1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Subclass of MipsDAGToDAGISel specialized for mips32/64. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MipsSEISelDAGToDAG.h" 14 #include "MCTargetDesc/MipsBaseInfo.h" 15 #include "Mips.h" 16 #include "MipsAnalyzeImmediate.h" 17 #include "MipsMachineFunction.h" 18 #include "MipsRegisterInfo.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAGNodes.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "mips-isel" 38 39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 40 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget()); 41 if (Subtarget->inMips16Mode()) 42 return false; 43 return MipsDAGToDAGISel::runOnMachineFunction(MF); 44 } 45 46 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.addRequired<DominatorTreeWrapperPass>(); 48 SelectionDAGISel::getAnalysisUsage(AU); 49 } 50 51 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, 52 MachineFunction &MF) { 53 MachineInstrBuilder MIB(MF, &MI); 54 unsigned Mask = MI.getOperand(1).getImm(); 55 unsigned Flag = 56 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef; 57 58 if (Mask & 1) 59 MIB.addReg(Mips::DSPPos, Flag); 60 61 if (Mask & 2) 62 MIB.addReg(Mips::DSPSCount, Flag); 63 64 if (Mask & 4) 65 MIB.addReg(Mips::DSPCarry, Flag); 66 67 if (Mask & 8) 68 MIB.addReg(Mips::DSPOutFlag, Flag); 69 70 if (Mask & 16) 71 MIB.addReg(Mips::DSPCCond, Flag); 72 73 if (Mask & 32) 74 MIB.addReg(Mips::DSPEFI, Flag); 75 } 76 77 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { 78 uint64_t RegNum = cast<ConstantSDNode>(RegIdx)->getZExtValue(); 79 return Mips::MSACtrlRegClass.getRegister(RegNum); 80 } 81 82 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, 83 const MachineInstr& MI) { 84 unsigned DstReg = 0, ZeroReg = 0; 85 86 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". 87 if ((MI.getOpcode() == Mips::ADDiu) && 88 (MI.getOperand(1).getReg() == Mips::ZERO) && 89 (MI.getOperand(2).isImm()) && 90 (MI.getOperand(2).getImm() == 0)) { 91 DstReg = MI.getOperand(0).getReg(); 92 ZeroReg = Mips::ZERO; 93 } else if ((MI.getOpcode() == Mips::DADDiu) && 94 (MI.getOperand(1).getReg() == Mips::ZERO_64) && 95 (MI.getOperand(2).isImm()) && 96 (MI.getOperand(2).getImm() == 0)) { 97 DstReg = MI.getOperand(0).getReg(); 98 ZeroReg = Mips::ZERO_64; 99 } 100 101 if (!DstReg) 102 return false; 103 104 // Replace uses with ZeroReg. 105 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), 106 E = MRI->use_end(); U != E;) { 107 MachineOperand &MO = *U; 108 unsigned OpNo = U.getOperandNo(); 109 MachineInstr *MI = MO.getParent(); 110 ++U; 111 112 // Do not replace if it is a phi's operand or is tied to def operand. 113 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) 114 continue; 115 116 // Also, we have to check that the register class of the operand 117 // contains the zero register. 118 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg)) 119 continue; 120 121 MO.setReg(ZeroReg); 122 } 123 124 return true; 125 } 126 127 void MipsSEDAGToDAGISel::emitMCountABI(MachineInstr &MI, MachineBasicBlock &MBB, 128 MachineFunction &MF) { 129 MachineInstrBuilder MIB(MF, &MI); 130 if (!Subtarget->isABI_O32()) { // N32, N64 131 // Save current return address. 132 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR64)) 133 .addDef(Mips::AT_64) 134 .addUse(Mips::RA_64, RegState::Undef) 135 .addUse(Mips::ZERO_64); 136 // Stops instruction above from being removed later on. 137 MIB.addUse(Mips::AT_64, RegState::Implicit); 138 } else { // O32 139 // Save current return address. 140 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR)) 141 .addDef(Mips::AT) 142 .addUse(Mips::RA, RegState::Undef) 143 .addUse(Mips::ZERO); 144 // _mcount pops 2 words from stack. 145 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::ADDiu)) 146 .addDef(Mips::SP) 147 .addUse(Mips::SP) 148 .addImm(-8); 149 // Stops first instruction above from being removed later on. 150 MIB.addUse(Mips::AT, RegState::Implicit); 151 } 152 } 153 154 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { 155 MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg(); 156 157 MachineRegisterInfo *MRI = &MF.getRegInfo(); 158 159 for (auto &MBB: MF) { 160 for (auto &MI: MBB) { 161 switch (MI.getOpcode()) { 162 case Mips::RDDSP: 163 addDSPCtrlRegOperands(false, MI, MF); 164 break; 165 case Mips::WRDSP: 166 addDSPCtrlRegOperands(true, MI, MF); 167 break; 168 case Mips::BuildPairF64_64: 169 case Mips::ExtractElementF64_64: 170 if (!Subtarget->useOddSPReg()) { 171 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); 172 break; 173 } 174 LLVM_FALLTHROUGH; 175 case Mips::BuildPairF64: 176 case Mips::ExtractElementF64: 177 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1()) 178 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); 179 break; 180 case Mips::JAL: 181 case Mips::JAL_MM: 182 if (MI.getOperand(0).isGlobal() && 183 MI.getOperand(0).getGlobal()->getGlobalIdentifier() == "_mcount") 184 emitMCountABI(MI, MBB, MF); 185 break; 186 case Mips::JALRPseudo: 187 case Mips::JALR64Pseudo: 188 case Mips::JALR16_MM: 189 if (MI.getOperand(2).isMCSymbol() && 190 MI.getOperand(2).getMCSymbol()->getName() == "_mcount") 191 emitMCountABI(MI, MBB, MF); 192 break; 193 case Mips::JALR: 194 if (MI.getOperand(3).isMCSymbol() && 195 MI.getOperand(3).getMCSymbol()->getName() == "_mcount") 196 emitMCountABI(MI, MBB, MF); 197 break; 198 default: 199 replaceUsesWithZeroReg(MRI, MI); 200 } 201 } 202 } 203 } 204 205 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const { 206 SDValue InFlag = Node->getOperand(2); 207 unsigned Opc = InFlag.getOpcode(); 208 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); 209 EVT VT = LHS.getValueType(); 210 211 // In the base case, we can rely on the carry bit from the addsc 212 // instruction. 