1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Subclass of MipsDAGToDAGISel specialized for mips32/64. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MipsSEISelDAGToDAG.h" 14 #include "MCTargetDesc/MipsBaseInfo.h" 15 #include "Mips.h" 16 #include "MipsAnalyzeImmediate.h" 17 #include "MipsMachineFunction.h" 18 #include "MipsRegisterInfo.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAGNodes.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "mips-isel" 38 39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 40 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget()); 41 if (Subtarget->inMips16Mode()) 42 return false; 43 return MipsDAGToDAGISel::runOnMachineFunction(MF); 44 } 45 46 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.addRequired<DominatorTreeWrapperPass>(); 48 SelectionDAGISel::getAnalysisUsage(AU); 49 } 50 51 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, 52 MachineFunction &MF) { 53 MachineInstrBuilder MIB(MF, &MI); 54 unsigned Mask = MI.getOperand(1).getImm(); 55 unsigned Flag = 56 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef; 57 58 if (Mask & 1) 59 MIB.addReg(Mips::DSPPos, Flag); 60 61 if (Mask & 2) 62 MIB.addReg(Mips::DSPSCount, Flag); 63 64 if (Mask & 4) 65 MIB.addReg(Mips::DSPCarry, Flag); 66 67 if (Mask & 8) 68 MIB.addReg(Mips::DSPOutFlag, Flag); 69 70 if (Mask & 16) 71 MIB.addReg(Mips::DSPCCond, Flag); 72 73 if (Mask & 32) 74 MIB.addReg(Mips::DSPEFI, Flag); 75 } 76 77 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { 78 uint64_t RegNum = cast<ConstantSDNode>(RegIdx)->getZExtValue(); 79 return Mips::MSACtrlRegClass.getRegister(RegNum); 80 } 81 82 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, 83 const MachineInstr& MI) { 84 unsigned DstReg = 0, ZeroReg = 0; 85 86 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". 87 if ((MI.getOpcode() == Mips::ADDiu) && 88 (MI.getOperand(1).getReg() == Mips::ZERO) && 89 (MI.getOperand(2).isImm()) && 90 (MI.getOperand(2).getImm() == 0)) { 91 DstReg = MI.getOperand(0).getReg(); 92 ZeroReg = Mips::ZERO; 93 } else if ((MI.getOpcode() == Mips::DADDiu) && 94 (MI.getOperand(1).getReg() == Mips::ZERO_64) && 95 (MI.getOperand(2).isImm()) && 96 (MI.getOperand(2).getImm() == 0)) { 97 DstReg = MI.getOperand(0).getReg(); 98 ZeroReg = Mips::ZERO_64; 99 } 100 101 if (!DstReg) 102 return false; 103 104 // Replace uses with ZeroReg. 105 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), 106 E = MRI->use_end(); U != E;) { 107 MachineOperand &MO = *U; 108 unsigned OpNo = U.getOperandNo(); 109 MachineInstr *MI = MO.getParent(); 110 ++U; 111 112 // Do not replace if it is a phi's operand or is tied to def operand. 113 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) 114 continue; 115 116 // Also, we have to check that the register class of the operand 117 // contains the zero register. 118 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg)) 119 continue; 120 121 MO.setReg(ZeroReg); 122 } 123 124 return true; 125 } 126 127 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { 128 MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg(); 129 130 MachineRegisterInfo *MRI = &MF.getRegInfo(); 131 132 for (auto &MBB: MF) { 133 for (auto &MI: MBB) { 134 switch (MI.getOpcode()) { 135 case Mips::RDDSP: 136 addDSPCtrlRegOperands(false, MI, MF); 137 break; 138 case Mips::WRDSP: 139 addDSPCtrlRegOperands(true, MI, MF); 140 break; 141 case Mips::BuildPairF64_64: 142 case Mips::ExtractElementF64_64: 143 if (!Subtarget->useOddSPReg()) { 144 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); 145 break; 146 } 147 LLVM_FALLTHROUGH; 148 case Mips::BuildPairF64: 149 case Mips::ExtractElementF64: 150 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1()) 151 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); 152 break; 153 default: 154 replaceUsesWithZeroReg(MRI, MI); 155 } 156 } 157 } 158 } 159 160 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const { 161 SDValue InFlag = Node->getOperand(2); 162 unsigned Opc = InFlag.getOpcode(); 163 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); 164 EVT VT = LHS.getValueType(); 165 166 // In the base case, we can rely on the carry bit from the addsc 167 // instruction. 168 if (Opc == ISD::ADDC) { 169 SDValue Ops[3] = {LHS, RHS, InFlag}; 170 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops); 171 return; 172 } 173 174 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!"); 175 176 // The more complex case is when there is a chain of ISD::ADDE nodes like: 177 // (adde (adde (adde (addc a b) c) d) e). 178 // 179 // The addwc instruction does not write to the carry bit, instead it writes 180 // to bit 20 of the dsp control register. To match this series of nodes, each 181 // intermediate adde node must be expanded to write the carry bit before the 182 // addition. 