1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "NVPTXISelLowering.h" 15 #include "MCTargetDesc/NVPTXBaseInfo.h" 16 #include "NVPTX.h" 17 #include "NVPTXSubtarget.h" 18 #include "NVPTXTargetMachine.h" 19 #include "NVPTXTargetObjectFile.h" 20 #include "NVPTXUtilities.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/CodeGen/TargetCallingConv.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/Argument.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CodeGen.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MachineValueType.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <iterator> 59 #include <sstream> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 #define DEBUG_TYPE "nvptx-lower" 65 66 using namespace llvm; 67 68 static std::atomic<unsigned> GlobalUniqueCallSite; 69 70 static cl::opt<bool> sched4reg( 71 "nvptx-sched4reg", 72 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false)); 73 74 static cl::opt<unsigned> 75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden, 76 cl::desc("NVPTX Specific: FMA contraction (0: don't do it" 77 " 1: do it 2: do it aggressively"), 78 cl::init(2)); 79 80 static cl::opt<int> UsePrecDivF32( 81 "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden, 82 cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" 83 " IEEE Compliant F32 div.rnd if available."), 84 cl::init(2)); 85 86 static cl::opt<bool> UsePrecSqrtF32( 87 "nvptx-prec-sqrtf32", cl::Hidden, 88 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), 89 cl::init(true)); 90 91 int NVPTXTargetLowering::getDivF32Level() const { 92 if (UsePrecDivF32.getNumOccurrences() > 0) { 93 // If nvptx-prec-div32=N is used on the command-line, always honor it 94 return UsePrecDivF32; 95 } else { 96 // Otherwise, use div.approx if fast math is enabled 97 if (getTargetMachine().Options.UnsafeFPMath) 98 return 0; 99 else 100 return 2; 101 } 102 } 103 104 bool NVPTXTargetLowering::usePrecSqrtF32() const { 105 if (UsePrecSqrtF32.getNumOccurrences() > 0) { 106 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it 107 return UsePrecSqrtF32; 108 } else { 109 // Otherwise, use sqrt.approx if fast math is enabled 110 return !getTargetMachine().Options.UnsafeFPMath; 111 } 112 } 113 114 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const { 115 return MF.getDenormalMode(APFloat::IEEEsingle()).Output == 116 DenormalMode::PreserveSign; 117 } 118 119 static bool IsPTXVectorType(MVT VT) { 120 switch (VT.SimpleTy) { 121 default: 122 return false; 123 case MVT::v2i1: 124 case MVT::v4i1: 125 case MVT::v2i8: 126 case MVT::v4i8: 127 case MVT::v2i16: 128 case MVT::v4i16: 129 case MVT::v2i32: 130 case MVT::v4i32: 131 case MVT::v2i64: 132 case MVT::v2f16: 133 case MVT::v4f16: 134 case MVT::v8f16: // <4 x f16x2> 135 case MVT::v2f32: 136 case MVT::v4f32: 137 case MVT::v2f64: 138 return true; 139 } 140 } 141 142 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive 143 /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors 144 /// into their primitive components. 145 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the 146 /// same number of types as the Ins/Outs arrays in LowerFormalArguments, 147 /// LowerCall, and LowerReturn. 148 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, 149 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 150 SmallVectorImpl<uint64_t> *Offsets = nullptr, 151 uint64_t StartingOffset = 0) { 152 SmallVector<EVT, 16> TempVTs; 153 SmallVector<uint64_t, 16> TempOffsets; 154 155 // Special case for i128 - decompose to (i64, i64) 156 if (Ty->isIntegerTy(128)) { 157 ValueVTs.push_back(EVT(MVT::i64)); 158 ValueVTs.push_back(EVT(MVT::i64)); 159 160 if (Offsets) { 161 Offsets->push_back(StartingOffset + 0); 162 Offsets->push_back(StartingOffset + 8); 163 } 164 165 return; 166 } 167 168 // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs. 169 if (StructType *STy = dyn_cast<StructType>(Ty)) { 170 auto const *SL = DL.getStructLayout(STy); 171 auto ElementNum = 0; 172 for(auto *EI : STy->elements()) { 173 ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets, 174 StartingOffset + SL->getElementOffset(ElementNum)); 175 ++ElementNum; 176 } 177 return; 178 } 179 180 ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset); 181 for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) { 182 EVT VT = TempVTs[i]; 183 uint64_t Off = TempOffsets[i]; 184 // Split vectors into individual elements, except for v2f16, which 185 // we will pass as a single scalar. 186 if (VT.isVector()) { 187 unsigned NumElts = VT.getVectorNumElements(); 188 EVT EltVT = VT.getVectorElementType(); 189 // Vectors with an even number of f16 elements will be passed to 190 // us as an array of v2f16 elements. We must match this so we 191 // stay in sync with Ins/Outs. 192 if (EltVT == MVT::f16 && NumElts % 2 == 0) { 193 EltVT = MVT::v2f16; 194 NumElts /= 2; 195 } 196 for (unsigned j = 0; j != NumElts; ++j) { 197 ValueVTs.push_back(EltVT); 198 if (Offsets) 199 Offsets->push_back(Off + j * EltVT.getStoreSize()); 200 } 201 } else { 202 ValueVTs.push_back(VT); 203 if (Offsets) 204 Offsets->push_back(Off); 205 } 206 } 207 } 208 209 // Check whether we can merge loads/stores of some of the pieces of a 210 // flattened function parameter or return value into a single vector 211 // load/store. 212 // 213 // The flattened parameter is represented as a list of EVTs and 214 // offsets, and the whole structure is aligned to ParamAlignment. This 215 // function determines whether we can load/store pieces of the 216 // parameter starting at index Idx using a single vectorized op of 217 // size AccessSize. If so, it returns the number of param pieces 218 // covered by the vector op. Otherwise, it returns 1. 219 static unsigned CanMergeParamLoadStoresStartingAt( 220 unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs, 221 const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) { 222 223 // Can't vectorize if param alignment is not sufficient. 224 if (ParamAlignment < AccessSize) 225 return 1; 226 // Can't vectorize if offset is not aligned. 227 if (Offsets[Idx] & (AccessSize - 1)) 228 return 1; 229 230 EVT EltVT = ValueVTs[Idx]; 231 unsigned EltSize = EltVT.getStoreSize(); 232 233 // Element is too large to vectorize. 234 if (EltSize >= AccessSize) 235 return 1; 236 237 unsigned NumElts = AccessSize / EltSize; 238 // Can't vectorize if AccessBytes if not a multiple of EltSize. 239 if (AccessSize != EltSize * NumElts) 240 return 1; 241 242 // We don't have enough elements to vectorize. 243 if (Idx + NumElts > ValueVTs.size()) 244 return 1; 245 246 // PTX ISA can only deal with 2- and 4-element vector ops. 247 if (NumElts != 4 && NumElts != 2) 248 return 1; 249 250 for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) { 251 // Types do not match. 252 if (ValueVTs[j] != EltVT) 253 return 1; 254 255 // Elements are not contiguous. 256 if (Offsets[j] - Offsets[j - 1] != EltSize) 257 return 1; 258 } 259 // OK. We can vectorize ValueVTs[i..i+NumElts) 260 return NumElts; 261 } 262 263 // Flags for tracking per-element vectorization state of loads/stores 264 // of a flattened function parameter or return value. 265 enum ParamVectorizationFlags { 266 PVF_INNER = 0x0, // Middle elements of a vector. 267 PVF_FIRST = 0x1, // First element of the vector. 268 PVF_LAST = 0x2, // Last element of the vector. 269 // Scalar is effectively a 1-element vector. 270 PVF_SCALAR = PVF_FIRST | PVF_LAST 271 }; 272 273 // Computes whether and how we can vectorize the loads/stores of a 274 // flattened function parameter or return value. 275 // 276 // The flattened parameter is represented as the list of ValueVTs and 277 // Offsets, and is aligned to ParamAlignment bytes. We return a vector 278 // of the same size as ValueVTs indicating how each piece should be 279 // loaded/stored (i.e. as a scalar, or as part of a vector 280 // load/store). 281 static SmallVector<ParamVectorizationFlags, 16> 282 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs, 283 const SmallVectorImpl<uint64_t> &Offsets, 284 Align ParamAlignment) { 285 // Set vector size to match ValueVTs and mark all elements as 286 // scalars by default. 287 SmallVector<ParamVectorizationFlags, 16> VectorInfo; 288 VectorInfo.assign(ValueVTs.size(), PVF_SCALAR); 289 290 // Check what we can vectorize using 128/64/32-bit accesses. 291 for (int I = 0, E = ValueVTs.size(); I != E; ++I) { 292 // Skip elements we've already processed. 293 assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state."); 294 for (unsigned AccessSize : {16, 8, 4, 2}) { 295 unsigned NumElts = CanMergeParamLoadStoresStartingAt( 296 I, AccessSize, ValueVTs, Offsets, ParamAlignment); 297 // Mark vectorized elements. 298 switch (NumElts) { 299 default: 300 llvm_unreachable("Unexpected return value"); 301 case 1: 302 // Can't vectorize using this size, try next smaller size. 303 continue; 304 case 2: 305 assert(I + 1 < E && "Not enough elements."); 306 VectorInfo[I] = PVF_FIRST; 307 VectorInfo[I + 1] = PVF_LAST; 308 I += 1; 309 break; 310 case 4: 311 assert(I + 3 < E && "Not enough elements."); 312 VectorInfo[I] = PVF_FIRST; 313 VectorInfo[I + 1] = PVF_INNER; 314 VectorInfo[I + 2] = PVF_INNER; 315 VectorInfo[I + 3] = PVF_LAST; 316 I += 3; 317 break; 318 } 319 // Break out of the inner loop because we've already succeeded 320 // using largest possible AccessSize. 321 break; 322 } 323 } 324 return VectorInfo; 325 } 326 327 // NVPTXTargetLowering Constructor. 328 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM, 329 const NVPTXSubtarget &STI) 330 : TargetLowering(TM), nvTM(&TM), STI(STI) { 331 // always lower memset, memcpy, and memmove intrinsics to load/store 332 // instructions, rather 333 // then generating calls to memset, mempcy or memmove. 334 MaxStoresPerMemset = (unsigned) 0xFFFFFFFF; 335 MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF; 336 MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF; 337 338 setBooleanContents(ZeroOrNegativeOneBooleanContent); 339 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 340 341 // Jump is Expensive. Don't create extra control flow for 'and', 'or' 342 // condition branches. 343 setJumpIsExpensive(true); 344 345 // Wide divides are _very_ slow. Try to reduce the width of the divide if 346 // possible. 347 addBypassSlowDiv(64, 32); 348 349 // By default, use the Source scheduling 350 if (sched4reg) 351 setSchedulingPreference(Sched::RegPressure); 352 else 353 setSchedulingPreference(Sched::Source); 354 355 auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, 356 LegalizeAction NoF16Action) { 357 setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action); 358 }; 359 360 addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass); 361 addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass); 362 addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass); 363 addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass); 364 addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass); 365 addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass); 366 addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass); 367 addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass); 368 369 // Conversion to/from FP16/FP16x2 is always legal. 370 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal); 371 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal); 372 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 373 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 374 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand); 375 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand); 376 377 setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote); 378 setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand); 379 380 // Operations not directly supported by NVPTX. 381 for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8, 382 MVT::i16, MVT::i32, MVT::i64}) { 383 setOperationAction(ISD::SELECT_CC, VT, Expand); 384 setOperationAction(ISD::BR_CC, VT, Expand); 385 } 386 387 // Some SIGN_EXTEND_INREG can be done using cvt instruction. 388 // For others we will expand to a SHL/SRA pair. 389 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal); 390 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 391 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); 392 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); 393 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 394 395 setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom); 396 setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom); 397 setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom); 398 setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom); 399 setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom); 400 setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom); 401 402 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 403 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 404 405 // TODO: we may consider expanding ROTL/ROTR on older GPUs. Currently on GPUs 406 // that don't have h/w rotation we lower them to multi-instruction assembly. 407 // See ROT*_sw in NVPTXIntrInfo.td 408 setOperationAction(ISD::ROTL, MVT::i64, Legal); 409 setOperationAction(ISD::ROTR, MVT::i64, Legal); 410 setOperationAction(ISD::ROTL, MVT::i32, Legal); 411 setOperationAction(ISD::ROTR, MVT::i32, Legal); 412 413 setOperationAction(ISD::ROTL, MVT::i16, Expand); 414 setOperationAction(ISD::ROTR, MVT::i16, Expand); 415 setOperationAction(ISD::ROTL, MVT::i8, Expand); 416 setOperationAction(ISD::ROTR, MVT::i8, Expand); 417 setOperationAction(ISD::BSWAP, MVT::i16, Expand); 418 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 419 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 420 421 // Indirect branch is not supported. 422 // This also disables Jump Table creation. 423 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 424 setOperationAction(ISD::BRIND, MVT::Other, Expand); 425 426 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 427 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 428 429 // We want to legalize constant related memmove and memcopy 430 // intrinsics. 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 432 433 // Turn FP extload into load/fpextend 434 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 435 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 436 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 437 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 438 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 439 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 441 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 442 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 443 // Turn FP truncstore into trunc + store. 444 // FIXME: vector types should also be expanded 445 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 446 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 447 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 448 449 // PTX does not support load / store predicate registers 450 setOperationAction(ISD::LOAD, MVT::i1, Custom); 451 setOperationAction(ISD::STORE, MVT::i1, Custom); 452 453 for (MVT VT : MVT::integer_valuetypes()) { 454 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 455 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 456 setTruncStoreAction(VT, MVT::i1, Expand); 457 } 458 459 // This is legal in NVPTX 460 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 461 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 462 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 463 464 // TRAP can be lowered to PTX trap 465 setOperationAction(ISD::TRAP, MVT::Other, Legal); 466 467 // Register custom handling for vector loads/stores 468 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 469 if (IsPTXVectorType(VT)) { 470 setOperationAction(ISD::LOAD, VT, Custom); 471 setOperationAction(ISD::STORE, VT, Custom); 472 setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom); 473 } 474 } 475 476 // Custom handling for i8 intrinsics 477 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 478 479 for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) { 480 setOperationAction(ISD::ABS, Ty, Legal); 481 setOperationAction(ISD::SMIN, Ty, Legal); 482 setOperationAction(ISD::SMAX, Ty, Legal); 483 setOperationAction(ISD::UMIN, Ty, Legal); 484 setOperationAction(ISD::UMAX, Ty, Legal); 485 486 setOperationAction(ISD::CTPOP, Ty, Legal); 487 setOperationAction(ISD::CTLZ, Ty, Legal); 488 } 489 490 setOperationAction(ISD::CTTZ, MVT::i16, Expand); 491 setOperationAction(ISD::CTTZ, MVT::i32, Expand); 492 setOperationAction(ISD::CTTZ, MVT::i64, Expand); 493 494 // PTX does not directly support SELP of i1, so promote to i32 first 495 setOperationAction(ISD::SELECT, MVT::i1, Custom); 496 497 // PTX cannot multiply two i64s in a single instruction. 498 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 499 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 500 501 // We have some custom DAG combine patterns for these nodes 502 setTargetDAGCombine(ISD::ADD); 503 setTargetDAGCombine(ISD::AND); 504 setTargetDAGCombine(ISD::FADD); 505 setTargetDAGCombine(ISD::MUL); 506 setTargetDAGCombine(ISD::SHL); 507 setTargetDAGCombine(ISD::SREM); 508 setTargetDAGCombine(ISD::UREM); 509 510 // setcc for f16x2 needs special handling to prevent legalizer's 511 // attempt to scalarize it due to v2i1 not being legal. 512 if (STI.allowFP16Math()) 513 setTargetDAGCombine(ISD::SETCC); 514 515 // Promote fp16 arithmetic if fp16 hardware isn't available or the 516 // user passed --nvptx-no-fp16-math. The flag is useful because, 517 // although sm_53+ GPUs have some sort of FP16 support in 518 // hardware, only sm_53 and sm_60 have full implementation. Others 519 // only have token amount of hardware and are likely to run faster 520 // by using fp32 units instead. 521 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) { 522 setFP16OperationAction(Op, MVT::f16, Legal, Promote); 523 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); 524 } 525 526 // There's no neg.f16 instruction. Expand to (0-x). 527 setOperationAction(ISD::FNEG, MVT::f16, Expand); 528 setOperationAction(ISD::FNEG, MVT::v2f16, Expand); 529 530 // (would be) Library functions. 531 532 // These map to conversion instructions for scalar FP types. 533 for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, 534 ISD::FTRUNC}) { 535 setOperationAction(Op, MVT::f16, Legal); 536 setOperationAction(Op, MVT::f32, Legal); 537 setOperationAction(Op, MVT::f64, Legal); 538 setOperationAction(Op, MVT::v2f16, Expand); 539 } 540 541 setOperationAction(ISD::FROUND, MVT::f16, Promote); 542 setOperationAction(ISD::FROUND, MVT::v2f16, Expand); 543 setOperationAction(ISD::FROUND, MVT::f32, Custom); 544 setOperationAction(ISD::FROUND, MVT::f64, Custom); 545 546 547 // 'Expand' implements FCOPYSIGN without calling an external library. 548 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); 549 setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand); 550 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 551 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 552 553 // These map to corresponding instructions for f32/f64. f16 must be 554 // promoted to f32. v2f16 is expanded to f16, which is then promoted 555 // to f32. 556 for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, 557 ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) { 558 setOperationAction(Op, MVT::f16, Promote); 559 setOperationAction(Op, MVT::f32, Legal); 560 setOperationAction(Op, MVT::f64, Legal); 561 setOperationAction(Op, MVT::v2f16, Expand); 562 } 563 setOperationAction(ISD::FMINNUM, MVT::f16, Promote); 564 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); 565 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); 566 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); 567 568 // No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate. 569 // No FPOW or FREM in PTX. 570 571 // Now deduce the information based on the above mentioned 572 // actions 573 computeRegisterProperties(STI.getRegisterInfo()); 574 } 575 576 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { 577 switch ((NVPTXISD::NodeType)Opcode) { 578 case NVPTXISD::FIRST_NUMBER: 579 break; 580 case NVPTXISD::CALL: 581 return "NVPTXISD::CALL"; 582 case NVPTXISD::RET_FLAG: 583 return "NVPTXISD::RET_FLAG"; 584 case NVPTXISD::LOAD_PARAM: 585 return "NVPTXISD::LOAD_PARAM"; 586 case NVPTXISD::Wrapper: 587 return "NVPTXISD::Wrapper"; 588 case NVPTXISD::DeclareParam: 589 return "NVPTXISD::DeclareParam"; 590 case NVPTXISD::DeclareScalarParam: 591 return "NVPTXISD::DeclareScalarParam"; 592 case NVPTXISD::DeclareRet: 593 return "NVPTXISD::DeclareRet"; 594 case NVPTXISD::DeclareScalarRet: 595 return "NVPTXISD::DeclareScalarRet"; 596 case NVPTXISD::DeclareRetParam: 597 return "NVPTXISD::DeclareRetParam"; 598 case NVPTXISD::PrintCall: 599 return "NVPTXISD::PrintCall"; 600 case NVPTXISD::PrintConvergentCall: 601 return "NVPTXISD::PrintConvergentCall"; 602 case NVPTXISD::PrintCallUni: 603 return "NVPTXISD::PrintCallUni"; 604 case NVPTXISD::PrintConvergentCallUni: 605 return "NVPTXISD::PrintConvergentCallUni"; 606 case NVPTXISD::LoadParam: 607 return "NVPTXISD::LoadParam"; 608 case NVPTXISD::LoadParamV2: 609 return "NVPTXISD::LoadParamV2"; 610 case NVPTXISD::LoadParamV4: 611 return "NVPTXISD::LoadParamV4"; 612 case NVPTXISD::StoreParam: 613 return "NVPTXISD::StoreParam"; 614 case NVPTXISD::StoreParamV2: 615 return "NVPTXISD::StoreParamV2"; 616 case NVPTXISD::StoreParamV4: 617 return "NVPTXISD::StoreParamV4"; 618 case NVPTXISD::StoreParamS32: 619 return "NVPTXISD::StoreParamS32"; 620 case NVPTXISD::StoreParamU32: 621 return "NVPTXISD::StoreParamU32"; 622 case NVPTXISD::CallArgBegin: 623 return "NVPTXISD::CallArgBegin"; 624 case NVPTXISD::CallArg: 625 return "NVPTXISD::CallArg"; 626 case NVPTXISD::LastCallArg: 627 return "NVPTXISD::LastCallArg"; 628 case NVPTXISD::CallArgEnd: 629 return "NVPTXISD::CallArgEnd"; 630 case NVPTXISD::CallVoid: 631 return "NVPTXISD::CallVoid"; 632 case NVPTXISD::CallVal: 633 return "NVPTXISD::CallVal"; 634 case NVPTXISD::CallSymbol: 635 return "NVPTXISD::CallSymbol"; 636 case NVPTXISD::Prototype: 637 return "NVPTXISD::Prototype"; 638 case NVPTXISD::MoveParam: 639 return "NVPTXISD::MoveParam"; 640 case NVPTXISD::StoreRetval: 641 return "NVPTXISD::StoreRetval"; 642 case NVPTXISD::StoreRetvalV2: 643 return "NVPTXISD::StoreRetvalV2"; 644 case NVPTXISD::StoreRetvalV4: 645 return "NVPTXISD::StoreRetvalV4"; 646 case NVPTXISD::PseudoUseParam: 647 return "NVPTXISD::PseudoUseParam"; 648 case NVPTXISD::RETURN: 649 return "NVPTXISD::RETURN"; 650 case NVPTXISD::CallSeqBegin: 651 return "NVPTXISD::CallSeqBegin"; 652 case NVPTXISD::CallSeqEnd: 653 return "NVPTXISD::CallSeqEnd"; 654 case NVPTXISD::CallPrototype: 655 return "NVPTXISD::CallPrototype"; 656 case NVPTXISD::ProxyReg: 657 return "NVPTXISD::ProxyReg"; 658 case NVPTXISD::LoadV2: 659 return "NVPTXISD::LoadV2"; 660 case NVPTXISD::LoadV4: 661 return "NVPTXISD::LoadV4"; 662 case NVPTXISD::LDGV2: 663 return "NVPTXISD::LDGV2"; 664 case NVPTXISD::LDGV4: 665 return "NVPTXISD::LDGV4"; 666 case NVPTXISD::LDUV2: 667 return "NVPTXISD::LDUV2"; 668 case NVPTXISD::LDUV4: 669 return "NVPTXISD::LDUV4"; 670 case NVPTXISD::StoreV2: 671 return "NVPTXISD::StoreV2"; 672 case NVPTXISD::StoreV4: 673 return "NVPTXISD::StoreV4"; 674 case NVPTXISD::FUN_SHFL_CLAMP: 675 return "NVPTXISD::FUN_SHFL_CLAMP"; 676 case NVPTXISD::FUN_SHFR_CLAMP: 677 return "NVPTXISD::FUN_SHFR_CLAMP"; 678 case NVPTXISD::IMAD: 679 return "NVPTXISD::IMAD"; 680 case NVPTXISD::SETP_F16X2: 681 return "NVPTXISD::SETP_F16X2"; 682 case NVPTXISD::Dummy: 683 return "NVPTXISD::Dummy"; 684 case NVPTXISD::MUL_WIDE_SIGNED: 685 return "NVPTXISD::MUL_WIDE_SIGNED"; 686 case NVPTXISD::MUL_WIDE_UNSIGNED: 687 return "NVPTXISD::MUL_WIDE_UNSIGNED"; 688 case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32"; 689 case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat"; 690 case NVPTXISD::Tex1DFloatFloatLevel: 691 return "NVPTXISD::Tex1DFloatFloatLevel"; 692 case NVPTXISD::Tex1DFloatFloatGrad: 693 return "NVPTXISD::Tex1DFloatFloatGrad"; 694 case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32"; 695 case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float"; 696 case NVPTXISD::Tex1DS32FloatLevel: 697 return "NVPTXISD::Tex1DS32FloatLevel"; 698 case NVPTXISD::Tex1DS32FloatGrad: 699 return "NVPTXISD::Tex1DS32FloatGrad"; 700 case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32"; 701 case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float"; 702 case NVPTXISD::Tex1DU32FloatLevel: 703 return "NVPTXISD::Tex1DU32FloatLevel"; 704 case NVPTXISD::Tex1DU32FloatGrad: 705 return "NVPTXISD::Tex1DU32FloatGrad"; 706 case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32"; 707 case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat"; 708 case NVPTXISD::Tex1DArrayFloatFloatLevel: 709 return "NVPTXISD::Tex1DArrayFloatFloatLevel"; 710 case NVPTXISD::Tex1DArrayFloatFloatGrad: 711 return "NVPTXISD::Tex1DArrayFloatFloatGrad"; 712 case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32"; 713 