
2866     if (VectorInfo[i] & PVF_FIRST) {
2867       assert(StoreOperands.empty() && "Orphaned operand list.");
2868       StoreOperands.push_back(Chain);
2869       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2870     }
2871 
2872     SDValue OutVal = OutVals[i];
2873     SDValue RetVal = PromotedOutVals[i];
2874 
2875     if (ExtendIntegerRetVal) {
2876       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2877                                                   : ISD::ZERO_EXTEND,
2878                            dl, MVT::i32, RetVal);
2879     } else if (OutVal.getValueSizeInBits() < 16) {
2880       // Use 16-bit registers for small load-stores as it's the
2881       // smallest general purpose register size supported by NVPTX.
2882       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2883     }
2884 
2885     // Record the value to return.
2886     StoreOperands.push_back(RetVal);
2887 
2888     // That's the last element of this store op.
2889     if (VectorInfo[i] & PVF_LAST) {
2890       NVPTXISD::NodeType Op;
2891       unsigned NumElts = StoreOperands.size() - 2;
2892       switch (NumElts) {
2893       case 1:
2894         Op = NVPTXISD::StoreRetval;
2895         break;
2896       case 2:
2897         Op = NVPTXISD::StoreRetvalV2;
2898         break;
2899       case 4:
2900         Op = NVPTXISD::StoreRetvalV4;
2901         break;
2902       default:
2903         llvm_unreachable("Invalid vector info.");
2904       }
2905 
2906       // Adjust type of load/store op if we've extended the scalar
2907       // return value.
2908       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2909       Chain = DAG.getMemIntrinsicNode(
2910           Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
2911           MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
2912       // Cleanup vector state.
2913       StoreOperands.clear();
2914     }
2915   }
2916 
2917   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2918 }
2919 
2920 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2921     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2922     SelectionDAG &DAG) const {
2923   if (Constraint.length() > 1)
2924     return;
2925   else
2926     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2927 }
2928 
2929 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2930   switch (Intrinsic) {
2931   default:
2932     return 0;
2933 
2934   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2935     return NVPTXISD::Tex1DFloatS32;
2936   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2937     return NVPTXISD::Tex1DFloatFloat;
2938   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2939     return NVPTXISD::Tex1DFloatFloatLevel;
2940   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2941     return NVPTXISD::Tex1DFloatFloatGrad;
2942   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2943     return NVPTXISD::Tex1DS32S32;
2944   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2945     return NVPTXISD::Tex1DS32Float;
2946   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2947     return NVPTXISD::Tex1DS32FloatLevel;
2948   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2949     return NVPTXISD::Tex1DS32FloatGrad;
2950   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2951     return NVPTXISD::Tex1DU32S32;
2952   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2953     return NVPTXISD::Tex1DU32Float;
2954   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2955     return NVPTXISD::Tex1DU32FloatLevel;
2956   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2957     return NVPTXISD::Tex1DU32FloatGrad;
2958 
2959   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2960     return NVPTXISD::Tex1DArrayFloatS32;
2961   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2962     return NVPTXISD::Tex1DArrayFloatFloat;
2963   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2964     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2965   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2966     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2967   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2968     return NVPTXISD::Tex1DArrayS32S32;
2969   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2970     return NVPTXISD::Tex1DArrayS32Float;
2971   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2972     return NVPTXISD::Tex1DArrayS32FloatLevel;
2973   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2974     return NVPTXISD::Tex1DArrayS32FloatGrad;
2975   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2976     return NVPTXISD::Tex1DArrayU32S32;
2977   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2978     return NVPTXISD::Tex1DArrayU32Float;
2979   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2980     return NVPTXISD::Tex1DArrayU32FloatLevel;
2981   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2982     return NVPTXISD::Tex1DArrayU32FloatGrad;
2983 
2984   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2985     return NVPTXISD::Tex2DFloatS32;
2986   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2987     return NVPTXISD::Tex2DFloatFloat;
2988   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2989     return NVPTXISD::Tex2DFloatFloatLevel;
2990   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2991     return NVPTXISD::Tex2DFloatFloatGrad;
2992   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2993     return NVPTXISD::Tex2DS32S32;
2994   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2995     return NVPTXISD::Tex2DS32Float;
2996   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2997     return NVPTXISD::Tex2DS32FloatLevel;
2998   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2999     return NVPTXISD::Tex2DS32FloatGrad;
3000   case Intrinsic::nvvm_tex_2d_v4u32_s32:
3001     return NVPTXISD::Tex2DU32S32;
3002   case Intrinsic::nvvm_tex_2d_v4u32_f32:
3003     return NVPTXISD::Tex2DU32Float;
3004   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3005     return NVPTXISD::Tex2DU32FloatLevel;
3006   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3007     return NVPTXISD::Tex2DU32FloatGrad;
3008 
3009   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3010     return NVPTXISD::Tex2DArrayFloatS32;
3011   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3012     return NVPTXISD::Tex2DArrayFloatFloat;
3013   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3014     return NVPTXISD::Tex2DArrayFloatFloatLevel;
3015   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3016     return NVPTXISD::Tex2DArrayFloatFloatGrad;
3017   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3018     return NVPTXISD::Tex2DArrayS32S32;
3019   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3020     return NVPTXISD::Tex2DArrayS32Float;
3021   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3022     return NVPTXISD::Tex2DArrayS32FloatLevel;
3023   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3024     return NVPTXISD::Tex2DArrayS32FloatGrad;
3025   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3026     return NVPTXISD::Tex2DArrayU32S32;
3027   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3028     return NVPTXISD::Tex2DArrayU32Float;
3029   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3030     return NVPTXISD::Tex2DArrayU32FloatLevel;
3031   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3032     return NVPTXISD::Tex2DArrayU32FloatGrad;
3033 
3034   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3035     return NVPTXISD::Tex3DFloatS32;
3036   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3037     return NVPTXISD::Tex3DFloatFloat;
3038   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3039     return NVPTXISD::Tex3DFloatFloatLevel;
3040   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3041     return NVPTXISD::Tex3DFloatFloatGrad;
3042   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3043     return NVPTXISD::Tex3DS32S32;
3044   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3045     return NVPTXISD::Tex3DS32Float;
3046   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3047     return NVPTXISD::Tex3DS32FloatLevel;
3048   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3049     return NVPTXISD::Tex3DS32FloatGrad;
3050   case Intrinsic::nvvm_tex_3d_v4u32_s32:
3051     return NVPTXISD::Tex3DU32S32;
3052   case Intrinsic::nvvm_tex_3d_v4u32_f32:
3053     return NVPTXISD::Tex3DU32Float;
3054   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3055     return NVPTXISD::Tex3DU32FloatLevel;
3056   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3057     return NVPTXISD::Tex3DU32FloatGrad;
3058 
3059   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3060     return NVPTXISD::TexCubeFloatFloat;
3061   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3062     return NVPTXISD::TexCubeFloatFloatLevel;
3063   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3064     return NVPTXISD::TexCubeS32Float;
3065   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3066     return NVPTXISD::TexCubeS32FloatLevel;
3067   case Intrinsic::nvvm_tex_cube_v4u32_f32:
3068     return NVPTXISD::TexCubeU32Float;
3069   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3070     return NVPTXISD::TexCubeU32FloatLevel;
3071 
3072   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3073     return NVPTXISD::TexCubeArrayFloatFloat;
3074   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3075     return NVPTXISD::TexCubeArrayFloatFloatLevel;
3076   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3077     return NVPTXISD::TexCubeArrayS32Float;
3078   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3079     return NVPTXISD::TexCubeArrayS32FloatLevel;
3080   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3081     return NVPTXISD::TexCubeArrayU32Float;
3082   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3083     return NVPTXISD::TexCubeArrayU32FloatLevel;
3084 
3085   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3086     return NVPTXISD::Tld4R2DFloatFloat;
3087   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3088     return NVPTXISD::Tld4G2DFloatFloat;
3089   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3090     return NVPTXISD::Tld4B2DFloatFloat;
3091   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3092     return NVPTXISD::Tld4A2DFloatFloat;
3093   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3094     return NVPTXISD::Tld4R2DS64Float;
3095   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3096     return NVPTXISD::Tld4G2DS64Float;
3097   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3098     return NVPTXISD::Tld4B2DS64Float;
3099   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3100     return NVPTXISD::Tld4A2DS64Float;
3101   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3102     return NVPTXISD::Tld4R2DU64Float;
3103   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3104     return NVPTXISD::Tld4G2DU64Float;
3105   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3106     return NVPTXISD::Tld4B2DU64Float;
3107   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3108     return NVPTXISD::Tld4A2DU64Float;
3109 
3110   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3111     return NVPTXISD::TexUnified1DFloatS32;
3112   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3113     return NVPTXISD::TexUnified1DFloatFloat;
3114   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3115     return NVPTXISD::TexUnified1DFloatFloatLevel;
3116   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3117     return NVPTXISD::TexUnified1DFloatFloatGrad;
3118   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3119     return NVPTXISD::TexUnified1DS32S32;
3120   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3121     return NVPTXISD::TexUnified1DS32Float;
3122   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3123     return NVPTXISD::TexUnified1DS32FloatLevel;
3124   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3125     return NVPTXISD::TexUnified1DS32FloatGrad;
3126   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3127     return NVPTXISD::TexUnified1DU32S32;
3128   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3129     return NVPTXISD::TexUnified1DU32Float;
3130   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3131     return NVPTXISD::TexUnified1DU32FloatLevel;
3132   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3133     return NVPTXISD::TexUnified1DU32FloatGrad;
3134 
3135   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3136     return NVPTXISD::TexUnified1DArrayFloatS32;
3137   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3138     return NVPTXISD::TexUnified1DArrayFloatFloat;