183 184 // Start by reading the overflow field for addsc and moving the value to the 185 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP 186 // corresponds to reading/writing the entire control register to/from a GPR. 187 188 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32); 189 190 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32); 191 192 SDNode *DSPCtrlField = 193 CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag); 194 195 SDNode *Carry = CurDAG->getMachineNode( 196 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne); 197 198 SDValue Ops[4] = {SDValue(DSPCtrlField, 0), 199 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne, 200 SDValue(Carry, 0)}; 201 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops); 202 203 // My reading of the MIPS DSP 3.01 specification isn't as clear as I 204 // would like about whether bit 20 always gets overwritten by addwc. 205 // Hence take an extremely conservative view and presume it's sticky. We 206 // therefore need to clear it. 207 208 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32); 209 210 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)}; 211 SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps); 212 213 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue, 214 SDValue(DSPCtrlFinal, 0), CstOne); 215 216 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)}; 217 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands); 218 } 219 220 /// Match frameindex 221 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, 222 SDValue &Offset) const { 223 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { 224 EVT ValTy = Addr.getValueType(); 225 226 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); 227 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy); 228 return true; 229 } 230 return false; 231 } 232 233 /// Match frameindex+offset and frameindex|offset 234 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset( 235 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits, 236 unsigned ShiftAmount = 0) const { 237 if (CurDAG->isBaseWithConstantOffset(Addr)) { 238 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 239 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) { 240 EVT ValTy = Addr.getValueType(); 241 242 // If the first operand is a FI, get the TargetFI Node 243 if (FrameIndexSDNode *FIN = 244 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) 245 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); 246 else { 247 Base = Addr.getOperand(0); 248 // If base is a FI, additional offset calculation is done in 249 // eliminateFrameIndex, otherwise we need to check the alignment 250 if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0) 251 return false; 252 } 253 254 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr), 255 ValTy); 256 return true; 257 } 258 } 259 return false; 260 } 261 262 /// ComplexPattern used on MipsInstrInfo 263 /// Used on Mips Load/Store instructions 264 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, 265 SDValue &Offset) const { 266 // if Address is FI, get the TargetFrameIndex. 267 if (selectAddrFrameIndex(Addr, Base, Offset)) 268 return true; 269 270 // on PIC code Load GA 271 if (Addr.getOpcode() == MipsISD::Wrapper) { 272 Base = Addr.getOperand(0); 273 Offset = Addr.getOperand(1); 274 return true; 275 } 276 277 if (!TM.isPositionIndependent()) { 278 if ((Addr.getOpcode() == ISD::TargetExternalSymbol || 279 Addr.getOpcode() == ISD::TargetGlobalAddress)) 280 return false; 281 } 282 283 // Addresses of the form FI+const or FI|const 284 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) 285 return true; 286 287 // Operand is a result from an ADD. 288 if (Addr.getOpcode() == ISD::ADD) { 289 // When loading from constant pools, load the lower address part in 290 // the instruction itself. Example, instead of: 291 // lui $2, %hi($CPI1_0) 292 // addiu $2, $2, %lo($CPI1_0) 293 // lwc1 $f0, 0($2) 294 // Generate: 295 // lui $2, %hi($CPI1_0) 296 // lwc1 $f0, %lo($CPI1_0)($2) 297 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || 298 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { 299 SDValue Opnd0 = Addr.getOperand(1).getOperand(0); 300 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || 301 isa<JumpTableSDNode>(Opnd0)) { 302 Base = Addr.getOperand(0); 303 Offset = Opnd0; 304 return true; 305 } 306 } 307 } 308 309 return false; 310 } 311 312 /// ComplexPattern used on MipsInstrInfo 313 /// Used on Mips Load/Store instructions 314 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, 315 SDValue &Offset) const { 316 Base = Addr; 317 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType()); 318 return true; 319 } 320 321 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, 322 SDValue &Offset) const { 323 return selectAddrRegImm(Addr, Base, Offset) || 324 selectAddrDefault(Addr, Base, Offset); 325 } 326 327 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, 328 SDValue &Offset) const { 329 if (selectAddrFrameIndex(Addr, Base, Offset)) 330 return true; 331 332 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9)) 333 return true; 334 335 return false; 336 } 337 338 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset) 339 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base, 340 SDValue &Offset) const { 341 if (selectAddrFrameIndex(Addr, Base, Offset)) 342 return true; 343 344 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11)) 345 return true; 346 347 return false; 348 } 349 350 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) 