xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetCallingConv.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <sstream>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 #define DEBUG_TYPE "nvptx-lower"
65 
66 using namespace llvm;
67 
68 static std::atomic<unsigned> GlobalUniqueCallSite;
69 
70 static cl::opt<bool> sched4reg(
71     "nvptx-sched4reg",
72     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
73 
74 static cl::opt<unsigned>
75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
76                     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
77                              " 1: do it  2: do it aggressively"),
78                     cl::init(2));
79 
80 static cl::opt<int> UsePrecDivF32(
81     "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
82     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
83              " IEEE Compliant F32 div.rnd if available."),
84     cl::init(2));
85 
86 static cl::opt<bool> UsePrecSqrtF32(
87     "nvptx-prec-sqrtf32", cl::Hidden,
88     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
89     cl::init(true));
90 
91 int NVPTXTargetLowering::getDivF32Level() const {
92   if (UsePrecDivF32.getNumOccurrences() > 0) {
93     // If nvptx-prec-div32=N is used on the command-line, always honor it
94     return UsePrecDivF32;
95   } else {
96     // Otherwise, use div.approx if fast math is enabled
97     if (getTargetMachine().Options.UnsafeFPMath)
98       return 0;
99     else
100       return 2;
101   }
102 }
103 
104 bool NVPTXTargetLowering::usePrecSqrtF32() const {
105   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
106     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
107     return UsePrecSqrtF32;
108   } else {
109     // Otherwise, use sqrt.approx if fast math is enabled
110     return !getTargetMachine().Options.UnsafeFPMath;
111   }
112 }
113 
114 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
115   return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
116          DenormalMode::PreserveSign;
117 }
118 
119 static bool IsPTXVectorType(MVT VT) {
120   switch (VT.SimpleTy) {
121   default:
122     return false;
123   case MVT::v2i1:
124   case MVT::v4i1:
125   case MVT::v2i8:
126   case MVT::v4i8:
127   case MVT::v2i16:
128   case MVT::v4i16:
129   case MVT::v2i32:
130   case MVT::v4i32:
131   case MVT::v2i64:
132   case MVT::v2f16:
133   case MVT::v4f16:
134   case MVT::v8f16: // <4 x f16x2>
135   case MVT::v2f32:
136   case MVT::v4f32:
137   case MVT::v2f64:
138     return true;
139   }
140 }
141 
142 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
143 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
144 /// into their primitive components.
145 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
146 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
147 /// LowerCall, and LowerReturn.
148 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
149                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
150                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
151                                uint64_t StartingOffset = 0) {
152   SmallVector<EVT, 16> TempVTs;
153   SmallVector<uint64_t, 16> TempOffsets;
154 
155   // Special case for i128 - decompose to (i64, i64)
156   if (Ty->isIntegerTy(128)) {
157     ValueVTs.push_back(EVT(MVT::i64));
158     ValueVTs.push_back(EVT(MVT::i64));
159 
160     if (Offsets) {
161       Offsets->push_back(StartingOffset + 0);
162       Offsets->push_back(StartingOffset + 8);
163     }
164 
165     return;
166   }
167 
168   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
169   if (StructType *STy = dyn_cast<StructType>(Ty)) {
170     auto const *SL = DL.getStructLayout(STy);
171     auto ElementNum = 0;
172     for(auto *EI : STy->elements()) {
173       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
174                          StartingOffset + SL->getElementOffset(ElementNum));
175       ++ElementNum;
176     }
177     return;
178   }
179 
180   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
181   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
182     EVT VT = TempVTs[i];
183     uint64_t Off = TempOffsets[i];
184     // Split vectors into individual elements, except for v2f16, which
185     // we will pass as a single scalar.
186     if (VT.isVector()) {
187       unsigned NumElts = VT.getVectorNumElements();
188       EVT EltVT = VT.getVectorElementType();
189       // Vectors with an even number of f16 elements will be passed to
190       // us as an array of v2f16 elements. We must match this so we
191       // stay in sync with Ins/Outs.
192       if (EltVT == MVT::f16 && NumElts % 2 == 0) {
193         EltVT = MVT::v2f16;
194         NumElts /= 2;
195       }
196       for (unsigned j = 0; j != NumElts; ++j) {
197         ValueVTs.push_back(EltVT);
198         if (Offsets)
199           Offsets->push_back(Off + j * EltVT.getStoreSize());
200       }
201     } else {
202       ValueVTs.push_back(VT);
203       if (Offsets)
204         Offsets->push_back(Off);
205     }
206   }
207 }
208 
209 // Check whether we can merge loads/stores of some of the pieces of a
210 // flattened function parameter or return value into a single vector
211 // load/store.
212 //
213 // The flattened parameter is represented as a list of EVTs and
214 // offsets, and the whole structure is aligned to ParamAlignment. This
215 // function determines whether we can load/store pieces of the
216 // parameter starting at index Idx using a single vectorized op of
217 // size AccessSize. If so, it returns the number of param pieces
218 // covered by the vector op. Otherwise, it returns 1.
219 static unsigned CanMergeParamLoadStoresStartingAt(
220     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
221     const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
222 
223   // Can't vectorize if param alignment is not sufficient.
224   if (ParamAlignment < AccessSize)
225     return 1;
226   // Can't vectorize if offset is not aligned.
227   if (Offsets[Idx] & (AccessSize - 1))
228     return 1;
229 
230   EVT EltVT = ValueVTs[Idx];
231   unsigned EltSize = EltVT.getStoreSize();
232 
233   // Element is too large to vectorize.
234   if (EltSize >= AccessSize)
235     return 1;
236 
237   unsigned NumElts = AccessSize / EltSize;
238   // Can't vectorize if AccessBytes if not a multiple of EltSize.
239   if (AccessSize != EltSize * NumElts)
240     return 1;
241 
242   // We don't have enough elements to vectorize.
243   if (Idx + NumElts > ValueVTs.size())
244     return 1;
245 
246   // PTX ISA can only deal with 2- and 4-element vector ops.
247   if (NumElts != 4 && NumElts != 2)
248     return 1;
249 
250   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
251     // Types do not match.
252     if (ValueVTs[j] != EltVT)
253       return 1;
254 
255     // Elements are not contiguous.
256     if (Offsets[j] - Offsets[j - 1] != EltSize)
257       return 1;
258   }
259   // OK. We can vectorize ValueVTs[i..i+NumElts)
260   return NumElts;
261 }
262 
263 // Flags for tracking per-element vectorization state of loads/stores
264 // of a flattened function parameter or return value.
265 enum ParamVectorizationFlags {
266   PVF_INNER = 0x0, // Middle elements of a vector.
267   PVF_FIRST = 0x1, // First element of the vector.
268   PVF_LAST = 0x2,  // Last element of the vector.
269   // Scalar is effectively a 1-element vector.
270   PVF_SCALAR = PVF_FIRST | PVF_LAST
271 };
272 
273 // Computes whether and how we can vectorize the loads/stores of a
274 // flattened function parameter or return value.
275 //
276 // The flattened parameter is represented as the list of ValueVTs and
277 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
278 // of the same size as ValueVTs indicating how each piece should be
279 // loaded/stored (i.e. as a scalar, or as part of a vector
280 // load/store).
281 static SmallVector<ParamVectorizationFlags, 16>
282 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
283                      const SmallVectorImpl<uint64_t> &Offsets,
284                      Align ParamAlignment) {
285   // Set vector size to match ValueVTs and mark all elements as
286   // scalars by default.
287   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
288   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
289 
290   // Check what we can vectorize using 128/64/32-bit accesses.
291   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
292     // Skip elements we've already processed.
293     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
294     for (unsigned AccessSize : {16, 8, 4, 2}) {
295       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
296           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
297       // Mark vectorized elements.
298       switch (NumElts) {
299       default:
300         llvm_unreachable("Unexpected return value");
301       case 1:
302         // Can't vectorize using this size, try next smaller size.
303         continue;
304       case 2:
305         assert(I + 1 < E && "Not enough elements.");
306         VectorInfo[I] = PVF_FIRST;
307         VectorInfo[I + 1] = PVF_LAST;
308         I += 1;
309         break;
310       case 4:
311         assert(I + 3 < E && "Not enough elements.");
312         VectorInfo[I] = PVF_FIRST;
313         VectorInfo[I + 1] = PVF_INNER;
314         VectorInfo[I + 2] = PVF_INNER;
315         VectorInfo[I + 3] = PVF_LAST;
316         I += 3;
317         break;
318       }
319       // Break out of the inner loop because we've already succeeded
320       // using largest possible AccessSize.
321       break;
322     }
323   }
324   return VectorInfo;
325 }
326 
327 // NVPTXTargetLowering Constructor.
328 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
329                                          const NVPTXSubtarget &STI)
330     : TargetLowering(TM), nvTM(&TM), STI(STI) {
331   // always lower memset, memcpy, and memmove intrinsics to load/store
332   // instructions, rather
333   // then generating calls to memset, mempcy or memmove.
334   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
335   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
336   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
337 
338   setBooleanContents(ZeroOrNegativeOneBooleanContent);
339   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
340 
341   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
342   // condition branches.
343   setJumpIsExpensive(true);
344 
345   // Wide divides are _very_ slow. Try to reduce the width of the divide if
346   // possible.
347   addBypassSlowDiv(64, 32);
348 
349   // By default, use the Source scheduling
350   if (sched4reg)
351     setSchedulingPreference(Sched::RegPressure);
352   else
353     setSchedulingPreference(Sched::Source);
354 
355   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
356                                     LegalizeAction NoF16Action) {
357     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
358   };
359 
360   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
361   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
362   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
363   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
364   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
365   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
366   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
367   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
368 
369   // Conversion to/from FP16/FP16x2 is always legal.
370   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
371   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
372   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
373   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
374   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
375   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
376 
377   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
378   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
379 
380   // Operations not directly supported by NVPTX.
381   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
382                  MVT::i16, MVT::i32, MVT::i64}) {
383     setOperationAction(ISD::SELECT_CC, VT, Expand);
384     setOperationAction(ISD::BR_CC, VT, Expand);
385   }
386 
387   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
388   // For others we will expand to a SHL/SRA pair.
389   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
390   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
391   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
392   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
393   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
394 
395   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
396   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
397   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
398   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
399   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
400   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
401 
402   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
403   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
404 
405   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
406   // that don't have h/w rotation we lower them to multi-instruction assembly.
407   // See ROT*_sw in NVPTXIntrInfo.td
408   setOperationAction(ISD::ROTL, MVT::i64, Legal);
409   setOperationAction(ISD::ROTR, MVT::i64, Legal);
410   setOperationAction(ISD::ROTL, MVT::i32, Legal);
411   setOperationAction(ISD::ROTR, MVT::i32, Legal);
412 
413   setOperationAction(ISD::ROTL, MVT::i16, Expand);
414   setOperationAction(ISD::ROTR, MVT::i16, Expand);
415   setOperationAction(ISD::ROTL, MVT::i8, Expand);
416   setOperationAction(ISD::ROTR, MVT::i8, Expand);
417   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
418   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
419   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
420 
421   // Indirect branch is not supported.
422   // This also disables Jump Table creation.
423   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
424   setOperationAction(ISD::BRIND, MVT::Other, Expand);
425 
426   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
427   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
428 
429   // We want to legalize constant related memmove and memcopy
430   // intrinsics.
431   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
432 
433   // Turn FP extload into load/fpextend
434   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
435   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
436   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
437   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
438   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
439   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
440   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
441   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
442   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
443   // Turn FP truncstore into trunc + store.
444   // FIXME: vector types should also be expanded
445   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
446   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
447   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
448 
449   // PTX does not support load / store predicate registers
450   setOperationAction(ISD::LOAD, MVT::i1, Custom);
451   setOperationAction(ISD::STORE, MVT::i1, Custom);
452 
453   for (MVT VT : MVT::integer_valuetypes()) {
454     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
455     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
456     setTruncStoreAction(VT, MVT::i1, Expand);
457   }
458 
459   // This is legal in NVPTX
460   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
461   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
462   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
463 
464   // TRAP can be lowered to PTX trap
465   setOperationAction(ISD::TRAP, MVT::Other, Legal);
466 
467   // Register custom handling for vector loads/stores
468   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
469     if (IsPTXVectorType(VT)) {
470       setOperationAction(ISD::LOAD, VT, Custom);
471       setOperationAction(ISD::STORE, VT, Custom);
472       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
473     }
474   }
475 
476   // Custom handling for i8 intrinsics
477   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
478 
479   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
480     setOperationAction(ISD::ABS,  Ty, Legal);
481     setOperationAction(ISD::SMIN, Ty, Legal);
482     setOperationAction(ISD::SMAX, Ty, Legal);
483     setOperationAction(ISD::UMIN, Ty, Legal);
484     setOperationAction(ISD::UMAX, Ty, Legal);
485 
486     setOperationAction(ISD::CTPOP, Ty, Legal);
487     setOperationAction(ISD::CTLZ, Ty, Legal);
488   }
489 
490   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
491   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
492   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
493 
494   // PTX does not directly support SELP of i1, so promote to i32 first
495   setOperationAction(ISD::SELECT, MVT::i1, Custom);
496 
497   // PTX cannot multiply two i64s in a single instruction.
498   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
499   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
500 
501   // We have some custom DAG combine patterns for these nodes
502   setTargetDAGCombine(ISD::ADD);
503   setTargetDAGCombine(ISD::AND);
504   setTargetDAGCombine(ISD::FADD);
505   setTargetDAGCombine(ISD::MUL);
506   setTargetDAGCombine(ISD::SHL);
507   setTargetDAGCombine(ISD::SREM);
508   setTargetDAGCombine(ISD::UREM);
509 
510   // setcc for f16x2 needs special handling to prevent legalizer's
511   // attempt to scalarize it due to v2i1 not being legal.
512   if (STI.allowFP16Math())
513     setTargetDAGCombine(ISD::SETCC);
514 
515   // Promote fp16 arithmetic if fp16 hardware isn't available or the
516   // user passed --nvptx-no-fp16-math. The flag is useful because,
517   // although sm_53+ GPUs have some sort of FP16 support in
518   // hardware, only sm_53 and sm_60 have full implementation. Others
519   // only have token amount of hardware and are likely to run faster
520   // by using fp32 units instead.
521   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
522     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
523     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
524   }
525 
526   // There's no neg.f16 instruction. Expand to (0-x).
527   setOperationAction(ISD::FNEG, MVT::f16, Expand);
528   setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
529 
530   // (would be) Library functions.
531 
532   // These map to conversion instructions for scalar FP types.
533   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
534                          ISD::FTRUNC}) {
535     setOperationAction(Op, MVT::f16, Legal);
536     setOperationAction(Op, MVT::f32, Legal);
537     setOperationAction(Op, MVT::f64, Legal);
538     setOperationAction(Op, MVT::v2f16, Expand);
539   }
540 
541   setOperationAction(ISD::FROUND, MVT::f16, Promote);
542   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
543   setOperationAction(ISD::FROUND, MVT::f32, Custom);
544   setOperationAction(ISD::FROUND, MVT::f64, Custom);
545 
546 
547   // 'Expand' implements FCOPYSIGN without calling an external library.
548   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
549   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
550   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
551   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
552 
553   // These map to corresponding instructions for f32/f64. f16 must be
554   // promoted to f32. v2f16 is expanded to f16, which is then promoted
555   // to f32.
556   for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
557                          ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
558     setOperationAction(Op, MVT::f16, Promote);
559     setOperationAction(Op, MVT::f32, Legal);
560     setOperationAction(Op, MVT::f64, Legal);
561     setOperationAction(Op, MVT::v2f16, Expand);
562   }
563   setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
564   setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
565   setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
566   setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
567 
568   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
569   // No FPOW or FREM in PTX.
