1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file contains the Mips implementation of the TargetInstrInfo class. 10// 11//===----------------------------------------------------------------------===// 12 13 14//===----------------------------------------------------------------------===// 15// Mips profiles and nodes 16//===----------------------------------------------------------------------===// 17 18def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; 19def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, 20 SDTCisSameAs<1, 2>, 21 SDTCisSameAs<3, 4>, 22 SDTCisInt<4>]>; 23def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 24def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 25def SDT_MFLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>; 26def SDT_MTLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, 27 SDTCisInt<1>, SDTCisSameAs<1, 2>]>; 28def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>, 29 SDTCisSameAs<1, 2>]>; 30def SDT_MipsMAddMSub : SDTypeProfile<1, 3, 31 [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>, 32 SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; 33def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; 34 35def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; 36 37def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 38 39def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 40 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>; 41def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 42 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>, 43 SDTCisSameAs<0, 4>]>; 44 45def SDTMipsLoadLR : SDTypeProfile<1, 2, 46 [SDTCisInt<0>, SDTCisPtrTy<1>, 47 SDTCisSameAs<0, 2>]>; 48 49// Call 50def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, 51 [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, 52 SDNPVariadic]>; 53 54// Tail call 55def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink, 56 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 57 58// Hi and Lo nodes are used to handle global addresses. Used on 59// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol 60// static model. (nothing to do with Mips Registers Hi and Lo) 61 62// Hi is the odd node out, on MIPS64 it can expand to either daddiu when 63// using static relocations with 64 bit symbols, or lui when using 32 bit 64// symbols. 65def MipsHigher : SDNode<"MipsISD::Higher", SDTIntUnaryOp>; 66def MipsHighest : SDNode<"MipsISD::Highest", SDTIntUnaryOp>; 67def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; 68def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; 69 70def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; 71 72// Hi node for accessing the GOT. 73def MipsGotHi : SDNode<"MipsISD::GotHi", SDTIntUnaryOp>; 74 75// Hi node for handling TLS offsets 76def MipsTlsHi : SDNode<"MipsISD::TlsHi", SDTIntUnaryOp>; 77 78// Thread pointer 79def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>; 80 81// Return 82def MipsRet : SDNode<"MipsISD::Ret", SDTNone, 83 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 84 85def MipsERet : SDNode<"MipsISD::ERet", SDTNone, 86 [SDNPHasChain, SDNPOptInGlue, SDNPSideEffect]>; 87 88// These are target-independent nodes, but have target-specific formats. 89def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, 90 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; 91def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, 92 [SDNPHasChain, SDNPSideEffect, 93 SDNPOptInGlue, SDNPOutGlue]>; 94 95// Nodes used to extract LO/HI registers. 96def MipsMFHI : SDNode<"MipsISD::MFHI", SDT_MFLOHI>; 97def MipsMFLO : SDNode<"MipsISD::MFLO", SDT_MFLOHI>; 98 99// Node used to insert 32-bit integers to LOHI register pair. 100def MipsMTLOHI : SDNode<"MipsISD::MTLOHI", SDT_MTLOHI>; 101 102// Mult nodes. 103def MipsMult : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>; 104def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>; 105 106// MAdd*/MSub* nodes 107def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>; 108def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>; 109def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>; 110def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>; 111 112// DivRem(u) nodes 113def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>; 114def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>; 115def MipsDivRem16 : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16, 116 [SDNPOutGlue]>; 117def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16, 118 [SDNPOutGlue]>; 119 120// Target constant nodes that are not part of any isel patterns and remain 121// unchanged can cause instructions with illegal operands to be emitted. 122// Wrapper node patterns give the instruction selector a chance to replace 123// target constant nodes that would otherwise remain unchanged with ADDiu 124// nodes. Without these wrapper node patterns, the following conditional move 125// instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is 126// compiled: 127// movn %got(d)($gp), %got(c)($gp), $4 128// This instruction is illegal since movn can take only register operands. 129 130def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>; 131 132def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>; 133 134def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>; 135def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>; 136def MipsCIns : SDNode<"MipsISD::CIns", SDT_Ext>; 137 138def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR, 139 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 140def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR, 141 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 142def MipsSWL : SDNode<"MipsISD::SWL", SDTStore, 143 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 144def MipsSWR : SDNode<"MipsISD::SWR", SDTStore, 145 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 146def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR, 147 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 148def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR, 149 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 150def MipsSDL : SDNode<"MipsISD::SDL", SDTStore, 151 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 152def MipsSDR : SDNode<"MipsISD::SDR", SDTStore, 153 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 154 155//===----------------------------------------------------------------------===// 156// Mips Instruction Predicate Definitions. 157//===----------------------------------------------------------------------===// 158def HasMips2 : Predicate<"Subtarget->hasMips2()">, 159 AssemblerPredicate<(all_of FeatureMips2)>; 160def HasMips3_32 : Predicate<"Subtarget->hasMips3_32()">, 161 AssemblerPredicate<(all_of FeatureMips3_32)>; 162def HasMips3_32r2 : Predicate<"Subtarget->hasMips3_32r2()">, 163 AssemblerPredicate<(all_of FeatureMips3_32r2)>; 164def HasMips3 : Predicate<"Subtarget->hasMips3()">, 165 AssemblerPredicate<(all_of FeatureMips3)>; 166def NotMips3 : Predicate<"!Subtarget->hasMips3()">, 167 AssemblerPredicate<(all_of (not FeatureMips3))>; 168def HasMips4_32 : Predicate<"Subtarget->hasMips4_32()">, 169 AssemblerPredicate<(all_of FeatureMips4_32)>; 170def NotMips4_32 : Predicate<"!Subtarget->hasMips4_32()">, 171 AssemblerPredicate<(all_of (not FeatureMips4_32))>; 172def HasMips4_32r2 : Predicate<"Subtarget->hasMips4_32r2()">, 173 AssemblerPredicate<(all_of FeatureMips4_32r2)>; 174def HasMips5_32r2 : Predicate<"Subtarget->hasMips5_32r2()">, 175 AssemblerPredicate<(all_of FeatureMips5_32r2)>; 176def HasMips32 : Predicate<"Subtarget->hasMips32()">, 177 AssemblerPredicate<(all_of FeatureMips32)>; 178def HasMips32r2 : Predicate<"Subtarget->hasMips32r2()">, 179 AssemblerPredicate<(all_of FeatureMips32r2)>; 180def HasMips32r5 : Predicate<"Subtarget->hasMips32r5()">, 181 AssemblerPredicate<(all_of FeatureMips32r5)>; 182def HasMips32r6 : Predicate<"Subtarget->hasMips32r6()">, 183 AssemblerPredicate<(all_of FeatureMips32r6)>; 184def NotMips32r6 : Predicate<"!Subtarget->hasMips32r6()">, 185 AssemblerPredicate<(all_of (not FeatureMips32r6))>; 186def IsGP64bit : Predicate<"Subtarget->isGP64bit()">, 187 AssemblerPredicate<(all_of FeatureGP64Bit)>; 188def IsGP32bit : Predicate<"!Subtarget->isGP64bit()">, 189 AssemblerPredicate<(all_of (not FeatureGP64Bit))>; 190def IsPTR64bit : Predicate<"Subtarget->isABI_N64()">, 191 AssemblerPredicate<(all_of FeaturePTR64Bit)>; 192def IsPTR32bit : Predicate<"!Subtarget->isABI_N64()">, 193 AssemblerPredicate<(all_of (not FeaturePTR64Bit))>; 194def HasMips64 : Predicate<"Subtarget->hasMips64()">, 195 AssemblerPredicate<(all_of FeatureMips64)>; 196def NotMips64 : Predicate<"!Subtarget->hasMips64()">, 197 AssemblerPredicate<(all_of (not FeatureMips64))>; 198def HasMips64r2 : Predicate<"Subtarget->hasMips64r2()">, 199 AssemblerPredicate<(all_of FeatureMips64r2)>; 200def HasMips64r5 : Predicate<"Subtarget->hasMips64r5()">, 201 AssemblerPredicate<(all_of FeatureMips64r5)>; 202def HasMips64r6 : Predicate<"Subtarget->hasMips64r6()">, 203 AssemblerPredicate<(all_of FeatureMips64r6)>; 204def NotMips64r6 : Predicate<"!Subtarget->hasMips64r6()">, 205 AssemblerPredicate<(all_of (not FeatureMips64r6))>; 206def InMips16Mode : Predicate<"Subtarget->inMips16Mode()">, 207 AssemblerPredicate<(all_of FeatureMips16)>; 208def NotInMips16Mode : Predicate<"!Subtarget->inMips16Mode()">, 209 AssemblerPredicate<(all_of (not FeatureMips16))>; 210def HasCnMips : Predicate<"Subtarget->hasCnMips()">, 211 AssemblerPredicate<(all_of FeatureCnMips)>; 212def NotCnMips : Predicate<"!Subtarget->hasCnMips()">, 213 AssemblerPredicate<(all_of (not FeatureCnMips))>; 214def HasCnMipsP : Predicate<"Subtarget->hasCnMipsP()">, 215 AssemblerPredicate<(all_of FeatureCnMipsP)>; 216def NotCnMipsP : Predicate<"!Subtarget->hasCnMipsP()">, 217 AssemblerPredicate<(all_of (not FeatureCnMipsP))>; 218def IsSym32 : Predicate<"Subtarget->hasSym32()">, 219 AssemblerPredicate<(all_of FeatureSym32)>; 220def IsSym64 : Predicate<"!Subtarget->hasSym32()">, 221 AssemblerPredicate<(all_of (not FeatureSym32))>; 222def IsN64 : Predicate<"Subtarget->isABI_N64()">; 223def IsNotN64 : Predicate<"!Subtarget->isABI_N64()">; 224def RelocNotPIC : Predicate<"!TM.isPositionIndependent()">; 225def RelocPIC : Predicate<"TM.isPositionIndependent()">; 226def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">; 227def UseAbs : Predicate<"Subtarget->inAbs2008Mode() ||" 228 "TM.Options.NoNaNsFPMath">; 229def HasStdEnc : Predicate<"Subtarget->hasStandardEncoding()">, 230 AssemblerPredicate<(all_of (not FeatureMips16))>; 231def NotDSP : Predicate<"!Subtarget->hasDSP()">; 232def InMicroMips : Predicate<"Subtarget->inMicroMipsMode()">, 233 AssemblerPredicate<(all_of FeatureMicroMips)>; 234def NotInMicroMips : Predicate<"!Subtarget->inMicroMipsMode()">, 235 AssemblerPredicate<(all_of (not FeatureMicroMips))>; 236def IsLE : Predicate<"Subtarget->isLittle()">; 237def IsBE : Predicate<"!Subtarget->isLittle()">; 238def IsNotNaCl : Predicate<"!Subtarget->isTargetNaCl()">; 239def UseTCCInDIV : AssemblerPredicate<(all_of FeatureUseTCCInDIV)>; 240def HasEVA : Predicate<"Subtarget->hasEVA()">, 241 AssemblerPredicate<(all_of FeatureEVA)>; 242def HasMSA : Predicate<"Subtarget->hasMSA()">, 243 AssemblerPredicate<(all_of FeatureMSA)>; 244def HasMadd4 : Predicate<"!Subtarget->disableMadd4()">, 245 AssemblerPredicate<(all_of (not FeatureMadd4))>; 246def HasMT : Predicate<"Subtarget->hasMT()">, 247 AssemblerPredicate<(all_of FeatureMT)>; 248def UseIndirectJumpsHazard : Predicate<"Subtarget->useIndirectJumpsHazard()">, 249 AssemblerPredicate<(all_of FeatureUseIndirectJumpsHazard)>; 250def NoIndirectJumpGuards : Predicate<"!Subtarget->useIndirectJumpsHazard()">, 251 AssemblerPredicate<(all_of (not FeatureUseIndirectJumpsHazard))>; 252def HasCRC : Predicate<"Subtarget->hasCRC()">, 253 AssemblerPredicate<(all_of FeatureCRC)>; 254def HasVirt : Predicate<"Subtarget->hasVirt()">, 255 AssemblerPredicate<(all_of FeatureVirt)>; 256def HasGINV : Predicate<"Subtarget->hasGINV()">, 257 AssemblerPredicate<(all_of FeatureGINV)>; 258// TODO: Add support for FPOpFusion::Standard 259def AllowFPOpFusion : Predicate<"TM.Options.AllowFPOpFusion ==" 260 " FPOpFusion::Fast">; 261//===----------------------------------------------------------------------===// 262// Mips GPR size adjectives. 263// They are mutually exclusive. 264//===----------------------------------------------------------------------===// 265 266class GPR_32 { list<Predicate> GPRPredicates = [IsGP32bit]; } 267class GPR_64 { list<Predicate> GPRPredicates = [IsGP64bit]; } 268 269class PTR_32 { list<Predicate> PTRPredicates = [IsPTR32bit]; } 270class PTR_64 { list<Predicate> PTRPredicates = [IsPTR64bit]; } 271 272//===----------------------------------------------------------------------===// 273// Mips Symbol size adjectives. 274// They are mutally exculsive. 275//===----------------------------------------------------------------------===// 276 277class SYM_32 { list<Predicate> SYMPredicates = [IsSym32]; } 278class SYM_64 { list<Predicate> SYMPredicates = [IsSym64]; } 279 280//===----------------------------------------------------------------------===// 281// Mips ISA/ASE membership and instruction group membership adjectives. 