xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetCallingConv.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <sstream>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 #define DEBUG_TYPE "nvptx-lower"
65 
66 using namespace llvm;
67 
68 static std::atomic<unsigned> GlobalUniqueCallSite;
69 
70 static cl::opt<bool> sched4reg(
71     "nvptx-sched4reg",
72     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
73 
74 static cl::opt<unsigned> FMAContractLevelOpt(
75     "nvptx-fma-level", cl::Hidden,
76     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
77              " 1: do it  2: do it aggressively"),
78     cl::init(2));
79 
80 static cl::opt<int> UsePrecDivF32(
81     "nvptx-prec-divf32", cl::Hidden,
82     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
83              " IEEE Compliant F32 div.rnd if available."),
84     cl::init(2));
85 
86 static cl::opt<bool> UsePrecSqrtF32(
87     "nvptx-prec-sqrtf32", cl::Hidden,
88     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
89     cl::init(true));
90 
91 int NVPTXTargetLowering::getDivF32Level() const {
92   if (UsePrecDivF32.getNumOccurrences() > 0) {
93     // If nvptx-prec-div32=N is used on the command-line, always honor it
94     return UsePrecDivF32;
95   } else {
96     // Otherwise, use div.approx if fast math is enabled
97     if (getTargetMachine().Options.UnsafeFPMath)
98       return 0;
99     else
100       return 2;
101   }
102 }
103 
104 bool NVPTXTargetLowering::usePrecSqrtF32() const {
105   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
106     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
107     return UsePrecSqrtF32;
108   } else {
109     // Otherwise, use sqrt.approx if fast math is enabled
110     return !getTargetMachine().Options.UnsafeFPMath;
111   }
112 }
113 
114 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
115   return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
116          DenormalMode::PreserveSign;
117 }
118 
119 static bool IsPTXVectorType(MVT VT) {
120   switch (VT.SimpleTy) {
121   default:
122     return false;
123   case MVT::v2i1:
124   case MVT::v4i1:
125   case MVT::v2i8:
126   case MVT::v4i8:
127   case MVT::v2i16:
128   case MVT::v4i16:
129   case MVT::v2i32:
130   case MVT::v4i32:
131   case MVT::v2i64:
132   case MVT::v2f16:
133   case MVT::v4f16:
134   case MVT::v8f16: // <4 x f16x2>
135   case MVT::v2f32:
136   case MVT::v4f32:
137   case MVT::v2f64:
138     return true;
139   }
140 }
141 
142 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
143 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
144 /// into their primitive components.
145 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
146 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
147 /// LowerCall, and LowerReturn.
148 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
149                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
150                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
151                                uint64_t StartingOffset = 0) {
152   SmallVector<EVT, 16> TempVTs;
153   SmallVector<uint64_t, 16> TempOffsets;
154 
155   // Special case for i128 - decompose to (i64, i64)
156   if (Ty->isIntegerTy(128)) {
157     ValueVTs.push_back(EVT(MVT::i64));
158     ValueVTs.push_back(EVT(MVT::i64));
159 
160     if (Offsets) {
161       Offsets->push_back(StartingOffset + 0);
162       Offsets->push_back(StartingOffset + 8);
163     }
164 
165     return;
166   }
167 
168   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
169   if (StructType *STy = dyn_cast<StructType>(Ty)) {
170     auto const *SL = DL.getStructLayout(STy);
171     auto ElementNum = 0;
172     for(auto *EI : STy->elements()) {
173       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
174                          StartingOffset + SL->getElementOffset(ElementNum));
175       ++ElementNum;
176     }
177     return;
178   }
179 
180   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
181   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
182     EVT VT = TempVTs[i];
183     uint64_t Off = TempOffsets[i];
184     // Split vectors into individual elements, except for v2f16, which
185     // we will pass as a single scalar.
186     if (VT.isVector()) {
187       unsigned NumElts = VT.getVectorNumElements();
188       EVT EltVT = VT.getVectorElementType();
189       // Vectors with an even number of f16 elements will be passed to
190       // us as an array of v2f16 elements. We must match this so we
191       // stay in sync with Ins/Outs.
192       if (EltVT == MVT::f16 && NumElts % 2 == 0) {
193         EltVT = MVT::v2f16;
194         NumElts /= 2;
195       }
196       for (unsigned j = 0; j != NumElts; ++j) {
197         ValueVTs.push_back(EltVT);
198         if (Offsets)
199           Offsets->push_back(Off + j * EltVT.getStoreSize());
200       }
201     } else {
202       ValueVTs.push_back(VT);
203       if (Offsets)
204         Offsets->push_back(Off);
205     }
206   }
207 }
208 
209 /// PromoteScalarIntegerPTX
210 /// Used to make sure the arguments/returns are suitable for passing
211 /// and promote them to a larger size if they're not.
212 ///
213 /// The promoted type is placed in \p PromoteVT if the function returns true.
214 static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT) {
215   if (VT.isScalarInteger()) {
216     switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
217     default:
218       llvm_unreachable(
219           "Promotion is not suitable for scalars of size larger than 64-bits");
220     case 1:
221       *PromotedVT = MVT::i1;
222       break;
223     case 2:
224     case 4:
225     case 8:
226       *PromotedVT = MVT::i8;
227       break;
228     case 16:
229       *PromotedVT = MVT::i16;
230       break;
231     case 32:
232       *PromotedVT = MVT::i32;
233       break;
234     case 64:
235       *PromotedVT = MVT::i64;
236       break;
237     }
238     return EVT(*PromotedVT) != VT;
239   }
240   return false;
241 }
242 
243 // Check whether we can merge loads/stores of some of the pieces of a
244 // flattened function parameter or return value into a single vector
245 // load/store.
246 //
247 // The flattened parameter is represented as a list of EVTs and
248 // offsets, and the whole structure is aligned to ParamAlignment. This
249 // function determines whether we can load/store pieces of the
250 // parameter starting at index Idx using a single vectorized op of
251 // size AccessSize. If so, it returns the number of param pieces
252 // covered by the vector op. Otherwise, it returns 1.
253 static unsigned CanMergeParamLoadStoresStartingAt(
254     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
255     const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
256 
257   // Can't vectorize if param alignment is not sufficient.
258   if (ParamAlignment < AccessSize)
259     return 1;
260   // Can't vectorize if offset is not aligned.
261   if (Offsets[Idx] & (AccessSize - 1))
262     return 1;
263 
264   EVT EltVT = ValueVTs[Idx];
265   unsigned EltSize = EltVT.getStoreSize();
266 
267   // Element is too large to vectorize.
268   if (EltSize >= AccessSize)
269     return 1;
270 
271   unsigned NumElts = AccessSize / EltSize;
272   // Can't vectorize if AccessBytes if not a multiple of EltSize.
273   if (AccessSize != EltSize * NumElts)
274     return 1;
275 
276   // We don't have enough elements to vectorize.
277   if (Idx + NumElts > ValueVTs.size())
278     return 1;
279 
280   // PTX ISA can only deal with 2- and 4-element vector ops.
281   if (NumElts != 4 && NumElts != 2)
282     return 1;
283 
284   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
285     // Types do not match.
286     if (ValueVTs[j] != EltVT)
287       return 1;
288 
289     // Elements are not contiguous.
290     if (Offsets[j] - Offsets[j - 1] != EltSize)
291       return 1;
292   }
293   // OK. We can vectorize ValueVTs[i..i+NumElts)
294   return NumElts;
295 }
296 
297 // Flags for tracking per-element vectorization state of loads/stores
298 // of a flattened function parameter or return value.
299 enum ParamVectorizationFlags {
300   PVF_INNER = 0x0, // Middle elements of a vector.
301   PVF_FIRST = 0x1, // First element of the vector.
302   PVF_LAST = 0x2,  // Last element of the vector.
303   // Scalar is effectively a 1-element vector.
304   PVF_SCALAR = PVF_FIRST | PVF_LAST
305 };
306 
307 // Computes whether and how we can vectorize the loads/stores of a
308 // flattened function parameter or return value.
309 //
310 // The flattened parameter is represented as the list of ValueVTs and
311 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
312 // of the same size as ValueVTs indicating how each piece should be
313 // loaded/stored (i.e. as a scalar, or as part of a vector
314 // load/store).
315 static SmallVector<ParamVectorizationFlags, 16>
316 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
317                      const SmallVectorImpl<uint64_t> &Offsets,
318                      Align ParamAlignment) {
319   // Set vector size to match ValueVTs and mark all elements as
320   // scalars by default.
321   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
322   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
323 
324   // Check what we can vectorize using 128/64/32-bit accesses.
325   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
326     // Skip elements we've already processed.
327     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
328     for (unsigned AccessSize : {16, 8, 4, 2}) {
329       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
330           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
331       // Mark vectorized elements.
332       switch (NumElts) {
333       default:
334         llvm_unreachable("Unexpected return value");
335       case 1:
336         // Can't vectorize using this size, try next smaller size.
337         continue;
338       case 2:
339         assert(I + 1 < E && "Not enough elements.");
340         VectorInfo[I] = PVF_FIRST;
341         VectorInfo[I + 1] = PVF_LAST;
342         I += 1;
343         break;
344       case 4:
345         assert(I + 3 < E && "Not enough elements.");
346         VectorInfo[I] = PVF_FIRST;
347         VectorInfo[I + 1] = PVF_INNER;
348         VectorInfo[I + 2] = PVF_INNER;
349         VectorInfo[I + 3] = PVF_LAST;
350         I += 3;
351         break;
352       }
353       // Break out of the inner loop because we've already succeeded
354       // using largest possible AccessSize.
355       break;
356     }
357   }
358   return VectorInfo;
359 }
360 
361 // NVPTXTargetLowering Constructor.
362 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
363                                          const NVPTXSubtarget &STI)
364     : TargetLowering(TM), nvTM(&TM), STI(STI) {
365   // always lower memset, memcpy, and memmove intrinsics to load/store
366   // instructions, rather
367   // then generating calls to memset, mempcy or memmove.
368   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
369   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
370   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
371 
372   setBooleanContents(ZeroOrNegativeOneBooleanContent);
373   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
374 
375   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
376   // condition branches.
377   setJumpIsExpensive(true);
378 
379   // Wide divides are _very_ slow. Try to reduce the width of the divide if
380   // possible.
381   addBypassSlowDiv(64, 32);
382 
383   // By default, use the Source scheduling
384   if (sched4reg)
385     setSchedulingPreference(Sched::RegPressure);
386   else
387     setSchedulingPreference(Sched::Source);
388 
389   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
390                                     LegalizeAction NoF16Action) {
391     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
392   };
393 
394   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
395   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
396   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
397   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
398   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
399   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
400   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
401   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
402 
403   // Conversion to/from FP16/FP16x2 is always legal.
404   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
405   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
406   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
407   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
408   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
409   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
410 
411   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
412   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
413 
414   // Operations not directly supported by NVPTX.
415   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
416                  MVT::i16, MVT::i32, MVT::i64}) {
417     setOperationAction(ISD::SELECT_CC, VT, Expand);
418     setOperationAction(ISD::BR_CC, VT, Expand);
419   }
420 
421   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
422   // For others we will expand to a SHL/SRA pair.
423   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
424   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
425   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
426   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
427   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
428 
429   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
430   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
431   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
432   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
433   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
434   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
435 
436   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
437   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
438 
439   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
440   // that don't have h/w rotation we lower them to multi-instruction assembly.
441   // See ROT*_sw in NVPTXIntrInfo.td
442   setOperationAction(ISD::ROTL, MVT::i64, Legal);
443   setOperationAction(ISD::ROTR, MVT::i64, Legal);
444   setOperationAction(ISD::ROTL, MVT::i32, Legal);
445   setOperationAction(ISD::ROTR, MVT::i32, Legal);
446 
447   setOperationAction(ISD::ROTL, MVT::i16, Expand);
448   setOperationAction(ISD::ROTR, MVT::i16, Expand);
449   setOperationAction(ISD::ROTL, MVT::i8, Expand);
450   setOperationAction(ISD::ROTR, MVT::i8, Expand);
451   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
452   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
453   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
454 
455   // Indirect branch is not supported.
456   // This also disables Jump Table creation.
457   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
458   setOperationAction(ISD::BRIND, MVT::Other, Expand);
459 
460   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
461   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
462 
463   // We want to legalize constant related memmove and memcopy
464   // intrinsics.
465   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
466 
467   // Turn FP extload into load/fpextend
468   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
469   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
470   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
471   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
472   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
473   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
474   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
475   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
476   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
477   // Turn FP truncstore into trunc + store.
478   // FIXME: vector types should also be expanded
479   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
480   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
481   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
482 
483   // PTX does not support load / store predicate registers
484   setOperationAction(ISD::LOAD, MVT::i1, Custom);
485   setOperationAction(ISD::STORE, MVT::i1, Custom);
486 
487   for (MVT VT : MVT::integer_valuetypes()) {
488     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
489     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
490     setTruncStoreAction(VT, MVT::i1, Expand);
491   }
492 
493   // This is legal in NVPTX
494   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
495   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
496   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
497 
498   // TRAP can be lowered to PTX trap
499   setOperationAction(ISD::TRAP, MVT::Other, Legal);
500 
501   // Register custom handling for vector loads/stores
502   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
503     if (IsPTXVectorType(VT)) {
504       setOperationAction(ISD::LOAD, VT, Custom);
505       setOperationAction(ISD::STORE, VT, Custom);
506       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
507     }
508   }
509 
510   // Custom handling for i8 intrinsics
511   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
512 
513   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
514     setOperationAction(ISD::ABS,  Ty, Legal);
515     setOperationAction(ISD::SMIN, Ty, Legal);
516     setOperationAction(ISD::SMAX, Ty, Legal);
517     setOperationAction(ISD::UMIN, Ty, Legal);
518     setOperationAction(ISD::UMAX, Ty, Legal);
519 
520     setOperationAction(ISD::CTPOP, Ty, Legal);
521     setOperationAction(ISD::CTLZ, Ty, Legal);
522   }
523 
524   setOperationAction(ISD::ADDC, MVT::i32, Legal);
525   setOperationAction(ISD::ADDE, MVT::i32, Legal);
526   setOperationAction(ISD::SUBC, MVT::i32, Legal);
527   setOperationAction(ISD::SUBE, MVT::i32, Legal);
528   if (STI.getPTXVersion() >= 43) {
529     setOperationAction(ISD::ADDC, MVT::i64, Legal);
530     setOperationAction(ISD::ADDE, MVT::i64, Legal);
531     setOperationAction(ISD::SUBC, MVT::i64, Legal);
532     setOperationAction(ISD::SUBE, MVT::i64, Legal);
533   }
534 
535   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
536   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
537   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
538 
539   // PTX does not directly support SELP of i1, so promote to i32 first
540   setOperationAction(ISD::SELECT, MVT::i1, Custom);
541 
542   // PTX cannot multiply two i64s in a single instruction.
543   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
544   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
545 
546   // We have some custom DAG combine patterns for these nodes
547   setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::FADD, ISD::MUL, ISD::SHL,
548                        ISD::SREM, ISD::UREM});
549 
550   // setcc for f16x2 needs special handling to prevent legalizer's
551   // attempt to scalarize it due to v2i1 not being legal.
552   if (STI.allowFP16Math())
553     setTargetDAGCombine(ISD::SETCC);
554 
555   // Promote fp16 arithmetic if fp16 hardware isn't available or the
556   // user passed --nvptx-no-fp16-math. The flag is useful because,
557   // although sm_53+ GPUs have some sort of FP16 support in
558   // hardware, only sm_53 and sm_60 have full implementation. Others
559   // only have token amount of hardware and are likely to run faster
560   // by using fp32 units instead.
561   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
562     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
563     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
564   }
565 
566   // There's no neg.f16 instruction. Expand to (0-x).
567   setOperationAction(ISD::FNEG, MVT::f16, Expand);
568   setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
569 
570   // (would be) Library functions.
571 
572   // These map to conversion instructions for scalar FP types.
573   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
574                          ISD::FTRUNC}) {
575     setOperationAction(Op, MVT::f16, Legal);
576     setOperationAction(Op, MVT::f32, Legal);
577     setOperationAction(Op, MVT::f64, Legal);
578     setOperationAction(Op, MVT::v2f16, Expand);
579   }
580 
581   setOperationAction(ISD::FROUND, MVT::f16, Promote);
582   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
583   setOperationAction(ISD::FROUND, MVT::f32, Custom);
584   setOperationAction(ISD::FROUND, MVT::f64, Custom);
585 
586 
587   // 'Expand' implements FCOPYSIGN without calling an external library.
588   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
589   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
590   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
591   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
592 
593   // These map to corresponding instructions for f32/f64. f16 must be
594   // promoted to f32. v2f16 is expanded to f16, which is then promoted
595   // to f32.
596   for (const auto &Op :
597        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FABS}) {
598     setOperationAction(Op, MVT::f16, Promote);
599     setOperationAction(Op, MVT::f32, Legal);
600     setOperationAction(Op, MVT::f64, Legal);
601     setOperationAction(Op, MVT::v2f16, Expand);
602   }
603   // max.f16, max.f16x2 and max.NaN are supported on sm_80+.
604   auto GetMinMaxAction = [&](LegalizeAction NotSm80Action) {
605     bool IsAtLeastSm80 = STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
606     return IsAtLeastSm80 ? Legal : NotSm80Action;
607   };
608   for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) {
609     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Promote), Promote);
610     setOperationAction(Op, MVT::f32, Legal);
611     setOperationAction(Op, MVT::f64, Legal);
612     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
613   }
614   for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
615     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Expand), Expand);
616     setOperationAction(Op, MVT::f32, GetMinMaxAction(Expand));
617     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
618   }
619 
620   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
621   // No FPOW or FREM in PTX.