570 
571   // Now deduce the information based on the above mentioned
572   // actions
573   computeRegisterProperties(STI.getRegisterInfo());
574 }
575 
576 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
577   switch ((NVPTXISD::NodeType)Opcode) {
578   case NVPTXISD::FIRST_NUMBER:
579     break;
580   case NVPTXISD::CALL:
581     return "NVPTXISD::CALL";
582   case NVPTXISD::RET_FLAG:
583     return "NVPTXISD::RET_FLAG";
584   case NVPTXISD::LOAD_PARAM:
585     return "NVPTXISD::LOAD_PARAM";
586   case NVPTXISD::Wrapper:
587     return "NVPTXISD::Wrapper";
588   case NVPTXISD::DeclareParam:
589     return "NVPTXISD::DeclareParam";
590   case NVPTXISD::DeclareScalarParam:
591     return "NVPTXISD::DeclareScalarParam";
592   case NVPTXISD::DeclareRet:
593     return "NVPTXISD::DeclareRet";
594   case NVPTXISD::DeclareScalarRet:
595     return "NVPTXISD::DeclareScalarRet";
596   case NVPTXISD::DeclareRetParam:
597     return "NVPTXISD::DeclareRetParam";
598   case NVPTXISD::PrintCall:
599     return "NVPTXISD::PrintCall";
600   case NVPTXISD::PrintConvergentCall:
601     return "NVPTXISD::PrintConvergentCall";
602   case NVPTXISD::PrintCallUni:
603     return "NVPTXISD::PrintCallUni";
604   case NVPTXISD::PrintConvergentCallUni:
605     return "NVPTXISD::PrintConvergentCallUni";
606   case NVPTXISD::LoadParam:
607     return "NVPTXISD::LoadParam";
608   case NVPTXISD::LoadParamV2:
609     return "NVPTXISD::LoadParamV2";
610   case NVPTXISD::LoadParamV4:
611     return "NVPTXISD::LoadParamV4";
612   case NVPTXISD::StoreParam:
613     return "NVPTXISD::StoreParam";
614   case NVPTXISD::StoreParamV2:
615     return "NVPTXISD::StoreParamV2";
616   case NVPTXISD::StoreParamV4:
617     return "NVPTXISD::StoreParamV4";
618   case NVPTXISD::StoreParamS32:
619     return "NVPTXISD::StoreParamS32";
620   case NVPTXISD::StoreParamU32:
621     return "NVPTXISD::StoreParamU32";
622   case NVPTXISD::CallArgBegin:
623     return "NVPTXISD::CallArgBegin";
624   case NVPTXISD::CallArg:
625     return "NVPTXISD::CallArg";
626   case NVPTXISD::LastCallArg:
627     return "NVPTXISD::LastCallArg";
628   case NVPTXISD::CallArgEnd:
629     return "NVPTXISD::CallArgEnd";
630   case NVPTXISD::CallVoid:
631     return "NVPTXISD::CallVoid";
632   case NVPTXISD::CallVal:
633     return "NVPTXISD::CallVal";
634   case NVPTXISD::CallSymbol:
635     return "NVPTXISD::CallSymbol";
636   case NVPTXISD::Prototype:
637     return "NVPTXISD::Prototype";
638   case NVPTXISD::MoveParam:
639     return "NVPTXISD::MoveParam";
640   case NVPTXISD::StoreRetval:
641     return "NVPTXISD::StoreRetval";
642   case NVPTXISD::StoreRetvalV2:
643     return "NVPTXISD::StoreRetvalV2";
644   case NVPTXISD::StoreRetvalV4:
645     return "NVPTXISD::StoreRetvalV4";
646   case NVPTXISD::PseudoUseParam:
647     return "NVPTXISD::PseudoUseParam";
648   case NVPTXISD::RETURN:
649     return "NVPTXISD::RETURN";
650   case NVPTXISD::CallSeqBegin:
651     return "NVPTXISD::CallSeqBegin";
652   case NVPTXISD::CallSeqEnd:
653     return "NVPTXISD::CallSeqEnd";
654   case NVPTXISD::CallPrototype:
655     return "NVPTXISD::CallPrototype";
656   case NVPTXISD::ProxyReg:
657     return "NVPTXISD::ProxyReg";
658   case NVPTXISD::LoadV2:
659     return "NVPTXISD::LoadV2";
660   case NVPTXISD::LoadV4:
661     return "NVPTXISD::LoadV4";
662   case NVPTXISD::LDGV2:
663     return "NVPTXISD::LDGV2";
664   case NVPTXISD::LDGV4:
665     return "NVPTXISD::LDGV4";
666   case NVPTXISD::LDUV2:
667     return "NVPTXISD::LDUV2";
668   case NVPTXISD::LDUV4:
669     return "NVPTXISD::LDUV4";
670   case NVPTXISD::StoreV2:
671     return "NVPTXISD::StoreV2";
672   case NVPTXISD::StoreV4:
673     return "NVPTXISD::StoreV4";
674   case NVPTXISD::FUN_SHFL_CLAMP:
675     return "NVPTXISD::FUN_SHFL_CLAMP";
676   case NVPTXISD::FUN_SHFR_CLAMP:
677     return "NVPTXISD::FUN_SHFR_CLAMP";
678   case NVPTXISD::IMAD:
679     return "NVPTXISD::IMAD";
680   case NVPTXISD::SETP_F16X2:
681     return "NVPTXISD::SETP_F16X2";
682   case NVPTXISD::Dummy:
683     return "NVPTXISD::Dummy";
684   case NVPTXISD::MUL_WIDE_SIGNED:
685     return "NVPTXISD::MUL_WIDE_SIGNED";
686   case NVPTXISD::MUL_WIDE_UNSIGNED:
687     return "NVPTXISD::MUL_WIDE_UNSIGNED";
688   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
689   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
690   case NVPTXISD::Tex1DFloatFloatLevel:
691     return "NVPTXISD::Tex1DFloatFloatLevel";
692   case NVPTXISD::Tex1DFloatFloatGrad:
693     return "NVPTXISD::Tex1DFloatFloatGrad";
694   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
695   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
696   case NVPTXISD::Tex1DS32FloatLevel:
697     return "NVPTXISD::Tex1DS32FloatLevel";
698   case NVPTXISD::Tex1DS32FloatGrad:
699     return "NVPTXISD::Tex1DS32FloatGrad";
700   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
701   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
702   case NVPTXISD::Tex1DU32FloatLevel:
703     return "NVPTXISD::Tex1DU32FloatLevel";
704   case NVPTXISD::Tex1DU32FloatGrad:
705     return "NVPTXISD::Tex1DU32FloatGrad";
706   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
707   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
708   case NVPTXISD::Tex1DArrayFloatFloatLevel:
709     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
710   case NVPTXISD::Tex1DArrayFloatFloatGrad:
711     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
712   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
713   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
714   case NVPTXISD::Tex1DArrayS32FloatLevel:
715     return "NVPTXISD::Tex1DArrayS32FloatLevel";
716   case NVPTXISD::Tex1DArrayS32FloatGrad:
717     return "NVPTXISD::Tex1DArrayS32FloatGrad";
718   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
719   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
720   case NVPTXISD::Tex1DArrayU32FloatLevel:
721     return "NVPTXISD::Tex1DArrayU32FloatLevel";
722   case NVPTXISD::Tex1DArrayU32FloatGrad:
723     return "NVPTXISD::Tex1DArrayU32FloatGrad";
724   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
725   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
726   case NVPTXISD::Tex2DFloatFloatLevel:
727     return "NVPTXISD::Tex2DFloatFloatLevel";
728   case NVPTXISD::Tex2DFloatFloatGrad:
729     return "NVPTXISD::Tex2DFloatFloatGrad";
730   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
731   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
732   case NVPTXISD::Tex2DS32FloatLevel:
733     return "NVPTXISD::Tex2DS32FloatLevel";
734   case NVPTXISD::Tex2DS32FloatGrad:
735     return "NVPTXISD::Tex2DS32FloatGrad";
736   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
737   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
738   case NVPTXISD::Tex2DU32FloatLevel:
739     return "NVPTXISD::Tex2DU32FloatLevel";
740   case NVPTXISD::Tex2DU32FloatGrad:
741     return "NVPTXISD::Tex2DU32FloatGrad";
742   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
743   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
744   case NVPTXISD::Tex2DArrayFloatFloatLevel:
745     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
746   case NVPTXISD::Tex2DArrayFloatFloatGrad:
747     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
748   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
749   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
750   case NVPTXISD::Tex2DArrayS32FloatLevel:
751     return "NVPTXISD::Tex2DArrayS32FloatLevel";
752   case NVPTXISD::Tex2DArrayS32FloatGrad:
753     return "NVPTXISD::Tex2DArrayS32FloatGrad";
754   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
755   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
756   case NVPTXISD::Tex2DArrayU32FloatLevel:
757     return "NVPTXISD::Tex2DArrayU32FloatLevel";
758   case NVPTXISD::Tex2DArrayU32FloatGrad:
759     return "NVPTXISD::Tex2DArrayU32FloatGrad";
760   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
761   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
762   case NVPTXISD::Tex3DFloatFloatLevel:
763     return "NVPTXISD::Tex3DFloatFloatLevel";
764   case NVPTXISD::Tex3DFloatFloatGrad:
765     return "NVPTXISD::Tex3DFloatFloatGrad";
766   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
767   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
768   case NVPTXISD::Tex3DS32FloatLevel:
769     return "NVPTXISD::Tex3DS32FloatLevel";
770   case NVPTXISD::Tex3DS32FloatGrad:
771     return "NVPTXISD::Tex3DS32FloatGrad";
772   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
773   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
774   case NVPTXISD::Tex3DU32FloatLevel:
775     return "NVPTXISD::Tex3DU32FloatLevel";
776   case NVPTXISD::Tex3DU32FloatGrad:
777     return "NVPTXISD::Tex3DU32FloatGrad";
778   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
779   case NVPTXISD::TexCubeFloatFloatLevel:
780     return "NVPTXISD::TexCubeFloatFloatLevel";
781   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
782   case NVPTXISD::TexCubeS32FloatLevel:
783     return "NVPTXISD::TexCubeS32FloatLevel";
784   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
785   case NVPTXISD::TexCubeU32FloatLevel:
786     return "NVPTXISD::TexCubeU32FloatLevel";
787   case NVPTXISD::TexCubeArrayFloatFloat:
788     return "NVPTXISD::TexCubeArrayFloatFloat";
789   case NVPTXISD::TexCubeArrayFloatFloatLevel:
790     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
791   case NVPTXISD::TexCubeArrayS32Float:
792     return "NVPTXISD::TexCubeArrayS32Float";
793   case NVPTXISD::TexCubeArrayS32FloatLevel:
794     return "NVPTXISD::TexCubeArrayS32FloatLevel";
795   case NVPTXISD::TexCubeArrayU32Float:
796     return "NVPTXISD::TexCubeArrayU32Float";
797   case NVPTXISD::TexCubeArrayU32FloatLevel:
798     return "NVPTXISD::TexCubeArrayU32FloatLevel";
799   case NVPTXISD::Tld4R2DFloatFloat:
800     return "NVPTXISD::Tld4R2DFloatFloat";
801   case NVPTXISD::Tld4G2DFloatFloat:
802     return "NVPTXISD::Tld4G2DFloatFloat";
803   case NVPTXISD::Tld4B2DFloatFloat:
804     return "NVPTXISD::Tld4B2DFloatFloat";
805   case NVPTXISD::Tld4A2DFloatFloat:
806     return "NVPTXISD::Tld4A2DFloatFloat";
807   case NVPTXISD::Tld4R2DS64Float:
808     return "NVPTXISD::Tld4R2DS64Float";
809   case NVPTXISD::Tld4G2DS64Float:
810     return "NVPTXISD::Tld4G2DS64Float";
811   case NVPTXISD::Tld4B2DS64Float:
812     return "NVPTXISD::Tld4B2DS64Float";
813   case NVPTXISD::Tld4A2DS64Float:
814     return "NVPTXISD::Tld4A2DS64Float";
815   case NVPTXISD::Tld4R2DU64Float:
816     return "NVPTXISD::Tld4R2DU64Float";
817   case NVPTXISD::Tld4G2DU64Float:
818     return "NVPTXISD::Tld4G2DU64Float";
819   case NVPTXISD::Tld4B2DU64Float:
820     return "NVPTXISD::Tld4B2DU64Float";
821   case NVPTXISD::Tld4A2DU64Float:
822     return "NVPTXISD::Tld4A2DU64Float";
823 
824   case NVPTXISD::TexUnified1DFloatS32:
825     return "NVPTXISD::TexUnified1DFloatS32";
826   case NVPTXISD::TexUnified1DFloatFloat:
827     return "NVPTXISD::TexUnified1DFloatFloat";
828   case NVPTXISD::TexUnified1DFloatFloatLevel:
829     return "NVPTXISD::TexUnified1DFloatFloatLevel";
830   case NVPTXISD::TexUnified1DFloatFloatGrad:
831     return "NVPTXISD::TexUnified1DFloatFloatGrad";
832   case NVPTXISD::TexUnified1DS32S32:
833     return "NVPTXISD::TexUnified1DS32S32";
834   case NVPTXISD::TexUnified1DS32Float:
835     return "NVPTXISD::TexUnified1DS32Float";
836   case NVPTXISD::TexUnified1DS32FloatLevel:
837     return "NVPTXISD::TexUnified1DS32FloatLevel";
838   case NVPTXISD::TexUnified1DS32FloatGrad:
839     return "NVPTXISD::TexUnified1DS32FloatGrad";
840   case NVPTXISD::TexUnified1DU32S32:
841     return "NVPTXISD::TexUnified1DU32S32";
842   case NVPTXISD::TexUnified1DU32Float:
843     return "NVPTXISD::TexUnified1DU32Float";
844   case NVPTXISD::TexUnified1DU32FloatLevel:
845     return "NVPTXISD::TexUnified1DU32FloatLevel";
846   case NVPTXISD::TexUnified1DU32FloatGrad:
847     return "NVPTXISD::TexUnified1DU32FloatGrad";
848   case NVPTXISD::TexUnified1DArrayFloatS32:
849     return "NVPTXISD::TexUnified1DArrayFloatS32";
850   case NVPTXISD::TexUnified1DArrayFloatFloat:
851     return "NVPTXISD::TexUnified1DArrayFloatFloat";
852   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
853     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
854   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
855     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
856   case NVPTXISD::TexUnified1DArrayS32S32:
857     return "NVPTXISD::TexUnified1DArrayS32S32";
858   case NVPTXISD::TexUnified1DArrayS32Float:
859     return "NVPTXISD::TexUnified1DArrayS32Float";
860   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
861     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
862   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
863     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
864   case NVPTXISD::TexUnified1DArrayU32S32:
865     return "NVPTXISD::TexUnified1DArrayU32S32";
866   case NVPTXISD::TexUnified1DArrayU32Float:
867     return "NVPTXISD::TexUnified1DArrayU32Float";
868   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
869     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
870   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
871     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
872   case NVPTXISD::TexUnified2DFloatS32:
873     return "NVPTXISD::TexUnified2DFloatS32";
874   case NVPTXISD::TexUnified2DFloatFloat:
875     return "NVPTXISD::TexUnified2DFloatFloat";
876   case NVPTXISD::TexUnified2DFloatFloatLevel:
877     return "NVPTXISD::TexUnified2DFloatFloatLevel";
878   case NVPTXISD::TexUnified2DFloatFloatGrad:
879     return "NVPTXISD::TexUnified2DFloatFloatGrad";
880   case NVPTXISD::TexUnified2DS32S32:
881     return "NVPTXISD::TexUnified2DS32S32";
882   case NVPTXISD::TexUnified2DS32Float:
883     return "NVPTXISD::TexUnified2DS32Float";
884   case NVPTXISD::TexUnified2DS32FloatLevel:
885     return "NVPTXISD::TexUnified2DS32FloatLevel";
886   case NVPTXISD::TexUnified2DS32FloatGrad:
887     return "NVPTXISD::TexUnified2DS32FloatGrad";
888   case NVPTXISD::TexUnified2DU32S32:
889     return "NVPTXISD::TexUnified2DU32S32";
890   case NVPTXISD::TexUnified2DU32Float:
891     return "NVPTXISD::TexUnified2DU32Float";
892   case NVPTXISD::TexUnified2DU32FloatLevel:
893     return "NVPTXISD::TexUnified2DU32FloatLevel";
894   case NVPTXISD::TexUnified2DU32FloatGrad:
895     return "NVPTXISD::TexUnified2DU32FloatGrad";
896   case NVPTXISD::TexUnified2DArrayFloatS32:
897     return "NVPTXISD::TexUnified2DArrayFloatS32";
898   case NVPTXISD::TexUnified2DArrayFloatFloat:
899     return "NVPTXISD::TexUnified2DArrayFloatFloat";
900   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
901     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
902   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
903     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
904   case NVPTXISD::TexUnified2DArrayS32S32:
905     return "NVPTXISD::TexUnified2DArrayS32S32";
906   case NVPTXISD::TexUnified2DArrayS32Float:
907     return "NVPTXISD::TexUnified2DArrayS32Float";
908   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
909     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
910   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
911     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
912   case NVPTXISD::TexUnified2DArrayU32S32:
913     return "NVPTXISD::TexUnified2DArrayU32S32";
914   case NVPTXISD::TexUnified2DArrayU32Float:
915     return "NVPTXISD::TexUnified2DArrayU32Float";
916   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
917     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
918   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
919     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
920   case NVPTXISD::TexUnified3DFloatS32:
921     return "NVPTXISD::TexUnified3DFloatS32";
922   case NVPTXISD::TexUnified3DFloatFloat:
923     return "NVPTXISD::TexUnified3DFloatFloat";
924   case NVPTXISD::TexUnified3DFloatFloatLevel:
925     return "NVPTXISD::TexUnified3DFloatFloatLevel";
926   case NVPTXISD::TexUnified3DFloatFloatGrad:
927     return "NVPTXISD::TexUnified3DFloatFloatGrad";
928   case NVPTXISD::TexUnified3DS32S32:
929     return "NVPTXISD::TexUnified3DS32S32";
930   case NVPTXISD::TexUnified3DS32Float:
931     return "NVPTXISD::TexUnified3DS32Float";
932   case NVPTXISD::TexUnified3DS32FloatLevel:
933     return "NVPTXISD::TexUnified3DS32FloatLevel";
934   case NVPTXISD::TexUnified3DS32FloatGrad:
935     return "NVPTXISD::TexUnified3DS32FloatGrad";
936   case NVPTXISD::TexUnified3DU32S32:
937     return "NVPTXISD::TexUnified3DU32S32";
938   case NVPTXISD::TexUnified3DU32Float:
939     return "NVPTXISD::TexUnified3DU32Float";
940   case NVPTXISD::TexUnified3DU32FloatLevel:
941     return "NVPTXISD::TexUnified3DU32FloatLevel";
942   case NVPTXISD::TexUnified3DU32FloatGrad:
943     return "NVPTXISD::TexUnified3DU32FloatGrad";
944   case NVPTXISD::TexUnifiedCubeFloatFloat:
945     return "NVPTXISD::TexUnifiedCubeFloatFloat";
946   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
947     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
948   case NVPTXISD::TexUnifiedCubeS32Float:
949     return "NVPTXISD::TexUnifiedCubeS32Float";
950   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
951     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
952   case NVPTXISD::TexUnifiedCubeU32Float:
953     return "NVPTXISD::TexUnifiedCubeU32Float";
954   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
955     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
956   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
957     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
958   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
959     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
960   case NVPTXISD::TexUnifiedCubeArrayS32Float:
961     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
962   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
963     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
964   case NVPTXISD::TexUnifiedCubeArrayU32Float:
965     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
966   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
967     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
968   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
969     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
970   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
971     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
972   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
973     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
974   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
975     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
976   case NVPTXISD::Tld4UnifiedR2DS64Float:
977     return "NVPTXISD::Tld4UnifiedR2DS64Float";
978   case NVPTXISD::Tld4UnifiedG2DS64Float:
979     return "NVPTXISD::Tld4UnifiedG2DS64Float";
980   case NVPTXISD::Tld4UnifiedB2DS64Float:
981     return "NVPTXISD::Tld4UnifiedB2DS64Float";
982   case NVPTXISD::Tld4UnifiedA2DS64Float:
983     return "NVPTXISD::Tld4UnifiedA2DS64Float";
984   case NVPTXISD::Tld4UnifiedR2DU64Float:
985     return "NVPTXISD::Tld4UnifiedR2DU64Float";
986   case NVPTXISD::Tld4UnifiedG2DU64Float:
987     return "NVPTXISD::Tld4UnifiedG2DU64Float";
988   case NVPTXISD::Tld4UnifiedB2DU64Float:
989     return "NVPTXISD::Tld4UnifiedB2DU64Float";
990   case NVPTXISD::Tld4UnifiedA2DU64Float:
991     return "NVPTXISD::Tld4UnifiedA2DU64Float";
992 
993   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
994   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
995   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
996   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
997   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
998   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
999   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1000   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1001   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1002   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1003   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1004 
1005   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1006   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1007   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1008   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1009   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1010   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1011   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1012   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1013   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1014   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1015   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1016 
1017   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1018   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1019   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1020   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1021   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1022   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1023   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1024   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1025   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1026   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1027   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1028 
1029   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1030   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1031   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1032   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1033   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1034   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1035   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1036   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1037   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1038   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1039   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1040 
1041   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1042   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1043   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1044   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1045   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1046   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1047   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1048   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1049   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1050   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1051   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1052 
1053   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1054   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1055   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1056   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1057   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1058   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1059   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1060   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1061   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1062   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1063   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1064 
1065   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1066   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1067   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1068   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1069   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1070   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1071   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1072   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1073   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1074   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1075   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1076 
1077   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1078   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1079   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1080   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1081   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1082   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1083   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1084   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1085   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1086   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1087   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1088 
1089   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1090   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1091   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1092   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1093   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1094   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1095   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1096   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1097   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1098   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1099   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1100 
1101   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1102   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1103   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1104   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1105   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1106   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1107   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1108   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1109   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1110   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1111   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1112 
1113   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1114   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1115   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1116   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1117   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1118   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1119   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1120   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1121   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1122   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1123   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1124 
1125   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1126   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1127   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1128   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1129   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1130   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1131   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1132   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1133   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1134   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1135   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1136 
1137   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1138   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1139   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1140   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1141   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1142   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1143   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1144   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1145   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1146   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1147   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1148 
1149   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1150   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1151   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1152   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1153   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1154   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1155   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1156   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1157   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1158   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1159   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1160 
1161   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1162   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1163   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1164   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1165   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1166   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1167   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1168   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1169   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1170   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1171   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1172   }
1173   return nullptr;
1174 }
1175 
1176 TargetLoweringBase::LegalizeTypeAction
1177 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1178   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1179       VT.getScalarType() == MVT::i1)
1180     return TypeSplitVector;
1181   if (VT == MVT::v2f16)
1182     return TypeLegal;
1183   return TargetLoweringBase::getPreferredVectorAction(VT);
1184 }
1185 
1186 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1187                                              int Enabled, int &ExtraSteps,
1188                                              bool &UseOneConst,
1189                                              bool Reciprocal) const {
1190   if (!(Enabled == ReciprocalEstimate::Enabled ||
1191         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1192     return SDValue();
1193 
1194   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1195     ExtraSteps = 0;
1196 
1197   SDLoc DL(Operand);
1198   EVT VT = Operand.getValueType();
1199   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1200 
1201   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1202     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1203                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1204   };
1205 
1206   // The sqrt and rsqrt refinement processes assume we always start out with an
1207   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1208   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1209   // any refinement, we must return a regular sqrt.
1210   if (Reciprocal || ExtraSteps > 0) {
1211     if (VT == MVT::f32)
1212       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1213                                    : Intrinsic::nvvm_rsqrt_approx_f);
1214     else if (VT == MVT::f64)
1215       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1216     else
1217       return SDValue();
1218   } else {
1219     if (VT == MVT::f32)
1220       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1221                                    : Intrinsic::nvvm_sqrt_approx_f);
1222     else {
1223       // There's no sqrt.approx.f64 instruction, so we emit
1224       // reciprocal(rsqrt(x)).  This is faster than
1225       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1226       // x * rsqrt(x).)