case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float"; 714 case NVPTXISD::Tex1DArrayS32FloatLevel: 715 return "NVPTXISD::Tex1DArrayS32FloatLevel"; 716 case NVPTXISD::Tex1DArrayS32FloatGrad: 717 return "NVPTXISD::Tex1DArrayS32FloatGrad"; 718 case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32"; 719 case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float"; 720 case NVPTXISD::Tex1DArrayU32FloatLevel: 721 return "NVPTXISD::Tex1DArrayU32FloatLevel"; 722 case NVPTXISD::Tex1DArrayU32FloatGrad: 723 return "NVPTXISD::Tex1DArrayU32FloatGrad"; 724 case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32"; 725 case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat"; 726 case NVPTXISD::Tex2DFloatFloatLevel: 727 return "NVPTXISD::Tex2DFloatFloatLevel"; 728 case NVPTXISD::Tex2DFloatFloatGrad: 729 return "NVPTXISD::Tex2DFloatFloatGrad"; 730 case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32"; 731 case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float"; 732 case NVPTXISD::Tex2DS32FloatLevel: 733 return "NVPTXISD::Tex2DS32FloatLevel"; 734 case NVPTXISD::Tex2DS32FloatGrad: 735 return "NVPTXISD::Tex2DS32FloatGrad"; 736 case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32"; 737 case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float"; 738 case NVPTXISD::Tex2DU32FloatLevel: 739 return "NVPTXISD::Tex2DU32FloatLevel"; 740 case NVPTXISD::Tex2DU32FloatGrad: 741 return "NVPTXISD::Tex2DU32FloatGrad"; 742 case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32"; 743 case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat"; 744 case NVPTXISD::Tex2DArrayFloatFloatLevel: 745 return "NVPTXISD::Tex2DArrayFloatFloatLevel"; 746 case NVPTXISD::Tex2DArrayFloatFloatGrad: 747 return "NVPTXISD::Tex2DArrayFloatFloatGrad"; 748 case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32"; 749 case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float"; 750 case NVPTXISD::Tex2DArrayS32FloatLevel: 751 return "NVPTXISD::Tex2DArrayS32FloatLevel"; 752 case NVPTXISD::Tex2DArrayS32FloatGrad: 753 return "NVPTXISD::Tex2DArrayS32FloatGrad"; 754 case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32"; 755 case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float"; 756 case NVPTXISD::Tex2DArrayU32FloatLevel: 757 return "NVPTXISD::Tex2DArrayU32FloatLevel"; 758 case NVPTXISD::Tex2DArrayU32FloatGrad: 759 return "NVPTXISD::Tex2DArrayU32FloatGrad"; 760 case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32"; 761 case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat"; 762 case NVPTXISD::Tex3DFloatFloatLevel: 763 return "NVPTXISD::Tex3DFloatFloatLevel"; 764 case NVPTXISD::Tex3DFloatFloatGrad: 765 return "NVPTXISD::Tex3DFloatFloatGrad"; 766 case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32"; 767 case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float"; 768 case NVPTXISD::Tex3DS32FloatLevel: 769 return "NVPTXISD::Tex3DS32FloatLevel"; 770 case NVPTXISD::Tex3DS32FloatGrad: 771 return "NVPTXISD::Tex3DS32FloatGrad"; 772 case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32"; 773 case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float"; 774 case NVPTXISD::Tex3DU32FloatLevel: 775 return "NVPTXISD::Tex3DU32FloatLevel"; 776 case NVPTXISD::Tex3DU32FloatGrad: 777 return "NVPTXISD::Tex3DU32FloatGrad"; 778 case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat"; 779 case NVPTXISD::TexCubeFloatFloatLevel: 780 return "NVPTXISD::TexCubeFloatFloatLevel"; 781 case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float"; 782 case NVPTXISD::TexCubeS32FloatLevel: 783 return "NVPTXISD::TexCubeS32FloatLevel"; 784 case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float"; 785 case NVPTXISD::TexCubeU32FloatLevel: 786 return "NVPTXISD::TexCubeU32FloatLevel"; 787 case NVPTXISD::TexCubeArrayFloatFloat: 788 return "NVPTXISD::TexCubeArrayFloatFloat"; 789 case NVPTXISD::TexCubeArrayFloatFloatLevel: 790 return "NVPTXISD::TexCubeArrayFloatFloatLevel"; 791 case NVPTXISD::TexCubeArrayS32Float: 792 return "NVPTXISD::TexCubeArrayS32Float"; 793 case NVPTXISD::TexCubeArrayS32FloatLevel: 794 return "NVPTXISD::TexCubeArrayS32FloatLevel"; 795 case NVPTXISD::TexCubeArrayU32Float: 796 return "NVPTXISD::TexCubeArrayU32Float"; 797 case NVPTXISD::TexCubeArrayU32FloatLevel: 798 return "NVPTXISD::TexCubeArrayU32FloatLevel"; 799 case NVPTXISD::Tld4R2DFloatFloat: 800 return "NVPTXISD::Tld4R2DFloatFloat"; 801 case NVPTXISD::Tld4G2DFloatFloat: 802 return "NVPTXISD::Tld4G2DFloatFloat"; 803 case NVPTXISD::Tld4B2DFloatFloat: 804 return "NVPTXISD::Tld4B2DFloatFloat"; 805 case NVPTXISD::Tld4A2DFloatFloat: 806 return "NVPTXISD::Tld4A2DFloatFloat"; 807 case NVPTXISD::Tld4R2DS64Float: 808 return "NVPTXISD::Tld4R2DS64Float"; 809 case NVPTXISD::Tld4G2DS64Float: 810 return "NVPTXISD::Tld4G2DS64Float"; 811 case NVPTXISD::Tld4B2DS64Float: 812 return "NVPTXISD::Tld4B2DS64Float"; 813 case NVPTXISD::Tld4A2DS64Float: 814 return "NVPTXISD::Tld4A2DS64Float"; 815 case NVPTXISD::Tld4R2DU64Float: 816 return "NVPTXISD::Tld4R2DU64Float"; 817 case NVPTXISD::Tld4G2DU64Float: 818 return "NVPTXISD::Tld4G2DU64Float"; 819 case NVPTXISD::Tld4B2DU64Float: 820 return "NVPTXISD::Tld4B2DU64Float"; 821 case NVPTXISD::Tld4A2DU64Float: 822 return "NVPTXISD::Tld4A2DU64Float"; 823 824 case NVPTXISD::TexUnified1DFloatS32: 825 return "NVPTXISD::TexUnified1DFloatS32"; 826 case NVPTXISD::TexUnified1DFloatFloat: 827 return "NVPTXISD::TexUnified1DFloatFloat"; 828 case NVPTXISD::TexUnified1DFloatFloatLevel: 829 return "NVPTXISD::TexUnified1DFloatFloatLevel"; 830 case NVPTXISD::TexUnified1DFloatFloatGrad: 831 return "NVPTXISD::TexUnified1DFloatFloatGrad"; 832 case NVPTXISD::TexUnified1DS32S32: 833 return "NVPTXISD::TexUnified1DS32S32"; 834 case NVPTXISD::TexUnified1DS32Float: 835 return "NVPTXISD::TexUnified1DS32Float"; 836 case NVPTXISD::TexUnified1DS32FloatLevel: 837 return "NVPTXISD::TexUnified1DS32FloatLevel"; 838 case NVPTXISD::TexUnified1DS32FloatGrad: 839 return "NVPTXISD::TexUnified1DS32FloatGrad"; 840 case NVPTXISD::TexUnified1DU32S32: 841 return "NVPTXISD::TexUnified1DU32S32"; 842 case NVPTXISD::TexUnified1DU32Float: 843 return "NVPTXISD::TexUnified1DU32Float"; 844 case NVPTXISD::TexUnified1DU32FloatLevel: 845 return "NVPTXISD::TexUnified1DU32FloatLevel"; 846 case NVPTXISD::TexUnified1DU32FloatGrad: 847 return "NVPTXISD::TexUnified1DU32FloatGrad"; 848 case NVPTXISD::TexUnified1DArrayFloatS32: 849 return "NVPTXISD::TexUnified1DArrayFloatS32"; 850 case NVPTXISD::TexUnified1DArrayFloatFloat: 851 return "NVPTXISD::TexUnified1DArrayFloatFloat"; 852 case NVPTXISD::TexUnified1DArrayFloatFloatLevel: 853 return "NVPTXISD::TexUnified1DArrayFloatFloatLevel"; 854 case NVPTXISD::TexUnified1DArrayFloatFloatGrad: 855 return "NVPTXISD::TexUnified1DArrayFloatFloatGrad"; 856 case NVPTXISD::TexUnified1DArrayS32S32: 857 return "NVPTXISD::TexUnified1DArrayS32S32"; 858 case NVPTXISD::TexUnified1DArrayS32Float: 859 return "NVPTXISD::TexUnified1DArrayS32Float"; 860 case NVPTXISD::TexUnified1DArrayS32FloatLevel: 861 return "NVPTXISD::TexUnified1DArrayS32FloatLevel"; 862 case NVPTXISD::TexUnified1DArrayS32FloatGrad: 863 return "NVPTXISD::TexUnified1DArrayS32FloatGrad"; 864 case NVPTXISD::TexUnified1DArrayU32S32: 865 return "NVPTXISD::TexUnified1DArrayU32S32"; 866 case NVPTXISD::TexUnified1DArrayU32Float: 867 return "NVPTXISD::TexUnified1DArrayU32Float"; 868 case NVPTXISD::TexUnified1DArrayU32FloatLevel: 869 return "NVPTXISD::TexUnified1DArrayU32FloatLevel"; 870 case NVPTXISD::TexUnified1DArrayU32FloatGrad: 871 return "NVPTXISD::TexUnified1DArrayU32FloatGrad"; 872 case NVPTXISD::TexUnified2DFloatS32: 873 return "NVPTXISD::TexUnified2DFloatS32"; 874 case NVPTXISD::TexUnified2DFloatFloat: 875 return "NVPTXISD::TexUnified2DFloatFloat"; 876 case NVPTXISD::TexUnified2DFloatFloatLevel: 877 return "NVPTXISD::TexUnified2DFloatFloatLevel"; 878 case NVPTXISD::TexUnified2DFloatFloatGrad: 879 return "NVPTXISD::TexUnified2DFloatFloatGrad"; 880 case NVPTXISD::TexUnified2DS32S32: 881 return "NVPTXISD::TexUnified2DS32S32"; 882 case NVPTXISD::TexUnified2DS32Float: 883 return "NVPTXISD::TexUnified2DS32Float"; 884 case NVPTXISD::TexUnified2DS32FloatLevel: 885 return "NVPTXISD::TexUnified2DS32FloatLevel"; 886 case NVPTXISD::TexUnified2DS32FloatGrad: 887 return "NVPTXISD::TexUnified2DS32FloatGrad"; 888 case NVPTXISD::TexUnified2DU32S32: 889 return "NVPTXISD::TexUnified2DU32S32"; 890 case NVPTXISD::TexUnified2DU32Float: 891 return "NVPTXISD::TexUnified2DU32Float"; 892 case NVPTXISD::TexUnified2DU32FloatLevel: 893 return "NVPTXISD::TexUnified2DU32FloatLevel"; 894 case NVPTXISD::TexUnified2DU32FloatGrad: 895 return "NVPTXISD::TexUnified2DU32FloatGrad"; 896 case NVPTXISD::TexUnified2DArrayFloatS32: 897 return "NVPTXISD::TexUnified2DArrayFloatS32"; 898 case NVPTXISD::TexUnified2DArrayFloatFloat: 899 return "NVPTXISD::TexUnified2DArrayFloatFloat"; 900 case NVPTXISD::TexUnified2DArrayFloatFloatLevel: 901 return "NVPTXISD::TexUnified2DArrayFloatFloatLevel"; 902 case NVPTXISD::TexUnified2DArrayFloatFloatGrad: 903 return "NVPTXISD::TexUnified2DArrayFloatFloatGrad"; 904 case NVPTXISD::TexUnified2DArrayS32S32: 905 return "NVPTXISD::TexUnified2DArrayS32S32"; 906 case NVPTXISD::TexUnified2DArrayS32Float: 907 return "NVPTXISD::TexUnified2DArrayS32Float"; 908 case NVPTXISD::TexUnified2DArrayS32FloatLevel: 909 return "NVPTXISD::TexUnified2DArrayS32FloatLevel"; 910 case NVPTXISD::TexUnified2DArrayS32FloatGrad: 911 return "NVPTXISD::TexUnified2DArrayS32FloatGrad"; 912 case NVPTXISD::TexUnified2DArrayU32S32: 913 return "NVPTXISD::TexUnified2DArrayU32S32"; 914 case NVPTXISD::TexUnified2DArrayU32Float: 915 return "NVPTXISD::TexUnified2DArrayU32Float"; 916 case NVPTXISD::TexUnified2DArrayU32FloatLevel: 917 return "NVPTXISD::TexUnified2DArrayU32FloatLevel"; 918 case NVPTXISD::TexUnified2DArrayU32FloatGrad: 919 return "NVPTXISD::TexUnified2DArrayU32FloatGrad"; 920 case NVPTXISD::TexUnified3DFloatS32: 921 return "NVPTXISD::TexUnified3DFloatS32"; 922 case NVPTXISD::TexUnified3DFloatFloat: 923 return "NVPTXISD::TexUnified3DFloatFloat"; 924 case NVPTXISD::TexUnified3DFloatFloatLevel: 925 return "NVPTXISD::TexUnified3DFloatFloatLevel"; 926 case NVPTXISD::TexUnified3DFloatFloatGrad: 927 return "NVPTXISD::TexUnified3DFloatFloatGrad"; 928 case NVPTXISD::TexUnified3DS32S32: 929 return "NVPTXISD::TexUnified3DS32S32"; 930 case NVPTXISD::TexUnified3DS32Float: 931 return "NVPTXISD::TexUnified3DS32Float"; 932 case NVPTXISD::TexUnified3DS32FloatLevel: 933 return "NVPTXISD::TexUnified3DS32FloatLevel"; 934 case NVPTXISD::TexUnified3DS32FloatGrad: 935 return "NVPTXISD::TexUnified3DS32FloatGrad"; 936 case NVPTXISD::TexUnified3DU32S32: 937 return "NVPTXISD::TexUnified3DU32S32"; 938 case NVPTXISD::TexUnified3DU32Float: 939 return "NVPTXISD::TexUnified3DU32Float"; 940 case NVPTXISD::TexUnified3DU32FloatLevel: 941 return "NVPTXISD::TexUnified3DU32FloatLevel"; 942 case NVPTXISD::TexUnified3DU32FloatGrad: 943 return "NVPTXISD::TexUnified3DU32FloatGrad"; 944 case NVPTXISD::TexUnifiedCubeFloatFloat: 945 return "NVPTXISD::TexUnifiedCubeFloatFloat"; 946 case NVPTXISD::TexUnifiedCubeFloatFloatLevel: 947 return "NVPTXISD::TexUnifiedCubeFloatFloatLevel"; 948 case NVPTXISD::TexUnifiedCubeS32Float: 949 return "NVPTXISD::TexUnifiedCubeS32Float"; 950 case NVPTXISD::TexUnifiedCubeS32FloatLevel: 951 return "NVPTXISD::TexUnifiedCubeS32FloatLevel"; 952 case NVPTXISD::TexUnifiedCubeU32Float: 953 return "NVPTXISD::TexUnifiedCubeU32Float"; 954 case NVPTXISD::TexUnifiedCubeU32FloatLevel: 955 return "NVPTXISD::TexUnifiedCubeU32FloatLevel"; 956 case NVPTXISD::TexUnifiedCubeArrayFloatFloat: 957 return "NVPTXISD::TexUnifiedCubeArrayFloatFloat"; 958 case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel: 959 return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel"; 960 case NVPTXISD::TexUnifiedCubeArrayS32Float: 961 return "NVPTXISD::TexUnifiedCubeArrayS32Float"; 962 case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel: 963 return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel"; 964 case NVPTXISD::TexUnifiedCubeArrayU32Float: 965 return "NVPTXISD::TexUnifiedCubeArrayU32Float"; 966 case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel: 967 return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel"; 968 case NVPTXISD::Tld4UnifiedR2DFloatFloat: 969 return "NVPTXISD::Tld4UnifiedR2DFloatFloat"; 970 case NVPTXISD::Tld4UnifiedG2DFloatFloat: 971 return "NVPTXISD::Tld4UnifiedG2DFloatFloat"; 972 case NVPTXISD::Tld4UnifiedB2DFloatFloat: 973 return "NVPTXISD::Tld4UnifiedB2DFloatFloat"; 974 case NVPTXISD::Tld4UnifiedA2DFloatFloat: 975 return "NVPTXISD::Tld4UnifiedA2DFloatFloat"; 976 case NVPTXISD::Tld4UnifiedR2DS64Float: 977 return "NVPTXISD::Tld4UnifiedR2DS64Float"; 978 case NVPTXISD::Tld4UnifiedG2DS64Float: 979 return "NVPTXISD::Tld4UnifiedG2DS64Float"; 980 case NVPTXISD::Tld4UnifiedB2DS64Float: 981 return "NVPTXISD::Tld4UnifiedB2DS64Float"; 982 case NVPTXISD::Tld4UnifiedA2DS64Float: 983 return "NVPTXISD::Tld4UnifiedA2DS64Float"; 984 case NVPTXISD::Tld4UnifiedR2DU64Float: 985 return "NVPTXISD::Tld4UnifiedR2DU64Float"; 986 case NVPTXISD::Tld4UnifiedG2DU64Float: 987 return "NVPTXISD::Tld4UnifiedG2DU64Float"; 988 case NVPTXISD::Tld4UnifiedB2DU64Float: 989 return "NVPTXISD::Tld4UnifiedB2DU64Float"; 990 case NVPTXISD::Tld4UnifiedA2DU64Float: 991 return "NVPTXISD::Tld4UnifiedA2DU64Float"; 992 993 case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp"; 994 case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp"; 995 case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp"; 996 case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp"; 997 case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp"; 998 case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp"; 999 case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp"; 1000 case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp"; 1001 case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp"; 1002 case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp"; 1003 case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp"; 1004 1005 case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp"; 1006 case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp"; 1007 case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp"; 1008 case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp"; 1009 case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp"; 1010 case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp"; 1011 case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp"; 1012 case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp"; 1013 case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp"; 1014 case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp"; 1015 case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp"; 1016 1017 case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp"; 1018 case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp"; 1019 case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp"; 1020 case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp"; 1021 case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp"; 1022 case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp"; 1023 case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp"; 1024 case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp"; 1025 case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp"; 1026 case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp"; 1027 case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp"; 1028 1029 case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp"; 1030 case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp"; 1031 case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp"; 1032 case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp"; 1033 case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp"; 1034 case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp"; 1035 case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp"; 1036 case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp"; 1037 case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp"; 1038 case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp"; 1039 case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp"; 1040 1041 case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp"; 1042 case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp"; 1043 case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp"; 1044 case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp"; 1045 case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp"; 1046 case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp"; 1047 case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp"; 1048 case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp"; 1049 case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp"; 1050 case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp"; 1051 case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp"; 1052 1053 case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap"; 1054 case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap"; 1055 case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap"; 1056 case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap"; 1057 case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap"; 1058 case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap"; 1059 case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap"; 1060 case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap"; 1061 case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap"; 1062 case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap"; 1063 case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap"; 1064 1065 case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap"; 1066 case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap"; 1067 case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap"; 1068 case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap"; 1069 case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap"; 1070 case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap"; 1071 case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap"; 1072 case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap"; 1073 case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap"; 1074 case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap"; 1075 case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap"; 1076 1077 case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap"; 1078 case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap"; 1079 case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap"; 1080 case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap"; 1081 case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap"; 1082 case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap"; 1083 case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap"; 1084 case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap"; 1085 case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap"; 1086 case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap"; 1087 case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap"; 1088 1089 case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap"; 1090 case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap"; 1091 case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap"; 1092 case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap"; 1093 case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap"; 1094 case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap"; 1095 case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap"; 1096 case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap"; 1097 case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap"; 1098 case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap"; 1099 case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap"; 1100 1101 case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap"; 1102 case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap"; 1103 case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap"; 1104 case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap"; 1105 case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap"; 1106 case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap"; 1107 case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap"; 1108 case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap"; 1109 case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap"; 1110 case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap"; 1111 case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap"; 1112 1113 case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero"; 1114 case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero"; 1115 case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero"; 1116 case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero"; 1117 case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero"; 1118 case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero"; 1119 case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero"; 1120 case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero"; 1121 case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero"; 1122 case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero"; 1123 case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero"; 1124 1125 case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero"; 1126 case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero"; 1127 case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero"; 1128 case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero"; 1129 case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero"; 1130 case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero"; 1131 case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero"; 1132 case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero"; 1133 case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero"; 1134 case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero"; 1135 case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero"; 1136 1137 case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero"; 1138 case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero"; 1139 case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero"; 1140 case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero"; 1141 case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero"; 1142 case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero"; 1143 case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero"; 1144 case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero"; 1145 case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero"; 1146 case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero"; 1147 case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero"; 1148 1149 case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero"; 1150 case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero"; 1151 case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero"; 1152 case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero"; 1153 case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero"; 1154 case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero"; 1155 case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero"; 1156 case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero"; 1157 case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero"; 1158 case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero"; 1159 case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero"; 1160 1161 case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero"; 1162 case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero"; 1163 case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero"; 1164 case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero"; 1165 case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero"; 1166 case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero"; 1167 case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero"; 1168 case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero"; 1169 case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero"; 1170 case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero"; 1171 case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero"; 1172 } 1173 return nullptr; 1174 } 1175 1176 TargetLoweringBase::LegalizeTypeAction 1177 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const { 1178 if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1) 1179 return TypeSplitVector; 1180 if (VT == MVT::v2f16) 1181 return TypeLegal; 1182 return TargetLoweringBase::getPreferredVectorAction(VT); 1183 } 1184 1185 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 1186 int Enabled, int &ExtraSteps, 1187 bool &UseOneConst, 1188 bool Reciprocal) const { 1189 if (!