622 
623   // Now deduce the information based on the above mentioned
624   // actions
625   computeRegisterProperties(STI.getRegisterInfo());
626 
627   setMinCmpXchgSizeInBits(32);
628 }
629 
630 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
631   switch ((NVPTXISD::NodeType)Opcode) {
632   case NVPTXISD::FIRST_NUMBER:
633     break;
634   case NVPTXISD::CALL:
635     return "NVPTXISD::CALL";
636   case NVPTXISD::RET_FLAG:
637     return "NVPTXISD::RET_FLAG";
638   case NVPTXISD::LOAD_PARAM:
639     return "NVPTXISD::LOAD_PARAM";
640   case NVPTXISD::Wrapper:
641     return "NVPTXISD::Wrapper";
642   case NVPTXISD::DeclareParam:
643     return "NVPTXISD::DeclareParam";
644   case NVPTXISD::DeclareScalarParam:
645     return "NVPTXISD::DeclareScalarParam";
646   case NVPTXISD::DeclareRet:
647     return "NVPTXISD::DeclareRet";
648   case NVPTXISD::DeclareScalarRet:
649     return "NVPTXISD::DeclareScalarRet";
650   case NVPTXISD::DeclareRetParam:
651     return "NVPTXISD::DeclareRetParam";
652   case NVPTXISD::PrintCall:
653     return "NVPTXISD::PrintCall";
654   case NVPTXISD::PrintConvergentCall:
655     return "NVPTXISD::PrintConvergentCall";
656   case NVPTXISD::PrintCallUni:
657     return "NVPTXISD::PrintCallUni";
658   case NVPTXISD::PrintConvergentCallUni:
659     return "NVPTXISD::PrintConvergentCallUni";
660   case NVPTXISD::LoadParam:
661     return "NVPTXISD::LoadParam";
662   case NVPTXISD::LoadParamV2:
663     return "NVPTXISD::LoadParamV2";
664   case NVPTXISD::LoadParamV4:
665     return "NVPTXISD::LoadParamV4";
666   case NVPTXISD::StoreParam:
667     return "NVPTXISD::StoreParam";
668   case NVPTXISD::StoreParamV2:
669     return "NVPTXISD::StoreParamV2";
670   case NVPTXISD::StoreParamV4:
671     return "NVPTXISD::StoreParamV4";
672   case NVPTXISD::StoreParamS32:
673     return "NVPTXISD::StoreParamS32";
674   case NVPTXISD::StoreParamU32:
675     return "NVPTXISD::StoreParamU32";
676   case NVPTXISD::CallArgBegin:
677     return "NVPTXISD::CallArgBegin";
678   case NVPTXISD::CallArg:
679     return "NVPTXISD::CallArg";
680   case NVPTXISD::LastCallArg:
681     return "NVPTXISD::LastCallArg";
682   case NVPTXISD::CallArgEnd:
683     return "NVPTXISD::CallArgEnd";
684   case NVPTXISD::CallVoid:
685     return "NVPTXISD::CallVoid";
686   case NVPTXISD::CallVal:
687     return "NVPTXISD::CallVal";
688   case NVPTXISD::CallSymbol:
689     return "NVPTXISD::CallSymbol";
690   case NVPTXISD::Prototype:
691     return "NVPTXISD::Prototype";
692   case NVPTXISD::MoveParam:
693     return "NVPTXISD::MoveParam";
694   case NVPTXISD::StoreRetval:
695     return "NVPTXISD::StoreRetval";
696   case NVPTXISD::StoreRetvalV2:
697     return "NVPTXISD::StoreRetvalV2";
698   case NVPTXISD::StoreRetvalV4:
699     return "NVPTXISD::StoreRetvalV4";
700   case NVPTXISD::PseudoUseParam:
701     return "NVPTXISD::PseudoUseParam";
702   case NVPTXISD::RETURN:
703     return "NVPTXISD::RETURN";
704   case NVPTXISD::CallSeqBegin:
705     return "NVPTXISD::CallSeqBegin";
706   case NVPTXISD::CallSeqEnd:
707     return "NVPTXISD::CallSeqEnd";
708   case NVPTXISD::CallPrototype:
709     return "NVPTXISD::CallPrototype";
710   case NVPTXISD::ProxyReg:
711     return "NVPTXISD::ProxyReg";
712   case NVPTXISD::LoadV2:
713     return "NVPTXISD::LoadV2";
714   case NVPTXISD::LoadV4:
715     return "NVPTXISD::LoadV4";
716   case NVPTXISD::LDGV2:
717     return "NVPTXISD::LDGV2";
718   case NVPTXISD::LDGV4:
719     return "NVPTXISD::LDGV4";
720   case NVPTXISD::LDUV2:
721     return "NVPTXISD::LDUV2";
722   case NVPTXISD::LDUV4:
723     return "NVPTXISD::LDUV4";
724   case NVPTXISD::StoreV2:
725     return "NVPTXISD::StoreV2";
726   case NVPTXISD::StoreV4:
727     return "NVPTXISD::StoreV4";
728   case NVPTXISD::FUN_SHFL_CLAMP:
729     return "NVPTXISD::FUN_SHFL_CLAMP";
730   case NVPTXISD::FUN_SHFR_CLAMP:
731     return "NVPTXISD::FUN_SHFR_CLAMP";
732   case NVPTXISD::IMAD:
733     return "NVPTXISD::IMAD";
734   case NVPTXISD::SETP_F16X2:
735     return "NVPTXISD::SETP_F16X2";
736   case NVPTXISD::Dummy:
737     return "NVPTXISD::Dummy";
738   case NVPTXISD::MUL_WIDE_SIGNED:
739     return "NVPTXISD::MUL_WIDE_SIGNED";
740   case NVPTXISD::MUL_WIDE_UNSIGNED:
741     return "NVPTXISD::MUL_WIDE_UNSIGNED";
742   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
743   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
744   case NVPTXISD::Tex1DFloatFloatLevel:
745     return "NVPTXISD::Tex1DFloatFloatLevel";
746   case NVPTXISD::Tex1DFloatFloatGrad:
747     return "NVPTXISD::Tex1DFloatFloatGrad";
748   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
749   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
750   case NVPTXISD::Tex1DS32FloatLevel:
751     return "NVPTXISD::Tex1DS32FloatLevel";
752   case NVPTXISD::Tex1DS32FloatGrad:
753     return "NVPTXISD::Tex1DS32FloatGrad";
754   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
755   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
756   case NVPTXISD::Tex1DU32FloatLevel:
757     return "NVPTXISD::Tex1DU32FloatLevel";
758   case NVPTXISD::Tex1DU32FloatGrad:
759     return "NVPTXISD::Tex1DU32FloatGrad";
760   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
761   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
762   case NVPTXISD::Tex1DArrayFloatFloatLevel:
763     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
764   case NVPTXISD::Tex1DArrayFloatFloatGrad:
765     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
766   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
767   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
768   case NVPTXISD::Tex1DArrayS32FloatLevel:
769     return "NVPTXISD::Tex1DArrayS32FloatLevel";
770   case NVPTXISD::Tex1DArrayS32FloatGrad:
771     return "NVPTXISD::Tex1DArrayS32FloatGrad";
772   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
773   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
774   case NVPTXISD::Tex1DArrayU32FloatLevel:
775     return "NVPTXISD::Tex1DArrayU32FloatLevel";
776   case NVPTXISD::Tex1DArrayU32FloatGrad:
777     return "NVPTXISD::Tex1DArrayU32FloatGrad";
778   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
779   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
780   case NVPTXISD::Tex2DFloatFloatLevel:
781     return "NVPTXISD::Tex2DFloatFloatLevel";
782   case NVPTXISD::Tex2DFloatFloatGrad:
783     return "NVPTXISD::Tex2DFloatFloatGrad";
784   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
785   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
786   case NVPTXISD::Tex2DS32FloatLevel:
787     return "NVPTXISD::Tex2DS32FloatLevel";
788   case NVPTXISD::Tex2DS32FloatGrad:
789     return "NVPTXISD::Tex2DS32FloatGrad";
790   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
791   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
792   case NVPTXISD::Tex2DU32FloatLevel:
793     return "NVPTXISD::Tex2DU32FloatLevel";
794   case NVPTXISD::Tex2DU32FloatGrad:
795     return "NVPTXISD::Tex2DU32FloatGrad";
796   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
797   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
798   case NVPTXISD::Tex2DArrayFloatFloatLevel:
799     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
800   case NVPTXISD::Tex2DArrayFloatFloatGrad:
801     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
802   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
803   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
804   case NVPTXISD::Tex2DArrayS32FloatLevel:
805     return "NVPTXISD::Tex2DArrayS32FloatLevel";
806   case NVPTXISD::Tex2DArrayS32FloatGrad:
807     return "NVPTXISD::Tex2DArrayS32FloatGrad";
808   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
809   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
810   case NVPTXISD::Tex2DArrayU32FloatLevel:
811     return "NVPTXISD::Tex2DArrayU32FloatLevel";
812   case NVPTXISD::Tex2DArrayU32FloatGrad:
813     return "NVPTXISD::Tex2DArrayU32FloatGrad";
814   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
815   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
816   case NVPTXISD::Tex3DFloatFloatLevel:
817     return "NVPTXISD::Tex3DFloatFloatLevel";
818   case NVPTXISD::Tex3DFloatFloatGrad:
819     return "NVPTXISD::Tex3DFloatFloatGrad";
820   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
821   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
822   case NVPTXISD::Tex3DS32FloatLevel:
823     return "NVPTXISD::Tex3DS32FloatLevel";
824   case NVPTXISD::Tex3DS32FloatGrad:
825     return "NVPTXISD::Tex3DS32FloatGrad";
826   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
827   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
828   case NVPTXISD::Tex3DU32FloatLevel:
829     return "NVPTXISD::Tex3DU32FloatLevel";
830   case NVPTXISD::Tex3DU32FloatGrad:
831     return "NVPTXISD::Tex3DU32FloatGrad";
832   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
833   case NVPTXISD::TexCubeFloatFloatLevel:
834     return "NVPTXISD::TexCubeFloatFloatLevel";
835   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
836   case NVPTXISD::TexCubeS32FloatLevel:
837     return "NVPTXISD::TexCubeS32FloatLevel";
838   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
839   case NVPTXISD::TexCubeU32FloatLevel:
840     return "NVPTXISD::TexCubeU32FloatLevel";
841   case NVPTXISD::TexCubeArrayFloatFloat:
842     return "NVPTXISD::TexCubeArrayFloatFloat";
843   case NVPTXISD::TexCubeArrayFloatFloatLevel:
844     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
845   case NVPTXISD::TexCubeArrayS32Float:
846     return "NVPTXISD::TexCubeArrayS32Float";
847   case NVPTXISD::TexCubeArrayS32FloatLevel:
848     return "NVPTXISD::TexCubeArrayS32FloatLevel";
849   case NVPTXISD::TexCubeArrayU32Float:
850     return "NVPTXISD::TexCubeArrayU32Float";
851   case NVPTXISD::TexCubeArrayU32FloatLevel:
852     return "NVPTXISD::TexCubeArrayU32FloatLevel";
853   case NVPTXISD::Tld4R2DFloatFloat:
854     return "NVPTXISD::Tld4R2DFloatFloat";
855   case NVPTXISD::Tld4G2DFloatFloat:
856     return "NVPTXISD::Tld4G2DFloatFloat";
857   case NVPTXISD::Tld4B2DFloatFloat:
858     return "NVPTXISD::Tld4B2DFloatFloat";
859   case NVPTXISD::Tld4A2DFloatFloat:
860     return "NVPTXISD::Tld4A2DFloatFloat";
861   case NVPTXISD::Tld4R2DS64Float:
862     return "NVPTXISD::Tld4R2DS64Float";
863   case NVPTXISD::Tld4G2DS64Float:
864     return "NVPTXISD::Tld4G2DS64Float";
865   case NVPTXISD::Tld4B2DS64Float:
866     return "NVPTXISD::Tld4B2DS64Float";
867   case NVPTXISD::Tld4A2DS64Float:
868     return "NVPTXISD::Tld4A2DS64Float";
869   case NVPTXISD::Tld4R2DU64Float:
870     return "NVPTXISD::Tld4R2DU64Float";
871   case NVPTXISD::Tld4G2DU64Float:
872     return "NVPTXISD::Tld4G2DU64Float";
873   case NVPTXISD::Tld4B2DU64Float:
874     return "NVPTXISD::Tld4B2DU64Float";
875   case NVPTXISD::Tld4A2DU64Float:
876     return "NVPTXISD::Tld4A2DU64Float";
877 
878   case NVPTXISD::TexUnified1DFloatS32:
879     return "NVPTXISD::TexUnified1DFloatS32";
880   case NVPTXISD::TexUnified1DFloatFloat:
881     return "NVPTXISD::TexUnified1DFloatFloat";
882   case NVPTXISD::TexUnified1DFloatFloatLevel:
883     return "NVPTXISD::TexUnified1DFloatFloatLevel";
884   case NVPTXISD::TexUnified1DFloatFloatGrad:
885     return "NVPTXISD::TexUnified1DFloatFloatGrad";
886   case NVPTXISD::TexUnified1DS32S32:
887     return "NVPTXISD::TexUnified1DS32S32";
888   case NVPTXISD::TexUnified1DS32Float:
889     return "NVPTXISD::TexUnified1DS32Float";
890   case NVPTXISD::TexUnified1DS32FloatLevel:
891     return "NVPTXISD::TexUnified1DS32FloatLevel";
892   case NVPTXISD::TexUnified1DS32FloatGrad:
893     return "NVPTXISD::TexUnified1DS32FloatGrad";
894   case NVPTXISD::TexUnified1DU32S32:
895     return "NVPTXISD::TexUnified1DU32S32";
896   case NVPTXISD::TexUnified1DU32Float:
897     return "NVPTXISD::TexUnified1DU32Float";
898   case NVPTXISD::TexUnified1DU32FloatLevel:
899     return "NVPTXISD::TexUnified1DU32FloatLevel";
900   case NVPTXISD::TexUnified1DU32FloatGrad:
901     return "NVPTXISD::TexUnified1DU32FloatGrad";
902   case NVPTXISD::TexUnified1DArrayFloatS32:
903     return "NVPTXISD::TexUnified1DArrayFloatS32";
904   case NVPTXISD::TexUnified1DArrayFloatFloat:
905     return "NVPTXISD::TexUnified1DArrayFloatFloat";
906   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
907     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
908   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
909     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
910   case NVPTXISD::TexUnified1DArrayS32S32:
911     return "NVPTXISD::TexUnified1DArrayS32S32";
912   case NVPTXISD::TexUnified1DArrayS32Float:
913     return "NVPTXISD::TexUnified1DArrayS32Float";
914   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
915     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
916   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
917     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
918   case NVPTXISD::TexUnified1DArrayU32S32:
919     return "NVPTXISD::TexUnified1DArrayU32S32";
920   case NVPTXISD::TexUnified1DArrayU32Float:
921     return "NVPTXISD::TexUnified1DArrayU32Float";
922   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
923     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
924   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
925     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
926   case NVPTXISD::TexUnified2DFloatS32:
927     return "NVPTXISD::TexUnified2DFloatS32";
928   case NVPTXISD::TexUnified2DFloatFloat:
929     return "NVPTXISD::TexUnified2DFloatFloat";
930   case NVPTXISD::TexUnified2DFloatFloatLevel:
931     return "NVPTXISD::TexUnified2DFloatFloatLevel";
932   case NVPTXISD::TexUnified2DFloatFloatGrad:
933     return "NVPTXISD::TexUnified2DFloatFloatGrad";
934   case NVPTXISD::TexUnified2DS32S32:
935     return "NVPTXISD::TexUnified2DS32S32";
936   case NVPTXISD::TexUnified2DS32Float:
937     return "NVPTXISD::TexUnified2DS32Float";
938   case NVPTXISD::TexUnified2DS32FloatLevel:
939     return "NVPTXISD::TexUnified2DS32FloatLevel";
940   case NVPTXISD::TexUnified2DS32FloatGrad:
941     return "NVPTXISD::TexUnified2DS32FloatGrad";
942   case NVPTXISD::TexUnified2DU32S32:
943     return "NVPTXISD::TexUnified2DU32S32";
944   case NVPTXISD::TexUnified2DU32Float:
945     return "NVPTXISD::TexUnified2DU32Float";
946   case NVPTXISD::TexUnified2DU32FloatLevel:
947     return "NVPTXISD::TexUnified2DU32FloatLevel";
948   case NVPTXISD::TexUnified2DU32FloatGrad:
949     return "NVPTXISD::TexUnified2DU32FloatGrad";
950   case NVPTXISD::TexUnified2DArrayFloatS32:
951     return "NVPTXISD::TexUnified2DArrayFloatS32";
952   case NVPTXISD::TexUnified2DArrayFloatFloat:
953     return "NVPTXISD::TexUnified2DArrayFloatFloat";
954   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
955     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
956   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
957     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
958   case NVPTXISD::TexUnified2DArrayS32S32:
959     return "NVPTXISD::TexUnified2DArrayS32S32";
960   case NVPTXISD::TexUnified2DArrayS32Float:
961     return "NVPTXISD::TexUnified2DArrayS32Float";
962   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
963     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
964   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
965     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
966   case NVPTXISD::TexUnified2DArrayU32S32:
967     return "NVPTXISD::TexUnified2DArrayU32S32";
968   case NVPTXISD::TexUnified2DArrayU32Float:
969     return "NVPTXISD::TexUnified2DArrayU32Float";
970   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
971     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
972   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
973     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
974   case NVPTXISD::TexUnified3DFloatS32:
975     return "NVPTXISD::TexUnified3DFloatS32";
976   case NVPTXISD::TexUnified3DFloatFloat:
977     return "NVPTXISD::TexUnified3DFloatFloat";
978   case NVPTXISD::TexUnified3DFloatFloatLevel:
979     return "NVPTXISD::TexUnified3DFloatFloatLevel";
980   case NVPTXISD::TexUnified3DFloatFloatGrad:
981     return "NVPTXISD::TexUnified3DFloatFloatGrad";
982   case NVPTXISD::TexUnified3DS32S32:
983     return "NVPTXISD::TexUnified3DS32S32";
984   case NVPTXISD::TexUnified3DS32Float:
985     return "NVPTXISD::TexUnified3DS32Float";
986   case NVPTXISD::TexUnified3DS32FloatLevel:
987     return "NVPTXISD::TexUnified3DS32FloatLevel";
988   case NVPTXISD::TexUnified3DS32FloatGrad:
989     return "NVPTXISD::TexUnified3DS32FloatGrad";
990   case NVPTXISD::TexUnified3DU32S32:
991     return "NVPTXISD::TexUnified3DU32S32";
992   case NVPTXISD::TexUnified3DU32Float:
993     return "NVPTXISD::TexUnified3DU32Float";
994   case NVPTXISD::TexUnified3DU32FloatLevel:
995     return "NVPTXISD::TexUnified3DU32FloatLevel";
996   case NVPTXISD::TexUnified3DU32FloatGrad:
997     return "NVPTXISD::TexUnified3DU32FloatGrad";
998   case NVPTXISD::TexUnifiedCubeFloatFloat:
999     return "NVPTXISD::TexUnifiedCubeFloatFloat";
1000   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
1001     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
1002   case NVPTXISD::TexUnifiedCubeS32Float:
1003     return "NVPTXISD::TexUnifiedCubeS32Float";
1004   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
1005     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
1006   case NVPTXISD::TexUnifiedCubeU32Float:
1007     return "NVPTXISD::TexUnifiedCubeU32Float";
1008   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
1009     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
1010   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
1011     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
1012   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
1013     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
1014   case NVPTXISD::TexUnifiedCubeArrayS32Float:
1015     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
1016   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
1017     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
1018   case NVPTXISD::TexUnifiedCubeArrayU32Float:
1019     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
1020   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
1021     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
1022   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
1023     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
1024   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
1025     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
1026   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
1027     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
1028   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
1029     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
1030   case NVPTXISD::Tld4UnifiedR2DS64Float:
1031     return "NVPTXISD::Tld4UnifiedR2DS64Float";
1032   case NVPTXISD::Tld4UnifiedG2DS64Float:
1033     return "NVPTXISD::Tld4UnifiedG2DS64Float";
1034   case NVPTXISD::Tld4UnifiedB2DS64Float:
1035     return "NVPTXISD::Tld4UnifiedB2DS64Float";
1036   case NVPTXISD::Tld4UnifiedA2DS64Float:
1037     return "NVPTXISD::Tld4UnifiedA2DS64Float";
1038   case NVPTXISD::Tld4UnifiedR2DU64Float:
1039     return "NVPTXISD::Tld4UnifiedR2DU64Float";
1040   case NVPTXISD::Tld4UnifiedG2DU64Float:
1041     return "NVPTXISD::Tld4UnifiedG2DU64Float";
1042   case NVPTXISD::Tld4UnifiedB2DU64Float:
1043     return "NVPTXISD::Tld4UnifiedB2DU64Float";
1044   case NVPTXISD::Tld4UnifiedA2DU64Float:
1045     return "NVPTXISD::Tld4UnifiedA2DU64Float";
1046 
1047   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
1048   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
1049   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
1050   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
1051   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
1052   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
1053   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1054   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1055   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1056   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1057   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1058 
1059   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1060   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1061   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1062   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1063   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1064   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1065   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1066   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1067   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1068   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1069   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1070 
1071   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1072   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1073   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1074   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1075   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1076   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1077   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1078   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1079   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1080   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1081   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1082 
1083   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1084   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1085   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1086   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1087   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1088   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1089   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1090   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1091   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1092   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1093   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1094 
1095   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1096   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1097   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1098   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1099   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1100   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1101   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1102   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1103   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1104   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1105   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1106 
1107   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1108   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1109   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1110   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1111   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1112   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1113   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1114   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1115   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1116   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1117   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1118 
1119   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1120   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1121   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1122   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1123   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1124   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1125   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1126   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1127   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1128   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1129   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1130 
1131   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1132   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1133   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1134   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1135   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1136   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1137   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1138   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1139   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1140   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1141   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1142 
1143   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1144   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1145   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1146   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1147   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1148   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1149   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1150   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1151   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1152   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1153   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1154 
1155   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1156   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1157   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1158   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1159   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1160   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1161   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1162   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1163   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1164   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1165   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1166 
1167   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1168   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1169   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1170   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1171   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1172   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1173   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1174   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1175   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1176   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1177   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1178 
1179   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1180   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1181   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1182   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1183   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1184   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1185   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1186   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1187   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1188   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1189   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1190 
1191   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1192   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1193   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1194   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1195   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1196   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1197   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1198   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1199   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1200   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1201   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1202 
1203   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1204   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1205   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1206   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1207   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1208   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1209   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1210   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1211   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1212   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1213   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1214 
1215   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1216   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1217   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1218   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1219   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1220   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1221   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1222   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1223   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1224   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1225   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1226   }
1227   return nullptr;
1228 }
1229 
1230 TargetLoweringBase::LegalizeTypeAction
1231 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1232   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1233       VT.getScalarType() == MVT::i1)
1234     return TypeSplitVector;
1235   if (VT == MVT::v2f16)
1236     return TypeLegal;
1237   return TargetLoweringBase::getPreferredVectorAction(VT);
1238 }
1239 
1240 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1241                                              int Enabled, int &ExtraSteps,
1242                                              bool &UseOneConst,
1243                                              bool Reciprocal) const {
1244   if (!(Enabled == ReciprocalEstimate::Enabled ||
1245         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1246     return SDValue();
1247 
1248   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1249     ExtraSteps = 0;
1250 
1251   SDLoc DL(Operand);
1252   EVT VT = Operand.getValueType();
1253   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1254 
1255   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1256     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1257                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1258   };
1259 
1260   // The sqrt and rsqrt refinement processes assume we always start out with an
1261   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1262   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1263   // any refinement, we must return a regular sqrt.
1264   if (Reciprocal || ExtraSteps > 0) {
1265     if (VT == MVT::f32)
1266       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1267                                    : Intrinsic::nvvm_rsqrt_approx_f);
1268     else if (VT == MVT::f64)
1269       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1270     else
1271       return SDValue();
1272   } else {
1273     if (VT == MVT::f32)
1274       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1275                                    : Intrinsic::nvvm_sqrt_approx_f);
1276     else {
1277       // There's no sqrt.approx.f64 instruction, so we emit
1278       // reciprocal(rsqrt(x)).  This is faster than
1279       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1280       // x * rsqrt(x).)