1227       return DAG.getNode(
1228           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1229           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1230           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1231     }
1232   }
1233 }
1234 
1235 SDValue
1236 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1237   SDLoc dl(Op);
1238   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1239   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1240   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1241   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1242 }
1243 
1244 std::string NVPTXTargetLowering::getPrototype(
1245     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1246     const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
1247     const CallBase &CB, unsigned UniqueCallSite) const {
1248   auto PtrVT = getPointerTy(DL);
1249 
1250   bool isABI = (STI.getSmVersion() >= 20);
1251   assert(isABI && "Non-ABI compilation is not supported");
1252   if (!isABI)
1253     return "";
1254 
1255   std::stringstream O;
1256   O << "prototype_" << UniqueCallSite << " : .callprototype ";
1257 
1258   if (retTy->getTypeID() == Type::VoidTyID) {
1259     O << "()";
1260   } else {
1261     O << "(";
1262     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1263       unsigned size = 0;
1264       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1265         size = ITy->getBitWidth();
1266       } else {
1267         assert(retTy->isFloatingPointTy() &&
1268                "Floating point type expected here");
1269         size = retTy->getPrimitiveSizeInBits();
1270       }
1271       // PTX ABI requires all scalar return values to be at least 32
1272       // bits in size.  fp16 normally uses .b16 as its storage type in
1273       // PTX, so its size must be adjusted here, too.
1274       if (size < 32)
1275         size = 32;
1276 
1277       O << ".param .b" << size << " _";
1278     } else if (isa<PointerType>(retTy)) {
1279       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1280     } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1281                retTy->isIntegerTy(128)) {
1282       O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
1283         << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
1284     } else {
1285       llvm_unreachable("Unknown return type");
1286     }
1287     O << ") ";
1288   }
1289   O << "_ (";
1290 
1291   bool first = true;
1292 
1293   unsigned OIdx = 0;
1294   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1295     Type *Ty = Args[i].Ty;
1296     if (!first) {
1297       O << ", ";
1298     }
1299     first = false;
1300 
1301     if (!Outs[OIdx].Flags.isByVal()) {
1302       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1303         unsigned align = 0;
1304         const CallInst *CallI = cast<CallInst>(&CB);
1305         // +1 because index 0 is reserved for return type alignment
1306         if (!getAlign(*CallI, i + 1, align))
1307           align = DL.getABITypeAlignment(Ty);
1308         unsigned sz = DL.getTypeAllocSize(Ty);
1309         O << ".param .align " << align << " .b8 ";
1310         O << "_";
1311         O << "[" << sz << "]";
1312         // update the index for Outs
1313         SmallVector<EVT, 16> vtparts;
1314         ComputeValueVTs(*this, DL, Ty, vtparts);
1315         if (unsigned len = vtparts.size())
1316           OIdx += len - 1;
1317         continue;
1318       }
1319       // i8 types in IR will be i16 types in SDAG
1320       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1321               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1322              "type mismatch between callee prototype and arguments");
1323       // scalar type
1324       unsigned sz = 0;
1325       if (isa<IntegerType>(Ty)) {
1326         sz = cast<IntegerType>(Ty)->getBitWidth();
1327         if (sz < 32)
1328           sz = 32;
1329       } else if (isa<PointerType>(Ty)) {
1330         sz = PtrVT.getSizeInBits();
1331       } else if (Ty->isHalfTy())
1332         // PTX ABI requires all scalar parameters to be at least 32
1333         // bits in size.  fp16 normally uses .b16 as its storage type
1334         // in PTX, so its size must be adjusted here, too.
1335         sz = 32;
1336       else
1337         sz = Ty->getPrimitiveSizeInBits();
1338       O << ".param .b" << sz << " ";
1339       O << "_";
1340       continue;
1341     }
1342     auto *PTy = dyn_cast<PointerType>(Ty);
1343     assert(PTy && "Param with byval attribute should be a pointer type");
1344     Type *ETy = PTy->getElementType();
1345 
1346     Align align = Outs[OIdx].Flags.getNonZeroByValAlign();
1347     unsigned sz = DL.getTypeAllocSize(ETy);
1348     O << ".param .align " << align.value() << " .b8 ";
1349     O << "_";
1350     O << "[" << sz << "]";
1351   }
1352   O << ");";
1353   return O.str();
1354 }
1355 
1356 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1357                                                 const CallBase *CB, Type *Ty,
1358                                                 unsigned Idx,
1359                                                 const DataLayout &DL) const {
1360   if (!CB) {
1361     // CallSite is zero, fallback to ABI type alignment
1362     return DL.getABITypeAlign(Ty);
1363   }
1364 
1365   unsigned Alignment = 0;
1366   const Function *DirectCallee = CB->getCalledFunction();
1367 
1368   if (!DirectCallee) {
1369     // We don't have a direct function symbol, but that may be because of
1370     // constant cast instructions in the call.
1371 
1372     // With bitcast'd call targets, the instruction will be the call
1373     if (const auto *CI = dyn_cast<CallInst>(CB)) {
1374       // Check if we have call alignment metadata
1375       if (getAlign(*CI, Idx, Alignment))
1376         return Align(Alignment);
1377 
1378       const Value *CalleeV = CI->getCalledOperand();
1379       // Ignore any bitcast instructions
1380       while (isa<ConstantExpr>(CalleeV)) {
1381         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1382         if (!CE->isCast())
1383           break;
1384         // Look through the bitcast
1385         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1386       }
1387 
1388       // We have now looked past all of the bitcasts.  Do we finally have a
1389       // Function?
1390       if (const auto *CalleeF = dyn_cast<Function>(CalleeV))
1391         DirectCallee = CalleeF;
1392     }
1393   }
1394 
1395   // Check for function alignment information if we found that the
1396   // ultimate target is a Function
1397   if (DirectCallee)
1398     if (getAlign(*DirectCallee, Idx, Alignment))
1399       return Align(Alignment);
1400 
1401   // Call is indirect or alignment information is not available, fall back to
1402   // the ABI type alignment
1403   return DL.getABITypeAlign(Ty);
1404 }
1405 
1406 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1407                                        SmallVectorImpl<SDValue> &InVals) const {
1408   SelectionDAG &DAG = CLI.DAG;
1409   SDLoc dl = CLI.DL;
1410   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1411   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1412   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1413   SDValue Chain = CLI.Chain;
1414   SDValue Callee = CLI.Callee;
1415   bool &isTailCall = CLI.IsTailCall;
1416   ArgListTy &Args = CLI.getArgs();
1417   Type *RetTy = CLI.RetTy;
1418   const CallBase *CB = CLI.CB;
1419   const DataLayout &DL = DAG.getDataLayout();
1420 
1421   bool isABI = (STI.getSmVersion() >= 20);
1422   assert(isABI && "Non-ABI compilation is not supported");
1423   if (!isABI)
1424     return Chain;
1425 
1426   unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1);
1427   SDValue tempChain = Chain;
1428   Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
1429   SDValue InFlag = Chain.getValue(1);
1430 
1431   unsigned paramCount = 0;
1432   // Args.size() and Outs.size() need not match.
1433   // Outs.size() will be larger
1434   //   * if there is an aggregate argument with multiple fields (each field
1435   //     showing up separately in Outs)
1436   //   * if there is a vector argument with more than typical vector-length
1437   //     elements (generally if more than 4) where each vector element is
1438   //     individually present in Outs.
1439   // So a different index should be used for indexing into Outs/OutVals.
1440   // See similar issue in LowerFormalArguments.
1441   unsigned OIdx = 0;
1442   // Declare the .params or .reg need to pass values
1443   // to the function
1444   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1445     EVT VT = Outs[OIdx].VT;
1446     Type *Ty = Args[i].Ty;
1447 
1448     if (!Outs[OIdx].Flags.isByVal()) {
1449       SmallVector<EVT, 16> VTs;
1450       SmallVector<uint64_t, 16> Offsets;
1451       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1452       Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL);
1453       unsigned AllocSize = DL.getTypeAllocSize(Ty);
1454       SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1455       bool NeedAlign; // Does argument declaration specify alignment?
1456       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1457         // declare .param .align <align> .b8 .param<n>[<size>];
1458         SDValue DeclareParamOps[] = {
1459             Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1460             DAG.getConstant(paramCount, dl, MVT::i32),
1461             DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1462         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1463                             DeclareParamOps);
1464         NeedAlign = true;
1465       } else {
1466         // declare .param .b<size> .param<n>;
1467         if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1468           // PTX ABI requires integral types to be at least 32 bits in
1469           // size. FP16 is loaded/stored using i16, so it's handled
1470           // here as well.
1471           AllocSize = 4;
1472         }
1473         SDValue DeclareScalarParamOps[] = {
1474             Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1475             DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1476             DAG.getConstant(0, dl, MVT::i32), InFlag};
1477         Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1478                             DeclareScalarParamOps);
1479         NeedAlign = false;
1480       }
1481       InFlag = Chain.getValue(1);
1482 
1483       // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1484       // than 32-bits are sign extended or zero extended, depending on
1485       // whether they are signed or unsigned types. This case applies
1486       // only to scalar parameters and not to aggregate values.
1487       bool ExtendIntegerParam =
1488           Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1489 
1490       auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1491       SmallVector<SDValue, 6> StoreOperands;
1492       for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1493         // New store.
1494         if (VectorInfo[j] & PVF_FIRST) {
1495           assert(StoreOperands.empty() && "Unfinished preceding store.");
1496           StoreOperands.push_back(Chain);
1497           StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1498           StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1499         }
1500 
1501         EVT EltVT = VTs[j];
1502         SDValue StVal = OutVals[OIdx];
1503         if (ExtendIntegerParam) {
1504           assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1505           // zext/sext to i32
1506           StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1507                                                         : ISD::ZERO_EXTEND,
1508                               dl, MVT::i32, StVal);
1509         } else if (EltVT.getSizeInBits() < 16) {
1510           // Use 16-bit registers for small stores as it's the
1511           // smallest general purpose register size supported by NVPTX.
1512           StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1513         }
1514 
1515         // Record the value to store.
1516         StoreOperands.push_back(StVal);
1517 
1518         if (VectorInfo[j] & PVF_LAST) {
1519           unsigned NumElts = StoreOperands.size() - 3;
1520           NVPTXISD::NodeType Op;
1521           switch (NumElts) {
1522           case 1:
1523             Op = NVPTXISD::StoreParam;
1524             break;
1525           case 2:
1526             Op = NVPTXISD::StoreParamV2;
1527             break;
1528           case 4:
1529             Op = NVPTXISD::StoreParamV4;
1530             break;
1531           default:
1532             llvm_unreachable("Invalid vector info.");
1533           }
1534 
1535           StoreOperands.push_back(InFlag);
1536 
1537           // Adjust type of the store op if we've extended the scalar
1538           // return value.
1539           EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1540           MaybeAlign EltAlign;
1541           if (NeedAlign)
1542             EltAlign = commonAlignment(ArgAlign, Offsets[j]);
1543 
1544           Chain = DAG.getMemIntrinsicNode(
1545               Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1546               TheStoreType, MachinePointerInfo(), EltAlign,
1547               MachineMemOperand::MOStore);
1548           InFlag = Chain.getValue(1);
1549 
1550           // Cleanup.
1551           StoreOperands.clear();
1552         }
1553         ++OIdx;
1554       }
1555       assert(StoreOperands.empty() && "Unfinished parameter store.");
1556       if (VTs.size() > 0)
1557         --OIdx;
1558       ++paramCount;
1559       continue;
1560     }
1561 
1562     // ByVal arguments
1563     SmallVector<EVT, 16> VTs;
1564     SmallVector<uint64_t, 16> Offsets;
1565     auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1566     assert(PTy && "Type of a byval parameter should be pointer");
1567     ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
1568 
1569     // declare .param .align <align> .b8 .param<n>[<size>];
1570     unsigned sz = Outs[OIdx].Flags.getByValSize();
1571     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1572     Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1573     // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1574     // so we don't need to worry about natural alignment or not.
1575     // See TargetLowering::LowerCallTo().
1576 
1577     // Enforce minumum alignment of 4 to work around ptxas miscompile
1578     // for sm_50+. See corresponding alignment adjustment in
1579     // emitFunctionParamList() for details.
1580     if (ArgAlign < Align(4))
1581       ArgAlign = Align(4);
1582     SDValue DeclareParamOps[] = {
1583         Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1584         DAG.getConstant(paramCount, dl, MVT::i32),
1585         DAG.getConstant(sz, dl, MVT::i32), InFlag};
1586     Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1587                         DeclareParamOps);
1588     InFlag = Chain.getValue(1);
1589     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1590       EVT elemtype = VTs[j];
1591       int curOffset = Offsets[j];
1592       unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset);
1593       auto PtrVT = getPointerTy(DL);
1594       SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1595                                     DAG.getConstant(curOffset, dl, PtrVT));
1596       SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1597                                    MachinePointerInfo(), PartAlign);
1598       if (elemtype.getSizeInBits() < 16) {
1599         theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1600       }
1601       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1602       SDValue CopyParamOps[] = { Chain,
1603                                  DAG.getConstant(paramCount, dl, MVT::i32),
1604                                  DAG.getConstant(curOffset, dl, MVT::i32),
1605                                  theVal, InFlag };
1606       Chain = DAG.getMemIntrinsicNode(
1607           NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype,
1608           MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore);
1609 
1610       InFlag = Chain.getValue(1);
1611     }
1612     ++paramCount;
1613   }
1614 
1615   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1616   MaybeAlign retAlignment = None;
1617 
1618   // Handle Result
1619   if (Ins.size() > 0) {
1620     SmallVector<EVT, 16> resvtparts;
1621     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1622 
1623     // Declare
1624     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1625     //  .param .b<size-in-bits> retval0
1626     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1627     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1628     // these three types to match the logic in
1629     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1630     // Plus, this behavior is consistent with nvcc's.
1631     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1632         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1633       // Scalar needs to be at least 32bit wide
1634       if (resultsz < 32)
1635         resultsz = 32;
1636       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1637       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1638                                   DAG.getConstant(resultsz, dl, MVT::i32),
1639                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1640       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1641                           DeclareRetOps);
1642       InFlag = Chain.getValue(1);
1643     } else {
1644       retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1645       assert(retAlignment && "retAlignment is guaranteed to be set");
1646       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1647       SDValue DeclareRetOps[] = {
1648           Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
1649           DAG.getConstant(resultsz / 8, dl, MVT::i32),
1650           DAG.getConstant(0, dl, MVT::i32), InFlag};
1651       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1652                           DeclareRetOps);
1653       InFlag = Chain.getValue(1);
1654     }
1655   }
1656 
1657   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1658   // between them we must rely on the call site value which is valid for
1659   // indirect calls but is always null for libcalls.
1660   bool isIndirectCall = !Func && CB;
1661 
1662   if (isa<ExternalSymbolSDNode>(Callee)) {
1663     Function* CalleeFunc = nullptr;
1664 
1665     // Try to find the callee in the current module.
1666     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1667     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1668 
1669     // Set the "libcall callee" attribute to indicate that the function
1670     // must always have a declaration.
1671     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1672   }
1673 
1674   if (isIndirectCall) {
1675     // This is indirect function call case : PTX requires a prototype of the
1676     // form
1677     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1678     // to be emitted, and the label has to used as the last arg of call
1679     // instruction.
1680     // The prototype is embedded in a string and put as the operand for a
1681     // CallPrototype SDNode which will print out to the value of the string.
1682     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1683     std::string Proto =
1684         getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite);
1685     const char *ProtoStr =
1686       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1687     SDValue ProtoOps[] = {
1688       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1689     };
1690     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1691     InFlag = Chain.getValue(1);
1692   }
1693   // Op to just print "call"
1694   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1695   SDValue PrintCallOps[] = {
1696     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1697   };
1698   // We model convergent calls as separate opcodes.
1699   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1700   if (CLI.IsConvergent)
1701     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1702                                               : NVPTXISD::PrintConvergentCall;
1703   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1704   InFlag = Chain.getValue(1);
1705 
1706   // Ops to print out the function name
1707   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1708   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1709   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1710   InFlag = Chain.getValue(1);
1711 
1712   // Ops to print out the param list
1713   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1714   SDValue CallArgBeginOps[] = { Chain, InFlag };
1715   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1716                       CallArgBeginOps);
1717   InFlag = Chain.getValue(1);
1718 
1719   for (unsigned i = 0, e = paramCount; i != e; ++i) {
1720     unsigned opcode;
1721     if (i == (e - 1))
1722       opcode = NVPTXISD::LastCallArg;
1723     else
1724       opcode = NVPTXISD::CallArg;
1725     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1726     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1727                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1728     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1729     InFlag = Chain.getValue(1);
1730   }
1731   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1732   SDValue CallArgEndOps[] = { Chain,
1733                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1734                               InFlag };
1735   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1736   InFlag = Chain.getValue(1);
1737 
1738   if (isIndirectCall) {
1739     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1740     SDValue PrototypeOps[] = {
1741         Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag};
1742     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1743     InFlag = Chain.getValue(1);
1744   }
1745 
1746   SmallVector<SDValue, 16> ProxyRegOps;
1747   SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1748 
1749   // Generate loads from param memory/moves from registers for result
1750   if (Ins.size() > 0) {
1751     SmallVector<EVT, 16> VTs;
1752     SmallVector<uint64_t, 16> Offsets;
1753     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1754     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1755 
1756     Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1757     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1758 
1759     SmallVector<EVT, 6> LoadVTs;
1760     int VecIdx = -1; // Index of the first element of the vector.
1761 
1762     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1763     // 32-bits are sign extended or zero extended, depending on whether
1764     // they are signed or unsigned types.
1765     bool ExtendIntegerRetVal =
1766         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1767 
1768     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1769       bool needTruncate = false;
1770       EVT TheLoadType = VTs[i];
1771       EVT EltType = Ins[i].VT;
1772       Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
1773       if (ExtendIntegerRetVal) {
1774         TheLoadType = MVT::i32;
1775         EltType = MVT::i32;
1776         needTruncate = true;
1777       } else if (TheLoadType.getSizeInBits() < 16) {
1778         if (VTs[i].isInteger())
1779           needTruncate = true;
1780         EltType = MVT::i16;
1781       }
1782 
1783       // Record index of the very first element of the vector.
1784       if (VectorInfo[i] & PVF_FIRST) {
1785         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1786         VecIdx = i;
1787       }
1788 
1789       LoadVTs.push_back(EltType);
1790 
1791       if (VectorInfo[i] & PVF_LAST) {
1792         unsigned NumElts = LoadVTs.size();
1793         LoadVTs.push_back(MVT::Other);
1794         LoadVTs.push_back(MVT::Glue);
1795         NVPTXISD::NodeType Op;
1796         switch (NumElts) {
1797         case 1:
1798           Op = NVPTXISD::LoadParam;
1799           break;
1800         case 2:
1801           Op = NVPTXISD::LoadParamV2;
1802           break;
1803         case 4:
1804           Op = NVPTXISD::LoadParamV4;
1805           break;
1806         default:
1807           llvm_unreachable("Invalid vector info.");
1808         }
1809 
1810         SDValue LoadOperands[] = {
1811             Chain, DAG.getConstant(1, dl, MVT::i32),
1812             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1813         SDValue RetVal = DAG.getMemIntrinsicNode(
1814             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1815             MachinePointerInfo(), EltAlign,
1816             MachineMemOperand::MOLoad);
1817 
1818         for (unsigned j = 0; j < NumElts; ++j) {
1819           ProxyRegOps.push_back(RetVal.getValue(j));
1820 
1821           if (needTruncate)
1822             ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1823           else
1824             ProxyRegTruncates.push_back(Optional<MVT>());
1825         }
1826 
1827         Chain = RetVal.getValue(NumElts);
1828         InFlag = RetVal.getValue(NumElts + 1);
1829 
1830         // Cleanup
1831         VecIdx = -1;
1832         LoadVTs.clear();
1833       }
1834     }
1835   }
1836 
1837   Chain = DAG.getCALLSEQ_END(
1838       Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true),
1839       DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl);
1840   InFlag = Chain.getValue(1);
1841 
1842   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1843   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1844   // dangling.
