1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Convert generic global variables into either .global or .const access based 10 // on the variable's "constant" qualifier. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/NVPTXBaseInfo.h" 15 #include "NVPTX.h" 16 #include "NVPTXUtilities.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/LegacyPassManager.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueMap.h" 27 #include "llvm/Transforms/Utils/ValueMapper.h" 28 29 using namespace llvm; 30 31 namespace llvm { 32 void initializeGenericToNVVMPass(PassRegistry &); 33 } 34 35 namespace { 36 class GenericToNVVM : public ModulePass { 37 public: 38 static char ID; 39 40 GenericToNVVM() : ModulePass(ID) {} 41 42 bool runOnModule(Module &M) override; 43 44 void getAnalysisUsage(AnalysisUsage &AU) const override {} 45 46 private: 47 Value *remapConstant(Module *M, Function *F, Constant *C, 48 IRBuilder<> &Builder); 49 Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F, 50 Constant *C, 51 IRBuilder<> &Builder); 52 Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C, 53 IRBuilder<> &Builder); 54 55 typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy; 56 typedef ValueMap<Constant *, Value *> ConstantToValueMapTy; 57 GVMapTy GVMap; 58 ConstantToValueMapTy ConstantToValueMap; 59 }; 60 } // end namespace 61 62 char GenericToNVVM::ID = 0; 63 64 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); } 65 66 INITIALIZE_PASS( 67 GenericToNVVM, "generic-to-nvvm", 68 "Ensure that the global variables are in the global address space", false, 69 false) 70 71 bool GenericToNVVM::runOnModule(Module &M) { 72 // Create a clone of each global variable that has the default address space. 73 // The clone is created with the global address space specifier, and the pair 74 // of original global variable and its clone is placed in the GVMap for later 75 // use. 76 77 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 78 I != E;) { 79 GlobalVariable *GV = &*I++; 80 if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC && 81 !llvm::isTexture(*GV) && !llvm::isSurface(*GV) && 82 !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) { 83 GlobalVariable *NewGV = new GlobalVariable( 84 M, GV->getValueType(), GV->isConstant(), 85 GV->getLinkage(), 86 GV->hasInitializer() ? GV->getInitializer() : nullptr, 87 "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL); 88 NewGV->copyAttributesFrom(GV); 89 GVMap[GV] = NewGV; 90 } 91 } 92 93 // Return immediately, if every global variable has a specific address space 94 // specifier. 95 if (GVMap.empty()) { 96 return false; 97 } 98 99 // Walk through the instructions in function defitinions, and replace any use 100 // of original global variables in GVMap with a use of the corresponding 101 // copies in GVMap. If necessary, promote constants to instructions. 102 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 103 if (I->isDeclaration()) { 104 continue; 105 } 106 IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg()); 107 for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE; 108 ++BBI) { 109 for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE; 110 ++II) { 111 for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) { 112 Value *Operand = II->getOperand(i); 113 if (isa<Constant>(Operand)) { 114 II->setOperand( 115 i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder)); 116 } 117 } 118 } 119 } 120 ConstantToValueMap.clear(); 121 } 122 123 // Copy GVMap over to a standard value map. 124 ValueToValueMapTy VM; 125 for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I) 126 VM[I->first] = I->second; 127 128 // Walk through the global variable initializers, and replace any use of 129 // original global variables in GVMap with a use of the corresponding copies 130 // in GVMap. The copies need to be bitcast to the original global variable 131 // types, as we cannot use cvta in global variable initializers. 132 for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) { 133 GlobalVariable *GV = I->first; 134 GlobalVariable *NewGV = I->second; 135 136 // Remove GV from the map so that it can be RAUWed. Note that 137 // DenseMap::erase() won't invalidate any iterators but this one. 138 auto Next = std::next(I); 139 GVMap.erase(I); 140 I = Next; 141 142 Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType()); 143 // At this point, the remaining uses of GV should be found only in global 144 // variable initializers, as other uses have been already been removed 145 // while walking through the instructions in function definitions. 146 GV->replaceAllUsesWith(BitCastNewGV); 147 std::string Name = std::string(GV->getName()); 148 GV->eraseFromParent(); 149 NewGV->setName(Name); 150 } 151 assert(GVMap.empty() && "Expected it to be empty by now"); 152 153 return true; 154 } 155 156 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C, 157 IRBuilder<> &Builder) { 158 // If the constant C has been converted already in the given function F, just 159 // return the converted value. 