1281       return DAG.getNode(
1282           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1283           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1284           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1285     }
1286   }
1287 }
1288 
1289 SDValue
1290 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1291   SDLoc dl(Op);
1292   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1293   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1294   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1295   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1296 }
1297 
1298 std::string NVPTXTargetLowering::getPrototype(
1299     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1300     const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
1301     const CallBase &CB, unsigned UniqueCallSite) const {
1302   auto PtrVT = getPointerTy(DL);
1303 
1304   bool isABI = (STI.getSmVersion() >= 20);
1305   assert(isABI && "Non-ABI compilation is not supported");
1306   if (!isABI)
1307     return "";
1308 
1309   std::stringstream O;
1310   O << "prototype_" << UniqueCallSite << " : .callprototype ";
1311 
1312   if (retTy->getTypeID() == Type::VoidTyID) {
1313     O << "()";
1314   } else {
1315     O << "(";
1316     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1317       unsigned size = 0;
1318       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1319         size = ITy->getBitWidth();
1320       } else {
1321         assert(retTy->isFloatingPointTy() &&
1322                "Floating point type expected here");
1323         size = retTy->getPrimitiveSizeInBits();
1324       }
1325       // PTX ABI requires all scalar return values to be at least 32
1326       // bits in size.  fp16 normally uses .b16 as its storage type in
1327       // PTX, so its size must be adjusted here, too.
1328       size = promoteScalarArgumentSize(size);
1329 
1330       O << ".param .b" << size << " _";
1331     } else if (isa<PointerType>(retTy)) {
1332       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1333     } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1334                retTy->isIntegerTy(128)) {
1335       O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
1336         << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
1337     } else {
1338       llvm_unreachable("Unknown return type");
1339     }
1340     O << ") ";
1341   }
1342   O << "_ (";
1343 
1344   bool first = true;
1345 
1346   const Function *F = CB.getFunction();
1347   for (unsigned i = 0, e = Args.size(), OIdx = 0; i != e; ++i, ++OIdx) {
1348     Type *Ty = Args[i].Ty;
1349     if (!first) {
1350       O << ", ";
1351     }
1352     first = false;
1353 
1354     if (!Outs[OIdx].Flags.isByVal()) {
1355       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1356         unsigned ParamAlign = 0;
1357         const CallInst *CallI = cast<CallInst>(&CB);
1358         // +1 because index 0 is reserved for return type alignment
1359         if (!getAlign(*CallI, i + 1, ParamAlign))
1360           ParamAlign = getFunctionParamOptimizedAlign(F, Ty, DL).value();
1361         O << ".param .align " << ParamAlign << " .b8 ";
1362         O << "_";
1363         O << "[" << DL.getTypeAllocSize(Ty) << "]";
1364         // update the index for Outs
1365         SmallVector<EVT, 16> vtparts;
1366         ComputeValueVTs(*this, DL, Ty, vtparts);
1367         if (unsigned len = vtparts.size())
1368           OIdx += len - 1;
1369         continue;
1370       }
1371       // i8 types in IR will be i16 types in SDAG
1372       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1373               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1374              "type mismatch between callee prototype and arguments");
1375       // scalar type
1376       unsigned sz = 0;
1377       if (isa<IntegerType>(Ty)) {
1378         sz = cast<IntegerType>(Ty)->getBitWidth();
1379         sz = promoteScalarArgumentSize(sz);
1380       } else if (isa<PointerType>(Ty)) {
1381         sz = PtrVT.getSizeInBits();
1382       } else if (Ty->isHalfTy())
1383         // PTX ABI requires all scalar parameters to be at least 32
1384         // bits in size.  fp16 normally uses .b16 as its storage type
1385         // in PTX, so its size must be adjusted here, too.
1386         sz = 32;
1387       else
1388         sz = Ty->getPrimitiveSizeInBits();
1389       O << ".param .b" << sz << " ";
1390       O << "_";
1391       continue;
1392     }
1393 
1394     Align ParamByValAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1395 
1396     // Try to increase alignment. This code matches logic in LowerCall when
1397     // alignment increase is performed to increase vectorization options.
1398     Type *ETy = Args[i].IndirectType;
1399     Align AlignCandidate = getFunctionParamOptimizedAlign(F, ETy, DL);
1400     ParamByValAlign = std::max(ParamByValAlign, AlignCandidate);
1401 
1402     O << ".param .align " << ParamByValAlign.value() << " .b8 ";
1403     O << "_";
1404     O << "[" << Outs[OIdx].Flags.getByValSize() << "]";
1405   }
1406   O << ");";
1407   return O.str();
1408 }
1409 
1410 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1411                                                 const CallBase *CB, Type *Ty,
1412                                                 unsigned Idx,
1413                                                 const DataLayout &DL) const {
1414   if (!CB) {
1415     // CallSite is zero, fallback to ABI type alignment
1416     return DL.getABITypeAlign(Ty);
1417   }
1418 
1419   unsigned Alignment = 0;
1420   const Function *DirectCallee = CB->getCalledFunction();
1421 
1422   if (!DirectCallee) {
1423     // We don't have a direct function symbol, but that may be because of
1424     // constant cast instructions in the call.
1425 
1426     // With bitcast'd call targets, the instruction will be the call
1427     if (const auto *CI = dyn_cast<CallInst>(CB)) {
1428       // Check if we have call alignment metadata
1429       if (getAlign(*CI, Idx, Alignment))
1430         return Align(Alignment);
1431 
1432       const Value *CalleeV = CI->getCalledOperand();
1433       // Ignore any bitcast instructions
1434       while (isa<ConstantExpr>(CalleeV)) {
1435         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1436         if (!CE->isCast())
1437           break;
1438         // Look through the bitcast
1439         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1440       }
1441 
1442       // We have now looked past all of the bitcasts.  Do we finally have a
1443       // Function?
1444       if (const auto *CalleeF = dyn_cast<Function>(CalleeV))
1445         DirectCallee = CalleeF;
1446     }
1447   }
1448 
1449   // Check for function alignment information if we found that the
1450   // ultimate target is a Function
1451   if (DirectCallee) {
1452     if (getAlign(*DirectCallee, Idx, Alignment))
1453       return Align(Alignment);
1454     // If alignment information is not available, fall back to the
1455     // default function param optimized type alignment
1456     return getFunctionParamOptimizedAlign(DirectCallee, Ty, DL);
1457   }
1458 
1459   // Call is indirect, fall back to the ABI type alignment
1460   return DL.getABITypeAlign(Ty);
1461 }
1462 
1463 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1464                                        SmallVectorImpl<SDValue> &InVals) const {
1465   SelectionDAG &DAG = CLI.DAG;
1466   SDLoc dl = CLI.DL;
1467   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1468   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1469   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1470   SDValue Chain = CLI.Chain;
1471   SDValue Callee = CLI.Callee;
1472   bool &isTailCall = CLI.IsTailCall;
1473   ArgListTy &Args = CLI.getArgs();
1474   Type *RetTy = CLI.RetTy;
1475   const CallBase *CB = CLI.CB;
1476   const DataLayout &DL = DAG.getDataLayout();
1477 
1478   bool isABI = (STI.getSmVersion() >= 20);
1479   assert(isABI && "Non-ABI compilation is not supported");
1480   if (!isABI)
1481     return Chain;
1482 
1483   unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1);
1484   SDValue TempChain = Chain;
1485   Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
1486   SDValue InFlag = Chain.getValue(1);
1487 
1488   unsigned ParamCount = 0;
1489   // Args.size() and Outs.size() need not match.
1490   // Outs.size() will be larger
1491   //   * if there is an aggregate argument with multiple fields (each field
1492   //     showing up separately in Outs)
1493   //   * if there is a vector argument with more than typical vector-length
1494   //     elements (generally if more than 4) where each vector element is
1495   //     individually present in Outs.
1496   // So a different index should be used for indexing into Outs/OutVals.
1497   // See similar issue in LowerFormalArguments.
1498   unsigned OIdx = 0;
1499   // Declare the .params or .reg need to pass values
1500   // to the function
1501   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1502     EVT VT = Outs[OIdx].VT;
1503     Type *Ty = Args[i].Ty;
1504     bool IsByVal = Outs[OIdx].Flags.isByVal();
1505 
1506     SmallVector<EVT, 16> VTs;
1507     SmallVector<uint64_t, 16> Offsets;
1508 
1509     assert((!IsByVal || Args[i].IndirectType) &&
1510            "byval arg must have indirect type");
1511     Type *ETy = (IsByVal ? Args[i].IndirectType : Ty);
1512     ComputePTXValueVTs(*this, DL, ETy, VTs, &Offsets);
1513 
1514     Align ArgAlign;
1515     if (IsByVal) {
1516       // The ByValAlign in the Outs[OIdx].Flags is always set at this point,
1517       // so we don't need to worry whether it's naturally aligned or not.
1518       // See TargetLowering::LowerCallTo().
1519       ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1520 
1521       // Try to increase alignment to enhance vectorization options.
1522       ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(
1523                                         CB->getCalledFunction(), ETy, DL));
1524 
1525       // Enforce minumum alignment of 4 to work around ptxas miscompile
1526       // for sm_50+. See corresponding alignment adjustment in
1527       // emitFunctionParamList() for details.
1528       ArgAlign = std::max(ArgAlign, Align(4));
1529     } else {
1530       ArgAlign = getArgumentAlignment(Callee, CB, Ty, ParamCount + 1, DL);
1531     }
1532 
1533     unsigned TypeSize =
1534         (IsByVal ? Outs[OIdx].Flags.getByValSize() : DL.getTypeAllocSize(Ty));
1535     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1536 
1537     bool NeedAlign; // Does argument declaration specify alignment?
1538     if (IsByVal ||
1539         (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128))) {
1540       // declare .param .align <align> .b8 .param<n>[<size>];
1541       SDValue DeclareParamOps[] = {
1542           Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1543           DAG.getConstant(ParamCount, dl, MVT::i32),
1544           DAG.getConstant(TypeSize, dl, MVT::i32), InFlag};
1545       Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1546                           DeclareParamOps);
1547       NeedAlign = true;
1548     } else {
1549       // declare .param .b<size> .param<n>;
1550       if (VT.isInteger() || VT.isFloatingPoint()) {
1551         // PTX ABI requires integral types to be at least 32 bits in
1552         // size. FP16 is loaded/stored using i16, so it's handled
1553         // here as well.
1554         TypeSize = promoteScalarArgumentSize(TypeSize * 8) / 8;
1555       }
1556       SDValue DeclareScalarParamOps[] = {
1557           Chain, DAG.getConstant(ParamCount, dl, MVT::i32),
1558           DAG.getConstant(TypeSize * 8, dl, MVT::i32),
1559           DAG.getConstant(0, dl, MVT::i32), InFlag};
1560       Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1561                           DeclareScalarParamOps);
1562       NeedAlign = false;
1563     }
1564     InFlag = Chain.getValue(1);
1565 
1566     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1567     // than 32-bits are sign extended or zero extended, depending on
1568     // whether they are signed or unsigned types. This case applies
1569     // only to scalar parameters and not to aggregate values.
1570     bool ExtendIntegerParam =
1571         Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1572 
1573     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1574     SmallVector<SDValue, 6> StoreOperands;
1575     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1576       EVT EltVT = VTs[j];
1577       int CurOffset = Offsets[j];
1578       MaybeAlign PartAlign;
1579       if (NeedAlign)
1580         PartAlign = commonAlignment(ArgAlign, CurOffset);
1581 
1582       // New store.
1583       if (VectorInfo[j] & PVF_FIRST) {
1584         assert(StoreOperands.empty() && "Unfinished preceding store.");
1585         StoreOperands.push_back(Chain);
1586         StoreOperands.push_back(DAG.getConstant(ParamCount, dl, MVT::i32));
1587         StoreOperands.push_back(DAG.getConstant(CurOffset, dl, MVT::i32));
1588       }
1589 
1590       SDValue StVal = OutVals[OIdx];
1591 
1592       MVT PromotedVT;
1593       if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
1594         EltVT = EVT(PromotedVT);
1595       }
1596       if (PromoteScalarIntegerPTX(StVal.getValueType(), &PromotedVT)) {
1597         llvm::ISD::NodeType Ext =
1598             Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1599         StVal = DAG.getNode(Ext, dl, PromotedVT, StVal);
1600       }
1601 
1602       if (IsByVal) {
1603         auto PtrVT = getPointerTy(DL);
1604         SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StVal,
1605                                       DAG.getConstant(CurOffset, dl, PtrVT));
1606         StVal = DAG.getLoad(EltVT, dl, TempChain, srcAddr, MachinePointerInfo(),
1607                             PartAlign);
1608       } else if (ExtendIntegerParam) {
1609         assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1610         // zext/sext to i32
1611         StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1612                                                       : ISD::ZERO_EXTEND,
1613                             dl, MVT::i32, StVal);
1614       }
1615 
1616       if (!ExtendIntegerParam && EltVT.getSizeInBits() < 16) {
1617         // Use 16-bit registers for small stores as it's the
1618         // smallest general purpose register size supported by NVPTX.
1619         StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1620       }
1621 
1622       // Record the value to store.
1623       StoreOperands.push_back(StVal);
1624 
1625       if (VectorInfo[j] & PVF_LAST) {
1626         unsigned NumElts = StoreOperands.size() - 3;
1627         NVPTXISD::NodeType Op;
1628         switch (NumElts) {
1629         case 1:
1630           Op = NVPTXISD::StoreParam;
1631           break;
1632         case 2:
1633           Op = NVPTXISD::StoreParamV2;
1634           break;
1635         case 4:
1636           Op = NVPTXISD::StoreParamV4;
1637           break;
1638         default:
1639           llvm_unreachable("Invalid vector info.");
1640         }
1641 
1642         StoreOperands.push_back(InFlag);
1643 
1644         // Adjust type of the store op if we've extended the scalar
1645         // return value.
1646         EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1647 
1648         Chain = DAG.getMemIntrinsicNode(
1649             Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1650             TheStoreType, MachinePointerInfo(), PartAlign,
1651             MachineMemOperand::MOStore);
1652         InFlag = Chain.getValue(1);
1653 
1654         // Cleanup.
1655         StoreOperands.clear();
1656       }
1657       if (!IsByVal)
1658         ++OIdx;
1659     }
1660     assert(StoreOperands.empty() && "Unfinished parameter store.");
1661     if (!IsByVal && VTs.size() > 0)
1662       --OIdx;
1663     ++ParamCount;
1664   }
1665 
1666   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1667   MaybeAlign retAlignment = None;
1668 
1669   // Handle Result
1670   if (Ins.size() > 0) {
1671     SmallVector<EVT, 16> resvtparts;
1672     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1673 
1674     // Declare
1675     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1676     //  .param .b<size-in-bits> retval0
1677     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1678     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1679     // these three types to match the logic in
1680     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1681     // Plus, this behavior is consistent with nvcc's.
1682     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1683         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1684       resultsz = promoteScalarArgumentSize(resultsz);
1685       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1686       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1687                                   DAG.getConstant(resultsz, dl, MVT::i32),
1688                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1689       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1690                           DeclareRetOps);
1691       InFlag = Chain.getValue(1);
1692     } else {
1693       retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1694       assert(retAlignment && "retAlignment is guaranteed to be set");
1695       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1696       SDValue DeclareRetOps[] = {
1697           Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
1698           DAG.getConstant(resultsz / 8, dl, MVT::i32),
1699           DAG.getConstant(0, dl, MVT::i32), InFlag};
1700       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1701                           DeclareRetOps);
1702       InFlag = Chain.getValue(1);
1703     }
1704   }
1705 
1706   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1707   // between them we must rely on the call site value which is valid for
1708   // indirect calls but is always null for libcalls.
1709   bool isIndirectCall = !Func && CB;
1710 
1711   if (isa<ExternalSymbolSDNode>(Callee)) {
1712     Function* CalleeFunc = nullptr;
1713 
1714     // Try to find the callee in the current module.
1715     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1716     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1717 
1718     // Set the "libcall callee" attribute to indicate that the function
1719     // must always have a declaration.
1720     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1721   }
1722 
1723   if (isIndirectCall) {
1724     // This is indirect function call case : PTX requires a prototype of the
1725     // form
1726     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1727     // to be emitted, and the label has to used as the last arg of call
1728     // instruction.
1729     // The prototype is embedded in a string and put as the operand for a
1730     // CallPrototype SDNode which will print out to the value of the string.
1731     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1732     std::string Proto =
1733         getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite);
1734     const char *ProtoStr =
1735       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1736     SDValue ProtoOps[] = {
1737       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1738     };
1739     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1740     InFlag = Chain.getValue(1);
1741   }
1742   // Op to just print "call"
1743   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1744   SDValue PrintCallOps[] = {
1745     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1746   };
1747   // We model convergent calls as separate opcodes.
1748   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1749   if (CLI.IsConvergent)
1750     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1751                                               : NVPTXISD::PrintConvergentCall;
1752   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1753   InFlag = Chain.getValue(1);
1754 
1755   // Ops to print out the function name
1756   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1757   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1758   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1759   InFlag = Chain.getValue(1);
1760 
1761   // Ops to print out the param list
1762   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1763   SDValue CallArgBeginOps[] = { Chain, InFlag };
1764   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1765                       CallArgBeginOps);
1766   InFlag = Chain.getValue(1);
1767 
1768   for (unsigned i = 0, e = ParamCount; i != e; ++i) {
1769     unsigned opcode;
1770     if (i == (e - 1))
1771       opcode = NVPTXISD::LastCallArg;
1772     else
1773       opcode = NVPTXISD::CallArg;
1774     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1775     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1776                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1777     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1778     InFlag = Chain.getValue(1);
1779   }
1780   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1781   SDValue CallArgEndOps[] = { Chain,
1782                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1783                               InFlag };
1784   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1785   InFlag = Chain.getValue(1);
1786 
1787   if (isIndirectCall) {
1788     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1789     SDValue PrototypeOps[] = {
1790         Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag};
1791     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1792     InFlag = Chain.getValue(1);
1793   }
1794 
1795   SmallVector<SDValue, 16> ProxyRegOps;
1796   SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1797 
1798   // Generate loads from param memory/moves from registers for result
1799   if (Ins.size() > 0) {
1800     SmallVector<EVT, 16> VTs;
1801     SmallVector<uint64_t, 16> Offsets;
1802     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1803     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1804 
1805     Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1806     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1807 
1808     SmallVector<EVT, 6> LoadVTs;
1809     int VecIdx = -1; // Index of the first element of the vector.
1810 
1811     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1812     // 32-bits are sign extended or zero extended, depending on whether
1813     // they are signed or unsigned types.
1814     bool ExtendIntegerRetVal =
1815         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1816 
1817     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1818       bool needTruncate = false;
1819       EVT TheLoadType = VTs[i];
1820       EVT EltType = Ins[i].VT;
1821       Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
1822       MVT PromotedVT;
1823 
1824       if (PromoteScalarIntegerPTX(TheLoadType, &PromotedVT)) {
1825         TheLoadType = EVT(PromotedVT);
1826         EltType = EVT(PromotedVT);
1827         needTruncate = true;
1828       }
1829 
1830       if (ExtendIntegerRetVal) {
1831         TheLoadType = MVT::i32;
1832         EltType = MVT::i32;
1833         needTruncate = true;
1834       } else if (TheLoadType.getSizeInBits() < 16) {
1835         if (VTs[i].isInteger())
1836           needTruncate = true;
1837         EltType = MVT::i16;
1838       }
1839 
1840       // Record index of the very first element of the vector.
1841       if (VectorInfo[i] & PVF_FIRST) {
1842         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1843         VecIdx = i;
1844       }
1845 
1846       LoadVTs.push_back(EltType);
1847 
1848       if (VectorInfo[i] & PVF_LAST) {
1849         unsigned NumElts = LoadVTs.size();
1850         LoadVTs.push_back(MVT::Other);
1851         LoadVTs.push_back(MVT::Glue);
1852         NVPTXISD::NodeType Op;
1853         switch (NumElts) {
1854         case 1:
1855           Op = NVPTXISD::LoadParam;
1856           break;
1857         case 2:
1858           Op = NVPTXISD::LoadParamV2;
1859           break;
1860         case 4:
1861           Op = NVPTXISD::LoadParamV4;
1862           break;
1863         default:
1864           llvm_unreachable("Invalid vector info.");
1865         }
1866 
1867         SDValue LoadOperands[] = {
1868             Chain, DAG.getConstant(1, dl, MVT::i32),
1869             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1870         SDValue RetVal = DAG.getMemIntrinsicNode(
1871             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1872             MachinePointerInfo(), EltAlign,
1873             MachineMemOperand::MOLoad);
1874 
1875         for (unsigned j = 0; j < NumElts; ++j) {
1876           ProxyRegOps.push_back(RetVal.getValue(j));
1877 
1878           if (needTruncate)
1879             ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1880           else
1881             ProxyRegTruncates.push_back(Optional<MVT>());
1882         }
1883 
1884         Chain = RetVal.getValue(NumElts);
1885         InFlag = RetVal.getValue(NumElts + 1);
1886 
1887         // Cleanup
1888         VecIdx = -1;
1889         LoadVTs.clear();
1890       }
1891     }
1892   }
1893 
1894   Chain = DAG.getCALLSEQ_END(
1895       Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true),
1896       DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl);
1897   InFlag = Chain.getValue(1);
1898 
1899   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1900   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1901   // dangling.