1845   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1846     SDValue Ret = DAG.getNode(
1847       NVPTXISD::ProxyReg, dl,
1848       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1849       { Chain, ProxyRegOps[i], InFlag }
1850     );
1851 
1852     Chain = Ret.getValue(1);
1853     InFlag = Ret.getValue(2);
1854 
1855     if (ProxyRegTruncates[i].hasValue()) {
1856       Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
1857     }
1858 
1859     InVals.push_back(Ret);
1860   }
1861 
1862   // set isTailCall to false for now, until we figure out how to express
1863   // tail call optimization in PTX
1864   isTailCall = false;
1865   return Chain;
1866 }
1867 
1868 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1869 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1870 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1871 SDValue
1872 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1873   SDNode *Node = Op.getNode();
1874   SDLoc dl(Node);
1875   SmallVector<SDValue, 8> Ops;
1876   unsigned NumOperands = Node->getNumOperands();
1877   for (unsigned i = 0; i < NumOperands; ++i) {
1878     SDValue SubOp = Node->getOperand(i);
1879     EVT VVT = SubOp.getNode()->getValueType(0);
1880     EVT EltVT = VVT.getVectorElementType();
1881     unsigned NumSubElem = VVT.getVectorNumElements();
1882     for (unsigned j = 0; j < NumSubElem; ++j) {
1883       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1884                                 DAG.getIntPtrConstant(j, dl)));
1885     }
1886   }
1887   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1888 }
1889 
1890 // We can init constant f16x2 with a single .b32 move.  Normally it
1891 // would get lowered as two constant loads and vector-packing move.
1892 //        mov.b16         %h1, 0x4000;
1893 //        mov.b16         %h2, 0x3C00;
1894 //        mov.b32         %hh2, {%h2, %h1};
1895 // Instead we want just a constant move:
1896 //        mov.b32         %hh2, 0x40003C00
1897 //
1898 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1899 // generates good SASS in both cases.
1900 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1901                                                SelectionDAG &DAG) const {
1902   //return Op;
1903   if (!(Op->getValueType(0) == MVT::v2f16 &&
1904         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1905         isa<ConstantFPSDNode>(Op->getOperand(1))))
1906     return Op;
1907 
1908   APInt E0 =
1909       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1910   APInt E1 =
1911       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1912   SDValue Const =
1913       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1914   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1915 }
1916 
1917 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1918                                                      SelectionDAG &DAG) const {
1919   SDValue Index = Op->getOperand(1);
1920   // Constant index will be matched by tablegen.
1921   if (isa<ConstantSDNode>(Index.getNode()))
1922     return Op;
1923 
1924   // Extract individual elements and select one of them.
1925   SDValue Vector = Op->getOperand(0);
1926   EVT VectorVT = Vector.getValueType();
1927   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1928   EVT EltVT = VectorVT.getVectorElementType();
1929 
1930   SDLoc dl(Op.getNode());
1931   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1932                            DAG.getIntPtrConstant(0, dl));
1933   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1934                            DAG.getIntPtrConstant(1, dl));
1935   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1936                          ISD::CondCode::SETEQ);
1937 }
1938 
1939 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1940 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1941 ///    amount, or
1942 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1943 ///    amount.
1944 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1945                                                   SelectionDAG &DAG) const {
1946   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1947   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1948 
1949   EVT VT = Op.getValueType();
1950   unsigned VTBits = VT.getSizeInBits();
1951   SDLoc dl(Op);
1952   SDValue ShOpLo = Op.getOperand(0);
1953   SDValue ShOpHi = Op.getOperand(1);
1954   SDValue ShAmt  = Op.getOperand(2);
1955   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1956 
1957   if (VTBits == 32 && STI.getSmVersion() >= 35) {
1958     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1959     // {dHi, dLo} = {aHi, aLo} >> Amt
1960     //   dHi = aHi >> Amt
1961     //   dLo = shf.r.clamp aLo, aHi, Amt
1962 
1963     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1964     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1965                              ShAmt);
1966 
1967     SDValue Ops[2] = { Lo, Hi };
1968     return DAG.getMergeValues(Ops, dl);
1969   }
1970   else {
1971     // {dHi, dLo} = {aHi, aLo} >> Amt
1972     // - if (Amt>=size) then
1973     //      dLo = aHi >> (Amt-size)
1974     //      dHi = aHi >> Amt (this is either all 0 or all 1)
1975     //   else
1976     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1977     //      dHi = aHi >> Amt
1978 
1979     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1980                                    DAG.getConstant(VTBits, dl, MVT::i32),
1981                                    ShAmt);
1982     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1983     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1984                                      DAG.getConstant(VTBits, dl, MVT::i32));
1985     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1986     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1987     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
1988 
1989     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1990                                DAG.getConstant(VTBits, dl, MVT::i32),
1991                                ISD::SETGE);
1992     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1993     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1994 
1995     SDValue Ops[2] = { Lo, Hi };
1996     return DAG.getMergeValues(Ops, dl);
1997   }
1998 }
1999 
2000 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2001 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2002 ///    amount, or
2003 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2004 ///    amount.
2005 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2006                                                  SelectionDAG &DAG) const {
2007   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2008   assert(Op.getOpcode() == ISD::SHL_PARTS);
2009 
2010   EVT VT = Op.getValueType();
2011   unsigned VTBits = VT.getSizeInBits();
2012   SDLoc dl(Op);
2013   SDValue ShOpLo = Op.getOperand(0);
2014   SDValue ShOpHi = Op.getOperand(1);
2015   SDValue ShAmt  = Op.getOperand(2);
2016 
2017   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2018     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2019     // {dHi, dLo} = {aHi, aLo} << Amt
2020     //   dHi = shf.l.clamp aLo, aHi, Amt
2021     //   dLo = aLo << Amt
2022 
2023     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2024                              ShAmt);
2025     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2026 
2027     SDValue Ops[2] = { Lo, Hi };
2028     return DAG.getMergeValues(Ops, dl);
2029   }
2030   else {
2031     // {dHi, dLo} = {aHi, aLo} << Amt
2032     // - if (Amt>=size) then
2033     //      dLo = aLo << Amt (all 0)
2034     //      dLo = aLo << (Amt-size)
2035     //   else
2036     //      dLo = aLo << Amt
2037     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2038 
2039     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2040                                    DAG.getConstant(VTBits, dl, MVT::i32),
2041                                    ShAmt);
2042     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2043     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2044                                      DAG.getConstant(VTBits, dl, MVT::i32));
2045     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2046     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2047     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2048 
2049     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2050                                DAG.getConstant(VTBits, dl, MVT::i32),
2051                                ISD::SETGE);
2052     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2053     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2054 
2055     SDValue Ops[2] = { Lo, Hi };
2056     return DAG.getMergeValues(Ops, dl);
2057   }
2058 }
2059 
2060 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2061   EVT VT = Op.getValueType();
2062 
2063   if (VT == MVT::f32)
2064     return LowerFROUND32(Op, DAG);
2065 
2066   if (VT == MVT::f64)
2067     return LowerFROUND64(Op, DAG);
2068 
2069   llvm_unreachable("unhandled type");
2070 }
2071 
2072 // This is the the rounding method used in CUDA libdevice in C like code:
2073 // float roundf(float A)
2074 // {
2075 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2076 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2077 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2078 // }
2079 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2080                                            SelectionDAG &DAG) const {
2081   SDLoc SL(Op);
2082   SDValue A = Op.getOperand(0);
2083   EVT VT = Op.getValueType();
2084 
2085   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2086 
2087   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2088   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2089   const int SignBitMask = 0x80000000;
2090   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2091                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2092   const int PointFiveInBits = 0x3F000000;
2093   SDValue PointFiveWithSignRaw =
2094       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2095                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2096   SDValue PointFiveWithSign =
2097       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2098   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2099   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2100 
2101   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2102   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2103   SDValue IsLarge =
2104       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2105                    ISD::SETOGT);
2106   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2107 
2108   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2109   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2110                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2111   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2112   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2113 }
2114 
2115 // The implementation of round(double) is similar to that of round(float) in
2116 // that they both separate the value range into three regions and use a method
2117 // specific to the region to round the values. However, round(double) first
2118 // calculates the round of the absolute value and then adds the sign back while
2119 // round(float) directly rounds the value with sign.
2120 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2121                                            SelectionDAG &DAG) const {
2122   SDLoc SL(Op);
2123   SDValue A = Op.getOperand(0);
2124   EVT VT = Op.getValueType();
2125 
2126   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2127 
2128   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2129   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2130                                   DAG.getConstantFP(0.5, SL, VT));
2131   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2132 
2133   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2134   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2135   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2136                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2137   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2138                          DAG.getConstantFP(0, SL, VT),
2139                          RoundedA);
2140 
2141   // Add sign to rounded_A
2142   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2143   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2144 
2145   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2146   SDValue IsLarge =
2147       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2148                    ISD::SETOGT);
2149   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2150 }
2151 
2152 
2153 
2154 SDValue
2155 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2156   switch (Op.getOpcode()) {
2157   case ISD::RETURNADDR:
2158     return SDValue();
2159   case ISD::FRAMEADDR:
2160     return SDValue();
2161   case ISD::GlobalAddress:
2162     return LowerGlobalAddress(Op, DAG);
2163   case ISD::INTRINSIC_W_CHAIN:
2164     return Op;
2165   case ISD::BUILD_VECTOR:
2166     return LowerBUILD_VECTOR(Op, DAG);
2167   case ISD::EXTRACT_SUBVECTOR:
2168     return Op;
2169   case ISD::EXTRACT_VECTOR_ELT:
2170     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2171   case ISD::CONCAT_VECTORS:
2172     return LowerCONCAT_VECTORS(Op, DAG);
2173   case ISD::STORE:
2174     return LowerSTORE(Op, DAG);
2175   case ISD::LOAD:
2176     return LowerLOAD(Op, DAG);
2177   case ISD::SHL_PARTS:
2178     return LowerShiftLeftParts(Op, DAG);
2179   case ISD::SRA_PARTS:
2180   case ISD::SRL_PARTS:
2181     return LowerShiftRightParts(Op, DAG);
2182   case ISD::SELECT:
2183     return LowerSelect(Op, DAG);
2184   case ISD::FROUND:
2185     return LowerFROUND(Op, DAG);
2186   default:
2187     llvm_unreachable("Custom lowering not defined for operation");
2188   }
2189 }
2190 
2191 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2192   SDValue Op0 = Op->getOperand(0);
2193   SDValue Op1 = Op->getOperand(1);
2194   SDValue Op2 = Op->getOperand(2);
2195   SDLoc DL(Op.getNode());
2196 
2197   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2198 
2199   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2200   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2201   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2202   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2203 
2204   return Trunc;
2205 }
2206 
2207 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2208   if (Op.getValueType() == MVT::i1)
2209     return LowerLOADi1(Op, DAG);
2210 
2211   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2212   // loads and have to handle it here.
2213   if (Op.getValueType() == MVT::v2f16) {
2214     LoadSDNode *Load = cast<LoadSDNode>(Op);
2215     EVT MemVT = Load->getMemoryVT();
2216     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2217                                         MemVT, *Load->getMemOperand())) {
2218       SDValue Ops[2];
2219       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2220       return DAG.getMergeValues(Ops, SDLoc(Op));
2221     }
2222   }
2223 
2224   return SDValue();
2225 }
2226 
2227 // v = ld i1* addr
2228 //   =>
2229 // v1 = ld i8* addr (-> i16)
2230 // v = trunc i16 to i1
2231 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2232   SDNode *Node = Op.getNode();
2233   LoadSDNode *LD = cast<LoadSDNode>(Node);
2234   SDLoc dl(Node);
2235   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2236   assert(Node->getValueType(0) == MVT::i1 &&
2237          "Custom lowering for i1 load only");
2238   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2239                               LD->getPointerInfo(), LD->getAlignment(),
2240                               LD->getMemOperand()->getFlags());
2241   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2242   // The legalizer (the caller) is expecting two values from the legalized
2243   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2244   // in LegalizeDAG.cpp which also uses MergeValues.
2245   SDValue Ops[] = { result, LD->getChain() };
2246   return DAG.getMergeValues(Ops, dl);
2247 }
2248 
2249 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2250   StoreSDNode *Store = cast<StoreSDNode>(Op);
2251   EVT VT = Store->getMemoryVT();
2252 
2253   if (VT == MVT::i1)
2254     return LowerSTOREi1(Op, DAG);
2255 
2256   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2257   // stores and have to handle it here.
2258   if (VT == MVT::v2f16 &&
2259       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2260                                       VT, *Store->getMemOperand()))
2261     return expandUnalignedStore(Store, DAG);
2262 
2263   if (VT.isVector())
2264     return LowerSTOREVector(Op, DAG);
2265 
2266   return SDValue();
2267 }
2268 
2269 SDValue
2270 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2271   SDNode *N = Op.getNode();
2272   SDValue Val = N->getOperand(1);
2273   SDLoc DL(N);
2274   EVT ValVT = Val.getValueType();
2275 
2276   if (ValVT.isVector()) {
2277     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2278     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2279     // but I'm leaving that as a TODO for now.
2280     if (!ValVT.isSimple())
2281       return SDValue();
2282     switch (ValVT.getSimpleVT().SimpleTy) {
2283     default:
2284       return SDValue();
2285     case MVT::v2i8:
2286     case MVT::v2i16:
2287     case MVT::v2i32:
2288     case MVT::v2i64:
2289     case MVT::v2f16:
2290     case MVT::v2f32:
2291     case MVT::v2f64:
2292     case MVT::v4i8:
2293     case MVT::v4i16:
2294     case MVT::v4i32:
2295     case MVT::v4f16:
2296     case MVT::v4f32:
2297     case MVT::v8f16: // <4 x f16x2>
2298       // This is a "native" vector type
2299       break;
2300     }
2301 
2302     MemSDNode *MemSD = cast<MemSDNode>(N);
2303     const DataLayout &TD = DAG.getDataLayout();
2304 
2305     Align Alignment = MemSD->getAlign();
2306     Align PrefAlign =
2307         TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
2308     if (Alignment < PrefAlign) {
2309       // This store is not sufficiently aligned, so bail out and let this vector
2310       // store be scalarized.  Note that we may still be able to emit smaller
2311       // vector stores.  For example, if we are storing a <4 x float> with an
2312       // alignment of 8, this check will fail but the legalizer will try again
2313       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2314       return SDValue();
2315     }
2316 
2317     unsigned Opcode = 0;
2318     EVT EltVT = ValVT.getVectorElementType();
2319     unsigned NumElts = ValVT.getVectorNumElements();
2320 
2321     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2322     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2323     // stored type to i16 and propagate the "real" type as the memory type.
2324     bool NeedExt = false;
2325     if (EltVT.getSizeInBits() < 16)
2326       NeedExt = true;
2327 
2328     bool StoreF16x2 = false;
2329     switch (NumElts) {
2330     default:
2331       return SDValue();
2332     case 2:
2333       Opcode = NVPTXISD::StoreV2;
2334       break;
2335     case 4:
2336       Opcode = NVPTXISD::StoreV4;
2337       break;
2338     case 8:
2339       // v8f16 is a special case. PTX doesn't have st.v8.f16
2340       // instruction. Instead, we split the vector into v2f16 chunks and
2341       // store them with st.v4.b32.
2342       assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2343       Opcode = NVPTXISD::StoreV4;
2344       StoreF16x2 = true;
2345       break;
2346     }
2347 
2348     SmallVector<SDValue, 8> Ops;
2349 
2350     // First is the chain
2351     Ops.push_back(N->getOperand(0));
2352 
2353     if (StoreF16x2) {
2354       // Combine f16,f16 -> v2f16
2355       NumElts /= 2;
2356       for (unsigned i = 0; i < NumElts; ++i) {
2357         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2358                                  DAG.getIntPtrConstant(i * 2, DL));
2359         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2360                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2361         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2362         Ops.push_back(V2);
2363       }
2364     } else {
2365       // Then the split values
2366       for (unsigned i = 0; i < NumElts; ++i) {
2367         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2368                                      DAG.getIntPtrConstant(i, DL));
2369         if (NeedExt)
2370           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2371         Ops.push_back(ExtVal);
2372       }
2373     }
2374 
2375     // Then any remaining arguments
2376     Ops.append(N->op_begin() + 2, N->op_end());
2377 
2378     SDValue NewSt =
2379         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2380                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2381 
2382     // return DCI.CombineTo(N, NewSt, true);
2383     return NewSt;
2384   }
2385 
2386   return SDValue();
2387 }
2388 
2389 // st i1 v, addr
2390 //    =>
2391 // v1 = zxt v to i16
2392 // st.u8 i16, addr
2393 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2394   SDNode *Node = Op.getNode();
2395   SDLoc dl(Node);
2396   StoreSDNode *ST = cast<StoreSDNode>(Node);
2397   SDValue Tmp1 = ST->getChain();
2398   SDValue Tmp2 = ST->getBasePtr();
2399   SDValue Tmp3 = ST->getValue();
2400   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2401   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2402   SDValue Result =
2403       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2404                         ST->getAlignment(), ST->getMemOperand()->getFlags());
2405   return Result;
2406 }
2407 
2408 SDValue
2409 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2410   std::string ParamSym;
2411   raw_string_ostream ParamStr(ParamSym);
2412 
2413   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2414   ParamStr.flush();
2415 
2416   std::string *SavedStr =
2417     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2418   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2419 }
2420 
2421 // Check to see if the kernel argument is image*_t or sampler_t
2422 
2423 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2424   static const char *const specialTypes[] = { "struct._image2d_t",
2425                                               "struct._image3d_t",
2426                                               "struct._sampler_t" };
2427 
2428   Type *Ty = arg->getType();
2429   auto *PTy = dyn_cast<PointerType>(Ty);
2430 
2431   if (!PTy)
2432     return false;
2433 
2434   if (!context)
2435     return false;
2436 
2437   auto *STy = dyn_cast<StructType>(PTy->getElementType());
2438   if (!STy || STy->isLiteral())
2439     return false;
2440 
2441   return llvm::is_contained(specialTypes, STy->getName());
2442 }
2443 
2444 SDValue NVPTXTargetLowering::LowerFormalArguments(
2445     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2446     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2447     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2448   MachineFunction &MF = DAG.getMachineFunction();
2449   const DataLayout &DL = DAG.getDataLayout();
2450   auto PtrVT = getPointerTy(DAG.getDataLayout());
2451 
2452   const Function *F = &MF.getFunction();
2453   const AttributeList &PAL = F->getAttributes();
2454   const TargetLowering *TLI = STI.getTargetLowering();
2455 
2456   SDValue Root = DAG.getRoot();
2457   std::vector<SDValue> OutChains;
2458 
2459   bool isABI = (STI.getSmVersion() >= 20);
2460   assert(isABI && "Non-ABI compilation is not supported");
2461   if (!isABI)
2462     return Chain;
2463 
2464   std::vector<Type *> argTypes;
2465   std::vector<const Argument *> theArgs;
2466   for (const Argument &I : F->args()) {
2467     theArgs.push_back(&I);
2468     argTypes.push_back(I.getType());
2469   }
2470   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2471   // Ins.size() will be larger
2472   //   * if there is an aggregate argument with multiple fields (each field
2473   //     showing up separately in Ins)
2474   //   * if there is a vector argument with more than typical vector-length
2475   //     elements (generally if more than 4) where each vector element is
2476   //     individually present in Ins.
2477   // So a different index should be used for indexing into Ins.
2478   // See similar issue in LowerCall.
2479   unsigned InsIdx = 0;
2480 
2481   int idx = 0;
2482   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2483     Type *Ty = argTypes[i];
2484 
2485     // If the kernel argument is image*_t or sampler_t, convert it to
2486     // a i32 constant holding the parameter position. This can later
2487     // matched in the AsmPrinter to output the correct mangled name.