282// They are mutually exclusive. 283//===----------------------------------------------------------------------===// 284 285// FIXME: I'd prefer to use additive predicates to build the instruction sets 286// but we are short on assembler feature bits at the moment. Using a 287// subtractive predicate will hopefully keep us under the 32 predicate 288// limit long enough to develop an alternative way to handle P1||P2 289// predicates. 290class ISA_MIPS1 { 291 list<Predicate> EncodingPredicates = [HasStdEnc]; 292} 293class ISA_MIPS1_NOT_MIPS3 { 294 list<Predicate> InsnPredicates = [NotMips3]; 295 list<Predicate> EncodingPredicates = [HasStdEnc]; 296} 297class ISA_MIPS1_NOT_4_32 { 298 list<Predicate> InsnPredicates = [NotMips4_32]; 299 list<Predicate> EncodingPredicates = [HasStdEnc]; 300} 301class ISA_MIPS1_NOT_32R6_64R6 { 302 list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6]; 303 list<Predicate> EncodingPredicates = [HasStdEnc]; 304} 305class ISA_MIPS2 { 306 list<Predicate> InsnPredicates = [HasMips2]; 307 list<Predicate> EncodingPredicates = [HasStdEnc]; 308} 309class ISA_MIPS2_NOT_32R6_64R6 { 310 list<Predicate> InsnPredicates = [HasMips2, NotMips32r6, NotMips64r6]; 311 list<Predicate> EncodingPredicates = [HasStdEnc]; 312} 313class ISA_MIPS3 { 314 list<Predicate> InsnPredicates = [HasMips3]; 315 list<Predicate> EncodingPredicates = [HasStdEnc]; 316} 317class ISA_MIPS3_NOT_32R6_64R6 { 318 list<Predicate> InsnPredicates = [HasMips3, NotMips32r6, NotMips64r6]; 319 list<Predicate> EncodingPredicates = [HasStdEnc]; 320} 321class ISA_MIPS32 { 322 list<Predicate> InsnPredicates = [HasMips32]; 323 list<Predicate> EncodingPredicates = [HasStdEnc]; 324} 325class ISA_MIPS32_NOT_32R6_64R6 { 326 list<Predicate> InsnPredicates = [HasMips32, NotMips32r6, NotMips64r6]; 327 list<Predicate> EncodingPredicates = [HasStdEnc]; 328} 329class ISA_MIPS32R2 { 330 list<Predicate> InsnPredicates = [HasMips32r2]; 331 list<Predicate> EncodingPredicates = [HasStdEnc]; 332} 333class ISA_MIPS32R2_NOT_32R6_64R6 { 334 list<Predicate> InsnPredicates = [HasMips32r2, NotMips32r6, NotMips64r6]; 335 list<Predicate> EncodingPredicates = [HasStdEnc]; 336} 337class ISA_MIPS32R5 { 338 list<Predicate> InsnPredicates = [HasMips32r5]; 339 list<Predicate> EncodingPredicates = [HasStdEnc]; 340} 341class ISA_MIPS64 { 342 list<Predicate> InsnPredicates = [HasMips64]; 343 list<Predicate> EncodingPredicates = [HasStdEnc]; 344} 345class ISA_MIPS64_NOT_64R6 { 346 list<Predicate> InsnPredicates = [HasMips64, NotMips64r6]; 347 list<Predicate> EncodingPredicates = [HasStdEnc]; 348} 349class ISA_MIPS64R2 { 350 list<Predicate> InsnPredicates = [HasMips64r2]; 351 list<Predicate> EncodingPredicates = [HasStdEnc]; 352} 353class ISA_MIPS64R5 { 354 list<Predicate> InsnPredicates = [HasMips64r5]; 355 list<Predicate> EncodingPredicates = [HasStdEnc]; 356} 357class ISA_MIPS32R6 { 358 list<Predicate> InsnPredicates = [HasMips32r6]; 359 list<Predicate> EncodingPredicates = [HasStdEnc]; 360} 361class ISA_MIPS64R6 { 362 list<Predicate> InsnPredicates = [HasMips64r6]; 363 list<Predicate> EncodingPredicates = [HasStdEnc]; 364} 365class ISA_MICROMIPS { 366 list<Predicate> EncodingPredicates = [InMicroMips]; 367} 368class ISA_MICROMIPS32R5 { 369 list<Predicate> InsnPredicates = [HasMips32r5]; 370 list<Predicate> EncodingPredicates = [InMicroMips]; 371} 372class ISA_MICROMIPS32R6 { 373 list<Predicate> InsnPredicates = [HasMips32r6]; 374 list<Predicate> EncodingPredicates = [InMicroMips]; 375} 376class ISA_MICROMIPS64R6 { 377 list<Predicate> InsnPredicates = [HasMips64r6]; 378 list<Predicate> EncodingPredicates = [InMicroMips]; 379} 380class ISA_MICROMIPS32_NOT_MIPS32R6 { 381 list<Predicate> InsnPredicates = [NotMips32r6]; 382 list<Predicate> EncodingPredicates = [InMicroMips]; 383} 384class ASE_EVA { list<Predicate> ASEPredicate = [HasEVA]; } 385 386// The portions of MIPS-III that were also added to MIPS32 387class INSN_MIPS3_32 { 388 list<Predicate> InsnPredicates = [HasMips3_32]; 389 list<Predicate> EncodingPredicates = [HasStdEnc]; 390} 391 392// The portions of MIPS-III that were also added to MIPS32 but were removed in 393// MIPS32r6 and MIPS64r6. 394class INSN_MIPS3_32_NOT_32R6_64R6 { 395 list<Predicate> InsnPredicates = [HasMips3_32, NotMips32r6, NotMips64r6]; 396 list<Predicate> EncodingPredicates = [HasStdEnc]; 397} 398 399// The portions of MIPS-III that were also added to MIPS32 400class INSN_MIPS3_32R2 { 401 list<Predicate> InsnPredicates = [HasMips3_32r2]; 402 list<Predicate> EncodingPredicates = [HasStdEnc]; 403} 404 405// The portions of MIPS-IV that were also added to MIPS32. 406class INSN_MIPS4_32 { 407 list <Predicate> InsnPredicates = [HasMips4_32]; 408 list<Predicate> EncodingPredicates = [HasStdEnc]; 409} 410 411// The portions of MIPS-IV that were also added to MIPS32 but were removed in 412// MIPS32r6 and MIPS64r6. 413class INSN_MIPS4_32_NOT_32R6_64R6 { 414 list<Predicate> InsnPredicates = [HasMips4_32, NotMips32r6, NotMips64r6]; 415 list<Predicate> EncodingPredicates = [HasStdEnc]; 416} 417 418// The portions of MIPS-IV that were also added to MIPS32r2 but were removed in 419// MIPS32r6 and MIPS64r6. 420class INSN_MIPS4_32R2_NOT_32R6_64R6 { 421 list<Predicate> InsnPredicates = [HasMips4_32r2, NotMips32r6, NotMips64r6]; 422 list<Predicate> EncodingPredicates = [HasStdEnc]; 423} 424 425// The portions of MIPS-IV that were also added to MIPS32r2. 426class INSN_MIPS4_32R2 { 427 list<Predicate> InsnPredicates = [HasMips4_32r2]; 428 list<Predicate> EncodingPredicates = [HasStdEnc]; 429} 430 431// The portions of MIPS-V that were also added to MIPS32r2 but were removed in 432// MIPS32r6 and MIPS64r6. 433class INSN_MIPS5_32R2_NOT_32R6_64R6 { 434 list<Predicate> InsnPredicates = [HasMips5_32r2, NotMips32r6, NotMips64r6]; 435 list<Predicate> EncodingPredicates = [HasStdEnc]; 436} 437 438class ASE_CNMIPS { 439 list<Predicate> ASEPredicate = [HasCnMips]; 440} 441 442class NOT_ASE_CNMIPS { 443 list<Predicate> ASEPredicate = [NotCnMips]; 444} 445 446class ASE_CNMIPSP { 447 list<Predicate> ASEPredicate = [HasCnMipsP]; 448} 449 450class NOT_ASE_CNMIPSP { 451 list<Predicate> ASEPredicate = [NotCnMipsP]; 452} 453 454class ASE_MIPS64_CNMIPS { 455 list<Predicate> ASEPredicate = [HasMips64, HasCnMips]; 456} 457 458class ASE_MSA { 459 list<Predicate> ASEPredicate = [HasMSA]; 460} 461 462class ASE_MSA_NOT_MSA64 { 463 list<Predicate> ASEPredicate = [HasMSA, NotMips64]; 464} 465 466class ASE_MSA64 { 467 list<Predicate> ASEPredicate = [HasMSA, HasMips64]; 468} 469 470class ASE_MT { 471 list <Predicate> ASEPredicate = [HasMT]; 472} 473 474class ASE_CRC { 475 list <Predicate> ASEPredicate = [HasCRC]; 476} 477 478class ASE_VIRT { 479 list <Predicate> ASEPredicate = [HasVirt]; 480} 481 482class ASE_GINV { 483 list <Predicate> ASEPredicate = [HasGINV]; 484} 485 486// Class used for separating microMIPSr6 and microMIPS (r3) instruction. 487// It can be used only on instructions that doesn't inherit PredicateControl. 488class ISA_MICROMIPS_NOT_32R6 : PredicateControl { 489 let InsnPredicates = [NotMips32r6]; 490 let EncodingPredicates = [InMicroMips]; 491} 492 493class ASE_NOT_DSP { 494 list<Predicate> ASEPredicate = [NotDSP]; 495} 496 497class MADD4 { 498 list<Predicate> AdditionalPredicates = [HasMadd4]; 499} 500 501// Classes used for separating expansions that differ based on the ABI in 502// use. 503class ABI_N64 { 504 list<Predicate> AdditionalPredicates = [IsN64]; 505} 506 507class ABI_NOT_N64 { 508 list<Predicate> AdditionalPredicates = [IsNotN64]; 509} 510 511class FPOP_FUSION_FAST { 512 list <Predicate> AdditionalPredicates = [AllowFPOpFusion]; 513} 514 515//===----------------------------------------------------------------------===// 516 517class MipsPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl; 518 519class MipsInstAlias<string Asm, dag Result, bit Emit = 0b1> : 520 InstAlias<Asm, Result, Emit>, PredicateControl; 521 522class IsCommutable { 523 bit isCommutable = 1; 524} 525 526class IsBranch { 527 bit isBranch = 1; 528 bit isCTI = 1; 529} 530 531class IsReturn { 532 bit isReturn = 1; 533 bit isCTI = 1; 534} 535 536class IsCall { 537 bit isCall = 1; 538 bit isCTI = 1; 539} 540 541class IsTailCall { 542 bit isCall = 1; 543 bit isTerminator = 1; 544 bit isReturn = 1; 545 bit isBarrier = 1; 546 bit hasExtraSrcRegAllocReq = 1; 547 bit isCodeGenOnly = 1; 548 bit isCTI = 1; 549} 550 551class IsAsCheapAsAMove { 552 bit isAsCheapAsAMove = 1; 553} 554 555class NeverHasSideEffects { 556 bit hasSideEffects = 0; 557} 558 559//===----------------------------------------------------------------------===// 560// Instruction format superclass 561//===----------------------------------------------------------------------===// 562 563include "MipsInstrFormats.td" 564 565//===----------------------------------------------------------------------===// 566// Mips Operand, Complex Patterns and Transformations Definitions. 567//===----------------------------------------------------------------------===// 568 569class ConstantSImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = [], 570 int Offset = 0> : AsmOperandClass { 571 let Name = "ConstantSImm" # Bits # "_" # Offset; 572 let RenderMethod = "addConstantSImmOperands<" # Bits # ", " # Offset # ">"; 573 let PredicateMethod = "isConstantSImm<" # Bits # ", " # Offset # ">"; 574 let SuperClasses = Supers; 575 let DiagnosticType = "SImm" # Bits # "_" # Offset; 576} 577 578class SimmLslAsmOperandClass<int Bits, list<AsmOperandClass> Supers = [], 579 int Shift = 0> : AsmOperandClass { 580 let Name = "Simm" # Bits # "_Lsl" # Shift; 581 let RenderMethod = "addImmOperands"; 582 let PredicateMethod = "isScaledSImm<" # Bits # ", " # Shift # ">"; 583 let SuperClasses = Supers; 584 let DiagnosticType = "SImm" # Bits # "_Lsl" # Shift; 585} 586 587class ConstantUImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = [], 588 int Offset = 0> : AsmOperandClass { 589 let Name = "ConstantUImm" # Bits # "_" # Offset; 590 let RenderMethod = "addConstantUImmOperands<" # Bits # ", " # Offset # ">"; 591 let PredicateMethod = "isConstantUImm<" # Bits # ", " # Offset # ">"; 592 let SuperClasses = Supers; 593 let DiagnosticType = "UImm" # Bits # "_" # Offset; 594} 595 596class ConstantUImmRangeAsmOperandClass<int Bottom, int Top, 597 list<AsmOperandClass> Supers = []> 598 : AsmOperandClass { 599 let Name = "ConstantUImmRange" # Bottom # "_" # Top; 600 let RenderMethod = "addImmOperands"; 601 let PredicateMethod = "isConstantUImmRange<" # Bottom # ", " # Top # ">"; 602 let SuperClasses = Supers; 603 let DiagnosticType = "UImmRange" # Bottom # "_" # Top; 604} 605 606class SImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = []> 607 : AsmOperandClass { 608 let Name = "SImm" # Bits; 609 let RenderMethod = "addSImmOperands<" # Bits # ">"; 610 let PredicateMethod = "isSImm<" # Bits # ">"; 611 let SuperClasses = Supers; 612 let DiagnosticType = "SImm" # Bits; 613} 614 615class UImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = []> 616 : AsmOperandClass { 617 let Name = "UImm" # Bits; 618 let RenderMethod = "addUImmOperands<" # Bits # ">"; 619 let PredicateMethod = "isUImm<" # Bits # ">"; 620 let SuperClasses = Supers; 621 let DiagnosticType = "UImm" # Bits; 622} 623 624// Generic case - only to support certain assembly pseudo instructions. 625class UImmAnyAsmOperandClass<int Bits, list<AsmOperandClass> Supers = []> 626 : AsmOperandClass { 627 let Name = "ImmAny"; 628 let RenderMethod = "addConstantUImmOperands<32>"; 629 let PredicateMethod = "isSImm<" # Bits # ">"; 630 let SuperClasses = Supers; 631 let DiagnosticType = "ImmAny"; 632} 633 634// AsmOperandClasses require a strict ordering which is difficult to manage 635// as a hierarchy. Instead, we use a linear ordering and impose an order that 636// is in some places arbitrary. 637// 638// Here the rules that are in use: 639// * Wider immediates are a superset of narrower immediates: 640// uimm4 < uimm5 < uimm6 641// * For the same bit-width, unsigned immediates are a superset of signed 642// immediates:: 643// simm4 < uimm4 < simm5 < uimm5 644// * For the same upper-bound, signed immediates are a superset of unsigned 645// immediates: 646// uimm3 < simm4 < uimm4 < simm4 647// * Modified immediates are a superset of ordinary immediates: 648// uimm5 < uimm5_plus1 (1..32) < uimm5_plus32 (32..63) < uimm6 649// The term 'superset' starts to break down here since the uimm5_plus* classes 650// are not true supersets of uimm5 (but they are still subsets of uimm6). 651// * 'Relaxed' immediates are supersets of the corresponding unsigned immediate. 652// uimm16 < uimm16_relaxed 653// * The codeGen pattern type is arbitrarily ordered. 654// uimm5 < uimm5_64, and uimm5 < vsplat_uimm5 655// This is entirely arbitrary. We need an ordering and what we pick is 656// unimportant since only one is possible for a given mnemonic. 