3139   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3140     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
3141   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3142     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
3143   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3144     return NVPTXISD::TexUnified1DArrayS32S32;
3145   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3146     return NVPTXISD::TexUnified1DArrayS32Float;
3147   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3148     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
3149   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3150     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
3151   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3152     return NVPTXISD::TexUnified1DArrayU32S32;
3153   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3154     return NVPTXISD::TexUnified1DArrayU32Float;
3155   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3156     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
3157   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3158     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
3159 
3160   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3161     return NVPTXISD::TexUnified2DFloatS32;
3162   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3163     return NVPTXISD::TexUnified2DFloatFloat;
3164   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3165     return NVPTXISD::TexUnified2DFloatFloatLevel;
3166   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3167     return NVPTXISD::TexUnified2DFloatFloatGrad;
3168   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3169     return NVPTXISD::TexUnified2DS32S32;
3170   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3171     return NVPTXISD::TexUnified2DS32Float;
3172   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3173     return NVPTXISD::TexUnified2DS32FloatLevel;
3174   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3175     return NVPTXISD::TexUnified2DS32FloatGrad;
3176   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3177     return NVPTXISD::TexUnified2DU32S32;
3178   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3179     return NVPTXISD::TexUnified2DU32Float;
3180   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3181     return NVPTXISD::TexUnified2DU32FloatLevel;
3182   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3183     return NVPTXISD::TexUnified2DU32FloatGrad;
3184 
3185   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3186     return NVPTXISD::TexUnified2DArrayFloatS32;
3187   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3188     return NVPTXISD::TexUnified2DArrayFloatFloat;
3189   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3190     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
3191   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3192     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3193   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3194     return NVPTXISD::TexUnified2DArrayS32S32;
3195   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3196     return NVPTXISD::TexUnified2DArrayS32Float;
3197   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3198     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3199   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3200     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3201   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3202     return NVPTXISD::TexUnified2DArrayU32S32;
3203   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3204     return NVPTXISD::TexUnified2DArrayU32Float;
3205   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3206     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3207   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3208     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3209 
3210   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3211     return NVPTXISD::TexUnified3DFloatS32;
3212   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3213     return NVPTXISD::TexUnified3DFloatFloat;
3214   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3215     return NVPTXISD::TexUnified3DFloatFloatLevel;
3216   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3217     return NVPTXISD::TexUnified3DFloatFloatGrad;
3218   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3219     return NVPTXISD::TexUnified3DS32S32;
3220   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3221     return NVPTXISD::TexUnified3DS32Float;
3222   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3223     return NVPTXISD::TexUnified3DS32FloatLevel;
3224   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3225     return NVPTXISD::TexUnified3DS32FloatGrad;
3226   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3227     return NVPTXISD::TexUnified3DU32S32;
3228   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3229     return NVPTXISD::TexUnified3DU32Float;
3230   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3231     return NVPTXISD::TexUnified3DU32FloatLevel;
3232   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3233     return NVPTXISD::TexUnified3DU32FloatGrad;
3234 
3235   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3236     return NVPTXISD::TexUnifiedCubeFloatFloat;
3237   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3238     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3239   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3240     return NVPTXISD::TexUnifiedCubeS32Float;
3241   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3242     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3243   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3244     return NVPTXISD::TexUnifiedCubeU32Float;
3245   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3246     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3247 
3248   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3249     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3250   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3251     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3252   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3253     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3254   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3255     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3256   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3257     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3258   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3259     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3260 
3261   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3262     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3263   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3264     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3265   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3266     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3267   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3268     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3269   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3270     return NVPTXISD::Tld4UnifiedR2DS64Float;
3271   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3272     return NVPTXISD::Tld4UnifiedG2DS64Float;
3273   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3274     return NVPTXISD::Tld4UnifiedB2DS64Float;
3275   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3276     return NVPTXISD::Tld4UnifiedA2DS64Float;
3277   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3278     return NVPTXISD::Tld4UnifiedR2DU64Float;
3279   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3280     return NVPTXISD::Tld4UnifiedG2DU64Float;
3281   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3282     return NVPTXISD::Tld4UnifiedB2DU64Float;
3283   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3284     return NVPTXISD::Tld4UnifiedA2DU64Float;
3285   }
3286 }
3287 
3288 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3289   switch (Intrinsic) {
3290   default:
3291     return 0;
3292   case Intrinsic::nvvm_suld_1d_i8_clamp:
3293     return NVPTXISD::Suld1DI8Clamp;
3294   case Intrinsic::nvvm_suld_1d_i16_clamp:
3295     return NVPTXISD::Suld1DI16Clamp;
3296   case Intrinsic::nvvm_suld_1d_i32_clamp:
3297     return NVPTXISD::Suld1DI32Clamp;
3298   case Intrinsic::nvvm_suld_1d_i64_clamp:
3299     return NVPTXISD::Suld1DI64Clamp;
3300   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3301     return NVPTXISD::Suld1DV2I8Clamp;
3302   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3303     return NVPTXISD::Suld1DV2I16Clamp;
3304   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3305     return NVPTXISD::Suld1DV2I32Clamp;
3306   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3307     return NVPTXISD::Suld1DV2I64Clamp;
3308   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3309     return NVPTXISD::Suld1DV4I8Clamp;
3310   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3311     return NVPTXISD::Suld1DV4I16Clamp;
3312   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3313     return NVPTXISD::Suld1DV4I32Clamp;
3314   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3315     return NVPTXISD::Suld1DArrayI8Clamp;
3316   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3317     return NVPTXISD::Suld1DArrayI16Clamp;
3318   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3319     return NVPTXISD::Suld1DArrayI32Clamp;
3320   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3321     return NVPTXISD::Suld1DArrayI64Clamp;
3322   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3323     return NVPTXISD::Suld1DArrayV2I8Clamp;
3324   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3325     return NVPTXISD::Suld1DArrayV2I16Clamp;
3326   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3327     return NVPTXISD::Suld1DArrayV2I32Clamp;
3328   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3329     return NVPTXISD::Suld1DArrayV2I64Clamp;
3330   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3331     return NVPTXISD::Suld1DArrayV4I8Clamp;
3332   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3333     return NVPTXISD::Suld1DArrayV4I16Clamp;
3334   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3335     return NVPTXISD::Suld1DArrayV4I32Clamp;
3336   case Intrinsic::nvvm_suld_2d_i8_clamp:
3337     return NVPTXISD::Suld2DI8Clamp;
3338   case Intrinsic::nvvm_suld_2d_i16_clamp:
3339     return NVPTXISD::Suld2DI16Clamp;
3340   case Intrinsic::nvvm_suld_2d_i32_clamp:
3341     return NVPTXISD::Suld2DI32Clamp;
3342   case Intrinsic::nvvm_suld_2d_i64_clamp:
3343     return NVPTXISD::Suld2DI64Clamp;
3344   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3345     return NVPTXISD::Suld2DV2I8Clamp;
3346   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3347     return NVPTXISD::Suld2DV2I16Clamp;
3348   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3349     return NVPTXISD::Suld2DV2I32Clamp;
3350   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3351     return NVPTXISD::Suld2DV2I64Clamp;
3352   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3353     return NVPTXISD::Suld2DV4I8Clamp;
3354   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3355     return NVPTXISD::Suld2DV4I16Clamp;
3356   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3357     return NVPTXISD::Suld2DV4I32Clamp;
3358   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3359     return NVPTXISD::Suld2DArrayI8Clamp;
3360   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3361     return NVPTXISD::Suld2DArrayI16Clamp;
3362   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3363     return NVPTXISD::Suld2DArrayI32Clamp;
3364   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3365     return NVPTXISD::Suld2DArrayI64Clamp;
3366   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3367     return NVPTXISD::Suld2DArrayV2I8Clamp;
3368   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3369     return NVPTXISD::Suld2DArrayV2I16Clamp;
3370   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3371     return NVPTXISD::Suld2DArrayV2I32Clamp;
3372   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3373     return NVPTXISD::Suld2DArrayV2I64Clamp;
3374   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3375     return NVPTXISD::Suld2DArrayV4I8Clamp;
3376   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3377     return NVPTXISD::Suld2DArrayV4I16Clamp;
3378   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3379     return NVPTXISD::Suld2DArrayV4I32Clamp;
3380   case Intrinsic::nvvm_suld_3d_i8_clamp:
3381     return NVPTXISD::Suld3DI8Clamp;
3382   case Intrinsic::nvvm_suld_3d_i16_clamp:
3383     return NVPTXISD::Suld3DI16Clamp;
3384   case Intrinsic::nvvm_suld_3d_i32_clamp:
3385     return NVPTXISD::Suld3DI32Clamp;
3386   case Intrinsic::nvvm_suld_3d_i64_clamp:
3387     return NVPTXISD::Suld3DI64Clamp;
3388   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3389     return NVPTXISD::Suld3DV2I8Clamp;
3390   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3391     return NVPTXISD::Suld3DV2I16Clamp;
3392   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3393     return NVPTXISD::Suld3DV2I32Clamp;
3394   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3395     return NVPTXISD::Suld3DV2I64Clamp;
3396   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3397     return NVPTXISD::Suld3DV4I8Clamp;
3398   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3399     return NVPTXISD::Suld3DV4I16Clamp;
3400   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3401     return NVPTXISD::Suld3DV4I32Clamp;
3402   case Intrinsic::nvvm_suld_1d_i8_trap:
3403     return NVPTXISD::Suld1DI8Trap;
3404   case Intrinsic::nvvm_suld_1d_i16_trap:
3405     return NVPTXISD::Suld1DI16Trap;
3406   case Intrinsic::nvvm_suld_1d_i32_trap:
3407     return NVPTXISD::Suld1DI32Trap;
3408   case Intrinsic::nvvm_suld_1d_i64_trap:
3409     return NVPTXISD::Suld1DI64Trap;
3410   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3411     return NVPTXISD::Suld1DV2I8Trap;
3412   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3413     return NVPTXISD::Suld1DV2I16Trap;
3414   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3415     return NVPTXISD::Suld1DV2I32Trap;
3416   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3417     return NVPTXISD::Suld1DV2I64Trap;
3418   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3419     return NVPTXISD::Suld1DV4I8Trap;
3420   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3421     return NVPTXISD::Suld1DV4I16Trap;
3422   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3423     return NVPTXISD::Suld1DV4I32Trap;
3424   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3425     return NVPTXISD::Suld1DArrayI8Trap;
3426   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3427     return NVPTXISD::Suld1DArrayI16Trap;
3428   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3429     return NVPTXISD::Suld1DArrayI32Trap;
3430   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3431     return NVPTXISD::Suld1DArrayI64Trap;
3432   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3433     return NVPTXISD::Suld1DArrayV2I8Trap;
3434   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3435     return NVPTXISD::Suld1DArrayV2I16Trap;
3436   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3437     return NVPTXISD::Suld1DArrayV2I32Trap;
3438   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3439     return NVPTXISD::Suld1DArrayV2I64Trap;
3440   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3441     return NVPTXISD::Suld1DArrayV4I8Trap;
3442   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3443     return NVPTXISD::Suld1DArrayV4I16Trap;
3444   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3445     return NVPTXISD::Suld1DArrayV4I32Trap;
3446   case Intrinsic::nvvm_suld_2d_i8_trap:
3447     return NVPTXISD::Suld2DI8Trap;
3448   case Intrinsic::nvvm_suld_2d_i16_trap:
3449     return NVPTXISD::Suld2DI16Trap;
3450   case Intrinsic::nvvm_suld_2d_i32_trap:
3451     return NVPTXISD::Suld2DI32Trap;
3452   case Intrinsic::nvvm_suld_2d_i64_trap:
3453     return NVPTXISD::Suld2DI64Trap;
3454   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3455     return NVPTXISD::Suld2DV2I8Trap;
3456   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3457     return NVPTXISD::Suld2DV2I16Trap;
3458   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3459     return NVPTXISD::Suld2DV2I32Trap;
3460   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3461     return NVPTXISD::Suld2DV2I64Trap;
3462   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3463     return NVPTXISD::Suld2DV4I8Trap;
3464   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3465     return NVPTXISD::Suld2DV4I16Trap;
3466   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3467     return NVPTXISD::Suld2DV4I32Trap;
3468   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3469     return NVPTXISD::Suld2DArrayI8Trap;
3470   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3471     return NVPTXISD::Suld2DArrayI16Trap;
3472   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3473     return NVPTXISD::Suld2DArrayI32Trap;
3474   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3475     return NVPTXISD::Suld2DArrayI64Trap;
3476   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3477     return NVPTXISD::Suld2DArrayV2I8Trap;
3478   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3479     return NVPTXISD::Suld2DArrayV2I16Trap;
3480   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3481     return NVPTXISD::Suld2DArrayV2I32Trap;
3482   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3483     return NVPTXISD::Suld2DArrayV2I64Trap;
3484   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3485     return NVPTXISD::Suld2DArrayV4I8Trap;
3486   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3487     return NVPTXISD::Suld2DArrayV4I16Trap;
3488   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3489     return NVPTXISD::Suld2DArrayV4I32Trap;
3490   case Intrinsic::nvvm_suld_3d_i8_trap:
3491     return NVPTXISD::Suld3DI8Trap;
3492   case Intrinsic::nvvm_suld_3d_i16_trap:
3493     return NVPTXISD::Suld3DI16Trap;
3494   case Intrinsic::nvvm_suld_3d_i32_trap:
3495     return NVPTXISD::Suld3DI32Trap;
3496   case Intrinsic::nvvm_suld_3d_i64_trap:
3497     return NVPTXISD::Suld3DI64Trap;
3498   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3499     return NVPTXISD::Suld3DV2I8Trap;
3500   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3501     return NVPTXISD::Suld3DV2I16Trap;
3502   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3503     return NVPTXISD::Suld3DV2I32Trap;
3504   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3505     return NVPTXISD::Suld3DV2I64Trap;
3506   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3507     return NVPTXISD::Suld3DV4I8Trap;
3508   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3509     return NVPTXISD::Suld3DV4I16Trap;
3510   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3511     return NVPTXISD::Suld3DV4I32Trap;
3512   case Intrinsic::nvvm_suld_1d_i8_zero:
3513     return NVPTXISD::Suld1DI8Zero;
3514   case Intrinsic::nvvm_suld_1d_i16_zero:
3515     return NVPTXISD::Suld1DI16Zero;
3516   case Intrinsic::nvvm_suld_1d_i32_zero:
3517     return NVPTXISD::Suld1DI32Zero;
3518   case Intrinsic::nvvm_suld_1d_i64_zero:
3519     return NVPTXISD::Suld1DI64Zero;
3520   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3521     return NVPTXISD::Suld1DV2I8Zero;
3522   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3523     return NVPTXISD::Suld1DV2I16Zero;
3524   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3525     return NVPTXISD::Suld1DV2I32Zero;
3526   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3527     return NVPTXISD::Suld1DV2I64Zero;
3528   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3529     return NVPTXISD::Suld1DV4I8Zero;
3530   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3531     return NVPTXISD::Suld1DV4I16Zero;
3532   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3533     return NVPTXISD::Suld1DV4I32Zero;
3534   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3535     return NVPTXISD::Suld1DArrayI8Zero;
3536   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3537     return NVPTXISD::Suld1DArrayI16Zero;
3538   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3539     return NVPTXISD::Suld1DArrayI32Zero;
3540   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3541     return NVPTXISD::Suld1DArrayI64Zero;
3542   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3543     return NVPTXISD::Suld1DArrayV2I8Zero;
3544   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3545     return NVPTXISD::Suld1DArrayV2I16Zero;
3546   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3547     return NVPTXISD::Suld1DArrayV2I32Zero;
3548   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3549     return NVPTXISD::Suld1DArrayV2I64Zero;
3550   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3551     return NVPTXISD::Suld1DArrayV4I8Zero;
3552   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3553     return NVPTXISD::Suld1DArrayV4I16Zero;
3554   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3555     return NVPTXISD::Suld1DArrayV4I32Zero;
3556   case Intrinsic::nvvm_suld_2d_i8_zero:
3557     return NVPTXISD::Suld2DI8Zero;
3558   case Intrinsic::nvvm_suld_2d_i16_zero:
3559     return NVPTXISD::Suld2DI16Zero;
3560   case Intrinsic::nvvm_suld_2d_i32_zero:
3561     return NVPTXISD::Suld2DI32Zero;
3562   case Intrinsic::nvvm_suld_2d_i64_zero:
3563     return NVPTXISD::Suld2DI64Zero;
3564   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3565     return NVPTXISD::Suld2DV2I8Zero;
3566   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3567     return NVPTXISD::Suld2DV2I16Zero;
3568   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3569     return NVPTXISD::Suld2DV2I32Zero;
3570   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3571     return NVPTXISD::Suld2DV2I64Zero;
3572   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3573     return NVPTXISD::Suld2DV4I8Zero;
3574   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3575     return NVPTXISD::Suld2DV4I16Zero;
3576   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3577     return NVPTXISD::Suld2DV4I32Zero;
3578   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3579     return NVPTXISD::Suld2DArrayI8Zero;
3580   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3581     return NVPTXISD::Suld2DArrayI16Zero;
3582   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3583     return NVPTXISD::Suld2DArrayI32Zero;
3584   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3585     return NVPTXISD::Suld2DArrayI64Zero;
3586   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3587     return NVPTXISD::Suld2DArrayV2I8Zero;
3588   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3589     return NVPTXISD::Suld2DArrayV2I16Zero;
3590   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3591     return NVPTXISD::Suld2DArrayV2I32Zero;
3592   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3593     return NVPTXISD::Suld2DArrayV2I64Zero;
3594   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3595     return NVPTXISD::Suld2DArrayV4I8Zero;
3596   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3597     return NVPTXISD::Suld2DArrayV4I16Zero;
3598   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3599     return NVPTXISD::Suld2DArrayV4I32Zero;
3600   case Intrinsic::nvvm_suld_3d_i8_zero:
3601     return NVPTXISD::Suld3DI8Zero;
3602   case Intrinsic::nvvm_suld_3d_i16_zero:
3603     return NVPTXISD::Suld3DI16Zero;
3604   case Intrinsic::nvvm_suld_3d_i32_zero:
3605     return NVPTXISD::Suld3DI32Zero;
3606   case Intrinsic::nvvm_suld_3d_i64_zero:
3607     return NVPTXISD::Suld3DI64Zero;
3608   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3609     return NVPTXISD::Suld3DV2I8Zero;
3610   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3611     return NVPTXISD::Suld3DV2I16Zero;
3612   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3613     return NVPTXISD::Suld3DV2I32Zero;
3614   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3615     return NVPTXISD::Suld3DV2I64Zero;
3616   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3617     return NVPTXISD::Suld3DV4I8Zero;
3618   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3619     return NVPTXISD::Suld3DV4I16Zero;
3620   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3621     return NVPTXISD::Suld3DV4I32Zero;
3622   }
3623 }
3624 
3625 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3626 // TgtMemIntrinsic
3627 // because we need the information that is only available in the "Value" type
3628 // of destination
3629 // pointer. In particular, the address space information.
3630 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3631     IntrinsicInfo &Info, const CallInst &I,
3632     MachineFunction &MF, unsigned Intrinsic) const {
3633   switch (Intrinsic) {
3634   default:
3635     return false;
3636   case Intrinsic::nvvm_match_all_sync_i32p:
3637   case Intrinsic::nvvm_match_all_sync_i64p:
3638     Info.opc = ISD::INTRINSIC_W_CHAIN;
3639     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3640     // in order to model data exchange with other threads, but perform no real
3641     // memory accesses.
3642     Info.memVT = MVT::i1;
3643 
3644     // Our result depends on both our and other thread's arguments.