213 if (Opc == ISD::ADDC) { 214 SDValue Ops[3] = {LHS, RHS, InFlag}; 215 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops); 216 return; 217 } 218 219 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!"); 220 221 // The more complex case is when there is a chain of ISD::ADDE nodes like: 222 // (adde (adde (adde (addc a b) c) d) e). 223 // 224 // The addwc instruction does not write to the carry bit, instead it writes 225 // to bit 20 of the dsp control register. To match this series of nodes, each 226 // intermediate adde node must be expanded to write the carry bit before the 227 // addition. 228 229 // Start by reading the overflow field for addsc and moving the value to the 230 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP 231 // corresponds to reading/writing the entire control register to/from a GPR. 232 233 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32); 234 235 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32); 236 237 SDNode *DSPCtrlField = 238 CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag); 239 240 SDNode *Carry = CurDAG->getMachineNode( 241 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne); 242 243 SDValue Ops[4] = {SDValue(DSPCtrlField, 0), 244 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne, 245 SDValue(Carry, 0)}; 246 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops); 247 248 // My reading of the MIPS DSP 3.01 specification isn't as clear as I 249 // would like about whether bit 20 always gets overwritten by addwc. 250 // Hence take an extremely conservative view and presume it's sticky. We 251 // therefore need to clear it. 252 253 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32); 254 255 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)}; 256 SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps); 257 258 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue, 259 SDValue(DSPCtrlFinal, 0), CstOne); 260 261 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)}; 262 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands); 263 } 264 265 /// Match frameindex 266 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, 267 SDValue &Offset) const { 268 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { 269 EVT ValTy = Addr.getValueType(); 270 271 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); 272 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy); 273 return true; 274 } 275 return false; 276 } 277 278 /// Match frameindex+offset and frameindex|offset 279 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset( 280 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits, 281 unsigned ShiftAmount = 0) const { 282 if (CurDAG->isBaseWithConstantOffset(Addr)) { 283 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 284 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) { 285 EVT ValTy = Addr.getValueType(); 286 287 // If the first operand is a FI, get the TargetFI Node 288 if (FrameIndexSDNode *FIN = 289 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) 290 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); 291 else { 292 Base = Addr.getOperand(0); 293 // If base is a FI, additional offset calculation is done in 294 // eliminateFrameIndex, otherwise we need to check the alignment 295 const Align Alignment(1ULL << ShiftAmount); 296 if (!isAligned(Alignment, CN->getZExtValue())) 297 return false; 298 } 299 300 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr), 301 ValTy); 302 return true; 303 } 304 } 305 return false; 306 } 307 308 /// ComplexPattern used on MipsInstrInfo 309 /// Used on Mips Load/Store instructions 310 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, 311 SDValue &Offset) const { 312 // if Address is FI, get the TargetFrameIndex. 313 if (selectAddrFrameIndex(Addr, Base, Offset)) 314 return true; 315 316 // on PIC code Load GA 317 if (Addr.getOpcode() == MipsISD::Wrapper) { 318 Base = Addr.getOperand(0); 319 Offset = Addr.getOperand(1); 320 return true; 321 } 322 323 if (!TM.isPositionIndependent()) { 324 if ((Addr.getOpcode() == ISD::TargetExternalSymbol || 325 Addr.getOpcode() == ISD::TargetGlobalAddress)) 326 return false; 327 } 328 329 // Addresses of the form FI+const or FI|const 330 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) 331 return true; 332 333 // Operand is a result from an ADD. 334 if (Addr.getOpcode() == ISD::ADD) { 335 // When loading from constant pools, load the lower address part in 336 // the instruction itself. Example, instead of: 337 // lui $2, %hi($CPI1_0) 338 // addiu $2, $2, %lo($CPI1_0) 339 // lwc1 $f0, 0($2) 340 // Generate: 341 // lui $2, %hi($CPI1_0) 342 // lwc1 $f0, %lo($CPI1_0)($2) 343 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || 344 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { 345 SDValue Opnd0 = Addr.getOperand(1).getOperand(0); 346 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || 347 isa<JumpTableSDNode>(Opnd0)) { 348 Base = Addr.getOperand(0); 349 