657 658def UImm32CoercedAsmOperandClass : UImmAnyAsmOperandClass<33, []> { 659 let Name = "UImm32_Coerced"; 660 let DiagnosticType = "UImm32_Coerced"; 661} 662def SImm32RelaxedAsmOperandClass 663 : SImmAsmOperandClass<32, [UImm32CoercedAsmOperandClass]> { 664 let Name = "SImm32_Relaxed"; 665 let PredicateMethod = "isAnyImm<33>"; 666 let DiagnosticType = "SImm32_Relaxed"; 667} 668def SImm32AsmOperandClass 669 : SImmAsmOperandClass<32, [SImm32RelaxedAsmOperandClass]>; 670def ConstantUImm26AsmOperandClass 671 : ConstantUImmAsmOperandClass<26, [SImm32AsmOperandClass]>; 672def ConstantUImm20AsmOperandClass 673 : ConstantUImmAsmOperandClass<20, [ConstantUImm26AsmOperandClass]>; 674def ConstantSImm19Lsl2AsmOperandClass : AsmOperandClass { 675 let Name = "SImm19Lsl2"; 676 let RenderMethod = "addImmOperands"; 677 let PredicateMethod = "isScaledSImm<19, 2>"; 678 let SuperClasses = [ConstantUImm20AsmOperandClass]; 679 let DiagnosticType = "SImm19_Lsl2"; 680} 681def UImm16RelaxedAsmOperandClass 682 : UImmAsmOperandClass<16, [ConstantUImm20AsmOperandClass]> { 683 let Name = "UImm16_Relaxed"; 684 let PredicateMethod = "isAnyImm<16>"; 685 let DiagnosticType = "UImm16_Relaxed"; 686} 687// Similar to the relaxed classes which take an SImm and render it as 688// an UImm, this takes a UImm and renders it as an SImm. 689def UImm16AltRelaxedAsmOperandClass 690 : SImmAsmOperandClass<16, [UImm16RelaxedAsmOperandClass]> { 691 let Name = "UImm16_AltRelaxed"; 692 let PredicateMethod = "isUImm<16>"; 693 let DiagnosticType = "UImm16_AltRelaxed"; 694} 695// FIXME: One of these should probably have UImm16AsmOperandClass as the 696// superclass instead of UImm16RelaxedasmOPerandClass. 697def UImm16AsmOperandClass 698 : UImmAsmOperandClass<16, [UImm16RelaxedAsmOperandClass]>; 699def SImm16RelaxedAsmOperandClass 700 : SImmAsmOperandClass<16, [UImm16RelaxedAsmOperandClass]> { 701 let Name = "SImm16_Relaxed"; 702 let PredicateMethod = "isAnyImm<16>"; 703 let DiagnosticType = "SImm16_Relaxed"; 704} 705def SImm16AsmOperandClass 706 : SImmAsmOperandClass<16, [SImm16RelaxedAsmOperandClass]>; 707def ConstantSImm10Lsl3AsmOperandClass : AsmOperandClass { 708 let Name = "SImm10Lsl3"; 709 let RenderMethod = "addImmOperands"; 710 let PredicateMethod = "isScaledSImm<10, 3>"; 711 let SuperClasses = [SImm16AsmOperandClass]; 712 let DiagnosticType = "SImm10_Lsl3"; 713} 714def ConstantSImm10Lsl2AsmOperandClass : AsmOperandClass { 715 let Name = "SImm10Lsl2"; 716 let RenderMethod = "addImmOperands"; 717 let PredicateMethod = "isScaledSImm<10, 2>"; 718 let SuperClasses = [ConstantSImm10Lsl3AsmOperandClass]; 719 let DiagnosticType = "SImm10_Lsl2"; 720} 721def ConstantSImm11AsmOperandClass 722 : ConstantSImmAsmOperandClass<11, [ConstantSImm10Lsl2AsmOperandClass]>; 723def ConstantSImm10Lsl1AsmOperandClass : AsmOperandClass { 724 let Name = "SImm10Lsl1"; 725 let RenderMethod = "addImmOperands"; 726 let PredicateMethod = "isScaledSImm<10, 1>"; 727 let SuperClasses = [ConstantSImm11AsmOperandClass]; 728 let DiagnosticType = "SImm10_Lsl1"; 729} 730def ConstantUImm10AsmOperandClass 731 : ConstantUImmAsmOperandClass<10, [ConstantSImm10Lsl1AsmOperandClass]>; 732def ConstantSImm10AsmOperandClass 733 : ConstantSImmAsmOperandClass<10, [ConstantUImm10AsmOperandClass]>; 734def ConstantSImm9AsmOperandClass 735 : ConstantSImmAsmOperandClass<9, [ConstantSImm10AsmOperandClass]>; 736def ConstantSImm7Lsl2AsmOperandClass : AsmOperandClass { 737 let Name = "SImm7Lsl2"; 738 let RenderMethod = "addImmOperands"; 739 let PredicateMethod = "isScaledSImm<7, 2>"; 740 let SuperClasses = [ConstantSImm9AsmOperandClass]; 741 let DiagnosticType = "SImm7_Lsl2"; 742} 743def ConstantUImm8AsmOperandClass 744 : ConstantUImmAsmOperandClass<8, [ConstantSImm7Lsl2AsmOperandClass]>; 745def ConstantUImm7Sub1AsmOperandClass 746 : ConstantUImmAsmOperandClass<7, [ConstantUImm8AsmOperandClass], -1> { 747 // Specify the names since the -1 offset causes invalid identifiers otherwise. 748 let Name = "UImm7_N1"; 749 let DiagnosticType = "UImm7_N1"; 750} 751def ConstantUImm7AsmOperandClass 752 : ConstantUImmAsmOperandClass<7, [ConstantUImm7Sub1AsmOperandClass]>; 753def ConstantUImm6Lsl2AsmOperandClass : AsmOperandClass { 754 let Name = "UImm6Lsl2"; 755 let RenderMethod = "addImmOperands"; 756 let PredicateMethod = "isScaledUImm<6, 2>"; 757 let SuperClasses = [ConstantUImm7AsmOperandClass]; 758 let DiagnosticType = "UImm6_Lsl2"; 759} 760def ConstantUImm6AsmOperandClass 761 : ConstantUImmAsmOperandClass<6, [ConstantUImm6Lsl2AsmOperandClass]>; 762def ConstantSImm6AsmOperandClass 763 : ConstantSImmAsmOperandClass<6, [ConstantUImm6AsmOperandClass]>; 764def ConstantUImm5Lsl2AsmOperandClass : AsmOperandClass { 765 let Name = "UImm5Lsl2"; 766 let RenderMethod = "addImmOperands"; 767 let PredicateMethod = "isScaledUImm<5, 2>"; 768 let SuperClasses = [ConstantSImm6AsmOperandClass]; 769 let DiagnosticType = "UImm5_Lsl2"; 770} 771def ConstantUImm5_Range2_64AsmOperandClass 772 : ConstantUImmRangeAsmOperandClass<2, 64, [ConstantUImm5Lsl2AsmOperandClass]>; 773def ConstantUImm5Plus33AsmOperandClass 774 : ConstantUImmAsmOperandClass<5, [ConstantUImm5_Range2_64AsmOperandClass], 775 33>; 776def ConstantUImm5ReportUImm6AsmOperandClass 777 : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus33AsmOperandClass]> { 778 let Name = "ConstantUImm5_0_Report_UImm6"; 779 let DiagnosticType = "UImm5_0_Report_UImm6"; 780} 781def ConstantUImm5Plus32AsmOperandClass 782 : ConstantUImmAsmOperandClass< 783 5, [ConstantUImm5ReportUImm6AsmOperandClass], 32>; 784def ConstantUImm5Plus32NormalizeAsmOperandClass 785 : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus32AsmOperandClass], 32> { 786 let Name = "ConstantUImm5_32_Norm"; 787 // We must also subtract 32 when we render the operand. 788 let RenderMethod = "addConstantUImmOperands<5, 32, -32>"; 789} 790def ConstantUImm5Plus1ReportUImm6AsmOperandClass 791 : ConstantUImmAsmOperandClass< 792 5, [ConstantUImm5Plus32NormalizeAsmOperandClass], 1>{ 793 let Name = "ConstantUImm5_Plus1_Report_UImm6"; 794} 795def ConstantUImm5Plus1AsmOperandClass 796 : ConstantUImmAsmOperandClass< 797 5, [ConstantUImm5Plus1ReportUImm6AsmOperandClass], 1>; 798def ConstantUImm5AsmOperandClass 799 : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus1AsmOperandClass]>; 800def ConstantSImm5AsmOperandClass 801 : ConstantSImmAsmOperandClass<5, [ConstantUImm5AsmOperandClass]>; 802def ConstantUImm4AsmOperandClass 803 : ConstantUImmAsmOperandClass<4, [ConstantSImm5AsmOperandClass]>; 804def ConstantSImm4AsmOperandClass 805 : ConstantSImmAsmOperandClass<4, [ConstantUImm4AsmOperandClass]>; 806def ConstantUImm3AsmOperandClass 807 : ConstantUImmAsmOperandClass<3, [ConstantSImm4AsmOperandClass]>; 808def ConstantUImm2Plus1AsmOperandClass 809 : ConstantUImmAsmOperandClass<2, [ConstantUImm3AsmOperandClass], 1>; 810def ConstantUImm2AsmOperandClass 811 : ConstantUImmAsmOperandClass<2, [ConstantUImm3AsmOperandClass]>; 812def ConstantUImm1AsmOperandClass 813 : ConstantUImmAsmOperandClass<1, [ConstantUImm2AsmOperandClass]>; 814def ConstantImmzAsmOperandClass : AsmOperandClass { 815 let Name = "ConstantImmz"; 816 let RenderMethod = "addConstantUImmOperands<1>"; 817 let PredicateMethod = "isConstantImmz"; 818 let SuperClasses = [ConstantUImm1AsmOperandClass]; 819 let DiagnosticType = "Immz"; 820} 821 822def Simm19Lsl2AsmOperand 823 : SimmLslAsmOperandClass<19, [], 2>; 824 825def MipsJumpTargetAsmOperand : AsmOperandClass { 826 let Name = "JumpTarget"; 827 let ParserMethod = "parseJumpTarget"; 828 let PredicateMethod = "isImm"; 829 let RenderMethod = "addImmOperands"; 830} 831 832// Instruction operand types 833def jmptarget : Operand<OtherVT> { 834 let EncoderMethod = "getJumpTargetOpValue"; 835 let ParserMatchClass = MipsJumpTargetAsmOperand; 836} 837def brtarget : Operand<OtherVT> { 838 let EncoderMethod = "getBranchTargetOpValue"; 839 let OperandType = "OPERAND_PCREL"; 840 let DecoderMethod = "DecodeBranchTarget"; 841 let ParserMatchClass = MipsJumpTargetAsmOperand; 842} 843def brtarget1SImm16 : Operand<OtherVT> { 844 let EncoderMethod = "getBranchTargetOpValue1SImm16"; 845 let OperandType = "OPERAND_PCREL"; 846 let DecoderMethod = "DecodeBranchTarget1SImm16"; 847 let ParserMatchClass = MipsJumpTargetAsmOperand; 848} 849def calltarget : Operand<iPTR> { 850 let EncoderMethod = "getJumpTargetOpValue"; 851 let ParserMatchClass = MipsJumpTargetAsmOperand; 852} 853 854def imm64: Operand<i64>; 855 856def simm19_lsl2 : Operand<i32> { 857 let EncoderMethod = "getSimm19Lsl2Encoding"; 858 let DecoderMethod = "DecodeSimm19Lsl2"; 859 let ParserMatchClass = Simm19Lsl2AsmOperand; 860} 861 862def simm18_lsl3 : Operand<i32> { 863 let EncoderMethod = "getSimm18Lsl3Encoding"; 864 let DecoderMethod = "DecodeSimm18Lsl3"; 865 let ParserMatchClass = MipsJumpTargetAsmOperand; 866} 867 868// Zero 869def uimmz : Operand<i32> { 870 let PrintMethod = "printUImm<0>"; 871 let ParserMatchClass = ConstantImmzAsmOperandClass; 872} 873 874// size operand of ins instruction 875def uimm_range_2_64 : Operand<i32> { 876 let PrintMethod = "printUImm<6, 2>"; 877 let EncoderMethod = "getSizeInsEncoding"; 878 let DecoderMethod = "DecodeInsSize"; 879 let ParserMatchClass = ConstantUImm5_Range2_64AsmOperandClass; 880} 881 882// Unsigned Operands 883foreach I = {1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 26} in 884 def uimm # I : Operand<i32> { 885 let PrintMethod = "printUImm<" # I # ">"; 886 let ParserMatchClass = 887 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 888 } 889 890def uimm2_plus1 : Operand<i32> { 891 let PrintMethod = "printUImm<2, 1>"; 892 let EncoderMethod = "getUImmWithOffsetEncoding<2, 1>"; 893 let DecoderMethod = "DecodeUImmWithOffset<2, 1>"; 894 let ParserMatchClass = ConstantUImm2Plus1AsmOperandClass; 895} 896 897def uimm5_plus1 : Operand<i32> { 898 let PrintMethod = "printUImm<5, 1>"; 899 let EncoderMethod = "getUImmWithOffsetEncoding<5, 1>"; 900 let DecoderMethod = "DecodeUImmWithOffset<5, 1>"; 901 let ParserMatchClass = ConstantUImm5Plus1AsmOperandClass; 902} 903 904def uimm5_plus1_report_uimm6 : Operand<i32> { 905 let PrintMethod = "printUImm<6, 1>"; 906 let EncoderMethod = "getUImmWithOffsetEncoding<5, 1>"; 907 let DecoderMethod = "DecodeUImmWithOffset<5, 1>"; 908 let ParserMatchClass = ConstantUImm5Plus1ReportUImm6AsmOperandClass; 909} 910 911def uimm5_plus32 : Operand<i32> { 912 let PrintMethod = "printUImm<5, 32>"; 913 let ParserMatchClass = ConstantUImm5Plus32AsmOperandClass; 914} 915 916def uimm5_plus33 : Operand<i32> { 917 let PrintMethod = "printUImm<5, 33>"; 918 let EncoderMethod = "getUImmWithOffsetEncoding<5, 1>"; 919 let DecoderMethod = "DecodeUImmWithOffset<5, 1>"; 920 let ParserMatchClass = ConstantUImm5Plus33AsmOperandClass; 921} 922 923def uimm5_inssize_plus1 : Operand<i32> { 924 let PrintMethod = "printUImm<6>"; 925 let ParserMatchClass = ConstantUImm5Plus1AsmOperandClass; 926 let EncoderMethod = "getSizeInsEncoding"; 927 let DecoderMethod = "DecodeInsSize"; 928} 929 930def uimm5_plus32_normalize : Operand<i32> { 931 let PrintMethod = "printUImm<5>"; 932 let ParserMatchClass = ConstantUImm5Plus32NormalizeAsmOperandClass; 933} 934 935def uimm5_lsl2 : Operand<OtherVT> { 936 let EncoderMethod = "getUImm5Lsl2Encoding"; 937 let DecoderMethod = "DecodeUImmWithOffsetAndScale<5, 0, 4>"; 938 let ParserMatchClass = ConstantUImm5Lsl2AsmOperandClass; 939} 940 941def uimm5_plus32_normalize_64 : Operand<i64> { 942 let PrintMethod = "printUImm<5>"; 943 let ParserMatchClass = ConstantUImm5Plus32NormalizeAsmOperandClass; 944} 945 946def uimm6_lsl2 : Operand<OtherVT> { 947 let EncoderMethod = "getUImm6Lsl2Encoding"; 948 let DecoderMethod = "DecodeUImmWithOffsetAndScale<6, 0, 4>"; 949 let ParserMatchClass = ConstantUImm6Lsl2AsmOperandClass; 950} 951 952foreach I = {16} in 953 def uimm # I : Operand<i32> { 954 let PrintMethod = "printUImm<" # I # ">"; 955 let ParserMatchClass = 956 !cast<AsmOperandClass>("UImm" # I # "AsmOperandClass"); 957 } 958 959// Like uimm16_64 but coerces simm16 to uimm16. 960def uimm16_relaxed : Operand<i32> { 961 let PrintMethod = "printUImm<16>"; 962 let ParserMatchClass = UImm16RelaxedAsmOperandClass; 963} 964 965foreach I = {5} in 966 def uimm # I # _64 : Operand<i64> { 967 let PrintMethod = "printUImm<" # I # ">"; 968 let ParserMatchClass = 969 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 970 } 971 972foreach I = {16} in 973 def uimm # I # _64 : Operand<i64> { 974 let PrintMethod = "printUImm<" # I # ">"; 975 let ParserMatchClass = 976 !cast<AsmOperandClass>("UImm" # I # "AsmOperandClass"); 977 } 978 979// Like uimm16_64 but coerces simm16 to uimm16. 980def uimm16_64_relaxed : Operand<i64> { 981 let PrintMethod = "printUImm<16>"; 982 let ParserMatchClass = UImm16RelaxedAsmOperandClass; 983} 984 985def uimm16_altrelaxed : Operand<i32> { 986 let PrintMethod = "printUImm<16>"; 987 let ParserMatchClass = UImm16AltRelaxedAsmOperandClass; 988} 989// Like uimm5 but reports a less confusing error for 32-63 when 990// an instruction alias permits that. 991def uimm5_report_uimm6 : Operand<i32> { 992 let PrintMethod = "printUImm<6>"; 993 let ParserMatchClass = ConstantUImm5ReportUImm6AsmOperandClass; 994} 995 996// Like uimm5_64 but reports a less confusing error for 32-63 when 997// an instruction alias permits that. 998def uimm5_64_report_uimm6 : Operand<i64> { 999 let PrintMethod = "printUImm<5>"; 1000 let ParserMatchClass = ConstantUImm5ReportUImm6AsmOperandClass; 1001} 1002 1003foreach I = {1, 2, 3, 4} in 1004 def uimm # I # _ptr : Operand<iPTR> { 1005 let PrintMethod = "printUImm<" # I # ">"; 1006 let ParserMatchClass = 1007 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 1008 } 1009 1010foreach I = {1, 2, 3, 4, 5, 6, 8} in 1011 def vsplat_uimm # I : Operand<vAny> { 1012 let PrintMethod = "printUImm<" # I # ">"; 1013 let ParserMatchClass = 1014 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 1015 } 1016 1017// Signed operands 1018foreach I = {4, 5, 6, 9, 10, 11} in 1019 def simm # I : Operand<i32> { 1020 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; 1021 let ParserMatchClass = 1022 !