351 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, 352 SDValue &Offset) const { 353 if (selectAddrFrameIndex(Addr, Base, Offset)) 354 return true; 355 356 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) 357 return true; 358 359 return false; 360 } 361 362 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, 363 SDValue &Offset) const { 364 if (selectAddrFrameIndex(Addr, Base, Offset)) 365 return true; 366 367 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) 368 return true; 369 370 return false; 371 } 372 373 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base, 374 SDValue &Offset) const { 375 return selectAddrRegImm11(Addr, Base, Offset) || 376 selectAddrDefault(Addr, Base, Offset); 377 } 378 379 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base, 380 SDValue &Offset) const { 381 return selectAddrRegImm12(Addr, Base, Offset) || 382 selectAddrDefault(Addr, Base, Offset); 383 } 384 385 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base, 386 SDValue &Offset) const { 387 return selectAddrRegImm16(Addr, Base, Offset) || 388 selectAddrDefault(Addr, Base, Offset); 389 } 390 391 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, 392 SDValue &Offset) const { 393 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) { 394 if (isa<FrameIndexSDNode>(Base)) 395 return false; 396 397 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) { 398 unsigned CnstOff = CN->getZExtValue(); 399 return (CnstOff == (CnstOff & 0x3c)); 400 } 401 402 return false; 403 } 404 405 // For all other cases where "lw" would be selected, don't select "lw16" 406 // because it would result in additional instructions to prepare operands. 407 if (selectAddrRegImm(Addr, Base, Offset)) 408 return false; 409 410 return selectAddrDefault(Addr, Base, Offset); 411 } 412 413 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base, 414 SDValue &Offset) const { 415 416 if (selectAddrFrameIndex(Addr, Base, Offset)) 417 return true; 418 419 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) 420 return true; 421 422 return selectAddrDefault(Addr, Base, Offset); 423 } 424 425 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base, 426 SDValue &Offset) const { 427 if (selectAddrFrameIndex(Addr, Base, Offset)) 428 return true; 429 430 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1)) 431 return true; 432 433 return selectAddrDefault(Addr, Base, Offset); 434 } 435 436 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base, 437 SDValue &Offset) const { 438 if (selectAddrFrameIndex(Addr, Base, Offset)) 439 return true; 440 441 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2)) 442 return true; 443 444 return selectAddrDefault(Addr, Base, Offset); 445 } 446 447 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base, 448 SDValue &Offset) const { 449 if (selectAddrFrameIndex(Addr, Base, Offset)) 450 return true; 451 452 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3)) 453 return true; 454 455 return selectAddrDefault(Addr, Base, Offset); 456 } 457 458 // Select constant vector splats. 459 // 460 // Returns true and sets Imm if: 461 // * MSA is enabled 462 // * N is a ISD::BUILD_VECTOR representing a constant splat 463 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, 464 unsigned MinSizeInBits) const { 465 if (!Subtarget->hasMSA()) 466 return false; 467 468 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); 469 470 if (!Node) 471 return false; 472 473 APInt SplatValue, SplatUndef; 474 unsigned SplatBitSize; 475 bool HasAnyUndefs; 476 477 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 478 MinSizeInBits, !Subtarget->isLittle())) 479 return false; 480 481 Imm = SplatValue; 482 483 return true; 484 } 485 486 // Select constant vector splats. 487 // 488 // In addition to the requirements of selectVSplat(), this function returns 489 // true and sets Imm if: 490 // * The splat value is the same width as the elements of the vector 491 // * The splat value fits in an integer with the specified signed-ness and 492 // width. 493 // 494 // This function looks through ISD::BITCAST nodes. 495 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 496 // sometimes a shuffle in big-endian mode. 497 // 498 // It's worth noting that this function is not used as part of the selection 499 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] 500 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in 501 // MipsSEDAGToDAGISel::selectNode. 502 bool MipsSEDAGToDAGISel:: 503 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, 504 unsigned ImmBitSize) const { 505 APInt ImmValue; 506 EVT EltTy = N->getValueType(0).getVectorElementType(); 507 508 if (N->getOpcode() == ISD::BITCAST) 509 N = N->getOperand(0); 510 511 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 512 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 513 514 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || 515 (!Signed && ImmValue.isIntN(ImmBitSize))) { 516 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy); 517 return true; 518 } 519 } 520 521 return false; 522 } 523 524 // Select constant vector splats. 