3645     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3646     return true;
3647   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3648   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3649   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3650   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3651   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3652   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3653   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3654   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3655   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3656   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3657   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3658   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3659   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3660   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3661   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3662   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3663   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3664   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3665   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3666   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3667   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3668   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3669   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3670   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3671     Info.opc = ISD::INTRINSIC_W_CHAIN;
3672     Info.memVT = MVT::v8f16;
3673     Info.ptrVal = I.getArgOperand(0);
3674     Info.offset = 0;
3675     Info.flags = MachineMemOperand::MOLoad;
3676     Info.align = Align(16);
3677     return true;
3678   }
3679   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3680   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3681   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3682   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3683   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3684   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3685   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3686   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3687   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3688   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3689   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3690   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3691   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3692   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3693   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3694   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3695   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3696   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3697   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3698   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3699   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3700   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3701   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3702   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3703     Info.opc = ISD::INTRINSIC_W_CHAIN;
3704     Info.memVT = MVT::v2i32;
3705     Info.ptrVal = I.getArgOperand(0);
3706     Info.offset = 0;
3707     Info.flags = MachineMemOperand::MOLoad;
3708     Info.align = Align(8);
3709     return true;
3710   }
3711 
3712   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3713   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3714   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3715   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3716   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3717   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3718   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3719   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3720   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3721   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3722   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3723   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3724   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3725   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3726   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3727   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3728 
3729   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3730   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3731   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3732   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3733   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3734   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3735   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3736   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3737   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3738   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3739   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3740   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3741   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3742   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3743   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3744   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
3745   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
3746   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
3747     Info.opc = ISD::INTRINSIC_W_CHAIN;
3748     Info.memVT = MVT::v4i32;
3749     Info.ptrVal = I.getArgOperand(0);
3750     Info.offset = 0;
3751     Info.flags = MachineMemOperand::MOLoad;
3752     Info.align = Align(16);
3753     return true;
3754   }
3755 
3756   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3757   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3758   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3759   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3760   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3761   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3762   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3763   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3764 
3765   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3766   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3767   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3768   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3769   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3770   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3771   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3772   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3773   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3774   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3775   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3776   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3777   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3778   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3779   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3780   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3781   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3782   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3783   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3784   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
3785   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
3786   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
3787     Info.opc = ISD::INTRINSIC_W_CHAIN;
3788     Info.memVT = MVT::i32;
3789     Info.ptrVal = I.getArgOperand(0);
3790     Info.offset = 0;
3791     Info.flags = MachineMemOperand::MOLoad;
3792     Info.align = Align(4);
3793     return true;
3794   }
3795 
3796   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3797   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3798   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3799   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3800   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3801   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3802   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3803   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3804   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3805   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3806   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3807   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3808     Info.opc = ISD::INTRINSIC_W_CHAIN;
3809     Info.memVT = MVT::v4f16;
3810     Info.ptrVal = I.getArgOperand(0);
3811     Info.offset = 0;
3812     Info.flags = MachineMemOperand::MOLoad;
3813     Info.align = Align(16);
3814     return true;
3815   }
3816 
3817   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3818   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3819   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3820   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3821   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3822   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3823   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3824   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3825   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3826   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3827   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3828   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3829   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3830   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3831   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3832   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3833     Info.opc = ISD::INTRINSIC_W_CHAIN;
3834     Info.memVT = MVT::v8f32;
3835     Info.ptrVal = I.getArgOperand(0);
3836     Info.offset = 0;
3837     Info.flags = MachineMemOperand::MOLoad;
3838     Info.align = Align(16);
3839     return true;
3840   }
3841 
3842   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3843   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3844   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3845   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3846 
3847   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3848   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3849   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3850   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3851 
3852   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3853   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3854   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3855   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3856   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3857   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3858   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3859   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3860   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3861   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3862   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3863   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3864     Info.opc = ISD::INTRINSIC_W_CHAIN;
3865     Info.memVT = MVT::v8i32;
3866     Info.ptrVal = I.getArgOperand(0);
3867     Info.offset = 0;
3868     Info.flags = MachineMemOperand::MOLoad;
3869     Info.align = Align(16);
3870     return true;
3871   }
3872 
3873   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3874   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3875   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3876   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3877   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3878   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3879   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3880   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
3881   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
3882   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
3883     Info.opc = ISD::INTRINSIC_W_CHAIN;
3884     Info.memVT = MVT::v2i32;
3885     Info.ptrVal = I.getArgOperand(0);
3886     Info.offset = 0;
3887     Info.flags = MachineMemOperand::MOLoad;
3888     Info.align = Align(8);
3889     return true;
3890   }
3891 
3892   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3893   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3894   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3895   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3896 
3897   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3898   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3899   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3900   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3901     Info.opc = ISD::INTRINSIC_W_CHAIN;
3902     Info.memVT = MVT::f64;
3903     Info.ptrVal = I.getArgOperand(0);
3904     Info.offset = 0;
3905     Info.flags = MachineMemOperand::MOLoad;
3906     Info.align = Align(8);
3907     return true;
3908   }
3909 
3910   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3911   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3912   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3913   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3914     Info.opc = ISD::INTRINSIC_W_CHAIN;
3915     Info.memVT = MVT::v2f64;
3916     Info.ptrVal = I.getArgOperand(0);
3917     Info.offset = 0;
3918     Info.flags = MachineMemOperand::MOLoad;
3919     Info.align = Align(16);
3920     return true;
3921   }
3922 
3923   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3924   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3925   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3926   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3927   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3928   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3929   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3930   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3931   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3932   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3933   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3934   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3935     Info.opc = ISD::INTRINSIC_VOID;
3936     Info.memVT = MVT::v4f16;
3937     Info.ptrVal = I.getArgOperand(0);
3938     Info.offset = 0;
3939     Info.flags = MachineMemOperand::MOStore;
3940     Info.align = Align(16);
3941     return true;
3942   }
3943 
3944   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3945   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3946   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3947   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3948   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3949   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3950   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3951   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3952   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3953   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3954   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3955   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
3956   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
3957   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
3958   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
3959   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
3960     Info.opc = ISD::INTRINSIC_VOID;
3961     Info.memVT = MVT::v8f32;
3962     Info.ptrVal = I.getArgOperand(0);
3963     Info.offset = 0;
3964     Info.flags = MachineMemOperand::MOStore;
3965     Info.align = Align(16);
3966     return true;
3967   }
3968 
3969   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3970   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3971   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3972   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3973   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3974   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3975   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3976   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3977   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3978   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3979   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3980   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3981     Info.opc = ISD::INTRINSIC_VOID;
3982     Info.memVT = MVT::v8i32;
3983     Info.ptrVal = I.getArgOperand(0);
3984     Info.offset = 0;
3985     Info.flags = MachineMemOperand::MOStore;
3986     Info.align = Align(16);
3987     return true;
3988   }
3989 
3990   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3991   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3992   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3993   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3994   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3995   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3996   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3997   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3998     Info.opc = ISD::INTRINSIC_VOID;
3999     Info.memVT = MVT::v2i32;
4000     Info.ptrVal = I.getArgOperand(0);
4001     Info.offset = 0;
4002     Info.flags = MachineMemOperand::MOStore;
4003     Info.align = Align(8);
4004     return true;
4005   }
4006 
4007   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
4008   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
4009   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
4010   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
4011     Info.opc = ISD::INTRINSIC_VOID;
4012     Info.memVT = MVT::v2f64;
4013     Info.ptrVal = I.getArgOperand(0);
4014     Info.offset = 0;
4015     Info.flags = MachineMemOperand::MOStore;
4016     Info.align = Align(16);
4017     return true;
4018   }
4019 
4020   case Intrinsic::nvvm_atomic_load_inc_32:
4021   case Intrinsic::nvvm_atomic_load_dec_32:
4022 
4023   case Intrinsic::nvvm_atomic_add_gen_f_cta:
4024   case Intrinsic::nvvm_atomic_add_gen_f_sys:
4025   case Intrinsic::nvvm_atomic_add_gen_i_cta:
4026   case Intrinsic::nvvm_atomic_add_gen_i_sys:
4027   case Intrinsic::nvvm_atomic_and_gen_i_cta:
4028   case Intrinsic::nvvm_atomic_and_gen_i_sys:
4029   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
4030   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
4031   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
4032   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
4033   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
4034   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
4035   case Intrinsic::nvvm_atomic_max_gen_i_cta:
4036   case Intrinsic::nvvm_atomic_max_gen_i_sys:
4037   case Intrinsic::nvvm_atomic_min_gen_i_cta:
4038   case Intrinsic::nvvm_atomic_min_gen_i_sys:
4039   case Intrinsic::nvvm_atomic_or_gen_i_cta:
4040   case Intrinsic::nvvm_atomic_or_gen_i_sys:
4041   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
4042   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
4043   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
4044   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
4045     auto &DL = I.getModule()->getDataLayout();
4046     Info.opc = ISD::INTRINSIC_W_CHAIN;
4047     Info.memVT = getValueType(DL, I.getType());
4048     Info.ptrVal = I.getArgOperand(0);
4049     Info.offset = 0;
4050     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4051     Info.align.reset();
4052     return true;
4053   }
4054 
4055   case Intrinsic::nvvm_ldu_global_i:
4056   case Intrinsic::nvvm_ldu_global_f:
4057   case Intrinsic::nvvm_ldu_global_p: {
4058     auto &DL = I.getModule()->getDataLayout();
4059     Info.opc = ISD::INTRINSIC_W_CHAIN;
4060     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
4061       Info.memVT = getValueType(DL, I.getType());
4062     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
4063       Info.memVT = getPointerTy(DL);
4064     else
4065       Info.memVT = getValueType(DL, I.getType());
4066     Info.ptrVal = I.getArgOperand(0);
4067     Info.offset = 0;
4068     Info.flags = MachineMemOperand::MOLoad;
4069     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4070 
4071     return true;
4072   }
4073   case Intrinsic::nvvm_ldg_global_i:
4074   case Intrinsic::nvvm_ldg_global_f:
4075   case Intrinsic::nvvm_ldg_global_p: {
4076     auto &DL = I.getModule()->getDataLayout();
4077 
4078     Info.opc = ISD::INTRINSIC_W_CHAIN;
4079     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
4080       Info.memVT = getValueType(DL, I.getType());
4081     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
4082       Info.memVT = getPointerTy(DL);
4083     else
4084       Info.memVT = getValueType(DL, I.getType());
4085     Info.ptrVal = I.getArgOperand(0);
4086     Info.offset = 0;
4087     Info.flags = MachineMemOperand::MOLoad;
4088     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4089 
4090     return true;
4091   }
4092 
4093   case Intrinsic::nvvm_tex_1d_v4f32_s32:
4094   case Intrinsic::nvvm_tex_1d_v4f32_f32:
4095   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
4096   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
4097   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
4098   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
4099   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
4100   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
4101   case Intrinsic::nvvm_tex_2d_v4f32_s32:
4102   case Intrinsic::nvvm_tex_2d_v4f32_f32:
4103   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
4104   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
4105   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
4106   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
4107   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
4108   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