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); 1023 } 1024 1025foreach I = {1, 2, 3} in 1026 def simm10_lsl # I : Operand<i32> { 1027 let DecoderMethod = "DecodeSImmWithOffsetAndScale<10, " # I # ">"; 1028 let ParserMatchClass = 1029 !cast<AsmOperandClass>("ConstantSImm10Lsl" # I # "AsmOperandClass"); 1030 } 1031 1032foreach I = {10} in 1033 def simm # I # _64 : Operand<i64> { 1034 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; 1035 let ParserMatchClass = 1036 !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); 1037 } 1038 1039foreach I = {5, 10} in 1040 def vsplat_simm # I : Operand<vAny> { 1041 let ParserMatchClass = 1042 !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); 1043 } 1044 1045def simm7_lsl2 : Operand<OtherVT> { 1046 let EncoderMethod = "getSImm7Lsl2Encoding"; 1047 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ", 0, 4>"; 1048 let ParserMatchClass = ConstantSImm7Lsl2AsmOperandClass; 1049} 1050 1051foreach I = {16, 32} in 1052 def simm # I : Operand<i32> { 1053 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; 1054 let ParserMatchClass = !cast<AsmOperandClass>("SImm" # I # "AsmOperandClass"); 1055 } 1056 1057// Like simm16 but coerces uimm16 to simm16. 1058def simm16_relaxed : Operand<i32> { 1059 let DecoderMethod = "DecodeSImmWithOffsetAndScale<16>"; 1060 let ParserMatchClass = SImm16RelaxedAsmOperandClass; 1061} 1062 1063def simm16_64 : Operand<i64> { 1064 let DecoderMethod = "DecodeSImmWithOffsetAndScale<16>"; 1065 let ParserMatchClass = SImm16AsmOperandClass; 1066} 1067 1068// like simm32 but coerces simm32 to uimm32. 1069def uimm32_coerced : Operand<i32> { 1070 let ParserMatchClass = UImm32CoercedAsmOperandClass; 1071} 1072// Like simm32 but coerces uimm32 to simm32. 1073def simm32_relaxed : Operand<i32> { 1074 let DecoderMethod = "DecodeSImmWithOffsetAndScale<32>"; 1075 let ParserMatchClass = SImm32RelaxedAsmOperandClass; 1076} 1077 1078// This is almost the same as a uimm7 but 0x7f is interpreted as -1. 1079def li16_imm : Operand<i32> { 1080 let DecoderMethod = "DecodeLi16Imm"; 1081 let ParserMatchClass = ConstantUImm7Sub1AsmOperandClass; 1082} 1083 1084def MipsMemAsmOperand : AsmOperandClass { 1085 let Name = "Mem"; 1086 let ParserMethod = "parseMemOperand"; 1087} 1088 1089class MipsMemSimmAsmOperand<int Width, int Shift = 0> : AsmOperandClass { 1090 let Name = "MemOffsetSimm" # Width # "_" # Shift; 1091 let SuperClasses = [MipsMemAsmOperand]; 1092 let RenderMethod = "addMemOperands"; 1093 let ParserMethod = "parseMemOperand"; 1094 let PredicateMethod = "isMemWithSimmOffset<" # Width # ", " # Shift # ">"; 1095 let DiagnosticType = !if(!eq(Shift, 0), "MemSImm" # Width, 1096 "MemSImm" # Width # "Lsl" # Shift); 1097} 1098 1099def MipsMemSimmPtrAsmOperand : AsmOperandClass { 1100 let Name = "MemOffsetSimmPtr"; 1101 let SuperClasses = [MipsMemAsmOperand]; 1102 let RenderMethod = "addMemOperands"; 1103 let ParserMethod = "parseMemOperand"; 1104 let PredicateMethod = "isMemWithPtrSizeOffset"; 1105 let DiagnosticType = "MemSImmPtr"; 1106} 1107 1108def MipsInvertedImmoperand : AsmOperandClass { 1109 let Name = "InvNum"; 1110 let RenderMethod = "addImmOperands"; 1111 let ParserMethod = "parseInvNum"; 1112} 1113 1114def InvertedImOperand : Operand<i32> { 1115 let ParserMatchClass = MipsInvertedImmoperand; 1116} 1117 1118def InvertedImOperand64 : Operand<i64> { 1119 let ParserMatchClass = MipsInvertedImmoperand; 1120} 1121 1122class mem_generic : Operand<iPTR> { 1123 let PrintMethod = "printMemOperand"; 1124 let MIOperandInfo = (ops ptr_rc, simm16); 1125 let EncoderMethod = "getMemEncoding"; 1126 let ParserMatchClass = MipsMemAsmOperand; 1127 let OperandType = "OPERAND_MEMORY"; 1128} 1129 1130// Address operand 1131def mem : mem_generic; 1132 1133// MSA specific address operand 1134def mem_msa : mem_generic { 1135 let MIOperandInfo = (ops ptr_rc, simm10); 1136 let EncoderMethod = "getMSAMemEncoding"; 1137} 1138 1139def simm12 : Operand<i32> { 1140 let DecoderMethod = "DecodeSimm12"; 1141} 1142 1143def mem_simm9_exp : mem_generic { 1144 let MIOperandInfo = (ops ptr_rc, simm9); 1145 let ParserMatchClass = MipsMemSimmPtrAsmOperand; 1146 let OperandNamespace = "MipsII"; 1147 let OperandType = "OPERAND_MEM_SIMM9"; 1148} 1149 1150foreach I = {9, 10, 11, 12, 16} in 1151 def mem_simm # I : mem_generic { 1152 let MIOperandInfo = (ops ptr_rc, !cast<Operand>("simm" # I)); 1153 let ParserMatchClass = MipsMemSimmAsmOperand<I>; 1154 } 1155 1156foreach I = {1, 2, 3} in 1157 def mem_simm10_lsl # I : mem_generic { 1158 let MIOperandInfo = (ops ptr_rc, !cast<Operand>("simm10_lsl" # I)); 1159 let EncoderMethod = "getMemEncoding<" # I # ">"; 1160 let ParserMatchClass = MipsMemSimmAsmOperand<10, I>; 1161 } 1162 1163def mem_simmptr : mem_generic { 1164 let ParserMatchClass = MipsMemSimmPtrAsmOperand; 1165} 1166 1167def mem_ea : Operand<iPTR> { 1168 let PrintMethod = "printMemOperandEA"; 1169 let MIOperandInfo = (ops ptr_rc, simm16); 1170 let EncoderMethod = "getMemEncoding"; 1171 let OperandType = "OPERAND_MEMORY"; 1172} 1173 1174def PtrRC : Operand<iPTR> { 1175 let MIOperandInfo = (ops ptr_rc); 1176 let DecoderMethod = "DecodePtrRegisterClass"; 1177 let ParserMatchClass = GPR32AsmOperand; 1178} 1179 1180// size operand of ins instruction 1181def size_ins : Operand<i32> { 1182 let EncoderMethod = "getSizeInsEncoding"; 1183 let DecoderMethod = "DecodeInsSize"; 1184} 1185 1186// Transformation Function - get the lower 16 bits. 1187def LO16 : SDNodeXForm<imm, [{ 1188 return getImm(N, N->getZExtValue() & 0xFFFF); 1189}]>; 1190 1191// Transformation Function - get the higher 16 bits. 1192def HI16 : SDNodeXForm<imm, [{ 1193 return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF); 1194}]>; 1195 1196// Plus 1. 1197def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>; 1198 1199// Node immediate is zero (e.g. insve.d) 1200def immz : PatLeaf<(imm), [{ return N->getSExtValue() == 0; }]>; 1201 1202// Node immediate fits as 16-bit sign extended on target immediate. 1203// e.g. addi, andi 1204def immSExt8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>; 1205 1206// Node immediate fits as 16-bit sign extended on target immediate. 1207// e.g. addi, andi 1208def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; 1209def imm32SExt16 : IntImmLeaf<i32, [{ return isInt<16>(Imm.getSExtValue()); }]>; 1210 1211// Node immediate fits as 7-bit zero extended on target immediate. 1212def immZExt7 : PatLeaf<(imm), [{ return isUInt<7>(N->getZExtValue()); }]>; 1213def timmZExt7 : PatLeaf<(timm), [{ return isUInt<7>(N->getZExtValue()); }]>; 1214 1215// Node immediate fits as 16-bit zero extended on target immediate. 1216// The LO16 param means that only the lower 16 bits of the node 1217// immediate are caught. 1218// e.g. addiu, sltiu 1219def immZExt16 : PatLeaf<(imm), [{ 1220 if (N->getValueType(0) == MVT::i32) 1221 return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 1222 else 1223 return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 1224}], LO16>; 1225def imm32ZExt16 : IntImmLeaf<i32, [{ 1226 return (uint32_t)Imm.getZExtValue() == (unsigned short)Imm.getZExtValue(); 1227}]>; 1228 1229// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared). 1230def immSExt32Low16Zero : PatLeaf<(imm), [{ 1231 int64_t Val = N->getSExtValue(); 1232 return isInt<32>(Val) && !(Val & 0xffff); 1233}]>; 1234 1235// Zero-extended 32-bit unsigned int with lower 16-bit cleared. 1236def immZExt32Low16Zero : PatLeaf<(imm), [{ 1237 uint64_t Val = N->getZExtValue(); 1238 return isUInt<32>(Val) && !(Val & 0xffff); 1239}]>; 1240 1241// Note immediate fits as a 32 bit signed extended on target immediate. 1242def immSExt32 : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>; 1243 1244// Note immediate fits as a 32 bit zero extended on target immediate. 1245def immZExt32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; 1246 1247// shamt field must fit in 5 bits. 1248def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>; 1249def timmZExt5 : TImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>; 1250 1251def immZExt5Plus1 : PatLeaf<(imm), [{ 1252 return isUInt<5>(N->getZExtValue() - 1); 1253}]>; 1254def immZExt5Plus32 : PatLeaf<(imm), [{ 1255 return isUInt<5>(N->getZExtValue() - 32); 1256}]>; 1257def immZExt5Plus33 : PatLeaf<(imm), [{ 1258 return isUInt<5>(N->getZExtValue() - 33); 1259}]>; 1260 1261def immZExt5To31 : SDNodeXForm<imm, [{ 1262 return getImm(N, 31 - N->getZExtValue()); 1263}]>; 1264 1265// True if (N + 1) fits in 16-bit field. 1266def immSExt16Plus1 : PatLeaf<(imm), [{ 1267 return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1); 1268}]>; 1269 1270def immZExtRange2To64 : PatLeaf<(imm), [{ 1271 return isUInt<7>(N->getZExtValue()) && (N->getZExtValue() >= 2) && 1272 (N->getZExtValue() <= 64); 1273}]>; 1274 1275def ORiPred : PatLeaf<(imm), [{ 1276 return isUInt<16>(N->getZExtValue()) && !isInt<16>(N->getSExtValue()); 1277}], LO16>; 1278 1279def LUiPred : PatLeaf<(imm), [{ 1280 int64_t Val = N->getSExtValue(); 1281 return !isInt<16>(Val) && isInt<32>(Val) && !(Val & 0xffff); 1282}]>; 1283 1284def LUiORiPred : PatLeaf<(imm), [{ 1285 int64_t SVal = N->getSExtValue(); 1286 return isInt<32>(SVal) && (SVal & 0xffff); 1287}]>; 1288 1289// Mips Address Mode! SDNode frameindex could possibly be a match 1290// since load and store instructions from stack used it. 1291def addr : 1292 ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>; 1293 1294def addrRegImm : 1295 ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>; 1296 1297def addrDefault : 1298 ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>; 1299 1300def addrimm10 : ComplexPattern<iPTR, 2, "selectIntAddrSImm10", [frameindex]>; 1301def addrimm10lsl1 : ComplexPattern<iPTR, 2, "selectIntAddrSImm10Lsl1", 1302 [frameindex]>; 1303def addrimm10lsl2 : ComplexPattern<iPTR, 2, "selectIntAddrSImm10Lsl2", 1304 [frameindex]>; 1305def addrimm10lsl3 : ComplexPattern<iPTR, 2, "selectIntAddrSImm10Lsl3", 1306 [frameindex]>; 1307 1308//===----------------------------------------------------------------------===// 1309// Instructions specific format 1310//===----------------------------------------------------------------------===// 1311 1312// Arithmetic and logical instructions with 3 register operands. 1313class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0, 1314 InstrItinClass Itin = NoItinerary, 1315 SDPatternOperator OpNode = null_frag>: 1316 InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt), 1317 !strconcat(opstr, "\t$rd, $rs, $rt"), 1318 [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> { 1319 let isCommutable = isComm; 1320 let isReMaterializable = 1; 1321 let TwoOperandAliasConstraint = "$rd = $rs"; 1322} 1323 1324// Arithmetic and logical instructions with 2 register operands. 