525 bool MipsSEDAGToDAGISel:: 526 selectVSplatUimm1(SDValue N, SDValue &Imm) const { 527 return selectVSplatCommon(N, Imm, false, 1); 528 } 529 530 bool MipsSEDAGToDAGISel:: 531 selectVSplatUimm2(SDValue N, SDValue &Imm) const { 532 return selectVSplatCommon(N, Imm, false, 2); 533 } 534 535 bool MipsSEDAGToDAGISel:: 536 selectVSplatUimm3(SDValue N, SDValue &Imm) const { 537 return selectVSplatCommon(N, Imm, false, 3); 538 } 539 540 // Select constant vector splats. 541 bool MipsSEDAGToDAGISel:: 542 selectVSplatUimm4(SDValue N, SDValue &Imm) const { 543 return selectVSplatCommon(N, Imm, false, 4); 544 } 545 546 // Select constant vector splats. 547 bool MipsSEDAGToDAGISel:: 548 selectVSplatUimm5(SDValue N, SDValue &Imm) const { 549 return selectVSplatCommon(N, Imm, false, 5); 550 } 551 552 // Select constant vector splats. 553 bool MipsSEDAGToDAGISel:: 554 selectVSplatUimm6(SDValue N, SDValue &Imm) const { 555 return selectVSplatCommon(N, Imm, false, 6); 556 } 557 558 // Select constant vector splats. 559 bool MipsSEDAGToDAGISel:: 560 selectVSplatUimm8(SDValue N, SDValue &Imm) const { 561 return selectVSplatCommon(N, Imm, false, 8); 562 } 563 564 // Select constant vector splats. 565 bool MipsSEDAGToDAGISel:: 566 selectVSplatSimm5(SDValue N, SDValue &Imm) const { 567 return selectVSplatCommon(N, Imm, true, 5); 568 } 569 570 // Select constant vector splats whose value is a power of 2. 571 // 572 // In addition to the requirements of selectVSplat(), this function returns 573 // true and sets Imm if: 574 // * The splat value is the same width as the elements of the vector 575 // * The splat value is a power of two. 576 // 577 // This function looks through ISD::BITCAST nodes. 578 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 579 // sometimes a shuffle in big-endian mode. 580 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { 581 APInt ImmValue; 582 EVT EltTy = N->getValueType(0).getVectorElementType(); 583 584 if (N->getOpcode() == ISD::BITCAST) 585 N = N->getOperand(0); 586 587 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 588 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 589 int32_t Log2 = ImmValue.exactLogBase2(); 590 591 if (Log2 != -1) { 592 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); 593 return true; 594 } 595 } 596 597 return false; 598 } 599 600 // Select constant vector splats whose value only has a consecutive sequence 601 // of left-most bits set (e.g. 0b11...1100...00). 602 // 603 // In addition to the requirements of selectVSplat(), this function returns 604 // true and sets Imm if: 605 // * The splat value is the same width as the elements of the vector 606 // * The splat value is a consecutive sequence of left-most bits. 607 // 608 // This function looks through ISD::BITCAST nodes. 609 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 610 // sometimes a shuffle in big-endian mode. 611 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { 612 APInt ImmValue; 613 EVT EltTy = N->getValueType(0).getVectorElementType(); 614 615 if (N->getOpcode() == ISD::BITCAST) 616 N = N->getOperand(0); 617 618 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 619 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 620 // Extract the run of set bits starting with bit zero from the bitwise 621 // inverse of ImmValue, and test that the inverse of this is the same 622 // as the original value. 623 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { 624 625 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), 626 EltTy); 627 return true; 628 } 629 } 630 631 return false; 632 } 633 634 // Select constant vector splats whose value only has a consecutive sequence 635 // of right-most bits set (e.g. 0b00...0011...11). 636 // 637 // In addition to the requirements of selectVSplat(), this function returns 638 // true and sets Imm if: 639 // * The splat value is the same width as the elements of the vector 640 // * The splat value is a consecutive sequence of right-most bits. 641 // 642 // This function looks through ISD::BITCAST nodes. 643 // TODO: This might not be appropriate for big-endian MSA since BITCAST is 644 // sometimes a shuffle in big-endian mode. 645 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { 646 APInt ImmValue; 647 EVT EltTy = N->getValueType(0).getVectorElementType(); 648 649 if (N->getOpcode() == ISD::BITCAST) 650 N = N->getOperand(0); 651 652 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 653 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 654 // Extract the run of set bits starting with bit zero, and test that the 655 // result is the same as the original value 656 if (ImmValue == (ImmValue & ~(ImmValue + 1))) { 657 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), 658 EltTy); 659 return true; 660 } 661 } 662 663 return false; 664 } 665 666 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, 667 SDValue &Imm) const { 668 APInt ImmValue; 669 EVT EltTy = N->getValueType(0).getVectorElementType(); 670 671 if (N->getOpcode() == ISD::BITCAST) 672 N = N->getOperand(0); 673 674 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && 675 ImmValue.getBitWidth() == EltTy.getSizeInBits()) { 676 int32_t Log2 = (~ImmValue).exactLogBase2(); 677 678 if (Log2 != -1) { 679 