1902   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1903     SDValue Ret = DAG.getNode(
1904       NVPTXISD::ProxyReg, dl,
1905       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1906       { Chain, ProxyRegOps[i], InFlag }
1907     );
1908 
1909     Chain = Ret.getValue(1);
1910     InFlag = Ret.getValue(2);
1911 
1912     if (ProxyRegTruncates[i]) {
1913       Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].value(), Ret);
1914     }
1915 
1916     InVals.push_back(Ret);
1917   }
1918 
1919   // set isTailCall to false for now, until we figure out how to express
1920   // tail call optimization in PTX
1921   isTailCall = false;
1922   return Chain;
1923 }
1924 
1925 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1926 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1927 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1928 SDValue
1929 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1930   SDNode *Node = Op.getNode();
1931   SDLoc dl(Node);
1932   SmallVector<SDValue, 8> Ops;
1933   unsigned NumOperands = Node->getNumOperands();
1934   for (unsigned i = 0; i < NumOperands; ++i) {
1935     SDValue SubOp = Node->getOperand(i);
1936     EVT VVT = SubOp.getNode()->getValueType(0);
1937     EVT EltVT = VVT.getVectorElementType();
1938     unsigned NumSubElem = VVT.getVectorNumElements();
1939     for (unsigned j = 0; j < NumSubElem; ++j) {
1940       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1941                                 DAG.getIntPtrConstant(j, dl)));
1942     }
1943   }
1944   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1945 }
1946 
1947 // We can init constant f16x2 with a single .b32 move.  Normally it
1948 // would get lowered as two constant loads and vector-packing move.
1949 //        mov.b16         %h1, 0x4000;
1950 //        mov.b16         %h2, 0x3C00;
1951 //        mov.b32         %hh2, {%h2, %h1};
1952 // Instead we want just a constant move:
1953 //        mov.b32         %hh2, 0x40003C00
1954 //
1955 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1956 // generates good SASS in both cases.
1957 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1958                                                SelectionDAG &DAG) const {
1959   //return Op;
1960   if (!(Op->getValueType(0) == MVT::v2f16 &&
1961         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1962         isa<ConstantFPSDNode>(Op->getOperand(1))))
1963     return Op;
1964 
1965   APInt E0 =
1966       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1967   APInt E1 =
1968       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1969   SDValue Const =
1970       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1971   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1972 }
1973 
1974 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1975                                                      SelectionDAG &DAG) const {
1976   SDValue Index = Op->getOperand(1);
1977   // Constant index will be matched by tablegen.
1978   if (isa<ConstantSDNode>(Index.getNode()))
1979     return Op;
1980 
1981   // Extract individual elements and select one of them.
1982   SDValue Vector = Op->getOperand(0);
1983   EVT VectorVT = Vector.getValueType();
1984   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1985   EVT EltVT = VectorVT.getVectorElementType();
1986 
1987   SDLoc dl(Op.getNode());
1988   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1989                            DAG.getIntPtrConstant(0, dl));
1990   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1991                            DAG.getIntPtrConstant(1, dl));
1992   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1993                          ISD::CondCode::SETEQ);
1994 }
1995 
1996 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1997 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1998 ///    amount, or
1999 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2000 ///    amount.
2001 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
2002                                                   SelectionDAG &DAG) const {
2003   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2004   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2005 
2006   EVT VT = Op.getValueType();
2007   unsigned VTBits = VT.getSizeInBits();
2008   SDLoc dl(Op);
2009   SDValue ShOpLo = Op.getOperand(0);
2010   SDValue ShOpHi = Op.getOperand(1);
2011   SDValue ShAmt  = Op.getOperand(2);
2012   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2013 
2014   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2015     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2016     // {dHi, dLo} = {aHi, aLo} >> Amt
2017     //   dHi = aHi >> Amt
2018     //   dLo = shf.r.clamp aLo, aHi, Amt
2019 
2020     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2021     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
2022                              ShAmt);
2023 
2024     SDValue Ops[2] = { Lo, Hi };
2025     return DAG.getMergeValues(Ops, dl);
2026   }
2027   else {
2028     // {dHi, dLo} = {aHi, aLo} >> Amt
2029     // - if (Amt>=size) then
2030     //      dLo = aHi >> (Amt-size)
2031     //      dHi = aHi >> Amt (this is either all 0 or all 1)
2032     //   else
2033     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
2034     //      dHi = aHi >> Amt
2035 
2036     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2037                                    DAG.getConstant(VTBits, dl, MVT::i32),
2038                                    ShAmt);
2039     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2040     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2041                                      DAG.getConstant(VTBits, dl, MVT::i32));
2042     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2043     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2044     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2045 
2046     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2047                                DAG.getConstant(VTBits, dl, MVT::i32),
2048                                ISD::SETGE);
2049     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2050     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2051 
2052     SDValue Ops[2] = { Lo, Hi };
2053     return DAG.getMergeValues(Ops, dl);
2054   }
2055 }
2056 
2057 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2058 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2059 ///    amount, or
2060 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2061 ///    amount.
2062 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2063                                                  SelectionDAG &DAG) const {
2064   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2065   assert(Op.getOpcode() == ISD::SHL_PARTS);
2066 
2067   EVT VT = Op.getValueType();
2068   unsigned VTBits = VT.getSizeInBits();
2069   SDLoc dl(Op);
2070   SDValue ShOpLo = Op.getOperand(0);
2071   SDValue ShOpHi = Op.getOperand(1);
2072   SDValue ShAmt  = Op.getOperand(2);
2073 
2074   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2075     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2076     // {dHi, dLo} = {aHi, aLo} << Amt
2077     //   dHi = shf.l.clamp aLo, aHi, Amt
2078     //   dLo = aLo << Amt
2079 
2080     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2081                              ShAmt);
2082     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2083 
2084     SDValue Ops[2] = { Lo, Hi };
2085     return DAG.getMergeValues(Ops, dl);
2086   }
2087   else {
2088     // {dHi, dLo} = {aHi, aLo} << Amt
2089     // - if (Amt>=size) then
2090     //      dLo = aLo << Amt (all 0)
2091     //      dLo = aLo << (Amt-size)
2092     //   else
2093     //      dLo = aLo << Amt
2094     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2095 
2096     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2097                                    DAG.getConstant(VTBits, dl, MVT::i32),
2098                                    ShAmt);
2099     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2100     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2101                                      DAG.getConstant(VTBits, dl, MVT::i32));
2102     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2103     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2104     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2105 
2106     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2107                                DAG.getConstant(VTBits, dl, MVT::i32),
2108                                ISD::SETGE);
2109     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2110     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2111 
2112     SDValue Ops[2] = { Lo, Hi };
2113     return DAG.getMergeValues(Ops, dl);
2114   }
2115 }
2116 
2117 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2118   EVT VT = Op.getValueType();
2119 
2120   if (VT == MVT::f32)
2121     return LowerFROUND32(Op, DAG);
2122 
2123   if (VT == MVT::f64)
2124     return LowerFROUND64(Op, DAG);
2125 
2126   llvm_unreachable("unhandled type");
2127 }
2128 
2129 // This is the the rounding method used in CUDA libdevice in C like code:
2130 // float roundf(float A)
2131 // {
2132 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2133 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2134 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2135 // }
2136 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2137                                            SelectionDAG &DAG) const {
2138   SDLoc SL(Op);
2139   SDValue A = Op.getOperand(0);
2140   EVT VT = Op.getValueType();
2141 
2142   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2143 
2144   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2145   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2146   const int SignBitMask = 0x80000000;
2147   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2148                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2149   const int PointFiveInBits = 0x3F000000;
2150   SDValue PointFiveWithSignRaw =
2151       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2152                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2153   SDValue PointFiveWithSign =
2154       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2155   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2156   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2157 
2158   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2159   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2160   SDValue IsLarge =
2161       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2162                    ISD::SETOGT);
2163   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2164 
2165   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2166   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2167                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2168   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2169   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2170 }
2171 
2172 // The implementation of round(double) is similar to that of round(float) in
2173 // that they both separate the value range into three regions and use a method
2174 // specific to the region to round the values. However, round(double) first
2175 // calculates the round of the absolute value and then adds the sign back while
2176 // round(float) directly rounds the value with sign.
2177 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2178                                            SelectionDAG &DAG) const {
2179   SDLoc SL(Op);
2180   SDValue A = Op.getOperand(0);
2181   EVT VT = Op.getValueType();
2182 
2183   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2184 
2185   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2186   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2187                                   DAG.getConstantFP(0.5, SL, VT));
2188   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2189 
2190   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2191   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2192   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2193                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2194   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2195                          DAG.getConstantFP(0, SL, VT),
2196                          RoundedA);
2197 
2198   // Add sign to rounded_A
2199   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2200   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2201 
2202   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2203   SDValue IsLarge =
2204       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2205                    ISD::SETOGT);
2206   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2207 }
2208 
2209 
2210 
2211 SDValue
2212 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2213   switch (Op.getOpcode()) {
2214   case ISD::RETURNADDR:
2215     return SDValue();
2216   case ISD::FRAMEADDR:
2217     return SDValue();
2218   case ISD::GlobalAddress:
2219     return LowerGlobalAddress(Op, DAG);
2220   case ISD::INTRINSIC_W_CHAIN:
2221     return Op;
2222   case ISD::BUILD_VECTOR:
2223     return LowerBUILD_VECTOR(Op, DAG);
2224   case ISD::EXTRACT_SUBVECTOR:
2225     return Op;
2226   case ISD::EXTRACT_VECTOR_ELT:
2227     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2228   case ISD::CONCAT_VECTORS:
2229     return LowerCONCAT_VECTORS(Op, DAG);
2230   case ISD::STORE:
2231     return LowerSTORE(Op, DAG);
2232   case ISD::LOAD:
2233     return LowerLOAD(Op, DAG);
2234   case ISD::SHL_PARTS:
2235     return LowerShiftLeftParts(Op, DAG);
2236   case ISD::SRA_PARTS:
2237   case ISD::SRL_PARTS:
2238     return LowerShiftRightParts(Op, DAG);
2239   case ISD::SELECT:
2240     return LowerSelect(Op, DAG);
2241   case ISD::FROUND:
2242     return LowerFROUND(Op, DAG);
2243   default:
2244     llvm_unreachable("Custom lowering not defined for operation");
2245   }
2246 }
2247 
2248 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2249   SDValue Op0 = Op->getOperand(0);
2250   SDValue Op1 = Op->getOperand(1);
2251   SDValue Op2 = Op->getOperand(2);
2252   SDLoc DL(Op.getNode());
2253 
2254   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2255 
2256   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2257   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2258   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2259   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2260 
2261   return Trunc;
2262 }
2263 
2264 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2265   if (Op.getValueType() == MVT::i1)
2266     return LowerLOADi1(Op, DAG);
2267 
2268   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2269   // loads and have to handle it here.
2270   if (Op.getValueType() == MVT::v2f16) {
2271     LoadSDNode *Load = cast<LoadSDNode>(Op);
2272     EVT MemVT = Load->getMemoryVT();
2273     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2274                                         MemVT, *Load->getMemOperand())) {
2275       SDValue Ops[2];
2276       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2277       return DAG.getMergeValues(Ops, SDLoc(Op));
2278     }
2279   }
2280 
2281   return SDValue();
2282 }
2283 
2284 // v = ld i1* addr
2285 //   =>
2286 // v1 = ld i8* addr (-> i16)
2287 // v = trunc i16 to i1
2288 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2289   SDNode *Node = Op.getNode();
2290   LoadSDNode *LD = cast<LoadSDNode>(Node);
2291   SDLoc dl(Node);
2292   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2293   assert(Node->getValueType(0) == MVT::i1 &&
2294          "Custom lowering for i1 load only");
2295   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2296                               LD->getPointerInfo(), LD->getAlign(),
2297                               LD->getMemOperand()->getFlags());
2298   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2299   // The legalizer (the caller) is expecting two values from the legalized
2300   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2301   // in LegalizeDAG.cpp which also uses MergeValues.
2302   SDValue Ops[] = { result, LD->getChain() };
2303   return DAG.getMergeValues(Ops, dl);
2304 }
2305 
2306 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2307   StoreSDNode *Store = cast<StoreSDNode>(Op);
2308   EVT VT = Store->getMemoryVT();
2309 
2310   if (VT == MVT::i1)
2311     return LowerSTOREi1(Op, DAG);
2312 
2313   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2314   // stores and have to handle it here.
2315   if (VT == MVT::v2f16 &&
2316       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2317                                       VT, *Store->getMemOperand()))
2318     return expandUnalignedStore(Store, DAG);
2319 
2320   if (VT.isVector())
2321     return LowerSTOREVector(Op, DAG);
2322 
2323   return SDValue();
2324 }
2325 
2326 SDValue
2327 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2328   SDNode *N = Op.getNode();
2329   SDValue Val = N->getOperand(1);
2330   SDLoc DL(N);
2331   EVT ValVT = Val.getValueType();
2332 
2333   if (ValVT.isVector()) {
2334     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2335     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2336     // but I'm leaving that as a TODO for now.
2337     if (!ValVT.isSimple())
2338       return SDValue();
2339     switch (ValVT.getSimpleVT().SimpleTy) {
2340     default:
2341       return SDValue();
2342     case MVT::v2i8:
2343     case MVT::v2i16:
2344     case MVT::v2i32:
2345     case MVT::v2i64:
2346     case MVT::v2f16:
2347     case MVT::v2f32:
2348     case MVT::v2f64:
2349     case MVT::v4i8:
2350     case MVT::v4i16:
2351     case MVT::v4i32:
2352     case MVT::v4f16:
2353     case MVT::v4f32:
2354     case MVT::v8f16: // <4 x f16x2>
2355       // This is a "native" vector type
2356       break;
2357     }
2358 
2359     MemSDNode *MemSD = cast<MemSDNode>(N);
2360     const DataLayout &TD = DAG.getDataLayout();
2361 
2362     Align Alignment = MemSD->getAlign();
2363     Align PrefAlign =
2364         TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
2365     if (Alignment < PrefAlign) {
2366       // This store is not sufficiently aligned, so bail out and let this vector
2367       // store be scalarized.  Note that we may still be able to emit smaller
2368       // vector stores.  For example, if we are storing a <4 x float> with an
2369       // alignment of 8, this check will fail but the legalizer will try again
2370       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2371       return SDValue();
2372     }
2373 
2374     unsigned Opcode = 0;
2375     EVT EltVT = ValVT.getVectorElementType();
2376     unsigned NumElts = ValVT.getVectorNumElements();
2377 
2378     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2379     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2380     // stored type to i16 and propagate the "real" type as the memory type.
2381     bool NeedExt = false;
2382     if (EltVT.getSizeInBits() < 16)
2383       NeedExt = true;
2384 
2385     bool StoreF16x2 = false;
2386     switch (NumElts) {
2387     default:
2388       return SDValue();
2389     case 2:
2390       Opcode = NVPTXISD::StoreV2;
2391       break;
2392     case 4:
2393       Opcode = NVPTXISD::StoreV4;
2394       break;
2395     case 8:
2396       // v8f16 is a special case. PTX doesn't have st.v8.f16
2397       // instruction. Instead, we split the vector into v2f16 chunks and
2398       // store them with st.v4.b32.
2399       assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2400       Opcode = NVPTXISD::StoreV4;
2401       StoreF16x2 = true;
2402       break;
2403     }
2404 
2405     SmallVector<SDValue, 8> Ops;
2406 
2407     // First is the chain
2408     Ops.push_back(N->getOperand(0));
2409 
2410     if (StoreF16x2) {
2411       // Combine f16,f16 -> v2f16
2412       NumElts /= 2;
2413       for (unsigned i = 0; i < NumElts; ++i) {
2414         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2415                                  DAG.getIntPtrConstant(i * 2, DL));
2416         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2417                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2418         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2419         Ops.push_back(V2);
2420       }
2421     } else {
2422       // Then the split values
2423       for (unsigned i = 0; i < NumElts; ++i) {
2424         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2425                                      DAG.getIntPtrConstant(i, DL));
2426         if (NeedExt)
2427           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2428         Ops.push_back(ExtVal);
2429       }
2430     }
2431 
2432     // Then any remaining arguments
2433     Ops.append(N->op_begin() + 2, N->op_end());
2434 
2435     SDValue NewSt =
2436         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2437                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2438 
2439     // return DCI.CombineTo(N, NewSt, true);
2440     return NewSt;
2441   }
2442 
2443   return SDValue();
2444 }
2445 
2446 // st i1 v, addr
2447 //    =>
2448 // v1 = zxt v to i16
2449 // st.u8 i16, addr
2450 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2451   SDNode *Node = Op.getNode();
2452   SDLoc dl(Node);
2453   StoreSDNode *ST = cast<StoreSDNode>(Node);
2454   SDValue Tmp1 = ST->getChain();
2455   SDValue Tmp2 = ST->getBasePtr();
2456   SDValue Tmp3 = ST->getValue();
2457   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2458   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2459   SDValue Result =
2460       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2461                         ST->getAlign(), ST->getMemOperand()->getFlags());
2462   return Result;
2463 }
2464 
2465 SDValue
2466 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2467   std::string ParamSym;
2468   raw_string_ostream ParamStr(ParamSym);
2469 
2470   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2471   ParamStr.flush();
2472 
2473   std::string *SavedStr =
2474     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2475   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2476 }
2477 
2478 SDValue NVPTXTargetLowering::LowerFormalArguments(
2479     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2480     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2481     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2482   MachineFunction &MF = DAG.getMachineFunction();
2483   const DataLayout &DL = DAG.getDataLayout();
2484   auto PtrVT = getPointerTy(DAG.getDataLayout());
2485 
2486   const Function *F = &MF.getFunction();
2487   const AttributeList &PAL = F->getAttributes();
2488   const TargetLowering *TLI = STI.getTargetLowering();
2489 
2490   SDValue Root = DAG.getRoot();
2491   std::vector<SDValue> OutChains;
2492 
2493   bool isABI = (STI.getSmVersion() >= 20);
2494   assert(isABI && "Non-ABI compilation is not supported");
2495   if (!isABI)
2496     return Chain;
2497 
2498   std::vector<Type *> argTypes;
2499   std::vector<const Argument *> theArgs;
2500   for (const Argument &I : F->args()) {
2501     theArgs.push_back(&I);
2502     argTypes.push_back(I.getType());
2503   }
2504   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2505   // Ins.size() will be larger
2506   //   * if there is an aggregate argument with multiple fields (each field
2507   //     showing up separately in Ins)
2508   //   * if there is a vector argument with more than typical vector-length
2509   //     elements (generally if more than 4) where each vector element is
2510   //     individually present in Ins.
2511   // So a different index should be used for indexing into Ins.
2512   // See similar issue in LowerCall.
2513   unsigned InsIdx = 0;
2514 
2515   int idx = 0;
2516   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2517     Type *Ty = argTypes[i];
2518 
2519     if (theArgs[i]->use_empty()) {
2520       // argument is dead
2521       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2522         SmallVector<EVT, 16> vtparts;
2523 
2524         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2525         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2526         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2527              ++parti) {
2528           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2529           ++InsIdx;
2530         }
2531         if (vtparts.size() > 0)
2532           --InsIdx;
2533         continue;
2534       }
2535       if (Ty->isVectorTy()) {
2536         EVT ObjectVT = getValueType(DL, Ty);
2537         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2538         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2539           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2540           ++InsIdx;
2541         }
2542         if (NumRegs > 0)
2543           --InsIdx;
2544         continue;
2545       }
2546       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2547       continue;
2548     }
2549 
2550     // In the following cases, assign a node order of "idx+1"
2551     // to newly created nodes. The SDNodes for params have to
2552     // appear in the same order as their order of appearance
2553     // in the original function. "idx+1" holds that order.
2554     if (!PAL.hasParamAttr(i, Attribute::ByVal)) {
2555       bool aggregateIsPacked = false;
2556       if (StructType *STy = dyn_cast<StructType>(Ty))
2557         aggregateIsPacked = STy->isPacked();
2558 
2559       SmallVector<EVT, 16> VTs;
2560       SmallVector<uint64_t, 16> Offsets;
2561       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2562       assert(VTs.size() > 0 && "Unexpected empty type.");
2563       auto VectorInfo =
2564           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
2565 
2566       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2567       int VecIdx = -1; // Index of the first element of the current vector.
2568       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2569         if (VectorInfo[parti] & PVF_FIRST) {
2570           assert(VecIdx == -1 && "Orphaned vector.");
2571           VecIdx = parti;
2572         }
2573 
2574         // That's the last element of this store op.