(Enabled == ReciprocalEstimate::Enabled || 1190 (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32()))) 1191 return SDValue(); 1192 1193 if (ExtraSteps == ReciprocalEstimate::Unspecified) 1194 ExtraSteps = 0; 1195 1196 SDLoc DL(Operand); 1197 EVT VT = Operand.getValueType(); 1198 bool Ftz = useF32FTZ(DAG.getMachineFunction()); 1199 1200 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) { 1201 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 1202 DAG.getConstant(IID, DL, MVT::i32), Operand); 1203 }; 1204 1205 // The sqrt and rsqrt refinement processes assume we always start out with an 1206 // approximation of the rsqrt. Therefore, if we're going to do any refinement 1207 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing 1208 // any refinement, we must return a regular sqrt. 1209 if (Reciprocal || ExtraSteps > 0) { 1210 if (VT == MVT::f32) 1211 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f 1212 : Intrinsic::nvvm_rsqrt_approx_f); 1213 else if (VT == MVT::f64) 1214 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d); 1215 else 1216 return SDValue(); 1217 } else { 1218 if (VT == MVT::f32) 1219 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f 1220 : Intrinsic::nvvm_sqrt_approx_f); 1221 else { 1222 // There's no sqrt.approx.f64 instruction, so we emit 1223 // reciprocal(rsqrt(x)). This is faster than 1224 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain 1225 // x * rsqrt(x).) 1226 return DAG.getNode( 1227 ISD::INTRINSIC_WO_CHAIN, DL, VT, 1228 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32), 1229 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d)); 1230 } 1231 } 1232 } 1233 1234 SDValue 1235 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { 1236 SDLoc dl(Op); 1237 const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op); 1238 auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace()); 1239 Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT); 1240 return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op); 1241 } 1242 1243 std::string NVPTXTargetLowering::getPrototype( 1244 const DataLayout &DL, Type *retTy, const ArgListTy &Args, 1245 const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment, 1246 const CallBase &CB, unsigned UniqueCallSite) const { 1247 auto PtrVT = getPointerTy(DL); 1248 1249 bool isABI = (STI.getSmVersion() >= 20); 1250 assert(isABI && "Non-ABI compilation is not supported"); 1251 if (!isABI) 1252 return ""; 1253 1254 std::stringstream O; 1255 O << "prototype_" << UniqueCallSite << " : .callprototype "; 1256 1257 if (retTy->getTypeID() == Type::VoidTyID) { 1258 O << "()"; 1259 } else { 1260 O << "("; 1261 if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) { 1262 unsigned size = 0; 1263 if (auto *ITy = dyn_cast<IntegerType>(retTy)) { 1264 size = ITy->getBitWidth(); 1265 } else { 1266 assert(retTy->isFloatingPointTy() && 1267 "Floating point type expected here"); 1268 size = retTy->getPrimitiveSizeInBits(); 1269 } 1270 // PTX ABI requires all scalar return values to be at least 32 1271 // bits in size. fp16 normally uses .b16 as its storage type in 1272 // PTX, so its size must be adjusted here, too. 1273 if (size < 32) 1274 size = 32; 1275 1276 O << ".param .b" << size << " _"; 1277 } else if (isa<PointerType>(retTy)) { 1278 O << ".param .b" << PtrVT.getSizeInBits() << " _"; 1279 } else if (retTy->isAggregateType() || retTy->isVectorTy() || 1280 retTy->isIntegerTy(128)) { 1281 O << ".param .align " << (retAlignment ? retAlignment->value() : 0) 1282 << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]"; 1283 } else { 1284 llvm_unreachable("Unknown return type"); 1285 } 1286 O << ") "; 1287 } 1288 O << "_ ("; 1289 1290 bool first = true; 1291 1292 unsigned OIdx = 0; 1293 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { 1294 Type *Ty = Args[i].Ty; 1295 if (!first) { 1296 O << ", "; 1297 } 1298 first = false; 1299 1300 if (!Outs[OIdx].Flags.isByVal()) { 1301 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { 1302 unsigned align = 0; 1303 const CallInst *CallI = cast<CallInst>(&CB); 1304 // +1 because index 0 is reserved for return type alignment 1305 if (!getAlign(*CallI, i + 1, align)) 1306 align = DL.getABITypeAlignment(Ty); 1307 unsigned sz = DL.getTypeAllocSize(Ty); 1308 O << ".param .align " << align << " .b8 "; 1309 O << "_"; 1310 O << "[" << sz << "]"; 1311 // update the index for Outs 1312 SmallVector<EVT, 16> vtparts; 1313 ComputeValueVTs(*this, DL, Ty, vtparts); 1314 if (unsigned len = vtparts.size()) 1315 OIdx += len - 1; 1316 continue; 1317 } 1318 // i8 types in IR will be i16 types in SDAG 1319 assert((getValueType(DL, Ty) == Outs[OIdx].VT || 1320 (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && 1321 "type mismatch between callee prototype and arguments"); 1322 // scalar type 1323 unsigned sz = 0; 1324 if (isa<IntegerType>(Ty)) { 1325 sz = cast<IntegerType>(Ty)->getBitWidth(); 1326 if (sz < 32) 1327 sz = 32; 1328 } else if (isa<PointerType>(Ty)) { 1329 sz = PtrVT.getSizeInBits(); 1330 } else if (Ty->isHalfTy()) 1331 // PTX ABI requires all scalar parameters to be at least 32 1332 // bits in size. fp16 normally uses .b16 as its storage type 1333 // in PTX, so its size must be adjusted here, too. 1334 sz = 32; 1335 else 1336 sz = Ty->getPrimitiveSizeInBits(); 1337 O << ".param .b" << sz << " "; 1338 O << "_"; 1339 continue; 1340 } 1341 auto *PTy = dyn_cast<PointerType>(Ty); 1342 assert(PTy && "Param with byval attribute should be a pointer type"); 1343 Type *ETy = PTy->getElementType(); 1344 1345 Align align = Outs[OIdx].Flags.getNonZeroByValAlign(); 1346 unsigned sz = DL.getTypeAllocSize(ETy); 1347 O << ".param .align " << align.value() << " .b8 "; 1348 O << "_"; 1349 O << "[" << sz << "]"; 1350 } 1351 O << ");"; 1352 return O.str(); 1353 } 1354 1355 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee, 1356 const CallBase *CB, Type *Ty, 1357 unsigned Idx, 1358 const DataLayout &DL) const { 1359 if (!CB) { 1360 // CallSite is zero, fallback to ABI type alignment 1361 return DL.getABITypeAlign(Ty); 1362 } 1363 1364 unsigned Alignment = 0; 1365 const Function *DirectCallee = CB->getCalledFunction(); 1366 1367 if (!DirectCallee) { 1368 // We don't have a direct function symbol, but that may be because of 1369 // constant cast instructions in the call. 1370 1371 // With bitcast'd call targets, the instruction will be the call 1372 if (const auto *CI = dyn_cast<CallInst>(CB)) { 1373 // Check if we have call alignment metadata 1374 if (getAlign(*CI, Idx, Alignment)) 1375 return Align(Alignment); 1376 1377 const Value *CalleeV = CI->getCalledOperand(); 1378 // Ignore any bitcast instructions 1379 while (isa<ConstantExpr>(CalleeV)) { 1380 const ConstantExpr *CE = cast<ConstantExpr>(CalleeV); 1381 if (!CE->isCast()) 1382 break; 1383 // Look through the bitcast 1384 CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0); 1385 } 1386 1387 // We have now looked past all of the bitcasts. Do we finally have a 1388 // Function? 1389 if (const auto *CalleeF = dyn_cast<Function>(CalleeV)) 1390 DirectCallee = CalleeF; 1391 } 1392 } 1393 1394 // Check for function alignment information if we found that the 1395 // ultimate target is a Function 1396 if (DirectCallee) 1397 if (getAlign(*DirectCallee, Idx, Alignment)) 1398 return Align(Alignment); 1399 1400 // Call is indirect or alignment information is not available, fall back to 1401 // the ABI type alignment 1402 return DL.getABITypeAlign(Ty); 1403 } 1404 1405 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1406 SmallVectorImpl<SDValue> &InVals) const { 1407 SelectionDAG &DAG = CLI.DAG; 1408 SDLoc dl = CLI.DL; 1409 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1410 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1411 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1412 SDValue Chain = CLI.Chain; 1413 SDValue Callee = CLI.Callee; 1414 bool &isTailCall = CLI.IsTailCall; 1415 ArgListTy &Args = CLI.getArgs(); 1416 Type *RetTy = CLI.RetTy; 1417 const CallBase *CB = CLI.CB; 1418 const DataLayout &DL = DAG.getDataLayout(); 1419 1420 bool isABI = (STI.getSmVersion() >= 20); 1421 assert(isABI && "Non-ABI compilation is not supported"); 1422 if (!isABI) 1423 return Chain; 1424 1425 unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1); 1426 SDValue tempChain = Chain; 1427 Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl); 1428 SDValue InFlag = Chain.getValue(1); 1429 1430 unsigned paramCount = 0; 1431 // Args.size() and Outs.size() need not match. 1432 // Outs.size() will be larger 1433 // * if there is an aggregate argument with multiple fields (each field 1434 // showing up separately in Outs) 1435 // * if there is a vector argument with more than typical vector-length 1436 // elements (generally if more than 4) where each vector element is 1437 // individually present in Outs. 1438 // So a different index should be used for indexing into Outs/OutVals. 1439 // See similar issue in LowerFormalArguments. 1440 unsigned OIdx = 0; 1441 // Declare the .params or .reg need to pass values 1442 // to the function 1443 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { 1444 EVT VT = Outs[OIdx].VT; 1445 Type *Ty = Args[i].Ty; 1446 1447 if (!Outs[OIdx].Flags.isByVal()) { 1448 SmallVector<EVT, 16> VTs; 1449 SmallVector<uint64_t, 16> Offsets; 1450 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets); 1451 Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL); 1452 unsigned AllocSize = DL.getTypeAllocSize(Ty); 1453 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1454 bool NeedAlign; // Does argument declaration specify alignment? 1455 if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { 1456 // declare .param .align <align> .b8 .param<n>[<size>]; 1457 SDValue DeclareParamOps[] = { 1458 Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), 1459 DAG.getConstant(paramCount, dl, MVT::i32), 1460 DAG.getConstant(AllocSize, dl, MVT::i32), InFlag}; 1461 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, 1462 DeclareParamOps); 1463 NeedAlign = true; 1464 } else { 1465 // declare .param .b<size> .param<n>; 1466 if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) { 1467 // PTX ABI requires integral types to be at least 32 bits in 1468 // size. FP16 is loaded/stored using i16, so it's handled 1469 // here as well. 1470 AllocSize = 4; 1471 } 1472 SDValue DeclareScalarParamOps[] = { 1473 Chain, DAG.getConstant(paramCount, dl, MVT::i32), 1474 DAG.getConstant(AllocSize * 8, dl, MVT::i32), 1475 DAG.getConstant(0, dl, MVT::i32), InFlag}; 1476 Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs, 1477 DeclareScalarParamOps); 1478 NeedAlign = false; 1479 } 1480 InFlag = Chain.getValue(1); 1481 1482 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter 1483 // than 32-bits are sign extended or zero extended, depending on 1484 // whether they are signed or unsigned types. This case applies 1485 // only to scalar parameters and not to aggregate values. 1486 bool ExtendIntegerParam = 1487 Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32; 1488 1489 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign); 1490 SmallVector<SDValue, 6> StoreOperands; 1491 for (unsigned j = 0, je = VTs.size(); j != je; ++j) { 1492 // New store. 1493 if (VectorInfo[j] & PVF_FIRST) { 1494 assert(StoreOperands.empty() && "Unfinished preceding store."); 1495 StoreOperands.push_back(Chain); 1496 StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32)); 1497 StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32)); 1498 } 1499 1500 EVT EltVT = VTs[j]; 1501 SDValue StVal = OutVals[OIdx]; 1502 if (ExtendIntegerParam) { 1503 assert(VTs.size() == 1 && "Scalar can't have multiple parts."); 1504 // zext/sext to i32 1505 StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND 1506 : ISD::ZERO_EXTEND, 1507 dl, MVT::i32, StVal); 1508 } else if (EltVT.getSizeInBits() < 16) { 1509 // Use 16-bit registers for small stores as it's the 1510 // smallest general purpose register size supported by NVPTX. 1511 StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal); 1512 } 1513 1514 // Record the value to store. 1515 StoreOperands.push_back(StVal); 1516 1517 if (VectorInfo[j] & PVF_LAST) { 1518 unsigned NumElts = StoreOperands.size() - 3; 1519 NVPTXISD::NodeType Op; 1520 switch (NumElts) { 1521 case 1: 1522 Op = NVPTXISD::StoreParam; 1523 break; 1524 case 2: 1525 Op = NVPTXISD::StoreParamV2; 1526 break; 1527 case 4: 1528 Op = NVPTXISD::StoreParamV4; 1529 break; 1530 default: 1531 llvm_unreachable("Invalid vector info."); 1532 } 1533 1534 StoreOperands.push_back(InFlag); 1535 1536 // Adjust type of the store op if we've extended the scalar 1537 // return value. 1538 EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j]; 1539 MaybeAlign EltAlign; 1540 if (NeedAlign) 1541 EltAlign = commonAlignment(ArgAlign, Offsets[j]); 1542 1543 Chain = DAG.getMemIntrinsicNode( 1544 Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands, 1545 TheStoreType, MachinePointerInfo(), EltAlign, 1546 MachineMemOperand::MOStore); 1547 InFlag = Chain.getValue(1); 1548 1549 // Cleanup. 1550 StoreOperands.clear(); 1551 } 1552 ++OIdx; 1553 } 1554 assert(StoreOperands.empty() && "Unfinished parameter store."); 1555 if (VTs.size() > 0) 1556 --OIdx; 1557 ++paramCount; 1558 continue; 1559 } 1560 1561 // ByVal arguments 1562 SmallVector<EVT, 16> VTs; 1563 SmallVector<uint64_t, 16> Offsets; 1564 auto *PTy = dyn_cast<PointerType>(Args[i].Ty); 1565 assert(PTy && "Type of a byval parameter should be pointer"); 1566 ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0); 1567 1568 // declare .param .align <align> .b8 .param<n>[<size>]; 1569 unsigned sz = Outs[OIdx].Flags.getByValSize(); 1570 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1571 Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign(); 1572 // The ByValAlign in the Outs[OIdx].Flags is alway set at this point, 1573 // so we don't need to worry about natural alignment or not. 1574 // See TargetLowering::LowerCallTo(). 1575 1576 // Enforce minumum alignment of 4 to work around ptxas miscompile 1577 // for sm_50+. See corresponding alignment adjustment in 1578 // emitFunctionParamList() for details. 1579 if (ArgAlign < Align(4)) 1580 ArgAlign = Align(4); 1581 SDValue DeclareParamOps[] = { 1582 Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), 1583 DAG.getConstant(paramCount, dl, MVT::i32), 1584 DAG.getConstant(sz, dl, MVT::i32), InFlag}; 1585 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, 1586 DeclareParamOps); 1587 InFlag = Chain.getValue(1); 1588 for (unsigned j = 0, je = VTs.size(); j != je; ++j) { 1589 EVT elemtype = VTs[j]; 1590 int curOffset = Offsets[j]; 1591 unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset); 1592 auto PtrVT = getPointerTy(DL); 1593 SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx], 1594 DAG.getConstant(curOffset, dl, PtrVT)); 1595 SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr, 1596 MachinePointerInfo(), PartAlign); 1597 if (elemtype.getSizeInBits() < 16) { 1598 theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal); 1599 } 1600 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1601 SDValue CopyParamOps[] = { Chain, 1602 DAG.getConstant(paramCount, dl, MVT::i32), 1603 DAG.getConstant(curOffset, dl, MVT::i32), 1604 theVal, InFlag }; 1605 Chain = DAG.getMemIntrinsicNode( 1606 NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype, 1607 MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore); 1608 1609 InFlag = Chain.getValue(1); 1610 } 1611 ++paramCount; 1612 } 1613 1614 GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode()); 1615 MaybeAlign retAlignment = None; 1616 1617 // Handle Result 1618 if (Ins.size() > 0) { 1619 SmallVector<EVT, 16> resvtparts; 1620 ComputeValueVTs(*this, DL, RetTy, resvtparts); 1621 1622 // Declare 1623 // .param .align 16 .b8 retval0[<size-in-bytes>], or 1624 // .param .b<size-in-bits> retval0 1625 unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy); 1626 // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for 1627 // these three types to match the logic in 1628 // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype. 1629 // Plus, this behavior is consistent with nvcc's. 1630 if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() || 1631 (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) { 1632 // Scalar needs to be at least 32bit wide 1633 if (resultsz < 32) 1634 resultsz = 32; 1635 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1636 SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), 1637 DAG.getConstant(resultsz, dl, MVT::i32), 1638 DAG.getConstant(0, dl, MVT::i32), InFlag }; 1639 Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs, 1640 DeclareRetOps); 1641 InFlag = Chain.getValue(1); 1642 } else { 1643 retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL); 1644 assert(retAlignment && "retAlignment is guaranteed to be set"); 1645 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1646 SDValue DeclareRetOps[] = { 1647 Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32), 1648 DAG.getConstant(resultsz / 8, dl, MVT::i32), 1649 DAG.getConstant(0, dl, MVT::i32), InFlag}; 1650 Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs, 1651 DeclareRetOps); 1652 InFlag = Chain.getValue(1); 1653 } 1654 } 1655 1656 // Both indirect calls and libcalls have nullptr Func. In order to distinguish 1657 // between them we must rely on the call site value which is valid for 1658 // indirect calls but is always null for libcalls. 1659 bool isIndirectCall = !Func && CB; 1660 1661 if (isa<ExternalSymbolSDNode>(Callee)) { 1662 Function* CalleeFunc = nullptr; 1663 1664 // Try to find the callee in the current module. 1665 Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc); 1666 assert(CalleeFunc != nullptr && "Libcall callee must be set."); 1667 1668 // Set the "libcall callee" attribute to indicate that the function 1669 // must always have a declaration. 1670 CalleeFunc->addFnAttr("nvptx-libcall-callee", "true"); 1671 } 1672 1673 if (isIndirectCall) { 1674 // This is indirect function call case : PTX requires a prototype of the 1675 // form 1676 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); 1677 // to be emitted, and the label has to used as the last arg of call 1678 // instruction. 1679 // The prototype is embedded in a string and put as the operand for a 1680 // CallPrototype SDNode which will print out to the value of the string. 1681 SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1682 std::string Proto = 1683 getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite); 1684 const char *ProtoStr = 1685 nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str(); 1686 SDValue ProtoOps[] = { 1687 Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag, 1688 }; 1689 Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps); 1690 InFlag = Chain.getValue(1); 1691 } 1692 // Op to just print "call" 1693 SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1694 SDValue PrintCallOps[] = { 1695 Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag 1696 }; 1697 // We model convergent calls as separate opcodes. 1698 unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni; 1699 if (CLI.IsConvergent) 1700 Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni 1701 : NVPTXISD::PrintConvergentCall; 1702 Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps); 1703 InFlag = Chain.getValue(1); 1704 1705 // Ops to print out the function name 1706 SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1707 SDValue CallVoidOps[] = { Chain, Callee, InFlag }; 1708 Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps); 1709 InFlag = Chain.getValue(1); 1710 1711 // Ops to print out the param list 1712 SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1713 SDValue CallArgBeginOps[] = { Chain, InFlag }; 1714 Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs, 1715 CallArgBeginOps); 1716 InFlag = Chain.getValue(1); 1717 1718 for (unsigned i = 0, e = paramCount; i != e; ++i) { 1719 unsigned opcode; 1720 if (i == (e - 1)) 1721 opcode = NVPTXISD::LastCallArg; 1722 else 1723 opcode = NVPTXISD::CallArg; 1724 SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1725 SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), 1726 DAG.getConstant(i, dl, MVT::i32), InFlag }; 1727 Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps); 1728 InFlag = Chain.getValue(1); 1729 } 1730 SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1731 SDValue CallArgEndOps[] = { Chain, 1732 DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32), 1733 InFlag }; 1734 Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps); 1735 InFlag = Chain.getValue(1); 1736 1737 if (isIndirectCall) { 1738 SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1739 SDValue PrototypeOps[] = { 1740 Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag}; 1741 Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps); 1742 InFlag = Chain.getValue(1); 1743 } 1744 1745 SmallVector<SDValue, 16> ProxyRegOps; 1746 SmallVector<Optional<MVT>, 16> ProxyRegTruncates; 1747 1748 // Generate loads from param memory/moves from registers for result 1749 if (Ins.size() > 0) { 1750 SmallVector<EVT, 16> VTs; 1751 SmallVector<uint64_t, 16> Offsets; 1752 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0); 1753 assert(VTs.size() == Ins.size() && "Bad value decomposition"); 1754 1755 Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL); 1756 auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign); 1757 1758 SmallVector<EVT, 6> LoadVTs; 1759 int VecIdx = -1; // Index of the first element of the vector. 1760 1761 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than 1762 // 32-bits are sign extended or zero extended, depending on whether 1763 // they are signed or unsigned types. 1764 bool ExtendIntegerRetVal = 1765 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; 1766 1767 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 1768 bool needTruncate = false; 1769 EVT TheLoadType = VTs[i]; 1770 EVT EltType = Ins[i].VT; 1771 Align EltAlign = commonAlignment(RetAlign, Offsets[i]); 1772 if (ExtendIntegerRetVal) { 1773 TheLoadType = MVT::i32; 1774 EltType = MVT::i32; 1775 needTruncate = true; 1776 } else if (TheLoadType.getSizeInBits() < 16) { 1777 if (VTs[i].isInteger()) 1778 needTruncate = true; 1779 EltType = MVT::i16; 1780 } 1781 1782 // Record index of the very first element of the vector. 1783 if (VectorInfo[i] & PVF_FIRST) { 1784 assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list."); 1785 VecIdx = i; 1786 } 1787 1788 LoadVTs.push_back(EltType); 1789 1790 if (VectorInfo[i] & PVF_LAST) { 1791 unsigned NumElts = LoadVTs.size(); 1792 LoadVTs.push_back(MVT::Other); 1793 LoadVTs.push_back(MVT::Glue); 1794 NVPTXISD::NodeType Op; 1795 switch (NumElts) { 1796 case 1: 1797 Op = NVPTXISD::LoadParam; 1798 break; 1799 case 2: 1800 Op = NVPTXISD::LoadParamV2; 1801 break; 1802 case 4: 1803 Op = NVPTXISD::LoadParamV4; 1804 break; 1805 default: 1806 llvm_unreachable("Invalid vector info."); 1807 } 1808 1809 SDValue LoadOperands[] = { 1810 Chain, DAG.getConstant(1, dl, MVT::i32), 1811 DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag}; 1812 SDValue RetVal = DAG.getMemIntrinsicNode( 1813 Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType, 1814 MachinePointerInfo(), EltAlign, 1815 MachineMemOperand::MOLoad); 1816 1817 for (unsigned j = 0; j < NumElts; ++j) { 1818 ProxyRegOps.push_back(RetVal.getValue(j)); 1819 1820 if (needTruncate) 1821 ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT)); 1822 else 1823 ProxyRegTruncates.push_back(Optional<MVT>()); 1824 } 1825 1826 Chain = RetVal.getValue(NumElts); 1827 InFlag = RetVal.getValue(NumElts + 1); 1828 1829 // Cleanup 1830 VecIdx = -1; 1831 LoadVTs.clear(); 1832 } 1833 } 1834 } 1835 1836 Chain = DAG.getCALLSEQ_END( 1837 Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true), 1838 DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl); 1839 InFlag = Chain.getValue(1); 1840 1841 // Append ProxyReg instructions to the chain to make sure that `callseq_end` 1842 // will not get lost. Otherwise, during libcalls expansion, the nodes can become 1843 // dangling. 1844 for (unsigned i = 0; i < ProxyRegOps.size(); ++i) { 1845 SDValue Ret = DAG.getNode( 1846 NVPTXISD::ProxyReg, dl, 1847 DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue), 1848 { Chain, ProxyRegOps[i], InFlag } 1849 ); 1850 1851 Chain = Ret.getValue(1); 1852 InFlag = Ret.getValue(2); 1853 1854 if (ProxyRegTruncates[i].hasValue()) { 1855 Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret); 1856 } 1857 1858 InVals.push_back(Ret); 1859 } 1860 1861 // set isTailCall to false for now, until we figure out how to express 1862 // tail call optimization in PTX 1863 isTailCall = false; 1864 return Chain; 1865 } 1866 1867 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() 1868 // (see LegalizeDAG.cpp). This is slow and uses local memory. 