Offset = Opnd0; 350 return true; 351 } 352 } 353 } 354 355 return false; 356 } 357 358 /// ComplexPattern used on MipsInstrInfo 359 /// Used on Mips Load/Store instructions 360 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, 361 SDValue &Offset) const { 362 Base = Addr; 363 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType()); 364 return true; 365 } 366 367 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, 368 SDValue &Offset) const { 369 return selectAddrRegImm(Addr, Base, Offset) || 370 selectAddrDefault(Addr, Base, Offset); 371 } 372 373 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, 374 SDValue &Offset) const { 375 if (selectAddrFrameIndex(Addr, Base, Offset)) 376 return true; 377 378 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9)) 379 return true; 380 381 return false; 382 } 383 384 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset) 385 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base, 386 SDValue &Offset) const { 387 if (selectAddrFrameIndex(Addr, Base, Offset)) 388 return true; 389 390 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11)) 391 return true; 392 393 return false; 394 } 395 396 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) 397 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, 398 SDValue &Offset) const { 399 if (selectAddrFrameIndex(Addr, Base, Offset)) 400 return true; 401 402 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) 403 return true; 404 405 return false; 406 } 407 408 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, 409 SDValue &Offset) const { 410 if (selectAddrFrameIndex(Addr, Base, Offset)) 411 return true; 412 413 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) 414 return true; 415 416 return false; 417 } 418 419 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base, 420 SDValue &Offset) const { 421 return selectAddrRegImm11(Addr, Base, Offset) || 422 selectAddrDefault(Addr, Base, Offset); 423 } 424 425 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base, 426 SDValue &Offset) const { 427 return selectAddrRegImm12(Addr, Base, Offset) || 428 selectAddrDefault(Addr, Base, Offset); 429 } 430 431 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base, 432 SDValue &Offset) const { 433 return selectAddrRegImm16(Addr, Base, Offset) || 434 selectAddrDefault(Addr, Base, Offset); 435 } 436 437 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, 438 SDValue &Offset) const { 439 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) { 440 if (isa<FrameIndexSDNode>(Base)) 441 return false; 442 443 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) { 444 unsigned CnstOff = CN->getZExtValue(); 445 return (CnstOff == (CnstOff & 0x3c)); 446 } 447 448 return false; 449 } 450 451 // For all other cases where "lw" would be selected, don't select "lw16" 452 // because it would result in additional instructions to prepare operands. 453 if (selectAddrRegImm(Addr, Base, Offset)) 454 return false; 455 456 return selectAddrDefault(Addr, Base, Offset); 457 } 458 459 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base, 460 SDValue &Offset) const { 461 462 if (selectAddrFrameIndex(Addr, Base, Offset)) 463 return true; 464 465 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) 466 return true; 467 468 return selectAddrDefault(Addr, Base, Offset); 469 } 470 471 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base, 472 SDValue &Offset) const { 473 if (selectAddrFrameIndex(Addr, Base, Offset)) 474 return true; 475 476 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1)) 477 return true; 478 479 return selectAddrDefault(Addr, Base, Offset); 480 } 481 482 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base, 483 SDValue &Offset) const { 484 if (selectAddrFrameIndex(Addr, Base, Offset)) 485 return true; 486 487 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2)) 488 return true; 489 490 return selectAddrDefault(Addr, Base, Offset); 491 } 492 493 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base, 494 SDValue &Offset) const { 495 if (selectAddrFrameIndex(Addr, Base, Offset)) 496 return true; 497 498 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3)) 499 return true; 500 501 return selectAddrDefault(Addr, Base, Offset); 502 } 503 504 // Select constant vector splats. 505 // 506 // Returns true and sets Imm if: 507 // * MSA is enabled 508 // * N is a ISD::BUILD_VECTOR representing a constant splat 509 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, 510 unsigned MinSizeInBits) const { 511 if (!Subtarget->hasMSA()) 512 return false; 513 514 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); 515 516 if (!Node) 517 return false; 518 519 APInt SplatValue, SplatUndef; 520 unsigned SplatBitSize; 521 bool HasAnyUndefs; 522 523 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 524 MinSizeInBits, !Subtarget->isLittle())) 525 return false; 526 527 Imm = SplatValue; 528 529 return true; 530 } 531 532 // Select constant vector splats. 533 // 534 // In addition to the requirements of selectVSplat(), this function returns 535 // true and sets Imm if: 536 // * The splat value is the same width as the elements of the vector 537 // * The splat value fits in an integer with the specified signed-ness and 538 // width. 539 // 540 // This function looks through ISD::BITCAST nodes. 