1325class ArithLogicI<string opstr, Operand Od, RegisterOperand RO, 1326 InstrItinClass Itin = NoItinerary, 1327 SDPatternOperator imm_type = null_frag, 1328 SDPatternOperator OpNode = null_frag> : 1329 InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16), 1330 !strconcat(opstr, "\t$rt, $rs, $imm16"), 1331 [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], 1332 Itin, FrmI, opstr> { 1333 let isReMaterializable = 1; 1334 let TwoOperandAliasConstraint = "$rs = $rt"; 1335} 1336 1337// Arithmetic Multiply ADD/SUB 1338class MArithR<string opstr, InstrItinClass itin, bit isComm = 0> : 1339 InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 1340 !strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR, opstr> { 1341 let Defs = [HI0, LO0]; 1342 let Uses = [HI0, LO0]; 1343 let isCommutable = isComm; 1344} 1345 1346// Logical 1347class LogicNOR<string opstr, RegisterOperand RO>: 1348 InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt), 1349 !strconcat(opstr, "\t$rd, $rs, $rt"), 1350 [(set RO:$rd, (not (or RO:$rs, RO:$rt)))], II_NOR, FrmR, opstr> { 1351 let isCommutable = 1; 1352} 1353 1354// Shifts 1355class shift_rotate_imm<string opstr, Operand ImmOpnd, 1356 RegisterOperand RO, InstrItinClass itin, 1357 SDPatternOperator OpNode = null_frag, 1358 SDPatternOperator PF = null_frag> : 1359 InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt), 1360 !strconcat(opstr, "\t$rd, $rt, $shamt"), 1361 [(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], itin, FrmR, opstr> { 1362 let TwoOperandAliasConstraint = "$rt = $rd"; 1363} 1364 1365class shift_rotate_reg<string opstr, RegisterOperand RO, InstrItinClass itin, 1366 SDPatternOperator OpNode = null_frag>: 1367 InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs), 1368 !strconcat(opstr, "\t$rd, $rt, $rs"), 1369 [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], itin, FrmR, 1370 opstr>; 1371 1372// Load Upper Immediate 1373class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>: 1374 InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"), 1375 [], II_LUI, FrmI, opstr>, IsAsCheapAsAMove { 1376 let hasSideEffects = 0; 1377 let isReMaterializable = 1; 1378} 1379 1380// Memory Load/Store 1381class LoadMemory<string opstr, DAGOperand RO, DAGOperand MO, 1382 SDPatternOperator OpNode = null_frag, 1383 InstrItinClass Itin = NoItinerary, 1384 ComplexPattern Addr = addr> : 1385 InstSE<(outs RO:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"), 1386 [(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> { 1387 let DecoderMethod = "DecodeMem"; 1388 let canFoldAsLoad = 1; 1389 string BaseOpcode = opstr; 1390 let mayLoad = 1; 1391} 1392 1393class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag, 1394 InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> : 1395 LoadMemory<opstr, RO, mem, OpNode, Itin, Addr>; 1396 1397class StoreMemory<string opstr, DAGOperand RO, DAGOperand MO, 1398 SDPatternOperator OpNode = null_frag, 1399 InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> : 1400 InstSE<(outs), (ins RO:$rt, MO:$addr), !strconcat(opstr, "\t$rt, $addr"), 1401 [(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> { 1402 let DecoderMethod = "DecodeMem"; 1403 string BaseOpcode = opstr; 1404 let mayStore = 1; 1405} 1406 1407class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag, 1408 InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr, 1409 DAGOperand MO = mem> : 1410 StoreMemory<opstr, RO, MO, OpNode, Itin, Addr>; 1411 1412// Load/Store Left/Right 1413let canFoldAsLoad = 1 in 1414class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO, 1415 InstrItinClass Itin> : 1416 InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src), 1417 !strconcat(opstr, "\t$rt, $addr"), 1418 [(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> { 1419 let DecoderMethod = "DecodeMem"; 1420 string Constraints = "$src = $rt"; 1421 let BaseOpcode = opstr; 1422} 1423 1424class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO, 1425 InstrItinClass Itin> : 1426 InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), 1427 [(OpNode RO:$rt, addr:$addr)], Itin, FrmI> { 1428 let DecoderMethod = "DecodeMem"; 1429 let BaseOpcode = opstr; 1430} 1431 1432// COP2 Load/Store 1433class LW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin, 1434 SDPatternOperator OpNode= null_frag> : 1435 InstSE<(outs RC:$rt), (ins mem_simm16:$addr), 1436 !strconcat(opstr, "\t$rt, $addr"), 1437 [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> { 1438 let DecoderMethod = "DecodeFMem2"; 1439 let mayLoad = 1; 1440} 1441 1442class SW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin, 1443 SDPatternOperator OpNode= null_frag> : 1444 InstSE<(outs), (ins RC:$rt, mem_simm16:$addr), 1445 !strconcat(opstr, "\t$rt, $addr"), 1446 [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> { 1447 let DecoderMethod = "DecodeFMem2"; 1448 let mayStore = 1; 1449} 1450 1451// COP3 Load/Store 1452class LW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin, 1453 SDPatternOperator OpNode= null_frag> : 1454 InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"), 1455 [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> { 1456 let DecoderMethod = "DecodeFMem3"; 1457 let mayLoad = 1; 1458} 1459 1460class SW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin, 1461 SDPatternOperator OpNode= null_frag> : 1462 InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), 1463 [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> { 1464 let DecoderMethod = "DecodeFMem3"; 1465 let mayStore = 1; 1466} 1467 1468// Conditional Branch 1469class CBranch<string opstr, DAGOperand opnd, PatFrag cond_op, 1470 RegisterOperand RO> : 1471 InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset), 1472 !strconcat(opstr, "\t$rs, $rt, $offset"), 1473 [(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], II_BCC, 1474 FrmI, opstr> { 1475 let isBranch = 1; 1476 let isTerminator = 1; 1477 let hasDelaySlot = 1; 1478 let Defs = [AT]; 1479 bit isCTI = 1; 1480} 1481 1482class CBranchLikely<string opstr, DAGOperand opnd, RegisterOperand RO> : 1483 InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset), 1484 !strconcat(opstr, "\t$rs, $rt, $offset"), [], II_BCC, FrmI, opstr> { 1485 let isBranch = 1; 1486 let isTerminator = 1; 1487 let hasDelaySlot = 1; 1488 let Defs = [AT]; 1489 bit isCTI = 1; 1490} 1491 1492class CBranchZero<string opstr, DAGOperand opnd, PatFrag cond_op, 1493 RegisterOperand RO> : 1494 InstSE<(outs), (ins RO:$rs, opnd:$offset), 1495 !strconcat(opstr, "\t$rs, $offset"), 1496 [(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], II_BCCZ, 1497 FrmI, opstr> { 1498 let isBranch = 1; 1499 let isTerminator = 1; 1500 let hasDelaySlot = 1; 1501 let Defs = [AT]; 1502 bit isCTI = 1; 1503} 1504 1505class CBranchZeroLikely<string opstr, DAGOperand opnd, RegisterOperand RO> : 1506 InstSE<(outs), (ins RO:$rs, opnd:$offset), 1507 !strconcat(opstr, "\t$rs, $offset"), [], II_BCCZ, FrmI, opstr> { 1508 let isBranch = 1; 1509 let isTerminator = 1; 1510 let hasDelaySlot = 1; 1511 let Defs = [AT]; 1512 bit isCTI = 1; 1513} 1514 1515// SetCC 1516class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> : 1517 InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt), 1518 !strconcat(opstr, "\t$rd, $rs, $rt"), 1519 [(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))], 1520 II_SLT_SLTU, FrmR, opstr>; 1521 1522class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type, 1523 RegisterOperand RO>: 1524 InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16), 1525 !strconcat(opstr, "\t$rt, $rs, $imm16"), 1526 [(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))], 1527 II_SLTI_SLTIU, FrmI, opstr>; 1528 1529// Jump 1530class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator, 1531 SDPatternOperator targetoperator, string bopstr> : 1532 InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"), 1533 [(operator targetoperator:$target)], II_J, FrmJ, bopstr> { 1534 let isTerminator=1; 1535 let isBarrier=1; 1536 let hasDelaySlot = 1; 1537 let DecoderMethod = "DecodeJumpTarget"; 1538 let Defs = [AT]; 1539 bit isCTI = 1; 1540} 1541 1542// Unconditional branch 1543class UncondBranch<Instruction BEQInst, DAGOperand opnd> : 1544 PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], II_B>, 1545 PseudoInstExpansion<(BEQInst ZERO, ZERO, opnd:$offset)> { 1546 let isBranch = 1; 1547 let isTerminator = 1; 1548 let isBarrier = 1; 1549 let hasDelaySlot = 1; 1550 let AdditionalPredicates = [RelocPIC]; 1551 let Defs = [AT]; 1552 bit isCTI = 1; 1553} 1554 1555// Base class for indirect branch and return instruction classes. 1556let isTerminator=1, isBarrier=1, hasDelaySlot = 1, isCTI = 1 in 1557class JumpFR<string opstr, RegisterOperand RO, 1558 SDPatternOperator operator = null_frag>: 1559 InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], II_JR, 1560 FrmR, opstr>; 1561 1562// Indirect branch 1563class IndirectBranch<string opstr, RegisterOperand RO> : JumpFR<opstr, RO> { 1564 let isBranch = 1; 1565 let isIndirectBranch = 1; 1566} 1567 1568// Jump and Link (Call) 1569let isCall=1, hasDelaySlot=1, isCTI=1, Defs = [RA] in { 1570 class JumpLink<string opstr, DAGOperand opnd> : 1571 InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"), 1572 [(MipsJmpLink tglobaladdr:$target)], II_JAL, FrmJ, opstr> { 1573 let DecoderMethod = "DecodeJumpTarget"; 1574 } 1575 1576 class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst, 1577 Register RetReg, RegisterOperand ResRO = RO>: 1578 PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], II_JALR>, 1579 PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)> { 1580 let hasPostISelHook = 1; 1581 } 1582 1583 class JumpLinkReg<string opstr, RegisterOperand RO>: 1584 InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), 1585 [], II_JALR, FrmR, opstr> { 1586 let hasPostISelHook = 1; 1587 } 1588 1589 class BGEZAL_FT<string opstr, DAGOperand opnd, 1590 RegisterOperand RO> : 1591 InstSE<(outs), (ins RO:$rs, opnd:$offset), 1592 !strconcat(opstr, "\t$rs, $offset"), [], II_BCCZAL, FrmI, opstr> { 1593 let hasDelaySlot = 1; 1594 } 1595 1596} 1597 1598let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, hasDelaySlot = 1, 1599 hasExtraSrcRegAllocReq = 1, isCTI = 1, Defs = [AT] in { 1600 class TailCall<Instruction JumpInst, DAGOperand Opnd> : 1601 PseudoSE<(outs), (ins calltarget:$target), [], II_J>, 1602 PseudoInstExpansion<(JumpInst Opnd:$target)>; 1603 1604 class TailCallReg<Instruction JumpInst, RegisterOperand RO> : 1605 PseudoSE<(outs), (ins RO:$rs), [(MipsTailCall RO:$rs)], II_JR>, 1606 PseudoInstExpansion<(JumpInst RO:$rs)> { 1607 let hasPostISelHook = 1; 1608 } 1609} 1610 1611class BAL_BR_Pseudo<Instruction RealInst, DAGOperand opnd> : 1612 PseudoSE<(outs), (ins opnd:$offset), [], II_BCCZAL>, 1613 PseudoInstExpansion<(RealInst ZERO, opnd:$offset)> { 1614 let isBranch = 1; 1615 let isTerminator = 1; 1616 let isBarrier = 1; 1617 let hasDelaySlot = 1; 1618 let Defs = [RA]; 1619 bit isCTI = 1; 1620} 1621 1622let isCTI = 1 in { 1623// Syscall 1624class SYS_FT<string opstr, Operand ImmOp, InstrItinClass itin = NoItinerary> : 1625 InstSE<(outs), (ins ImmOp:$code_), 1626 !strconcat(opstr, "\t$code_"), [], itin, FrmI, opstr>; 1627// Break 1628class BRK_FT<string opstr> : 1629 InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2), 1630 !strconcat(opstr, "\t$code_1, $code_2"), [], II_BREAK, 1631 FrmOther, opstr>; 1632 1633// (D)Eret 1634class ER_FT<string opstr, InstrItinClass itin = NoItinerary> : 1635 InstSE<(outs), (ins), 1636 opstr, [], itin, FrmOther, opstr>; 1637 1638// Wait 1639class WAIT_FT<string opstr> : 1640 InstSE<(outs), (ins), opstr, [], II_WAIT, FrmOther, opstr>; 1641} 1642 1643// Interrupts 1644class DEI_FT<string opstr, RegisterOperand RO, 1645 InstrItinClass itin = NoItinerary> : 1646 InstSE<(outs RO:$rt), (ins), 1647 !strconcat(opstr, "\t$rt"), [], itin, FrmOther, opstr>; 1648 1649// Sync 1650let hasSideEffects = 1 in 1651class SYNC_FT<string opstr> : 1652 InstSE<(outs), (ins uimm5:$stype), "sync $stype", 1653 [(MipsSync immZExt5:$stype)], II_SYNC, FrmOther, opstr>; 1654 1655class SYNCI_FT<string opstr, DAGOperand MO> : 1656 InstSE<(outs), (ins MO:$addr), !strconcat(opstr, "\t$addr"), [], 1657 II_SYNCI, FrmOther, opstr> { 1658 let hasSideEffects = 1; 1659 let DecoderMethod = "DecodeSyncI"; 1660} 1661 1662let hasSideEffects = 1, isCTI = 1 in { 1663class TEQ_FT<string opstr, RegisterOperand RO, Operand ImmOp, 1664 InstrItinClass itin = NoItinerary> : 1665 InstSE<(outs), (ins RO:$rs, RO:$rt, ImmOp:$code_), 1666 !strconcat(opstr, "\t$rs, $rt, $code_"), [], itin, FrmI, opstr>; 1667 1668class TEQI_FT<string opstr, RegisterOperand RO, 1669 InstrItinClass itin = NoItinerary> : 1670 InstSE<(outs), (ins RO:$rs, simm16:$imm16), 1671 !strconcat(opstr, "\t$rs, $imm16"), [], itin, FrmOther, opstr>; 1672} 1673 1674// Mul, Div 1675class Mult<string opstr, InstrItinClass itin, RegisterOperand RO, 1676 list<Register> DefRegs> : 1677 InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [], 1678 itin, FrmR, opstr> { 1679 let isCommutable = 1; 1680 let Defs = DefRegs; 1681 let hasSideEffects = 0; 1682} 1683 1684// Pseudo multiply/divide instruction with explicit accumulator register 1685// operands. 1686class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1, 1687 SDPatternOperator OpNode, InstrItinClass Itin, 1688 bit IsComm = 1, bit HasSideEffects = 0, 1689 bit UsesCustomInserter = 0> : 1690 PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt), 1691 [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>, 1692 PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> { 1693 let isCommutable = IsComm; 1694 let hasSideEffects = HasSideEffects; 1695 let usesCustomInserter = UsesCustomInserter; 1696} 1697 1698// Pseudo multiply add/sub instruction with explicit accumulator register 1699// operands. 