xref: /freebsd/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert generic global variables into either .global or .const access based
10 // on the variable's "constant" qualifier.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/NVPTXBaseInfo.h"
15 #include "NVPTX.h"
16 #include "NVPTXUtilities.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/LegacyPassManager.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/ValueMap.h"
27 #include "llvm/Transforms/Utils/ValueMapper.h"
28 
29 using namespace llvm;
30 
31 namespace llvm {
32 void initializeGenericToNVVMPass(PassRegistry &);
33 }
34 
35 namespace {
36 class GenericToNVVM : public ModulePass {
37 public:
38   static char ID;
39 
40   GenericToNVVM() : ModulePass(ID) {}
41 
42   bool runOnModule(Module &M) override;
43 
44   void getAnalysisUsage(AnalysisUsage &AU) const override {}
45 
46 private:
47   Value *remapConstant(Module *M, Function *F, Constant *C,
48                        IRBuilder<> &Builder);
49   Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
50                                                 Constant *C,
51                                                 IRBuilder<> &Builder);
52   Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
53                            IRBuilder<> &Builder);
54 
55   typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
56   typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
57   GVMapTy GVMap;
58   ConstantToValueMapTy ConstantToValueMap;
59 };
60 } // end namespace
61 
62 char GenericToNVVM::ID = 0;
63 
64 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
65 
66 INITIALIZE_PASS(
67     GenericToNVVM, "generic-to-nvvm",
68     "Ensure that the global variables are in the global address space", false,
69     false)
70 
71 bool GenericToNVVM::runOnModule(Module &M) {
72   // Create a clone of each global variable that has the default address space.
73   // The clone is created with the global address space  specifier, and the pair
74   // of original global variable and its clone is placed in the GVMap for later
75   // use.
76 
77   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
78        I != E;) {
79     GlobalVariable *GV = &*I++;
80     if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
81         !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
82         !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
83       GlobalVariable *NewGV = new GlobalVariable(
84           M, GV->getValueType(), GV->isConstant(),
85           GV->getLinkage(),
86           GV->hasInitializer() ? GV->getInitializer() : nullptr,
87           "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
88       NewGV->copyAttributesFrom(GV);
89       GVMap[GV] = NewGV;
90     }
91   }
92 
93   // Return immediately, if every global variable has a specific address space
94   // specifier.
95   if (GVMap.empty()) {
96     return false;
97   }
98 
99   // Walk through the instructions in function defitinions, and replace any use
100   // of original global variables in GVMap with a use of the corresponding
101   // copies in GVMap.  If necessary, promote constants to instructions.
102   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
103     if (I->isDeclaration()) {
104       continue;
105     }
106     IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
107     for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
108          ++BBI) {
109       for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
110            ++II) {
111         for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
112           Value *Operand = II->getOperand(i);
113           if (isa<Constant>(Operand)) {
114             II->setOperand(
115                 i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
116           }
117         }
118       }
119     }
120     ConstantToValueMap.clear();
121   }
122 
123   // Copy GVMap over to a standard value map.
124   ValueToValueMapTy VM;
125   for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
126     VM[I->first] = I->second;
127 
128   // Walk through the global variable  initializers, and replace any use of
129   // original global variables in GVMap with a use of the corresponding copies
130   // in GVMap.  The copies need to be bitcast to the original global variable
131   // types, as we cannot use cvta in global variable initializers.
132   for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
133     GlobalVariable *GV = I->first;
134     GlobalVariable *NewGV = I->second;
135 
136     // Remove GV from the map so that it can be RAUWed.  Note that
137     // DenseMap::erase() won't invalidate any iterators but this one.
138     auto Next = std::next(I);
139     GVMap.erase(I);
140     I = Next;
141 
142     Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
143     // At this point, the remaining uses of GV should be found only in global
144     // variable initializers, as other uses have been already been removed
145     // while walking through the instructions in function definitions.
146     GV->replaceAllUsesWith(BitCastNewGV);
147     std::string Name = std::string(GV->getName());
148     GV->eraseFromParent();
149     NewGV->setName(Name);
150   }
151   assert(GVMap.empty() && "Expected it to be empty by now");
152 
153   return true;
154 }
155 
156 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
157                                     IRBuilder<> &Builder) {
158   // If the constant C has been converted already in the given function  F, just
159   // return the converted value.
160   ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
161   if (CTII != ConstantToValueMap.end()) {
162     return CTII->second;
163   }
164 
165   Value *NewValue = C;
166   if (isa<GlobalVariable>(C)) {
167     // If the constant C is a global variable and is found in GVMap, substitute
168     //
169     //   addrspacecast GVMap[C] to addrspace(0)
170     //
171     // for our use of C.