541 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 542 // sometimes a shuffle in big-endian mode. 543 // 544 // It's worth noting that this function is not used as part of the selection 545 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] 546 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in 547 // MipsSEDAGToDAGISel::selectNode. 548 bool MipsSEDAGToDAGISel:: 549 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, 550 unsigned ImmBitSize) const { 551 APInt ImmValue; 552 EVT EltTy = N->getValueType(0).getVectorElementType(); 553 554 if (N->getOpcode() == ISD::BITCAST) 555 N = N->getOperand(0); 556 557 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 558 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 559 560 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || 561 (!Signed && ImmValue.isIntN(ImmBitSize))) { 562 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy); 563 return true; 564 } 565 } 566 567 return false; 568 } 569 570 // Select constant vector splats. 571 bool MipsSEDAGToDAGISel:: 572 selectVSplatUimm1(SDValue N, SDValue &Imm) const { 573 return selectVSplatCommon(N, Imm, false, 1); 574 } 575 576 bool MipsSEDAGToDAGISel:: 577 selectVSplatUimm2(SDValue N, SDValue &Imm) const { 578 return selectVSplatCommon(N, Imm, false, 2); 579 } 580 581 bool MipsSEDAGToDAGISel:: 582 selectVSplatUimm3(SDValue N, SDValue &Imm) const { 583 return selectVSplatCommon(N, Imm, false, 3); 584 } 585 586 // Select constant vector splats. 587 bool MipsSEDAGToDAGISel:: 588 selectVSplatUimm4(SDValue N, SDValue &Imm) const { 589 return selectVSplatCommon(N, Imm, false, 4); 590 } 591 592 // Select constant vector splats. 593 bool MipsSEDAGToDAGISel:: 594 selectVSplatUimm5(SDValue N, SDValue &Imm) const { 595 return selectVSplatCommon(N, Imm, false, 5); 596 } 597 598 // Select constant vector splats. 599 bool MipsSEDAGToDAGISel:: 600 selectVSplatUimm6(SDValue N, SDValue &Imm) const { 601 return selectVSplatCommon(N, Imm, false, 6); 602 } 603 604 // Select constant vector splats. 605 bool MipsSEDAGToDAGISel:: 606 selectVSplatUimm8(SDValue N, SDValue &Imm) const { 607 return selectVSplatCommon(N, Imm, false, 8); 608 } 609 610 // Select constant vector splats. 611 bool MipsSEDAGToDAGISel:: 612 selectVSplatSimm5(SDValue N, SDValue &Imm) const { 613 return selectVSplatCommon(N, Imm, true, 5); 614 } 615 616 // Select constant vector splats whose value is a power of 2. 617 // 618 // In addition to the requirements of selectVSplat(), this function returns 619 // true and sets Imm if: 620 // * The splat value is the same width as the elements of the vector 621 // * The splat value is a power of two. 622 // 623 // This function looks through ISD::BITCAST nodes. 624 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 625 // sometimes a shuffle in big-endian mode. 626 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { 627 APInt ImmValue; 628 EVT EltTy = N->getValueType(0).getVectorElementType(); 629 630 if (N->getOpcode() == ISD::BITCAST) 631 N = N->getOperand(0); 632 633 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 634 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 635 int32_t Log2 = ImmValue.exactLogBase2(); 636 637 if (Log2 != -1) { 638 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); 639 return true; 640 } 641 } 642 643 return false; 644 } 645 646 // Select constant vector splats whose value only has a consecutive sequence 647 // of left-most bits set (e.g. 0b11...1100...00). 648 // 649 // In addition to the requirements of selectVSplat(), this function returns 650 // true and sets Imm if: 651 // * The splat value is the same width as the elements of the vector 652 // * The splat value is a consecutive sequence of left-most bits. 653 // 654 // This function looks through ISD::BITCAST nodes. 655 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 656 // sometimes a shuffle in big-endian mode. 657 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { 658 APInt ImmValue; 659 EVT EltTy = N->getValueType(0).getVectorElementType(); 660 661 if (N->getOpcode() == ISD::BITCAST) 662 N = N->getOperand(0); 663 664 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 665 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 666 // Extract the run of set bits starting with bit zero from the bitwise 667 // inverse of ImmValue, and test that the inverse of this is the same 668 // as the original value. 669 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { 670 671 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), 672 EltTy); 673 return true; 674 } 675 } 676 677 return false; 678 } 679 680 // Select constant vector splats whose value only has a consecutive sequence 681 // of right-most bits set (e.g. 0b00...0011...11). 682 // 683 // In addition to the requirements of selectVSplat(), this function returns 684 // true and sets Imm if: 685 // * The splat value is the same width as the elements of the vector 686 // * The splat value is a consecutive sequence of right-most bits. 687 // 688 // This function looks through ISD::BITCAST nodes. 