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); 680 return true; 681 } 682 } 683 684 return false; 685 } 686 687 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) { 688 unsigned Opcode = Node->getOpcode(); 689 SDLoc DL(Node); 690 691 /// 692 // Instruction Selection not handled by the auto-generated 693 // tablegen selection should be handled here. 694 /// 695 switch(Opcode) { 696 default: break; 697 698 case Mips::PseudoD_SELECT_I: 699 case Mips::PseudoD_SELECT_I64: { 700 MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32; 701 SDValue cond = Node->getOperand(0); 702 SDValue Hi1 = Node->getOperand(1); 703 SDValue Lo1 = Node->getOperand(2); 704 SDValue Hi2 = Node->getOperand(3); 705 SDValue Lo2 = Node->getOperand(4); 706 707 SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2}; 708 EVT NodeTys[] = {VT, VT}; 709 ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit() 710 ? Mips::PseudoD_SELECT_I64 711 : Mips::PseudoD_SELECT_I, 712 DL, NodeTys, ops)); 713 return true; 714 } 715 716 case ISD::ADDE: { 717 selectAddE(Node, DL); 718 return true; 719 } 720 721 case ISD::ConstantFP: { 722 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node); 723 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { 724 if (Subtarget->isGP64bit()) { 725 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 726 Mips::ZERO_64, MVT::i64); 727 ReplaceNode(Node, 728 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero)); 729 } else if (Subtarget->isFP64bit()) { 730 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 731 Mips::ZERO, MVT::i32); 732 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, 733 MVT::f64, Zero, Zero)); 734 } else { 735 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, 736 Mips::ZERO, MVT::i32); 737 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL, 738 MVT::f64, Zero, Zero)); 739 } 740 return true; 741 } 742 break; 743 } 744 745 case ISD::Constant: { 746 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node); 747 int64_t Imm = CN->getSExtValue(); 748 unsigned Size = CN->getValueSizeInBits(0); 749 750 if (isInt<32>(Imm)) 751 break; 752 753 MipsAnalyzeImmediate AnalyzeImm; 754 755 const MipsAnalyzeImmediate::InstSeq &Seq = 756 AnalyzeImm.Analyze(Imm, Size, false); 757 758 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); 759 SDLoc DL(CN); 760 SDNode *RegOpnd; 761 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), 762 DL, MVT::i64); 763 764 // The first instruction can be a LUi which is different from other 765 // instructions (ADDiu, ORI and SLL) in that it does not have a register 766 // operand. 767 if (Inst->Opc == Mips::LUi64) 768 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); 769 else 770 RegOpnd = 771 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, 772 CurDAG->getRegister(Mips::ZERO_64, MVT::i64), 773 ImmOpnd); 774 775 // The remaining instructions in the sequence are handled here. 776 for (++Inst; Inst != Seq.end(); ++Inst) { 777 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, 778 MVT::i64); 779 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, 780 SDValue(RegOpnd, 0), ImmOpnd); 781 } 782 783 ReplaceNode(Node, RegOpnd); 784 return true; 785 } 786 787 case ISD::INTRINSIC_W_CHAIN: { 788 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 789 default: 790 break; 791 792 case Intrinsic::mips_cfcmsa: { 793 SDValue ChainIn = Node->getOperand(0); 794 SDValue RegIdx = Node->getOperand(2); 795 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, 796 getMSACtrlReg(RegIdx), MVT::i32); 797 ReplaceNode(Node, Reg.getNode()); 798 return true; 799 } 800 } 801 break; 802 } 803 804 case ISD::INTRINSIC_WO_CHAIN: { 805 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { 806 default: 807 break; 808 809 case Intrinsic::mips_move_v: 810 // Like an assignment but will always produce a move.v even if 811 // unnecessary. 812 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL, 813 Node->getValueType(0), 814 Node->getOperand(1))); 815 return true; 816 } 817 break; 818 } 819 820 case ISD::INTRINSIC_VOID: { 821 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 822 default: 823 break; 824 825 case Intrinsic::mips_ctcmsa: { 826 SDValue ChainIn = Node->getOperand(0); 827 SDValue RegIdx = Node->getOperand(2); 828 SDValue Value = Node->getOperand(3); 829 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, 830 getMSACtrlReg(RegIdx), Value); 831 ReplaceNode(Node, ChainOut.getNode()); 832 return true; 833 } 834 } 835 break; 836 } 837 838 // Manually match MipsISD::Ins nodes to get the correct instruction. It has 839 // to be done in this fashion so that we respect the differences between 840 // dins and dinsm, as the difference is that the size operand has the range 841 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which 842 // means SelectionDAGISel would have to test all the operands at once to 843 // match the instruction. 844 case MipsISD::Ins: { 845 846 // Sanity checking for the node operands. 