2575         if (VectorInfo[parti] & PVF_LAST) {
2576           unsigned NumElts = parti - VecIdx + 1;
2577           EVT EltVT = VTs[parti];
2578           // i1 is loaded/stored as i8.
2579           EVT LoadVT = EltVT;
2580           if (EltVT == MVT::i1)
2581             LoadVT = MVT::i8;
2582           else if (EltVT == MVT::v2f16)
2583             // getLoad needs a vector type, but it can't handle
2584             // vectors which contain v2f16 elements. So we must load
2585             // using i32 here and then bitcast back.
2586             LoadVT = MVT::i32;
2587 
2588           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2589           SDValue VecAddr =
2590               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2591                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2592           Value *srcValue = Constant::getNullValue(PointerType::get(
2593               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2594           SDValue P =
2595               DAG.getLoad(VecVT, dl, Root, VecAddr,
2596                           MachinePointerInfo(srcValue), aggregateIsPacked,
2597                           MachineMemOperand::MODereferenceable |
2598                               MachineMemOperand::MOInvariant);
2599           if (P.getNode())
2600             P.getNode()->setIROrder(idx + 1);
2601           for (unsigned j = 0; j < NumElts; ++j) {
2602             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2603                                       DAG.getIntPtrConstant(j, dl));
2604             // We've loaded i1 as an i8 and now must truncate it back to i1
2605             if (EltVT == MVT::i1)
2606               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2607             // v2f16 was loaded as an i32. Now we must bitcast it back.
2608             else if (EltVT == MVT::v2f16)
2609               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2610 
2611             // If a promoted integer type is used, truncate down to the original
2612             MVT PromotedVT;
2613             if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
2614               Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
2615             }
2616 
2617             // Extend the element if necessary (e.g. an i8 is loaded
2618             // into an i16 register)
2619             if (Ins[InsIdx].VT.isInteger() &&
2620                 Ins[InsIdx].VT.getFixedSizeInBits() >
2621                     LoadVT.getFixedSizeInBits()) {
2622               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2623                                                            : ISD::ZERO_EXTEND;
2624               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2625             }
2626             InVals.push_back(Elt);
2627           }
2628 
2629           // Reset vector tracking state.
2630           VecIdx = -1;
2631         }
2632         ++InsIdx;
2633       }
2634       if (VTs.size() > 0)
2635         --InsIdx;
2636       continue;
2637     }
2638 
2639     // Param has ByVal attribute
2640     // Return MoveParam(param symbol).
2641     // Ideally, the param symbol can be returned directly,
2642     // but when SDNode builder decides to use it in a CopyToReg(),
2643     // machine instruction fails because TargetExternalSymbol
2644     // (not lowered) is target dependent, and CopyToReg assumes
2645     // the source is lowered.
2646     EVT ObjectVT = getValueType(DL, Ty);
2647     assert(ObjectVT == Ins[InsIdx].VT &&
2648            "Ins type did not match function type");
2649     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2650     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2651     if (p.getNode())
2652       p.getNode()->setIROrder(idx + 1);
2653     InVals.push_back(p);
2654   }
2655 
2656   // Clang will check explicit VarArg and issue error if any. However, Clang
2657   // will let code with
2658   // implicit var arg like f() pass. See bug 617733.
2659   // We treat this case as if the arg list is empty.
2660   // if (F.isVarArg()) {
2661   // assert(0 && "VarArg not supported yet!");
2662   //}
2663 
2664   if (!OutChains.empty())
2665     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2666 
2667   return Chain;
2668 }
2669 
2670 SDValue
2671 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2672                                  bool isVarArg,
2673                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2674                                  const SmallVectorImpl<SDValue> &OutVals,
2675                                  const SDLoc &dl, SelectionDAG &DAG) const {
2676   const MachineFunction &MF = DAG.getMachineFunction();
2677   const Function &F = MF.getFunction();
2678   Type *RetTy = MF.getFunction().getReturnType();
2679 
2680   bool isABI = (STI.getSmVersion() >= 20);
2681   assert(isABI && "Non-ABI compilation is not supported");
2682   if (!isABI)
2683     return Chain;
2684 
2685   const DataLayout &DL = DAG.getDataLayout();
2686   SmallVector<SDValue, 16> PromotedOutVals;
2687   SmallVector<EVT, 16> VTs;
2688   SmallVector<uint64_t, 16> Offsets;
2689   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2690   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2691 
2692   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2693     SDValue PromotedOutVal = OutVals[i];
2694     MVT PromotedVT;
2695     if (PromoteScalarIntegerPTX(VTs[i], &PromotedVT)) {
2696       VTs[i] = EVT(PromotedVT);
2697     }
2698     if (PromoteScalarIntegerPTX(PromotedOutVal.getValueType(), &PromotedVT)) {
2699       llvm::ISD::NodeType Ext =
2700           Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2701       PromotedOutVal = DAG.getNode(Ext, dl, PromotedVT, PromotedOutVal);
2702     }
2703     PromotedOutVals.push_back(PromotedOutVal);
2704   }
2705 
2706   auto VectorInfo = VectorizePTXValueVTs(
2707       VTs, Offsets,
2708       RetTy->isSized() ? getFunctionParamOptimizedAlign(&F, RetTy, DL)
2709                        : Align(1));
2710 
2711   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2712   // 32-bits are sign extended or zero extended, depending on whether
2713   // they are signed or unsigned types.
2714   bool ExtendIntegerRetVal =
2715       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2716 
2717   SmallVector<SDValue, 6> StoreOperands;
2718   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2719     // New load/store. Record chain and offset operands.
2720     if (VectorInfo[i] & PVF_FIRST) {
2721       assert(StoreOperands.empty() && "Orphaned operand list.");
2722       StoreOperands.push_back(Chain);
2723       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2724     }
2725 
2726     SDValue OutVal = OutVals[i];
2727     SDValue RetVal = PromotedOutVals[i];
2728 
2729     if (ExtendIntegerRetVal) {
2730       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2731                                                   : ISD::ZERO_EXTEND,
2732                            dl, MVT::i32, RetVal);
2733     } else if (OutVal.getValueSizeInBits() < 16) {
2734       // Use 16-bit registers for small load-stores as it's the
2735       // smallest general purpose register size supported by NVPTX.
2736       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2737     }
2738 
2739     // Record the value to return.
2740     StoreOperands.push_back(RetVal);
2741 
2742     // That's the last element of this store op.
2743     if (VectorInfo[i] & PVF_LAST) {
2744       NVPTXISD::NodeType Op;
2745       unsigned NumElts = StoreOperands.size() - 2;
2746       switch (NumElts) {
2747       case 1:
2748         Op = NVPTXISD::StoreRetval;
2749         break;
2750       case 2:
2751         Op = NVPTXISD::StoreRetvalV2;
2752         break;
2753       case 4:
2754         Op = NVPTXISD::StoreRetvalV4;
2755         break;
2756       default:
2757         llvm_unreachable("Invalid vector info.");
2758       }
2759 
2760       // Adjust type of load/store op if we've extended the scalar
2761       // return value.
2762       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2763       Chain = DAG.getMemIntrinsicNode(
2764           Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
2765           MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
2766       // Cleanup vector state.
2767       StoreOperands.clear();
2768     }
2769   }
2770 
2771   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2772 }
2773 
2774 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2775     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2776     SelectionDAG &DAG) const {
2777   if (Constraint.length() > 1)
2778     return;
2779   else
2780     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2781 }
2782 
2783 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2784   switch (Intrinsic) {
2785   default:
2786     return 0;
2787 
2788   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2789     return NVPTXISD::Tex1DFloatS32;
2790   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2791     return NVPTXISD::Tex1DFloatFloat;
2792   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2793     return NVPTXISD::Tex1DFloatFloatLevel;
2794   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2795     return NVPTXISD::Tex1DFloatFloatGrad;
2796   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2797     return NVPTXISD::Tex1DS32S32;
2798   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2799     return NVPTXISD::Tex1DS32Float;
2800   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2801     return NVPTXISD::Tex1DS32FloatLevel;
2802   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2803     return NVPTXISD::Tex1DS32FloatGrad;
2804   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2805     return NVPTXISD::Tex1DU32S32;
2806   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2807     return NVPTXISD::Tex1DU32Float;
2808   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2809     return NVPTXISD::Tex1DU32FloatLevel;
2810   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2811     return NVPTXISD::Tex1DU32FloatGrad;
2812 
2813   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2814     return NVPTXISD::Tex1DArrayFloatS32;
2815   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2816     return NVPTXISD::Tex1DArrayFloatFloat;
2817   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2818     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2819   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2820     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2821   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2822     return NVPTXISD::Tex1DArrayS32S32;
2823   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2824     return NVPTXISD::Tex1DArrayS32Float;
2825   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2826     return NVPTXISD::Tex1DArrayS32FloatLevel;
2827   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2828     return NVPTXISD::Tex1DArrayS32FloatGrad;
2829   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2830     return NVPTXISD::Tex1DArrayU32S32;
2831   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2832     return NVPTXISD::Tex1DArrayU32Float;
2833   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2834     return NVPTXISD::Tex1DArrayU32FloatLevel;
2835   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2836     return NVPTXISD::Tex1DArrayU32FloatGrad;
2837 
2838   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2839     return NVPTXISD::Tex2DFloatS32;
2840   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2841     return NVPTXISD::Tex2DFloatFloat;
2842   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2843     return NVPTXISD::Tex2DFloatFloatLevel;
2844   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2845     return NVPTXISD::Tex2DFloatFloatGrad;
2846   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2847     return NVPTXISD::Tex2DS32S32;
2848   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2849     return NVPTXISD::Tex2DS32Float;
2850   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2851     return NVPTXISD::Tex2DS32FloatLevel;
2852   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2853     return NVPTXISD::Tex2DS32FloatGrad;
2854   case Intrinsic::nvvm_tex_2d_v4u32_s32:
2855     return NVPTXISD::Tex2DU32S32;
2856   case Intrinsic::nvvm_tex_2d_v4u32_f32:
2857     return NVPTXISD::Tex2DU32Float;
2858   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2859     return NVPTXISD::Tex2DU32FloatLevel;
2860   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2861     return NVPTXISD::Tex2DU32FloatGrad;
2862 
2863   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2864     return NVPTXISD::Tex2DArrayFloatS32;
2865   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2866     return NVPTXISD::Tex2DArrayFloatFloat;
2867   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2868     return NVPTXISD::Tex2DArrayFloatFloatLevel;
2869   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2870     return NVPTXISD::Tex2DArrayFloatFloatGrad;
2871   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2872     return NVPTXISD::Tex2DArrayS32S32;
2873   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2874     return NVPTXISD::Tex2DArrayS32Float;
2875   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2876     return NVPTXISD::Tex2DArrayS32FloatLevel;
2877   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2878     return NVPTXISD::Tex2DArrayS32FloatGrad;
2879   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2880     return NVPTXISD::Tex2DArrayU32S32;
2881   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2882     return NVPTXISD::Tex2DArrayU32Float;
2883   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2884     return NVPTXISD::Tex2DArrayU32FloatLevel;
2885   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2886     return NVPTXISD::Tex2DArrayU32FloatGrad;
2887 
2888   case Intrinsic::nvvm_tex_3d_v4f32_s32:
2889     return NVPTXISD::Tex3DFloatS32;
2890   case Intrinsic::nvvm_tex_3d_v4f32_f32:
2891     return NVPTXISD::Tex3DFloatFloat;
2892   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2893     return NVPTXISD::Tex3DFloatFloatLevel;
2894   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2895     return NVPTXISD::Tex3DFloatFloatGrad;
2896   case Intrinsic::nvvm_tex_3d_v4s32_s32:
2897     return NVPTXISD::Tex3DS32S32;
2898   case Intrinsic::nvvm_tex_3d_v4s32_f32:
2899     return NVPTXISD::Tex3DS32Float;
2900   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2901     return NVPTXISD::Tex3DS32FloatLevel;
2902   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2903     return NVPTXISD::Tex3DS32FloatGrad;
2904   case Intrinsic::nvvm_tex_3d_v4u32_s32:
2905     return NVPTXISD::Tex3DU32S32;
2906   case Intrinsic::nvvm_tex_3d_v4u32_f32:
2907     return NVPTXISD::Tex3DU32Float;
2908   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2909     return NVPTXISD::Tex3DU32FloatLevel;
2910   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2911     return NVPTXISD::Tex3DU32FloatGrad;
2912 
2913   case Intrinsic::nvvm_tex_cube_v4f32_f32:
2914     return NVPTXISD::TexCubeFloatFloat;
2915   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2916     return NVPTXISD::TexCubeFloatFloatLevel;
2917   case Intrinsic::nvvm_tex_cube_v4s32_f32:
2918     return NVPTXISD::TexCubeS32Float;
2919   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2920     return NVPTXISD::TexCubeS32FloatLevel;
2921   case Intrinsic::nvvm_tex_cube_v4u32_f32:
2922     return NVPTXISD::TexCubeU32Float;
2923   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2924     return NVPTXISD::TexCubeU32FloatLevel;
2925 
2926   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2927     return NVPTXISD::TexCubeArrayFloatFloat;
2928   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2929     return NVPTXISD::TexCubeArrayFloatFloatLevel;
2930   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2931     return NVPTXISD::TexCubeArrayS32Float;
2932   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2933     return NVPTXISD::TexCubeArrayS32FloatLevel;
2934   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2935     return NVPTXISD::TexCubeArrayU32Float;
2936   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2937     return NVPTXISD::TexCubeArrayU32FloatLevel;
2938 
2939   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2940     return NVPTXISD::Tld4R2DFloatFloat;
2941   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2942     return NVPTXISD::Tld4G2DFloatFloat;
2943   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2944     return NVPTXISD::Tld4B2DFloatFloat;
2945   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2946     return NVPTXISD::Tld4A2DFloatFloat;
2947   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2948     return NVPTXISD::Tld4R2DS64Float;
2949   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2950     return NVPTXISD::Tld4G2DS64Float;
2951   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2952     return NVPTXISD::Tld4B2DS64Float;
2953   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2954     return NVPTXISD::Tld4A2DS64Float;
2955   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2956     return NVPTXISD::Tld4R2DU64Float;
2957   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2958     return NVPTXISD::Tld4G2DU64Float;
2959   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2960     return NVPTXISD::Tld4B2DU64Float;
2961   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2962     return NVPTXISD::Tld4A2DU64Float;
2963 
2964   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2965     return NVPTXISD::TexUnified1DFloatS32;
2966   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2967     return NVPTXISD::TexUnified1DFloatFloat;
2968   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2969     return NVPTXISD::TexUnified1DFloatFloatLevel;
2970   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2971     return NVPTXISD::TexUnified1DFloatFloatGrad;
2972   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2973     return NVPTXISD::TexUnified1DS32S32;
2974   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2975     return NVPTXISD::TexUnified1DS32Float;
2976   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2977     return NVPTXISD::TexUnified1DS32FloatLevel;
2978   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2979     return NVPTXISD::TexUnified1DS32FloatGrad;
2980   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2981     return NVPTXISD::TexUnified1DU32S32;
2982   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2983     return NVPTXISD::TexUnified1DU32Float;
2984   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2985     return NVPTXISD::TexUnified1DU32FloatLevel;
2986   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2987     return NVPTXISD::TexUnified1DU32FloatGrad;
2988 
2989   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2990     return NVPTXISD::TexUnified1DArrayFloatS32;
2991   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2992     return NVPTXISD::TexUnified1DArrayFloatFloat;
2993   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2994     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2995   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2996     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2997   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2998     return NVPTXISD::TexUnified1DArrayS32S32;
2999   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3000     return NVPTXISD::TexUnified1DArrayS32Float;
3001   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3002     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
3003   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3004     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
3005   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3006     return NVPTXISD::TexUnified1DArrayU32S32;
3007   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3008     return NVPTXISD::TexUnified1DArrayU32Float;
3009   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3010     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
3011   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3012     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
3013 
3014   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3015     return NVPTXISD::TexUnified2DFloatS32;
3016   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3017     return NVPTXISD::TexUnified2DFloatFloat;
3018   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3019     return NVPTXISD::TexUnified2DFloatFloatLevel;
3020   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3021     return NVPTXISD::TexUnified2DFloatFloatGrad;
3022   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3023     return NVPTXISD::TexUnified2DS32S32;
3024   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3025     return NVPTXISD::TexUnified2DS32Float;
3026   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3027     return NVPTXISD::TexUnified2DS32FloatLevel;
3028   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3029     return NVPTXISD::TexUnified2DS32FloatGrad;
3030   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3031     return NVPTXISD::TexUnified2DU32S32;
3032   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3033     return NVPTXISD::TexUnified2DU32Float;
3034   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3035     return NVPTXISD::TexUnified2DU32FloatLevel;
3036   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3037     return NVPTXISD::TexUnified2DU32FloatGrad;
3038 
3039   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3040     return NVPTXISD::TexUnified2DArrayFloatS32;
3041   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3042     return NVPTXISD::TexUnified2DArrayFloatFloat;
3043   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3044     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
3045   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3046     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3047   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3048     return NVPTXISD::TexUnified2DArrayS32S32;
3049   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3050     return NVPTXISD::TexUnified2DArrayS32Float;
3051   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3052     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3053   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3054     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3055   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3056     return NVPTXISD::TexUnified2DArrayU32S32;
3057   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3058     return NVPTXISD::TexUnified2DArrayU32Float;
3059   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3060     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3061   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3062     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3063 
3064   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3065     return NVPTXISD::TexUnified3DFloatS32;
3066   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3067     return NVPTXISD::TexUnified3DFloatFloat;
3068   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3069     return NVPTXISD::TexUnified3DFloatFloatLevel;
3070   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3071     return NVPTXISD::TexUnified3DFloatFloatGrad;
3072   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3073     return NVPTXISD::TexUnified3DS32S32;
3074   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3075     return NVPTXISD::TexUnified3DS32Float;
3076   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3077     return NVPTXISD::TexUnified3DS32FloatLevel;
3078   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3079     return NVPTXISD::TexUnified3DS32FloatGrad;
3080   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3081     return NVPTXISD::TexUnified3DU32S32;
3082   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3083     return NVPTXISD::TexUnified3DU32Float;
3084   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3085     return NVPTXISD::TexUnified3DU32FloatLevel;
3086   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3087     return NVPTXISD::TexUnified3DU32FloatGrad;
3088 
3089   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3090     return NVPTXISD::TexUnifiedCubeFloatFloat;
3091   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3092     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3093   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3094     return NVPTXISD::TexUnifiedCubeS32Float;
3095   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3096     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3097   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3098     return NVPTXISD::TexUnifiedCubeU32Float;
3099   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3100     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3101 
3102   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3103     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3104   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3105     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3106   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3107     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3108   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3109     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3110   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3111     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3112   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3113     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3114 
3115   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3116     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3117   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3118     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3119   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3120     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3121   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3122     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3123   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3124     return NVPTXISD::Tld4UnifiedR2DS64Float;
3125   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3126     return NVPTXISD::Tld4UnifiedG2DS64Float;
3127   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3128     return NVPTXISD::Tld4UnifiedB2DS64Float;
3129   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3130     return NVPTXISD::Tld4UnifiedA2DS64Float;
3131   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3132     return NVPTXISD::Tld4UnifiedR2DU64Float;
3133   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3134     return NVPTXISD::Tld4UnifiedG2DU64Float;
3135   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3136     return NVPTXISD::Tld4UnifiedB2DU64Float;
3137   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3138     return NVPTXISD::Tld4UnifiedA2DU64Float;
3139   }
3140 }
3141 
3142 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3143   switch (Intrinsic) {
3144   default:
3145     return 0;
3146   case Intrinsic::nvvm_suld_1d_i8_clamp:
3147     return NVPTXISD::Suld1DI8Clamp;
3148   case Intrinsic::nvvm_suld_1d_i16_clamp:
3149     return NVPTXISD::Suld1DI16Clamp;
3150   case Intrinsic::nvvm_suld_1d_i32_clamp:
3151     return NVPTXISD::Suld1DI32Clamp;
3152   case Intrinsic::nvvm_suld_1d_i64_clamp:
3153     return NVPTXISD::Suld1DI64Clamp;
3154   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3155     return NVPTXISD::Suld1DV2I8Clamp;
3156   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3157     return NVPTXISD::Suld1DV2I16Clamp;
3158   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3159     return NVPTXISD::Suld1DV2I32Clamp;
3160   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3161     return NVPTXISD::Suld1DV2I64Clamp;
3162   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3163     return NVPTXISD::Suld1DV4I8Clamp;
3164   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3165     return NVPTXISD::Suld1DV4I16Clamp;
3166   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3167     return NVPTXISD::Suld1DV4I32Clamp;
3168   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3169     return NVPTXISD::Suld1DArrayI8Clamp;
3170   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3171     return NVPTXISD::Suld1DArrayI16Clamp;
3172   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3173     return NVPTXISD::Suld1DArrayI32Clamp;
3174   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3175     return NVPTXISD::Suld1DArrayI64Clamp;
3176   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3177     return NVPTXISD::Suld1DArrayV2I8Clamp;
3178   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3179     return NVPTXISD::Suld1DArrayV2I16Clamp;
3180   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3181     return NVPTXISD::Suld1DArrayV2I32Clamp;
3182   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3183     return NVPTXISD::Suld1DArrayV2I64Clamp;
3184   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3185     return NVPTXISD::Suld1DArrayV4I8Clamp;
3186   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3187     return NVPTXISD::Suld1DArrayV4I16Clamp;
3188   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3189     return NVPTXISD::Suld1DArrayV4I32Clamp;
3190   case Intrinsic::nvvm_suld_2d_i8_clamp:
3191     return NVPTXISD::Suld2DI8Clamp;
3192   case Intrinsic::nvvm_suld_2d_i16_clamp:
3193     return NVPTXISD::Suld2DI16Clamp;
3194   case Intrinsic::nvvm_suld_2d_i32_clamp:
3195     return NVPTXISD::Suld2DI32Clamp;
3196   case Intrinsic::nvvm_suld_2d_i64_clamp:
3197     return NVPTXISD::Suld2DI64Clamp;
3198   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3199     return NVPTXISD::Suld2DV2I8Clamp;
3200   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3201     return NVPTXISD::Suld2DV2I16Clamp;
3202   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3203     return NVPTXISD::Suld2DV2I32Clamp;
3204   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3205     return NVPTXISD::Suld2DV2I64Clamp;
3206   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3207     return NVPTXISD::Suld2DV4I8Clamp;
3208   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3209     return NVPTXISD::Suld2DV4I16Clamp;
3210   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3211     return NVPTXISD::Suld2DV4I32Clamp;
3212   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3213     return NVPTXISD::Suld2DArrayI8Clamp;
3214   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3215     return NVPTXISD::Suld2DArrayI16Clamp;
3216   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3217     return NVPTXISD::Suld2DArrayI32Clamp;
3218   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3219     return NVPTXISD::Suld2DArrayI64Clamp;
3220   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3221     return NVPTXISD::Suld2DArrayV2I8Clamp;
3222   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3223     return NVPTXISD::Suld2DArrayV2I16Clamp;
3224   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3225     return NVPTXISD::Suld2DArrayV2I32Clamp;
3226   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3227     return NVPTXISD::Suld2DArrayV2I64Clamp;
3228   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3229     return NVPTXISD::Suld2DArrayV4I8Clamp;
3230   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3231     return NVPTXISD::Suld2DArrayV4I16Clamp;
3232   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3233     return NVPTXISD::Suld2DArrayV4I32Clamp;
3234   case Intrinsic::nvvm_suld_3d_i8_clamp:
3235     return NVPTXISD::Suld3DI8Clamp;
3236   case Intrinsic::nvvm_suld_3d_i16_clamp:
3237     return NVPTXISD::Suld3DI16Clamp;
3238   case Intrinsic::nvvm_suld_3d_i32_clamp:
3239     return NVPTXISD::Suld3DI32Clamp;
3240   case Intrinsic::nvvm_suld_3d_i64_clamp:
3241     return NVPTXISD::Suld3DI64Clamp;
3242   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3243     return NVPTXISD::Suld3DV2I8Clamp;
3244   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3245     return NVPTXISD::Suld3DV2I16Clamp;
3246   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3247     return NVPTXISD::Suld3DV2I32Clamp;
3248   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3249     return NVPTXISD::Suld3DV2I64Clamp;
3250   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3251     return NVPTXISD::Suld3DV4I8Clamp;