2488     if (isImageOrSamplerVal(
2489             theArgs[i],
2490             (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2491                                      : nullptr))) {
2492       assert(isKernelFunction(*F) &&
2493              "Only kernels can have image/sampler params");
2494       InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2495       continue;
2496     }
2497 
2498     if (theArgs[i]->use_empty()) {
2499       // argument is dead
2500       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2501         SmallVector<EVT, 16> vtparts;
2502 
2503         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2504         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2505         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2506              ++parti) {
2507           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2508           ++InsIdx;
2509         }
2510         if (vtparts.size() > 0)
2511           --InsIdx;
2512         continue;
2513       }
2514       if (Ty->isVectorTy()) {
2515         EVT ObjectVT = getValueType(DL, Ty);
2516         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2517         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2518           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2519           ++InsIdx;
2520         }
2521         if (NumRegs > 0)
2522           --InsIdx;
2523         continue;
2524       }
2525       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2526       continue;
2527     }
2528 
2529     // In the following cases, assign a node order of "idx+1"
2530     // to newly created nodes. The SDNodes for params have to
2531     // appear in the same order as their order of appearance
2532     // in the original function. "idx+1" holds that order.
2533     if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
2534       bool aggregateIsPacked = false;
2535       if (StructType *STy = dyn_cast<StructType>(Ty))
2536         aggregateIsPacked = STy->isPacked();
2537 
2538       SmallVector<EVT, 16> VTs;
2539       SmallVector<uint64_t, 16> Offsets;
2540       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2541       assert(VTs.size() > 0 && "Unexpected empty type.");
2542       auto VectorInfo =
2543           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
2544 
2545       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2546       int VecIdx = -1; // Index of the first element of the current vector.
2547       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2548         if (VectorInfo[parti] & PVF_FIRST) {
2549           assert(VecIdx == -1 && "Orphaned vector.");
2550           VecIdx = parti;
2551         }
2552 
2553         // That's the last element of this store op.
2554         if (VectorInfo[parti] & PVF_LAST) {
2555           unsigned NumElts = parti - VecIdx + 1;
2556           EVT EltVT = VTs[parti];
2557           // i1 is loaded/stored as i8.
2558           EVT LoadVT = EltVT;
2559           if (EltVT == MVT::i1)
2560             LoadVT = MVT::i8;
2561           else if (EltVT == MVT::v2f16)
2562             // getLoad needs a vector type, but it can't handle
2563             // vectors which contain v2f16 elements. So we must load
2564             // using i32 here and then bitcast back.
2565             LoadVT = MVT::i32;
2566 
2567           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2568           SDValue VecAddr =
2569               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2570                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2571           Value *srcValue = Constant::getNullValue(PointerType::get(
2572               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2573           SDValue P =
2574               DAG.getLoad(VecVT, dl, Root, VecAddr,
2575                           MachinePointerInfo(srcValue), aggregateIsPacked,
2576                           MachineMemOperand::MODereferenceable |
2577                               MachineMemOperand::MOInvariant);
2578           if (P.getNode())
2579             P.getNode()->setIROrder(idx + 1);
2580           for (unsigned j = 0; j < NumElts; ++j) {
2581             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2582                                       DAG.getIntPtrConstant(j, dl));
2583             // We've loaded i1 as an i8 and now must truncate it back to i1
2584             if (EltVT == MVT::i1)
2585               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2586             // v2f16 was loaded as an i32. Now we must bitcast it back.
2587             else if (EltVT == MVT::v2f16)
2588               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2589             // Extend the element if necessary (e.g. an i8 is loaded
2590             // into an i16 register)
2591             if (Ins[InsIdx].VT.isInteger() &&
2592                 Ins[InsIdx].VT.getFixedSizeInBits() >
2593                     LoadVT.getFixedSizeInBits()) {
2594               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2595                                                            : ISD::ZERO_EXTEND;
2596               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2597             }
2598             InVals.push_back(Elt);
2599           }
2600 
2601           // Reset vector tracking state.
2602           VecIdx = -1;
2603         }
2604         ++InsIdx;
2605       }
2606       if (VTs.size() > 0)
2607         --InsIdx;
2608       continue;
2609     }
2610 
2611     // Param has ByVal attribute
2612     // Return MoveParam(param symbol).
2613     // Ideally, the param symbol can be returned directly,
2614     // but when SDNode builder decides to use it in a CopyToReg(),
2615     // machine instruction fails because TargetExternalSymbol
2616     // (not lowered) is target dependent, and CopyToReg assumes
2617     // the source is lowered.
2618     EVT ObjectVT = getValueType(DL, Ty);
2619     assert(ObjectVT == Ins[InsIdx].VT &&
2620            "Ins type did not match function type");
2621     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2622     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2623     if (p.getNode())
2624       p.getNode()->setIROrder(idx + 1);
2625     InVals.push_back(p);
2626   }
2627 
2628   // Clang will check explicit VarArg and issue error if any. However, Clang
2629   // will let code with
2630   // implicit var arg like f() pass. See bug 617733.
2631   // We treat this case as if the arg list is empty.
2632   // if (F.isVarArg()) {
2633   // assert(0 && "VarArg not supported yet!");
2634   //}
2635 
2636   if (!OutChains.empty())
2637     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2638 
2639   return Chain;
2640 }
2641 
2642 SDValue
2643 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2644                                  bool isVarArg,
2645                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2646                                  const SmallVectorImpl<SDValue> &OutVals,
2647                                  const SDLoc &dl, SelectionDAG &DAG) const {
2648   MachineFunction &MF = DAG.getMachineFunction();
2649   Type *RetTy = MF.getFunction().getReturnType();
2650 
2651   bool isABI = (STI.getSmVersion() >= 20);
2652   assert(isABI && "Non-ABI compilation is not supported");
2653   if (!isABI)
2654     return Chain;
2655 
2656   const DataLayout &DL = DAG.getDataLayout();
2657   SmallVector<EVT, 16> VTs;
2658   SmallVector<uint64_t, 16> Offsets;
2659   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2660   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2661 
2662   auto VectorInfo = VectorizePTXValueVTs(
2663       VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1));
2664 
2665   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2666   // 32-bits are sign extended or zero extended, depending on whether
2667   // they are signed or unsigned types.
2668   bool ExtendIntegerRetVal =
2669       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2670 
2671   SmallVector<SDValue, 6> StoreOperands;
2672   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2673     // New load/store. Record chain and offset operands.
2674     if (VectorInfo[i] & PVF_FIRST) {
2675       assert(StoreOperands.empty() && "Orphaned operand list.");
2676       StoreOperands.push_back(Chain);
2677       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2678     }
2679 
2680     SDValue RetVal = OutVals[i];
2681     if (ExtendIntegerRetVal) {
2682       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2683                                                   : ISD::ZERO_EXTEND,
2684                            dl, MVT::i32, RetVal);
2685     } else if (RetVal.getValueSizeInBits() < 16) {
2686       // Use 16-bit registers for small load-stores as it's the
2687       // smallest general purpose register size supported by NVPTX.
2688       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2689     }
2690 
2691     // Record the value to return.
2692     StoreOperands.push_back(RetVal);
2693 
2694     // That's the last element of this store op.
2695     if (VectorInfo[i] & PVF_LAST) {
2696       NVPTXISD::NodeType Op;
2697       unsigned NumElts = StoreOperands.size() - 2;
2698       switch (NumElts) {
2699       case 1:
2700         Op = NVPTXISD::StoreRetval;
2701         break;
2702       case 2:
2703         Op = NVPTXISD::StoreRetvalV2;
2704         break;
2705       case 4:
2706         Op = NVPTXISD::StoreRetvalV4;
2707         break;
2708       default:
2709         llvm_unreachable("Invalid vector info.");
2710       }
2711 
2712       // Adjust type of load/store op if we've extended the scalar
2713       // return value.
2714       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2715       Chain = DAG.getMemIntrinsicNode(
2716           Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
2717           MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
2718       // Cleanup vector state.
2719       StoreOperands.clear();
2720     }
2721   }
2722 
2723   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2724 }
2725 
2726 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2727     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2728     SelectionDAG &DAG) const {
2729   if (Constraint.length() > 1)
2730     return;
2731   else
2732     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2733 }
2734 
2735 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2736   switch (Intrinsic) {
2737   default:
2738     return 0;
2739 
2740   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2741     return NVPTXISD::Tex1DFloatS32;
2742   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2743     return NVPTXISD::Tex1DFloatFloat;
2744   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2745     return NVPTXISD::Tex1DFloatFloatLevel;
2746   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2747     return NVPTXISD::Tex1DFloatFloatGrad;
2748   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2749     return NVPTXISD::Tex1DS32S32;
2750   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2751     return NVPTXISD::Tex1DS32Float;
2752   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2753     return NVPTXISD::Tex1DS32FloatLevel;
2754   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2755     return NVPTXISD::Tex1DS32FloatGrad;
2756   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2757     return NVPTXISD::Tex1DU32S32;
2758   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2759     return NVPTXISD::Tex1DU32Float;
2760   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2761     return NVPTXISD::Tex1DU32FloatLevel;
2762   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2763     return NVPTXISD::Tex1DU32FloatGrad;
2764 
2765   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2766     return NVPTXISD::Tex1DArrayFloatS32;
2767   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2768     return NVPTXISD::Tex1DArrayFloatFloat;
2769   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2770     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2771   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2772     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2773   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2774     return NVPTXISD::Tex1DArrayS32S32;
2775   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2776     return NVPTXISD::Tex1DArrayS32Float;
2777   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2778     return NVPTXISD::Tex1DArrayS32FloatLevel;
2779   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2780     return NVPTXISD::Tex1DArrayS32FloatGrad;
2781   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2782     return NVPTXISD::Tex1DArrayU32S32;
2783   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2784     return NVPTXISD::Tex1DArrayU32Float;
2785   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2786     return NVPTXISD::Tex1DArrayU32FloatLevel;
2787   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2788     return NVPTXISD::Tex1DArrayU32FloatGrad;
2789 
2790   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2791     return NVPTXISD::Tex2DFloatS32;
2792   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2793     return NVPTXISD::Tex2DFloatFloat;
2794   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2795     return NVPTXISD::Tex2DFloatFloatLevel;
2796   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2797     return NVPTXISD::Tex2DFloatFloatGrad;
2798   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2799     return NVPTXISD::Tex2DS32S32;
2800   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2801     return NVPTXISD::Tex2DS32Float;
2802   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2803     return NVPTXISD::Tex2DS32FloatLevel;
2804   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2805     return NVPTXISD::Tex2DS32FloatGrad;
2806   case Intrinsic::nvvm_tex_2d_v4u32_s32:
2807     return NVPTXISD::Tex2DU32S32;
2808   case Intrinsic::nvvm_tex_2d_v4u32_f32:
2809     return NVPTXISD::Tex2DU32Float;
2810   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2811     return NVPTXISD::Tex2DU32FloatLevel;
2812   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2813     return NVPTXISD::Tex2DU32FloatGrad;
2814 
2815   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2816     return NVPTXISD::Tex2DArrayFloatS32;
2817   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2818     return NVPTXISD::Tex2DArrayFloatFloat;
2819   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2820     return NVPTXISD::Tex2DArrayFloatFloatLevel;
2821   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2822     return NVPTXISD::Tex2DArrayFloatFloatGrad;
2823   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2824     return NVPTXISD::Tex2DArrayS32S32;
2825   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2826     return NVPTXISD::Tex2DArrayS32Float;
2827   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2828     return NVPTXISD::Tex2DArrayS32FloatLevel;
2829   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2830     return NVPTXISD::Tex2DArrayS32FloatGrad;
2831   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2832     return NVPTXISD::Tex2DArrayU32S32;
2833   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2834     return NVPTXISD::Tex2DArrayU32Float;
2835   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2836     return NVPTXISD::Tex2DArrayU32FloatLevel;
2837   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2838     return NVPTXISD::Tex2DArrayU32FloatGrad;
2839 
2840   case Intrinsic::nvvm_tex_3d_v4f32_s32:
2841     return NVPTXISD::Tex3DFloatS32;
2842   case Intrinsic::nvvm_tex_3d_v4f32_f32:
2843     return NVPTXISD::Tex3DFloatFloat;
2844   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2845     return NVPTXISD::Tex3DFloatFloatLevel;
2846   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2847     return NVPTXISD::Tex3DFloatFloatGrad;
2848   case Intrinsic::nvvm_tex_3d_v4s32_s32:
2849     return NVPTXISD::Tex3DS32S32;
2850   case Intrinsic::nvvm_tex_3d_v4s32_f32:
2851     return NVPTXISD::Tex3DS32Float;
2852   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2853     return NVPTXISD::Tex3DS32FloatLevel;
2854   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2855     return NVPTXISD::Tex3DS32FloatGrad;
2856   case Intrinsic::nvvm_tex_3d_v4u32_s32:
2857     return NVPTXISD::Tex3DU32S32;
2858   case Intrinsic::nvvm_tex_3d_v4u32_f32:
2859     return NVPTXISD::Tex3DU32Float;
2860   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2861     return NVPTXISD::Tex3DU32FloatLevel;
2862   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2863     return NVPTXISD::Tex3DU32FloatGrad;
2864 
2865   case Intrinsic::nvvm_tex_cube_v4f32_f32:
2866     return NVPTXISD::TexCubeFloatFloat;
2867   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2868     return NVPTXISD::TexCubeFloatFloatLevel;
2869   case Intrinsic::nvvm_tex_cube_v4s32_f32:
2870     return NVPTXISD::TexCubeS32Float;
2871   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2872     return NVPTXISD::TexCubeS32FloatLevel;
2873   case Intrinsic::nvvm_tex_cube_v4u32_f32:
2874     return NVPTXISD::TexCubeU32Float;
2875   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2876     return NVPTXISD::TexCubeU32FloatLevel;
2877 
2878   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2879     return NVPTXISD::TexCubeArrayFloatFloat;
2880   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2881     return NVPTXISD::TexCubeArrayFloatFloatLevel;
2882   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2883     return NVPTXISD::TexCubeArrayS32Float;
2884   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2885     return NVPTXISD::TexCubeArrayS32FloatLevel;
2886   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2887     return NVPTXISD::TexCubeArrayU32Float;
2888   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2889     return NVPTXISD::TexCubeArrayU32FloatLevel;
2890 
2891   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2892     return NVPTXISD::Tld4R2DFloatFloat;
2893   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2894     return NVPTXISD::Tld4G2DFloatFloat;
2895   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2896     return NVPTXISD::Tld4B2DFloatFloat;
2897   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2898     return NVPTXISD::Tld4A2DFloatFloat;
2899   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2900     return NVPTXISD::Tld4R2DS64Float;
2901   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2902     return NVPTXISD::Tld4G2DS64Float;
2903   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2904     return NVPTXISD::Tld4B2DS64Float;
2905   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2906     return NVPTXISD::Tld4A2DS64Float;
2907   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2908     return NVPTXISD::Tld4R2DU64Float;
2909   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2910     return NVPTXISD::Tld4G2DU64Float;
2911   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2912     return NVPTXISD::Tld4B2DU64Float;
2913   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2914     return NVPTXISD::Tld4A2DU64Float;
2915 
2916   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2917     return NVPTXISD::TexUnified1DFloatS32;
2918   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2919     return NVPTXISD::TexUnified1DFloatFloat;
2920   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2921     return NVPTXISD::TexUnified1DFloatFloatLevel;
2922   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2923     return NVPTXISD::TexUnified1DFloatFloatGrad;
2924   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2925     return NVPTXISD::TexUnified1DS32S32;
2926   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2927     return NVPTXISD::TexUnified1DS32Float;
2928   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2929     return NVPTXISD::TexUnified1DS32FloatLevel;
2930   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2931     return NVPTXISD::TexUnified1DS32FloatGrad;
2932   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2933     return NVPTXISD::TexUnified1DU32S32;
2934   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2935     return NVPTXISD::TexUnified1DU32Float;
2936   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2937     return NVPTXISD::TexUnified1DU32FloatLevel;
2938   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2939     return NVPTXISD::TexUnified1DU32FloatGrad;
2940 
2941   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2942     return NVPTXISD::TexUnified1DArrayFloatS32;
2943   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2944     return NVPTXISD::TexUnified1DArrayFloatFloat;
2945   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2946     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2947   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2948     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2949   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2950     return NVPTXISD::TexUnified1DArrayS32S32;
2951   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2952     return NVPTXISD::TexUnified1DArrayS32Float;
2953   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2954     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2955   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2956     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2957   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2958     return NVPTXISD::TexUnified1DArrayU32S32;
2959   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2960     return NVPTXISD::TexUnified1DArrayU32Float;
2961   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2962     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2963   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2964     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2965 
2966   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2967     return NVPTXISD::TexUnified2DFloatS32;
2968   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2969     return NVPTXISD::TexUnified2DFloatFloat;
2970   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2971     return NVPTXISD::TexUnified2DFloatFloatLevel;
2972   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2973     return NVPTXISD::TexUnified2DFloatFloatGrad;
2974   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2975     return NVPTXISD::TexUnified2DS32S32;
2976   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2977     return NVPTXISD::TexUnified2DS32Float;
2978   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2979     return NVPTXISD::TexUnified2DS32FloatLevel;
2980   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2981     return NVPTXISD::TexUnified2DS32FloatGrad;
2982   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2983     return NVPTXISD::TexUnified2DU32S32;
2984   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2985     return NVPTXISD::TexUnified2DU32Float;
2986   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
2987     return NVPTXISD::TexUnified2DU32FloatLevel;
2988   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