1869 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 1870 SDValue 1871 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { 1872 SDNode *Node = Op.getNode(); 1873 SDLoc dl(Node); 1874 SmallVector<SDValue, 8> Ops; 1875 unsigned NumOperands = Node->getNumOperands(); 1876 for (unsigned i = 0; i < NumOperands; ++i) { 1877 SDValue SubOp = Node->getOperand(i); 1878 EVT VVT = SubOp.getNode()->getValueType(0); 1879 EVT EltVT = VVT.getVectorElementType(); 1880 unsigned NumSubElem = VVT.getVectorNumElements(); 1881 for (unsigned j = 0; j < NumSubElem; ++j) { 1882 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, 1883 DAG.getIntPtrConstant(j, dl))); 1884 } 1885 } 1886 return DAG.getBuildVector(Node->getValueType(0), dl, Ops); 1887 } 1888 1889 // We can init constant f16x2 with a single .b32 move. Normally it 1890 // would get lowered as two constant loads and vector-packing move. 1891 // mov.b16 %h1, 0x4000; 1892 // mov.b16 %h2, 0x3C00; 1893 // mov.b32 %hh2, {%h2, %h1}; 1894 // Instead we want just a constant move: 1895 // mov.b32 %hh2, 0x40003C00 1896 // 1897 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0 1898 // generates good SASS in both cases. 1899 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1900 SelectionDAG &DAG) const { 1901 //return Op; 1902 if (!(Op->getValueType(0) == MVT::v2f16 && 1903 isa<ConstantFPSDNode>(Op->getOperand(0)) && 1904 isa<ConstantFPSDNode>(Op->getOperand(1)))) 1905 return Op; 1906 1907 APInt E0 = 1908 cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt(); 1909 APInt E1 = 1910 cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt(); 1911 SDValue Const = 1912 DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32); 1913 return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const); 1914 } 1915 1916 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 1917 SelectionDAG &DAG) const { 1918 SDValue Index = Op->getOperand(1); 1919 // Constant index will be matched by tablegen. 1920 if (isa<ConstantSDNode>(Index.getNode())) 1921 return Op; 1922 1923 // Extract individual elements and select one of them. 1924 SDValue Vector = Op->getOperand(0); 1925 EVT VectorVT = Vector.getValueType(); 1926 assert(VectorVT == MVT::v2f16 && "Unexpected vector type."); 1927 EVT EltVT = VectorVT.getVectorElementType(); 1928 1929 SDLoc dl(Op.getNode()); 1930 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, 1931 DAG.getIntPtrConstant(0, dl)); 1932 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, 1933 DAG.getIntPtrConstant(1, dl)); 1934 return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1, 1935 ISD::CondCode::SETEQ); 1936 } 1937 1938 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which 1939 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift 1940 /// amount, or 1941 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift 1942 /// amount. 1943 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op, 1944 SelectionDAG &DAG) const { 1945 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 1946 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 1947 1948 EVT VT = Op.getValueType(); 1949 unsigned VTBits = VT.getSizeInBits(); 1950 SDLoc dl(Op); 1951 SDValue ShOpLo = Op.getOperand(0); 1952 SDValue ShOpHi = Op.getOperand(1); 1953 SDValue ShAmt = Op.getOperand(2); 1954 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 1955 1956 if (VTBits == 32 && STI.getSmVersion() >= 35) { 1957 // For 32bit and sm35, we can use the funnel shift 'shf' instruction. 1958 // {dHi, dLo} = {aHi, aLo} >> Amt 1959 // dHi = aHi >> Amt 1960 // dLo = shf.r.clamp aLo, aHi, Amt 1961 1962 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 1963 SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi, 1964 ShAmt); 1965 1966 SDValue Ops[2] = { Lo, Hi }; 1967 return DAG.getMergeValues(Ops, dl); 1968 } 1969 else { 1970 // {dHi, dLo} = {aHi, aLo} >> Amt 1971 // - if (Amt>=size) then 1972 // dLo = aHi >> (Amt-size) 1973 // dHi = aHi >> Amt (this is either all 0 or all 1) 1974 // else 1975 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt)) 1976 // dHi = aHi >> Amt 1977 1978 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 1979 DAG.getConstant(VTBits, dl, MVT::i32), 1980 ShAmt); 1981 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 1982 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 1983 DAG.getConstant(VTBits, dl, MVT::i32)); 1984 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 1985 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 1986 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 1987 1988 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, 1989 DAG.getConstant(VTBits, dl, MVT::i32), 1990 ISD::SETGE); 1991 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 1992 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); 1993 1994 SDValue Ops[2] = { Lo, Hi }; 1995 return DAG.getMergeValues(Ops, dl); 1996 } 1997 } 1998 1999 /// LowerShiftLeftParts - Lower SHL_PARTS, which 2000 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift 2001 /// amount, or 2002 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift 2003 /// amount. 2004 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op, 2005 SelectionDAG &DAG) const { 2006 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 2007 assert(Op.getOpcode() == ISD::SHL_PARTS); 2008 2009 EVT VT = Op.getValueType(); 2010 unsigned VTBits = VT.getSizeInBits(); 2011 SDLoc dl(Op); 2012 SDValue ShOpLo = Op.getOperand(0); 2013 SDValue ShOpHi = Op.getOperand(1); 2014 SDValue ShAmt = Op.getOperand(2); 2015 2016 if (VTBits == 32 && STI.getSmVersion() >= 35) { 2017 // For 32bit and sm35, we can use the funnel shift 'shf' instruction. 2018 // {dHi, dLo} = {aHi, aLo} << Amt 2019 // dHi = shf.l.clamp aLo, aHi, Amt 2020 // dLo = aLo << Amt 2021 2022 SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi, 2023 ShAmt); 2024 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 2025 2026 SDValue Ops[2] = { Lo, Hi }; 2027 return DAG.getMergeValues(Ops, dl); 2028 } 2029 else { 2030 // {dHi, dLo} = {aHi, aLo} << Amt 2031 // - if (Amt>=size) then 2032 // dLo = aLo << Amt (all 0) 2033 // dLo = aLo << (Amt-size) 2034 // else 2035 // dLo = aLo << Amt 2036 // dHi = (aHi << Amt) | (aLo >> (size-Amt)) 2037 2038 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 2039 DAG.getConstant(VTBits, dl, MVT::i32), 2040 ShAmt); 2041 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 2042 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 2043 DAG.getConstant(VTBits, dl, MVT::i32)); 2044 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 2045 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2046 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 2047 2048 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, 2049 DAG.getConstant(VTBits, dl, MVT::i32), 2050 ISD::SETGE); 2051 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 2052 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); 2053 2054 SDValue Ops[2] = { Lo, Hi }; 2055 return DAG.getMergeValues(Ops, dl); 2056 } 2057 } 2058 2059 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2060 EVT VT = Op.getValueType(); 2061 2062 if (VT == MVT::f32) 2063 return LowerFROUND32(Op, DAG); 2064 2065 if (VT == MVT::f64) 2066 return LowerFROUND64(Op, DAG); 2067 2068 llvm_unreachable("unhandled type"); 2069 } 2070 2071 // This is the the rounding method used in CUDA libdevice in C like code: 2072 // float roundf(float A) 2073 // { 2074 // float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)); 2075 // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; 2076 // return abs(A) < 0.5 ? (float)(int)A : RoundedA; 2077 // } 2078 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op, 2079 SelectionDAG &DAG) const { 2080 SDLoc SL(Op); 2081 SDValue A = Op.getOperand(0); 2082 EVT VT = Op.getValueType(); 2083 2084 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); 2085 2086 // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)) 2087 SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A); 2088 const int SignBitMask = 0x80000000; 2089 SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast, 2090 DAG.getConstant(SignBitMask, SL, MVT::i32)); 2091 const int PointFiveInBits = 0x3F000000; 2092 SDValue PointFiveWithSignRaw = 2093 DAG.getNode(ISD::OR, SL, MVT::i32, Sign, 2094 DAG.getConstant(PointFiveInBits, SL, MVT::i32)); 2095 SDValue PointFiveWithSign = 2096 DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw); 2097 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign); 2098 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); 2099 2100 // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; 2101 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2102 SDValue IsLarge = 2103 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT), 2104 ISD::SETOGT); 2105 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); 2106 2107 // return abs(A) < 0.5 ? (float)(int)A : RoundedA; 2108 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, 2109 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); 2110 SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A); 2111 return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA); 2112 } 2113 2114 // The implementation of round(double) is similar to that of round(float) in 2115 // that they both separate the value range into three regions and use a method 2116 // specific to the region to round the values. However, round(double) first 2117 // calculates the round of the absolute value and then adds the sign back while 2118 // round(float) directly rounds the value with sign. 2119 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op, 2120 SelectionDAG &DAG) const { 2121 SDLoc SL(Op); 2122 SDValue A = Op.getOperand(0); 2123 EVT VT = Op.getValueType(); 2124 2125 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); 2126 2127 // double RoundedA = (double) (int) (abs(A) + 0.5f); 2128 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA, 2129 DAG.getConstantFP(0.5, SL, VT)); 2130 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); 2131 2132 // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA; 2133 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2134 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, 2135 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); 2136 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall, 2137 DAG.getConstantFP(0, SL, VT), 2138 RoundedA); 2139 2140 // Add sign to rounded_A 2141 RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A); 2142 DAG.getNode(ISD::FTRUNC, SL, VT, A); 2143 2144 // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA; 2145 SDValue IsLarge = 2146 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT), 2147 ISD::SETOGT); 2148 return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); 2149 } 2150 2151 2152 2153 SDValue 2154 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 2155 switch (Op.getOpcode()) { 2156 case ISD::RETURNADDR: 2157 return SDValue(); 2158 case ISD::FRAMEADDR: 2159 return SDValue(); 2160 case ISD::GlobalAddress: 2161 return LowerGlobalAddress(Op, DAG); 2162 case ISD::INTRINSIC_W_CHAIN: 2163 return Op; 2164 case ISD::BUILD_VECTOR: 2165 return LowerBUILD_VECTOR(Op, DAG); 2166 case ISD::EXTRACT_SUBVECTOR: 2167 return Op; 2168 case ISD::EXTRACT_VECTOR_ELT: 2169 return LowerEXTRACT_VECTOR_ELT(Op, DAG); 2170 case ISD::CONCAT_VECTORS: 2171 return LowerCONCAT_VECTORS(Op, DAG); 2172 case ISD::STORE: 2173 return LowerSTORE(Op, DAG); 2174 case ISD::LOAD: 2175 return LowerLOAD(Op, DAG); 2176 case ISD::SHL_PARTS: 2177 return LowerShiftLeftParts(Op, DAG); 2178 case ISD::SRA_PARTS: 2179 case ISD::SRL_PARTS: 2180 return LowerShiftRightParts(Op, DAG); 2181 case ISD::SELECT: 2182 return LowerSelect(Op, DAG); 2183 case ISD::FROUND: 2184 return LowerFROUND(Op, DAG); 2185 default: 2186 llvm_unreachable("Custom lowering not defined for operation"); 2187 } 2188 } 2189 2190 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const { 2191 SDValue Op0 = Op->getOperand(0); 2192 SDValue Op1 = Op->getOperand(1); 2193 SDValue Op2 = Op->getOperand(2); 2194 SDLoc DL(Op.getNode()); 2195 2196 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1"); 2197 2198 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1); 2199 Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2); 2200 SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2); 2201 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select); 2202 2203 return Trunc; 2204 } 2205 2206 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 2207 if (Op.getValueType() == MVT::i1) 2208 return LowerLOADi1(Op, DAG); 2209 2210 // v2f16 is legal, so we can't rely on legalizer to handle unaligned 2211 // loads and have to handle it here. 2212 if (Op.getValueType() == MVT::v2f16) { 2213 LoadSDNode *Load = cast<LoadSDNode>(Op); 2214 EVT MemVT = Load->getMemoryVT(); 2215 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2216 MemVT, *Load->getMemOperand())) { 2217 SDValue Ops[2]; 2218 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 2219 return DAG.getMergeValues(Ops, SDLoc(Op)); 2220 } 2221 } 2222 2223 return SDValue(); 2224 } 2225 2226 // v = ld i1* addr 2227 // => 2228 // v1 = ld i8* addr (-> i16) 2229 // v = trunc i16 to i1 2230 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const { 2231 SDNode *Node = Op.getNode(); 2232 LoadSDNode *LD = cast<LoadSDNode>(Node); 2233 SDLoc dl(Node); 2234 assert(LD->getExtensionType() == ISD::NON_EXTLOAD); 2235 assert(Node->getValueType(0) == MVT::i1 && 2236 "Custom lowering for i1 load only"); 2237 SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(), 2238 LD->getPointerInfo(), LD->getAlignment(), 2239 LD->getMemOperand()->getFlags()); 2240 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD); 2241 // The legalizer (the caller) is expecting two values from the legalized 2242 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad() 2243 // in LegalizeDAG.cpp which also uses MergeValues. 2244 SDValue Ops[] = { result, LD->getChain() }; 2245 return DAG.getMergeValues(Ops, dl); 2246 } 2247 2248 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 2249 StoreSDNode *Store = cast<StoreSDNode>(Op); 2250 EVT VT = Store->getMemoryVT(); 2251 2252 if (VT == MVT::i1) 2253 return LowerSTOREi1(Op, DAG); 2254 2255 // v2f16 is legal, so we can't rely on legalizer to handle unaligned 2256 // stores and have to handle it here. 2257 if (VT == MVT::v2f16 && 2258 !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2259 VT, *Store->getMemOperand())) 2260 return expandUnalignedStore(Store, DAG); 2261 2262 if (VT.isVector()) 2263 return LowerSTOREVector(Op, DAG); 2264 2265 return SDValue(); 2266 } 2267 2268 SDValue 2269 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const { 2270 SDNode *N = Op.getNode(); 2271 SDValue Val = N->getOperand(1); 2272 SDLoc DL(N); 2273 EVT ValVT = Val.getValueType(); 2274 2275 if (ValVT.isVector()) { 2276 // We only handle "native" vector sizes for now, e.g. <4 x double> is not 2277 // legal. We can (and should) split that into 2 stores of <2 x double> here 2278 // but I'm leaving that as a TODO for now. 2279 if (!ValVT.isSimple()) 2280 return SDValue(); 2281 switch (ValVT.getSimpleVT().SimpleTy) { 2282 default: 2283 return SDValue(); 2284 case MVT::v2i8: 2285 case MVT::v2i16: 2286 case MVT::v2i32: 2287 case MVT::v2i64: 2288 case MVT::v2f16: 2289 case MVT::v2f32: 2290 case MVT::v2f64: 2291 case MVT::v4i8: 2292 case MVT::v4i16: 2293 case MVT::v4i32: 2294 case MVT::v4f16: 2295 case MVT::v4f32: 2296 case MVT::v8f16: // <4 x f16x2> 2297 // This is a "native" vector type 2298 break; 2299 } 2300 2301 MemSDNode *MemSD = cast<MemSDNode>(N); 2302 const DataLayout &TD = DAG.getDataLayout(); 2303 2304 Align Alignment = MemSD->getAlign(); 2305 Align PrefAlign = 2306 TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext())); 2307 if (Alignment < PrefAlign) { 2308 // This store is not sufficiently aligned, so bail out and let this vector 2309 // store be scalarized. Note that we may still be able to emit smaller 2310 // vector stores. For example, if we are storing a <4 x float> with an 2311 // alignment of 8, this check will fail but the legalizer will try again 2312 // with 2 x <2 x float>, which will succeed with an alignment of 8. 2313 return SDValue(); 2314 } 2315 2316 unsigned Opcode = 0; 2317 EVT EltVT = ValVT.getVectorElementType(); 2318 unsigned NumElts = ValVT.getVectorNumElements(); 2319 2320 // Since StoreV2 is a target node, we cannot rely on DAG type legalization. 2321 // Therefore, we must ensure the type is legal. For i1 and i8, we set the 2322 // stored type to i16 and propagate the "real" type as the memory type. 2323 bool NeedExt = false; 2324 if (EltVT.getSizeInBits() < 16) 2325 NeedExt = true; 2326 2327 bool StoreF16x2 = false; 2328 switch (NumElts) { 2329 default: 2330 return SDValue(); 2331 case 2: 2332 Opcode = NVPTXISD::StoreV2; 2333 break; 2334 case 4: 2335 Opcode = NVPTXISD::StoreV4; 2336 break; 2337 case 8: 2338 // v8f16 is a special case. PTX doesn't have st.v8.f16 2339 // instruction. Instead, we split the vector into v2f16 chunks and 2340 // store them with st.v4.b32. 2341 assert(EltVT == MVT::f16 && "Wrong type for the vector."); 2342 Opcode = NVPTXISD::StoreV4; 2343 StoreF16x2 = true; 2344 break; 2345 } 2346 2347 SmallVector<SDValue, 8> Ops; 2348 2349 // First is the chain 2350 Ops.push_back(N->getOperand(0)); 2351 2352 if (StoreF16x2) { 2353 // Combine f16,f16 -> v2f16 2354 NumElts /= 2; 2355 for (unsigned i = 0; i < NumElts; ++i) { 2356 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, 2357 DAG.getIntPtrConstant(i * 2, DL)); 2358 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, 2359 DAG.getIntPtrConstant(i * 2 + 1, DL)); 2360 SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1); 2361 Ops.push_back(V2); 2362 } 2363 } else { 2364 // Then the split values 2365 for (unsigned i = 0; i < NumElts; ++i) { 2366 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val, 2367 DAG.getIntPtrConstant(i, DL)); 2368 if (NeedExt) 2369 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal); 2370 Ops.push_back(ExtVal); 2371 } 2372 } 2373 2374 // Then any remaining arguments 2375 Ops.append(N->op_begin() + 2, N->op_end()); 2376 2377 SDValue NewSt = 2378 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops, 2379 MemSD->getMemoryVT(), MemSD->getMemOperand()); 2380 2381 // return DCI.CombineTo(N, NewSt, true); 2382 return NewSt; 2383 } 2384 2385 return SDValue(); 2386 } 2387 2388 // st i1 v, addr 2389 // => 2390 // v1 = zxt v to i16 2391 // st.u8 i16, addr 2392 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const { 2393 SDNode *Node = Op.getNode(); 2394 SDLoc dl(Node); 2395 StoreSDNode *ST = cast<StoreSDNode>(Node); 2396 SDValue Tmp1 = ST->getChain(); 2397 SDValue Tmp2 = ST->getBasePtr(); 2398 SDValue Tmp3 = ST->getValue(); 2399 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only"); 2400 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3); 2401 SDValue Result = 2402 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8, 2403 ST->getAlignment(), ST->getMemOperand()->getFlags()); 2404 return Result; 2405 } 2406 2407 SDValue 2408 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const { 2409 std::string ParamSym; 2410 raw_string_ostream ParamStr(ParamSym); 2411 2412 ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx; 2413 ParamStr.flush(); 2414 2415 std::string *SavedStr = 2416 nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str()); 2417 return DAG.getTargetExternalSymbol(SavedStr->c_str(), v); 2418 } 2419 2420 // Check to see if the kernel argument is image*_t or sampler_t 2421 2422 static bool isImageOrSamplerVal(const Value *arg, const Module *context) { 2423 static const char *const specialTypes[] = { "struct._image2d_t", 2424 "struct._image3d_t", 2425 "struct._sampler_t" }; 2426 2427 Type *Ty = arg->getType(); 2428 auto *PTy = dyn_cast<PointerType>(Ty); 2429 2430 if (!PTy) 2431 return false; 2432 2433 if (!context) 2434 return false; 2435 2436 auto *STy = dyn_cast<StructType>(PTy->getElementType()); 2437 if (!STy || STy->isLiteral()) 2438 return false; 2439 2440 return llvm::is_contained(specialTypes, STy->getName()); 2441 } 2442 2443 SDValue NVPTXTargetLowering::LowerFormalArguments( 2444 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2445 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2446 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2447 MachineFunction &MF = DAG.getMachineFunction(); 2448 const DataLayout &DL = DAG.getDataLayout(); 2449 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2450 2451 const Function *F = &MF.getFunction(); 2452 const AttributeList &PAL = F->getAttributes(); 2453 const TargetLowering *TLI = STI.getTargetLowering(); 2454 2455 SDValue Root = DAG.getRoot(); 2456 std::vector<SDValue> OutChains; 2457 2458 bool isABI = (STI.getSmVersion() >= 20); 2459 assert(isABI && "Non-ABI compilation is not supported"); 2460 if (!isABI) 2461 return Chain; 2462 2463 std::vector<Type *> argTypes; 2464 std::vector<const Argument *> theArgs; 2465 for (const Argument &I : F->args()) { 2466 theArgs.push_back(&I); 2467 argTypes.push_back(I.getType()); 2468 } 2469 // argTypes.size() (or theArgs.size()) and Ins.size() need not match. 2470 // Ins.size() will be larger 2471 // * if there is an aggregate argument with multiple fields (each field 2472 // showing up separately in Ins) 2473 // * if there is a vector argument with more than typical vector-length 2474 // elements (generally if more than 4) where each vector element is 2475 // individually present in Ins. 2476 // So a different index should be used for indexing into Ins. 2477 // See similar issue in LowerCall. 2478 unsigned InsIdx = 0; 2479 2480 int idx = 0; 2481 for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) { 2482 Type *Ty = argTypes[i]; 2483 2484 // If the kernel argument is image*_t or sampler_t, convert it to 2485 // a i32 constant holding the parameter position. This can later 2486 // matched in the AsmPrinter to output the correct mangled name. 2487 if (isImageOrSamplerVal( 2488 theArgs[i], 2489 (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent() 2490 : nullptr))) { 2491 assert(isKernelFunction(*F) && 2492 "Only kernels can have image/sampler params"); 2493 InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32)); 2494 continue; 2495 } 2496 2497 if (theArgs[i]->use_empty()) { 2498 // argument is dead 2499 if (Ty->isAggregateType() || Ty->isIntegerTy(128)) { 2500 SmallVector<EVT, 16> vtparts; 2501 2502 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts); 2503 assert(vtparts.size() > 0 && "empty aggregate type not expected"); 2504 for (unsigned parti = 0, parte = vtparts.size(); parti != parte; 2505 ++parti) { 2506 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); 2507 ++InsIdx; 2508 } 2509 if (vtparts.size() > 0) 2510 --InsIdx; 2511 continue; 2512 } 2513 if (Ty->isVectorTy()) { 2514 EVT ObjectVT = getValueType(DL, Ty); 2515 unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT); 2516 for (unsigned parti = 0; parti < NumRegs; ++parti) { 2517 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); 2518 ++InsIdx; 2519 } 2520 if (NumRegs > 0) 2521 --InsIdx; 2522 continue; 2523 } 2524 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); 2525 continue; 2526 } 2527 2528 // In the following cases, assign a node order of "idx+1" 2529 // to newly created nodes. The SDNodes for params have to 2530 // appear in the same order as their order of appearance 2531 // in the original function. "idx+1" holds that order. 2532 if (!PAL.hasParamAttribute(i, Attribute::ByVal)) { 2533 bool aggregateIsPacked = false; 2534 if (StructType *STy = dyn_cast<StructType>(Ty)) 2535 aggregateIsPacked = STy->isPacked(); 2536 2537 SmallVector<EVT, 16> VTs; 2538 SmallVector<uint64_t, 16> Offsets; 2539 ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0); 2540 assert(VTs.size() > 0 && "Unexpected empty type."); 2541 auto VectorInfo = 2542 VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty)); 2543 2544 SDValue Arg = getParamSymbol(DAG, idx, PtrVT); 2545 int VecIdx = -1; // Index of the first element of the current vector. 2546 for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) { 2547 if (VectorInfo[parti] & PVF_FIRST) { 2548 assert(VecIdx == -1 && "Orphaned vector."); 2549 VecIdx = parti; 2550 } 2551 2552 // That's the last element of this store op. 2553 if (VectorInfo[parti] & PVF_LAST) { 2554 unsigned NumElts = parti - VecIdx + 1; 2555 EVT EltVT = VTs[parti]; 2556 // i1 is loaded/stored as i8. 2557 EVT LoadVT = EltVT; 2558 if (EltVT == MVT::i1) 2559 LoadVT = MVT::i8; 2560 else if (EltVT == MVT::v2f16) 2561 // getLoad needs a vector type, but it can't handle 2562 // vectors which contain v2f16 elements. So we must load 2563 // using i32 here and then bitcast back. 2564 LoadVT = MVT::i32; 2565 2566 EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts); 2567 SDValue VecAddr = 2568 DAG.getNode(ISD::ADD, dl, PtrVT, Arg, 2569 DAG.getConstant(Offsets[VecIdx], dl, PtrVT)); 2570 Value *srcValue = Constant::getNullValue(PointerType::get( 2571 EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM)); 2572 SDValue P = 2573 DAG.getLoad(VecVT, dl, Root, VecAddr, 2574 MachinePointerInfo(srcValue), aggregateIsPacked, 2575 MachineMemOperand::MODereferenceable | 2576 MachineMemOperand::MOInvariant); 2577 if (P.getNode()) 2578 P.getNode()->setIROrder(idx + 1); 2579 for (unsigned j = 0; j < NumElts; ++j) { 2580 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P, 2581 DAG.getIntPtrConstant(j, dl)); 2582 // We've loaded i1 as an i8 and now must truncate it back to i1 2583 if (EltVT == MVT::i1) 2584 Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt); 2585 // v2f16 was loaded as an i32. Now we must bitcast it back. 2586 else if (EltVT == MVT::v2f16) 2587 Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt); 2588 // Extend the element if necessary (e.g. an i8 is loaded 2589 // into an i16 register) 2590 if (Ins[InsIdx].VT.isInteger() && 2591 Ins[InsIdx].VT.getFixedSizeInBits() > 2592 LoadVT.getFixedSizeInBits()) { 2593 unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND 2594 : ISD::ZERO_EXTEND; 2595 Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt); 2596 } 2597 InVals.push_back(Elt); 2598 } 2599 2600 // Reset vector tracking state. 