847 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64) 848 return false; 849 850 if (Node->getNumOperands() != 4) 851 return false; 852 853 if (Node->getOperand(1)->getOpcode() != ISD::Constant || 854 Node->getOperand(2)->getOpcode() != ISD::Constant) 855 return false; 856 857 MVT ResTy = Node->getSimpleValueType(0); 858 uint64_t Pos = Node->getConstantOperandVal(1); 859 uint64_t Size = Node->getConstantOperandVal(2); 860 861 // Size has to be >0 for 'ins', 'dins' and 'dinsu'. 862 if (!Size) 863 return false; 864 865 if (Pos + Size > 64) 866 return false; 867 868 if (ResTy != MVT::i32 && ResTy != MVT::i64) 869 return false; 870 871 unsigned Opcode = 0; 872 if (ResTy == MVT::i32) { 873 if (Pos + Size <= 32) 874 Opcode = Mips::INS; 875 } else { 876 if (Pos + Size <= 32) 877 Opcode = Mips::DINS; 878 else if (Pos < 32 && 1 < Size) 879 Opcode = Mips::DINSM; 880 else 881 Opcode = Mips::DINSU; 882 } 883 884 if (Opcode) { 885 SDValue Ops[4] = { 886 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32), 887 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)}; 888 889 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops)); 890 return true; 891 } 892 893 return false; 894 } 895 896 case MipsISD::ThreadPointer: { 897 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); 898 unsigned RdhwrOpc, DestReg; 899 900 if (PtrVT == MVT::i32) { 901 RdhwrOpc = Mips::RDHWR; 902 DestReg = Mips::V1; 903 } else { 904 RdhwrOpc = Mips::RDHWR64; 905 DestReg = Mips::V1_64; 906 } 907 908 SDNode *Rdhwr = 909 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), 910 CurDAG->getRegister(Mips::HWR29, MVT::i32), 911 CurDAG->getTargetConstant(0, DL, MVT::i32)); 912 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, 913 SDValue(Rdhwr, 0)); 914 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); 915 ReplaceNode(Node, ResNode.getNode()); 916 return true; 917 } 918 919 case ISD::BUILD_VECTOR: { 920 // Select appropriate ldi.[bhwd] instructions for constant splats of 921 // 128-bit when MSA is enabled. Fixup any register class mismatches that 922 // occur as a result. 923 // 924 // This allows the compiler to use a wider range of immediates than would 925 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then 926 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, 927 // 0x01010101 } without using a constant pool. This would be sub-optimal 928 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the 929 // same set/ of registers. Similarly, ldi.h isn't capable of producing { 930 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. 931 932 const MipsABIInfo &ABI = 933 static_cast<const MipsTargetMachine &>(TM).getABI(); 934 935 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); 936 APInt SplatValue, SplatUndef; 937 unsigned SplatBitSize; 938 bool HasAnyUndefs; 939 unsigned LdiOp; 940 EVT ResVecTy = BVN->getValueType(0); 941 EVT ViaVecTy; 942 943 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) 944 return false; 945 946 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 947 HasAnyUndefs, 8, 948 !Subtarget->isLittle())) 949 return false; 950 951 switch (SplatBitSize) { 952 default: 953 return false; 954 case 8: 955 LdiOp = Mips::LDI_B; 956 ViaVecTy = MVT::v16i8; 957 break; 958 case 16: 959 LdiOp = Mips::LDI_H; 960 ViaVecTy = MVT::v8i16; 961 break; 962 case 32: 963 LdiOp = Mips::LDI_W; 964 ViaVecTy = MVT::v4i32; 965 break; 966 case 64: 967 LdiOp = Mips::LDI_D; 968 ViaVecTy = MVT::v2i64; 969 break; 970 } 971 972 SDNode *Res; 973 974 // If we have a signed 10 bit integer, we can splat it directly. 975 // 976 // If we have something bigger we can synthesize the value into a GPR and 977 // splat from there. 978 if (SplatValue.isSignedIntN(10)) { 979 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL, 980 ViaVecTy.getVectorElementType()); 981 982 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm); 983 } else if (SplatValue.isSignedIntN(16) && 984 ((ABI.IsO32() && SplatBitSize < 64) || 985 (ABI.IsN32() || ABI.IsN64()))) { 986 // Only handle signed 16 bit values when the element size is GPR width. 987 // MIPS64 can handle all the cases but MIPS32 would need to handle 988 // negative cases specifically here. Instead, handle those cases as 989 // 64bit values. 990 991 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64; 992 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu; 993 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64; 994 SDValue ZeroVal = CurDAG->getRegister( 995 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT); 996 997 const unsigned FILLOp = 998 SplatBitSize == 16 999 ? Mips::FILL_H 1000 : (SplatBitSize == 32 ? Mips::FILL_W 1001 : (SplatBitSize == 64 ? Mips::FILL_D : 0)); 1002 1003 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!"); 1004 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && 1005 "Attempting to use fill.d on MIPS32!"); 1006 1007 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1008 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT); 1009 1010 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal); 1011 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0)); 1012 1013 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) { 1014 // Only handle the cases where the splat size agrees with the size 1015 // of the SplatValue here. 1016 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1017 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1018 