1700class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode, 1701 InstrItinClass itin> 1702 : PseudoSE<(outs ACC64:$ac), 1703 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin), 1704 [(set ACC64:$ac, 1705 (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))], 1706 itin>, 1707 PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> { 1708 string Constraints = "$acin = $ac"; 1709} 1710 1711class Div<string opstr, InstrItinClass itin, RegisterOperand RO, 1712 list<Register> DefRegs> : 1713 InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"), 1714 [], itin, FrmR, opstr> { 1715 let Defs = DefRegs; 1716} 1717 1718// Move from Hi/Lo 1719class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode> 1720 : PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo), 1721 [(set DstRC:$rd, (OpNode SrcRC:$hilo))], II_MFHI_MFLO>; 1722 1723class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>: 1724 InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], II_MFHI_MFLO, 1725 FrmR, opstr> { 1726 let Uses = [UseReg]; 1727 let hasSideEffects = 0; 1728 let isMoveReg = 1; 1729} 1730 1731class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC> 1732 : PseudoSE<(outs DstRC:$lohi), (ins SrcRC:$lo, SrcRC:$hi), 1733 [(set DstRC:$lohi, (MipsMTLOHI SrcRC:$lo, SrcRC:$hi))], 1734 II_MTHI_MTLO>; 1735 1736class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>: 1737 InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], II_MTHI_MTLO, 1738 FrmR, opstr> { 1739 let Defs = DefRegs; 1740 let hasSideEffects = 0; 1741 let isMoveReg = 1; 1742} 1743 1744class EffectiveAddress<string opstr, RegisterOperand RO> : 1745 InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"), 1746 [(set RO:$rt, addr:$addr)], II_ADDIU, FrmI, 1747 !strconcat(opstr, "_lea")> { 1748 let isCodeGenOnly = 1; 1749 let hasNoSchedulingInfo = 1; 1750 let DecoderMethod = "DecodeMem"; 1751} 1752 1753// Count Leading Ones/Zeros in Word 1754class CountLeading0<string opstr, RegisterOperand RO, 1755 InstrItinClass itin = NoItinerary>: 1756 InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), 1757 [(set RO:$rd, (ctlz RO:$rs))], itin, FrmR, opstr>; 1758 1759class CountLeading1<string opstr, RegisterOperand RO, 1760 InstrItinClass itin = NoItinerary>: 1761 InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), 1762 [(set RO:$rd, (ctlz (not RO:$rs)))], itin, FrmR, opstr>; 1763 1764// Sign Extend in Register. 1765class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO, 1766 InstrItinClass itin> : 1767 InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), 1768 [(set RO:$rd, (sext_inreg RO:$rt, vt))], itin, FrmR, opstr>; 1769 1770// Subword Swap 1771class SubwordSwap<string opstr, RegisterOperand RO, 1772 InstrItinClass itin = NoItinerary>: 1773 InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [], itin, 1774 FrmR, opstr> { 1775 let hasSideEffects = 0; 1776} 1777 1778// Read Hardware 1779class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> : 1780 InstSE<(outs CPURegOperand:$rt), (ins RO:$rd, uimm8:$sel), 1781 "rdhwr\t$rt, $rd, $sel", [], II_RDHWR, FrmR, "rdhwr">; 1782 1783// Ext and Ins 1784class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd, 1785 Operand SizeOpnd, PatFrag PosImm, PatFrag SizeImm, 1786 SDPatternOperator Op = null_frag> : 1787 InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, SizeOpnd:$size), 1788 !strconcat(opstr, "\t$rt, $rs, $pos, $size"), 1789 [(set RO:$rt, (Op RO:$rs, PosImm:$pos, SizeImm:$size))], II_EXT, 1790 FrmR, opstr>; 1791 1792// 'ins' and its' 64 bit variants are matched by C++ code. 1793class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd, 1794 Operand SizeOpnd, PatFrag PosImm, PatFrag SizeImm>: 1795 InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, SizeOpnd:$size, RO:$src), 1796 !strconcat(opstr, "\t$rt, $rs, $pos, $size"), 1797 [(set RO:$rt, (null_frag RO:$rs, PosImm:$pos, SizeImm:$size, 1798 RO:$src))], 1799 II_INS, FrmR, opstr> { 1800 let Constraints = "$src = $rt"; 1801} 1802 1803// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*). 1804class Atomic2Ops<PatFrag Op, RegisterClass DRC> : 1805 PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr), 1806 [(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]> { 1807 let hasNoSchedulingInfo = 1; 1808} 1809 1810class Atomic2OpsPostRA<RegisterClass RC> : 1811 PseudoSE<(outs RC:$dst), (ins PtrRC:$ptr, RC:$incr), []> { 1812 let mayLoad = 1; 1813 let mayStore = 1; 1814} 1815 1816class Atomic2OpsSubwordPostRA<RegisterClass RC> : 1817 PseudoSE<(outs RC:$dst), (ins PtrRC:$ptr, RC:$incr, RC:$mask, RC:$mask2, 1818 RC:$shiftamnt), []>; 1819 1820// Atomic Compare & Swap. 1821// Atomic compare and swap is lowered into two stages. The first stage happens 1822// during ISelLowering, which produces the PostRA version of this instruction. 1823class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> : 1824 PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap), 1825 [(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]> { 1826 let hasNoSchedulingInfo = 1; 1827} 1828 1829class AtomicCmpSwapPostRA<RegisterClass RC> : 1830 PseudoSE<(outs RC:$dst), (ins PtrRC:$ptr, RC:$cmp, RC:$swap), []> { 1831 let mayLoad = 1; 1832 let mayStore = 1; 1833} 1834 1835class AtomicCmpSwapSubwordPostRA<RegisterClass RC> : 1836 PseudoSE<(outs RC:$dst), (ins PtrRC:$ptr, RC:$mask, RC:$ShiftCmpVal, 1837 RC:$mask2, RC:$ShiftNewVal, RC:$ShiftAmt), []> { 1838 let mayLoad = 1; 1839 let mayStore = 1; 1840} 1841 1842class LLBase<string opstr, RegisterOperand RO, DAGOperand MO = mem> : 1843 InstSE<(outs RO:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"), 1844 [], II_LL, FrmI, opstr> { 1845 let DecoderMethod = "DecodeMem"; 1846 let mayLoad = 1; 1847} 1848 1849class SCBase<string opstr, RegisterOperand RO> : 1850 InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr), 1851 !strconcat(opstr, "\t$rt, $addr"), [], II_SC, FrmI> { 1852 let DecoderMethod = "DecodeMem"; 1853 let mayStore = 1; 1854 let Constraints = "$rt = $dst"; 1855} 1856 1857class MFC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD, 1858 InstrItinClass itin> : 1859 InstSE<(outs RO:$rt), (ins RD:$rd, uimm3:$sel), 1860 !strconcat(asmstr, "\t$rt, $rd, $sel"), [], itin, FrmFR> { 1861 let BaseOpcode = asmstr; 1862} 1863 1864class MTC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD, 1865 InstrItinClass itin> : 1866 InstSE<(outs RO:$rd), (ins RD:$rt, uimm3:$sel), 1867 !strconcat(asmstr, "\t$rt, $rd, $sel"), [], itin, FrmFR> { 1868 let BaseOpcode = asmstr; 1869} 1870 1871class TrapBase<Instruction RealInst> 1872 : PseudoSE<(outs), (ins), [(trap)], II_TRAP>, 1873 PseudoInstExpansion<(RealInst 0, 0)> { 1874 let mayStore = 0; 1875 let mayLoad = 0; 1876 let hasSideEffects = 1; 1877 let isTrap = 1; 1878 let isCodeGenOnly = 1; 1879} 1880 1881//===----------------------------------------------------------------------===// 1882// Pseudo instructions 1883//===----------------------------------------------------------------------===// 1884 1885// Return RA. 1886let isReturn=1, isTerminator=1, isBarrier=1, hasCtrlDep=1, isCTI=1 in { 1887 let hasDelaySlot=1 in 1888 def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>; 1889 1890 let hasSideEffects=1 in 1891 def ERet : PseudoSE<(outs), (ins), [(MipsERet)]>; 1892} 1893 1894let Defs = [SP], Uses = [SP], hasSideEffects = 1, hasNoSchedulingInfo = 1 in { 1895def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 1896 [(callseq_start timm:$amt1, timm:$amt2)]>; 1897def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 1898 [(callseq_end timm:$amt1, timm:$amt2)]>; 1899} 1900 1901let usesCustomInserter = 1 in { 1902 def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, GPR32>; 1903 def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, GPR32>; 1904 def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, GPR32>; 1905 def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, GPR32>; 1906 def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, GPR32>; 1907 def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, GPR32>; 1908 def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, GPR32>; 1909 def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, GPR32>; 1910 def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, GPR32>; 1911 def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, GPR32>; 1912 def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, GPR32>; 1913 def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, GPR32>; 1914 def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, GPR32>; 1915 def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, GPR32>; 1916 def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, GPR32>; 1917 def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, GPR32>; 1918 def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>; 1919 def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>; 1920 1921 def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, GPR32>; 1922 def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, GPR32>; 1923 def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, GPR32>; 1924 1925 def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>; 1926 def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>; 1927 def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>; 1928 1929 def ATOMIC_LOAD_MIN_I8 : Atomic2Ops<atomic_load_min_8, GPR32>; 1930 def ATOMIC_LOAD_MIN_I16 : Atomic2Ops<atomic_load_min_16, GPR32>; 1931 def ATOMIC_LOAD_MIN_I32 : Atomic2Ops<atomic_load_min_32, GPR32>; 1932 def ATOMIC_LOAD_MAX_I8 : Atomic2Ops<atomic_load_max_8, GPR32>; 1933 def ATOMIC_LOAD_MAX_I16 : Atomic2Ops<atomic_load_max_16, GPR32>; 1934 def ATOMIC_LOAD_MAX_I32 : Atomic2Ops<atomic_load_max_32, GPR32>; 1935 def ATOMIC_LOAD_UMIN_I8 : Atomic2Ops<atomic_load_umin_8, GPR32>; 1936 def ATOMIC_LOAD_UMIN_I16 : Atomic2Ops<atomic_load_umin_16, GPR32>; 1937 def ATOMIC_LOAD_UMIN_I32 : Atomic2Ops<atomic_load_umin_32, GPR32>; 1938 def ATOMIC_LOAD_UMAX_I8 : Atomic2Ops<atomic_load_umax_8, GPR32>; 1939 def ATOMIC_LOAD_UMAX_I16 : Atomic2Ops<atomic_load_umax_16, GPR32>; 1940 def ATOMIC_LOAD_UMAX_I32 : Atomic2Ops<atomic_load_umax_32, GPR32>; 1941} 1942 1943def ATOMIC_LOAD_ADD_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1944def ATOMIC_LOAD_ADD_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1945def ATOMIC_LOAD_ADD_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1946def ATOMIC_LOAD_SUB_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1947def ATOMIC_LOAD_SUB_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1948def ATOMIC_LOAD_SUB_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1949def ATOMIC_LOAD_AND_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1950def ATOMIC_LOAD_AND_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1951def ATOMIC_LOAD_AND_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1952def ATOMIC_LOAD_OR_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1953def ATOMIC_LOAD_OR_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1954def ATOMIC_LOAD_OR_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1955def ATOMIC_LOAD_XOR_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1956def ATOMIC_LOAD_XOR_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1957def ATOMIC_LOAD_XOR_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1958def ATOMIC_LOAD_NAND_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1959def ATOMIC_LOAD_NAND_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1960def ATOMIC_LOAD_NAND_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1961 1962def ATOMIC_SWAP_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1963def ATOMIC_SWAP_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1964def ATOMIC_SWAP_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1965 1966def ATOMIC_CMP_SWAP_I8_POSTRA : AtomicCmpSwapSubwordPostRA<GPR32>; 1967def ATOMIC_CMP_SWAP_I16_POSTRA : AtomicCmpSwapSubwordPostRA<GPR32>; 1968def ATOMIC_CMP_SWAP_I32_POSTRA : AtomicCmpSwapPostRA<GPR32>; 1969 1970def ATOMIC_LOAD_MIN_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1971def ATOMIC_LOAD_MIN_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1972def ATOMIC_LOAD_MIN_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1973def ATOMIC_LOAD_MAX_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1974def ATOMIC_LOAD_MAX_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1975def ATOMIC_LOAD_MAX_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1976def ATOMIC_LOAD_UMIN_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1977def ATOMIC_LOAD_UMIN_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1978def ATOMIC_LOAD_UMIN_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1979def ATOMIC_LOAD_UMAX_I8_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1980def ATOMIC_LOAD_UMAX_I16_POSTRA : Atomic2OpsSubwordPostRA<GPR32>; 1981def ATOMIC_LOAD_UMAX_I32_POSTRA : Atomic2OpsPostRA<GPR32>; 1982 1983/// Pseudo instructions for loading and storing accumulator registers. 1984let isPseudo = 1, isCodeGenOnly = 1, hasNoSchedulingInfo = 1 in { 1985 def LOAD_ACC64 : Load<"", ACC64>; 1986 def STORE_ACC64 : Store<"", ACC64>; 1987} 1988 1989// We need these two pseudo instructions to avoid offset calculation for long 1990// branches. See the comment in file MipsLongBranch.cpp for detailed 1991// explanation. 