2601 VecIdx = -1; 2602 } 2603 ++InsIdx; 2604 } 2605 if (VTs.size() > 0) 2606 --InsIdx; 2607 continue; 2608 } 2609 2610 // Param has ByVal attribute 2611 // Return MoveParam(param symbol). 2612 // Ideally, the param symbol can be returned directly, 2613 // but when SDNode builder decides to use it in a CopyToReg(), 2614 // machine instruction fails because TargetExternalSymbol 2615 // (not lowered) is target dependent, and CopyToReg assumes 2616 // the source is lowered. 2617 EVT ObjectVT = getValueType(DL, Ty); 2618 assert(ObjectVT == Ins[InsIdx].VT && 2619 "Ins type did not match function type"); 2620 SDValue Arg = getParamSymbol(DAG, idx, PtrVT); 2621 SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); 2622 if (p.getNode()) 2623 p.getNode()->setIROrder(idx + 1); 2624 InVals.push_back(p); 2625 } 2626 2627 // Clang will check explicit VarArg and issue error if any. However, Clang 2628 // will let code with 2629 // implicit var arg like f() pass. See bug 617733. 2630 // We treat this case as if the arg list is empty. 2631 // if (F.isVarArg()) { 2632 // assert(0 && "VarArg not supported yet!"); 2633 //} 2634 2635 if (!OutChains.empty()) 2636 DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains)); 2637 2638 return Chain; 2639 } 2640 2641 SDValue 2642 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2643 bool isVarArg, 2644 const SmallVectorImpl<ISD::OutputArg> &Outs, 2645 const SmallVectorImpl<SDValue> &OutVals, 2646 const SDLoc &dl, SelectionDAG &DAG) const { 2647 MachineFunction &MF = DAG.getMachineFunction(); 2648 Type *RetTy = MF.getFunction().getReturnType(); 2649 2650 bool isABI = (STI.getSmVersion() >= 20); 2651 assert(isABI && "Non-ABI compilation is not supported"); 2652 if (!isABI) 2653 return Chain; 2654 2655 const DataLayout DL = DAG.getDataLayout(); 2656 SmallVector<EVT, 16> VTs; 2657 SmallVector<uint64_t, 16> Offsets; 2658 ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets); 2659 assert(VTs.size() == OutVals.size() && "Bad return value decomposition"); 2660 2661 auto VectorInfo = VectorizePTXValueVTs( 2662 VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1)); 2663 2664 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than 2665 // 32-bits are sign extended or zero extended, depending on whether 2666 // they are signed or unsigned types. 2667 bool ExtendIntegerRetVal = 2668 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; 2669 2670 SmallVector<SDValue, 6> StoreOperands; 2671 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 2672 // New load/store. Record chain and offset operands. 2673 if (VectorInfo[i] & PVF_FIRST) { 2674 assert(StoreOperands.empty() && "Orphaned operand list."); 2675 StoreOperands.push_back(Chain); 2676 StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32)); 2677 } 2678 2679 SDValue RetVal = OutVals[i]; 2680 if (ExtendIntegerRetVal) { 2681 RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND 2682 : ISD::ZERO_EXTEND, 2683 dl, MVT::i32, RetVal); 2684 } else if (RetVal.getValueSizeInBits() < 16) { 2685 // Use 16-bit registers for small load-stores as it's the 2686 // smallest general purpose register size supported by NVPTX. 2687 RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal); 2688 } 2689 2690 // Record the value to return. 2691 StoreOperands.push_back(RetVal); 2692 2693 // That's the last element of this store op. 2694 if (VectorInfo[i] & PVF_LAST) { 2695 NVPTXISD::NodeType Op; 2696 unsigned NumElts = StoreOperands.size() - 2; 2697 switch (NumElts) { 2698 case 1: 2699 Op = NVPTXISD::StoreRetval; 2700 break; 2701 case 2: 2702 Op = NVPTXISD::StoreRetvalV2; 2703 break; 2704 case 4: 2705 Op = NVPTXISD::StoreRetvalV4; 2706 break; 2707 default: 2708 llvm_unreachable("Invalid vector info."); 2709 } 2710 2711 // Adjust type of load/store op if we've extended the scalar 2712 // return value. 2713 EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i]; 2714 Chain = DAG.getMemIntrinsicNode( 2715 Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType, 2716 MachinePointerInfo(), Align(1), MachineMemOperand::MOStore); 2717 // Cleanup vector state. 2718 StoreOperands.clear(); 2719 } 2720 } 2721 2722 return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain); 2723 } 2724 2725 void NVPTXTargetLowering::LowerAsmOperandForConstraint( 2726 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2727 SelectionDAG &DAG) const { 2728 if (Constraint.length() > 1) 2729 return; 2730 else 2731 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2732 } 2733 2734 static unsigned getOpcForTextureInstr(unsigned Intrinsic) { 2735 switch (Intrinsic) { 2736 default: 2737 return 0; 2738 2739 case Intrinsic::nvvm_tex_1d_v4f32_s32: 2740 return NVPTXISD::Tex1DFloatS32; 2741 case Intrinsic::nvvm_tex_1d_v4f32_f32: 2742 return NVPTXISD::Tex1DFloatFloat; 2743 case Intrinsic::nvvm_tex_1d_level_v4f32_f32: 2744 return NVPTXISD::Tex1DFloatFloatLevel; 2745 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: 2746 return NVPTXISD::Tex1DFloatFloatGrad; 2747 case Intrinsic::nvvm_tex_1d_v4s32_s32: 2748 return NVPTXISD::Tex1DS32S32; 2749 case Intrinsic::nvvm_tex_1d_v4s32_f32: 2750 return NVPTXISD::Tex1DS32Float; 2751 case Intrinsic::nvvm_tex_1d_level_v4s32_f32: 2752 return NVPTXISD::Tex1DS32FloatLevel; 2753 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: 2754 return NVPTXISD::Tex1DS32FloatGrad; 2755 case Intrinsic::nvvm_tex_1d_v4u32_s32: 2756 return NVPTXISD::Tex1DU32S32; 2757 case Intrinsic::nvvm_tex_1d_v4u32_f32: 2758 return NVPTXISD::Tex1DU32Float; 2759 case Intrinsic::nvvm_tex_1d_level_v4u32_f32: 2760 return NVPTXISD::Tex1DU32FloatLevel; 2761 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: 2762 return NVPTXISD::Tex1DU32FloatGrad; 2763 2764 case Intrinsic::nvvm_tex_1d_array_v4f32_s32: 2765 return NVPTXISD::Tex1DArrayFloatS32; 2766 case Intrinsic::nvvm_tex_1d_array_v4f32_f32: 2767 return NVPTXISD::Tex1DArrayFloatFloat; 2768 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: 2769 return NVPTXISD::Tex1DArrayFloatFloatLevel; 2770 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: 2771 return NVPTXISD::Tex1DArrayFloatFloatGrad; 2772 case Intrinsic::nvvm_tex_1d_array_v4s32_s32: 2773 return NVPTXISD::Tex1DArrayS32S32; 2774 case Intrinsic::nvvm_tex_1d_array_v4s32_f32: 2775 return NVPTXISD::Tex1DArrayS32Float; 2776 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: 2777 return NVPTXISD::Tex1DArrayS32FloatLevel; 2778 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: 2779 return NVPTXISD::Tex1DArrayS32FloatGrad; 2780 case Intrinsic::nvvm_tex_1d_array_v4u32_s32: 2781 return NVPTXISD::Tex1DArrayU32S32; 2782 case Intrinsic::nvvm_tex_1d_array_v4u32_f32: 2783 return NVPTXISD::Tex1DArrayU32Float; 2784 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: 2785 return NVPTXISD::Tex1DArrayU32FloatLevel; 2786 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: 2787 return NVPTXISD::Tex1DArrayU32FloatGrad; 2788 2789 case Intrinsic::nvvm_tex_2d_v4f32_s32: 2790 return NVPTXISD::Tex2DFloatS32; 2791 case Intrinsic::nvvm_tex_2d_v4f32_f32: 2792 return NVPTXISD::Tex2DFloatFloat; 2793 case Intrinsic::nvvm_tex_2d_level_v4f32_f32: 2794 return NVPTXISD::Tex2DFloatFloatLevel; 2795 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: 2796 return NVPTXISD::Tex2DFloatFloatGrad; 2797 case Intrinsic::nvvm_tex_2d_v4s32_s32: 2798 return NVPTXISD::Tex2DS32S32; 2799 case Intrinsic::nvvm_tex_2d_v4s32_f32: 2800 return NVPTXISD::Tex2DS32Float; 2801 case Intrinsic::nvvm_tex_2d_level_v4s32_f32: 2802 return NVPTXISD::Tex2DS32FloatLevel; 2803 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: 2804 return NVPTXISD::Tex2DS32FloatGrad; 2805 case Intrinsic::nvvm_tex_2d_v4u32_s32: 2806 return NVPTXISD::Tex2DU32S32; 2807 case Intrinsic::nvvm_tex_2d_v4u32_f32: 2808 return NVPTXISD::Tex2DU32Float; 2809 case Intrinsic::nvvm_tex_2d_level_v4u32_f32: 2810 return NVPTXISD::Tex2DU32FloatLevel; 2811 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: 2812 return NVPTXISD::Tex2DU32FloatGrad; 2813 2814 case Intrinsic::nvvm_tex_2d_array_v4f32_s32: 2815 return NVPTXISD::Tex2DArrayFloatS32; 2816 case Intrinsic::nvvm_tex_2d_array_v4f32_f32: 2817 return NVPTXISD::Tex2DArrayFloatFloat; 2818 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: 2819 return NVPTXISD::Tex2DArrayFloatFloatLevel; 2820 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: 2821 return NVPTXISD::Tex2DArrayFloatFloatGrad; 2822 case Intrinsic::nvvm_tex_2d_array_v4s32_s32: 2823 return NVPTXISD::Tex2DArrayS32S32; 2824 case Intrinsic::nvvm_tex_2d_array_v4s32_f32: 2825 return NVPTXISD::Tex2DArrayS32Float; 2826 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: 2827 return NVPTXISD::Tex2DArrayS32FloatLevel; 2828 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: 2829 return NVPTXISD::Tex2DArrayS32FloatGrad; 2830 case Intrinsic::nvvm_tex_2d_array_v4u32_s32: 2831 return NVPTXISD::Tex2DArrayU32S32; 2832 case Intrinsic::nvvm_tex_2d_array_v4u32_f32: 2833 return NVPTXISD::Tex2DArrayU32Float; 2834 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: 2835 return NVPTXISD::Tex2DArrayU32FloatLevel; 2836 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: 2837 return NVPTXISD::Tex2DArrayU32FloatGrad; 2838 2839 case Intrinsic::nvvm_tex_3d_v4f32_s32: 2840 return NVPTXISD::Tex3DFloatS32; 2841 case Intrinsic::nvvm_tex_3d_v4f32_f32: 2842 return NVPTXISD::Tex3DFloatFloat; 2843 case Intrinsic::nvvm_tex_3d_level_v4f32_f32: 2844 return NVPTXISD::Tex3DFloatFloatLevel; 2845 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: 2846 return NVPTXISD::Tex3DFloatFloatGrad; 2847 case Intrinsic::nvvm_tex_3d_v4s32_s32: 2848 return NVPTXISD::Tex3DS32S32; 2849 case Intrinsic::nvvm_tex_3d_v4s32_f32: 2850 return NVPTXISD::Tex3DS32Float; 2851 case Intrinsic::nvvm_tex_3d_level_v4s32_f32: 2852 return NVPTXISD::Tex3DS32FloatLevel; 2853 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: 2854 return NVPTXISD::Tex3DS32FloatGrad; 2855 case Intrinsic::nvvm_tex_3d_v4u32_s32: 2856 return NVPTXISD::Tex3DU32S32; 2857 case Intrinsic::nvvm_tex_3d_v4u32_f32: 2858 return NVPTXISD::Tex3DU32Float; 2859 case Intrinsic::nvvm_tex_3d_level_v4u32_f32: 2860 return NVPTXISD::Tex3DU32FloatLevel; 2861 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: 2862 return NVPTXISD::Tex3DU32FloatGrad; 2863 2864 case Intrinsic::nvvm_tex_cube_v4f32_f32: 2865 return NVPTXISD::TexCubeFloatFloat; 2866 case Intrinsic::nvvm_tex_cube_level_v4f32_f32: 2867 return NVPTXISD::TexCubeFloatFloatLevel; 2868 case Intrinsic::nvvm_tex_cube_v4s32_f32: 2869 return NVPTXISD::TexCubeS32Float; 2870 case Intrinsic::nvvm_tex_cube_level_v4s32_f32: 2871 return NVPTXISD::TexCubeS32FloatLevel; 2872 case Intrinsic::nvvm_tex_cube_v4u32_f32: 2873 return NVPTXISD::TexCubeU32Float; 2874 case Intrinsic::nvvm_tex_cube_level_v4u32_f32: 2875 return NVPTXISD::TexCubeU32FloatLevel; 2876 2877 case Intrinsic::nvvm_tex_cube_array_v4f32_f32: 2878 return NVPTXISD::TexCubeArrayFloatFloat; 2879 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: 2880 return NVPTXISD::TexCubeArrayFloatFloatLevel; 2881 case Intrinsic::nvvm_tex_cube_array_v4s32_f32: 2882 return NVPTXISD::TexCubeArrayS32Float; 2883 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: 2884 return NVPTXISD::TexCubeArrayS32FloatLevel; 2885 case Intrinsic::nvvm_tex_cube_array_v4u32_f32: 2886 return NVPTXISD::TexCubeArrayU32Float; 2887 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: 2888 return NVPTXISD::TexCubeArrayU32FloatLevel; 2889 2890 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: 2891 return NVPTXISD::Tld4R2DFloatFloat; 2892 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: 2893 return NVPTXISD::Tld4G2DFloatFloat; 2894 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: 2895 return NVPTXISD::Tld4B2DFloatFloat; 2896 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: 2897 return NVPTXISD::Tld4A2DFloatFloat; 2898 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: 2899 return NVPTXISD::Tld4R2DS64Float; 2900 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: 2901 return NVPTXISD::Tld4G2DS64Float; 2902 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: 2903 return NVPTXISD::Tld4B2DS64Float; 2904 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: 2905 return NVPTXISD::Tld4A2DS64Float; 2906 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: 2907 return NVPTXISD::Tld4R2DU64Float; 2908 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: 2909 return NVPTXISD::Tld4G2DU64Float; 2910 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: 2911 return NVPTXISD::Tld4B2DU64Float; 2912 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: 2913 return NVPTXISD::Tld4A2DU64Float; 2914 2915 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: 2916 return NVPTXISD::TexUnified1DFloatS32; 2917 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: 2918 return NVPTXISD::TexUnified1DFloatFloat; 2919 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: 2920 return NVPTXISD::TexUnified1DFloatFloatLevel; 2921 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: 2922 return NVPTXISD::TexUnified1DFloatFloatGrad; 2923 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: 2924 return NVPTXISD::TexUnified1DS32S32; 2925 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: 2926 return NVPTXISD::TexUnified1DS32Float; 2927 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: 2928 return NVPTXISD::TexUnified1DS32FloatLevel; 2929 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: 2930 return NVPTXISD::TexUnified1DS32FloatGrad; 2931 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: 2932 return NVPTXISD::TexUnified1DU32S32; 2933 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: 2934 return NVPTXISD::TexUnified1DU32Float; 2935 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: 2936 return NVPTXISD::TexUnified1DU32FloatLevel; 2937 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: 2938 return NVPTXISD::TexUnified1DU32FloatGrad; 2939 2940 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: 2941 return NVPTXISD::TexUnified1DArrayFloatS32; 2942 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: 2943 return NVPTXISD::TexUnified1DArrayFloatFloat; 2944 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: 2945 return NVPTXISD::TexUnified1DArrayFloatFloatLevel; 2946 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: 2947 return NVPTXISD::TexUnified1DArrayFloatFloatGrad; 2948 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: 2949 return NVPTXISD::TexUnified1DArrayS32S32; 2950 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: 2951 return NVPTXISD::TexUnified1DArrayS32Float; 2952 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: 2953 return NVPTXISD::TexUnified1DArrayS32FloatLevel; 2954 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: 2955 return NVPTXISD::TexUnified1DArrayS32FloatGrad; 2956 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: 2957 return NVPTXISD::TexUnified1DArrayU32S32; 2958 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: 2959 return NVPTXISD::TexUnified1DArrayU32Float; 2960 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: 2961 return NVPTXISD::TexUnified1DArrayU32FloatLevel; 2962 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: 2963 return NVPTXISD::TexUnified1DArrayU32FloatGrad; 2964 2965 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: 2966 return NVPTXISD::TexUnified2DFloatS32; 2967 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: 2968 return NVPTXISD::TexUnified2DFloatFloat; 2969 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: 2970 return NVPTXISD::TexUnified2DFloatFloatLevel; 2971 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: 2972 return NVPTXISD::TexUnified2DFloatFloatGrad; 2973 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: 2974 return NVPTXISD::TexUnified2DS32S32; 2975 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: 2976 return NVPTXISD::TexUnified2DS32Float; 2977 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: 2978 return NVPTXISD::TexUnified2DS32FloatLevel; 2979 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: 2980 return NVPTXISD::TexUnified2DS32FloatGrad; 2981 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: 2982 return NVPTXISD::TexUnified2DU32S32; 2983 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: 2984 return NVPTXISD::TexUnified2DU32Float; 2985 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: 2986 return NVPTXISD::TexUnified2DU32FloatLevel; 2987 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: 2988 return NVPTXISD::TexUnified2DU32FloatGrad; 2989 2990 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: 2991 return NVPTXISD::TexUnified2DArrayFloatS32; 2992 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: 2993 return NVPTXISD::TexUnified2DArrayFloatFloat; 2994 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: 2995 return NVPTXISD::TexUnified2DArrayFloatFloatLevel; 2996 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: 2997 return NVPTXISD::TexUnified2DArrayFloatFloatGrad; 2998 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: 2999 return NVPTXISD::TexUnified2DArrayS32S32; 3000 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: 3001 return NVPTXISD::TexUnified2DArrayS32Float; 3002 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: 3003 return NVPTXISD::TexUnified2DArrayS32FloatLevel; 3004 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: 3005 return NVPTXISD::TexUnified2DArrayS32FloatGrad; 3006 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: 3007 return NVPTXISD::TexUnified2DArrayU32S32; 3008 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: 3009 return NVPTXISD::TexUnified2DArrayU32Float; 3010 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: 3011 return NVPTXISD::TexUnified2DArrayU32FloatLevel; 3012 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: 3013 return NVPTXISD::TexUnified2DArrayU32FloatGrad; 3014 3015 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: 3016 return NVPTXISD::TexUnified3DFloatS32; 3017 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: 3018 return NVPTXISD::TexUnified3DFloatFloat; 3019 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: 3020 return NVPTXISD::TexUnified3DFloatFloatLevel; 3021 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: 3022 return NVPTXISD::TexUnified3DFloatFloatGrad; 3023 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: 3024 return NVPTXISD::TexUnified3DS32S32; 3025 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: 3026 return NVPTXISD::TexUnified3DS32Float; 3027 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: 3028 return NVPTXISD::TexUnified3DS32FloatLevel; 3029 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: 3030 return NVPTXISD::TexUnified3DS32FloatGrad; 3031 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: 3032 return NVPTXISD::TexUnified3DU32S32; 3033 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: 3034 return NVPTXISD::TexUnified3DU32Float; 3035 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: 3036 return NVPTXISD::TexUnified3DU32FloatLevel; 3037 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: 3038 return NVPTXISD::TexUnified3DU32FloatGrad; 3039 3040 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: 3041 return NVPTXISD::TexUnifiedCubeFloatFloat; 3042 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: 3043 return NVPTXISD::TexUnifiedCubeFloatFloatLevel; 3044 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: 3045 return NVPTXISD::TexUnifiedCubeS32Float; 3046 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: 3047 return NVPTXISD::TexUnifiedCubeS32FloatLevel; 3048 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: 3049 return NVPTXISD::TexUnifiedCubeU32Float; 3050 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: 3051 return NVPTXISD::TexUnifiedCubeU32FloatLevel; 3052 3053 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: 3054 return NVPTXISD::TexUnifiedCubeArrayFloatFloat; 3055 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: 3056 return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel; 3057 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: 3058 return NVPTXISD::TexUnifiedCubeArrayS32Float; 3059 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: 3060 return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel; 3061 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: 3062 return NVPTXISD::TexUnifiedCubeArrayU32Float; 3063 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: 3064 return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel; 3065 3066 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: 3067 return NVPTXISD::Tld4UnifiedR2DFloatFloat; 3068 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: 3069 return NVPTXISD::Tld4UnifiedG2DFloatFloat; 3070 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: 3071 return NVPTXISD::Tld4UnifiedB2DFloatFloat; 3072 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: 3073 return NVPTXISD::Tld4UnifiedA2DFloatFloat; 3074 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: 3075 return NVPTXISD::Tld4UnifiedR2DS64Float; 3076 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: 3077 return NVPTXISD::Tld4UnifiedG2DS64Float; 3078 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: 3079 return NVPTXISD::Tld4UnifiedB2DS64Float; 3080 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: 3081 return NVPTXISD::Tld4UnifiedA2DS64Float; 3082 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: 3083 return NVPTXISD::Tld4UnifiedR2DU64Float; 3084 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: 3085 return NVPTXISD::Tld4UnifiedG2DU64Float; 3086 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: 3087 return NVPTXISD::Tld4UnifiedB2DU64Float; 3088 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: 3089 return NVPTXISD::Tld4UnifiedA2DU64Float; 3090 } 3091 } 3092 3093 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) { 3094 switch (Intrinsic) { 3095 default: 3096 return 0; 3097 case Intrinsic::nvvm_suld_1d_i8_clamp: 3098 return NVPTXISD::Suld1DI8Clamp; 3099 case Intrinsic::nvvm_suld_1d_i16_clamp: 3100 return NVPTXISD::Suld1DI16Clamp; 3101 case Intrinsic::nvvm_suld_1d_i32_clamp: 3102 return NVPTXISD::Suld1DI32Clamp; 3103 case Intrinsic::nvvm_suld_1d_i64_clamp: 3104 return NVPTXISD::Suld1DI64Clamp; 3105 case Intrinsic::nvvm_suld_1d_v2i8_clamp: 3106 return NVPTXISD::Suld1DV2I8Clamp; 3107 case Intrinsic::nvvm_suld_1d_v2i16_clamp: 3108 return NVPTXISD::Suld1DV2I16Clamp; 3109 case Intrinsic::nvvm_suld_1d_v2i32_clamp: 3110 return NVPTXISD::Suld1DV2I32Clamp; 3111 case Intrinsic::nvvm_suld_1d_v2i64_clamp: 3112 return NVPTXISD::Suld1DV2I64Clamp; 3113 case Intrinsic::nvvm_suld_1d_v4i8_clamp: 3114 return NVPTXISD::Suld1DV4I8Clamp; 3115 case Intrinsic::nvvm_suld_1d_v4i16_clamp: 3116 return NVPTXISD::Suld1DV4I16Clamp; 3117 case Intrinsic::nvvm_suld_1d_v4i32_clamp: 3118 return NVPTXISD::Suld1DV4I32Clamp; 3119 case Intrinsic::nvvm_suld_1d_array_i8_clamp: 3120 return NVPTXISD::Suld1DArrayI8Clamp; 3121 case Intrinsic::nvvm_suld_1d_array_i16_clamp: 3122 return NVPTXISD::Suld1DArrayI16Clamp; 3123 case Intrinsic::nvvm_suld_1d_array_i32_clamp: 3124 return NVPTXISD::Suld1DArrayI32Clamp; 3125 case Intrinsic::nvvm_suld_1d_array_i64_clamp: 3126 return NVPTXISD::Suld1DArrayI64Clamp; 3127 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: 3128 return NVPTXISD::Suld1DArrayV2I8Clamp; 3129 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: 3130 return NVPTXISD::Suld1DArrayV2I16Clamp; 3131 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: 3132 return NVPTXISD::Suld1DArrayV2I32Clamp; 3133 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: 3134 return NVPTXISD::Suld1DArrayV2I64Clamp; 3135 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: 3136 return NVPTXISD::Suld1DArrayV4I8Clamp; 3137 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: 3138 return NVPTXISD::Suld1DArrayV4I16Clamp; 3139 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: 3140 return NVPTXISD::Suld1DArrayV4I32Clamp; 3141 case Intrinsic::nvvm_suld_2d_i8_clamp: 3142 return NVPTXISD::Suld2DI8Clamp; 3143 case Intrinsic::nvvm_suld_2d_i16_clamp: 3144 return NVPTXISD::Suld2DI16Clamp; 3145 case Intrinsic::nvvm_suld_2d_i32_clamp: 3146 return NVPTXISD::Suld2DI32Clamp; 3147 case Intrinsic::nvvm_suld_2d_i64_clamp: 3148 return NVPTXISD::Suld2DI64Clamp; 3149 case Intrinsic::nvvm_suld_2d_v2i8_clamp: 3150 return NVPTXISD::Suld2DV2I8Clamp; 3151 case Intrinsic::nvvm_suld_2d_v2i16_clamp: 3152 return NVPTXISD::Suld2DV2I16Clamp; 3153 case