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1019 1020 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1021 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1022 1023 if (Hi) 1024 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1025 1026 if (Lo) 1027 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1028 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1029 1030 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!"); 1031 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0)); 1032 1033 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 && 1034 (ABI.IsN32() || ABI.IsN64())) { 1035 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit 1036 // integers due to having 64bit registers. lui will cause the necessary 1037 // zero/sign extension. 1038 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1039 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1040 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1041 1042 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1043 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1044 1045 if (Hi) 1046 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1047 1048 if (Lo) 1049 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1050 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1051 1052 Res = CurDAG->getMachineNode( 1053 Mips::SUBREG_TO_REG, DL, MVT::i64, 1054 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), 1055 SDValue(Res, 0), 1056 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1057 1058 Res = 1059 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); 1060 1061 } else if (SplatValue.isSignedIntN(64)) { 1062 // If we have a 64 bit Splat value, we perform a similar sequence to the 1063 // above: 1064 // 1065 // MIPS32: MIPS64: 1066 // lui $res, %highest(val) lui $res, %highest(val) 1067 // ori $res, $res, %higher(val) ori $res, $res, %higher(val) 1068 // lui $res2, %hi(val) lui $res2, %hi(val) 1069 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val) 1070 // $res3 = fill $res2 dinsu $res, $res2, 0, 32 1071 // $res4 = insert.w $res3[1], $res fill.d $res 1072 // splat.d $res4, 0 1073 // 1074 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves 1075 // having to materialize the value by shifts and ors. 1076 // 1077 // FIXME: Implement the preferred sequence for MIPS64R6: 1078 // 1079 // MIPS64R6: 1080 // ori $res, $zero, %lo(val) 1081 // daui $res, $res, %hi(val) 1082 // dahi $res, $res, %higher(val) 1083 // dati $res, $res, %highest(cal) 1084 // fill.d $res 1085 // 1086 1087 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); 1088 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); 1089 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue(); 1090 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue(); 1091 1092 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); 1093 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); 1094 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32); 1095 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32); 1096 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); 1097 1098 // Independent of whether we're targeting MIPS64 or not, the basic 1099 // operations are the same. Also, directly use the $zero register if 1100 // the 16 bit chunk is zero. 1101 // 1102 // For optimization purposes we always synthesize the splat value as 1103 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG 1104 // just before combining the values with dinsu to produce an i64. This 1105 // enables SelectionDAG to aggressively share components of splat values 1106 // where possible. 1107 // 1108 // FIXME: This is the general constant synthesis problem. This code 1109 // should be factored out into a class shared between all the 1110 // classes that need it. Specifically, for a splat size of 64 1111 // bits that's a negative number we can do better than LUi/ORi 1112 // for the upper 32bits. 1113 1114 if (Hi) 1115 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); 1116 1117 if (Lo) 1118 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1119 Hi ? SDValue(Res, 0) : ZeroVal, LoVal); 1120 1121 SDNode *HiRes; 1122 if (Highest) 1123 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal); 1124 1125 if (Higher) 1126 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, 1127 Highest ? SDValue(HiRes, 0) : ZeroVal, 1128 HigherVal); 1129 1130 1131 if (ABI.IsO32()) { 1132 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, 1133 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal); 1134 1135 Res = CurDAG->getMachineNode( 1136 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0), 1137 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal, 1138 CurDAG->getTargetConstant(1, DL, MVT::i32)); 1139 1140 const TargetLowering *TLI = getTargetLowering(); 1141 const TargetRegisterClass *RC = 1142 TLI->getRegClassFor(ViaVecTy.getSimpleVT()); 1143 1144 Res = CurDAG->getMachineNode( 1145 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0), 1146 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32)); 1147 1148 Res = CurDAG->getMachineNode( 1149 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0), 1150 