1992 1993// Expands to: lui $dst, %highest/%higher/%hi/%lo($tgt - $baltgt) 1994def LONG_BRANCH_LUi : PseudoSE<(outs GPR32Opnd:$dst), 1995 (ins brtarget:$tgt, brtarget:$baltgt), []> { 1996 bit hasNoSchedulingInfo = 1; 1997} 1998// Expands to: lui $dst, highest/%higher/%hi/%lo($tgt) 1999def LONG_BRANCH_LUi2Op : PseudoSE<(outs GPR32Opnd:$dst), 2000 (ins brtarget:$tgt), []> { 2001 bit hasNoSchedulingInfo = 1; 2002} 2003 2004// Expands to: addiu $dst, $src, %highest/%higher/%hi/%lo($tgt - $baltgt) 2005def LONG_BRANCH_ADDiu : PseudoSE<(outs GPR32Opnd:$dst), 2006 (ins GPR32Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []> { 2007 bit hasNoSchedulingInfo = 1; 2008} 2009// Expands to: addiu $dst, $src, %highest/%higher/%hi/%lo($tgt) 2010def LONG_BRANCH_ADDiu2Op : PseudoSE<(outs GPR32Opnd:$dst), 2011 (ins GPR32Opnd:$src, brtarget:$tgt), []> { 2012 bit hasNoSchedulingInfo = 1; 2013} 2014 2015//===----------------------------------------------------------------------===// 2016// Instruction definition 2017//===----------------------------------------------------------------------===// 2018//===----------------------------------------------------------------------===// 2019// MipsI Instructions 2020//===----------------------------------------------------------------------===// 2021 2022/// Arithmetic Instructions (ALU Immediate) 2023let AdditionalPredicates = [NotInMicroMips] in { 2024 def ADDiu : MMRel, StdMMR6Rel, ArithLogicI<"addiu", simm16_relaxed, GPR32Opnd, 2025 II_ADDIU, imm32SExt16, add>, 2026 ADDI_FM<0x9>, IsAsCheapAsAMove, ISA_MIPS1; 2027 2028 def ANDi : MMRel, StdMMR6Rel, 2029 ArithLogicI<"andi", uimm16, GPR32Opnd, II_ANDI, imm32ZExt16, and>, 2030 ADDI_FM<0xc>, ISA_MIPS1; 2031 def ORi : MMRel, StdMMR6Rel, 2032 ArithLogicI<"ori", uimm16, GPR32Opnd, II_ORI, imm32ZExt16, or>, 2033 ADDI_FM<0xd>, ISA_MIPS1; 2034 def XORi : MMRel, StdMMR6Rel, 2035 ArithLogicI<"xori", uimm16, GPR32Opnd, II_XORI, imm32ZExt16, xor>, 2036 ADDI_FM<0xe>, ISA_MIPS1; 2037 def ADDi : MMRel, ArithLogicI<"addi", simm16_relaxed, GPR32Opnd, II_ADDI>, 2038 ADDI_FM<0x8>, ISA_MIPS1_NOT_32R6_64R6; 2039 def SLTi : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>, 2040 SLTI_FM<0xa>, ISA_MIPS1; 2041 def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>, 2042 SLTI_FM<0xb>, ISA_MIPS1; 2043 2044 def LUi : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16_relaxed>, LUI_FM, 2045 ISA_MIPS1; 2046 2047 /// Arithmetic Instructions (3-Operand, R-Type) 2048 def ADDu : MMRel, StdMMR6Rel, ArithLogicR<"addu", GPR32Opnd, 1, II_ADDU, add>, 2049 ADD_FM<0, 0x21>, ISA_MIPS1; 2050 def SUBu : MMRel, StdMMR6Rel, ArithLogicR<"subu", GPR32Opnd, 0, II_SUBU, sub>, 2051 ADD_FM<0, 0x23>, ISA_MIPS1; 2052 2053 let Defs = [HI0, LO0] in 2054 def MUL : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, II_MUL, mul>, 2055 ADD_FM<0x1c, 2>, ISA_MIPS32_NOT_32R6_64R6; 2056 2057 def ADD : MMRel, StdMMR6Rel, ArithLogicR<"add", GPR32Opnd, 1, II_ADD>, 2058 ADD_FM<0, 0x20>, ISA_MIPS1; 2059 def SUB : MMRel, StdMMR6Rel, ArithLogicR<"sub", GPR32Opnd, 0, II_SUB>, 2060 ADD_FM<0, 0x22>, ISA_MIPS1; 2061 2062 def SLT : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>, 2063 ISA_MIPS1; 2064 def SLTu : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>, 2065 ISA_MIPS1; 2066 def AND : MMRel, StdMMR6Rel, ArithLogicR<"and", GPR32Opnd, 1, II_AND, and>, 2067 ADD_FM<0, 0x24>, ISA_MIPS1; 2068 def OR : MMRel, StdMMR6Rel, ArithLogicR<"or", GPR32Opnd, 1, II_OR, or>, 2069 ADD_FM<0, 0x25>, ISA_MIPS1; 2070 def XOR : MMRel, StdMMR6Rel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>, 2071 ADD_FM<0, 0x26>, ISA_MIPS1; 2072 def NOR : MMRel, StdMMR6Rel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>, 2073 ISA_MIPS1; 2074} 2075 2076let AdditionalPredicates = [NotInMicroMips] in { 2077 /// Shift Instructions 2078 def SLL : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL, shl, 2079 immZExt5>, SRA_FM<0, 0>, ISA_MIPS1; 2080 def SRL : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL, srl, 2081 immZExt5>, SRA_FM<2, 0>, ISA_MIPS1; 2082 def SRA : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA, sra, 2083 immZExt5>, SRA_FM<3, 0>, ISA_MIPS1; 2084 def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV, shl>, 2085 SRLV_FM<4, 0>, ISA_MIPS1; 2086 def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, II_SRLV, srl>, 2087 SRLV_FM<6, 0>, ISA_MIPS1; 2088 def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, II_SRAV, sra>, 2089 SRLV_FM<7, 0>, ISA_MIPS1; 2090 2091 // Rotate Instructions 2092 def ROTR : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, II_ROTR, rotr, 2093 immZExt5>, 2094 SRA_FM<2, 1>, ISA_MIPS32R2; 2095 def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, II_ROTRV, rotr>, 2096 SRLV_FM<6, 1>, ISA_MIPS32R2; 2097} 2098 2099/// Load and Store Instructions 2100/// aligned 2101let AdditionalPredicates = [NotInMicroMips] in { 2102 def LB : LoadMemory<"lb", GPR32Opnd, mem_simmptr, sextloadi8, II_LB>, MMRel, 2103 LW_FM<0x20>, ISA_MIPS1; 2104 def LBu : LoadMemory<"lbu", GPR32Opnd, mem_simmptr, zextloadi8, II_LBU, 2105 addrDefault>, MMRel, LW_FM<0x24>, ISA_MIPS1; 2106 def LH : LoadMemory<"lh", GPR32Opnd, mem_simmptr, sextloadi16, II_LH, 2107 addrDefault>, MMRel, LW_FM<0x21>, ISA_MIPS1; 2108 def LHu : LoadMemory<"lhu", GPR32Opnd, mem_simmptr, zextloadi16, II_LHU>, 2109 MMRel, LW_FM<0x25>, ISA_MIPS1; 2110 def LW : StdMMR6Rel, Load<"lw", GPR32Opnd, load, II_LW, addrDefault>, MMRel, 2111 LW_FM<0x23>, ISA_MIPS1; 2112 def SB : StdMMR6Rel, Store<"sb", GPR32Opnd, truncstorei8, II_SB>, MMRel, 2113 LW_FM<0x28>, ISA_MIPS1; 2114 def SH : Store<"sh", GPR32Opnd, truncstorei16, II_SH>, MMRel, LW_FM<0x29>, 2115 ISA_MIPS1; 2116 def SW : StdMMR6Rel, Store<"sw", GPR32Opnd, store, II_SW>, 2117 MMRel, LW_FM<0x2b>, ISA_MIPS1; 2118} 2119 2120/// load/store left/right 2121let AdditionalPredicates = [NotInMicroMips] in { 2122def LWL : MMRel, LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, II_LWL>, LW_FM<0x22>, 2123 ISA_MIPS1_NOT_32R6_64R6; 2124def LWR : MMRel, LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, II_LWR>, LW_FM<0x26>, 2125 ISA_MIPS1_NOT_32R6_64R6; 2126def SWL : MMRel, StoreLeftRight<"swl", MipsSWL, GPR32Opnd, II_SWL>, LW_FM<0x2a>, 2127 ISA_MIPS1_NOT_32R6_64R6; 2128def SWR : MMRel, StoreLeftRight<"swr", MipsSWR, GPR32Opnd, II_SWR>, LW_FM<0x2e>, 2129 ISA_MIPS1_NOT_32R6_64R6; 2130 2131// COP2 Memory Instructions 2132def LWC2 : StdMMR6Rel, LW_FT2<"lwc2", COP2Opnd, II_LWC2, load>, LW_FM<0x32>, 2133 ISA_MIPS1_NOT_32R6_64R6; 2134def SWC2 : StdMMR6Rel, SW_FT2<"swc2", COP2Opnd, II_SWC2, store>, 2135 LW_FM<0x3a>, ISA_MIPS1_NOT_32R6_64R6; 2136def LDC2 : StdMMR6Rel, LW_FT2<"ldc2", COP2Opnd, II_LDC2, load>, LW_FM<0x36>, 2137 ISA_MIPS2_NOT_32R6_64R6; 2138def SDC2 : StdMMR6Rel, SW_FT2<"sdc2", COP2Opnd, II_SDC2, store>, 2139 LW_FM<0x3e>, ISA_MIPS2_NOT_32R6_64R6; 2140 2141// COP3 Memory Instructions 2142let DecoderNamespace = "COP3_" in { 2143 def LWC3 : LW_FT3<"lwc3", COP3Opnd, II_LWC3, load>, LW_FM<0x33>, 2144 ISA_MIPS1_NOT_32R6_64R6, NOT_ASE_CNMIPS; 2145 def SWC3 : SW_FT3<"swc3", COP3Opnd, II_SWC3, store>, LW_FM<0x3b>, 2146 ISA_MIPS1_NOT_32R6_64R6, NOT_ASE_CNMIPS; 2147 def LDC3 : LW_FT3<"ldc3", COP3Opnd, II_LDC3, load>, LW_FM<0x37>, 2148 ISA_MIPS2, NOT_ASE_CNMIPS; 2149 def SDC3 : SW_FT3<"sdc3", COP3Opnd, II_SDC3, store>, LW_FM<0x3f>, 2150 ISA_MIPS2, NOT_ASE_CNMIPS; 2151} 2152 2153 def SYNC : MMRel, StdMMR6Rel, SYNC_FT<"sync">, SYNC_FM, ISA_MIPS2; 2154 def SYNCI : MMRel, StdMMR6Rel, SYNCI_FT<"synci", mem_simm16>, SYNCI_FM, 2155 ISA_MIPS32R2; 2156} 2157 2158let AdditionalPredicates = [NotInMicroMips] in { 2159 def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd, uimm10, II_TEQ>, TEQ_FM<0x34>, 2160 ISA_MIPS2; 2161 def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd, uimm10, II_TGE>, TEQ_FM<0x30>, 2162 ISA_MIPS2; 2163 def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd, uimm10, II_TGEU>, TEQ_FM<0x31>, 2164 ISA_MIPS2; 2165 def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd, uimm10, II_TLT>, TEQ_FM<0x32>, 2166 ISA_MIPS2; 2167 def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd, uimm10, II_TLTU>, TEQ_FM<0x33>, 2168 ISA_MIPS2; 2169 def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd, uimm10, II_TNE>, TEQ_FM<0x36>, 2170 ISA_MIPS2; 2171 2172 def TEQI : MMRel, TEQI_FT<"teqi", GPR32Opnd, II_TEQI>, TEQI_FM<0xc>, 2173 ISA_MIPS2_NOT_32R6_64R6; 2174 def TGEI : MMRel, TEQI_FT<"tgei", GPR32Opnd, II_TGEI>, TEQI_FM<0x8>, 2175 ISA_MIPS2_NOT_32R6_64R6; 2176 def TGEIU : MMRel, TEQI_FT<"tgeiu", GPR32Opnd, II_TGEIU>, TEQI_FM<0x9>, 2177 ISA_MIPS2_NOT_32R6_64R6; 2178 def TLTI : MMRel, TEQI_FT<"tlti", GPR32Opnd, II_TLTI>, TEQI_FM<0xa>, 2179 ISA_MIPS2_NOT_32R6_64R6; 2180 def TTLTIU : MMRel, TEQI_FT<"tltiu", GPR32Opnd, II_TTLTIU>, TEQI_FM<0xb>, 2181 ISA_MIPS2_NOT_32R6_64R6; 2182 def TNEI : MMRel, TEQI_FT<"tnei", GPR32Opnd, II_TNEI>, TEQI_FM<0xe>, 2183 ISA_MIPS2_NOT_32R6_64R6; 2184} 2185 2186let AdditionalPredicates = [NotInMicroMips] in { 2187 def BREAK : MMRel, StdMMR6Rel, BRK_FT<"break">, BRK_FM<0xd>, ISA_MIPS1; 2188 def SYSCALL : MMRel, SYS_FT<"syscall", uimm20, II_SYSCALL>, SYS_FM<0xc>, 2189 ISA_MIPS1; 2190 def TRAP : TrapBase<BREAK>, ISA_MIPS1; 2191 def SDBBP : MMRel, SYS_FT<"sdbbp", uimm20, II_SDBBP>, SDBBP_FM, 2192 ISA_MIPS32_NOT_32R6_64R6; 2193 2194 def ERET : MMRel, ER_FT<"eret", II_ERET>, ER_FM<0x18, 0x0>, INSN_MIPS3_32; 2195 def ERETNC : MMRel, ER_FT<"eretnc", II_ERETNC>, ER_FM<0x18, 0x1>, 2196 ISA_MIPS32R5; 2197 def DERET : MMRel, ER_FT<"deret", II_DERET>, ER_FM<0x1f, 0x0>, ISA_MIPS32; 2198 2199 def EI : MMRel, StdMMR6Rel, DEI_FT<"ei", GPR32Opnd, II_EI>, EI_FM<1>, 2200 ISA_MIPS32R2; 2201 def DI : MMRel, StdMMR6Rel, DEI_FT<"di", GPR32Opnd, II_DI>, EI_FM<0>, 2202 ISA_MIPS32R2; 2203 2204 def WAIT : MMRel, StdMMR6Rel, WAIT_FT<"wait">, WAIT_FM, INSN_MIPS3_32; 2205} 2206 2207let AdditionalPredicates = [NotInMicroMips] in { 2208/// Load-linked, Store-conditional 2209def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>, PTR_32, ISA_MIPS2_NOT_32R6_64R6; 2210def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>, PTR_32, ISA_MIPS2_NOT_32R6_64R6; 2211} 2212/// Jump and Branch Instructions 2213let AdditionalPredicates = [NotInMicroMips, RelocNotPIC] in 2214def J : MMRel, JumpFJ<jmptarget, "j", br, bb, "j">, FJ<2>, 2215 IsBranch, ISA_MIPS1; 2216 2217let AdditionalPredicates = [NotInMicroMips] in { 2218def JR : MMRel, IndirectBranch<"jr", GPR32Opnd>, MTLO_FM<8>, 2219 ISA_MIPS1_NOT_32R6_64R6; 2220def BEQ : MMRel, CBranch<"beq", brtarget, seteq, GPR32Opnd>, BEQ_FM<4>, 2221 ISA_MIPS1; 2222def BEQL : MMRel, CBranchLikely<"beql", brtarget, GPR32Opnd>, 2223 BEQ_FM<20>, ISA_MIPS2_NOT_32R6_64R6; 2224def BNE : MMRel, CBranch<"bne", brtarget, setne, GPR32Opnd>, BEQ_FM<5>, 2225 ISA_MIPS1; 2226def BNEL : MMRel, CBranchLikely<"bnel", brtarget, GPR32Opnd>, 2227 BEQ_FM<21>, ISA_MIPS2_NOT_32R6_64R6; 2228def BGEZ : MMRel, CBranchZero<"bgez", brtarget, setge, GPR32Opnd>, 2229 BGEZ_FM<1, 1>, ISA_MIPS1; 2230def BGEZL : MMRel, CBranchZeroLikely<"bgezl", brtarget, GPR32Opnd>, 2231 BGEZ_FM<1, 3>, ISA_MIPS2_NOT_32R6_64R6; 2232def BGTZ : MMRel, CBranchZero<"bgtz", brtarget, setgt, GPR32Opnd>, 2233 BGEZ_FM<7, 0>, ISA_MIPS1; 2234def BGTZL : MMRel, CBranchZeroLikely<"bgtzl", brtarget, GPR32Opnd>, 2235 BGEZ_FM<23, 0>, ISA_MIPS2_NOT_32R6_64R6; 2236def BLEZ : MMRel, CBranchZero<"blez", brtarget, setle, GPR32Opnd>, 2237 BGEZ_FM<6, 0>, ISA_MIPS1; 2238def BLEZL : MMRel, CBranchZeroLikely<"blezl", brtarget, GPR32Opnd>, 2239 BGEZ_FM<22, 0>, ISA_MIPS2_NOT_32R6_64R6; 2240def BLTZ : MMRel, CBranchZero<"bltz", brtarget, setlt, GPR32Opnd>, 2241 BGEZ_FM<1, 0>, ISA_MIPS1; 2242def BLTZL : MMRel, CBranchZeroLikely<"bltzl", brtarget, GPR32Opnd>, 2243 BGEZ_FM<1, 2>, ISA_MIPS2_NOT_32R6_64R6; 2244def B : UncondBranch<BEQ, brtarget>, ISA_MIPS1; 2245 2246def JAL : MMRel, JumpLink<"jal", calltarget>, FJ<3>, ISA_MIPS1; 2247 2248} 2249 2250let AdditionalPredicates = [NotInMicroMips, NoIndirectJumpGuards] in { 2251 def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM, ISA_MIPS1; 2252 def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>, ISA_MIPS1; 2253} 2254 2255let AdditionalPredicates = [NotInMicroMips] in { 2256 def JALX : MMRel, JumpLink<"jalx", calltarget>, FJ<0x1D>, 2257 ISA_MIPS32_NOT_32R6_64R6; 2258 def BGEZAL : MMRel, BGEZAL_FT<"bgezal", brtarget, GPR32Opnd>, BGEZAL_FM<0x11>, 2259 ISA_MIPS1_NOT_32R6_64R6; 2260 def BGEZALL : MMRel, BGEZAL_FT<"bgezall", brtarget, GPR32Opnd>, 2261 BGEZAL_FM<0x13>, ISA_MIPS2_NOT_32R6_64R6; 2262 def BLTZAL : MMRel, BGEZAL_FT<"bltzal", brtarget, GPR32Opnd>, BGEZAL_FM<0x10>, 2263 ISA_MIPS1_NOT_32R6_64R6; 2264 def BLTZALL : MMRel, BGEZAL_FT<"bltzall", brtarget, GPR32Opnd>, 2265 BGEZAL_FM<0x12>, ISA_MIPS2_NOT_32R6_64R6; 2266 def BAL_BR : BAL_BR_Pseudo<BGEZAL, brtarget>, ISA_MIPS1; 2267} 2268let AdditionalPredicates = [NotInMips16Mode, NotInMicroMips] in { 2269 def TAILCALL : TailCall<J, jmptarget>, ISA_MIPS1; 2270} 2271let AdditionalPredicates = [NotInMips16Mode, NotInMicroMips, 2272 NoIndirectJumpGuards] in 2273 def TAILCALLREG : TailCallReg<JR, GPR32Opnd>, ISA_MIPS1_NOT_32R6_64R6; 2274 2275// Indirect branches are matched as PseudoIndirectBranch/PseudoIndirectBranch64 2276// then are expanded to JR, JR64, JALR, or JALR64 depending on the ISA. 2277class PseudoIndirectBranchBase<Instruction JumpInst, RegisterOperand RO> : 2278 MipsPseudo<(outs), (ins RO:$rs), [(brind RO:$rs)], 2279 II_IndirectBranchPseudo>, 2280 PseudoInstExpansion<(JumpInst RO:$rs)> { 2281 let isTerminator=1; 2282 let isBarrier=1; 2283 let hasDelaySlot = 1; 2284 let isBranch = 1; 2285 let isIndirectBranch = 1; 2286 bit isCTI = 1; 2287} 2288 2289let AdditionalPredicates = [NotInMips16Mode, NotInMicroMips, 2290 NoIndirectJumpGuards] in 2291 def PseudoIndirectBranch : PseudoIndirectBranchBase<JR, GPR32Opnd>, 2292 ISA_MIPS1_NOT_32R6_64R6; 2293 2294// Return instructions are matched as a RetRA instruction, then are expanded 2295// into PseudoReturn/PseudoReturn64 after register allocation. Finally, 2296// MipsAsmPrinter expands this into JR, JR64, JALR, or JALR64 depending on the 2297// ISA. 2298class PseudoReturnBase<RegisterOperand RO> : MipsPseudo<(outs), (ins RO:$rs), 2299 [], II_ReturnPseudo> { 2300 let isTerminator = 1; 2301 let isBarrier = 1; 2302 let hasDelaySlot = 1; 2303 let isReturn = 1; 2304 let isCodeGenOnly = 1; 2305 let hasCtrlDep = 1; 2306 let hasExtraSrcRegAllocReq = 1; 2307 bit isCTI = 1; 2308} 2309 2310def PseudoReturn : PseudoReturnBase<GPR32Opnd>; 2311 2312// Exception handling related node and instructions. 