4109   case Intrinsic::nvvm_tex_3d_v4f32_s32:
4110   case Intrinsic::nvvm_tex_3d_v4f32_f32:
4111   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
4112   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
4113   case Intrinsic::nvvm_tex_cube_v4f32_f32:
4114   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
4115   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
4116   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
4117   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
4118   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
4119   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
4120   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
4121   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
4122   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
4123   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
4124   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
4125   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
4126   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
4127   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
4128   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
4129   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
4130   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
4131   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
4132   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
4133   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
4134   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
4135   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
4136   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
4137   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
4138   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
4139   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
4140   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
4141   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
4142   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
4143   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
4144   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
4145   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
4146   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
4147   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
4148   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
4149     Info.opc = getOpcForTextureInstr(Intrinsic);
4150     Info.memVT = MVT::v4f32;
4151     Info.ptrVal = nullptr;
4152     Info.offset = 0;
4153     Info.flags = MachineMemOperand::MOLoad;
4154     Info.align = Align(16);
4155     return true;
4156 
4157   case Intrinsic::nvvm_tex_1d_v4s32_s32:
4158   case Intrinsic::nvvm_tex_1d_v4s32_f32:
4159   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
4160   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
4161   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
4162   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
4163   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
4164   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
4165   case Intrinsic::nvvm_tex_2d_v4s32_s32:
4166   case Intrinsic::nvvm_tex_2d_v4s32_f32:
4167   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
4168   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
4169   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
4170   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
4171   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
4172   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
4173   case Intrinsic::nvvm_tex_3d_v4s32_s32:
4174   case Intrinsic::nvvm_tex_3d_v4s32_f32:
4175   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
4176   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
4177   case Intrinsic::nvvm_tex_cube_v4s32_f32:
4178   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
4179   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
4180   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4181   case Intrinsic::nvvm_tex_cube_v4u32_f32:
4182   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4183   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4184   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4185   case Intrinsic::nvvm_tex_1d_v4u32_s32:
4186   case Intrinsic::nvvm_tex_1d_v4u32_f32:
4187   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4188   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4189   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4190   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4191   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4192   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4193   case Intrinsic::nvvm_tex_2d_v4u32_s32:
4194   case Intrinsic::nvvm_tex_2d_v4u32_f32:
4195   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4196   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4197   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4198   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4199   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4200   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4201   case Intrinsic::nvvm_tex_3d_v4u32_s32:
4202   case Intrinsic::nvvm_tex_3d_v4u32_f32:
4203   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4204   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4205   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4206   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4207   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4208   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4209   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4210   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4211   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4212   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4213   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4214   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4215   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4216   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4217   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4218   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4219   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4220   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4221   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4222   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4223   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4224   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4225   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4226   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4227   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4228   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4229   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4230   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4231   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4232   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4233   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4234   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4235   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4236   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4237   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4238   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4239   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4240   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4241   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4242   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4243   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4244   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4245   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4246   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4247   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4248   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4249   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4250   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4251   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4252   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4253   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4254   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4255   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4256   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4257   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4258   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4259   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4260   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4261   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4262   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4263   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4264   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4265   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4266   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4267   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4268   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4269     Info.opc = getOpcForTextureInstr(Intrinsic);
4270     Info.memVT = MVT::v4i32;
4271     Info.ptrVal = nullptr;
4272     Info.offset = 0;
4273     Info.flags = MachineMemOperand::MOLoad;
4274     Info.align = Align(16);
4275     return true;
4276 
4277   case Intrinsic::nvvm_suld_1d_i8_clamp:
4278   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4279   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4280   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4281   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4282   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4283   case Intrinsic::nvvm_suld_2d_i8_clamp:
4284   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4285   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4286   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4287   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4288   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4289   case Intrinsic::nvvm_suld_3d_i8_clamp:
4290   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4291   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4292   case Intrinsic::nvvm_suld_1d_i8_trap:
4293   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4294   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4295   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4296   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4297   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4298   case Intrinsic::nvvm_suld_2d_i8_trap:
4299   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4300   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4301   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4302   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4303   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4304   case Intrinsic::nvvm_suld_3d_i8_trap:
4305   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4306   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4307   case Intrinsic::nvvm_suld_1d_i8_zero:
4308   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4309   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4310   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4311   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4312   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4313   case Intrinsic::nvvm_suld_2d_i8_zero:
4314   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4315   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4316   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4317   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4318   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4319   case Intrinsic::nvvm_suld_3d_i8_zero:
4320   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4321   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4322     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4323     Info.memVT = MVT::i8;
4324     Info.ptrVal = nullptr;
4325     Info.offset = 0;
4326     Info.flags = MachineMemOperand::MOLoad;
4327     Info.align = Align(16);
4328     return true;
4329 
4330   case Intrinsic::nvvm_suld_1d_i16_clamp:
4331   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4332   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4333   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4334   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4335   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4336   case Intrinsic::nvvm_suld_2d_i16_clamp:
4337   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4338   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4339   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4340   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4341   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4342   case Intrinsic::nvvm_suld_3d_i16_clamp:
4343   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4344   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4345   case Intrinsic::nvvm_suld_1d_i16_trap:
4346   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4347   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4348   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4349   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4350   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4351   case Intrinsic::nvvm_suld_2d_i16_trap:
4352   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4353   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4354   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4355   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4356   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4357   case Intrinsic::nvvm_suld_3d_i16_trap:
4358   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4359   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4360   case Intrinsic::nvvm_suld_1d_i16_zero:
4361   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4362   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4363   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4364   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4365   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4366   case Intrinsic::nvvm_suld_2d_i16_zero:
4367   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4368   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4369   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4370   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4371   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4372   case Intrinsic::nvvm_suld_3d_i16_zero:
4373   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4374   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4375     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4376     Info.memVT = MVT::i16;
4377     Info.ptrVal = nullptr;
4378     Info.offset = 0;
4379     Info.flags = MachineMemOperand::MOLoad;
4380     Info.align = Align(16);
4381     return true;
4382 
4383   case Intrinsic::nvvm_suld_1d_i32_clamp:
4384   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4385   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4386   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4387   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4388   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4389   case Intrinsic::nvvm_suld_2d_i32_clamp:
4390   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4391   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4392   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4393   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4394   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4395   case Intrinsic::nvvm_suld_3d_i32_clamp:
4396   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4397   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4398   case Intrinsic::nvvm_suld_1d_i32_trap:
4399   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4400   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4401   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4402   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4403   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4404   case Intrinsic::nvvm_suld_2d_i32_trap:
4405   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4406   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4407   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4408   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4409   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4410   case Intrinsic::nvvm_suld_3d_i32_trap:
4411   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4412   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4413   case Intrinsic::nvvm_suld_1d_i32_zero:
4414   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4415   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4416   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4417   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4418   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4419   case Intrinsic::nvvm_suld_2d_i32_zero:
4420   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4421   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4422   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4423   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4424   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4425   case Intrinsic::nvvm_suld_3d_i32_zero:
4426   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4427   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4428     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4429     Info.memVT = MVT::i32;
4430     Info.ptrVal = nullptr;
4431     Info.offset = 0;
4432     Info.flags = MachineMemOperand::MOLoad;
4433     Info.align = Align(16);
4434     return true;
4435 
4436   case Intrinsic::nvvm_suld_1d_i64_clamp:
4437   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4438   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4439   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4440   case Intrinsic::nvvm_suld_2d_i64_clamp:
4441   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4442   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4443   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4444   case Intrinsic::nvvm_suld_3d_i64_clamp:
4445   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4446   case Intrinsic::nvvm_suld_1d_i64_trap:
4447   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4448   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4449   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4450   case Intrinsic::nvvm_suld_2d_i64_trap:
4451   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4452   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4453   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4454   case Intrinsic::nvvm_suld_3d_i64_trap:
4455   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4456   case Intrinsic::nvvm_suld_1d_i64_zero:
4457   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4458   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4459   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4460   case Intrinsic::nvvm_suld_2d_i64_zero:
4461   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4462   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4463   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4464   case Intrinsic::nvvm_suld_3d_i64_zero:
4465   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4466     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4467     Info.memVT = MVT::i64;
4468     Info.ptrVal = nullptr;
4469     Info.offset = 0;
4470     Info.flags = MachineMemOperand::MOLoad;
4471     Info.align = Align(16);
4472     return true;
4473   }
4474   return false;
4475 }
4476 
4477 /// getFunctionParamOptimizedAlign - since function arguments are passed via
4478 /// .param space, we may want to increase their alignment in a way that
4479 /// ensures that we can effectively vectorize their loads & stores. We can
4480 /// increase alignment only if the function has internal or has private
4481 /// linkage as for other linkage types callers may already rely on default
4482 /// alignment. To allow using 128-bit vectorized loads/stores, this function
4483 /// ensures that alignment is 16 or greater.
4484 Align NVPTXTargetLowering::getFunctionParamOptimizedAlign(
4485     const Function *F, Type *ArgTy, const DataLayout &DL) const {
4486   const uint64_t ABITypeAlign = DL.getABITypeAlign(ArgTy).value();
4487 
4488   // If a function has linkage different from internal or private, we
4489   // must use default ABI alignment as external users rely on it. Same
4490   // for a function that may be called from a function pointer.
4491   if (!F || !F->hasLocalLinkage() ||
4492       F->hasAddressTaken(/*Users=*/nullptr,
4493                          /*IgnoreCallbackUses=*/false,
4494                          /*IgnoreAssumeLikeCalls=*/true,
4495                          /*IgnoreLLVMUsed=*/true))
4496     return Align(ABITypeAlign);
4497 
4498   assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
4499   return Align(std::max(uint64_t(16), ABITypeAlign));
4500 }
4501 
4502 /// Helper for computing alignment of a device function byval parameter.
4503 Align NVPTXTargetLowering::getFunctionByValParamAlign(
4504     const Function *F, Type *ArgTy, Align InitialAlign,
4505     const DataLayout &DL) const {
4506   Align ArgAlign = InitialAlign;
4507   // Try to increase alignment to enhance vectorization options.
4508   if (F)
4509     ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL));
4510 
4511   // Work around a bug in ptxas. When PTX code takes address of
4512   // byval parameter with alignment < 4, ptxas generates code to
4513   // spill argument into memory. Alas on sm_50+ ptxas generates
4514   // SASS code that fails with misaligned access. To work around
4515   // the problem, make sure that we align byval parameters by at
4516   // least 4.