689 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 690 // sometimes a shuffle in big-endian mode. 691 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { 692 APInt ImmValue; 693 EVT EltTy = N->getValueType(0).getVectorElementType(); 694 695 if (N->getOpcode() == ISD::BITCAST) 696 N = N->getOperand(0); 697 698 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 699 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 700 // Extract the run of set bits starting with bit zero, and test that the 701 // result is the same as the original value 702 if (ImmValue == (ImmValue & ~(ImmValue + 1))) { 703 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), 704 EltTy); 705 return true; 706 } 707 } 708 709 return false; 710 } 711 712 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, 713 SDValue &Imm) const { 714 APInt ImmValue; 715 EVT EltTy = N->getValueType(0).getVectorElementType(); 716 717 if (N->getOpcode() == ISD::BITCAST) 718 N = N->getOperand(0); 719 720 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 721 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 722 int32_t Log2 = (~ImmValue).exactLogBase2(); 723 724 if (Log2 != -1) { 725 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); 726 return true; 727 } 728 } 729 730 return false; 731 } 732 733 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) { 734 unsigned Opcode = Node->getOpcode(); 735 SDLoc DL(Node); 736 737 /// 738 // Instruction Selection not handled by the auto-generated 739 // tablegen selection should be handled here. 740 /// 741 switch(Opcode) { 742 default: break; 743 744 case Mips::PseudoD_SELECT_I: 745 case Mips::PseudoD_SELECT_I64: { 746 MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32; 747 SDValue cond = Node->getOperand(0); 748 SDValue Hi1 = Node->getOperand(1); 749 SDValue Lo1 = Node->getOperand(2); 750 SDValue Hi2 = Node->getOperand(3); 751 SDValue Lo2 = Node->getOperand(4); 752 753 SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2}; 754 EVT NodeTys[] = {VT, VT}; 755 ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit() 756 ? Mips::PseudoD_SELECT_I64 757 : Mips::PseudoD_SELECT_I, 758 DL, NodeTys, ops)); 759 return true; 760 } 761 762 case ISD::ADDE: { 763 selectAddE(Node, DL); 764 return true; 765 } 766 767 case ISD::ConstantFP: { 768 auto *CN = cast<ConstantFPSDNode>(Node); 769 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { 770 if (Subtarget->isGP64bit()) { 771 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 772 Mips::ZERO_64, MVT::i64); 773 ReplaceNode(Node, 774 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero)); 775 } else if (Subtarget->isFP64bit()) { 776 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 777 Mips::ZERO, MVT::i32); 778 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, 779 MVT::f64, Zero, Zero)); 780 } else { 781 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 782 Mips::ZERO, MVT::i32); 783 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL, 784 MVT::f64, Zero, Zero)); 785 } 786 return true; 787 } 788 break; 789 } 790 791 case ISD::Constant: { 792 auto *CN = cast<ConstantSDNode>(Node); 793 int64_t Imm = CN->getSExtValue(); 794 unsigned Size = CN->getValueSizeInBits(0); 795 796 if (isInt<32>(Imm)) 797 break; 798 799 MipsAnalyzeImmediate AnalyzeImm; 800 801 const MipsAnalyzeImmediate::InstSeq &Seq = 802 AnalyzeImm.Analyze(Imm, Size, false); 803 804 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); 805 SDLoc DL(CN); 806 SDNode *RegOpnd; 807 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), 808 DL, MVT::i64); 809 810 // The first instruction can be a LUi which is different from other 811 // instructions (ADDiu, ORI and SLL) in that it does not have a register 812 // operand. 813 if (Inst->Opc == Mips::LUi64) 814 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); 815 else 816 RegOpnd = 817 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, 818 CurDAG->getRegister(Mips::ZERO_64, MVT::i64), 819 ImmOpnd); 820 821 // The remaining instructions in the sequence are handled here. 822 for (++Inst; Inst != Seq.end(); ++Inst) { 823 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, 824 MVT::i64); 825 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, 826 SDValue(RegOpnd, 0), ImmOpnd); 827 } 828 829 ReplaceNode(Node, RegOpnd); 830 return true; 831 } 832 833 case ISD::INTRINSIC_W_CHAIN: { 834 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 835 default: 836 break; 837 838 case Intrinsic::mips_cfcmsa: { 839 SDValue ChainIn = Node->getOperand(0); 840 SDValue RegIdx = Node->getOperand(2); 841 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, 842 getMSACtrlReg(RegIdx), MVT::i32); 843 ReplaceNode(Node, Reg.getNode()); 844 return true; 845 } 846 } 847 break; 848 } 849 850 case ISD::INTRINSIC_WO_CHAIN: { 851 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { 852 default: 853 break; 854 855 case Intrinsic::mips_move_v: 856 // Like an assignment but will always produce a move.v even if 857 // unnecessary. 858 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL, 859 Node->getValueType(0), 860 Node->getOperand(1))); 861 return true; 862 } 863 break; 864 } 865 866 case ISD::INTRINSIC_VOID: { 867 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 868 default: 869 break; 870 871 case Intrinsic::mips_ctcmsa: { 872 SDValue ChainIn = Node->getOperand(0); 873 SDValue RegIdx = Node->getOperand(2); 874 SDValue Value = Node->getOperand(3); 875 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, 876 getMSACtrlReg(RegIdx), Value); 877 ReplaceNode(Node, ChainOut.getNode()); 878 return true; 879 } 880 } 881 break; 882 } 883 884 // Manually match MipsISD::Ins nodes to get the correct instruction. It has 885 // to be done in this fashion so that we respect the differences between 886 // dins and dinsm, as the difference is that the size operand has the range 887 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which 888 // means SelectionDAGISel would have to test all the operands at once to 889 // match the instruction. 