2989     return NVPTXISD::TexUnified2DU32FloatGrad;
2990 
2991   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
2992     return NVPTXISD::TexUnified2DArrayFloatS32;
2993   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
2994     return NVPTXISD::TexUnified2DArrayFloatFloat;
2995   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
2996     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
2997   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
2998     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
2999   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3000     return NVPTXISD::TexUnified2DArrayS32S32;
3001   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3002     return NVPTXISD::TexUnified2DArrayS32Float;
3003   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3004     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3005   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3006     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3007   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3008     return NVPTXISD::TexUnified2DArrayU32S32;
3009   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3010     return NVPTXISD::TexUnified2DArrayU32Float;
3011   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3012     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3013   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3014     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3015 
3016   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3017     return NVPTXISD::TexUnified3DFloatS32;
3018   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3019     return NVPTXISD::TexUnified3DFloatFloat;
3020   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3021     return NVPTXISD::TexUnified3DFloatFloatLevel;
3022   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3023     return NVPTXISD::TexUnified3DFloatFloatGrad;
3024   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3025     return NVPTXISD::TexUnified3DS32S32;
3026   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3027     return NVPTXISD::TexUnified3DS32Float;
3028   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3029     return NVPTXISD::TexUnified3DS32FloatLevel;
3030   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3031     return NVPTXISD::TexUnified3DS32FloatGrad;
3032   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3033     return NVPTXISD::TexUnified3DU32S32;
3034   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3035     return NVPTXISD::TexUnified3DU32Float;
3036   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3037     return NVPTXISD::TexUnified3DU32FloatLevel;
3038   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3039     return NVPTXISD::TexUnified3DU32FloatGrad;
3040 
3041   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3042     return NVPTXISD::TexUnifiedCubeFloatFloat;
3043   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3044     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3045   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3046     return NVPTXISD::TexUnifiedCubeS32Float;
3047   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3048     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3049   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3050     return NVPTXISD::TexUnifiedCubeU32Float;
3051   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3052     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3053 
3054   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3055     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3056   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3057     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3058   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3059     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3060   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3061     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3062   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3063     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3064   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3065     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3066 
3067   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3068     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3069   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3070     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3071   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3072     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3073   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3074     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3075   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3076     return NVPTXISD::Tld4UnifiedR2DS64Float;
3077   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3078     return NVPTXISD::Tld4UnifiedG2DS64Float;
3079   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3080     return NVPTXISD::Tld4UnifiedB2DS64Float;
3081   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3082     return NVPTXISD::Tld4UnifiedA2DS64Float;
3083   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3084     return NVPTXISD::Tld4UnifiedR2DU64Float;
3085   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3086     return NVPTXISD::Tld4UnifiedG2DU64Float;
3087   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3088     return NVPTXISD::Tld4UnifiedB2DU64Float;
3089   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3090     return NVPTXISD::Tld4UnifiedA2DU64Float;
3091   }
3092 }
3093 
3094 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3095   switch (Intrinsic) {
3096   default:
3097     return 0;
3098   case Intrinsic::nvvm_suld_1d_i8_clamp:
3099     return NVPTXISD::Suld1DI8Clamp;
3100   case Intrinsic::nvvm_suld_1d_i16_clamp:
3101     return NVPTXISD::Suld1DI16Clamp;
3102   case Intrinsic::nvvm_suld_1d_i32_clamp:
3103     return NVPTXISD::Suld1DI32Clamp;
3104   case Intrinsic::nvvm_suld_1d_i64_clamp:
3105     return NVPTXISD::Suld1DI64Clamp;
3106   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3107     return NVPTXISD::Suld1DV2I8Clamp;
3108   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3109     return NVPTXISD::Suld1DV2I16Clamp;
3110   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3111     return NVPTXISD::Suld1DV2I32Clamp;
3112   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3113     return NVPTXISD::Suld1DV2I64Clamp;
3114   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3115     return NVPTXISD::Suld1DV4I8Clamp;
3116   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3117     return NVPTXISD::Suld1DV4I16Clamp;
3118   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3119     return NVPTXISD::Suld1DV4I32Clamp;
3120   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3121     return NVPTXISD::Suld1DArrayI8Clamp;
3122   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3123     return NVPTXISD::Suld1DArrayI16Clamp;
3124   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3125     return NVPTXISD::Suld1DArrayI32Clamp;
3126   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3127     return NVPTXISD::Suld1DArrayI64Clamp;
3128   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3129     return NVPTXISD::Suld1DArrayV2I8Clamp;
3130   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3131     return NVPTXISD::Suld1DArrayV2I16Clamp;
3132   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3133     return NVPTXISD::Suld1DArrayV2I32Clamp;
3134   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3135     return NVPTXISD::Suld1DArrayV2I64Clamp;
3136   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3137     return NVPTXISD::Suld1DArrayV4I8Clamp;
3138   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3139     return NVPTXISD::Suld1DArrayV4I16Clamp;
3140   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3141     return NVPTXISD::Suld1DArrayV4I32Clamp;
3142   case Intrinsic::nvvm_suld_2d_i8_clamp:
3143     return NVPTXISD::Suld2DI8Clamp;
3144   case Intrinsic::nvvm_suld_2d_i16_clamp:
3145     return NVPTXISD::Suld2DI16Clamp;
3146   case Intrinsic::nvvm_suld_2d_i32_clamp:
3147     return NVPTXISD::Suld2DI32Clamp;
3148   case Intrinsic::nvvm_suld_2d_i64_clamp:
3149     return NVPTXISD::Suld2DI64Clamp;
3150   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3151     return NVPTXISD::Suld2DV2I8Clamp;
3152   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3153     return NVPTXISD::Suld2DV2I16Clamp;
3154   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3155     return NVPTXISD::Suld2DV2I32Clamp;
3156   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3157     return NVPTXISD::Suld2DV2I64Clamp;
3158   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3159     return NVPTXISD::Suld2DV4I8Clamp;
3160   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3161     return NVPTXISD::Suld2DV4I16Clamp;
3162   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3163     return NVPTXISD::Suld2DV4I32Clamp;
3164   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3165     return NVPTXISD::Suld2DArrayI8Clamp;
3166   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3167     return NVPTXISD::Suld2DArrayI16Clamp;
3168   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3169     return NVPTXISD::Suld2DArrayI32Clamp;
3170   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3171     return NVPTXISD::Suld2DArrayI64Clamp;
3172   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3173     return NVPTXISD::Suld2DArrayV2I8Clamp;
3174   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3175     return NVPTXISD::Suld2DArrayV2I16Clamp;
3176   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3177     return NVPTXISD::Suld2DArrayV2I32Clamp;
3178   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3179     return NVPTXISD::Suld2DArrayV2I64Clamp;
3180   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3181     return NVPTXISD::Suld2DArrayV4I8Clamp;
3182   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3183     return NVPTXISD::Suld2DArrayV4I16Clamp;
3184   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3185     return NVPTXISD::Suld2DArrayV4I32Clamp;
3186   case Intrinsic::nvvm_suld_3d_i8_clamp:
3187     return NVPTXISD::Suld3DI8Clamp;
3188   case Intrinsic::nvvm_suld_3d_i16_clamp:
3189     return NVPTXISD::Suld3DI16Clamp;
3190   case Intrinsic::nvvm_suld_3d_i32_clamp:
3191     return NVPTXISD::Suld3DI32Clamp;
3192   case Intrinsic::nvvm_suld_3d_i64_clamp:
3193     return NVPTXISD::Suld3DI64Clamp;
3194   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3195     return NVPTXISD::Suld3DV2I8Clamp;
3196   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3197     return NVPTXISD::Suld3DV2I16Clamp;
3198   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3199     return NVPTXISD::Suld3DV2I32Clamp;
3200   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3201     return NVPTXISD::Suld3DV2I64Clamp;
3202   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3203     return NVPTXISD::Suld3DV4I8Clamp;
3204   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3205     return NVPTXISD::Suld3DV4I16Clamp;
3206   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3207     return NVPTXISD::Suld3DV4I32Clamp;
3208   case Intrinsic::nvvm_suld_1d_i8_trap:
3209     return NVPTXISD::Suld1DI8Trap;
3210   case Intrinsic::nvvm_suld_1d_i16_trap:
3211     return NVPTXISD::Suld1DI16Trap;
3212   case Intrinsic::nvvm_suld_1d_i32_trap:
3213     return NVPTXISD::Suld1DI32Trap;
3214   case Intrinsic::nvvm_suld_1d_i64_trap:
3215     return NVPTXISD::Suld1DI64Trap;
3216   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3217     return NVPTXISD::Suld1DV2I8Trap;
3218   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3219     return NVPTXISD::Suld1DV2I16Trap;
3220   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3221     return NVPTXISD::Suld1DV2I32Trap;
3222   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3223     return NVPTXISD::Suld1DV2I64Trap;
3224   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3225     return NVPTXISD::Suld1DV4I8Trap;
3226   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3227     return NVPTXISD::Suld1DV4I16Trap;
3228   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3229     return NVPTXISD::Suld1DV4I32Trap;
3230   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3231     return NVPTXISD::Suld1DArrayI8Trap;
3232   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3233     return NVPTXISD::Suld1DArrayI16Trap;
3234   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3235     return NVPTXISD::Suld1DArrayI32Trap;
3236   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3237     return NVPTXISD::Suld1DArrayI64Trap;
3238   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3239     return NVPTXISD::Suld1DArrayV2I8Trap;
3240   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3241     return NVPTXISD::Suld1DArrayV2I16Trap;
3242   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3243     return NVPTXISD::Suld1DArrayV2I32Trap;
3244   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3245     return NVPTXISD::Suld1DArrayV2I64Trap;
3246   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3247     return NVPTXISD::Suld1DArrayV4I8Trap;
3248   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3249     return NVPTXISD::Suld1DArrayV4I16Trap;
3250   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3251     return NVPTXISD::Suld1DArrayV4I32Trap;
3252   case Intrinsic::nvvm_suld_2d_i8_trap:
3253     return NVPTXISD::Suld2DI8Trap;
3254   case Intrinsic::nvvm_suld_2d_i16_trap:
3255     return NVPTXISD::Suld2DI16Trap;
3256   case Intrinsic::nvvm_suld_2d_i32_trap:
3257     return NVPTXISD::Suld2DI32Trap;
3258   case Intrinsic::nvvm_suld_2d_i64_trap:
3259     return NVPTXISD::Suld2DI64Trap;
3260   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3261     return NVPTXISD::Suld2DV2I8Trap;
3262   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3263     return NVPTXISD::Suld2DV2I16Trap;
3264   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3265     return NVPTXISD::Suld2DV2I32Trap;
3266   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3267     return NVPTXISD::Suld2DV2I64Trap;
3268   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3269     return NVPTXISD::Suld2DV4I8Trap;
3270   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3271     return NVPTXISD::Suld2DV4I16Trap;
3272   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3273     return NVPTXISD::Suld2DV4I32Trap;
3274   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3275     return NVPTXISD::Suld2DArrayI8Trap;
3276   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3277     return NVPTXISD::Suld2DArrayI16Trap;
3278   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3279     return NVPTXISD::Suld2DArrayI32Trap;
3280   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3281     return NVPTXISD::Suld2DArrayI64Trap;
3282   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3283     return NVPTXISD::Suld2DArrayV2I8Trap;
3284   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3285     return NVPTXISD::Suld2DArrayV2I16Trap;
3286   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3287     return NVPTXISD::Suld2DArrayV2I32Trap;
3288   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3289     return NVPTXISD::Suld2DArrayV2I64Trap;
3290   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3291     return NVPTXISD::Suld2DArrayV4I8Trap;
3292   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3293     return NVPTXISD::Suld2DArrayV4I16Trap;
3294   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3295     return NVPTXISD::Suld2DArrayV4I32Trap;
3296   case Intrinsic::nvvm_suld_3d_i8_trap:
3297     return NVPTXISD::Suld3DI8Trap;
3298   case Intrinsic::nvvm_suld_3d_i16_trap:
3299     return NVPTXISD::Suld3DI16Trap;
3300   case Intrinsic::nvvm_suld_3d_i32_trap:
3301     return NVPTXISD::Suld3DI32Trap;
3302   case Intrinsic::nvvm_suld_3d_i64_trap:
3303     return NVPTXISD::Suld3DI64Trap;
3304   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3305     return NVPTXISD::Suld3DV2I8Trap;
3306   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3307     return NVPTXISD::Suld3DV2I16Trap;
3308   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3309     return NVPTXISD::Suld3DV2I32Trap;
3310   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3311     return NVPTXISD::Suld3DV2I64Trap;
3312   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3313     return NVPTXISD::Suld3DV4I8Trap;
3314   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3315     return NVPTXISD::Suld3DV4I16Trap;
3316   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3317     return NVPTXISD::Suld3DV4I32Trap;
3318   case Intrinsic::nvvm_suld_1d_i8_zero:
3319     return NVPTXISD::Suld1DI8Zero;
3320   case Intrinsic::nvvm_suld_1d_i16_zero:
3321     return NVPTXISD::Suld1DI16Zero;
3322   case Intrinsic::nvvm_suld_1d_i32_zero:
3323     return NVPTXISD::Suld1DI32Zero;
3324   case Intrinsic::nvvm_suld_1d_i64_zero:
3325     return NVPTXISD::Suld1DI64Zero;
3326   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3327     return NVPTXISD::Suld1DV2I8Zero;
3328   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3329     return NVPTXISD::Suld1DV2I16Zero;
3330   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3331     return NVPTXISD::Suld1DV2I32Zero;
3332   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3333     return NVPTXISD::Suld1DV2I64Zero;
3334   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3335     return NVPTXISD::Suld1DV4I8Zero;
3336   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3337     return NVPTXISD::Suld1DV4I16Zero;
3338   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3339     return NVPTXISD::Suld1DV4I32Zero;
3340   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3341     return NVPTXISD::Suld1DArrayI8Zero;
3342   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3343     return NVPTXISD::Suld1DArrayI16Zero;
3344   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3345     return NVPTXISD::Suld1DArrayI32Zero;
3346   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3347     return NVPTXISD::Suld1DArrayI64Zero;
3348   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3349     return NVPTXISD::Suld1DArrayV2I8Zero;
3350   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3351     return NVPTXISD::Suld1DArrayV2I16Zero;
3352   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3353     return NVPTXISD::Suld1DArrayV2I32Zero;
3354   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3355     return NVPTXISD::Suld1DArrayV2I64Zero;
3356   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3357     return NVPTXISD::Suld1DArrayV4I8Zero;
3358   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3359     return NVPTXISD::Suld1DArrayV4I16Zero;
3360   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3361     return NVPTXISD::Suld1DArrayV4I32Zero;
3362   case Intrinsic::nvvm_suld_2d_i8_zero:
3363     return NVPTXISD::Suld2DI8Zero;
3364   case Intrinsic::nvvm_suld_2d_i16_zero:
3365     return NVPTXISD::Suld2DI16Zero;
3366   case Intrinsic::nvvm_suld_2d_i32_zero:
3367     return NVPTXISD::Suld2DI32Zero;
3368   case Intrinsic::nvvm_suld_2d_i64_zero:
3369     return NVPTXISD::Suld2DI64Zero;
3370   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3371     return NVPTXISD::Suld2DV2I8Zero;
3372   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3373     return NVPTXISD::Suld2DV2I16Zero;
3374   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3375     return NVPTXISD::Suld2DV2I32Zero;
3376   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3377     return NVPTXISD::Suld2DV2I64Zero;
3378   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3379     return NVPTXISD::Suld2DV4I8Zero;
3380   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3381     return NVPTXISD::Suld2DV4I16Zero;
3382   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3383     return NVPTXISD::Suld2DV4I32Zero;
3384   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3385     return NVPTXISD::Suld2DArrayI8Zero;
3386   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3387     return NVPTXISD::Suld2DArrayI16Zero;
3388   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3389     return NVPTXISD::Suld2DArrayI32Zero;
3390   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3391     return NVPTXISD::Suld2DArrayI64Zero;
3392   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3393     return NVPTXISD::Suld2DArrayV2I8Zero;
3394   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3395     return NVPTXISD::Suld2DArrayV2I16Zero;
3396   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3397     return NVPTXISD::Suld2DArrayV2I32Zero;
3398   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3399     return NVPTXISD::Suld2DArrayV2I64Zero;
3400   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3401     return NVPTXISD::Suld2DArrayV4I8Zero;
3402   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3403     return NVPTXISD::Suld2DArrayV4I16Zero;
3404   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3405     return NVPTXISD::Suld2DArrayV4I32Zero;
3406   case Intrinsic::nvvm_suld_3d_i8_zero:
3407     return NVPTXISD::Suld3DI8Zero;
3408   case Intrinsic::nvvm_suld_3d_i16_zero:
3409     return NVPTXISD::Suld3DI16Zero;
3410   case Intrinsic::nvvm_suld_3d_i32_zero:
3411     return NVPTXISD::Suld3DI32Zero;
3412   case Intrinsic::nvvm_suld_3d_i64_zero:
3413     return NVPTXISD::Suld3DI64Zero;
3414   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3415     return NVPTXISD::Suld3DV2I8Zero;
3416   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3417     return NVPTXISD::Suld3DV2I16Zero;
3418   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3419     return NVPTXISD::Suld3DV2I32Zero;
3420   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3421     return NVPTXISD::Suld3DV2I64Zero;
3422   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3423     return NVPTXISD::Suld3DV4I8Zero;
3424   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3425     return NVPTXISD::Suld3DV4I16Zero;
3426   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3427     return NVPTXISD::Suld3DV4I32Zero;
3428   }
3429 }
3430 
3431 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3432 // TgtMemIntrinsic
3433 // because we need the information that is only available in the "Value" type
3434 // of destination
3435 // pointer. In particular, the address space information.
3436 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3437     IntrinsicInfo &Info, const CallInst &I,
3438     MachineFunction &MF, unsigned Intrinsic) const {
3439   switch (Intrinsic) {
3440   default:
3441     return false;
3442   case Intrinsic::nvvm_match_all_sync_i32p:
3443   case Intrinsic::nvvm_match_all_sync_i64p:
3444     Info.opc = ISD::INTRINSIC_W_CHAIN;
3445     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3446     // in order to model data exchange with other threads, but perform no real
3447     // memory accesses.
3448     Info.memVT = MVT::i1;
3449 
3450     // Our result depends on both our and other thread's arguments.