Intrinsic::nvvm_suld_2d_v2i32_clamp: 3154 return NVPTXISD::Suld2DV2I32Clamp; 3155 case Intrinsic::nvvm_suld_2d_v2i64_clamp: 3156 return NVPTXISD::Suld2DV2I64Clamp; 3157 case Intrinsic::nvvm_suld_2d_v4i8_clamp: 3158 return NVPTXISD::Suld2DV4I8Clamp; 3159 case Intrinsic::nvvm_suld_2d_v4i16_clamp: 3160 return NVPTXISD::Suld2DV4I16Clamp; 3161 case Intrinsic::nvvm_suld_2d_v4i32_clamp: 3162 return NVPTXISD::Suld2DV4I32Clamp; 3163 case Intrinsic::nvvm_suld_2d_array_i8_clamp: 3164 return NVPTXISD::Suld2DArrayI8Clamp; 3165 case Intrinsic::nvvm_suld_2d_array_i16_clamp: 3166 return NVPTXISD::Suld2DArrayI16Clamp; 3167 case Intrinsic::nvvm_suld_2d_array_i32_clamp: 3168 return NVPTXISD::Suld2DArrayI32Clamp; 3169 case Intrinsic::nvvm_suld_2d_array_i64_clamp: 3170 return NVPTXISD::Suld2DArrayI64Clamp; 3171 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: 3172 return NVPTXISD::Suld2DArrayV2I8Clamp; 3173 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: 3174 return NVPTXISD::Suld2DArrayV2I16Clamp; 3175 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: 3176 return NVPTXISD::Suld2DArrayV2I32Clamp; 3177 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: 3178 return NVPTXISD::Suld2DArrayV2I64Clamp; 3179 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: 3180 return NVPTXISD::Suld2DArrayV4I8Clamp; 3181 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: 3182 return NVPTXISD::Suld2DArrayV4I16Clamp; 3183 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: 3184 return NVPTXISD::Suld2DArrayV4I32Clamp; 3185 case Intrinsic::nvvm_suld_3d_i8_clamp: 3186 return NVPTXISD::Suld3DI8Clamp; 3187 case Intrinsic::nvvm_suld_3d_i16_clamp: 3188 return NVPTXISD::Suld3DI16Clamp; 3189 case Intrinsic::nvvm_suld_3d_i32_clamp: 3190 return NVPTXISD::Suld3DI32Clamp; 3191 case Intrinsic::nvvm_suld_3d_i64_clamp: 3192 return NVPTXISD::Suld3DI64Clamp; 3193 case Intrinsic::nvvm_suld_3d_v2i8_clamp: 3194 return NVPTXISD::Suld3DV2I8Clamp; 3195 case Intrinsic::nvvm_suld_3d_v2i16_clamp: 3196 return NVPTXISD::Suld3DV2I16Clamp; 3197 case Intrinsic::nvvm_suld_3d_v2i32_clamp: 3198 return NVPTXISD::Suld3DV2I32Clamp; 3199 case Intrinsic::nvvm_suld_3d_v2i64_clamp: 3200 return NVPTXISD::Suld3DV2I64Clamp; 3201 case Intrinsic::nvvm_suld_3d_v4i8_clamp: 3202 return NVPTXISD::Suld3DV4I8Clamp; 3203 case Intrinsic::nvvm_suld_3d_v4i16_clamp: 3204 return NVPTXISD::Suld3DV4I16Clamp; 3205 case Intrinsic::nvvm_suld_3d_v4i32_clamp: 3206 return NVPTXISD::Suld3DV4I32Clamp; 3207 case Intrinsic::nvvm_suld_1d_i8_trap: 3208 return NVPTXISD::Suld1DI8Trap; 3209 case Intrinsic::nvvm_suld_1d_i16_trap: 3210 return NVPTXISD::Suld1DI16Trap; 3211 case Intrinsic::nvvm_suld_1d_i32_trap: 3212 return NVPTXISD::Suld1DI32Trap; 3213 case Intrinsic::nvvm_suld_1d_i64_trap: 3214 return NVPTXISD::Suld1DI64Trap; 3215 case Intrinsic::nvvm_suld_1d_v2i8_trap: 3216 return NVPTXISD::Suld1DV2I8Trap; 3217 case Intrinsic::nvvm_suld_1d_v2i16_trap: 3218 return NVPTXISD::Suld1DV2I16Trap; 3219 case Intrinsic::nvvm_suld_1d_v2i32_trap: 3220 return NVPTXISD::Suld1DV2I32Trap; 3221 case Intrinsic::nvvm_suld_1d_v2i64_trap: 3222 return NVPTXISD::Suld1DV2I64Trap; 3223 case Intrinsic::nvvm_suld_1d_v4i8_trap: 3224 return NVPTXISD::Suld1DV4I8Trap; 3225 case Intrinsic::nvvm_suld_1d_v4i16_trap: 3226 return NVPTXISD::Suld1DV4I16Trap; 3227 case Intrinsic::nvvm_suld_1d_v4i32_trap: 3228 return NVPTXISD::Suld1DV4I32Trap; 3229 case Intrinsic::nvvm_suld_1d_array_i8_trap: 3230 return NVPTXISD::Suld1DArrayI8Trap; 3231 case Intrinsic::nvvm_suld_1d_array_i16_trap: 3232 return NVPTXISD::Suld1DArrayI16Trap; 3233 case Intrinsic::nvvm_suld_1d_array_i32_trap: 3234 return NVPTXISD::Suld1DArrayI32Trap; 3235 case Intrinsic::nvvm_suld_1d_array_i64_trap: 3236 return NVPTXISD::Suld1DArrayI64Trap; 3237 case Intrinsic::nvvm_suld_1d_array_v2i8_trap: 3238 return NVPTXISD::Suld1DArrayV2I8Trap; 3239 case Intrinsic::nvvm_suld_1d_array_v2i16_trap: 3240 return NVPTXISD::Suld1DArrayV2I16Trap; 3241 case Intrinsic::nvvm_suld_1d_array_v2i32_trap: 3242 return NVPTXISD::Suld1DArrayV2I32Trap; 3243 case Intrinsic::nvvm_suld_1d_array_v2i64_trap: 3244 return NVPTXISD::Suld1DArrayV2I64Trap; 3245 case Intrinsic::nvvm_suld_1d_array_v4i8_trap: 3246 return NVPTXISD::Suld1DArrayV4I8Trap; 3247 case Intrinsic::nvvm_suld_1d_array_v4i16_trap: 3248 return NVPTXISD::Suld1DArrayV4I16Trap; 3249 case Intrinsic::nvvm_suld_1d_array_v4i32_trap: 3250 return NVPTXISD::Suld1DArrayV4I32Trap; 3251 case Intrinsic::nvvm_suld_2d_i8_trap: 3252 return NVPTXISD::Suld2DI8Trap; 3253 case Intrinsic::nvvm_suld_2d_i16_trap: 3254 return NVPTXISD::Suld2DI16Trap; 3255 case Intrinsic::nvvm_suld_2d_i32_trap: 3256 return NVPTXISD::Suld2DI32Trap; 3257 case Intrinsic::nvvm_suld_2d_i64_trap: 3258 return NVPTXISD::Suld2DI64Trap; 3259 case Intrinsic::nvvm_suld_2d_v2i8_trap: 3260 return NVPTXISD::Suld2DV2I8Trap; 3261 case Intrinsic::nvvm_suld_2d_v2i16_trap: 3262 return NVPTXISD::Suld2DV2I16Trap; 3263 case Intrinsic::nvvm_suld_2d_v2i32_trap: 3264 return NVPTXISD::Suld2DV2I32Trap; 3265 case Intrinsic::nvvm_suld_2d_v2i64_trap: 3266 return NVPTXISD::Suld2DV2I64Trap; 3267 case Intrinsic::nvvm_suld_2d_v4i8_trap: 3268 return NVPTXISD::Suld2DV4I8Trap; 3269 case Intrinsic::nvvm_suld_2d_v4i16_trap: 3270 return NVPTXISD::Suld2DV4I16Trap; 3271 case Intrinsic::nvvm_suld_2d_v4i32_trap: 3272 return NVPTXISD::Suld2DV4I32Trap; 3273 case Intrinsic::nvvm_suld_2d_array_i8_trap: 3274 return NVPTXISD::Suld2DArrayI8Trap; 3275 case Intrinsic::nvvm_suld_2d_array_i16_trap: 3276 return NVPTXISD::Suld2DArrayI16Trap; 3277 case Intrinsic::nvvm_suld_2d_array_i32_trap: 3278 return NVPTXISD::Suld2DArrayI32Trap; 3279 case Intrinsic::nvvm_suld_2d_array_i64_trap: 3280 return NVPTXISD::Suld2DArrayI64Trap; 3281 case Intrinsic::nvvm_suld_2d_array_v2i8_trap: 3282 return NVPTXISD::Suld2DArrayV2I8Trap; 3283 case Intrinsic::nvvm_suld_2d_array_v2i16_trap: 3284 return NVPTXISD::Suld2DArrayV2I16Trap; 3285 case Intrinsic::nvvm_suld_2d_array_v2i32_trap: 3286 return NVPTXISD::Suld2DArrayV2I32Trap; 3287 case Intrinsic::nvvm_suld_2d_array_v2i64_trap: 3288 return NVPTXISD::Suld2DArrayV2I64Trap; 3289 case Intrinsic::nvvm_suld_2d_array_v4i8_trap: 3290 return NVPTXISD::Suld2DArrayV4I8Trap; 3291 case Intrinsic::nvvm_suld_2d_array_v4i16_trap: 3292 return NVPTXISD::Suld2DArrayV4I16Trap; 3293 case Intrinsic::nvvm_suld_2d_array_v4i32_trap: 3294 return NVPTXISD::Suld2DArrayV4I32Trap; 3295 case Intrinsic::nvvm_suld_3d_i8_trap: 3296 return NVPTXISD::Suld3DI8Trap; 3297 case Intrinsic::nvvm_suld_3d_i16_trap: 3298 return NVPTXISD::Suld3DI16Trap; 3299 case Intrinsic::nvvm_suld_3d_i32_trap: 3300 return NVPTXISD::Suld3DI32Trap; 3301 case Intrinsic::nvvm_suld_3d_i64_trap: 3302 return NVPTXISD::Suld3DI64Trap; 3303 case Intrinsic::nvvm_suld_3d_v2i8_trap: 3304 return NVPTXISD::Suld3DV2I8Trap; 3305 case Intrinsic::nvvm_suld_3d_v2i16_trap: 3306 return NVPTXISD::Suld3DV2I16Trap; 3307 case Intrinsic::nvvm_suld_3d_v2i32_trap: 3308 return NVPTXISD::Suld3DV2I32Trap; 3309 case Intrinsic::nvvm_suld_3d_v2i64_trap: 3310 return NVPTXISD::Suld3DV2I64Trap; 3311 case Intrinsic::nvvm_suld_3d_v4i8_trap: 3312 return NVPTXISD::Suld3DV4I8Trap; 3313 case Intrinsic::nvvm_suld_3d_v4i16_trap: 3314 return NVPTXISD::Suld3DV4I16Trap; 3315 case Intrinsic::nvvm_suld_3d_v4i32_trap: 3316 return NVPTXISD::Suld3DV4I32Trap; 3317 case Intrinsic::nvvm_suld_1d_i8_zero: 3318 return NVPTXISD::Suld1DI8Zero; 3319 case Intrinsic::nvvm_suld_1d_i16_zero: 3320 return NVPTXISD::Suld1DI16Zero; 3321 case Intrinsic::nvvm_suld_1d_i32_zero: 3322 return NVPTXISD::Suld1DI32Zero; 3323 case Intrinsic::nvvm_suld_1d_i64_zero: 3324 return NVPTXISD::Suld1DI64Zero; 3325 case Intrinsic::nvvm_suld_1d_v2i8_zero: 3326 return NVPTXISD::Suld1DV2I8Zero; 3327 case Intrinsic::nvvm_suld_1d_v2i16_zero: 3328 return NVPTXISD::Suld1DV2I16Zero; 3329 case Intrinsic::nvvm_suld_1d_v2i32_zero: 3330 return NVPTXISD::Suld1DV2I32Zero; 3331 case Intrinsic::nvvm_suld_1d_v2i64_zero: 3332 return NVPTXISD::Suld1DV2I64Zero; 3333 case Intrinsic::nvvm_suld_1d_v4i8_zero: 3334 return NVPTXISD::Suld1DV4I8Zero; 3335 case Intrinsic::nvvm_suld_1d_v4i16_zero: 3336 return NVPTXISD::Suld1DV4I16Zero; 3337 case Intrinsic::nvvm_suld_1d_v4i32_zero: 3338 return NVPTXISD::Suld1DV4I32Zero; 3339 case Intrinsic::nvvm_suld_1d_array_i8_zero: 3340 return NVPTXISD::Suld1DArrayI8Zero; 3341 case Intrinsic::nvvm_suld_1d_array_i16_zero: 3342 return NVPTXISD::Suld1DArrayI16Zero; 3343 case Intrinsic::nvvm_suld_1d_array_i32_zero: 3344 return NVPTXISD::Suld1DArrayI32Zero; 3345 case Intrinsic::nvvm_suld_1d_array_i64_zero: 3346 return NVPTXISD::Suld1DArrayI64Zero; 3347 case Intrinsic::nvvm_suld_1d_array_v2i8_zero: 3348 return NVPTXISD::Suld1DArrayV2I8Zero; 3349 case Intrinsic::nvvm_suld_1d_array_v2i16_zero: 3350 return NVPTXISD::Suld1DArrayV2I16Zero; 3351 case Intrinsic::nvvm_suld_1d_array_v2i32_zero: 3352 return NVPTXISD::Suld1DArrayV2I32Zero; 3353 case Intrinsic::nvvm_suld_1d_array_v2i64_zero: 3354 return NVPTXISD::Suld1DArrayV2I64Zero; 3355 case Intrinsic::nvvm_suld_1d_array_v4i8_zero: 3356 return NVPTXISD::Suld1DArrayV4I8Zero; 3357 case Intrinsic::nvvm_suld_1d_array_v4i16_zero: 3358 return NVPTXISD::Suld1DArrayV4I16Zero; 3359 case Intrinsic::nvvm_suld_1d_array_v4i32_zero: 3360 return NVPTXISD::Suld1DArrayV4I32Zero; 3361 case Intrinsic::nvvm_suld_2d_i8_zero: 3362 return NVPTXISD::Suld2DI8Zero; 3363 case Intrinsic::nvvm_suld_2d_i16_zero: 3364 return NVPTXISD::Suld2DI16Zero; 3365 case Intrinsic::nvvm_suld_2d_i32_zero: 3366 return NVPTXISD::Suld2DI32Zero; 3367 case Intrinsic::nvvm_suld_2d_i64_zero: 3368 return NVPTXISD::Suld2DI64Zero; 3369 case Intrinsic::nvvm_suld_2d_v2i8_zero: 3370 return NVPTXISD::Suld2DV2I8Zero; 3371 case Intrinsic::nvvm_suld_2d_v2i16_zero: 3372 return NVPTXISD::Suld2DV2I16Zero; 3373 case Intrinsic::nvvm_suld_2d_v2i32_zero: 3374 return NVPTXISD::Suld2DV2I32Zero; 3375 case Intrinsic::nvvm_suld_2d_v2i64_zero: 3376 return NVPTXISD::Suld2DV2I64Zero; 3377 case Intrinsic::nvvm_suld_2d_v4i8_zero: 3378 return NVPTXISD::Suld2DV4I8Zero; 3379 case Intrinsic::nvvm_suld_2d_v4i16_zero: 3380 return NVPTXISD::Suld2DV4I16Zero; 3381 case Intrinsic::nvvm_suld_2d_v4i32_zero: 3382 return NVPTXISD::Suld2DV4I32Zero; 3383 case Intrinsic::nvvm_suld_2d_array_i8_zero: 3384 return NVPTXISD::Suld2DArrayI8Zero; 3385 case Intrinsic::nvvm_suld_2d_array_i16_zero: 3386 return NVPTXISD::Suld2DArrayI16Zero; 3387 case Intrinsic::nvvm_suld_2d_array_i32_zero: 3388 return NVPTXISD::Suld2DArrayI32Zero; 3389 case Intrinsic::nvvm_suld_2d_array_i64_zero: 3390 return NVPTXISD::Suld2DArrayI64Zero; 3391 case Intrinsic::nvvm_suld_2d_array_v2i8_zero: 3392 return NVPTXISD::Suld2DArrayV2I8Zero; 3393 case Intrinsic::nvvm_suld_2d_array_v2i16_zero: 3394 return NVPTXISD::Suld2DArrayV2I16Zero; 3395 case Intrinsic::nvvm_suld_2d_array_v2i32_zero: 3396 return NVPTXISD::Suld2DArrayV2I32Zero; 3397 case Intrinsic::nvvm_suld_2d_array_v2i64_zero: 3398 return NVPTXISD::Suld2DArrayV2I64Zero; 3399 case Intrinsic::nvvm_suld_2d_array_v4i8_zero: 3400 return NVPTXISD::Suld2DArrayV4I8Zero; 3401 case Intrinsic::nvvm_suld_2d_array_v4i16_zero: 3402 return NVPTXISD::Suld2DArrayV4I16Zero; 3403 case Intrinsic::nvvm_suld_2d_array_v4i32_zero: 3404 return NVPTXISD::Suld2DArrayV4I32Zero; 3405 case Intrinsic::nvvm_suld_3d_i8_zero: 3406 return NVPTXISD::Suld3DI8Zero; 3407 case Intrinsic::nvvm_suld_3d_i16_zero: 3408 return NVPTXISD::Suld3DI16Zero; 3409 case Intrinsic::nvvm_suld_3d_i32_zero: 3410 return NVPTXISD::Suld3DI32Zero; 3411 case Intrinsic::nvvm_suld_3d_i64_zero: 3412 return NVPTXISD::Suld3DI64Zero; 3413 case Intrinsic::nvvm_suld_3d_v2i8_zero: 3414 return NVPTXISD::Suld3DV2I8Zero; 3415 case Intrinsic::nvvm_suld_3d_v2i16_zero: 3416 return NVPTXISD::Suld3DV2I16Zero; 3417 case Intrinsic::nvvm_suld_3d_v2i32_zero: 3418 return NVPTXISD::Suld3DV2I32Zero; 3419 case Intrinsic::nvvm_suld_3d_v2i64_zero: 3420 return NVPTXISD::Suld3DV2I64Zero; 3421 case Intrinsic::nvvm_suld_3d_v4i8_zero: 3422 return NVPTXISD::Suld3DV4I8Zero; 3423 case Intrinsic::nvvm_suld_3d_v4i16_zero: 3424 return NVPTXISD::Suld3DV4I16Zero; 3425 case Intrinsic::nvvm_suld_3d_v4i32_zero: 3426 return NVPTXISD::Suld3DV4I32Zero; 3427 } 3428 } 3429 3430 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as 3431 // TgtMemIntrinsic 3432 // because we need the information that is only available in the "Value" type 3433 // of destination 3434 // pointer. In particular, the address space information. 3435 bool NVPTXTargetLowering::getTgtMemIntrinsic( 3436 IntrinsicInfo &Info, const CallInst &I, 3437 MachineFunction &MF, unsigned Intrinsic) const { 3438 switch (Intrinsic) { 3439 default: 3440 return false; 3441 case Intrinsic::nvvm_match_all_sync_i32p: 3442 case Intrinsic::nvvm_match_all_sync_i64p: 3443 Info.opc = ISD::INTRINSIC_W_CHAIN; 3444 // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute 3445 // in order to model data exchange with other threads, but perform no real 3446 // memory accesses. 3447 Info.memVT = MVT::i1; 3448 3449 // Our result depends on both our and other thread's arguments. 3450 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 3451 return true; 3452 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col: 3453 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row: 3454 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride: 3455 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride: 3456 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col: 3457 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row: 3458 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride: 3459 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride: 3460 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col: 3461 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row: 3462 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride: 3463 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride: 3464 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col: 3465 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row: 3466 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride: 3467 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride: 3468 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col: 3469 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row: 3470 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride: 3471 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride: 3472 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col: 3473 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row: 3474 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride: 3475 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: { 3476 Info.opc = ISD::INTRINSIC_W_CHAIN; 3477 Info.memVT = MVT::v8f16; 3478 Info.ptrVal = I.getArgOperand(0); 3479 Info.offset = 0; 3480 Info.flags = MachineMemOperand::MOLoad; 3481 Info.align = Align(16); 3482 return true; 3483 } 3484 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col: 3485 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride: 3486 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride: 3487 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col: 3488 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row: 3489 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride: 3490 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride: 3491 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row: 3492 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col: 3493 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride: 3494 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride: 3495 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col: 3496 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row: 3497 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride: 3498 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride: 3499 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: { 3500 Info.opc = ISD::INTRINSIC_W_CHAIN; 3501 Info.memVT = MVT::v2i32; 3502 Info.ptrVal = I.getArgOperand(0); 3503 Info.offset = 0; 3504 Info.flags = MachineMemOperand::MOLoad; 3505 Info.align = Align(8); 3506 return true; 3507 } 3508 3509 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col: 3510 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride: 3511 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride: 3512 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col: 3513 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row: 3514 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride: 3515 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride: 3516 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row: 3517 3518 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col: 3519 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride: 3520 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride: 3521 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col: 3522 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row: 3523 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride: 3524 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride: 3525 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: { 3526 Info.opc = ISD::INTRINSIC_W_CHAIN; 3527 Info.memVT = MVT::v4i32; 3528 Info.ptrVal = I.getArgOperand(0); 3529 Info.offset = 0; 3530 Info.flags = MachineMemOperand::MOLoad; 3531 Info.align = Align(16); 3532 return true; 3533 } 3534 3535 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col: 3536 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride: 3537 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride: 3538 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col: 3539 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row: 3540 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride: 3541 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride: 3542 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row: 3543 3544 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col: 3545 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride: 3546 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride: 3547 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col: 3548 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row: 3549 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride: 3550 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride: 3551 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row: 3552 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row: 3553 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride: 3554 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col: 3555 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride: 3556 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row: 3557 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride: 3558 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride: 3559 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row: 3560 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col: 3561 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride: 3562 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride: 3563 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: { 3564 Info.opc = ISD::INTRINSIC_W_CHAIN; 3565 Info.memVT = MVT::i32; 3566 Info.ptrVal = I.getArgOperand(0); 3567 Info.offset = 0; 3568 Info.flags = MachineMemOperand::MOLoad; 3569 Info.align = Align(4); 3570 return true; 3571 } 3572 3573 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col: 3574 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row: 3575 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride: 3576 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride: 3577 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col: 3578 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row: 3579 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride: 3580 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride: 3581 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col: 3582 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row: 3583 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride: 3584 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: { 3585 Info.opc = ISD::INTRINSIC_W_CHAIN; 3586 Info.memVT = MVT::v4f16; 3587 Info.ptrVal = I.getArgOperand(0); 3588 Info.offset = 0; 3589 Info.flags = MachineMemOperand::MOLoad; 3590 Info.align = Align(16); 3591 return true; 3592 } 3593 3594 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col: 3595 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row: 3596 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride: 3597 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride: 3598 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col: 3599 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row: 3600 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride: 3601 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride: 3602 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col: 3603 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row: 3604 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride: 3605 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: { 3606 Info.opc = ISD::INTRINSIC_W_CHAIN; 3607 Info.memVT = MVT::v8f32; 3608 Info.ptrVal = I.getArgOperand(0); 3609 Info.offset = 0; 3610 Info.flags = MachineMemOperand::MOLoad; 3611 Info.align = Align(16); 3612 return true; 3613 } 3614 3615 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col: 3616 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride: 3617 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row: 3618 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride: 3619 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col: 3620 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride: 3621 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row: 3622 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride: 3623 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col: 3624 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride: 3625 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row: 3626 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: { 3627 Info.opc = ISD::INTRINSIC_W_CHAIN; 3628 Info.memVT = MVT::v8i32; 3629 Info.ptrVal = I.getArgOperand(0); 3630 Info.offset = 0; 3631 Info.flags = MachineMemOperand::MOLoad; 3632 Info.align = Align(16); 3633 return true; 3634 } 3635 3636 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col: 3637 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride: 3638 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row: 3639 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride: 3640 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col: 3641 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride: 3642 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row: 3643 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: { 3644 Info.opc = ISD::INTRINSIC_W_CHAIN; 3645 Info.memVT = MVT::v2i32; 3646 Info.ptrVal = I.getArgOperand(0); 3647 Info.offset = 0; 3648 Info.flags = MachineMemOperand::MOLoad; 3649 Info.align = Align(8); 3650 return true; 3651 } 3652 3653 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col: 3654 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row: 3655 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride: 3656 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride: 3657 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col: 3658 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row: 3659 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride: 3660 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride: 3661 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col: 3662 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row: 3663 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride: 3664 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: { 3665 Info.opc = ISD::INTRINSIC_VOID; 3666 Info.memVT = MVT::v4f16; 3667 Info.ptrVal = I.getArgOperand(0); 3668 Info.offset = 0; 3669 Info.flags = MachineMemOperand::MOStore; 3670 Info.align = Align(16); 3671 return true; 3672 } 3673 3674 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col: 3675 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row: 3676 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride: 3677 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride: 3678 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col: 3679 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row: 3680 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride: 3681 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride: 3682 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col: 3683 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row: 3684 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride: 3685 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: { 3686 Info.opc = ISD::INTRINSIC_VOID; 3687 Info.memVT = MVT::v8f32; 3688 Info.ptrVal = I.getArgOperand(0); 3689 Info.offset = 0; 3690 Info.flags = MachineMemOperand::MOStore; 3691 Info.align = Align(16); 3692 return true; 3693 } 3694 3695 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col: 3696 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride: 3697 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row: 