3252   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3253     return NVPTXISD::Suld3DV4I16Clamp;
3254   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3255     return NVPTXISD::Suld3DV4I32Clamp;
3256   case Intrinsic::nvvm_suld_1d_i8_trap:
3257     return NVPTXISD::Suld1DI8Trap;
3258   case Intrinsic::nvvm_suld_1d_i16_trap:
3259     return NVPTXISD::Suld1DI16Trap;
3260   case Intrinsic::nvvm_suld_1d_i32_trap:
3261     return NVPTXISD::Suld1DI32Trap;
3262   case Intrinsic::nvvm_suld_1d_i64_trap:
3263     return NVPTXISD::Suld1DI64Trap;
3264   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3265     return NVPTXISD::Suld1DV2I8Trap;
3266   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3267     return NVPTXISD::Suld1DV2I16Trap;
3268   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3269     return NVPTXISD::Suld1DV2I32Trap;
3270   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3271     return NVPTXISD::Suld1DV2I64Trap;
3272   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3273     return NVPTXISD::Suld1DV4I8Trap;
3274   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3275     return NVPTXISD::Suld1DV4I16Trap;
3276   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3277     return NVPTXISD::Suld1DV4I32Trap;
3278   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3279     return NVPTXISD::Suld1DArrayI8Trap;
3280   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3281     return NVPTXISD::Suld1DArrayI16Trap;
3282   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3283     return NVPTXISD::Suld1DArrayI32Trap;
3284   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3285     return NVPTXISD::Suld1DArrayI64Trap;
3286   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3287     return NVPTXISD::Suld1DArrayV2I8Trap;
3288   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3289     return NVPTXISD::Suld1DArrayV2I16Trap;
3290   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3291     return NVPTXISD::Suld1DArrayV2I32Trap;
3292   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3293     return NVPTXISD::Suld1DArrayV2I64Trap;
3294   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3295     return NVPTXISD::Suld1DArrayV4I8Trap;
3296   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3297     return NVPTXISD::Suld1DArrayV4I16Trap;
3298   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3299     return NVPTXISD::Suld1DArrayV4I32Trap;
3300   case Intrinsic::nvvm_suld_2d_i8_trap:
3301     return NVPTXISD::Suld2DI8Trap;
3302   case Intrinsic::nvvm_suld_2d_i16_trap:
3303     return NVPTXISD::Suld2DI16Trap;
3304   case Intrinsic::nvvm_suld_2d_i32_trap:
3305     return NVPTXISD::Suld2DI32Trap;
3306   case Intrinsic::nvvm_suld_2d_i64_trap:
3307     return NVPTXISD::Suld2DI64Trap;
3308   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3309     return NVPTXISD::Suld2DV2I8Trap;
3310   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3311     return NVPTXISD::Suld2DV2I16Trap;
3312   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3313     return NVPTXISD::Suld2DV2I32Trap;
3314   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3315     return NVPTXISD::Suld2DV2I64Trap;
3316   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3317     return NVPTXISD::Suld2DV4I8Trap;
3318   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3319     return NVPTXISD::Suld2DV4I16Trap;
3320   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3321     return NVPTXISD::Suld2DV4I32Trap;
3322   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3323     return NVPTXISD::Suld2DArrayI8Trap;
3324   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3325     return NVPTXISD::Suld2DArrayI16Trap;
3326   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3327     return NVPTXISD::Suld2DArrayI32Trap;
3328   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3329     return NVPTXISD::Suld2DArrayI64Trap;
3330   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3331     return NVPTXISD::Suld2DArrayV2I8Trap;
3332   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3333     return NVPTXISD::Suld2DArrayV2I16Trap;
3334   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3335     return NVPTXISD::Suld2DArrayV2I32Trap;
3336   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3337     return NVPTXISD::Suld2DArrayV2I64Trap;
3338   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3339     return NVPTXISD::Suld2DArrayV4I8Trap;
3340   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3341     return NVPTXISD::Suld2DArrayV4I16Trap;
3342   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3343     return NVPTXISD::Suld2DArrayV4I32Trap;
3344   case Intrinsic::nvvm_suld_3d_i8_trap:
3345     return NVPTXISD::Suld3DI8Trap;
3346   case Intrinsic::nvvm_suld_3d_i16_trap:
3347     return NVPTXISD::Suld3DI16Trap;
3348   case Intrinsic::nvvm_suld_3d_i32_trap:
3349     return NVPTXISD::Suld3DI32Trap;
3350   case Intrinsic::nvvm_suld_3d_i64_trap:
3351     return NVPTXISD::Suld3DI64Trap;
3352   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3353     return NVPTXISD::Suld3DV2I8Trap;
3354   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3355     return NVPTXISD::Suld3DV2I16Trap;
3356   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3357     return NVPTXISD::Suld3DV2I32Trap;
3358   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3359     return NVPTXISD::Suld3DV2I64Trap;
3360   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3361     return NVPTXISD::Suld3DV4I8Trap;
3362   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3363     return NVPTXISD::Suld3DV4I16Trap;
3364   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3365     return NVPTXISD::Suld3DV4I32Trap;
3366   case Intrinsic::nvvm_suld_1d_i8_zero:
3367     return NVPTXISD::Suld1DI8Zero;
3368   case Intrinsic::nvvm_suld_1d_i16_zero:
3369     return NVPTXISD::Suld1DI16Zero;
3370   case Intrinsic::nvvm_suld_1d_i32_zero:
3371     return NVPTXISD::Suld1DI32Zero;
3372   case Intrinsic::nvvm_suld_1d_i64_zero:
3373     return NVPTXISD::Suld1DI64Zero;
3374   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3375     return NVPTXISD::Suld1DV2I8Zero;
3376   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3377     return NVPTXISD::Suld1DV2I16Zero;
3378   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3379     return NVPTXISD::Suld1DV2I32Zero;
3380   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3381     return NVPTXISD::Suld1DV2I64Zero;
3382   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3383     return NVPTXISD::Suld1DV4I8Zero;
3384   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3385     return NVPTXISD::Suld1DV4I16Zero;
3386   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3387     return NVPTXISD::Suld1DV4I32Zero;
3388   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3389     return NVPTXISD::Suld1DArrayI8Zero;
3390   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3391     return NVPTXISD::Suld1DArrayI16Zero;
3392   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3393     return NVPTXISD::Suld1DArrayI32Zero;
3394   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3395     return NVPTXISD::Suld1DArrayI64Zero;
3396   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3397     return NVPTXISD::Suld1DArrayV2I8Zero;
3398   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3399     return NVPTXISD::Suld1DArrayV2I16Zero;
3400   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3401     return NVPTXISD::Suld1DArrayV2I32Zero;
3402   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3403     return NVPTXISD::Suld1DArrayV2I64Zero;
3404   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3405     return NVPTXISD::Suld1DArrayV4I8Zero;
3406   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3407     return NVPTXISD::Suld1DArrayV4I16Zero;
3408   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3409     return NVPTXISD::Suld1DArrayV4I32Zero;
3410   case Intrinsic::nvvm_suld_2d_i8_zero:
3411     return NVPTXISD::Suld2DI8Zero;
3412   case Intrinsic::nvvm_suld_2d_i16_zero:
3413     return NVPTXISD::Suld2DI16Zero;
3414   case Intrinsic::nvvm_suld_2d_i32_zero:
3415     return NVPTXISD::Suld2DI32Zero;
3416   case Intrinsic::nvvm_suld_2d_i64_zero:
3417     return NVPTXISD::Suld2DI64Zero;
3418   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3419     return NVPTXISD::Suld2DV2I8Zero;
3420   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3421     return NVPTXISD::Suld2DV2I16Zero;
3422   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3423     return NVPTXISD::Suld2DV2I32Zero;
3424   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3425     return NVPTXISD::Suld2DV2I64Zero;
3426   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3427     return NVPTXISD::Suld2DV4I8Zero;
3428   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3429     return NVPTXISD::Suld2DV4I16Zero;
3430   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3431     return NVPTXISD::Suld2DV4I32Zero;
3432   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3433     return NVPTXISD::Suld2DArrayI8Zero;
3434   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3435     return NVPTXISD::Suld2DArrayI16Zero;
3436   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3437     return NVPTXISD::Suld2DArrayI32Zero;
3438   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3439     return NVPTXISD::Suld2DArrayI64Zero;
3440   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3441     return NVPTXISD::Suld2DArrayV2I8Zero;
3442   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3443     return NVPTXISD::Suld2DArrayV2I16Zero;
3444   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3445     return NVPTXISD::Suld2DArrayV2I32Zero;
3446   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3447     return NVPTXISD::Suld2DArrayV2I64Zero;
3448   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3449     return NVPTXISD::Suld2DArrayV4I8Zero;
3450   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3451     return NVPTXISD::Suld2DArrayV4I16Zero;
3452   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3453     return NVPTXISD::Suld2DArrayV4I32Zero;
3454   case Intrinsic::nvvm_suld_3d_i8_zero:
3455     return NVPTXISD::Suld3DI8Zero;
3456   case Intrinsic::nvvm_suld_3d_i16_zero:
3457     return NVPTXISD::Suld3DI16Zero;
3458   case Intrinsic::nvvm_suld_3d_i32_zero:
3459     return NVPTXISD::Suld3DI32Zero;
3460   case Intrinsic::nvvm_suld_3d_i64_zero:
3461     return NVPTXISD::Suld3DI64Zero;
3462   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3463     return NVPTXISD::Suld3DV2I8Zero;
3464   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3465     return NVPTXISD::Suld3DV2I16Zero;
3466   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3467     return NVPTXISD::Suld3DV2I32Zero;
3468   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3469     return NVPTXISD::Suld3DV2I64Zero;
3470   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3471     return NVPTXISD::Suld3DV4I8Zero;
3472   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3473     return NVPTXISD::Suld3DV4I16Zero;
3474   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3475     return NVPTXISD::Suld3DV4I32Zero;
3476   }
3477 }
3478 
3479 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3480 // TgtMemIntrinsic
3481 // because we need the information that is only available in the "Value" type
3482 // of destination
3483 // pointer. In particular, the address space information.
3484 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3485     IntrinsicInfo &Info, const CallInst &I,
3486     MachineFunction &MF, unsigned Intrinsic) const {
3487   switch (Intrinsic) {
3488   default:
3489     return false;
3490   case Intrinsic::nvvm_match_all_sync_i32p:
3491   case Intrinsic::nvvm_match_all_sync_i64p:
3492     Info.opc = ISD::INTRINSIC_W_CHAIN;
3493     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3494     // in order to model data exchange with other threads, but perform no real
3495     // memory accesses.
3496     Info.memVT = MVT::i1;
3497 
3498     // Our result depends on both our and other thread's arguments.
3499     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3500     return true;
3501   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3502   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3503   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3504   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3505   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3506   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3507   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3508   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3509   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3510   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3511   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3512   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3513   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3514   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3515   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3516   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3517   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3518   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3519   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3520   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3521   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3522   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3523   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3524   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3525     Info.opc = ISD::INTRINSIC_W_CHAIN;
3526     Info.memVT = MVT::v8f16;
3527     Info.ptrVal = I.getArgOperand(0);
3528     Info.offset = 0;
3529     Info.flags = MachineMemOperand::MOLoad;
3530     Info.align = Align(16);
3531     return true;
3532   }
3533   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3534   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3535   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3536   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3537   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3538   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3539   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3540   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3541   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3542   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3543   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3544   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3545   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3546   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3547   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3548   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3549   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3550   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3551   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3552   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3553   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3554   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3555   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3556   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3557     Info.opc = ISD::INTRINSIC_W_CHAIN;
3558     Info.memVT = MVT::v2i32;
3559     Info.ptrVal = I.getArgOperand(0);
3560     Info.offset = 0;
3561     Info.flags = MachineMemOperand::MOLoad;
3562     Info.align = Align(8);
3563     return true;
3564   }
3565 
3566   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3567   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3568   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3569   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3570   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3571   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3572   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3573   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3574   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3575   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3576   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3577   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3578   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3579   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3580   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3581   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3582 
3583   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3584   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3585   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3586   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3587   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3588   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3589   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3590   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3591   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3592   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3593   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3594   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3595   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3596   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3597   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3598   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
3599   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
3600   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
3601     Info.opc = ISD::INTRINSIC_W_CHAIN;
3602     Info.memVT = MVT::v4i32;
3603     Info.ptrVal = I.getArgOperand(0);
3604     Info.offset = 0;
3605     Info.flags = MachineMemOperand::MOLoad;
3606     Info.align = Align(16);
3607     return true;
3608   }
3609 
3610   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3611   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3612   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3613   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3614   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3615   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3616   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3617   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3618 
3619   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3620   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3621   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3622   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3623   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3624   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3625   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3626   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3627   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3628   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3629   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3630   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3631   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3632   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3633   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3634   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3635   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3636   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3637   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3638   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
3639   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
3640   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
3641     Info.opc = ISD::INTRINSIC_W_CHAIN;
3642     Info.memVT = MVT::i32;
3643     Info.ptrVal = I.getArgOperand(0);
3644     Info.offset = 0;
3645     Info.flags = MachineMemOperand::MOLoad;
3646     Info.align = Align(4);
3647     return true;
3648   }
3649 
3650   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3651   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3652   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3653   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3654   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3655   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3656   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3657   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3658   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3659   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3660   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3661   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3662     Info.opc = ISD::INTRINSIC_W_CHAIN;
3663     Info.memVT = MVT::v4f16;
3664     Info.ptrVal = I.getArgOperand(0);
3665     Info.offset = 0;
3666     Info.flags = MachineMemOperand::MOLoad;
3667     Info.align = Align(16);
3668     return true;
3669   }
3670 
3671   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3672   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3673   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3674   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3675   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3676   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3677   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3678   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3679   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3680   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3681   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3682   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3683   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3684   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3685   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3686   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3687     Info.opc = ISD::INTRINSIC_W_CHAIN;
3688     Info.memVT = MVT::v8f32;
3689     Info.ptrVal = I.getArgOperand(0);
3690     Info.offset = 0;
3691     Info.flags = MachineMemOperand::MOLoad;
3692     Info.align = Align(16);
3693     return true;
3694   }
3695 
3696   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3697   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3698   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3699   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3700 
3701   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3702   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3703   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3704   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3705 
3706   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3707   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3708   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3709   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3710   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3711   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3712   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3713   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3714   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3715   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3716   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3717   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3718     Info.opc = ISD::INTRINSIC_W_CHAIN;
3719     Info.memVT = MVT::v8i32;
3720     Info.ptrVal = I.getArgOperand(0);
3721     Info.offset = 0;
3722     Info.flags = MachineMemOperand::MOLoad;
3723     Info.align = Align(16);
3724     return true;
3725   }
3726 
3727   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3728   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3729   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3730   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3731   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3732   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3733   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3734   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
3735   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
3736   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
3737     Info.opc = ISD::INTRINSIC_W_CHAIN;
3738     Info.memVT = MVT::v2i32;
3739     Info.ptrVal = I.getArgOperand(0);
3740     Info.offset = 0;
3741     Info.flags = MachineMemOperand::MOLoad;
3742     Info.align = Align(8);
3743     return true;
3744   }
3745 
3746   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3747   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3748   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3749   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3750 
3751   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3752   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3753   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3754   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3755     Info.opc = ISD::INTRINSIC_W_CHAIN;
3756     Info.memVT = MVT::f64;
3757     Info.ptrVal = I.getArgOperand(0);
3758     Info.offset = 0;
3759     Info.flags = MachineMemOperand::MOLoad;
3760     Info.align = Align(8);
3761     return true;
3762   }
3763 
3764   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3765   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3766   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3767   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3768     Info.opc = ISD::INTRINSIC_W_CHAIN;
3769     Info.memVT = MVT::v2f64;
3770     Info.ptrVal = I.getArgOperand(0);
3771     Info.offset = 0;
3772     Info.flags = MachineMemOperand::MOLoad;
3773     Info.align = Align(16);
3774     return true;
3775   }
3776 
3777   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3778   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3779   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3780   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3781   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3782   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3783   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3784   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3785   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3786   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3787   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3788   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3789     Info.opc = ISD::INTRINSIC_VOID;
3790     Info.memVT = MVT::v4f16;
3791     Info.ptrVal = I.getArgOperand(0);
3792     Info.offset = 0;
3793     Info.flags = MachineMemOperand::MOStore;
3794     Info.align = Align(16);
3795     return true;
3796   }
3797 
3798   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3799   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3800   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3801   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3802   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3803   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3804   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3805   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3806   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3807   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3808   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3809   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
3810   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
3811   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
3812   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
3813   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
3814     Info.opc = ISD::INTRINSIC_VOID;
3815     Info.memVT = MVT::v8f32;
3816     Info.ptrVal = I.getArgOperand(0);
3817     Info.offset = 0;
3818     Info.flags = MachineMemOperand::MOStore;
3819     Info.align = Align(16);
3820     return true;
3821   }
3822 
3823   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3824   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3825   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3826   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3827   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3828   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3829   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3830   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3831   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3832   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3833   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3834   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3835     Info.opc = ISD::INTRINSIC_VOID;
3836     Info.memVT = MVT::v8i32;
3837     Info.ptrVal = I.getArgOperand(0);
3838     Info.offset = 0;
3839     Info.flags = MachineMemOperand::MOStore;
3840     Info.align = Align(16);
3841     return true;
3842   }
3843 
3844   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3845   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3846   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3847   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3848   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3849   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3850   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3851   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3852     Info.opc = ISD::INTRINSIC_VOID;
3853     Info.memVT = MVT::v2i32;
3854     Info.ptrVal = I.getArgOperand(0);
3855     Info.offset = 0;
3856     Info.flags = MachineMemOperand::MOStore;
3857     Info.align = Align(8);
3858     return true;
3859   }
3860 
3861   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
3862   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
3863   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
3864   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
3865     Info.opc = ISD::INTRINSIC_VOID;
3866     Info.memVT = MVT::v2f64;
3867     Info.ptrVal = I.getArgOperand(0);
3868     Info.offset = 0;
3869     Info.flags = MachineMemOperand::MOStore;
3870     Info.align = Align(16);
3871     return true;
3872   }
3873 
3874   case Intrinsic::nvvm_atomic_load_inc_32:
3875   case Intrinsic::nvvm_atomic_load_dec_32:
3876 
3877   case Intrinsic::nvvm_atomic_add_gen_f_cta:
3878   case Intrinsic::nvvm_atomic_add_gen_f_sys:
3879   case Intrinsic::nvvm_atomic_add_gen_i_cta:
3880   case Intrinsic::nvvm_atomic_add_gen_i_sys:
3881   case Intrinsic::nvvm_atomic_and_gen_i_cta:
3882   case Intrinsic::nvvm_atomic_and_gen_i_sys:
3883   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3884   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3885   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3886   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3887   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3888   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3889   case Intrinsic::nvvm_atomic_max_gen_i_cta:
3890   case Intrinsic::nvvm_atomic_max_gen_i_sys:
3891   case Intrinsic::nvvm_atomic_min_gen_i_cta:
3892   case Intrinsic::nvvm_atomic_min_gen_i_sys:
3893   case Intrinsic::nvvm_atomic_or_gen_i_cta:
3894   case Intrinsic::nvvm_atomic_or_gen_i_sys:
3895   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3896   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3897   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3898   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3899     auto &DL = I.getModule()->getDataLayout();
3900     Info.opc = ISD::INTRINSIC_W_CHAIN;
3901     Info.memVT = getValueType(DL, I.getType());
3902     Info.ptrVal = I.getArgOperand(0);
3903     Info.offset = 0;
3904     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3905     Info.align.reset();
3906     return true;
3907   }
3908 
3909   case Intrinsic::nvvm_ldu_global_i:
3910   case Intrinsic::nvvm_ldu_global_f:
3911   case Intrinsic::nvvm_ldu_global_p: {
3912     auto &DL = I.getModule()->getDataLayout();
3913     Info.opc = ISD::INTRINSIC_W_CHAIN;
3914     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3915       Info.memVT = getValueType(DL, I.getType());
3916     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3917       Info.memVT = getPointerTy(DL);
3918     else
3919       Info.memVT = getValueType(DL, I.getType());
3920     Info.ptrVal = I.getArgOperand(0);
3921     Info.offset = 0;
3922     Info.flags = MachineMemOperand::MOLoad;
3923     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3924 
3925     return true;
3926   }
3927   case Intrinsic::nvvm_ldg_global_i:
3928   case Intrinsic::nvvm_ldg_global_f:
3929   case Intrinsic::nvvm_ldg_global_p: {
3930     auto &DL = I.getModule()->getDataLayout();
3931 
3932     Info.opc = ISD::INTRINSIC_W_CHAIN;
3933     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3934       Info.memVT = getValueType(DL, I.getType());
3935     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3936       Info.memVT = getPointerTy(DL);
3937     else
3938       Info.memVT = getValueType(DL, I.getType());
3939     Info.ptrVal = I.getArgOperand(0);
3940     Info.offset = 0;
3941     Info.flags = MachineMemOperand::MOLoad;
3942     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3943 
3944     return true;
3945   }
3946 
3947   case Intrinsic::nvvm_tex_1d_v4f32_s32:
3948   case Intrinsic::nvvm_tex_1d_v4f32_f32:
3949   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3950   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3951   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3952   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3953   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3954   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3955   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3956   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3957   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3958   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3959   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3960   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3961   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3962   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3963   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3964   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3965   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3966   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3967   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3968   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3969   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3970   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3971   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3972   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3973   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3974   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3975   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3976   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3977   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3978   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3979   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3980   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3981   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3982   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3983   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3984   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3985   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3986   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3987   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3988   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3989   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3990   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3991   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3992   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3993   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3994   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3995   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3996   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3997   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3998   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3999   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
4000   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
4001   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
4002   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
4003     Info.opc = getOpcForTextureInstr(Intrinsic);
4004     Info.memVT = MVT::v4f32;
4005     Info.ptrVal = nullptr;
4006     Info.offset = 0;
4007     Info.flags = MachineMemOperand::MOLoad;
4008     Info.align = Align(16);
4009     return true;
4010 
4011   case Intrinsic::nvvm_tex_1d_v4s32_s32:
4012   case Intrinsic::nvvm_tex_1d_v4s32_f32:
4013   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
4014   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
4015   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
4016   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
4017   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
4018   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
4019   case Intrinsic::nvvm_tex_2d_v4s32_s32:
4020   case Intrinsic::nvvm_tex_2d_v4s32_f32:
4021   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
4022   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
4023   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
4024   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
4025   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
4026   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
4027   case Intrinsic::nvvm_tex_3d_v4s32_s32:
4028   case Intrinsic::nvvm_tex_3d_v4s32_f32:
4029   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
4030   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
4031   case Intrinsic::nvvm_tex_cube_v4s32_f32:
4032   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
4033   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
4034   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4035   case Intrinsic::nvvm_tex_cube_v4u32_f32:
4036   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4037   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4038   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4039   case Intrinsic::nvvm_tex_1d_v4u32_s32:
4040   case Intrinsic::nvvm_tex_1d_v4u32_f32:
4041   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4042   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4043   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4044   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4045   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4046   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4047   case Intrinsic::nvvm_tex_2d_v4u32_s32:
4048   case Intrinsic::nvvm_tex_2d_v4u32_f32:
4049   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4050   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4051   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4052   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4053   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4054   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4055   case Intrinsic::nvvm_tex_3d_v4u32_s32:
4056   case Intrinsic::nvvm_tex_3d_v4u32_f32:
4057   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4058   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4059   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4060   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4061   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4062   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4063   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4064   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4065   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4066   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4067   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4068   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4069   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4070   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4071   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4072   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4073   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4074   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4075   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4076   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4077   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4078   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4079   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4080   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4081   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4082   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4083   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4084   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4085   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4086   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4087   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4088   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4089   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4090   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4091   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4092   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4093   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4094   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4095   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4096   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4097   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4098   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4099   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4100   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4101   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4102   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4103   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4104   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4105   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4106   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4107   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4108   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4109   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4110   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4111   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4112   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4113   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4114   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4115   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4116   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4117   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4118   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4119   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4120   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4121   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4122   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4123     Info.opc = getOpcForTextureInstr(Intrinsic);
4124     Info.memVT = MVT::v4i32;
4125     Info.ptrVal = nullptr;
4126     Info.offset = 0;
4127     Info.flags = MachineMemOperand::MOLoad;
4128     Info.align = Align(16);
4129     return true;
4130 
4131   case Intrinsic::nvvm_suld_1d_i8_clamp:
4132   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4133   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4134   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4135   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4136   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4137   case Intrinsic::nvvm_suld_2d_i8_clamp:
4138   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4139   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4140   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4141   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4142   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4143   case Intrinsic::nvvm_suld_3d_i8_clamp:
4144   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4145   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4146   case Intrinsic::nvvm_suld_1d_i8_trap:
4147   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4148   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4149   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4150   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4151   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4152   case Intrinsic::nvvm_suld_2d_i8_trap:
4153   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4154   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4155   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4156   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4157   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4158   case Intrinsic::nvvm_suld_3d_i8_trap:
4159   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4160   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4161   case Intrinsic::nvvm_suld_1d_i8_zero:
4162   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4163   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4164   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4165   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4166   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4167   case Intrinsic::nvvm_suld_2d_i8_zero:
4168   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4169   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4170   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4171   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4172   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4173   case Intrinsic::nvvm_suld_3d_i8_zero:
4174   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4175   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4176     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4177     Info.memVT = MVT::i8;
4178     Info.ptrVal = nullptr;
4179     Info.offset = 0;
4180     Info.flags = MachineMemOperand::MOLoad;
4181     Info.align = Align(16);
4182     return true;
4183 
4184   case Intrinsic::nvvm_suld_1d_i16_clamp:
4185   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4186   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4187   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4188   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4189   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4190   case Intrinsic::nvvm_suld_2d_i16_clamp:
4191   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4192   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4193   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4194   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4195   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4196   case Intrinsic::nvvm_suld_3d_i16_clamp:
4197   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4198   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4199   case Intrinsic::nvvm_suld_1d_i16_trap:
4200   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4201   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4202   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4203   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4204   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4205   case Intrinsic::nvvm_suld_2d_i16_trap:
4206   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4207   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4208   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4209   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4210   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4211   case Intrinsic::nvvm_suld_3d_i16_trap:
4212   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4213   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4214   case Intrinsic::nvvm_suld_1d_i16_zero:
4215   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4216   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4217   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4218   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4219   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4220   case Intrinsic::nvvm_suld_2d_i16_zero:
4221   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4222   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4223   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4224   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4225   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4226   case Intrinsic::nvvm_suld_3d_i16_zero:
4227   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4228   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4229     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4230     Info.memVT = MVT::i16;
4231     Info.ptrVal = nullptr;
4232     Info.offset = 0;
4233     Info.flags = MachineMemOperand::MOLoad;
4234     Info.align = Align(16);
4235     return true;
4236 
4237   case Intrinsic::nvvm_suld_1d_i32_clamp:
4238   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4239   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4240   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4241   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4242   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4243   case Intrinsic::nvvm_suld_2d_i32_clamp:
4244   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4245   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4246   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4247   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4248   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4249   case Intrinsic::nvvm_suld_3d_i32_clamp:
4250   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4251   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4252   case Intrinsic::nvvm_suld_1d_i32_trap:
4253   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4254   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4255   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4256   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4257   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4258   case Intrinsic::nvvm_suld_2d_i32_trap:
4259   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4260   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4261   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4262   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4263   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4264   case Intrinsic::nvvm_suld_3d_i32_trap:
4265   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4266   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4267   case Intrinsic::nvvm_suld_1d_i32_zero:
4268   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4269   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4270   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4271   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4272   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4273   case Intrinsic::nvvm_suld_2d_i32_zero:
4274   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4275   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4276   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4277   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4278   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4279   case Intrinsic::nvvm_suld_3d_i32_zero:
4280   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4281   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4282     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4283     Info.memVT = MVT::i32;
4284     Info.ptrVal = nullptr;
4285     Info.offset = 0;
4286     Info.flags = MachineMemOperand::MOLoad;
4287     Info.align = Align(16);
4288     return true;
4289 
4290   case Intrinsic::nvvm_suld_1d_i64_clamp:
4291   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4292   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4293   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4294   case Intrinsic::nvvm_suld_2d_i64_clamp:
4295   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4296   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4297   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4298   case Intrinsic::nvvm_suld_3d_i64_clamp:
4299   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4300   case Intrinsic::nvvm_suld_1d_i64_trap:
4301   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4302   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4303   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4304   case Intrinsic::nvvm_suld_2d_i64_trap:
4305   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4306   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4307   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4308   case Intrinsic::nvvm_suld_3d_i64_trap:
4309   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4310   case Intrinsic::nvvm_suld_1d_i64_zero:
4311   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4312   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4313   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4314   case Intrinsic::nvvm_suld_2d_i64_zero:
4315   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4316   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4317   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4318   case Intrinsic::nvvm_suld_3d_i64_zero:
4319   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4320     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4321     Info.memVT = MVT::i64;
4322     Info.ptrVal = nullptr;
4323     Info.offset = 0;
4324     Info.flags = MachineMemOperand::MOLoad;
4325     Info.align = Align(16);
4326     return true;
4327   }
4328   return false;
4329 }
4330 
4331 /// getFunctionParamOptimizedAlign - since function arguments are passed via
4332 /// .param space, we may want to increase their alignment in a way that
4333 /// ensures that we can effectively vectorize their loads & stores. We can
4334 /// increase alignment only if the function has internal or has private
4335 /// linkage as for other linkage types callers may already rely on default
4336 /// alignment. To allow using 128-bit vectorized loads/stores, this function
4337 /// ensures that alignment is 16 or greater.
4338 Align NVPTXTargetLowering::getFunctionParamOptimizedAlign(
4339     const Function *F, Type *ArgTy, const DataLayout &DL) const {
4340   const uint64_t ABITypeAlign = DL.getABITypeAlign(ArgTy).value();
4341 
4342   // If a function has linkage different from internal or private, we
4343   // must use default ABI alignment as external users rely on it.
4344   if (!F->hasLocalLinkage())
4345     return Align(ABITypeAlign);
4346 
4347   assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
4348   return Align(std::max(uint64_t(16), ABITypeAlign));
4349 }
4350 
4351 /// isLegalAddressingMode - Return true if the addressing mode represented
4352 /// by AM is legal for this target, for a load/store of the specified type.
4353 /// Used to guide target specific optimizations, like loop strength reduction
4354 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4355 /// (CodeGenPrepare.cpp)
4356 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4357                                                 const AddrMode &AM, Type *Ty,
4358                                                 unsigned AS, Instruction *I) const {
4359   // AddrMode - This represents an addressing mode of:
4360   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4361   //
4362   // The legal address modes are
4363   // - [avar]
4364   // - [areg]
4365   // - [areg+immoff]
4366   // - [immAddr]
4367 
4368   if (AM.BaseGV) {
4369     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4370   }
4371 
4372   switch (AM.Scale) {
4373   case 0: // "r", "r+i" or "i" is allowed
4374     break;
4375   case 1:
4376     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4377       return false;
4378     // Otherwise we have r+i.
4379     break;
4380   default:
4381     // No scale > 1 is allowed
4382     return false;
4383   }
4384   return true;
4385 }
4386 
4387 //===----------------------------------------------------------------------===//
4388 //                         NVPTX Inline Assembly Support
4389 //===----------------------------------------------------------------------===//
4390 
4391 /// getConstraintType - Given a constraint letter, return the type of
4392 /// constraint it is for this target.
4393 NVPTXTargetLowering::ConstraintType
4394 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4395   if (Constraint.size() == 1) {
4396     switch (Constraint[0]) {
4397     default:
4398       break;
4399     case 'b':
4400     case 'r':
4401     case 'h':
4402     case 'c':
4403     case 'l':
4404     case 'f':
4405     case 'd':
4406     case '0':
4407     case 'N':
4408       return C_RegisterClass;
4409     }
4410   }
4411   return TargetLowering::getConstraintType(Constraint);
4412 }
4413 
4414 std::pair<unsigned, const TargetRegisterClass *>
4415 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4416                                                   StringRef Constraint,
4417                                                   MVT VT) const {
4418   if (Constraint.size() == 1) {
4419     switch (Constraint[0]) {
4420     case 'b':
4421       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4422     case 'c':
4423       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4424     case 'h':
4425       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4426     case 'r':
4427       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4428     case 'l':
4429     case 'N':
4430       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4431     case 'f':
4432       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4433     case 'd':
4434       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4435     }
4436   }
4437   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4438 }
4439 
4440 //===----------------------------------------------------------------------===//
4441 //                         NVPTX DAG Combining
4442 //===----------------------------------------------------------------------===//
4443 
4444 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4445                                    CodeGenOpt::Level OptLevel) const {
4446   // Always honor command-line argument
4447   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4448     return FMAContractLevelOpt > 0;
4449 
4450   // Do not contract if we're not optimizing the code.
4451   if (OptLevel == 0)
4452     return false;
4453 
4454   // Honor TargetOptions flags that explicitly say fusion is okay.
4455   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4456     return true;
4457 
4458   return allowUnsafeFPMath(MF);
4459 }
4460 
4461 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4462   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4463   if (MF.getTarget().Options.UnsafeFPMath)
4464     return true;
4465 
4466   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4467   const Function &F = MF.getFunction();
4468   return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
4469 }
4470 
4471 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4472 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4473 /// called with the default operands, and if that fails, with commuted
4474 /// operands.
4475 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4476                                            TargetLowering::DAGCombinerInfo &DCI,
4477                                              const NVPTXSubtarget &Subtarget,
4478                                              CodeGenOpt::Level OptLevel) {
4479   SelectionDAG  &DAG = DCI.DAG;
4480   // Skip non-integer, non-scalar case
4481   EVT VT=N0.getValueType();
4482   if (VT.isVector())
4483     return SDValue();
4484 
4485   // fold (add (mul a, b), c) -> (mad a, b, c)
4486   //
4487   if (N0.getOpcode() == ISD::MUL) {
4488     assert (VT.isInteger());
4489     // For integer:
4490     // Since integer multiply-add costs the same as integer multiply
4491     // but is more costly than integer add, do the fusion only when
4492     // the mul is only used in the add.
4493     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4494         !N0.getNode()->hasOneUse())
4495       return SDValue();
4496 
4497     // Do the folding
4498     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4499                        N0.getOperand(0), N0.getOperand(1), N1);
4500   }
4501   else if (N0.getOpcode() == ISD::FMUL) {
4502     if (VT == MVT::f32 || VT == MVT::f64) {
4503       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4504           &DAG.getTargetLoweringInfo());
4505       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4506         return SDValue();
4507 
4508       // For floating point:
4509       // Do the fusion only when the mul has less than 5 uses and all
4510       // are add.
4511       // The heuristic is that if a use is not an add, then that use
4512       // cannot be fused into fma, therefore mul is still needed anyway.
4513       // If there are more than 4 uses, even if they are all add, fusing
4514       // them will increase register pressue.
4515       //
4516       int numUses = 0;
4517       int nonAddCount = 0;
4518       for (const SDNode *User : N0.getNode()->uses()) {
4519         numUses++;
4520         if (User->getOpcode() != ISD::FADD)
4521           ++nonAddCount;
4522       }
4523       if (numUses >= 5)
4524         return SDValue();
4525       if (nonAddCount) {
4526         int orderNo = N->getIROrder();
4527         int orderNo2 = N0.getNode()->getIROrder();
4528         // simple heuristics here for considering potential register
4529         // pressure, the logics here is that the differnce are used
4530         // to measure the distance between def and use, the longer distance
4531         // more likely cause register pressure.
4532         if (orderNo - orderNo2 < 500)
4533           return SDValue();
4534 
4535         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4536         // which guarantees that the FMA will not increase register pressure at node N.
4537         bool opIsLive = false;
4538         const SDNode *left = N0.getOperand(0).getNode();
4539         const SDNode *right = N0.getOperand(1).getNode();
4540 
4541         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4542           opIsLive = true;
4543 
4544         if (!opIsLive)
4545           for (const SDNode *User : left->uses()) {
4546             int orderNo3 = User->getIROrder();
4547             if (orderNo3 > orderNo) {
4548               opIsLive = true;
4549               break;
4550             }
4551           }
4552 
4553         if (!opIsLive)
4554           for (const SDNode *User : right->uses()) {
4555             int orderNo3 = User->getIROrder();
4556             if (orderNo3 > orderNo) {
4557               opIsLive = true;
4558               break;
4559             }
4560           }
4561 
4562         if (!opIsLive)
4563           return SDValue();
4564       }
4565 
4566       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4567                          N0.getOperand(0), N0.getOperand(1), N1);
4568     }
4569   }
4570 
4571   return SDValue();
4572 }
4573 
4574 static SDValue PerformStoreRetvalCombine(SDNode *N) {
4575   // Operands from the 2nd to the last one are the values to be stored
4576   for (std::size_t I = 2, OpsCount = N->ops().size(); I != OpsCount; ++I)
4577     if (!N->getOperand(I).isUndef())
4578       return SDValue();
4579 
4580   // Operand 0 is the previous value in the chain. Cannot return EntryToken
4581   // as the previous value will become unused and eliminated later.
4582   return N->getOperand(0);
4583 }
4584 
4585 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4586 ///
4587 static SDValue PerformADDCombine(SDNode *N,
4588                                  TargetLowering::DAGCombinerInfo &DCI,
4589                                  const NVPTXSubtarget &Subtarget,
4590                                  CodeGenOpt::Level OptLevel) {
4591   SDValue N0 = N->getOperand(0);
4592   SDValue N1 = N->getOperand(1);
4593 
4594   // First try with the default operand order.
4595   if (SDValue Result =
4596           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4597     return Result;
4598 
4599   // If that didn't work, try again with the operands commuted.
4600   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4601 }
4602 
4603 static SDValue PerformANDCombine(SDNode *N,
4604                                  TargetLowering::DAGCombinerInfo &DCI) {
4605   // The type legalizer turns a vector load of i8 values into a zextload to i16
4606   // registers, optionally ANY_EXTENDs it (if target type is integer),
4607   // and ANDs off the high 8 bits. Since we turn this load into a
4608   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4609   // nodes. Do that here.