4517   // TODO: this will need to be undone when we get to support multi-TU
4518   // device-side compilation as it breaks ABI compatibility with nvcc.
4519   // Hopefully ptxas bug is fixed by then.
4520   ArgAlign = std::max(ArgAlign, Align(4));
4521 
4522   return ArgAlign;
4523 }
4524 
4525 /// isLegalAddressingMode - Return true if the addressing mode represented
4526 /// by AM is legal for this target, for a load/store of the specified type.
4527 /// Used to guide target specific optimizations, like loop strength reduction
4528 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4529 /// (CodeGenPrepare.cpp)
4530 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4531                                                 const AddrMode &AM, Type *Ty,
4532                                                 unsigned AS, Instruction *I) const {
4533   // AddrMode - This represents an addressing mode of:
4534   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4535   //
4536   // The legal address modes are
4537   // - [avar]
4538   // - [areg]
4539   // - [areg+immoff]
4540   // - [immAddr]
4541 
4542   if (AM.BaseGV) {
4543     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4544   }
4545 
4546   switch (AM.Scale) {
4547   case 0: // "r", "r+i" or "i" is allowed
4548     break;
4549   case 1:
4550     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4551       return false;
4552     // Otherwise we have r+i.
4553     break;
4554   default:
4555     // No scale > 1 is allowed
4556     return false;
4557   }
4558   return true;
4559 }
4560 
4561 //===----------------------------------------------------------------------===//
4562 //                         NVPTX Inline Assembly Support
4563 //===----------------------------------------------------------------------===//
4564 
4565 /// getConstraintType - Given a constraint letter, return the type of
4566 /// constraint it is for this target.
4567 NVPTXTargetLowering::ConstraintType
4568 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4569   if (Constraint.size() == 1) {
4570     switch (Constraint[0]) {
4571     default:
4572       break;
4573     case 'b':
4574     case 'r':
4575     case 'h':
4576     case 'c':
4577     case 'l':
4578     case 'f':
4579     case 'd':
4580     case '0':
4581     case 'N':
4582       return C_RegisterClass;
4583     }
4584   }
4585   return TargetLowering::getConstraintType(Constraint);
4586 }
4587 
4588 std::pair<unsigned, const TargetRegisterClass *>
4589 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4590                                                   StringRef Constraint,
4591                                                   MVT VT) const {
4592   if (Constraint.size() == 1) {
4593     switch (Constraint[0]) {
4594     case 'b':
4595       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4596     case 'c':
4597       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4598     case 'h':
4599       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4600     case 'r':
4601       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4602     case 'l':
4603     case 'N':
4604       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4605     case 'f':
4606       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4607     case 'd':
4608       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4609     }
4610   }
4611   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4612 }
4613 
4614 //===----------------------------------------------------------------------===//
4615 //                         NVPTX DAG Combining
4616 //===----------------------------------------------------------------------===//
4617 
4618 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4619                                    CodeGenOpt::Level OptLevel) const {
4620   // Always honor command-line argument
4621   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4622     return FMAContractLevelOpt > 0;
4623 
4624   // Do not contract if we're not optimizing the code.
4625   if (OptLevel == 0)
4626     return false;
4627 
4628   // Honor TargetOptions flags that explicitly say fusion is okay.
4629   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4630     return true;
4631 
4632   return allowUnsafeFPMath(MF);
4633 }
4634 
4635 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4636   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4637   if (MF.getTarget().Options.UnsafeFPMath)
4638     return true;
4639 
4640   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4641   const Function &F = MF.getFunction();
4642   return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
4643 }
4644 
4645 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4646 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4647 /// called with the default operands, and if that fails, with commuted
4648 /// operands.
4649 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4650                                            TargetLowering::DAGCombinerInfo &DCI,
4651                                              const NVPTXSubtarget &Subtarget,
4652                                              CodeGenOpt::Level OptLevel) {
4653   SelectionDAG  &DAG = DCI.DAG;
4654   // Skip non-integer, non-scalar case
4655   EVT VT=N0.getValueType();
4656   if (VT.isVector())
4657     return SDValue();
4658 
4659   // fold (add (mul a, b), c) -> (mad a, b, c)
4660   //
4661   if (N0.getOpcode() == ISD::MUL) {
4662     assert (VT.isInteger());
4663     // For integer:
4664     // Since integer multiply-add costs the same as integer multiply
4665     // but is more costly than integer add, do the fusion only when
4666     // the mul is only used in the add.
4667     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4668         !N0.getNode()->hasOneUse())
4669       return SDValue();
4670 
4671     // Do the folding
4672     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4673                        N0.getOperand(0), N0.getOperand(1), N1);
4674   }
4675   else if (N0.getOpcode() == ISD::FMUL) {
4676     if (VT == MVT::f32 || VT == MVT::f64) {
4677       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4678           &DAG.getTargetLoweringInfo());
4679       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4680         return SDValue();
4681 
4682       // For floating point:
4683       // Do the fusion only when the mul has less than 5 uses and all
4684       // are add.
4685       // The heuristic is that if a use is not an add, then that use
4686       // cannot be fused into fma, therefore mul is still needed anyway.
4687       // If there are more than 4 uses, even if they are all add, fusing
4688       // them will increase register pressue.
4689       //
4690       int numUses = 0;
4691       int nonAddCount = 0;
4692       for (const SDNode *User : N0.getNode()->uses()) {
4693         numUses++;
4694         if (User->getOpcode() != ISD::FADD)
4695           ++nonAddCount;
4696       }
4697       if (numUses >= 5)
4698         return SDValue();
4699       if (nonAddCount) {
4700         int orderNo = N->getIROrder();
4701         int orderNo2 = N0.getNode()->getIROrder();
4702         // simple heuristics here for considering potential register
4703         // pressure, the logics here is that the differnce are used
4704         // to measure the distance between def and use, the longer distance
4705         // more likely cause register pressure.
4706         if (orderNo - orderNo2 < 500)
4707           return SDValue();
4708 
4709         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4710         // which guarantees that the FMA will not increase register pressure at node N.
4711         bool opIsLive = false;
4712         const SDNode *left = N0.getOperand(0).getNode();
4713         const SDNode *right = N0.getOperand(1).getNode();
4714 
4715         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4716           opIsLive = true;
4717 
4718         if (!opIsLive)
4719           for (const SDNode *User : left->uses()) {
4720             int orderNo3 = User->getIROrder();
4721             if (orderNo3 > orderNo) {
4722               opIsLive = true;
4723               break;
4724             }
4725           }
4726 
4727         if (!opIsLive)
4728           for (const SDNode *User : right->uses()) {
4729             int orderNo3 = User->getIROrder();
4730             if (orderNo3 > orderNo) {
4731               opIsLive = true;
4732               break;
4733             }
4734           }
4735 
4736         if (!opIsLive)
4737           return SDValue();
4738       }
4739 
4740       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4741                          N0.getOperand(0), N0.getOperand(1), N1);
4742     }
4743   }
4744 
4745   return SDValue();
4746 }
4747 
4748 static SDValue PerformStoreRetvalCombine(SDNode *N) {
4749   // Operands from the 2nd to the last one are the values to be stored
4750   for (std::size_t I = 2, OpsCount = N->ops().size(); I != OpsCount; ++I)
4751     if (!N->getOperand(I).isUndef())
4752       return SDValue();
4753 
4754   // Operand 0 is the previous value in the chain. Cannot return EntryToken
4755   // as the previous value will become unused and eliminated later.
4756   return N->getOperand(0);
4757 }
4758 
4759 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4760 ///
4761 static SDValue PerformADDCombine(SDNode *N,
4762                                  TargetLowering::DAGCombinerInfo &DCI,
4763                                  const NVPTXSubtarget &Subtarget,
4764                                  CodeGenOpt::Level OptLevel) {
4765   SDValue N0 = N->getOperand(0);
4766   SDValue N1 = N->getOperand(1);
4767 
4768   // First try with the default operand order.
4769   if (SDValue Result =
4770           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4771     return Result;
4772 
4773   // If that didn't work, try again with the operands commuted.
4774   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4775 }
4776 
4777 static SDValue PerformANDCombine(SDNode *N,
4778                                  TargetLowering::DAGCombinerInfo &DCI) {
4779   // The type legalizer turns a vector load of i8 values into a zextload to i16
4780   // registers, optionally ANY_EXTENDs it (if target type is integer),
4781   // and ANDs off the high 8 bits. Since we turn this load into a
4782   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4783   // nodes. Do that here.
4784   SDValue Val = N->getOperand(0);
4785   SDValue Mask = N->getOperand(1);
4786 
4787   if (isa<ConstantSDNode>(Val)) {
4788     std::swap(Val, Mask);
4789   }
4790 
4791   SDValue AExt;
4792   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4793   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4794     AExt = Val;
4795     Val = Val->getOperand(0);
4796   }
4797 
4798   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4799     Val = Val->getOperand(0);
4800   }
4801 
4802   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4803       Val->getOpcode() == NVPTXISD::LoadV4) {
4804     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4805     if (!MaskCnst) {
4806       // Not an AND with a constant
4807       return SDValue();
4808     }
4809 
4810     uint64_t MaskVal = MaskCnst->getZExtValue();
4811     if (MaskVal != 0xff) {
4812       // Not an AND that chops off top 8 bits
4813       return SDValue();
4814     }
4815 
4816     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4817     if (!Mem) {
4818       // Not a MemSDNode?!?
4819       return SDValue();
4820     }
4821 
4822     EVT MemVT = Mem->getMemoryVT();
4823     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4824       // We only handle the i8 case
4825       return SDValue();
4826     }
4827 
4828     unsigned ExtType =
4829       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4830         getZExtValue();
4831     if (ExtType == ISD::SEXTLOAD) {
4832       // If for some reason the load is a sextload, the and is needed to zero
4833       // out the high 8 bits
4834       return SDValue();
4835     }
4836 
4837     bool AddTo = false;
4838     if (AExt.getNode() != nullptr) {
4839       // Re-insert the ext as a zext.