3698 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride: 3699 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col: 3700 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride: 3701 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row: 3702 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride: 3703 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col: 3704 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride: 3705 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row: 3706 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: { 3707 Info.opc = ISD::INTRINSIC_VOID; 3708 Info.memVT = MVT::v8i32; 3709 Info.ptrVal = I.getArgOperand(0); 3710 Info.offset = 0; 3711 Info.flags = MachineMemOperand::MOStore; 3712 Info.align = Align(16); 3713 return true; 3714 } 3715 3716 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col: 3717 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride: 3718 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row: 3719 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride: 3720 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col: 3721 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride: 3722 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row: 3723 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: { 3724 Info.opc = ISD::INTRINSIC_VOID; 3725 Info.memVT = MVT::v2i32; 3726 Info.ptrVal = I.getArgOperand(0); 3727 Info.offset = 0; 3728 Info.flags = MachineMemOperand::MOStore; 3729 Info.align = Align(8); 3730 return true; 3731 } 3732 3733 case Intrinsic::nvvm_atomic_load_inc_32: 3734 case Intrinsic::nvvm_atomic_load_dec_32: 3735 3736 case Intrinsic::nvvm_atomic_add_gen_f_cta: 3737 case Intrinsic::nvvm_atomic_add_gen_f_sys: 3738 case Intrinsic::nvvm_atomic_add_gen_i_cta: 3739 case Intrinsic::nvvm_atomic_add_gen_i_sys: 3740 case Intrinsic::nvvm_atomic_and_gen_i_cta: 3741 case Intrinsic::nvvm_atomic_and_gen_i_sys: 3742 case Intrinsic::nvvm_atomic_cas_gen_i_cta: 3743 case Intrinsic::nvvm_atomic_cas_gen_i_sys: 3744 case Intrinsic::nvvm_atomic_dec_gen_i_cta: 3745 case Intrinsic::nvvm_atomic_dec_gen_i_sys: 3746 case Intrinsic::nvvm_atomic_inc_gen_i_cta: 3747 case Intrinsic::nvvm_atomic_inc_gen_i_sys: 3748 case Intrinsic::nvvm_atomic_max_gen_i_cta: 3749 case Intrinsic::nvvm_atomic_max_gen_i_sys: 3750 case Intrinsic::nvvm_atomic_min_gen_i_cta: 3751 case Intrinsic::nvvm_atomic_min_gen_i_sys: 3752 case Intrinsic::nvvm_atomic_or_gen_i_cta: 3753 case Intrinsic::nvvm_atomic_or_gen_i_sys: 3754 case Intrinsic::nvvm_atomic_exch_gen_i_cta: 3755 case Intrinsic::nvvm_atomic_exch_gen_i_sys: 3756 case Intrinsic::nvvm_atomic_xor_gen_i_cta: 3757 case Intrinsic::nvvm_atomic_xor_gen_i_sys: { 3758 auto &DL = I.getModule()->getDataLayout(); 3759 Info.opc = ISD::INTRINSIC_W_CHAIN; 3760 Info.memVT = getValueType(DL, I.getType()); 3761 Info.ptrVal = I.getArgOperand(0); 3762 Info.offset = 0; 3763 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 3764 Info.align.reset(); 3765 return true; 3766 } 3767 3768 case Intrinsic::nvvm_ldu_global_i: 3769 case Intrinsic::nvvm_ldu_global_f: 3770 case Intrinsic::nvvm_ldu_global_p: { 3771 auto &DL = I.getModule()->getDataLayout(); 3772 Info.opc = ISD::INTRINSIC_W_CHAIN; 3773 if (Intrinsic == Intrinsic::nvvm_ldu_global_i) 3774 Info.memVT = getValueType(DL, I.getType()); 3775 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p) 3776 Info.memVT = getPointerTy(DL); 3777 else 3778 Info.memVT = getValueType(DL, I.getType()); 3779 Info.ptrVal = I.getArgOperand(0); 3780 Info.offset = 0; 3781 Info.flags = MachineMemOperand::MOLoad; 3782 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 3783 3784 return true; 3785 } 3786 case Intrinsic::nvvm_ldg_global_i: 3787 case Intrinsic::nvvm_ldg_global_f: 3788 case Intrinsic::nvvm_ldg_global_p: { 3789 auto &DL = I.getModule()->getDataLayout(); 3790 3791 Info.opc = ISD::INTRINSIC_W_CHAIN; 3792 if (Intrinsic == Intrinsic::nvvm_ldg_global_i) 3793 Info.memVT = getValueType(DL, I.getType()); 3794 else if(Intrinsic == Intrinsic::nvvm_ldg_global_p) 3795 Info.memVT = getPointerTy(DL); 3796 else 3797 Info.memVT = getValueType(DL, I.getType()); 3798 Info.ptrVal = I.getArgOperand(0); 3799 Info.offset = 0; 3800 Info.flags = MachineMemOperand::MOLoad; 3801 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 3802 3803 return true; 3804 } 3805 3806 case Intrinsic::nvvm_tex_1d_v4f32_s32: 3807 case Intrinsic::nvvm_tex_1d_v4f32_f32: 3808 case Intrinsic::nvvm_tex_1d_level_v4f32_f32: 3809 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: 3810 case Intrinsic::nvvm_tex_1d_array_v4f32_s32: 3811 case Intrinsic::nvvm_tex_1d_array_v4f32_f32: 3812 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: 3813 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: 3814 case Intrinsic::nvvm_tex_2d_v4f32_s32: 3815 case Intrinsic::nvvm_tex_2d_v4f32_f32: 3816 case Intrinsic::nvvm_tex_2d_level_v4f32_f32: 3817 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: 3818 case Intrinsic::nvvm_tex_2d_array_v4f32_s32: 3819 case Intrinsic::nvvm_tex_2d_array_v4f32_f32: 3820 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: 3821 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: 3822 case Intrinsic::nvvm_tex_3d_v4f32_s32: 3823 case Intrinsic::nvvm_tex_3d_v4f32_f32: 3824 case Intrinsic::nvvm_tex_3d_level_v4f32_f32: 3825 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: 3826 case Intrinsic::nvvm_tex_cube_v4f32_f32: 3827 case Intrinsic::nvvm_tex_cube_level_v4f32_f32: 3828 case Intrinsic::nvvm_tex_cube_array_v4f32_f32: 3829 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: 3830 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: 3831 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: 3832 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: 3833 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: 3834 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: 3835 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: 3836 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: 3837 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: 3838 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: 3839 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: 3840 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: 3841 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: 3842 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: 3843 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: 3844 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: 3845 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: 3846 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: 3847 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: 3848 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: 3849 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: 3850 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: 3851 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: 3852 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: 3853 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: 3854 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: 3855 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: 3856 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: 3857 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: 3858 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: 3859 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: 3860 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: 3861 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: 3862 Info.opc = getOpcForTextureInstr(Intrinsic); 3863 Info.memVT = MVT::v4f32; 3864 Info.ptrVal = nullptr; 3865 Info.offset = 0; 3866 Info.flags = MachineMemOperand::MOLoad; 3867 Info.align = Align(16); 3868 return true; 3869 3870 case Intrinsic::nvvm_tex_1d_v4s32_s32: 3871 case Intrinsic::nvvm_tex_1d_v4s32_f32: 3872 case Intrinsic::nvvm_tex_1d_level_v4s32_f32: 3873 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: 3874 case Intrinsic::nvvm_tex_1d_array_v4s32_s32: 3875 case Intrinsic::nvvm_tex_1d_array_v4s32_f32: 3876 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: 3877 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: 3878 case Intrinsic::nvvm_tex_2d_v4s32_s32: 3879 case Intrinsic::nvvm_tex_2d_v4s32_f32: 3880 case Intrinsic::nvvm_tex_2d_level_v4s32_f32: 3881 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: 3882 case Intrinsic::nvvm_tex_2d_array_v4s32_s32: 3883 case Intrinsic::nvvm_tex_2d_array_v4s32_f32: 3884 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: 3885 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: 3886 case Intrinsic::nvvm_tex_3d_v4s32_s32: 3887 case Intrinsic::nvvm_tex_3d_v4s32_f32: 3888 case Intrinsic::nvvm_tex_3d_level_v4s32_f32: 3889 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: 3890 case Intrinsic::nvvm_tex_cube_v4s32_f32: 3891 case Intrinsic::nvvm_tex_cube_level_v4s32_f32: 3892 case Intrinsic::nvvm_tex_cube_array_v4s32_f32: 3893 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: 3894 case Intrinsic::nvvm_tex_cube_v4u32_f32: 3895 case Intrinsic::nvvm_tex_cube_level_v4u32_f32: 3896 case Intrinsic::nvvm_tex_cube_array_v4u32_f32: 3897 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: 3898 case Intrinsic::nvvm_tex_1d_v4u32_s32: 3899 case Intrinsic::nvvm_tex_1d_v4u32_f32: 3900 case Intrinsic::nvvm_tex_1d_level_v4u32_f32: 3901 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: 3902 case Intrinsic::nvvm_tex_1d_array_v4u32_s32: 3903 case Intrinsic::nvvm_tex_1d_array_v4u32_f32: 3904 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: 3905 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: 3906 case Intrinsic::nvvm_tex_2d_v4u32_s32: 3907 case Intrinsic::nvvm_tex_2d_v4u32_f32: 3908 case Intrinsic::nvvm_tex_2d_level_v4u32_f32: 3909 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: 3910 case Intrinsic::nvvm_tex_2d_array_v4u32_s32: 3911 case Intrinsic::nvvm_tex_2d_array_v4u32_f32: 3912 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: 3913 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: 3914 case Intrinsic::nvvm_tex_3d_v4u32_s32: 3915 case Intrinsic::nvvm_tex_3d_v4u32_f32: 3916 case Intrinsic::nvvm_tex_3d_level_v4u32_f32: 3917 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: 3918 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: 3919 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: 3920 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: 3921 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: 3922 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: 3923 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: 3924 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: 3925 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: 3926 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: 3927 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: 3928 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: 3929 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: 3930 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: 3931 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: 3932 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: 3933 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: 3934 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: 3935 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: 3936 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: 3937 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: 3938 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: 3939 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: 3940 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: 3941 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: 3942 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: 3943 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: 3944 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: 3945 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: 3946 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: 3947 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: 3948 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: 3949 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: 3950 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: 3951 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: 3952 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: 3953 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: 3954 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: 3955 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: 3956 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: 3957 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: 3958 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: 3959 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: 3960 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: 3961 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: 3962 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: 3963 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: 3964 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: 3965 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: 3966 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: 3967 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: 3968 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: 3969 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: 3970 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: 3971 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: 3972 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: 3973 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: 3974 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: 3975 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: 3976 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: 3977 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: 3978 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: 3979 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: 3980 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: 3981 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: 3982 Info.opc = getOpcForTextureInstr(Intrinsic); 3983 Info.memVT = MVT::v4i32; 3984 Info.ptrVal = nullptr; 3985 Info.offset = 0; 3986 Info.flags = MachineMemOperand::MOLoad; 3987 Info.align = Align(16); 3988 return true; 3989 3990 case Intrinsic::nvvm_suld_1d_i8_clamp: 3991 case Intrinsic::nvvm_suld_1d_v2i8_clamp: 3992 case Intrinsic::nvvm_suld_1d_v4i8_clamp: 3993 case Intrinsic::nvvm_suld_1d_array_i8_clamp: 3994 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: 3995 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: 3996 case Intrinsic::nvvm_suld_2d_i8_clamp: 3997 case Intrinsic::nvvm_suld_2d_v2i8_clamp: 3998 case Intrinsic::nvvm_suld_2d_v4i8_clamp: 3999 case Intrinsic::nvvm_suld_2d_array_i8_clamp: 4000 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: 4001 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: 4002 case Intrinsic::nvvm_suld_3d_i8_clamp: 4003 case Intrinsic::nvvm_suld_3d_v2i8_clamp: 4004 case Intrinsic::nvvm_suld_3d_v4i8_clamp: 4005 case Intrinsic::nvvm_suld_1d_i8_trap: 4006 case Intrinsic::nvvm_suld_1d_v2i8_trap: 4007 case Intrinsic::nvvm_suld_1d_v4i8_trap: 4008 case Intrinsic::nvvm_suld_1d_array_i8_trap: 4009 case Intrinsic::nvvm_suld_1d_array_v2i8_trap: 4010 case Intrinsic::nvvm_suld_1d_array_v4i8_trap: 4011 case Intrinsic::nvvm_suld_2d_i8_trap: 4012 case Intrinsic::nvvm_suld_2d_v2i8_trap: 4013 case Intrinsic::nvvm_suld_2d_v4i8_trap: 4014 case Intrinsic::nvvm_suld_2d_array_i8_trap: 4015 case Intrinsic::nvvm_suld_2d_array_v2i8_trap: 4016 case Intrinsic::nvvm_suld_2d_array_v4i8_trap: 4017 case Intrinsic::nvvm_suld_3d_i8_trap: 4018 case Intrinsic::nvvm_suld_3d_v2i8_trap: 4019 case Intrinsic::nvvm_suld_3d_v4i8_trap: 4020 case Intrinsic::nvvm_suld_1d_i8_zero: 4021 case Intrinsic::nvvm_suld_1d_v2i8_zero: 4022 case Intrinsic::nvvm_suld_1d_v4i8_zero: 4023 case Intrinsic::nvvm_suld_1d_array_i8_zero: 4024 case Intrinsic::nvvm_suld_1d_array_v2i8_zero: 4025 case Intrinsic::nvvm_suld_1d_array_v4i8_zero: 4026 case Intrinsic::nvvm_suld_2d_i8_zero: 4027 case Intrinsic::nvvm_suld_2d_v2i8_zero: 4028 case Intrinsic::nvvm_suld_2d_v4i8_zero: 4029 case Intrinsic::nvvm_suld_2d_array_i8_zero: 4030 case Intrinsic::nvvm_suld_2d_array_v2i8_zero: 4031 case Intrinsic::nvvm_suld_2d_array_v4i8_zero: 4032 case Intrinsic::nvvm_suld_3d_i8_zero: 4033 case Intrinsic::nvvm_suld_3d_v2i8_zero: 4034 case Intrinsic::nvvm_suld_3d_v4i8_zero: 4035 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4036 Info.memVT = MVT::i8; 4037 Info.ptrVal = nullptr; 4038 Info.offset = 0; 4039 Info.flags = MachineMemOperand::MOLoad; 4040 Info.align = Align(16); 4041 return true; 4042 4043 case Intrinsic::nvvm_suld_1d_i16_clamp: 4044 case Intrinsic::nvvm_suld_1d_v2i16_clamp: 4045 case Intrinsic::nvvm_suld_1d_v4i16_clamp: 4046 case Intrinsic::nvvm_suld_1d_array_i16_clamp: 4047 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: 4048 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: 4049 case Intrinsic::nvvm_suld_2d_i16_clamp: 4050 case Intrinsic::nvvm_suld_2d_v2i16_clamp: 4051 case Intrinsic::nvvm_suld_2d_v4i16_clamp: 4052 case Intrinsic::nvvm_suld_2d_array_i16_clamp: 4053 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: 4054 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: 4055 case Intrinsic::nvvm_suld_3d_i16_clamp: 4056 case Intrinsic::nvvm_suld_3d_v2i16_clamp: 4057 case Intrinsic::nvvm_suld_3d_v4i16_clamp: 4058 case Intrinsic::nvvm_suld_1d_i16_trap: 4059 case Intrinsic::nvvm_suld_1d_v2i16_trap: 4060 case Intrinsic::nvvm_suld_1d_v4i16_trap: 4061 case Intrinsic::nvvm_suld_1d_array_i16_trap: 4062 case Intrinsic::nvvm_suld_1d_array_v2i16_trap: 4063 case Intrinsic::nvvm_suld_1d_array_v4i16_trap: 4064 case Intrinsic::nvvm_suld_2d_i16_trap: 4065 case Intrinsic::nvvm_suld_2d_v2i16_trap: 4066 case Intrinsic::nvvm_suld_2d_v4i16_trap: 4067 case Intrinsic::nvvm_suld_2d_array_i16_trap: 4068 case Intrinsic::nvvm_suld_2d_array_v2i16_trap: 4069 case Intrinsic::nvvm_suld_2d_array_v4i16_trap: 4070 case Intrinsic::nvvm_suld_3d_i16_trap: 4071 case Intrinsic::nvvm_suld_3d_v2i16_trap: 4072 case Intrinsic::nvvm_suld_3d_v4i16_trap: 4073 case Intrinsic::nvvm_suld_1d_i16_zero: 4074 case Intrinsic::nvvm_suld_1d_v2i16_zero: 4075 case Intrinsic::nvvm_suld_1d_v4i16_zero: 4076 case Intrinsic::nvvm_suld_1d_array_i16_zero: 4077 case Intrinsic::nvvm_suld_1d_array_v2i16_zero: 4078 case Intrinsic::nvvm_suld_1d_array_v4i16_zero: 4079 case Intrinsic::nvvm_suld_2d_i16_zero: 4080 case Intrinsic::nvvm_suld_2d_v2i16_zero: 4081 case Intrinsic::nvvm_suld_2d_v4i16_zero: 4082 case Intrinsic::nvvm_suld_2d_array_i16_zero: 4083 case Intrinsic::nvvm_suld_2d_array_v2i16_zero: 4084 case Intrinsic::nvvm_suld_2d_array_v4i16_zero: 4085 case Intrinsic::nvvm_suld_3d_i16_zero: 4086 case Intrinsic::nvvm_suld_3d_v2i16_zero: 4087 case Intrinsic::nvvm_suld_3d_v4i16_zero: 4088 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4089 Info.memVT = MVT::i16; 4090 Info.ptrVal = nullptr; 4091 Info.offset = 0; 4092 Info.flags = MachineMemOperand::MOLoad; 4093 Info.align = Align(16); 4094 return true; 4095 4096 case Intrinsic::nvvm_suld_1d_i32_clamp: 4097 case Intrinsic::nvvm_suld_1d_v2i32_clamp: 4098 case Intrinsic::nvvm_suld_1d_v4i32_clamp: 4099 case Intrinsic::nvvm_suld_1d_array_i32_clamp: 4100 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: 4101 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: 4102 case Intrinsic::nvvm_suld_2d_i32_clamp: 4103 case Intrinsic::nvvm_suld_2d_v2i32_clamp: 4104 case Intrinsic::nvvm_suld_2d_v4i32_clamp: 4105 case Intrinsic::nvvm_suld_2d_array_i32_clamp: 4106 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: 4107 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: 4108 case Intrinsic::nvvm_suld_3d_i32_clamp: 4109 case Intrinsic::nvvm_suld_3d_v2i32_clamp: 4110 case Intrinsic::nvvm_suld_3d_v4i32_clamp: 4111 case Intrinsic::nvvm_suld_1d_i32_trap: 4112 case Intrinsic::nvvm_suld_1d_v2i32_trap: 4113 case Intrinsic::nvvm_suld_1d_v4i32_trap: 4114 case Intrinsic::nvvm_suld_1d_array_i32_trap: 4115 case Intrinsic::nvvm_suld_1d_array_v2i32_trap: 4116 case Intrinsic::nvvm_suld_1d_array_v4i32_trap: 4117 case Intrinsic::nvvm_suld_2d_i32_trap: 4118 case Intrinsic::nvvm_suld_2d_v2i32_trap: 4119 case Intrinsic::nvvm_suld_2d_v4i32_trap: 4120 case Intrinsic::nvvm_suld_2d_array_i32_trap: 4121 case Intrinsic::nvvm_suld_2d_array_v2i32_trap: 4122 case Intrinsic::nvvm_suld_2d_array_v4i32_trap: 4123 case Intrinsic::nvvm_suld_3d_i32_trap: 4124 case Intrinsic::nvvm_suld_3d_v2i32_trap: 4125 case Intrinsic::nvvm_suld_3d_v4i32_trap: 4126 case Intrinsic::nvvm_suld_1d_i32_zero: 4127 case Intrinsic::nvvm_suld_1d_v2i32_zero: 4128 case Intrinsic::nvvm_suld_1d_v4i32_zero: 4129 case Intrinsic::nvvm_suld_1d_array_i32_zero: 4130 case Intrinsic::nvvm_suld_1d_array_v2i32_zero: 4131 case Intrinsic::nvvm_suld_1d_array_v4i32_zero: 4132 case Intrinsic::nvvm_suld_2d_i32_zero: 4133 case Intrinsic::nvvm_suld_2d_v2i32_zero: 4134 case Intrinsic::nvvm_suld_2d_v4i32_zero: 4135 case Intrinsic::nvvm_suld_2d_array_i32_zero: 4136 case Intrinsic::nvvm_suld_2d_array_v2i32_zero: 4137 case Intrinsic::nvvm_suld_2d_array_v4i32_zero: 4138 case Intrinsic::nvvm_suld_3d_i32_zero: 4139 case Intrinsic::nvvm_suld_3d_v2i32_zero: 4140 case Intrinsic::nvvm_suld_3d_v4i32_zero: 4141 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4142 Info.memVT = MVT::i32; 4143 Info.ptrVal = nullptr; 4144 Info.offset = 0; 4145 Info.flags = MachineMemOperand::MOLoad; 4146 Info.align = Align(16); 4147 return true; 4148 4149 case Intrinsic::nvvm_suld_1d_i64_clamp: 4150 case Intrinsic::nvvm_suld_1d_v2i64_clamp: 4151 case Intrinsic::nvvm_suld_1d_array_i64_clamp: 4152 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: 4153 case Intrinsic::nvvm_suld_2d_i64_clamp: 4154 case Intrinsic::nvvm_suld_2d_v2i64_clamp: 4155 case Intrinsic::nvvm_suld_2d_array_i64_clamp: 4156 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: 4157 case Intrinsic::nvvm_suld_3d_i64_clamp: 4158 case Intrinsic::nvvm_suld_3d_v2i64_clamp: 4159 case Intrinsic::nvvm_suld_1d_i64_trap: 4160 case Intrinsic::nvvm_suld_1d_v2i64_trap: 4161 case Intrinsic::nvvm_suld_1d_array_i64_trap: 4162 case Intrinsic::nvvm_suld_1d_array_v2i64_trap: 4163 case Intrinsic::nvvm_suld_2d_i64_trap: 4164 case Intrinsic::nvvm_suld_2d_v2i64_trap: 4165 case Intrinsic::nvvm_suld_2d_array_i64_trap: 4166 case Intrinsic::nvvm_suld_2d_array_v2i64_trap: 4167 case Intrinsic::nvvm_suld_3d_i64_trap: 4168 case Intrinsic::nvvm_suld_3d_v2i64_trap: 4169 case Intrinsic::nvvm_suld_1d_i64_zero: 4170 case Intrinsic::nvvm_suld_1d_v2i64_zero: 4171 case Intrinsic::nvvm_suld_1d_array_i64_zero: 4172 case Intrinsic::nvvm_suld_1d_array_v2i64_zero: 4173 case Intrinsic::nvvm_suld_2d_i64_zero: 4174 case Intrinsic::nvvm_suld_2d_v2i64_zero: 4175 case Intrinsic::nvvm_suld_2d_array_i64_zero: 4176 case Intrinsic::nvvm_suld_2d_array_v2i64_zero: 4177 case Intrinsic::nvvm_suld_3d_i64_zero: 4178 case Intrinsic::nvvm_suld_3d_v2i64_zero: 4179 Info.opc = getOpcForSurfaceInstr(Intrinsic); 4180 Info.memVT = MVT::i64; 4181 Info.ptrVal = nullptr; 4182 Info.offset = 0; 4183 Info.flags = MachineMemOperand::MOLoad; 4184 Info.align = Align(16); 4185 return true; 4186 } 4187 return false; 4188 } 4189 4190 /// isLegalAddressingMode - Return true if the addressing mode represented 4191 /// by AM is legal for this target, for a load/store of the specified type. 4192 /// Used to guide target specific optimizations, like loop strength reduction 4193 /// (LoopStrengthReduce.cpp) and memory optimization for address mode 4194 /// (CodeGenPrepare.cpp) 4195 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL, 4196 const AddrMode &AM, Type *Ty, 4197 unsigned AS, Instruction *I) const { 4198 // AddrMode - This represents an addressing mode of: 4199 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg 4200 // 4201 // The legal address modes are 4202 // - [avar] 4203 // - [areg] 4204 // - [areg+immoff] 4205 // - [immAddr] 4206 4207 if (AM.BaseGV) { 4208 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale; 4209 } 4210 4211 switch (AM.Scale) { 4212 case 0: // "r", "r+i" or "i" is allowed 4213 break; 4214 case 1: 4215 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed. 4216 return false; 4217 // Otherwise we have r+i. 4218 break; 4219 default: 4220 // No scale > 1 is allowed 4221 return false; 4222 } 4223 return true; 4224 } 4225 4226 //===----------------------------------------------------------------------===// 4227 // NVPTX Inline Assembly Support 4228 //===----------------------------------------------------------------------===// 4229 4230 /// getConstraintType - Given a constraint letter, return the type of 4231 /// constraint it is for this target. 