172     GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
173     if (I != GVMap.end()) {
174       GlobalVariable *GV = I->second;
175       NewValue = Builder.CreateAddrSpaceCast(
176           GV,
177           PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC));
178     }
179   } else if (isa<ConstantAggregate>(C)) {
180     // If any element in the constant vector or aggregate C is or uses a global
181     // variable in GVMap, the constant C needs to be reconstructed, using a set
182     // of instructions.
183     NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
184   } else if (isa<ConstantExpr>(C)) {
185     // If any operand in the constant expression C is or uses a global variable
186     // in GVMap, the constant expression C needs to be reconstructed, using a
187     // set of instructions.
188     NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
189   }
190 
191   ConstantToValueMap[C] = NewValue;
192   return NewValue;
193 }
194 
195 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
196     Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
197   bool OperandChanged = false;
198   SmallVector<Value *, 4> NewOperands;
199   unsigned NumOperands = C->getNumOperands();
200 
201   // Check if any element is or uses a global variable in  GVMap, and thus
202   // converted to another value.
203   for (unsigned i = 0; i < NumOperands; ++i) {
204     Value *Operand = C->getOperand(i);
205     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
206     OperandChanged |= Operand != NewOperand;
207     NewOperands.push_back(NewOperand);
208   }
209 
210   // If none of the elements has been modified, return C as it is.
211   if (!OperandChanged) {
212     return C;
213   }
214 
215   // If any of the elements has been  modified, construct the equivalent
216   // vector or aggregate value with a set instructions and the converted
217   // elements.
218   Value *NewValue = UndefValue::get(C->getType());
219   if (isa<ConstantVector>(C)) {
220     for (unsigned i = 0; i < NumOperands; ++i) {
221       Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
222       NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
223     }
224   } else {
225     for (unsigned i = 0; i < NumOperands; ++i) {
226       NewValue =
227           Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
228     }
229   }
230 
231   return NewValue;
232 }
233 
234 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
235                                         IRBuilder<> &Builder) {
236   bool OperandChanged = false;
237   SmallVector<Value *, 4> NewOperands;
238   unsigned NumOperands = C->getNumOperands();
239 
240   // Check if any operand is or uses a global variable in  GVMap, and thus
241   // converted to another value.
242   for (unsigned i = 0; i < NumOperands; ++i) {
243     Value *Operand = C->getOperand(i);
244     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
245     OperandChanged |= Operand != NewOperand;
246     NewOperands.push_back(NewOperand);
247   }
248 
249   // If none of the operands has been modified, return C as it is.
250   if (!OperandChanged) {
251     return C;
252   }
253 
254   // If any of the operands has been modified, construct the instruction with
255   // the converted operands.
256   unsigned Opcode = C->getOpcode();
257   switch (Opcode) {
258   case Instruction::ICmp:
259     // CompareConstantExpr (icmp)
260     return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
261                               NewOperands[0], NewOperands[1]);
262   case Instruction::FCmp:
263     // CompareConstantExpr (fcmp)
264     llvm_unreachable("Address space conversion should have no effect "
265                      "on float point CompareConstantExpr (fcmp)!");
266   case Instruction::ExtractElement:
267     // ExtractElementConstantExpr
268     return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
269   case Instruction::InsertElement:
270     // InsertElementConstantExpr
271     return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
272                                        NewOperands[2]);
273   case Instruction::ShuffleVector:
274     // ShuffleVector
275     return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
276                                        NewOperands[2]);
277   case Instruction::ExtractValue:
278     // ExtractValueConstantExpr
279     return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
280   case Instruction::InsertValue:
281     // InsertValueConstantExpr
282     return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
283                                      C->getIndices());
284   case Instruction::GetElementPtr:
285     // GetElementPtrConstantExpr
286     return cast<GEPOperator>(C)->isInBounds()
287                ? Builder.CreateGEP(
288                      cast<GEPOperator>(C)->getSourceElementType(),
289                      NewOperands[0],
290                      makeArrayRef(&NewOperands[1], NumOperands - 1))
291                : Builder.CreateInBoundsGEP(
292                      cast<GEPOperator>(C)->getSourceElementType(),
293                      NewOperands[0],
294                      makeArrayRef(&NewOperands[1], NumOperands - 1));
295   case Instruction::Select:
296     // SelectConstantExpr
297     return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
298   default:
299     // BinaryConstantExpr
300     if (Instruction::isBinaryOp(Opcode)) {
301       return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
302                                  NewOperands[0], NewOperands[1]);
303     }
304     // UnaryConstantExpr
305     if (Instruction::isCast(Opcode)) {
306       return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
307                                 NewOperands[0], C->getType());
308     }
309     llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
310   }
311 }
312