4610   SDValue Val = N->getOperand(0);
4611   SDValue Mask = N->getOperand(1);
4612 
4613   if (isa<ConstantSDNode>(Val)) {
4614     std::swap(Val, Mask);
4615   }
4616 
4617   SDValue AExt;
4618   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4619   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4620     AExt = Val;
4621     Val = Val->getOperand(0);
4622   }
4623 
4624   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4625     Val = Val->getOperand(0);
4626   }
4627 
4628   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4629       Val->getOpcode() == NVPTXISD::LoadV4) {
4630     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4631     if (!MaskCnst) {
4632       // Not an AND with a constant
4633       return SDValue();
4634     }
4635 
4636     uint64_t MaskVal = MaskCnst->getZExtValue();
4637     if (MaskVal != 0xff) {
4638       // Not an AND that chops off top 8 bits
4639       return SDValue();
4640     }
4641 
4642     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4643     if (!Mem) {
4644       // Not a MemSDNode?!?
4645       return SDValue();
4646     }
4647 
4648     EVT MemVT = Mem->getMemoryVT();
4649     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4650       // We only handle the i8 case
4651       return SDValue();
4652     }
4653 
4654     unsigned ExtType =
4655       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4656         getZExtValue();
4657     if (ExtType == ISD::SEXTLOAD) {
4658       // If for some reason the load is a sextload, the and is needed to zero
4659       // out the high 8 bits
4660       return SDValue();
4661     }
4662 
4663     bool AddTo = false;
4664     if (AExt.getNode() != nullptr) {
4665       // Re-insert the ext as a zext.
4666       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4667                             AExt.getValueType(), Val);
4668       AddTo = true;
4669     }
4670 
4671     // If we get here, the AND is unnecessary.  Just replace it with the load
4672     DCI.CombineTo(N, Val, AddTo);
4673   }
4674 
4675   return SDValue();
4676 }
4677 
4678 static SDValue PerformREMCombine(SDNode *N,
4679                                  TargetLowering::DAGCombinerInfo &DCI,
4680                                  CodeGenOpt::Level OptLevel) {
4681   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4682 
4683   // Don't do anything at less than -O2.
4684   if (OptLevel < CodeGenOpt::Default)
4685     return SDValue();
4686 
4687   SelectionDAG &DAG = DCI.DAG;
4688   SDLoc DL(N);
4689   EVT VT = N->getValueType(0);
4690   bool IsSigned = N->getOpcode() == ISD::SREM;
4691   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4692 
4693   const SDValue &Num = N->getOperand(0);
4694   const SDValue &Den = N->getOperand(1);
4695 
4696   for (const SDNode *U : Num->uses()) {
4697     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4698         U->getOperand(1) == Den) {
4699       // Num % Den -> Num - (Num / Den) * Den
4700       return DAG.getNode(ISD::SUB, DL, VT, Num,
4701                          DAG.getNode(ISD::MUL, DL, VT,
4702                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4703                                      Den));
4704     }
4705   }
4706   return SDValue();
4707 }
4708 
4709 enum OperandSignedness {
4710   Signed = 0,
4711   Unsigned,
4712   Unknown
4713 };
4714 
4715 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4716 /// that can be demoted to \p OptSize bits without loss of information. The
4717 /// signedness of the operand, if determinable, is placed in \p S.
4718 static bool IsMulWideOperandDemotable(SDValue Op,
4719                                       unsigned OptSize,
4720                                       OperandSignedness &S) {
4721   S = Unknown;
4722 
4723   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4724       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4725     EVT OrigVT = Op.getOperand(0).getValueType();
4726     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4727       S = Signed;
4728       return true;
4729     }
4730   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4731     EVT OrigVT = Op.getOperand(0).getValueType();
4732     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4733       S = Unsigned;
4734       return true;
4735     }
4736   }
4737 
4738   return false;
4739 }
4740 
4741 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4742 /// be demoted to \p OptSize bits without loss of information. If the operands
4743 /// contain a constant, it should appear as the RHS operand. The signedness of
4744 /// the operands is placed in \p IsSigned.
4745 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4746                                         unsigned OptSize,
4747                                         bool &IsSigned) {
4748   OperandSignedness LHSSign;
4749 
4750   // The LHS operand must be a demotable op
4751   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4752     return false;
4753 
4754   // We should have been able to determine the signedness from the LHS
4755   if (LHSSign == Unknown)
4756     return false;
4757 
4758   IsSigned = (LHSSign == Signed);
4759 
4760   // The RHS can be a demotable op or a constant
4761   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4762     const APInt &Val = CI->getAPIntValue();
4763     if (LHSSign == Unsigned) {
4764       return Val.isIntN(OptSize);
4765     } else {
4766       return Val.isSignedIntN(OptSize);
4767     }
4768   } else {
4769     OperandSignedness RHSSign;
4770     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4771       return false;
4772 
4773     return LHSSign == RHSSign;
4774   }
4775 }
4776 
4777 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4778 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4779 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4780 /// amount.
4781 static SDValue TryMULWIDECombine(SDNode *N,
4782                                  TargetLowering::DAGCombinerInfo &DCI) {
4783   EVT MulType = N->getValueType(0);
4784   if (MulType != MVT::i32 && MulType != MVT::i64) {
4785     return SDValue();
4786   }
4787 
4788   SDLoc DL(N);
4789   unsigned OptSize = MulType.getSizeInBits() >> 1;
4790   SDValue LHS = N->getOperand(0);
4791   SDValue RHS = N->getOperand(1);
4792 
4793   // Canonicalize the multiply so the constant (if any) is on the right
4794   if (N->getOpcode() == ISD::MUL) {
4795     if (isa<ConstantSDNode>(LHS)) {
4796       std::swap(LHS, RHS);
4797     }
4798   }
4799 
4800   // If we have a SHL, determine the actual multiply amount
4801   if (N->getOpcode() == ISD::SHL) {
4802     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4803     if (!ShlRHS) {
4804       return SDValue();
4805     }
4806 
4807     APInt ShiftAmt = ShlRHS->getAPIntValue();
4808     unsigned BitWidth = MulType.getSizeInBits();
4809     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4810       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4811       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4812     } else {
4813       return SDValue();
4814     }
4815   }
4816 
4817   bool Signed;
4818   // Verify that our operands are demotable
4819   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4820     return SDValue();
4821   }
4822 
4823   EVT DemotedVT;
4824   if (MulType == MVT::i32) {
4825     DemotedVT = MVT::i16;
4826   } else {
4827     DemotedVT = MVT::i32;
4828   }
4829 
4830   // Truncate the operands to the correct size. Note that these are just for
4831   // type consistency and will (likely) be eliminated in later phases.
4832   SDValue TruncLHS =
4833     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4834   SDValue TruncRHS =
4835     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4836 
4837   unsigned Opc;
4838   if (Signed) {
4839     Opc = NVPTXISD::MUL_WIDE_SIGNED;
4840   } else {
4841     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4842   }
4843 
4844   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4845 }
4846 
4847 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4848 static SDValue PerformMULCombine(SDNode *N,
4849                                  TargetLowering::DAGCombinerInfo &DCI,
4850                                  CodeGenOpt::Level OptLevel) {
4851   if (OptLevel > 0) {
4852     // Try mul.wide combining at OptLevel > 0
4853     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4854       return Ret;
4855   }
4856 
4857   return SDValue();
4858 }
4859 
4860 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4861 static SDValue PerformSHLCombine(SDNode *N,
4862                                  TargetLowering::DAGCombinerInfo &DCI,
4863                                  CodeGenOpt::Level OptLevel) {
4864   if (OptLevel > 0) {
4865     // Try mul.wide combining at OptLevel > 0
4866     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4867       return Ret;
4868   }
4869 
4870   return SDValue();
4871 }
4872 
4873 static SDValue PerformSETCCCombine(SDNode *N,
4874                                    TargetLowering::DAGCombinerInfo &DCI) {
4875   EVT CCType = N->getValueType(0);
4876   SDValue A = N->getOperand(0);
4877   SDValue B = N->getOperand(1);
4878 
4879   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4880     return SDValue();
4881 
4882   SDLoc DL(N);
4883   // setp.f16x2 returns two scalar predicates, which we need to
4884   // convert back to v2i1. The returned result will be scalarized by
4885   // the legalizer, but the comparison will remain a single vector
4886   // instruction.
4887   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4888                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
4889                                    {A, B, N->getOperand(2)});
4890   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4891                          CCNode.getValue(1));
4892 }
4893 
4894 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4895                                                DAGCombinerInfo &DCI) const {
4896   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4897   switch (N->getOpcode()) {
4898     default: break;
4899     case ISD::ADD:
4900     case ISD::FADD:
4901       return PerformADDCombine(N, DCI, STI, OptLevel);
4902     case ISD::MUL:
4903       return PerformMULCombine(N, DCI, OptLevel);
4904     case ISD::SHL:
4905       return PerformSHLCombine(N, DCI, OptLevel);
4906     case ISD::AND:
4907       return PerformANDCombine(N, DCI);
4908     case ISD::UREM:
4909     case ISD::SREM:
4910       return PerformREMCombine(N, DCI, OptLevel);
4911     case ISD::SETCC:
4912       return PerformSETCCCombine(N, DCI);
4913     case NVPTXISD::StoreRetval:
4914     case NVPTXISD::StoreRetvalV2:
4915     case NVPTXISD::StoreRetvalV4:
4916       return PerformStoreRetvalCombine(N);
4917   }
4918   return SDValue();
4919 }
4920 
4921 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4922 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4923                               SmallVectorImpl<SDValue> &Results) {
4924   EVT ResVT = N->getValueType(0);
4925   SDLoc DL(N);
4926 
4927   assert(ResVT.isVector() && "Vector load must have vector type");
4928 
4929   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4930   // legal.  We can (and should) split that into 2 loads of <2 x double> here
4931   // but I'm leaving that as a TODO for now.
4932   assert(ResVT.isSimple() && "Can only handle simple types");
4933   switch (ResVT.getSimpleVT().SimpleTy) {
4934   default:
4935     return;
4936   case MVT::v2i8:
4937   case MVT::v2i16:
4938   case MVT::v2i32:
4939   case MVT::v2i64:
4940   case MVT::v2f16:
4941   case MVT::v2f32:
4942   case MVT::v2f64:
4943   case MVT::v4i8:
4944   case MVT::v4i16:
4945   case MVT::v4i32:
4946   case MVT::v4f16:
4947   case MVT::v4f32:
4948   case MVT::v8f16: // <4 x f16x2>
4949     // This is a "native" vector type
4950     break;
4951   }
4952 
4953   LoadSDNode *LD = cast<LoadSDNode>(N);
4954 
4955   Align Alignment = LD->getAlign();
4956   auto &TD = DAG.getDataLayout();
4957   Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext()));
4958   if (Alignment < PrefAlign) {
4959     // This load is not sufficiently aligned, so bail out and let this vector
4960     // load be scalarized.  Note that we may still be able to emit smaller
4961     // vector loads.  For example, if we are loading a <4 x float> with an
4962     // alignment of 8, this check will fail but the legalizer will try again
4963     // with 2 x <2 x float>, which will succeed with an alignment of 8.
4964     return;
4965   }
4966 
4967   EVT EltVT = ResVT.getVectorElementType();
4968   unsigned NumElts = ResVT.getVectorNumElements();
4969 
4970   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4971   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4972   // loaded type to i16 and propagate the "real" type as the memory type.
4973   bool NeedTrunc = false;
4974   if (EltVT.getSizeInBits() < 16) {
4975     EltVT = MVT::i16;
4976     NeedTrunc = true;
4977   }
4978 
4979   unsigned Opcode = 0;
4980   SDVTList LdResVTs;
4981   bool LoadF16x2 = false;
4982 
4983   switch (NumElts) {
4984   default:
4985     return;
4986   case 2:
4987     Opcode = NVPTXISD::LoadV2;
4988     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4989     break;
4990   case 4: {
4991     Opcode = NVPTXISD::LoadV4;
4992     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4993     LdResVTs = DAG.getVTList(ListVTs);
4994     break;
4995   }
4996   case 8: {
4997     // v8f16 is a special case. PTX doesn't have ld.v8.f16
4998     // instruction. Instead, we split the vector into v2f16 chunks and
4999     // load them with ld.v4.b32.
5000     assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
5001     LoadF16x2 = true;
5002     Opcode = NVPTXISD::LoadV4;
5003     EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
5004                      MVT::Other};
5005     LdResVTs = DAG.getVTList(ListVTs);
5006     break;
5007   }
5008   }
5009 
5010   // Copy regular operands
5011   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
5012 
5013   // The select routine does not have access to the LoadSDNode instance, so
5014   // pass along the extension information
5015   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
5016 
5017   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5018                                           LD->getMemoryVT(),
5019                                           LD->getMemOperand());
5020 
5021   SmallVector<SDValue, 8> ScalarRes;
5022   if (LoadF16x2) {
5023     // Split v2f16 subvectors back into individual elements.
5024     NumElts /= 2;
5025     for (unsigned i = 0; i < NumElts; ++i) {
5026       SDValue SubVector = NewLD.getValue(i);
5027       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
5028                                DAG.getIntPtrConstant(0, DL));
5029       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
5030                                DAG.getIntPtrConstant(1, DL));
5031       ScalarRes.push_back(E0);
5032       ScalarRes.push_back(E1);
5033     }
5034   } else {
5035     for (unsigned i = 0; i < NumElts; ++i) {
5036       SDValue Res = NewLD.getValue(i);
5037       if (NeedTrunc)
5038         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5039       ScalarRes.push_back(Res);
5040     }
5041   }
5042 
5043   SDValue LoadChain = NewLD.getValue(NumElts);
5044 
5045   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
5046 
5047   Results.push_back(BuildVec);
5048   Results.push_back(LoadChain);
5049 }
5050 
5051 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
5052                                      SmallVectorImpl<SDValue> &Results) {
5053   SDValue Chain = N->getOperand(0);
5054   SDValue Intrin = N->getOperand(1);
5055   SDLoc DL(N);
5056 
5057   // Get the intrinsic ID
5058   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
5059   switch (IntrinNo) {
5060   default:
5061     return;
5062   case Intrinsic::nvvm_ldg_global_i:
5063   case Intrinsic::nvvm_ldg_global_f:
5064   case Intrinsic::nvvm_ldg_global_p:
5065   case Intrinsic::nvvm_ldu_global_i:
5066   case Intrinsic::nvvm_ldu_global_f:
5067   case Intrinsic::nvvm_ldu_global_p: {
5068     EVT ResVT = N->getValueType(0);
5069 
5070     if (ResVT.isVector()) {
5071       // Vector LDG/LDU
5072 
5073       unsigned NumElts = ResVT.getVectorNumElements();
5074       EVT EltVT = ResVT.getVectorElementType();
5075 
5076       // Since LDU/LDG are target nodes, we cannot rely on DAG type
5077       // legalization.
5078       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
5079       // loaded type to i16 and propagate the "real" type as the memory type.
5080       bool NeedTrunc = false;
5081       if (EltVT.getSizeInBits() < 16) {
5082         EltVT = MVT::i16;
5083         NeedTrunc = true;
5084       }
5085 
5086       unsigned Opcode = 0;
5087       SDVTList LdResVTs;
5088 
5089       switch (NumElts) {
5090       default:
5091         return;
5092       case 2:
5093         switch (IntrinNo) {
5094         default:
5095           return;
5096         case Intrinsic::nvvm_ldg_global_i:
5097         case Intrinsic::nvvm_ldg_global_f:
5098         case Intrinsic::nvvm_ldg_global_p:
5099           Opcode = NVPTXISD::LDGV2;
5100           break;
5101         case Intrinsic::nvvm_ldu_global_i:
5102         case Intrinsic::nvvm_ldu_global_f:
5103         case Intrinsic::nvvm_ldu_global_p:
5104           Opcode = NVPTXISD::LDUV2;
5105           break;
5106         }
5107         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
5108         break;
5109       case 4: {
5110         switch (IntrinNo) {
5111         default:
5112           return;
5113         case Intrinsic::nvvm_ldg_global_i:
5114         case Intrinsic::nvvm_ldg_global_f:
5115         case Intrinsic::nvvm_ldg_global_p:
5116           Opcode = NVPTXISD::LDGV4;
5117           break;
5118         case Intrinsic::nvvm_ldu_global_i:
5119         case Intrinsic::nvvm_ldu_global_f:
5120         case Intrinsic::nvvm_ldu_global_p:
5121           Opcode = NVPTXISD::LDUV4;
5122           break;
5123         }
5124         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5125         LdResVTs = DAG.getVTList(ListVTs);
5126         break;
5127       }
5128       }
5129 
5130       SmallVector<SDValue, 8> OtherOps;
5131 
5132       // Copy regular operands
5133 
5134       OtherOps.push_back(Chain); // Chain
5135                                  // Skip operand 1 (intrinsic ID)
5136       // Others
5137       OtherOps.append(N->op_begin() + 2, N->op_end());
5138 
5139       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5140 
5141       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5142                                               MemSD->getMemoryVT(),
5143                                               MemSD->getMemOperand());
5144 
5145       SmallVector<SDValue, 4> ScalarRes;
5146 
5147       for (unsigned i = 0; i < NumElts; ++i) {
5148         SDValue Res = NewLD.getValue(i);
5149         if (NeedTrunc)
5150           Res =
5151               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5152         ScalarRes.push_back(Res);
5153       }
5154 
5155       SDValue LoadChain = NewLD.getValue(NumElts);
5156 
5157       SDValue BuildVec =
5158           DAG.getBuildVector(ResVT, DL, ScalarRes);
5159 
5160       Results.push_back(BuildVec);
5161       Results.push_back(LoadChain);
5162     } else {
5163       // i8 LDG/LDU
5164       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5165              "Custom handling of non-i8 ldu/ldg?");
5166 
5167       // Just copy all operands as-is
5168       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5169 
5170       // Force output to i16
5171       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5172 
5173       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5174 
5175       // We make sure the memory type is i8, which will be used during isel
5176       // to select the proper instruction.
5177       SDValue NewLD =
5178           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5179                                   MVT::i8, MemSD->getMemOperand());
5180 
5181       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5182                                     NewLD.getValue(0)));
5183       Results.push_back(NewLD.getValue(1));
5184     }
5185   }
5186   }
5187 }
5188 
5189 void NVPTXTargetLowering::ReplaceNodeResults(
5190     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5191   switch (N->getOpcode()) {
5192   default:
5193     report_fatal_error("Unhandled custom legalization");
5194   case ISD::LOAD:
5195     ReplaceLoadVector(N, DAG, Results);
5196     return;
5197   case ISD::INTRINSIC_W_CHAIN:
5198     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5199     return;
5200   }
5201 }
5202 
5203 NVPTXTargetLowering::AtomicExpansionKind
5204 NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
5205   Type *Ty = AI->getValOperand()->getType();
5206 
5207   if (AI->isFloatingPointOperation()) {
5208     if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) {
5209       if (Ty->isFloatTy())
5210         return AtomicExpansionKind::None;
5211       if (Ty->isDoubleTy() && STI.hasAtomAddF64())
5212         return AtomicExpansionKind::None;
5213     }
5214     return AtomicExpansionKind::CmpXChg;
5215   }
5216 
5217   assert(Ty->isIntegerTy() && "Ty should be integer at this point");
5218   auto ITy = cast<llvm::IntegerType>(Ty);
5219 
5220   switch (AI->getOperation()) {
5221   default:
5222     return AtomicExpansionKind::CmpXChg;
5223   case AtomicRMWInst::BinOp::And:
5224   case AtomicRMWInst::BinOp::Or:
5225   case AtomicRMWInst::BinOp::Xor:
5226   case AtomicRMWInst::BinOp::Xchg:
5227     switch (ITy->getBitWidth()) {
5228     case 8:
5229     case 16:
5230       return AtomicExpansionKind::CmpXChg;
5231     case 32:
5232       return AtomicExpansionKind::None;
5233     case 64:
5234       if (STI.hasAtomBitwise64())
5235         return AtomicExpansionKind::None;
5236       return AtomicExpansionKind::CmpXChg;
5237     default:
5238       llvm_unreachable("unsupported width encountered");
5239     }
5240   case AtomicRMWInst::BinOp::Add:
5241   case AtomicRMWInst::BinOp::Sub:
5242   case AtomicRMWInst::BinOp::Max:
5243   case AtomicRMWInst::BinOp::Min:
5244   case AtomicRMWInst::BinOp::UMax:
5245   case AtomicRMWInst::BinOp::UMin:
5246     switch (ITy->getBitWidth()) {
5247     case 8:
5248     case 16:
5249       return AtomicExpansionKind::CmpXChg;
5250     case 32:
5251       return AtomicExpansionKind::None;
5252     case 64:
5253       if (STI.hasAtomMinMax64())
5254         return AtomicExpansionKind::None;
5255       return AtomicExpansionKind::CmpXChg;
5256     default:
5257       llvm_unreachable("unsupported width encountered");
5258     }
5259   }
5260 
5261   return AtomicExpansionKind::CmpXChg;
5262 }
5263 
5264 // Pin NVPTXTargetObjectFile's vtables to this file.
5265 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default;
5266 
5267 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5268     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5269   return getDataSection();
5270 }
5271