890 case MipsISD::Ins: { 891 892 // Sanity checking for the node operands. 893 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64) 894 return false; 895 896 if (Node->getNumOperands() != 4) 897 return false; 898 899 if (Node->getOperand(1)->getOpcode() != ISD::Constant || 900 Node->getOperand(2)->getOpcode() != ISD::Constant) 901 return false; 902 903 MVT ResTy = Node->getSimpleValueType(0); 904 uint64_t Pos = Node->getConstantOperandVal(1); 905 uint64_t Size = Node->getConstantOperandVal(2); 906 907 // Size has to be >0 for 'ins', 'dins' and 'dinsu'. 908 if (!Size) 909 return false; 910 911 if (Pos + Size > 64) 912 return false; 913 914 if (ResTy != MVT::i32 && ResTy != MVT::i64) 915 return false; 916 917 unsigned Opcode = 0; 918 if (ResTy == MVT::i32) { 919 if (Pos + Size <= 32) 920 Opcode = Mips::INS; 921 } else { 922 if (Pos + Size <= 32) 923 Opcode = Mips::DINS; 924 else if (Pos < 32 && 1 < Size) 925 Opcode = Mips::DINSM; 926 else 927 Opcode = Mips::DINSU; 928 } 929 930 if (Opcode) { 931 SDValue Ops[4] = { 932 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32), 933 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)}; 934 935 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops)); 936 return true; 937 } 938 939 return false; 940 } 941 942 case MipsISD::ThreadPointer: { 943 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); 944 unsigned RdhwrOpc, DestReg; 945 946 if (PtrVT == MVT::i32) { 947 RdhwrOpc = Mips::RDHWR; 948 DestReg = Mips::V1; 949 } else { 950 RdhwrOpc = Mips::RDHWR64; 951 DestReg = Mips::V1_64; 952 } 953 954 SDNode *Rdhwr = 955 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), 956 CurDAG->getRegister(Mips::HWR29, MVT::i32), 957 CurDAG->getTargetConstant(0, DL, MVT::i32)); 958 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, 959 SDValue(Rdhwr, 0)); 960 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); 961 ReplaceNode(Node, ResNode.getNode()); 962 return true; 963 } 964 965 case ISD::BUILD_VECTOR: { 966 // Select appropriate ldi.[bhwd] instructions for constant splats of 967 // 128-bit when MSA is enabled. Fixup any register class mismatches that 968 // occur as a result. 969 // 970 // This allows the compiler to use a wider range of immediates than would 971 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then 972 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, 973 // 0x01010101 } without using a constant pool. This would be sub-optimal 974 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the 975 // same set/ of registers. Similarly, ldi.h isn't capable of producing { 976 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. 977 978 const MipsABIInfo &ABI = 979 static_cast<const MipsTargetMachine &>(TM).getABI(); 980 981 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); 982 APInt SplatValue, SplatUndef; 983 unsigned SplatBitSize; 984 bool HasAnyUndefs; 985 unsigned LdiOp; 986 EVT ResVecTy = BVN->getValueType(0); 987 EVT ViaVecTy; 988 989 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) 990 return false; 991 992 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 993 HasAnyUndefs, 8, 994 !Subtarget->isLittle())) 995 return false; 996 997 switch (SplatBitSize) { 998 default: 999 return false; 1000 case 8: 1001 LdiOp = Mips::LDI_B; 1002 ViaVecTy = MVT::v16i8; 1003 break; 1004 case 16: 1005 LdiOp = Mips::LDI_H; 1006 ViaVecTy = MVT::v8i16; 1007 break; 1008 case 32: 1009 LdiOp = Mips::LDI_W; 1010 ViaVecTy = MVT::v4i32; 1011 break; 1012 case 64: 1013 LdiOp = Mips::LDI_D; 1014 ViaVecTy = MVT::v2i64; 1015 break; 1016 } 1017 1018 SDNode *Res = nullptr; 1019 1020 // If we have a signed 10 bit integer, we can splat it directly. 1021 // 1022 // If we have something bigger we can synthesize the value into a GPR and 1023 // splat from there. 1024 if (SplatValue.isSignedIntN(10)) { 1025 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL, 1026 ViaVecTy.getVectorElementType()); 1027 1028 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm); 1029 } else if (SplatValue.isSignedIntN(16) && 1030 ((ABI.IsO32() && SplatBitSize < 64) || 1031 (ABI.IsN32() || ABI.IsN64()))) { 1032 // Only handle signed 16 bit values when the element size is GPR width. 1033 // MIPS64 can handle all the cases but MIPS32 would need to handle 1034 // negative cases specifically here. Instead, handle those cases as 1035 // 64bit values. 