4840       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4841                             AExt.getValueType(), Val);
4842       AddTo = true;
4843     }
4844 
4845     // If we get here, the AND is unnecessary.  Just replace it with the load
4846     DCI.CombineTo(N, Val, AddTo);
4847   }
4848 
4849   return SDValue();
4850 }
4851 
4852 static SDValue PerformREMCombine(SDNode *N,
4853                                  TargetLowering::DAGCombinerInfo &DCI,
4854                                  CodeGenOpt::Level OptLevel) {
4855   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4856 
4857   // Don't do anything at less than -O2.
4858   if (OptLevel < CodeGenOpt::Default)
4859     return SDValue();
4860 
4861   SelectionDAG &DAG = DCI.DAG;
4862   SDLoc DL(N);
4863   EVT VT = N->getValueType(0);
4864   bool IsSigned = N->getOpcode() == ISD::SREM;
4865   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4866 
4867   const SDValue &Num = N->getOperand(0);
4868   const SDValue &Den = N->getOperand(1);
4869 
4870   for (const SDNode *U : Num->uses()) {
4871     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4872         U->getOperand(1) == Den) {
4873       // Num % Den -> Num - (Num / Den) * Den
4874       return DAG.getNode(ISD::SUB, DL, VT, Num,
4875                          DAG.getNode(ISD::MUL, DL, VT,
4876                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4877                                      Den));
4878     }
4879   }
4880   return SDValue();
4881 }
4882 
4883 enum OperandSignedness {
4884   Signed = 0,
4885   Unsigned,
4886   Unknown
4887 };
4888 
4889 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4890 /// that can be demoted to \p OptSize bits without loss of information. The
4891 /// signedness of the operand, if determinable, is placed in \p S.
4892 static bool IsMulWideOperandDemotable(SDValue Op,
4893                                       unsigned OptSize,
4894                                       OperandSignedness &S) {
4895   S = Unknown;
4896 
4897   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4898       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4899     EVT OrigVT = Op.getOperand(0).getValueType();
4900     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4901       S = Signed;
4902       return true;
4903     }
4904   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4905     EVT OrigVT = Op.getOperand(0).getValueType();
4906     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4907       S = Unsigned;
4908       return true;
4909     }
4910   }
4911 
4912   return false;
4913 }
4914 
4915 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4916 /// be demoted to \p OptSize bits without loss of information. If the operands
4917 /// contain a constant, it should appear as the RHS operand. The signedness of
4918 /// the operands is placed in \p IsSigned.
4919 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4920                                         unsigned OptSize,
4921                                         bool &IsSigned) {
4922   OperandSignedness LHSSign;
4923 
4924   // The LHS operand must be a demotable op
4925   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4926     return false;
4927 
4928   // We should have been able to determine the signedness from the LHS
4929   if (LHSSign == Unknown)
4930     return false;
4931 
4932   IsSigned = (LHSSign == Signed);
4933 
4934   // The RHS can be a demotable op or a constant
4935   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4936     const APInt &Val = CI->getAPIntValue();
4937     if (LHSSign == Unsigned) {
4938       return Val.isIntN(OptSize);
4939     } else {
4940       return Val.isSignedIntN(OptSize);
4941     }
4942   } else {
4943     OperandSignedness RHSSign;
4944     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4945       return false;
4946 
4947     return LHSSign == RHSSign;
4948   }
4949 }
4950 
4951 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4952 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4953 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4954 /// amount.
4955 static SDValue TryMULWIDECombine(SDNode *N,
4956                                  TargetLowering::DAGCombinerInfo &DCI) {
4957   EVT MulType = N->getValueType(0);
4958   if (MulType != MVT::i32 && MulType != MVT::i64) {
4959     return SDValue();
4960   }
4961 
4962   SDLoc DL(N);
4963   unsigned OptSize = MulType.getSizeInBits() >> 1;
4964   SDValue LHS = N->getOperand(0);
4965   SDValue RHS = N->getOperand(1);
4966 
4967   // Canonicalize the multiply so the constant (if any) is on the right
4968   if (N->getOpcode() == ISD::MUL) {
4969     if (isa<ConstantSDNode>(LHS)) {
4970       std::swap(LHS, RHS);
4971     }
4972   }
4973 
4974   // If we have a SHL, determine the actual multiply amount
4975   if (N->getOpcode() == ISD::SHL) {
4976     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4977     if (!ShlRHS) {
4978       return SDValue();
4979     }
4980 
4981     APInt ShiftAmt = ShlRHS->getAPIntValue();
4982     unsigned BitWidth = MulType.getSizeInBits();
4983     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4984       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4985       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4986     } else {
4987       return SDValue();
4988     }
4989   }
4990 
4991   bool Signed;
4992   // Verify that our operands are demotable
4993   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4994     return SDValue();
4995   }
4996 
4997   EVT DemotedVT;
4998   if (MulType == MVT::i32) {
4999     DemotedVT = MVT::i16;
5000   } else {
5001     DemotedVT = MVT::i32;
5002   }
5003 
5004   // Truncate the operands to the correct size. Note that these are just for
5005   // type consistency and will (likely) be eliminated in later phases.
5006   SDValue TruncLHS =
5007     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
5008   SDValue TruncRHS =
5009     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
5010 
5011   unsigned Opc;
5012   if (Signed) {
5013     Opc = NVPTXISD::MUL_WIDE_SIGNED;
5014   } else {
5015     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
5016   }
5017 
5018   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
5019 }
5020 
5021 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
5022 static SDValue PerformMULCombine(SDNode *N,
5023                                  TargetLowering::DAGCombinerInfo &DCI,
5024                                  CodeGenOpt::Level OptLevel) {
5025   if (OptLevel > 0) {
5026     // Try mul.wide combining at OptLevel > 0
5027     if (SDValue Ret = TryMULWIDECombine(N, DCI))
5028       return Ret;
5029   }
5030 
5031   return SDValue();
5032 }
5033 
5034 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
5035 static SDValue PerformSHLCombine(SDNode *N,
5036                                  TargetLowering::DAGCombinerInfo &DCI,
5037                                  CodeGenOpt::Level OptLevel) {
5038   if (OptLevel > 0) {
5039     // Try mul.wide combining at OptLevel > 0
5040     if (SDValue Ret = TryMULWIDECombine(N, DCI))
5041       return Ret;
5042   }
5043 
5044   return SDValue();
5045 }
5046 
5047 static SDValue PerformSETCCCombine(SDNode *N,
5048                                    TargetLowering::DAGCombinerInfo &DCI) {
5049   EVT CCType = N->getValueType(0);
5050   SDValue A = N->getOperand(0);
5051   SDValue B = N->getOperand(1);
5052 
5053   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
5054     return SDValue();
5055 
5056   SDLoc DL(N);
5057   // setp.f16x2 returns two scalar predicates, which we need to
5058   // convert back to v2i1. The returned result will be scalarized by
5059   // the legalizer, but the comparison will remain a single vector
5060   // instruction.
5061   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
5062                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
5063                                    {A, B, N->getOperand(2)});
5064   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
5065                          CCNode.getValue(1));
5066 }
5067 
5068 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
5069                                                DAGCombinerInfo &DCI) const {
5070   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
5071   switch (N->getOpcode()) {
5072     default: break;
5073     case ISD::ADD:
5074     case ISD::FADD:
5075       return PerformADDCombine(N, DCI, STI, OptLevel);
5076     case ISD::MUL:
5077       return PerformMULCombine(N, DCI, OptLevel);
5078     case ISD::SHL:
5079       return PerformSHLCombine(N, DCI, OptLevel);
5080     case ISD::AND:
5081       return PerformANDCombine(N, DCI);
5082     case ISD::UREM:
5083     case ISD::SREM:
5084       return PerformREMCombine(N, DCI, OptLevel);
5085     case ISD::SETCC:
5086       return PerformSETCCCombine(N, DCI);
5087     case NVPTXISD::StoreRetval:
5088     case NVPTXISD::StoreRetvalV2:
5089     case NVPTXISD::StoreRetvalV4:
5090       return PerformStoreRetvalCombine(N);
5091   }
5092   return SDValue();
5093 }
5094 
5095 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
5096 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
5097                               SmallVectorImpl<SDValue> &Results) {
5098   EVT ResVT = N->getValueType(0);
5099   SDLoc DL(N);
5100 
5101   assert(ResVT.isVector() && "Vector load must have vector type");
5102 
5103   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
5104   // legal.  We can (and should) split that into 2 loads of <2 x double> here
5105   // but I'm leaving that as a TODO for now.
5106   assert(ResVT.isSimple() && "Can only handle simple types");
5107   switch (ResVT.getSimpleVT().SimpleTy) {
5108   default:
5109     return;
5110   case MVT::v2i8:
5111   case MVT::v2i16:
5112   case MVT::v2i32:
5113   case MVT::v2i64:
5114   case MVT::v2f16:
5115   case MVT::v2f32:
5116   case MVT::v2f64:
5117   case MVT::v4i8:
5118   case MVT::v4i16:
5119   case MVT::v4i32:
5120   case MVT::v4f16:
5121   case MVT::v4f32:
5122   case MVT::v8f16: // <4 x f16x2>
5123     // This is a "native" vector type
5124     break;
5125   }
5126 
5127   LoadSDNode *LD = cast<LoadSDNode>(N);
5128 
5129   Align Alignment = LD->getAlign();
5130   auto &TD = DAG.getDataLayout();
5131   Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext()));
5132   if (Alignment < PrefAlign) {
5133     // This load is not sufficiently aligned, so bail out and let this vector
5134     // load be scalarized.  Note that we may still be able to emit smaller
5135     // vector loads.  For example, if we are loading a <4 x float> with an
5136     // alignment of 8, this check will fail but the legalizer will try again
5137     // with 2 x <2 x float>, which will succeed with an alignment of 8.
5138     return;
5139   }
5140 
5141   EVT EltVT = ResVT.getVectorElementType();
5142   unsigned NumElts = ResVT.getVectorNumElements();
5143 
5144   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
5145   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
5146   // loaded type to i16 and propagate the "real" type as the memory type.