3451     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3452     return true;
3453   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3454   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3455   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3456   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3457   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3458   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3459   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3460   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3461   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3462   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3463   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3464   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3465   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3466   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3467   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3468   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3469   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3470   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3471   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3472   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3473   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3474   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3475   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3476   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3477     Info.opc = ISD::INTRINSIC_W_CHAIN;
3478     Info.memVT = MVT::v8f16;
3479     Info.ptrVal = I.getArgOperand(0);
3480     Info.offset = 0;
3481     Info.flags = MachineMemOperand::MOLoad;
3482     Info.align = Align(16);
3483     return true;
3484   }
3485   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3486   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3487   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3488   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3489   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3490   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3491   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3492   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3493   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3494   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3495   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3496   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3497   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3498   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3499   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3500   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3501   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3502   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3503   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3504   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3505   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3506   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3507   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3508   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3509     Info.opc = ISD::INTRINSIC_W_CHAIN;
3510     Info.memVT = MVT::v2i32;
3511     Info.ptrVal = I.getArgOperand(0);
3512     Info.offset = 0;
3513     Info.flags = MachineMemOperand::MOLoad;
3514     Info.align = Align(8);
3515     return true;
3516   }
3517 
3518   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3519   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3520   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3521   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3522   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3523   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3524   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3525   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3526   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3527   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3528   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3529   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3530   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3531   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3532   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3533   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3534 
3535   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3536   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3537   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3538   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3539   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3540   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3541   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3542   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3543   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3544   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3545   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3546   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3547   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3548   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3549   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3550   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride: {
3551     Info.opc = ISD::INTRINSIC_W_CHAIN;
3552     Info.memVT = MVT::v4i32;
3553     Info.ptrVal = I.getArgOperand(0);
3554     Info.offset = 0;
3555     Info.flags = MachineMemOperand::MOLoad;
3556     Info.align = Align(16);
3557     return true;
3558   }
3559 
3560   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3561   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3562   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3563   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3564   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3565   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3566   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3567   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3568 
3569   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3570   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3571   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3572   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3573   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3574   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3575   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3576   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3577   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3578   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3579   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3580   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3581   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3582   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3583   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3584   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3585   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3586   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3587   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3588   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: {
3589     Info.opc = ISD::INTRINSIC_W_CHAIN;
3590     Info.memVT = MVT::i32;
3591     Info.ptrVal = I.getArgOperand(0);
3592     Info.offset = 0;
3593     Info.flags = MachineMemOperand::MOLoad;
3594     Info.align = Align(4);
3595     return true;
3596   }
3597 
3598   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3599   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3600   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3601   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3602   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3603   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3604   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3605   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3606   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3607   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3608   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3609   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3610     Info.opc = ISD::INTRINSIC_W_CHAIN;
3611     Info.memVT = MVT::v4f16;
3612     Info.ptrVal = I.getArgOperand(0);
3613     Info.offset = 0;
3614     Info.flags = MachineMemOperand::MOLoad;
3615     Info.align = Align(16);
3616     return true;
3617   }
3618 
3619   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3620   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3621   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3622   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3623   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3624   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3625   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3626   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3627   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3628   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3629   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3630   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3631   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3632   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3633   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3634   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3635     Info.opc = ISD::INTRINSIC_W_CHAIN;
3636     Info.memVT = MVT::v8f32;
3637     Info.ptrVal = I.getArgOperand(0);
3638     Info.offset = 0;
3639     Info.flags = MachineMemOperand::MOLoad;
3640     Info.align = Align(16);
3641     return true;
3642   }
3643 
3644   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3645   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3646   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3647   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3648 
3649   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3650   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3651   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3652   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3653 
3654   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3655   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3656   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3657   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3658   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3659   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3660   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3661   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3662   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3663   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3664   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3665   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3666     Info.opc = ISD::INTRINSIC_W_CHAIN;
3667     Info.memVT = MVT::v8i32;
3668     Info.ptrVal = I.getArgOperand(0);
3669     Info.offset = 0;
3670     Info.flags = MachineMemOperand::MOLoad;
3671     Info.align = Align(16);
3672     return true;
3673   }
3674 
3675   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3676   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3677   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3678   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3679   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3680   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3681   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3682   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: {
3683     Info.opc = ISD::INTRINSIC_W_CHAIN;
3684     Info.memVT = MVT::v2i32;
3685     Info.ptrVal = I.getArgOperand(0);
3686     Info.offset = 0;
3687     Info.flags = MachineMemOperand::MOLoad;
3688     Info.align = Align(8);
3689     return true;
3690   }
3691 
3692   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3693   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3694   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3695   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3696 
3697   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3698   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3699   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3700   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3701     Info.opc = ISD::INTRINSIC_W_CHAIN;
3702     Info.memVT = MVT::f64;
3703     Info.ptrVal = I.getArgOperand(0);
3704     Info.offset = 0;
3705     Info.flags = MachineMemOperand::MOLoad;
3706     Info.align = Align(8);
3707     return true;
3708   }
3709 
3710   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3711   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3712   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3713   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3714     Info.opc = ISD::INTRINSIC_W_CHAIN;
3715     Info.memVT = MVT::v2f64;
3716     Info.ptrVal = I.getArgOperand(0);
3717     Info.offset = 0;
3718     Info.flags = MachineMemOperand::MOLoad;
3719     Info.align = Align(16);
3720     return true;
3721   }
3722 
3723   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3724   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3725   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3726   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3727   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3728   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3729   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3730   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3731   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3732   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3733   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3734   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3735     Info.opc = ISD::INTRINSIC_VOID;
3736     Info.memVT = MVT::v4f16;
3737     Info.ptrVal = I.getArgOperand(0);
3738     Info.offset = 0;
3739     Info.flags = MachineMemOperand::MOStore;
3740     Info.align = Align(16);
3741     return true;
3742   }
3743 
3744   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3745   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3746   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3747   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3748   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3749   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3750   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3751   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3752   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3753   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3754   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3755   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
3756   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
3757   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
3758   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
3759   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
3760     Info.opc = ISD::INTRINSIC_VOID;
3761     Info.memVT = MVT::v8f32;
3762     Info.ptrVal = I.getArgOperand(0);
3763     Info.offset = 0;
3764     Info.flags = MachineMemOperand::MOStore;
3765     Info.align = Align(16);
3766     return true;
3767   }
3768 
3769   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3770   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3771   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3772   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3773   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3774   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3775   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3776   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3777   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3778   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3779   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3780   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3781     Info.opc = ISD::INTRINSIC_VOID;
3782     Info.memVT = MVT::v8i32;
3783     Info.ptrVal = I.getArgOperand(0);
3784     Info.offset = 0;
3785     Info.flags = MachineMemOperand::MOStore;
3786     Info.align = Align(16);
3787     return true;
3788   }
3789 
3790   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3791   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3792   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3793   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3794   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3795   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3796   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3797   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3798     Info.opc = ISD::INTRINSIC_VOID;
3799     Info.memVT = MVT::v2i32;
3800     Info.ptrVal = I.getArgOperand(0);
3801     Info.offset = 0;
3802     Info.flags = MachineMemOperand::MOStore;
3803     Info.align = Align(8);
3804     return true;
3805   }
3806 
3807   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
3808   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
3809   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
3810   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
3811     Info.opc = ISD::INTRINSIC_VOID;
3812     Info.memVT = MVT::v2f64;
3813     Info.ptrVal = I.getArgOperand(0);
3814     Info.offset = 0;
3815     Info.flags = MachineMemOperand::MOStore;
3816     Info.align = Align(16);
3817     return true;
3818   }
3819 
3820   case Intrinsic::nvvm_atomic_load_inc_32:
3821   case Intrinsic::nvvm_atomic_load_dec_32:
3822 
3823   case Intrinsic::nvvm_atomic_add_gen_f_cta:
3824   case Intrinsic::nvvm_atomic_add_gen_f_sys:
3825   case Intrinsic::nvvm_atomic_add_gen_i_cta:
3826   case Intrinsic::nvvm_atomic_add_gen_i_sys:
3827   case Intrinsic::nvvm_atomic_and_gen_i_cta:
3828   case Intrinsic::nvvm_atomic_and_gen_i_sys:
3829   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3830   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3831   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3832   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3833   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3834   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3835   case Intrinsic::nvvm_atomic_max_gen_i_cta:
3836   case Intrinsic::nvvm_atomic_max_gen_i_sys:
3837   case Intrinsic::nvvm_atomic_min_gen_i_cta:
3838   case Intrinsic::nvvm_atomic_min_gen_i_sys:
3839   case Intrinsic::nvvm_atomic_or_gen_i_cta:
3840   case Intrinsic::nvvm_atomic_or_gen_i_sys:
3841   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3842   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3843   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3844   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3845     auto &DL = I.getModule()->getDataLayout();
3846     Info.opc = ISD::INTRINSIC_W_CHAIN;
3847     Info.memVT = getValueType(DL, I.getType());
3848     Info.ptrVal = I.getArgOperand(0);
3849     Info.offset = 0;
3850     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3851     Info.align.reset();
3852     return true;
3853   }
3854 
3855   case Intrinsic::nvvm_ldu_global_i:
3856   case Intrinsic::nvvm_ldu_global_f:
3857   case Intrinsic::nvvm_ldu_global_p: {
3858     auto &DL = I.getModule()->getDataLayout();
3859     Info.opc = ISD::INTRINSIC_W_CHAIN;
3860     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3861       Info.memVT = getValueType(DL, I.getType());
3862     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3863       Info.memVT = getPointerTy(DL);
3864     else
3865       Info.memVT = getValueType(DL, I.getType());
3866     Info.ptrVal = I.getArgOperand(0);
3867     Info.offset = 0;
3868     Info.flags = MachineMemOperand::MOLoad;
3869     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3870 
3871     return true;
3872   }
3873   case Intrinsic::nvvm_ldg_global_i:
3874   case Intrinsic::nvvm_ldg_global_f:
3875   case Intrinsic::nvvm_ldg_global_p: {
3876     auto &DL = I.getModule()->getDataLayout();
3877 
3878     Info.opc = ISD::INTRINSIC_W_CHAIN;
3879     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3880       Info.memVT = getValueType(DL, I.getType());
3881     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3882       Info.memVT = getPointerTy(DL);
3883     else
3884       Info.memVT = getValueType(DL, I.getType());
3885     Info.ptrVal = I.getArgOperand(0);
3886     Info.offset = 0;
3887     Info.flags = MachineMemOperand::MOLoad;
3888     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3889 
3890     return true;
3891   }
3892 
3893   case Intrinsic::nvvm_tex_1d_v4f32_s32:
3894   case Intrinsic::nvvm_tex_1d_v4f32_f32:
3895   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3896   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3897   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3898   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3899   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3900   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3901   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3902   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3903   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3904   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3905   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3906   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3907   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3908   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3909   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3910   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3911   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3912   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3913   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3914   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3915   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3916   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3917   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3918   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3919   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3920   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3921   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3922   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3923   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3924   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3925   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3926   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3927   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3928   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3929   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3930   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3931   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3932   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3933   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3934   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3935   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3936   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3937   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3938   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3939   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3940   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3941   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3942   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3943   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3944   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3945   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3946   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3947   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3948   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3949     Info.opc = getOpcForTextureInstr(Intrinsic);
3950     Info.memVT = MVT::v4f32;
3951     Info.ptrVal = nullptr;
3952     Info.offset = 0;
3953     Info.flags = MachineMemOperand::MOLoad;
3954     Info.align = Align(16);
3955     return true;
3956 
3957   case Intrinsic::nvvm_tex_1d_v4s32_s32:
3958   case Intrinsic::nvvm_tex_1d_v4s32_f32:
3959   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3960   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3961   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3962   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3963   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3964   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3965   case Intrinsic::nvvm_tex_2d_v4s32_s32:
3966   case Intrinsic::nvvm_tex_2d_v4s32_f32:
3967   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3968   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3969   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3970   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3971   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3972   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3973   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3974   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3975   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3976   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3977   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3978   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3979   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3980   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3981   case Intrinsic::nvvm_tex_cube_v4u32_f32:
3982   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3983   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3984   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3985   case Intrinsic::nvvm_tex_1d_v4u32_s32:
3986   case Intrinsic::nvvm_tex_1d_v4u32_f32:
3987   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3988   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3989   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3990   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3991   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3992   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3993   case Intrinsic::nvvm_tex_2d_v4u32_s32:
3994   case Intrinsic::nvvm_tex_2d_v4u32_f32:
3995   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3996   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3997   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3998   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3999   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4000   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4001   case Intrinsic::nvvm_tex_3d_v4u32_s32:
4002   case Intrinsic::nvvm_tex_3d_v4u32_f32:
4003   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4004   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4005   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4006   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4007   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4008   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4009   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4010   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4011   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4012   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4013   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4014   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4015   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4016   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4017   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4018   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4019   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4020   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4021   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4022   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4023   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4024   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4025   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4026   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4027   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4028   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4029   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4030   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4031   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4032   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4033   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4034   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4035   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4036   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4037   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4038   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4039   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4040   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4041   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4042   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4043   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4044   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4045   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4046   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4047   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4048   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4049   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4050   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4051   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4052   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4053   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4054   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4055   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4056   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4057   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4058   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4059   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4060   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4061   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4062   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4063   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4064   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4065   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4066   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4067   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4068   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4069     Info.opc = getOpcForTextureInstr(Intrinsic);
4070     Info.memVT = MVT::v4i32;
4071     Info.ptrVal = nullptr;
4072     Info.offset = 0;
4073     Info.flags = MachineMemOperand::MOLoad;
4074     Info.align = Align(16);
4075     return true;
4076 
4077   case Intrinsic::nvvm_suld_1d_i8_clamp:
4078   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4079   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4080   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4081   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4082   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4083   case Intrinsic::nvvm_suld_2d_i8_clamp:
4084   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4085   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4086   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4087   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4088   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4089   case Intrinsic::nvvm_suld_3d_i8_clamp:
4090   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4091   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4092   case Intrinsic::nvvm_suld_1d_i8_trap:
4093   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4094   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4095   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4096   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4097   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4098   case Intrinsic::nvvm_suld_2d_i8_trap:
4099   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4100   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4101   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4102   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4103   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4104   case Intrinsic::nvvm_suld_3d_i8_trap:
4105   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4106   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4107   case Intrinsic::nvvm_suld_1d_i8_zero:
4108   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4109   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4110   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4111   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4112   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4113   case Intrinsic::nvvm_suld_2d_i8_zero:
4114   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4115   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4116   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4117   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4118   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4119   case Intrinsic::nvvm_suld_3d_i8_zero:
4120   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4121   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4122     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4123     Info.memVT = MVT::i8;
4124     Info.ptrVal = nullptr;
4125     Info.offset = 0;
4126     Info.flags = MachineMemOperand::MOLoad;
4127     Info.align = Align(16);
4128     return true;
4129 
4130   case Intrinsic::nvvm_suld_1d_i16_clamp:
4131   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4132   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4133   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4134   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4135   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4136   case Intrinsic::nvvm_suld_2d_i16_clamp:
4137   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4138   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4139   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4140   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4141   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4142   case Intrinsic::nvvm_suld_3d_i16_clamp:
4143   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4144   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4145   case Intrinsic::nvvm_suld_1d_i16_trap:
4146   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4147   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4148   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4149   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4150   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4151   case Intrinsic::nvvm_suld_2d_i16_trap:
4152   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4153   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4154   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4155   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4156   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4157   case Intrinsic::nvvm_suld_3d_i16_trap:
4158   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4159   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4160   case Intrinsic::nvvm_suld_1d_i16_zero:
4161   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4162   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4163   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4164   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4165   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4166   case Intrinsic::nvvm_suld_2d_i16_zero:
4167   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4168   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4169   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4170   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4171   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4172   case Intrinsic::nvvm_suld_3d_i16_zero:
4173   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4174   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4175     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4176     Info.memVT = MVT::i16;
4177     Info.ptrVal = nullptr;
4178     Info.offset = 0;
4179     Info.flags = MachineMemOperand::MOLoad;
4180     Info.align = Align(16);
4181     return true;
4182 
4183   case Intrinsic::nvvm_suld_1d_i32_clamp:
4184   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4185   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4186   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4187   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4188   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4189   case Intrinsic::nvvm_suld_2d_i32_clamp:
4190   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4191   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4192   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4193   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4194   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4195   case Intrinsic::nvvm_suld_3d_i32_clamp:
4196   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4197   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4198   case Intrinsic::nvvm_suld_1d_i32_trap:
4199   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4200   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4201   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4202   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4203   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4204   case Intrinsic::nvvm_suld_2d_i32_trap:
4205   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4206   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4207   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4208   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4209   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4210   case Intrinsic::nvvm_suld_3d_i32_trap:
4211   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4212   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4213   case Intrinsic::nvvm_suld_1d_i32_zero:
4214   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4215   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4216   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4217   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4218   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4219   case Intrinsic::nvvm_suld_2d_i32_zero:
4220   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4221   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4222   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4223   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4224   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4225   case Intrinsic::nvvm_suld_3d_i32_zero:
4226   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4227   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4228     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4229     Info.memVT = MVT::i32;
4230     Info.ptrVal = nullptr;
4231     Info.offset = 0;
4232     Info.flags = MachineMemOperand::MOLoad;
4233     Info.align = Align(16);
4234     return true;
4235 
4236   case Intrinsic::nvvm_suld_1d_i64_clamp:
4237   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4238   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4239   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4240   case Intrinsic::nvvm_suld_2d_i64_clamp:
4241   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4242   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4243   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4244   case Intrinsic::nvvm_suld_3d_i64_clamp:
4245   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4246   case Intrinsic::nvvm_suld_1d_i64_trap:
4247   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4248   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4249   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4250   case Intrinsic::nvvm_suld_2d_i64_trap:
4251   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4252   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4253   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4254   case Intrinsic::nvvm_suld_3d_i64_trap:
4255   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4256   case Intrinsic::nvvm_suld_1d_i64_zero:
4257   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4258   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4259   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4260   case Intrinsic::nvvm_suld_2d_i64_zero:
4261   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4262   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4263   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4264   case Intrinsic::nvvm_suld_3d_i64_zero:
4265   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4266     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4267     Info.memVT = MVT::i64;
4268     Info.ptrVal = nullptr;
4269     Info.offset = 0;
4270     Info.flags = MachineMemOperand::MOLoad;
4271     Info.align = Align(16);
4272     return true;
4273   }
4274   return false;
4275 }
4276 
4277 /// isLegalAddressingMode - Return true if the addressing mode represented
4278 /// by AM is legal for this target, for a load/store of the specified type.
4279 /// Used to guide target specific optimizations, like loop strength reduction
4280 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4281 /// (CodeGenPrepare.cpp)
4282 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4283                                                 const AddrMode &AM, Type *Ty,
4284                                                 unsigned AS, Instruction *I) const {
4285   // AddrMode - This represents an addressing mode of:
4286   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4287   //
4288   // The legal address modes are
4289   // - [avar]
4290   // - [areg]
4291   // - [areg+immoff]
4292   // - [immAddr]
4293 
4294   if (AM.BaseGV) {
4295     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4296   }
4297 
4298   switch (AM.Scale) {
4299   case 0: // "r", "r+i" or "i" is allowed
4300     break;
4301   case 1:
4302     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4303       return false;
4304     // Otherwise we have r+i.
4305     break;
4306   default:
4307     // No scale > 1 is allowed
4308     return false;
4309   }
4310   return true;
4311 }
4312 
4313 //===----------------------------------------------------------------------===//
4314 //                         NVPTX Inline Assembly Support
4315 //===----------------------------------------------------------------------===//
4316 
4317 /// getConstraintType - Given a constraint letter, return the type of
4318 /// constraint it is for this target.
4319 NVPTXTargetLowering::ConstraintType
4320 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4321   if (Constraint.size() == 1) {
4322     switch (Constraint[0]) {
4323     default:
4324       break;
4325     case 'b':
4326     case 'r':
4327     case 'h':
4328     case 'c':
4329     case 'l':
4330     case 'f':
4331     case 'd':
4332     case '0':
4333     case 'N':
4334       return C_RegisterClass;
4335     }
4336   }
4337   return TargetLowering::getConstraintType(Constraint);
4338 }
4339 
4340 std::pair<unsigned, const TargetRegisterClass *>
4341 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4342                                                   StringRef Constraint,
4343                                                   MVT VT) const {
4344   if (Constraint.size() == 1) {
4345     switch (Constraint[0]) {
4346     case 'b':
4347       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4348     case 'c':
4349       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4350     case 'h':
4351       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4352     case 'r':
4353       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4354     case 'l':
4355     case 'N':
4356       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4357     case 'f':
4358       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4359     case 'd':
4360       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4361     }
4362   }
4363   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4364 }
4365 
4366 //===----------------------------------------------------------------------===//
4367 //                         NVPTX DAG Combining
4368 //===----------------------------------------------------------------------===//
4369 
4370 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4371                                    CodeGenOpt::Level OptLevel) const {
4372   // Always honor command-line argument
4373   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4374     return FMAContractLevelOpt > 0;
4375 
4376   // Do not contract if we're not optimizing the code.
4377   if (OptLevel == 0)
4378     return false;
4379 
4380   // Honor TargetOptions flags that explicitly say fusion is okay.
4381   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4382     return true;
4383 
4384   return allowUnsafeFPMath(MF);
4385 }
4386 
4387 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4388   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4389   if (MF.getTarget().Options.UnsafeFPMath)
4390     return true;
4391 
4392   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4393   const Function &F = MF.getFunction();
4394   return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
4395 }
4396 
4397 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4398 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4399 /// called with the default operands, and if that fails, with commuted
4400 /// operands.
4401 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4402                                            TargetLowering::DAGCombinerInfo &DCI,
4403                                              const NVPTXSubtarget &Subtarget,
4404                                              CodeGenOpt::Level OptLevel) {
4405   SelectionDAG  &DAG = DCI.DAG;
4406   // Skip non-integer, non-scalar case
4407   EVT VT=N0.getValueType();
4408   if (VT.isVector())
4409     return SDValue();
4410 
4411   // fold (add (mul a, b), c) -> (mad a, b, c)
4412   //
4413   if (N0.getOpcode() == ISD::MUL) {
4414     assert (VT.isInteger());
4415     // For integer:
4416     // Since integer multiply-add costs the same as integer multiply
4417     // but is more costly than integer add, do the fusion only when
4418     // the mul is only used in the add.
4419     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4420         !N0.getNode()->hasOneUse())
4421       return SDValue();
4422 
4423     // Do the folding
4424     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4425                        N0.getOperand(0), N0.getOperand(1), N1);
4426   }
4427   else if (N0.getOpcode() == ISD::FMUL) {
4428     if (VT == MVT::f32 || VT == MVT::f64) {
4429       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4430           &DAG.getTargetLoweringInfo());
4431       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4432         return SDValue();
4433 
4434       // For floating point:
4435       // Do the fusion only when the mul has less than 5 uses and all
4436       // are add.
4437       // The heuristic is that if a use is not an add, then that use
4438       // cannot be fused into fma, therefore mul is still needed anyway.
4439       // If there are more than 4 uses, even if they are all add, fusing
4440       // them will increase register pressue.
4441       //
4442       int numUses = 0;
4443       int nonAddCount = 0;
4444       for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4445            UE = N0.getNode()->use_end();
4446            UI != UE; ++UI) {
4447         numUses++;
4448         SDNode *User = *UI;
4449         if (User->getOpcode() != ISD::FADD)
4450           ++nonAddCount;
4451       }
4452       if (numUses >= 5)
4453         return SDValue();
4454       if (nonAddCount) {
4455         int orderNo = N->getIROrder();
4456         int orderNo2 = N0.getNode()->getIROrder();
4457         // simple heuristics here for considering potential register
4458         // pressure, the logics here is that the differnce are used
4459         // to measure the distance between def and use, the longer distance
4460         // more likely cause register pressure.
4461         if (orderNo - orderNo2 < 500)
4462           return SDValue();
4463 
4464         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4465         // which guarantees that the FMA will not increase register pressure at node N.