1036 1037 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64; 1038 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu; 1039 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64; 1040 SDValue ZeroVal = CurDAG->getRegister( 1041 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT); 1042 1043 const unsigned FILLOp = 1044 SplatBitSize == 16 1045 ? Mips::FILL_H 1046 : (SplatBitSize == 32 ? Mips::FILL_W 1047 : (SplatBitSize == 64 ? Mips::FILL_D : 0)); 1048 1049 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!"); 1050 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && 1051 "Attempting to use fill.d on MIPS32!"); 1052 1053 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1054 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT); 1055 1056 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal); 1057 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0)); 1058 1059 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) { 1060 // Only handle the cases where the splat size agrees with the size 1061 // of the SplatValue here. 1062 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1063 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1064 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1065 1066 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1067 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1068 1069 if (Hi) 1070 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1071 1072 if (Lo) 1073 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1074 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1075 1076 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!"); 1077 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0)); 1078 1079 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 && 1080 (ABI.IsN32() || ABI.IsN64())) { 1081 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit 1082 // integers due to having 64bit registers. lui will cause the necessary 1083 // zero/sign extension. 1084 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1085 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1086 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1087 1088 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1089 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1090 1091 if (Hi) 1092 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1093 1094 if (Lo) 1095 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1096 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1097 1098 Res = CurDAG->getMachineNode( 1099 Mips::SUBREG_TO_REG, DL, MVT::i64, 1100 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), 1101 SDValue(Res, 0), 1102 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1103 1104 Res = 1105 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); 1106 1107 } else if (SplatValue.isSignedIntN(64)) { 1108 // If we have a 64 bit Splat value, we perform a similar sequence to the 1109 // above: 1110 // 1111 // MIPS32: MIPS64: 1112 // lui $res, %highest(val) lui $res, %highest(val) 1113 // ori $res, $res, %higher(val) ori $res, $res, %higher(val) 1114 // lui $res2, %hi(val) lui $res2, %hi(val) 1115 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val) 1116 // $res3 = fill $res2 dinsu $res, $res2, 0, 32 1117 // $res4 = insert.w $res3[1], $res fill.d $res 1118 // splat.d $res4, 0 1119 // 1120 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves 1121 // having to materialize the value by shifts and ors. 1122 // 1123 // FIXME: Implement the preferred sequence for MIPS64R6: 1124 // 1125 // MIPS64R6: 1126 // ori $res, $zero, %lo(val) 1127 // daui $res, $res, %hi(val) 1128 // dahi $res, $res, %higher(val) 1129 // dati $res, $res, %highest(cal) 1130 // fill.d $res 1131 // 1132 1133 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1134 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1135 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue(); 1136 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue(); 1137 1138 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1139 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1140 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32); 1141 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32); 1142 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1143 1144 // Independent of whether we're targeting MIPS64 or not, the basic 1145 // operations are the same. Also, directly use the $zero register if 1146 // the 16 bit chunk is zero. 1147 // 1148 // For optimization purposes we always synthesize the splat value as 1149 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG 1150 // just before combining the values with dinsu to produce an i64. This 1151 // enables SelectionDAG to aggressively share components of splat values 1152 // where possible. 1153 // 1154 // FIXME: This is the general constant synthesis problem. This code 1155 // should be factored out into a class shared between all the 1156 // classes that need it. Specifically, for a splat size of 64 1157 // bits that's a negative number we can do better than LUi/ORi 1158 // for the upper 32bits. 1159 1160 if (Hi) 1161 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1162 1163 if (Lo) 1164 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1165 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1166 1167 SDNode *HiRes; 1168 if (Highest) 1169 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal); 1170 1171 if (Higher) 1172 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1173 Highest ? SDValue(HiRes, 0) : ZeroVal, 1174 HigherVal); 1175 1176 1177 if (ABI.IsO32()) { 1178 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, 1179 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal); 1180 1181 Res = CurDAG->getMachineNode( 1182 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0), 1183 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal, 1184 CurDAG->getTargetConstant(1, DL, MVT::i32)); 1185 1186 const TargetLowering *TLI = getTargetLowering(); 1187 const TargetRegisterClass *RC = 1188 TLI->getRegClassFor(ViaVecTy.getSimpleVT()); 1189 1190 Res = CurDAG->getMachineNode( 1191 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0), 