5147   bool NeedTrunc = false;
5148   if (EltVT.getSizeInBits() < 16) {
5149     EltVT = MVT::i16;
5150     NeedTrunc = true;
5151   }
5152 
5153   unsigned Opcode = 0;
5154   SDVTList LdResVTs;
5155   bool LoadF16x2 = false;
5156 
5157   switch (NumElts) {
5158   default:
5159     return;
5160   case 2:
5161     Opcode = NVPTXISD::LoadV2;
5162     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
5163     break;
5164   case 4: {
5165     Opcode = NVPTXISD::LoadV4;
5166     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5167     LdResVTs = DAG.getVTList(ListVTs);
5168     break;
5169   }
5170   case 8: {
5171     // v8f16 is a special case. PTX doesn't have ld.v8.f16
5172     // instruction. Instead, we split the vector into v2f16 chunks and
5173     // load them with ld.v4.b32.
5174     assert((EltVT == MVT::f16 || EltVT == MVT::bf16) &&
5175            "Unsupported v8 vector type.");
5176     LoadF16x2 = true;
5177     Opcode = NVPTXISD::LoadV4;
5178     EVT VVT = (EltVT == MVT::f16) ? MVT::v2f16 : MVT::v2bf16;
5179     EVT ListVTs[] = {VVT, VVT, VVT, VVT, MVT::Other};
5180     LdResVTs = DAG.getVTList(ListVTs);
5181     break;
5182   }
5183   }
5184 
5185   // Copy regular operands
5186   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
5187 
5188   // The select routine does not have access to the LoadSDNode instance, so
5189   // pass along the extension information
5190   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
5191 
5192   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5193                                           LD->getMemoryVT(),
5194                                           LD->getMemOperand());
5195 
5196   SmallVector<SDValue, 8> ScalarRes;
5197   if (LoadF16x2) {
5198     // Split v2f16 subvectors back into individual elements.
5199     NumElts /= 2;
5200     for (unsigned i = 0; i < NumElts; ++i) {
5201       SDValue SubVector = NewLD.getValue(i);
5202       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
5203                                DAG.getIntPtrConstant(0, DL));
5204       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
5205                                DAG.getIntPtrConstant(1, DL));
5206       ScalarRes.push_back(E0);
5207       ScalarRes.push_back(E1);
5208     }
5209   } else {
5210     for (unsigned i = 0; i < NumElts; ++i) {
5211       SDValue Res = NewLD.getValue(i);
5212       if (NeedTrunc)
5213         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5214       ScalarRes.push_back(Res);
5215     }
5216   }
5217 
5218   SDValue LoadChain = NewLD.getValue(NumElts);
5219 
5220   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
5221 
5222   Results.push_back(BuildVec);
5223   Results.push_back(LoadChain);
5224 }
5225 
5226 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
5227                                      SmallVectorImpl<SDValue> &Results) {
5228   SDValue Chain = N->getOperand(0);
5229   SDValue Intrin = N->getOperand(1);
5230   SDLoc DL(N);
5231 
5232   // Get the intrinsic ID
5233   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
5234   switch (IntrinNo) {
5235   default:
5236     return;
5237   case Intrinsic::nvvm_ldg_global_i:
5238   case Intrinsic::nvvm_ldg_global_f:
5239   case Intrinsic::nvvm_ldg_global_p:
5240   case Intrinsic::nvvm_ldu_global_i:
5241   case Intrinsic::nvvm_ldu_global_f:
5242   case Intrinsic::nvvm_ldu_global_p: {
5243     EVT ResVT = N->getValueType(0);
5244 
5245     if (ResVT.isVector()) {
5246       // Vector LDG/LDU
5247 
5248       unsigned NumElts = ResVT.getVectorNumElements();
5249       EVT EltVT = ResVT.getVectorElementType();
5250 
5251       // Since LDU/LDG are target nodes, we cannot rely on DAG type
5252       // legalization.
5253       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
5254       // loaded type to i16 and propagate the "real" type as the memory type.
5255       bool NeedTrunc = false;
5256       if (EltVT.getSizeInBits() < 16) {
5257         EltVT = MVT::i16;
5258         NeedTrunc = true;
5259       }
5260 
5261       unsigned Opcode = 0;
5262       SDVTList LdResVTs;
5263 
5264       switch (NumElts) {
5265       default:
5266         return;
5267       case 2:
5268         switch (IntrinNo) {
5269         default:
5270           return;
5271         case Intrinsic::nvvm_ldg_global_i:
5272         case Intrinsic::nvvm_ldg_global_f:
5273         case Intrinsic::nvvm_ldg_global_p:
5274           Opcode = NVPTXISD::LDGV2;
5275           break;
5276         case Intrinsic::nvvm_ldu_global_i:
5277         case Intrinsic::nvvm_ldu_global_f:
5278         case Intrinsic::nvvm_ldu_global_p:
5279           Opcode = NVPTXISD::LDUV2;
5280           break;
5281         }
5282         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
5283         break;
5284       case 4: {
5285         switch (IntrinNo) {
5286         default:
5287           return;
5288         case Intrinsic::nvvm_ldg_global_i:
5289         case Intrinsic::nvvm_ldg_global_f:
5290         case Intrinsic::nvvm_ldg_global_p:
5291           Opcode = NVPTXISD::LDGV4;
5292           break;
5293         case Intrinsic::nvvm_ldu_global_i:
5294         case Intrinsic::nvvm_ldu_global_f:
5295         case Intrinsic::nvvm_ldu_global_p:
5296           Opcode = NVPTXISD::LDUV4;
5297           break;
5298         }
5299         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5300         LdResVTs = DAG.getVTList(ListVTs);
5301         break;
5302       }
5303       }
5304 
5305       SmallVector<SDValue, 8> OtherOps;
5306 
5307       // Copy regular operands
5308 
5309       OtherOps.push_back(Chain); // Chain
5310                                  // Skip operand 1 (intrinsic ID)
5311       // Others
5312       OtherOps.append(N->op_begin() + 2, N->op_end());
5313 
5314       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5315 
5316       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5317                                               MemSD->getMemoryVT(),
5318                                               MemSD->getMemOperand());
5319 
5320       SmallVector<SDValue, 4> ScalarRes;
5321 
5322       for (unsigned i = 0; i < NumElts; ++i) {
5323         SDValue Res = NewLD.getValue(i);
5324         if (NeedTrunc)
5325           Res =
5326               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5327         ScalarRes.push_back(Res);
5328       }
5329 
5330       SDValue LoadChain = NewLD.getValue(NumElts);
5331 
5332       SDValue BuildVec =
5333           DAG.getBuildVector(ResVT, DL, ScalarRes);
5334 
5335       Results.push_back(BuildVec);
5336       Results.push_back(LoadChain);
5337     } else {
5338       // i8 LDG/LDU
5339       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5340              "Custom handling of non-i8 ldu/ldg?");
5341 
5342       // Just copy all operands as-is
5343       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5344 
5345       // Force output to i16
5346       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5347 
5348       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5349 
5350       // We make sure the memory type is i8, which will be used during isel
5351       // to select the proper instruction.
5352       SDValue NewLD =
5353           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5354                                   MVT::i8, MemSD->getMemOperand());
5355 
5356       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5357                                     NewLD.getValue(0)));
5358       Results.push_back(NewLD.getValue(1));
5359     }
5360   }
5361   }
5362 }
5363 
5364 void NVPTXTargetLowering::ReplaceNodeResults(
5365     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5366   switch (N->getOpcode()) {
5367   default:
5368     report_fatal_error("Unhandled custom legalization");
5369   case ISD::LOAD:
5370     ReplaceLoadVector(N, DAG, Results);
5371     return;
5372   case ISD::INTRINSIC_W_CHAIN:
5373     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5374     return;
5375   }
5376 }
5377 
5378 NVPTXTargetLowering::AtomicExpansionKind
5379 NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
5380   Type *Ty = AI->getValOperand()->getType();
5381 
5382   if (AI->isFloatingPointOperation()) {
5383     if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) {
5384       if (Ty->isFloatTy())
5385         return AtomicExpansionKind::None;
5386       if (Ty->isDoubleTy() && STI.hasAtomAddF64())
5387         return AtomicExpansionKind::None;
5388     }
5389     return AtomicExpansionKind::CmpXChg;
5390   }
5391 
5392   assert(Ty->isIntegerTy() && "Ty should be integer at this point");
5393   auto ITy = cast<llvm::IntegerType>(Ty);
5394 
5395   switch (AI->getOperation()) {
5396   default:
5397     return AtomicExpansionKind::CmpXChg;
5398   case AtomicRMWInst::BinOp::And:
5399   case AtomicRMWInst::BinOp::Or:
5400   case AtomicRMWInst::BinOp::Xor:
5401   case AtomicRMWInst::BinOp::Xchg:
5402     switch (ITy->getBitWidth()) {
5403     case 8:
5404     case 16:
5405       return AtomicExpansionKind::CmpXChg;
5406     case 32:
5407       return AtomicExpansionKind::None;
5408     case 64:
5409       if (STI.hasAtomBitwise64())
5410         return AtomicExpansionKind::None;
5411       return AtomicExpansionKind::CmpXChg;
5412     default:
5413       llvm_unreachable("unsupported width encountered");
5414     }
5415   case AtomicRMWInst::BinOp::Add:
5416   case AtomicRMWInst::BinOp::Sub:
5417   case AtomicRMWInst::BinOp::Max:
5418   case AtomicRMWInst::BinOp::Min:
5419   case AtomicRMWInst::BinOp::UMax:
5420   case AtomicRMWInst::BinOp::UMin:
5421     switch (ITy->getBitWidth()) {
5422     case 8:
5423     case 16:
5424       return AtomicExpansionKind::CmpXChg;
5425     case 32:
5426       return AtomicExpansionKind::None;
5427     case 64:
5428       if (STI.hasAtomMinMax64())
5429         return AtomicExpansionKind::None;
5430       return AtomicExpansionKind::CmpXChg;
5431     default:
5432       llvm_unreachable("unsupported width encountered");
5433     }
5434   }
5435 
5436   return AtomicExpansionKind::CmpXChg;
5437 }
5438 
5439 // Pin NVPTXTargetObjectFile's vtables to this file.
5440 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default;
5441 
5442 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5443     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5444   return getDataSection();
5445 }
5446