4466         bool opIsLive = false;
4467         const SDNode *left = N0.getOperand(0).getNode();
4468         const SDNode *right = N0.getOperand(1).getNode();
4469 
4470         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4471           opIsLive = true;
4472 
4473         if (!opIsLive)
4474           for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4475             SDNode *User = *UI;
4476             int orderNo3 = User->getIROrder();
4477             if (orderNo3 > orderNo) {
4478               opIsLive = true;
4479               break;
4480             }
4481           }
4482 
4483         if (!opIsLive)
4484           for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4485             SDNode *User = *UI;
4486             int orderNo3 = User->getIROrder();
4487             if (orderNo3 > orderNo) {
4488               opIsLive = true;
4489               break;
4490             }
4491           }
4492 
4493         if (!opIsLive)
4494           return SDValue();
4495       }
4496 
4497       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4498                          N0.getOperand(0), N0.getOperand(1), N1);
4499     }
4500   }
4501 
4502   return SDValue();
4503 }
4504 
4505 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4506 ///
4507 static SDValue PerformADDCombine(SDNode *N,
4508                                  TargetLowering::DAGCombinerInfo &DCI,
4509                                  const NVPTXSubtarget &Subtarget,
4510                                  CodeGenOpt::Level OptLevel) {
4511   SDValue N0 = N->getOperand(0);
4512   SDValue N1 = N->getOperand(1);
4513 
4514   // First try with the default operand order.
4515   if (SDValue Result =
4516           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4517     return Result;
4518 
4519   // If that didn't work, try again with the operands commuted.
4520   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4521 }
4522 
4523 static SDValue PerformANDCombine(SDNode *N,
4524                                  TargetLowering::DAGCombinerInfo &DCI) {
4525   // The type legalizer turns a vector load of i8 values into a zextload to i16
4526   // registers, optionally ANY_EXTENDs it (if target type is integer),
4527   // and ANDs off the high 8 bits. Since we turn this load into a
4528   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4529   // nodes. Do that here.
4530   SDValue Val = N->getOperand(0);
4531   SDValue Mask = N->getOperand(1);
4532 
4533   if (isa<ConstantSDNode>(Val)) {
4534     std::swap(Val, Mask);
4535   }
4536 
4537   SDValue AExt;
4538   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4539   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4540     AExt = Val;
4541     Val = Val->getOperand(0);
4542   }
4543 
4544   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4545     Val = Val->getOperand(0);
4546   }
4547 
4548   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4549       Val->getOpcode() == NVPTXISD::LoadV4) {
4550     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4551     if (!MaskCnst) {
4552       // Not an AND with a constant
4553       return SDValue();
4554     }
4555 
4556     uint64_t MaskVal = MaskCnst->getZExtValue();
4557     if (MaskVal != 0xff) {
4558       // Not an AND that chops off top 8 bits
4559       return SDValue();
4560     }
4561 
4562     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4563     if (!Mem) {
4564       // Not a MemSDNode?!?
4565       return SDValue();
4566     }
4567 
4568     EVT MemVT = Mem->getMemoryVT();
4569     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4570       // We only handle the i8 case
4571       return SDValue();
4572     }
4573 
4574     unsigned ExtType =
4575       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4576         getZExtValue();
4577     if (ExtType == ISD::SEXTLOAD) {
4578       // If for some reason the load is a sextload, the and is needed to zero
4579       // out the high 8 bits
4580       return SDValue();
4581     }
4582 
4583     bool AddTo = false;
4584     if (AExt.getNode() != nullptr) {
4585       // Re-insert the ext as a zext.
4586       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4587                             AExt.getValueType(), Val);
4588       AddTo = true;
4589     }
4590 
4591     // If we get here, the AND is unnecessary.  Just replace it with the load
4592     DCI.CombineTo(N, Val, AddTo);
4593   }
4594 
4595   return SDValue();
4596 }
4597 
4598 static SDValue PerformREMCombine(SDNode *N,
4599                                  TargetLowering::DAGCombinerInfo &DCI,
4600                                  CodeGenOpt::Level OptLevel) {
4601   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4602 
4603   // Don't do anything at less than -O2.
4604   if (OptLevel < CodeGenOpt::Default)
4605     return SDValue();
4606 
4607   SelectionDAG &DAG = DCI.DAG;
4608   SDLoc DL(N);
4609   EVT VT = N->getValueType(0);
4610   bool IsSigned = N->getOpcode() == ISD::SREM;
4611   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4612 
4613   const SDValue &Num = N->getOperand(0);
4614   const SDValue &Den = N->getOperand(1);
4615 
4616   for (const SDNode *U : Num->uses()) {
4617     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4618         U->getOperand(1) == Den) {
4619       // Num % Den -> Num - (Num / Den) * Den
4620       return DAG.getNode(ISD::SUB, DL, VT, Num,
4621                          DAG.getNode(ISD::MUL, DL, VT,
4622                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4623                                      Den));
4624     }
4625   }
4626   return SDValue();
4627 }
4628 
4629 enum OperandSignedness {
4630   Signed = 0,
4631   Unsigned,
4632   Unknown
4633 };
4634 
4635 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4636 /// that can be demoted to \p OptSize bits without loss of information. The
4637 /// signedness of the operand, if determinable, is placed in \p S.
4638 static bool IsMulWideOperandDemotable(SDValue Op,
4639                                       unsigned OptSize,
4640                                       OperandSignedness &S) {
4641   S = Unknown;
4642 
4643   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4644       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4645     EVT OrigVT = Op.getOperand(0).getValueType();
4646     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4647       S = Signed;
4648       return true;
4649     }
4650   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4651     EVT OrigVT = Op.getOperand(0).getValueType();
4652     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4653       S = Unsigned;
4654       return true;
4655     }
4656   }
4657 
4658   return false;
4659 }
4660 
4661 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4662 /// be demoted to \p OptSize bits without loss of information. If the operands
4663 /// contain a constant, it should appear as the RHS operand. The signedness of
4664 /// the operands is placed in \p IsSigned.
4665 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4666                                         unsigned OptSize,
4667                                         bool &IsSigned) {
4668   OperandSignedness LHSSign;
4669 
4670   // The LHS operand must be a demotable op
4671   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4672     return false;
4673 
4674   // We should have been able to determine the signedness from the LHS
4675   if (LHSSign == Unknown)
4676     return false;
4677 
4678   IsSigned = (LHSSign == Signed);
4679 
4680   // The RHS can be a demotable op or a constant
4681   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4682     const APInt &Val = CI->getAPIntValue();
4683     if (LHSSign == Unsigned) {
4684       return Val.isIntN(OptSize);
4685     } else {
4686       return Val.isSignedIntN(OptSize);
4687     }
4688   } else {
4689     OperandSignedness RHSSign;
4690     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4691       return false;
4692 
4693     return LHSSign == RHSSign;
4694   }
4695 }
4696 
4697 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4698 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4699 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4700 /// amount.
4701 static SDValue TryMULWIDECombine(SDNode *N,
4702                                  TargetLowering::DAGCombinerInfo &DCI) {
4703   EVT MulType = N->getValueType(0);
4704   if (MulType != MVT::i32 && MulType != MVT::i64) {
4705     return SDValue();
4706   }
4707 
4708   SDLoc DL(N);
4709   unsigned OptSize = MulType.getSizeInBits() >> 1;
4710   SDValue LHS = N->getOperand(0);
4711   SDValue RHS = N->getOperand(1);
4712 
4713   // Canonicalize the multiply so the constant (if any) is on the right
4714   if (N->getOpcode() == ISD::MUL) {
4715     if (isa<ConstantSDNode>(LHS)) {
4716       std::swap(LHS, RHS);
4717     }
4718   }
4719 
4720   // If we have a SHL, determine the actual multiply amount
4721   if (N->getOpcode() == ISD::SHL) {
4722     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4723     if (!ShlRHS) {
4724       return SDValue();
4725     }
4726 
4727     APInt ShiftAmt = ShlRHS->getAPIntValue();
4728     unsigned BitWidth = MulType.getSizeInBits();
4729     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4730       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4731       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4732     } else {
4733       return SDValue();
4734     }
4735   }
4736 
4737   bool Signed;
4738   // Verify that our operands are demotable
4739   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4740     return SDValue();
4741   }
4742 
4743   EVT DemotedVT;
4744   if (MulType == MVT::i32) {
4745     DemotedVT = MVT::i16;
4746   } else {
4747     DemotedVT = MVT::i32;
4748   }
4749 
4750   // Truncate the operands to the correct size. Note that these are just for
4751   // type consistency and will (likely) be eliminated in later phases.
4752   SDValue TruncLHS =
4753     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4754   SDValue TruncRHS =
4755     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4756 
4757   unsigned Opc;
4758   if (Signed) {
4759     Opc = NVPTXISD::MUL_WIDE_SIGNED;
4760   } else {
4761     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4762   }
4763 
4764   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4765 }
4766 
4767 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4768 static SDValue PerformMULCombine(SDNode *N,
4769                                  TargetLowering::DAGCombinerInfo &DCI,
4770                                  CodeGenOpt::Level OptLevel) {
4771   if (OptLevel > 0) {
4772     // Try mul.wide combining at OptLevel > 0
4773     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4774       return Ret;
4775   }
4776 
4777   return SDValue();
4778 }
4779 
4780 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4781 static SDValue PerformSHLCombine(SDNode *N,
4782                                  TargetLowering::DAGCombinerInfo &DCI,
4783                                  CodeGenOpt::Level OptLevel) {
4784   if (OptLevel > 0) {
4785     // Try mul.wide combining at OptLevel > 0
4786     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4787       return Ret;
4788   }
4789 
4790   return SDValue();
4791 }
4792 
4793 static SDValue PerformSETCCCombine(SDNode *N,
4794                                    TargetLowering::DAGCombinerInfo &DCI) {
4795   EVT CCType = N->getValueType(0);
4796   SDValue A = N->getOperand(0);
4797   SDValue B = N->getOperand(1);
4798 
4799   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4800     return SDValue();
4801 
4802   SDLoc DL(N);
4803   // setp.f16x2 returns two scalar predicates, which we need to
4804   // convert back to v2i1. The returned result will be scalarized by
4805   // the legalizer, but the comparison will remain a single vector
4806   // instruction.
4807   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4808                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
4809                                    {A, B, N->getOperand(2)});
4810   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4811                          CCNode.getValue(1));
4812 }
4813 
4814 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4815                                                DAGCombinerInfo &DCI) const {
4816   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4817   switch (N->getOpcode()) {
4818     default: break;
4819     case ISD::ADD:
4820     case ISD::FADD:
4821       return PerformADDCombine(N, DCI, STI, OptLevel);
4822     case ISD::MUL:
4823       return PerformMULCombine(N, DCI, OptLevel);
4824     case ISD::SHL:
4825       return PerformSHLCombine(N, DCI, OptLevel);
4826     case ISD::AND:
4827       return PerformANDCombine(N, DCI);
4828     case ISD::UREM:
4829     case ISD::SREM:
4830       return PerformREMCombine(N, DCI, OptLevel);
4831     case ISD::SETCC:
4832       return PerformSETCCCombine(N, DCI);
4833   }
4834   return SDValue();
4835 }
4836 
4837 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4838 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4839                               SmallVectorImpl<SDValue> &Results) {
4840   EVT ResVT = N->getValueType(0);
4841   SDLoc DL(N);
4842 
4843   assert(ResVT.isVector() && "Vector load must have vector type");
4844 
4845   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4846   // legal.  We can (and should) split that into 2 loads of <2 x double> here
4847   // but I'm leaving that as a TODO for now.
4848   assert(ResVT.isSimple() && "Can only handle simple types");
4849   switch (ResVT.getSimpleVT().SimpleTy) {
4850   default:
4851     return;
4852   case MVT::v2i8:
4853   case MVT::v2i16:
4854   case MVT::v2i32:
4855   case MVT::v2i64:
4856   case MVT::v2f16:
4857   case MVT::v2f32:
4858   case MVT::v2f64:
4859   case MVT::v4i8:
4860   case MVT::v4i16:
4861   case MVT::v4i32:
4862   case MVT::v4f16:
4863   case MVT::v4f32:
4864   case MVT::v8f16: // <4 x f16x2>
4865     // This is a "native" vector type
4866     break;
4867   }
4868 
4869   LoadSDNode *LD = cast<LoadSDNode>(N);
4870 
4871   Align Alignment = LD->getAlign();
4872   auto &TD = DAG.getDataLayout();
4873   Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext()));
4874   if (Alignment < PrefAlign) {
4875     // This load is not sufficiently aligned, so bail out and let this vector
4876     // load be scalarized.  Note that we may still be able to emit smaller
4877     // vector loads.  For example, if we are loading a <4 x float> with an
4878     // alignment of 8, this check will fail but the legalizer will try again
4879     // with 2 x <2 x float>, which will succeed with an alignment of 8.
4880     return;
4881   }
4882 
4883   EVT EltVT = ResVT.getVectorElementType();
4884   unsigned NumElts = ResVT.getVectorNumElements();
4885 
4886   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4887   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4888   // loaded type to i16 and propagate the "real" type as the memory type.
4889   bool NeedTrunc = false;
4890   if (EltVT.getSizeInBits() < 16) {
4891     EltVT = MVT::i16;
4892     NeedTrunc = true;
4893   }
4894 
4895   unsigned Opcode = 0;
4896   SDVTList LdResVTs;
4897   bool LoadF16x2 = false;
4898 
4899   switch (NumElts) {
4900   default:
4901     return;
4902   case 2:
4903     Opcode = NVPTXISD::LoadV2;
4904     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4905     break;
4906   case 4: {
4907     Opcode = NVPTXISD::LoadV4;
4908     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4909     LdResVTs = DAG.getVTList(ListVTs);
4910     break;
4911   }
4912   case 8: {
4913     // v8f16 is a special case. PTX doesn't have ld.v8.f16
4914     // instruction. Instead, we split the vector into v2f16 chunks and
4915     // load them with ld.v4.b32.
4916     assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4917     LoadF16x2 = true;
4918     Opcode = NVPTXISD::LoadV4;
4919     EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4920                      MVT::Other};
4921     LdResVTs = DAG.getVTList(ListVTs);
4922     break;
4923   }
4924   }
4925 
4926   // Copy regular operands
4927   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4928 
4929   // The select routine does not have access to the LoadSDNode instance, so
4930   // pass along the extension information
4931   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4932 
4933   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4934                                           LD->getMemoryVT(),
4935                                           LD->getMemOperand());
4936 
4937   SmallVector<SDValue, 8> ScalarRes;
4938   if (LoadF16x2) {
4939     // Split v2f16 subvectors back into individual elements.
4940     NumElts /= 2;
4941     for (unsigned i = 0; i < NumElts; ++i) {
4942       SDValue SubVector = NewLD.getValue(i);
4943       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4944                                DAG.getIntPtrConstant(0, DL));
4945       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4946                                DAG.getIntPtrConstant(1, DL));
4947       ScalarRes.push_back(E0);
4948       ScalarRes.push_back(E1);
4949     }
4950   } else {
4951     for (unsigned i = 0; i < NumElts; ++i) {
4952       SDValue Res = NewLD.getValue(i);
4953       if (NeedTrunc)
4954         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4955       ScalarRes.push_back(Res);
4956     }
4957   }
4958 
4959   SDValue LoadChain = NewLD.getValue(NumElts);
4960 
4961   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4962 
4963   Results.push_back(BuildVec);
4964   Results.push_back(LoadChain);
4965 }
4966 
4967 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4968                                      SmallVectorImpl<SDValue> &Results) {
4969   SDValue Chain = N->getOperand(0);
4970   SDValue Intrin = N->getOperand(1);
4971   SDLoc DL(N);
4972 
4973   // Get the intrinsic ID
4974   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4975   switch (IntrinNo) {
4976   default:
4977     return;
4978   case Intrinsic::nvvm_ldg_global_i:
4979   case Intrinsic::nvvm_ldg_global_f:
4980   case Intrinsic::nvvm_ldg_global_p:
4981   case Intrinsic::nvvm_ldu_global_i:
4982   case Intrinsic::nvvm_ldu_global_f:
4983   case Intrinsic::nvvm_ldu_global_p: {
4984     EVT ResVT = N->getValueType(0);
4985 
4986     if (ResVT.isVector()) {
4987       // Vector LDG/LDU
4988 
4989       unsigned NumElts = ResVT.getVectorNumElements();
4990       EVT EltVT = ResVT.getVectorElementType();
4991 
4992       // Since LDU/LDG are target nodes, we cannot rely on DAG type
4993       // legalization.
4994       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4995       // loaded type to i16 and propagate the "real" type as the memory type.
4996       bool NeedTrunc = false;
4997       if (EltVT.getSizeInBits() < 16) {
4998         EltVT = MVT::i16;
4999         NeedTrunc = true;
5000       }
5001 
5002       unsigned Opcode = 0;
5003       SDVTList LdResVTs;
5004 
5005       switch (NumElts) {
5006       default:
5007         return;
5008       case 2:
5009         switch (IntrinNo) {
5010         default:
5011           return;
5012         case Intrinsic::nvvm_ldg_global_i:
5013         case Intrinsic::nvvm_ldg_global_f:
5014         case Intrinsic::nvvm_ldg_global_p:
5015           Opcode = NVPTXISD::LDGV2;
5016           break;
5017         case Intrinsic::nvvm_ldu_global_i:
5018         case Intrinsic::nvvm_ldu_global_f:
5019         case Intrinsic::nvvm_ldu_global_p:
5020           Opcode = NVPTXISD::LDUV2;
5021           break;
5022         }
5023         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
5024         break;
5025       case 4: {
5026         switch (IntrinNo) {
5027         default:
5028           return;
5029         case Intrinsic::nvvm_ldg_global_i:
5030         case Intrinsic::nvvm_ldg_global_f:
5031         case Intrinsic::nvvm_ldg_global_p:
5032           Opcode = NVPTXISD::LDGV4;
5033           break;
5034         case Intrinsic::nvvm_ldu_global_i:
5035         case Intrinsic::nvvm_ldu_global_f:
5036         case Intrinsic::nvvm_ldu_global_p:
5037           Opcode = NVPTXISD::LDUV4;
5038           break;
5039         }
5040         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5041         LdResVTs = DAG.getVTList(ListVTs);
5042         break;
5043       }
5044       }
5045 
5046       SmallVector<SDValue, 8> OtherOps;
5047 
5048       // Copy regular operands
5049 
5050       OtherOps.push_back(Chain); // Chain
5051                                  // Skip operand 1 (intrinsic ID)
5052       // Others
5053       OtherOps.append(N->op_begin() + 2, N->op_end());
5054 
5055       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5056 
5057       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5058                                               MemSD->getMemoryVT(),
5059                                               MemSD->getMemOperand());
5060 
5061       SmallVector<SDValue, 4> ScalarRes;
5062 
5063       for (unsigned i = 0; i < NumElts; ++i) {
5064         SDValue Res = NewLD.getValue(i);
5065         if (NeedTrunc)
5066           Res =
5067               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5068         ScalarRes.push_back(Res);
5069       }
5070 
5071       SDValue LoadChain = NewLD.getValue(NumElts);
5072 
5073       SDValue BuildVec =
5074           DAG.getBuildVector(ResVT, DL, ScalarRes);
5075 
5076       Results.push_back(BuildVec);
5077       Results.push_back(LoadChain);
5078     } else {
5079       // i8 LDG/LDU
5080       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5081              "Custom handling of non-i8 ldu/ldg?");
5082 
5083       // Just copy all operands as-is
5084       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5085 
5086       // Force output to i16
5087       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5088 
5089       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5090 
5091       // We make sure the memory type is i8, which will be used during isel
5092       // to select the proper instruction.
5093       SDValue NewLD =
5094           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5095                                   MVT::i8, MemSD->getMemOperand());
5096 
5097       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5098                                     NewLD.getValue(0)));
5099       Results.push_back(NewLD.getValue(1));
5100     }
5101   }
5102   }
5103 }
5104 
5105 void NVPTXTargetLowering::ReplaceNodeResults(
5106     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5107   switch (N->getOpcode()) {
5108   default:
5109     report_fatal_error("Unhandled custom legalization");
5110   case ISD::LOAD:
5111     ReplaceLoadVector(N, DAG, Results);
5112     return;
5113   case ISD::INTRINSIC_W_CHAIN:
5114     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5115     return;
5116   }
5117 }
5118 
5119 // Pin NVPTXTargetObjectFile's vtables to this file.
5120 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
5121 
5122 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5123     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5124   return getDataSection();
5125 }
5126