160 ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C); 161 if (CTII != ConstantToValueMap.end()) { 162 return CTII->second; 163 } 164 165 Value *NewValue = C; 166 if (isa<GlobalVariable>(C)) { 167 // If the constant C is a global variable and is found in GVMap, substitute 168 // 169 // addrspacecast GVMap[C] to addrspace(0) 170 // 171 // for our use of C. 172 GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C)); 173 if (I != GVMap.end()) { 174 GlobalVariable *GV = I->second; 175 NewValue = Builder.CreateAddrSpaceCast( 176 GV, 177 PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC)); 178 } 179 } else if (isa<ConstantAggregate>(C)) { 180 // If any element in the constant vector or aggregate C is or uses a global 181 // variable in GVMap, the constant C needs to be reconstructed, using a set 182 // of instructions. 183 NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder); 184 } else if (isa<ConstantExpr>(C)) { 185 // If any operand in the constant expression C is or uses a global variable 186 // in GVMap, the constant expression C needs to be reconstructed, using a 187 // set of instructions. 188 NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder); 189 } 190 191 ConstantToValueMap[C] = NewValue; 192 return NewValue; 193 } 194 195 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate( 196 Module *M, Function *F, Constant *C, IRBuilder<> &Builder) { 197 bool OperandChanged = false; 198 SmallVector<Value *, 4> NewOperands; 199 unsigned NumOperands = C->getNumOperands(); 200 201 // Check if any element is or uses a global variable in GVMap, and thus 202 // converted to another value. 203 for (unsigned i = 0; i < NumOperands; ++i) { 204 Value *Operand = C->getOperand(i); 205 Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder); 206 OperandChanged |= Operand != NewOperand; 207 NewOperands.push_back(NewOperand); 208 } 209 210 // If none of the elements has been modified, return C as it is. 211 if (!OperandChanged) { 212 return C; 213 } 214 215 // If any of the elements has been modified, construct the equivalent 216 // vector or aggregate value with a set instructions and the converted 217 // elements. 218 Value *NewValue = UndefValue::get(C->getType()); 219 if (isa<ConstantVector>(C)) { 220 for (unsigned i = 0; i < NumOperands; ++i) { 221 Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i); 222 NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx); 223 } 224 } else { 225 for (unsigned i = 0; i < NumOperands; ++i) { 226 NewValue = 227 Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i)); 228 } 229 } 230 231 return NewValue; 232 } 233 234 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C, 235 IRBuilder<> &Builder) { 236 bool OperandChanged = false; 237 SmallVector<Value *, 4> NewOperands; 238 unsigned NumOperands = C->getNumOperands(); 239 240 // Check if any operand is or uses a global variable in GVMap, and thus 241 // converted to another value. 242 for (unsigned i = 0; i < NumOperands; ++i) { 243 Value *Operand = C->getOperand(i); 244 Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder); 245 OperandChanged |= Operand != NewOperand; 246 NewOperands.push_back(NewOperand); 247 } 248 249 // If none of the operands has been modified, return C as it is. 250 if (!OperandChanged) { 251 return C; 252 } 253 254 // If any of the operands has been modified, construct the instruction with 255 // the converted operands. 256 unsigned Opcode = C->getOpcode(); 257 switch (Opcode) { 258 case Instruction::ICmp: 259 // CompareConstantExpr (icmp) 260 return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()), 261 NewOperands[0], NewOperands[1]); 262 case Instruction::FCmp: 263 // CompareConstantExpr (fcmp) 264 llvm_unreachable("Address space conversion should have no effect " 265 "on float point CompareConstantExpr (fcmp)!"); 266 case Instruction::ExtractElement: 267 // ExtractElementConstantExpr 268 return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]); 269 case Instruction::InsertElement: 270 // InsertElementConstantExpr 271 return Builder.CreateInsertElement(NewOperands[0], NewOperands[1], 272 NewOperands[2]); 273 case Instruction::ShuffleVector: 274 // ShuffleVector 275 return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1], 276 NewOperands[2]); 277 case Instruction::ExtractValue: 278 // ExtractValueConstantExpr 279 return Builder.CreateExtractValue(NewOperands[0], C->getIndices()); 280 case Instruction::InsertValue: 281 // InsertValueConstantExpr 282 return Builder.CreateInsertValue(NewOperands[0], NewOperands[1], 283 C->getIndices()); 284 case Instruction::GetElementPtr: 285 // GetElementPtrConstantExpr 286 return cast<GEPOperator>(C)->isInBounds() 287 ? Builder.CreateGEP( 288 cast<GEPOperator>(C)->getSourceElementType(), 289 NewOperands[0], 290 makeArrayRef(&NewOperands[1], NumOperands - 1)) 291 : Builder.CreateInBoundsGEP( 292 cast<GEPOperator>(C)->getSourceElementType(), 293 NewOperands[0], 294 makeArrayRef(&NewOperands[1], NumOperands - 1)); 295 case Instruction::Select: 296 // SelectConstantExpr 297 return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]); 298 default: 299 // BinaryConstantExpr 300 if (Instruction::isBinaryOp(Opcode)) { 301 return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()), 302 NewOperands[0], NewOperands[1]); 303 } 304 // UnaryConstantExpr 305 if (Instruction::isCast(Opcode)) { 306 return Builder.CreateCast(Instruction::CastOps(C->getOpcode()), 307 NewOperands[0], C->getType()); 308 } 309 llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr"); 310 } 311 } 312