4232 NVPTXTargetLowering::ConstraintType 4233 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const { 4234 if (Constraint.size() == 1) { 4235 switch (Constraint[0]) { 4236 default: 4237 break; 4238 case 'b': 4239 case 'r': 4240 case 'h': 4241 case 'c': 4242 case 'l': 4243 case 'f': 4244 case 'd': 4245 case '0': 4246 case 'N': 4247 return C_RegisterClass; 4248 } 4249 } 4250 return TargetLowering::getConstraintType(Constraint); 4251 } 4252 4253 std::pair<unsigned, const TargetRegisterClass *> 4254 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4255 StringRef Constraint, 4256 MVT VT) const { 4257 if (Constraint.size() == 1) { 4258 switch (Constraint[0]) { 4259 case 'b': 4260 return std::make_pair(0U, &NVPTX::Int1RegsRegClass); 4261 case 'c': 4262 return std::make_pair(0U, &NVPTX::Int16RegsRegClass); 4263 case 'h': 4264 return std::make_pair(0U, &NVPTX::Int16RegsRegClass); 4265 case 'r': 4266 return std::make_pair(0U, &NVPTX::Int32RegsRegClass); 4267 case 'l': 4268 case 'N': 4269 return std::make_pair(0U, &NVPTX::Int64RegsRegClass); 4270 case 'f': 4271 return std::make_pair(0U, &NVPTX::Float32RegsRegClass); 4272 case 'd': 4273 return std::make_pair(0U, &NVPTX::Float64RegsRegClass); 4274 } 4275 } 4276 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4277 } 4278 4279 //===----------------------------------------------------------------------===// 4280 // NVPTX DAG Combining 4281 //===----------------------------------------------------------------------===// 4282 4283 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF, 4284 CodeGenOpt::Level OptLevel) const { 4285 // Always honor command-line argument 4286 if (FMAContractLevelOpt.getNumOccurrences() > 0) 4287 return FMAContractLevelOpt > 0; 4288 4289 // Do not contract if we're not optimizing the code. 4290 if (OptLevel == 0) 4291 return false; 4292 4293 // Honor TargetOptions flags that explicitly say fusion is okay. 4294 if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast) 4295 return true; 4296 4297 return allowUnsafeFPMath(MF); 4298 } 4299 4300 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const { 4301 // Honor TargetOptions flags that explicitly say unsafe math is okay. 4302 if (MF.getTarget().Options.UnsafeFPMath) 4303 return true; 4304 4305 // Allow unsafe math if unsafe-fp-math attribute explicitly says so. 4306 const Function &F = MF.getFunction(); 4307 if (F.hasFnAttribute("unsafe-fp-math")) { 4308 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 4309 StringRef Val = Attr.getValueAsString(); 4310 if (Val == "true") 4311 return true; 4312 } 4313 4314 return false; 4315 } 4316 4317 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with 4318 /// operands N0 and N1. This is a helper for PerformADDCombine that is 4319 /// called with the default operands, and if that fails, with commuted 4320 /// operands. 4321 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, 4322 TargetLowering::DAGCombinerInfo &DCI, 4323 const NVPTXSubtarget &Subtarget, 4324 CodeGenOpt::Level OptLevel) { 4325 SelectionDAG &DAG = DCI.DAG; 4326 // Skip non-integer, non-scalar case 4327 EVT VT=N0.getValueType(); 4328 if (VT.isVector()) 4329 return SDValue(); 4330 4331 // fold (add (mul a, b), c) -> (mad a, b, c) 4332 // 4333 if (N0.getOpcode() == ISD::MUL) { 4334 assert (VT.isInteger()); 4335 // For integer: 4336 // Since integer multiply-add costs the same as integer multiply 4337 // but is more costly than integer add, do the fusion only when 4338 // the mul is only used in the add. 4339 if (OptLevel==CodeGenOpt::None || VT != MVT::i32 || 4340 !N0.getNode()->hasOneUse()) 4341 return SDValue(); 4342 4343 // Do the folding 4344 return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT, 4345 N0.getOperand(0), N0.getOperand(1), N1); 4346 } 4347 else if (N0.getOpcode() == ISD::FMUL) { 4348 if (VT == MVT::f32 || VT == MVT::f64) { 4349 const auto *TLI = static_cast<const NVPTXTargetLowering *>( 4350 &DAG.getTargetLoweringInfo()); 4351 if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel)) 4352 return SDValue(); 4353 4354 // For floating point: 4355 // Do the fusion only when the mul has less than 5 uses and all 4356 // are add. 4357 // The heuristic is that if a use is not an add, then that use 4358 // cannot be fused into fma, therefore mul is still needed anyway. 4359 // If there are more than 4 uses, even if they are all add, fusing 4360 // them will increase register pressue. 4361 // 4362 int numUses = 0; 4363 int nonAddCount = 0; 4364 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 4365 UE = N0.getNode()->use_end(); 4366 UI != UE; ++UI) { 4367 numUses++; 4368 SDNode *User = *UI; 4369 if (User->getOpcode() != ISD::FADD) 4370 ++nonAddCount; 4371 } 4372 if (numUses >= 5) 4373 return SDValue(); 4374 if (nonAddCount) { 4375 int orderNo = N->getIROrder(); 4376 int orderNo2 = N0.getNode()->getIROrder(); 4377 // simple heuristics here for considering potential register 4378 // pressure, the logics here is that the differnce are used 4379 // to measure the distance between def and use, the longer distance 4380 // more likely cause register pressure. 4381 if (orderNo - orderNo2 < 500) 4382 return SDValue(); 4383 4384 // Now, check if at least one of the FMUL's operands is live beyond the node N, 4385 // which guarantees that the FMA will not increase register pressure at node N. 4386 bool opIsLive = false; 4387 const SDNode *left = N0.getOperand(0).getNode(); 4388 const SDNode *right = N0.getOperand(1).getNode(); 4389 4390 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right)) 4391 opIsLive = true; 4392 4393 if (!opIsLive) 4394 for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) { 4395 SDNode *User = *UI; 4396 int orderNo3 = User->getIROrder(); 4397 if (orderNo3 > orderNo) { 4398 opIsLive = true; 4399 break; 4400 } 4401 } 4402 4403 if (!opIsLive) 4404 for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) { 4405 SDNode *User = *UI; 4406 int orderNo3 = User->getIROrder(); 4407 if (orderNo3 > orderNo) { 4408 opIsLive = true; 4409 break; 4410 } 4411 } 4412 4413 if (!opIsLive) 4414 return SDValue(); 4415 } 4416 4417 return DAG.getNode(ISD::FMA, SDLoc(N), VT, 4418 N0.getOperand(0), N0.getOperand(1), N1); 4419 } 4420 } 4421 4422 return SDValue(); 4423 } 4424 4425 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. 4426 /// 4427 static SDValue PerformADDCombine(SDNode *N, 4428 TargetLowering::DAGCombinerInfo &DCI, 4429 const NVPTXSubtarget &Subtarget, 4430 CodeGenOpt::Level OptLevel) { 4431 SDValue N0 = N->getOperand(0); 4432 SDValue N1 = N->getOperand(1); 4433 4434 // First try with the default operand order. 4435 if (SDValue Result = 4436 PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel)) 4437 return Result; 4438 4439 // If that didn't work, try again with the operands commuted. 4440 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel); 4441 } 4442 4443 static SDValue PerformANDCombine(SDNode *N, 4444 TargetLowering::DAGCombinerInfo &DCI) { 4445 // The type legalizer turns a vector load of i8 values into a zextload to i16 4446 // registers, optionally ANY_EXTENDs it (if target type is integer), 4447 // and ANDs off the high 8 bits. Since we turn this load into a 4448 // target-specific DAG node, the DAG combiner fails to eliminate these AND 4449 // nodes. Do that here. 4450 SDValue Val = N->getOperand(0); 4451 SDValue Mask = N->getOperand(1); 4452 4453 if (isa<ConstantSDNode>(Val)) { 4454 std::swap(Val, Mask); 4455 } 4456 4457 SDValue AExt; 4458 // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and 4459 if (Val.getOpcode() == ISD::ANY_EXTEND) { 4460 AExt = Val; 4461 Val = Val->getOperand(0); 4462 } 4463 4464 if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) { 4465 Val = Val->getOperand(0); 4466 } 4467 4468 if (Val->getOpcode() == NVPTXISD::LoadV2 || 4469 Val->getOpcode() == NVPTXISD::LoadV4) { 4470 ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask); 4471 if (!MaskCnst) { 4472 // Not an AND with a constant 4473 return SDValue(); 4474 } 4475 4476 uint64_t MaskVal = MaskCnst->getZExtValue(); 4477 if (MaskVal != 0xff) { 4478 // Not an AND that chops off top 8 bits 4479 return SDValue(); 4480 } 4481 4482 MemSDNode *Mem = dyn_cast<MemSDNode>(Val); 4483 if (!Mem) { 4484 // Not a MemSDNode?!? 4485 return SDValue(); 4486 } 4487 4488 EVT MemVT = Mem->getMemoryVT(); 4489 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) { 4490 // We only handle the i8 case 4491 return SDValue(); 4492 } 4493 4494 unsigned ExtType = 4495 cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))-> 4496 getZExtValue(); 4497 if (ExtType == ISD::SEXTLOAD) { 4498 // If for some reason the load is a sextload, the and is needed to zero 4499 // out the high 8 bits 4500 return SDValue(); 4501 } 4502 4503 bool AddTo = false; 4504 if (AExt.getNode() != nullptr) { 4505 // Re-insert the ext as a zext. 4506 Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 4507 AExt.getValueType(), Val); 4508 AddTo = true; 4509 } 4510 4511 // If we get here, the AND is unnecessary. Just replace it with the load 4512 DCI.CombineTo(N, Val, AddTo); 4513 } 4514 4515 return SDValue(); 4516 } 4517 4518 static SDValue PerformREMCombine(SDNode *N, 4519 TargetLowering::DAGCombinerInfo &DCI, 4520 CodeGenOpt::Level OptLevel) { 4521 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM); 4522 4523 // Don't do anything at less than -O2. 4524 if (OptLevel < CodeGenOpt::Default) 4525 return SDValue(); 4526 4527 SelectionDAG &DAG = DCI.DAG; 4528 SDLoc DL(N); 4529 EVT VT = N->getValueType(0); 4530 bool IsSigned = N->getOpcode() == ISD::SREM; 4531 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV; 4532 4533 const SDValue &Num = N->getOperand(0); 4534 const SDValue &Den = N->getOperand(1); 4535 4536 for (const SDNode *U : Num->uses()) { 4537 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num && 4538 U->getOperand(1) == Den) { 4539 // Num % Den -> Num - (Num / Den) * Den 4540 return DAG.getNode(ISD::SUB, DL, VT, Num, 4541 DAG.getNode(ISD::MUL, DL, VT, 4542 DAG.getNode(DivOpc, DL, VT, Num, Den), 4543 Den)); 4544 } 4545 } 4546 return SDValue(); 4547 } 4548 4549 enum OperandSignedness { 4550 Signed = 0, 4551 Unsigned, 4552 Unknown 4553 }; 4554 4555 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand 4556 /// that can be demoted to \p OptSize bits without loss of information. The 4557 /// signedness of the operand, if determinable, is placed in \p S. 4558 static bool IsMulWideOperandDemotable(SDValue Op, 4559 unsigned OptSize, 4560 OperandSignedness &S) { 4561 S = Unknown; 4562 4563 if (Op.getOpcode() == ISD::SIGN_EXTEND || 4564 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) { 4565 EVT OrigVT = Op.getOperand(0).getValueType(); 4566 if (OrigVT.getFixedSizeInBits() <= OptSize) { 4567 S = Signed; 4568 return true; 4569 } 4570 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) { 4571 EVT OrigVT = Op.getOperand(0).getValueType(); 4572 if (OrigVT.getFixedSizeInBits() <= OptSize) { 4573 S = Unsigned; 4574 return true; 4575 } 4576 } 4577 4578 return false; 4579 } 4580 4581 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can 4582 /// be demoted to \p OptSize bits without loss of information. If the operands 4583 /// contain a constant, it should appear as the RHS operand. The signedness of 4584 /// the operands is placed in \p IsSigned. 4585 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, 4586 unsigned OptSize, 4587 bool &IsSigned) { 4588 OperandSignedness LHSSign; 4589 4590 // The LHS operand must be a demotable op 4591 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign)) 4592 return false; 4593 4594 // We should have been able to determine the signedness from the LHS 4595 if (LHSSign == Unknown) 4596 return false; 4597 4598 IsSigned = (LHSSign == Signed); 4599 4600 // The RHS can be a demotable op or a constant 4601 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) { 4602 const APInt &Val = CI->getAPIntValue(); 4603 if (LHSSign == Unsigned) { 4604 return Val.isIntN(OptSize); 4605 } else { 4606 return Val.isSignedIntN(OptSize); 4607 } 4608 } else { 4609 OperandSignedness RHSSign; 4610 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign)) 4611 return false; 4612 4613 return LHSSign == RHSSign; 4614 } 4615 } 4616 4617 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply 4618 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform 4619 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift 4620 /// amount. 4621 static SDValue TryMULWIDECombine(SDNode *N, 4622 TargetLowering::DAGCombinerInfo &DCI) { 4623 EVT MulType = N->getValueType(0); 4624 if (MulType != MVT::i32 && MulType != MVT::i64) { 4625 return SDValue(); 4626 } 4627 4628 SDLoc DL(N); 4629 unsigned OptSize = MulType.getSizeInBits() >> 1; 4630 SDValue LHS = N->getOperand(0); 4631 SDValue RHS = N->getOperand(1); 4632 4633 // Canonicalize the multiply so the constant (if any) is on the right 4634 if (N->getOpcode() == ISD::MUL) { 4635 if (isa<ConstantSDNode>(LHS)) { 4636 std::swap(LHS, RHS); 4637 } 4638 } 4639 4640 // If we have a SHL, determine the actual multiply amount 4641 if (N->getOpcode() == ISD::SHL) { 4642 ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS); 4643 if (!ShlRHS) { 4644 return SDValue(); 4645 } 4646 4647 APInt ShiftAmt = ShlRHS->getAPIntValue(); 4648 unsigned BitWidth = MulType.getSizeInBits(); 4649 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) { 4650 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt; 4651 RHS = DCI.DAG.getConstant(MulVal, DL, MulType); 4652 } else { 4653 return SDValue(); 4654 } 4655 } 4656 4657 bool Signed; 4658 // Verify that our operands are demotable 4659 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) { 4660 return SDValue(); 4661 } 4662 4663 EVT DemotedVT; 4664 if (MulType == MVT::i32) { 4665 DemotedVT = MVT::i16; 4666 } else { 4667 DemotedVT = MVT::i32; 4668 } 4669 4670 // Truncate the operands to the correct size. Note that these are just for 4671 // type consistency and will (likely) be eliminated in later phases. 4672 SDValue TruncLHS = 4673 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS); 4674 SDValue TruncRHS = 4675 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS); 4676 4677 unsigned Opc; 4678 if (Signed) { 4679 Opc = NVPTXISD::MUL_WIDE_SIGNED; 4680 } else { 4681 Opc = NVPTXISD::MUL_WIDE_UNSIGNED; 4682 } 4683 4684 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS); 4685 } 4686 4687 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes. 4688 static SDValue PerformMULCombine(SDNode *N, 4689 TargetLowering::DAGCombinerInfo &DCI, 4690 CodeGenOpt::Level OptLevel) { 4691 if (OptLevel > 0) { 4692 // Try mul.wide combining at OptLevel > 0 4693 if (SDValue Ret = TryMULWIDECombine(N, DCI)) 4694 return Ret; 4695 } 4696 4697 return SDValue(); 4698 } 4699 4700 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes. 4701 static SDValue PerformSHLCombine(SDNode *N, 4702 TargetLowering::DAGCombinerInfo &DCI, 4703 CodeGenOpt::Level OptLevel) { 4704 if (OptLevel > 0) { 4705 // Try mul.wide combining at OptLevel > 0 4706 if (SDValue Ret = TryMULWIDECombine(N, DCI)) 4707 return Ret; 4708 } 4709 4710 return SDValue(); 4711 } 4712 4713 static SDValue PerformSETCCCombine(SDNode *N, 4714 TargetLowering::DAGCombinerInfo &DCI) { 4715 EVT CCType = N->getValueType(0); 4716 SDValue A = N->getOperand(0); 4717 SDValue B = N->getOperand(1); 4718 4719 if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16) 4720 return SDValue(); 4721 4722 SDLoc DL(N); 4723 // setp.f16x2 returns two scalar predicates, which we need to 4724 // convert back to v2i1. The returned result will be scalarized by 4725 // the legalizer, but the comparison will remain a single vector 4726 // instruction. 4727 SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL, 4728 DCI.DAG.getVTList(MVT::i1, MVT::i1), 4729 {A, B, N->getOperand(2)}); 4730 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0), 4731 CCNode.getValue(1)); 4732 } 4733 4734 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N, 4735 DAGCombinerInfo &DCI) const { 4736 CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel(); 4737 switch (N->getOpcode()) { 4738 default: break; 4739 case ISD::ADD: 4740 case ISD::FADD: 4741 return PerformADDCombine(N, DCI, STI, OptLevel); 4742 case ISD::MUL: 4743 return PerformMULCombine(N, DCI, OptLevel); 4744 case ISD::SHL: 4745 return PerformSHLCombine(N, DCI, OptLevel); 4746 case ISD::AND: 4747 return PerformANDCombine(N, DCI); 4748 case ISD::UREM: 4749 case ISD::SREM: 4750 return PerformREMCombine(N, DCI, OptLevel); 4751 case ISD::SETCC: 4752 return PerformSETCCCombine(N, DCI); 4753 } 4754 return SDValue(); 4755 } 4756 4757 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads. 4758 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG, 4759 SmallVectorImpl<SDValue> &Results) { 4760 EVT ResVT = N->getValueType(0); 4761 SDLoc DL(N); 4762 4763 assert(ResVT.isVector() && "Vector load must have vector type"); 4764 4765 // We only handle "native" vector sizes for now, e.g. <4 x double> is not 4766 // legal. We can (and should) split that into 2 loads of <2 x double> here 4767 // but I'm leaving that as a TODO for now. 4768 assert(ResVT.isSimple() && "Can only handle simple types"); 4769 switch (ResVT.getSimpleVT().SimpleTy) { 4770 default: 4771 return; 4772 case MVT::v2i8: 4773 case MVT::v2i16: 4774 case MVT::v2i32: 4775 case MVT::v2i64: 4776 case MVT::v2f16: 4777 case MVT::v2f32: 4778 case MVT::v2f64: 4779 case MVT::v4i8: 4780 case MVT::v4i16: 4781 case MVT::v4i32: 4782 case MVT::v4f16: 4783 case MVT::v4f32: 4784 case MVT::v8f16: // <4 x f16x2> 4785 // This is a "native" vector type 4786 break; 4787 } 4788 4789 LoadSDNode *LD = cast<LoadSDNode>(N); 4790 4791 Align Alignment = LD->getAlign(); 4792 auto &TD = DAG.getDataLayout(); 4793 Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext())); 4794 if (Alignment < PrefAlign) { 4795 // This load is not sufficiently aligned, so bail out and let this vector 4796 // load be scalarized. Note that we may still be able to emit smaller 4797 // vector loads. For example, if we are loading a <4 x float> with an 4798 // alignment of 8, this check will fail but the legalizer will try again 4799 // with 2 x <2 x float>, which will succeed with an alignment of 8. 4800 return; 4801 } 4802 4803 EVT EltVT = ResVT.getVectorElementType(); 4804 unsigned NumElts = ResVT.getVectorNumElements(); 4805 4806 // Since LoadV2 is a target node, we cannot rely on DAG type legalization. 4807 // Therefore, we must ensure the type is legal. For i1 and i8, we set the 4808 // loaded type to i16 and propagate the "real" type as the memory type. 4809 bool NeedTrunc = false; 4810 if (EltVT.getSizeInBits() < 16) { 4811 EltVT = MVT::i16; 4812 NeedTrunc = true; 4813 } 4814 4815 unsigned Opcode = 0; 4816 SDVTList LdResVTs; 4817 bool LoadF16x2 = false; 4818 4819 switch (NumElts) { 4820 default: 4821 return; 4822 case 2: 4823 Opcode = NVPTXISD::LoadV2; 4824 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); 4825 break; 4826 case 4: { 4827 Opcode = NVPTXISD::LoadV4; 4828 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; 4829 LdResVTs = DAG.getVTList(ListVTs); 4830 break; 4831 } 4832 case 8: { 4833 // v8f16 is a special case. PTX doesn't have ld.v8.f16 4834 // instruction. Instead, we split the vector into v2f16 chunks and 4835 // load them with ld.v4.b32. 4836 assert(EltVT == MVT::f16 && "Unsupported v8 vector type."); 4837 LoadF16x2 = true; 4838 Opcode = NVPTXISD::LoadV4; 4839 EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16, 4840 MVT::Other}; 4841 LdResVTs = DAG.getVTList(ListVTs); 4842 break; 4843 } 4844 } 4845 4846 // Copy regular operands 4847 SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end()); 4848 4849 // The select routine does not have access to the LoadSDNode instance, so 4850 // pass along the extension information 4851 OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL)); 4852 4853 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, 4854 LD->getMemoryVT(), 4855 LD->getMemOperand()); 4856 4857 SmallVector<SDValue, 8> ScalarRes; 4858 if (LoadF16x2) { 4859 // Split v2f16 subvectors back into individual elements. 4860 NumElts /= 2; 4861 for (unsigned i = 0; i < NumElts; ++i) { 4862 SDValue SubVector = NewLD.getValue(i); 4863 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector, 4864 DAG.getIntPtrConstant(0, DL)); 4865 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector, 4866 DAG.getIntPtrConstant(1, DL)); 4867 ScalarRes.push_back(E0); 4868 ScalarRes.push_back(E1); 4869 } 4870 } else { 4871 for (unsigned i = 0; i < NumElts; ++i) { 4872 SDValue Res = NewLD.getValue(i); 4873 if (NeedTrunc) 4874 Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); 4875 ScalarRes.push_back(Res); 4876 } 4877 } 4878 4879 SDValue LoadChain = NewLD.getValue(NumElts); 4880 4881 SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes); 4882 4883 Results.push_back(BuildVec); 4884 Results.push_back(LoadChain); 4885 } 4886 4887 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, 4888 SmallVectorImpl<SDValue> &Results) { 4889 SDValue Chain = N->getOperand(0); 4890 SDValue Intrin = N->getOperand(1); 4891 SDLoc DL(N); 4892 4893 // Get the intrinsic ID 4894 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue(); 4895 switch (IntrinNo) { 4896 default: 4897 return; 4898 case Intrinsic::nvvm_ldg_global_i: 4899 case Intrinsic::nvvm_ldg_global_f: 4900 case Intrinsic::nvvm_ldg_global_p: 4901 case Intrinsic::nvvm_ldu_global_i: 4902 case Intrinsic::nvvm_ldu_global_f: 4903 case Intrinsic::nvvm_ldu_global_p: { 4904 EVT ResVT = N->getValueType(0); 4905 4906 if (ResVT.isVector()) { 4907 // Vector LDG/LDU 4908 4909 unsigned NumElts = ResVT.getVectorNumElements(); 4910 EVT EltVT = ResVT.getVectorElementType(); 4911 4912 // Since LDU/LDG are target nodes, we cannot rely on DAG type 4913 // legalization. 4914 // Therefore, we must ensure the type is legal. For i1 and i8, we set the 4915 // loaded type to i16 and propagate the "real" type as the memory type. 4916 bool NeedTrunc = false; 4917 if (EltVT.getSizeInBits() < 16) { 4918 EltVT = MVT::i16; 4919 NeedTrunc = true; 4920 } 4921 4922 unsigned Opcode = 0; 4923 SDVTList LdResVTs; 4924 4925 switch (NumElts) { 4926 default: 4927 return; 4928 case 2: 4929 switch (IntrinNo) { 4930 default: 4931 return; 4932 case Intrinsic::nvvm_ldg_global_i: 4933 case Intrinsic::nvvm_ldg_global_f: 4934 case Intrinsic::nvvm_ldg_global_p: 4935 Opcode = NVPTXISD::LDGV2; 4936 break; 4937 case Intrinsic::nvvm_ldu_global_i: 4938 case Intrinsic::nvvm_ldu_global_f: 4939 case Intrinsic::nvvm_ldu_global_p: 4940 Opcode = NVPTXISD::LDUV2; 4941 break; 4942 } 4943 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); 4944 break; 4945 case 4: { 4946 switch (IntrinNo) { 4947 default: 4948 return; 4949 case Intrinsic::nvvm_ldg_global_i: 4950 case Intrinsic::nvvm_ldg_global_f: 4951 case Intrinsic::nvvm_ldg_global_p: 4952 Opcode = NVPTXISD::LDGV4; 4953 break; 4954 case Intrinsic::nvvm_ldu_global_i: 4955 case Intrinsic::nvvm_ldu_global_f: 4956 case Intrinsic::nvvm_ldu_global_p: 4957 Opcode = NVPTXISD::LDUV4; 4958 break; 4959 } 4960 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; 4961 LdResVTs = DAG.getVTList(ListVTs); 4962 break; 4963 } 4964 } 4965 4966 SmallVector<SDValue, 8> OtherOps; 4967 4968 // Copy regular operands 4969 4970 OtherOps.push_back(Chain); // Chain 4971 // Skip operand 1 (intrinsic ID) 4972 // Others 4973 OtherOps.append(N->op_begin() + 2, N->op_end()); 4974 4975 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); 4976 4977 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, 4978 MemSD->getMemoryVT(), 4979 MemSD->getMemOperand()); 4980 4981 SmallVector<SDValue, 4> ScalarRes; 4982 4983 for (unsigned i = 0; i < NumElts; ++i) { 4984 SDValue Res = NewLD.getValue(i); 4985 if (NeedTrunc) 4986 Res = 4987 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); 4988 ScalarRes.push_back(Res); 4989 } 4990 4991 SDValue LoadChain = NewLD.getValue(NumElts); 4992 4993 SDValue BuildVec = 4994 DAG.getBuildVector(ResVT, DL, ScalarRes); 4995 4996 Results.push_back(BuildVec); 4997 Results.push_back(LoadChain); 4998 } else { 4999 // i8 LDG/LDU 5000 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && 5001 "Custom handling of non-i8 ldu/ldg?"); 5002 5003 // Just copy all operands as-is 5004 SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end()); 5005 5006 // Force output to i16 5007 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other); 5008 5009 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); 5010 5011 // We make sure the memory type is i8, which will be used during isel 5012 // to select the proper instruction. 5013 SDValue NewLD = 5014 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops, 5015 MVT::i8, MemSD->getMemOperand()); 5016 5017 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, 5018 NewLD.getValue(0))); 5019 Results.push_back(NewLD.getValue(1)); 5020 } 5021 } 5022 } 5023 } 5024 5025 void NVPTXTargetLowering::ReplaceNodeResults( 5026 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 5027 switch (N->getOpcode()) { 5028 default: 5029 report_fatal_error("Unhandled custom legalization"); 5030 case ISD::LOAD: 5031 ReplaceLoadVector(N, DAG, Results); 5032 return; 5033 case ISD::INTRINSIC_W_CHAIN: 5034 ReplaceINTRINSIC_W_CHAIN(N, DAG, Results); 5035 return; 5036 } 5037 } 5038 5039 // Pin NVPTXTargetObjectFile's vtables to this file. 5040 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {} 5041 5042 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal( 5043 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 5044 return getDataSection(); 5045 } 5046