CurDAG->getTargetConstant(0, DL, MVT::i32)); 1151 } else if (ABI.IsN64() || ABI.IsN32()) { 1152 1153 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64); 1154 const bool HiResNonZero = Highest || Higher; 1155 const bool ResNonZero = Hi || Lo; 1156 1157 if (HiResNonZero) 1158 HiRes = CurDAG->getMachineNode( 1159 Mips::SUBREG_TO_REG, DL, MVT::i64, 1160 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64), 1161 SDValue(HiRes, 0), 1162 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1163 1164 if (ResNonZero) 1165 Res = CurDAG->getMachineNode( 1166 Mips::SUBREG_TO_REG, DL, MVT::i64, 1167 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), 1168 SDValue(Res, 0), 1169 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); 1170 1171 // We have 3 cases: 1172 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0 1173 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32 1174 // Both are non zero => dinsu Res, HiRes, 32, 32 1175 // 1176 // The obvious "missing" case is when both are zero, but that case is 1177 // handled by the ldi case. 1178 if (ResNonZero) { 1179 IntegerType *Int32Ty = 1180 IntegerType::get(MF->getFunction().getContext(), 32); 1181 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32); 1182 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val, 1183 CurDAG->getConstant(*Const32, DL, MVT::i32), 1184 CurDAG->getConstant(*Const32, DL, MVT::i32), 1185 SDValue(Res, 0)}; 1186 1187 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops); 1188 } else if (HiResNonZero) { 1189 Res = CurDAG->getMachineNode( 1190 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0), 1191 CurDAG->getTargetConstant(0, DL, MVT::i32)); 1192 } else 1193 llvm_unreachable( 1194 "Zero splat value handled by non-zero 64bit splat synthesis!"); 1195 1196 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); 1197 } else 1198 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!"); 1199 1200 } else 1201 return false; 1202 1203 if (ResVecTy != ViaVecTy) { 1204 // If LdiOp is writing to a different register class to ResVecTy, then 1205 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v 1206 // since the source and destination register sets contain the same 1207 // registers. 1208 const TargetLowering *TLI = getTargetLowering(); 1209 MVT ResVecTySimple = ResVecTy.getSimpleVT(); 1210 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); 1211 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL, 1212 ResVecTy, SDValue(Res, 0), 1213 CurDAG->getTargetConstant(RC->getID(), DL, 1214 MVT::i32)); 1215 } 1216 1217 ReplaceNode(Node, Res); 1218 return true; 1219 } 1220 1221 } 1222 1223 return false; 1224 } 1225 1226 bool MipsSEDAGToDAGISel:: 1227 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 1228 std::vector<SDValue> &OutOps) { 1229 SDValue Base, Offset; 1230 1231 switch(ConstraintID) { 1232 default: 1233 llvm_unreachable("Unexpected asm memory constraint"); 1234 // All memory constraints can at least accept raw pointers. 1235 case InlineAsm::Constraint_i: 1236 OutOps.push_back(Op); 1237 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1238 return false; 1239 case InlineAsm::Constraint_m: 1240 case InlineAsm::Constraint_o: 1241 if (selectAddrRegImm16(Op, Base, Offset)) { 1242 OutOps.push_back(Base); 1243 OutOps.push_back(Offset); 1244 return false; 1245 } 1246 OutOps.push_back(Op); 1247 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1248 return false; 1249 case InlineAsm::Constraint_R: 1250 // The 'R' constraint is supposed to be much more complicated than this. 1251 // However, it's becoming less useful due to architectural changes and 1252 // ought to be replaced by other constraints such as 'ZC'. 1253 // For now, support 9-bit signed offsets which is supportable by all 1254 // subtargets for all instructions. 1255 if (selectAddrRegImm9(Op, Base, Offset)) { 1256 OutOps.push_back(Base); 1257 OutOps.push_back(Offset); 1258 return false; 1259 } 1260 OutOps.push_back(Op); 1261 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1262 return false; 1263 case InlineAsm::Constraint_ZC: 1264 // ZC matches whatever the pref, ll, and sc instructions can handle for the 1265 // given subtarget. 1266 if (Subtarget->inMicroMipsMode()) { 1267 // On microMIPS, they can handle 12-bit offsets. 1268 if (selectAddrRegImm12(Op, Base, Offset)) { 1269 OutOps.push_back(Base); 1270 OutOps.push_back(Offset); 1271 return false; 1272 } 1273 } else if (Subtarget->hasMips32r6()) { 1274 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. 1275 if (selectAddrRegImm9(Op, Base, Offset)) { 1276 OutOps.push_back(Base); 1277 OutOps.push_back(Offset); 1278 return false; 1279 } 1280 } else if (selectAddrRegImm16(Op, Base, Offset)) { 1281 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. 1282 OutOps.push_back(Base); 1283 OutOps.push_back(Offset); 1284 return false; 1285 } 1286 // In all cases, 0-bit offsets are acceptable. 1287 OutOps.push_back(Op); 1288 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 1289 return false; 1290 } 1291 return true; 1292 } 1293 1294 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM, 1295 CodeGenOpt::Level OptLevel) { 1296 return new MipsSEDAGToDAGISel(TM, OptLevel); 1297 } 1298