1192 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32)); 1193 1194 Res = CurDAG->getMachineNode( 1195 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0), 1196 CurDAG->getTargetConstant(0, DL, MVT::i32)); 1197 } else if (ABI.IsN64() || ABI.IsN32()) { 1198 1199 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64); 1200 const bool HiResNonZero = Highest || Higher; 1201 const bool ResNonZero = Hi || Lo; 1202 1203 if (HiResNonZero) 1204 HiRes = CurDAG->getMachineNode( 1205 Mips::SUBREG_TO_REG, DL, MVT::i64, 1206 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64), 1207 SDValue(HiRes, 0), 1208 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1209 1210 if (ResNonZero) 1211 Res = CurDAG->getMachineNode( 1212 Mips::SUBREG_TO_REG, DL, MVT::i64, 1213 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), 1214 SDValue(Res, 0), 1215 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1216 1217 // We have 3 cases: 1218 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0 1219 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32 1220 // Both are non zero => dinsu Res, HiRes, 32, 32 1221 // 1222 // The obvious "missing" case is when both are zero, but that case is 1223 // handled by the ldi case. 1224 if (ResNonZero) { 1225 IntegerType *Int32Ty = 1226 IntegerType::get(MF->getFunction().getContext(), 32); 1227 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32); 1228 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val, 1229 CurDAG->getConstant(*Const32, DL, MVT::i32), 1230 CurDAG->getConstant(*Const32, DL, MVT::i32), 1231 SDValue(Res, 0)}; 1232 1233 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops); 1234 } else if (HiResNonZero) { 1235 Res = CurDAG->getMachineNode( 1236 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0), 1237 CurDAG->getTargetConstant(0, DL, MVT::i32)); 1238 } else 1239 llvm_unreachable( 1240 "Zero splat value handled by non-zero 64bit splat synthesis!"); 1241 1242 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); 1243 } else 1244 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!"); 1245 1246 } else 1247 return false; 1248 1249 if (ResVecTy != ViaVecTy) { 1250 // If LdiOp is writing to a different register class to ResVecTy, then 1251 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v 1252 // since the source and destination register sets contain the same 1253 // registers. 1254 const TargetLowering *TLI = getTargetLowering(); 1255 MVT ResVecTySimple = ResVecTy.getSimpleVT(); 1256 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); 1257 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL, 1258 ResVecTy, SDValue(Res, 0), 1259 CurDAG->getTargetConstant(RC->getID(), DL, 1260 MVT::i32)); 1261 } 1262 1263 ReplaceNode(Node, Res); 1264 return true; 1265 } 1266 1267 } 1268 1269 return false; 1270 } 1271 1272 bool MipsSEDAGToDAGISel:: 1273 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 1274 std::vector<SDValue> &OutOps) { 1275 SDValue Base, Offset; 1276 1277 switch(ConstraintID) { 1278 default: 1279 llvm_unreachable("Unexpected asm memory constraint"); 1280 // All memory constraints can at least accept raw pointers. 1281 case InlineAsm::Constraint_i: 1282 OutOps.push_back(Op); 1283 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1284 return false; 1285 case InlineAsm::Constraint_m: 1286 case InlineAsm::Constraint_o: 1287 if (selectAddrRegImm16(Op, Base, Offset)) { 1288 OutOps.push_back(Base); 1289 OutOps.push_back(Offset); 1290 return false; 1291 } 1292 OutOps.push_back(Op); 1293 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1294 return false; 1295 case InlineAsm::Constraint_R: 1296 // The 'R' constraint is supposed to be much more complicated than this. 1297 // However, it's becoming less useful due to architectural changes and 1298 // ought to be replaced by other constraints such as 'ZC'. 1299 // For now, support 9-bit signed offsets which is supportable by all 1300 // subtargets for all instructions. 1301 if (selectAddrRegImm9(Op, Base, Offset)) { 1302 OutOps.push_back(Base); 1303 OutOps.push_back(Offset); 1304 return false; 1305 } 1306 OutOps.push_back(Op); 1307 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1308 return false; 1309 case InlineAsm::Constraint_ZC: 1310 // ZC matches whatever the pref, ll, and sc instructions can handle for the 1311 // given subtarget. 1312 if (Subtarget->inMicroMipsMode()) { 1313 // On microMIPS, they can handle 12-bit offsets. 1314 if (selectAddrRegImm12(Op, Base, Offset)) { 1315 OutOps.push_back(Base); 1316 OutOps.push_back(Offset); 1317 return false; 1318 } 1319 } else if (Subtarget->hasMips32r6()) { 1320 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. 1321 if (selectAddrRegImm9(Op, Base, Offset)) { 1322 OutOps.push_back(Base); 1323 OutOps.push_back(Offset); 1324 return false; 1325 } 1326 } else if (selectAddrRegImm16(Op, Base, Offset)) { 1327 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. 1328 OutOps.push_back(Base); 1329 OutOps.push_back(Offset); 1330 return false; 1331 } 1332 // In all cases, 0-bit offsets are acceptable. 1333 OutOps.push_back(Op); 1334 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1335 return false; 1336 } 1337 return true; 1338 } 1339 1340 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM, 1341 CodeGenOpt::Level OptLevel) { 1342 return new MipsSEDAGToDAGISel(TM, OptLevel); 1343 } 1344