2313// The conversion sequence is: 2314// ISD::EH_RETURN -> MipsISD::EH_RETURN -> 2315// MIPSeh_return -> (stack change + indirect branch) 2316// 2317// MIPSeh_return takes the place of regular return instruction 2318// but takes two arguments (V1, V0) which are used for storing 2319// the offset and return address respectively. 2320def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>; 2321 2322def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET, 2323 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 2324 2325let Uses = [V0, V1], isTerminator = 1, isReturn = 1, 2326 isBarrier = 1, isCTI = 1, hasNoSchedulingInfo = 1 in { 2327 def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst), 2328 [(MIPSehret GPR32:$spoff, GPR32:$dst)]>; 2329 def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff, GPR64:$dst), 2330 [(MIPSehret GPR64:$spoff, GPR64:$dst)]>; 2331} 2332 2333/// Multiply and Divide Instructions. 2334let AdditionalPredicates = [NotInMicroMips] in { 2335 def MULT : MMRel, Mult<"mult", II_MULT, GPR32Opnd, [HI0, LO0]>, 2336 MULT_FM<0, 0x18>, ISA_MIPS1_NOT_32R6_64R6; 2337 def MULTu : MMRel, Mult<"multu", II_MULTU, GPR32Opnd, [HI0, LO0]>, 2338 MULT_FM<0, 0x19>, ISA_MIPS1_NOT_32R6_64R6; 2339 def SDIV : MMRel, Div<"div", II_DIV, GPR32Opnd, [HI0, LO0]>, 2340 MULT_FM<0, 0x1a>, ISA_MIPS1_NOT_32R6_64R6; 2341 def UDIV : MMRel, Div<"divu", II_DIVU, GPR32Opnd, [HI0, LO0]>, 2342 MULT_FM<0, 0x1b>, ISA_MIPS1_NOT_32R6_64R6; 2343 def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>, 2344 ISA_MIPS1_NOT_32R6_64R6; 2345 def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>, 2346 ISA_MIPS1_NOT_32R6_64R6; 2347 def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>, 2348 ISA_MIPS1_NOT_32R6_64R6; 2349 def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>, 2350 ISA_MIPS1_NOT_32R6_64R6; 2351 2352 /// Sign Ext In Register Instructions. 2353 def SEB : MMRel, StdMMR6Rel, SignExtInReg<"seb", i8, GPR32Opnd, II_SEB>, 2354 SEB_FM<0x10, 0x20>, ISA_MIPS32R2; 2355 def SEH : MMRel, StdMMR6Rel, SignExtInReg<"seh", i16, GPR32Opnd, II_SEH>, 2356 SEB_FM<0x18, 0x20>, ISA_MIPS32R2; 2357 2358 /// Count Leading 2359 def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd, II_CLZ>, CLO_FM<0x20>, 2360 ISA_MIPS32_NOT_32R6_64R6; 2361 def CLO : MMRel, CountLeading1<"clo", GPR32Opnd, II_CLO>, CLO_FM<0x21>, 2362 ISA_MIPS32_NOT_32R6_64R6; 2363 2364 /// Word Swap Bytes Within Halfwords 2365 def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd, II_WSBH>, SEB_FM<2, 0x20>, 2366 ISA_MIPS32R2; 2367 2368 /// No operation. 2369 def NOP : PseudoSE<(outs), (ins), []>, 2370 PseudoInstExpansion<(SLL ZERO, ZERO, 0)>, ISA_MIPS1; 2371 2372 // FrameIndexes are legalized when they are operands from load/store 2373 // instructions. The same not happens for stack address copies, so an 2374 // add op with mem ComplexPattern is used and the stack address copy 2375 // can be matched. It's similar to Sparc LEA_ADDRi 2376 let AdditionalPredicates = [NotInMicroMips] in 2377 def LEA_ADDiu : MMRel, EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>, 2378 ISA_MIPS1; 2379 2380 // MADD*/MSUB* 2381 def MADD : MMRel, MArithR<"madd", II_MADD, 1>, MULT_FM<0x1c, 0>, 2382 ISA_MIPS32_NOT_32R6_64R6; 2383 def MADDU : MMRel, MArithR<"maddu", II_MADDU, 1>, MULT_FM<0x1c, 1>, 2384 ISA_MIPS32_NOT_32R6_64R6; 2385 def MSUB : MMRel, MArithR<"msub", II_MSUB>, MULT_FM<0x1c, 4>, 2386 ISA_MIPS32_NOT_32R6_64R6; 2387 def MSUBU : MMRel, MArithR<"msubu", II_MSUBU>, MULT_FM<0x1c, 5>, 2388 ISA_MIPS32_NOT_32R6_64R6; 2389} 2390 2391let AdditionalPredicates = [NotDSP] in { 2392def PseudoMULT : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, II_MULT>, 2393 ISA_MIPS1_NOT_32R6_64R6; 2394def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, II_MULTU>, 2395 ISA_MIPS1_NOT_32R6_64R6; 2396def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsMFHI>, ISA_MIPS1_NOT_32R6_64R6; 2397def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsMFLO>, ISA_MIPS1_NOT_32R6_64R6; 2398def PseudoMTLOHI : PseudoMTLOHI<ACC64, GPR32>, ISA_MIPS1_NOT_32R6_64R6; 2399def PseudoMADD : MAddSubPseudo<MADD, MipsMAdd, II_MADD>, 2400 ISA_MIPS32_NOT_32R6_64R6; 2401def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu, II_MADDU>, 2402 ISA_MIPS32_NOT_32R6_64R6; 2403def PseudoMSUB : MAddSubPseudo<MSUB, MipsMSub, II_MSUB>, 2404 ISA_MIPS32_NOT_32R6_64R6; 2405def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu, II_MSUBU>, 2406 ISA_MIPS32_NOT_32R6_64R6; 2407} 2408 2409let AdditionalPredicates = [NotInMicroMips] in { 2410 def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, II_DIV, 2411 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6; 2412 def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, II_DIVU, 2413 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6; 2414 def RDHWR : MMRel, ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM, ISA_MIPS1; 2415 // TODO: Add '0 < pos+size <= 32' constraint check to ext instruction 2416 def EXT : MMRel, StdMMR6Rel, ExtBase<"ext", GPR32Opnd, uimm5, uimm5_plus1, 2417 immZExt5, immZExt5Plus1, MipsExt>, 2418 EXT_FM<0>, ISA_MIPS32R2; 2419 def INS : MMRel, StdMMR6Rel, InsBase<"ins", GPR32Opnd, uimm5, 2420 uimm5_inssize_plus1, immZExt5, 2421 immZExt5Plus1>, 2422 EXT_FM<4>, ISA_MIPS32R2; 2423} 2424/// Move Control Registers From/To CPU Registers 2425let AdditionalPredicates = [NotInMicroMips] in { 2426 def MTC0 : MTC3OP<"mtc0", COP0Opnd, GPR32Opnd, II_MTC0>, 2427 MFC3OP_FM<0x10, 4, 0>, ISA_MIPS1; 2428 def MFC0 : MFC3OP<"mfc0", GPR32Opnd, COP0Opnd, II_MFC0>, 2429 MFC3OP_FM<0x10, 0, 0>, ISA_MIPS1; 2430 def MFC2 : MFC3OP<"mfc2", GPR32Opnd, COP2Opnd, II_MFC2>, 2431 MFC3OP_FM<0x12, 0, 0>, ISA_MIPS1; 2432 def MTC2 : MTC3OP<"mtc2", COP2Opnd, GPR32Opnd, II_MTC2>, 2433 MFC3OP_FM<0x12, 4, 0>, ISA_MIPS1; 2434} 2435 2436class Barrier<string asmstr, InstrItinClass itin = NoItinerary> : 2437 InstSE<(outs), (ins), asmstr, [], itin, FrmOther, asmstr>; 2438let AdditionalPredicates = [NotInMicroMips] in { 2439 def SSNOP : MMRel, StdMMR6Rel, Barrier<"ssnop", II_SSNOP>, BARRIER_FM<1>, 2440 ISA_MIPS1; 2441 def EHB : MMRel, Barrier<"ehb", II_EHB>, BARRIER_FM<3>, ISA_MIPS1; 2442 2443 let isCTI = 1 in 2444 def PAUSE : MMRel, StdMMR6Rel, Barrier<"pause", II_PAUSE>, BARRIER_FM<5>, 2445 ISA_MIPS32R2; 2446} 2447 2448// JR_HB and JALR_HB are defined here using the new style naming 2449// scheme because some of this code is shared with Mips32r6InstrInfo.td 2450// and because of that it doesn't follow the naming convention of the 2451// rest of the file. To avoid a mixture of old vs new style, the new 2452// style was chosen. 2453class JR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> { 2454 dag OutOperandList = (outs); 2455 dag InOperandList = (ins GPROpnd:$rs); 2456 string AsmString = !strconcat(instr_asm, "\t$rs"); 2457 list<dag> Pattern = []; 2458} 2459 2460class JALR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> { 2461 dag OutOperandList = (outs GPROpnd:$rd); 2462 dag InOperandList = (ins GPROpnd:$rs); 2463 string AsmString = !strconcat(instr_asm, "\t$rd, $rs"); 2464 list<dag> Pattern = []; 2465} 2466 2467class JR_HB_DESC<RegisterOperand RO> : 2468 InstSE<(outs), (ins), "", [], II_JR_HB, FrmJ>, JR_HB_DESC_BASE<"jr.hb", RO> { 2469 let isBranch=1; 2470 let isIndirectBranch=1; 2471 let hasDelaySlot=1; 2472 let isTerminator=1; 2473 let isBarrier=1; 2474 bit isCTI = 1; 2475} 2476 2477class JALR_HB_DESC<RegisterOperand RO> : 2478 InstSE<(outs), (ins), "", [], II_JALR_HB, FrmJ>, JALR_HB_DESC_BASE<"jalr.hb", 2479 RO> { 2480 let isIndirectBranch=1; 2481 let hasDelaySlot=1; 2482 bit isCTI = 1; 2483} 2484 2485class JR_HB_ENC : JR_HB_FM<8>; 2486class JALR_HB_ENC : JALR_HB_FM<9>; 2487 2488def JR_HB : JR_HB_DESC<GPR32Opnd>, JR_HB_ENC, ISA_MIPS32R2_NOT_32R6_64R6; 2489def JALR_HB : JALR_HB_DESC<GPR32Opnd>, JALR_HB_ENC, ISA_MIPS32; 2490 2491let AdditionalPredicates = [NotInMicroMips, UseIndirectJumpsHazard] in 2492 def JALRHBPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR_HB, RA>; 2493 2494 2495let AdditionalPredicates = [NotInMips16Mode, NotInMicroMips, 2496 UseIndirectJumpsHazard] in { 2497 def TAILCALLREGHB : TailCallReg<JR_HB, GPR32Opnd>, ISA_MIPS32_NOT_32R6_64R6; 2498 def PseudoIndirectHazardBranch : PseudoIndirectBranchBase<JR_HB, GPR32Opnd>, 2499 ISA_MIPS32R2_NOT_32R6_64R6; 2500} 2501 2502class TLB<string asmstr, InstrItinClass itin = NoItinerary> : 2503 InstSE<(outs), (ins), asmstr, [], itin, FrmOther, asmstr>; 2504let AdditionalPredicates = [NotInMicroMips] in { 2505 def TLBP : MMRel, TLB<"tlbp", II_TLBP>, COP0_TLB_FM<0x08>, ISA_MIPS1; 2506 def TLBR : MMRel, TLB<"tlbr", II_TLBR>, COP0_TLB_FM<0x01>, ISA_MIPS1; 2507 def TLBWI : MMRel, TLB<"tlbwi", II_TLBWI>, COP0_TLB_FM<0x02>, ISA_MIPS1; 2508 def TLBWR : MMRel, TLB<"tlbwr", II_TLBWR>, COP0_TLB_FM<0x06>, ISA_MIPS1; 2509} 2510class CacheOp<string instr_asm, Operand MemOpnd, 2511 InstrItinClass itin = NoItinerary> : 2512 InstSE<(outs), (ins MemOpnd:$addr, uimm5:$hint), 2513 !strconcat(instr_asm, "\t$hint, $addr"), [], itin, FrmOther, 2514 instr_asm> { 2515 let DecoderMethod = "DecodeCacheOp"; 2516} 2517 2518let AdditionalPredicates = [NotInMicroMips] in { 2519 def CACHE : MMRel, CacheOp<"cache", mem, II_CACHE>, CACHEOP_FM<0b101111>, 2520 INSN_MIPS3_32_NOT_32R6_64R6; 2521 def PREF : MMRel, CacheOp<"pref", mem, II_PREF>, CACHEOP_FM<0b110011>, 2522 INSN_MIPS3_32_NOT_32R6_64R6; 2523} 2524// FIXME: We are missing the prefx instruction. 2525def ROL : MipsAsmPseudoInst<(outs), 2526 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2527 "rol\t$rs, $rt, $rd">; 2528def ROLImm : MipsAsmPseudoInst<(outs), 2529 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2530 "rol\t$rs, $rt, $imm">; 2531def : MipsInstAlias<"rol $rd, $rs", 2532 (ROL GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>; 2533def : MipsInstAlias<"rol $rd, $imm", 2534 (ROLImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>; 2535 2536def ROR : MipsAsmPseudoInst<(outs), 2537 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2538 "ror\t$rs, $rt, $rd">; 2539def RORImm : MipsAsmPseudoInst<(outs), 2540 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2541 "ror\t$rs, $rt, $imm">; 2542def : MipsInstAlias<"ror $rd, $rs", 2543 (ROR GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>; 2544def : MipsInstAlias<"ror $rd, $imm", 2545 (RORImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>; 2546 2547def DROL : MipsAsmPseudoInst<(outs), 2548 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2549 "drol\t$rs, $rt, $rd">, ISA_MIPS64; 2550def DROLImm : MipsAsmPseudoInst<(outs), 2551 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2552 "drol\t$rs, $rt, $imm">, ISA_MIPS64; 2553def : MipsInstAlias<"drol $rd, $rs", 2554 (DROL GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, 2555 ISA_MIPS64; 2556def : MipsInstAlias<"drol $rd, $imm", 2557 (DROLImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>, 2558 ISA_MIPS64; 2559 2560def DROR : MipsAsmPseudoInst<(outs), 2561 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2562 "dror\t$rs, $rt, $rd">, ISA_MIPS64; 2563def DRORImm : MipsAsmPseudoInst<(outs), 2564 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2565 "dror\t$rs, $rt, $imm">, ISA_MIPS64; 2566def : MipsInstAlias<"dror $rd, $rs", 2567 (DROR GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, 2568 ISA_MIPS64; 2569def : MipsInstAlias<"dror $rd, $imm", 2570 (DRORImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>, 2571 ISA_MIPS64; 2572 2573def ABSMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs), 2574 "abs\t$rd, $rs">; 2575 2576def SEQMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2577 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2578 "seq $rd, $rs, $rt">, NOT_ASE_CNMIPS; 2579 2580def : MipsInstAlias<"seq $rd, $rs", 2581 (SEQMacro GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, 2582 NOT_ASE_CNMIPS; 2583 2584def SEQIMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2585 (ins GPR32Opnd:$rs, simm32_relaxed:$imm), 2586 "seq $rd, $rs, $imm">, NOT_ASE_CNMIPS; 2587 2588def : MipsInstAlias<"seq $rd, $imm", 2589 (SEQIMacro GPR32Opnd:$rd, GPR32Opnd:$rd, simm32:$imm), 0>, 2590 NOT_ASE_CNMIPS; 2591 2592def SNEMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2593 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2594 "sne $rd, $rs, $rt">, NOT_ASE_CNMIPS; 2595 2596def : MipsInstAlias<"sne $rd, $rs", 2597 (SNEMacro GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, 2598 NOT_ASE_CNMIPS; 2599 2600def SNEIMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2601 (ins GPR32Opnd:$rs, simm32_relaxed:$imm), 2602 "sne $rd, $rs, $imm">, NOT_ASE_CNMIPS; 2603 2604def : MipsInstAlias<"sne $rd, $imm", 2605 (SNEIMacro GPR32Opnd:$rd, GPR32Opnd:$rd, simm32:$imm), 0>, 2606 NOT_ASE_CNMIPS; 2607 2608def MULImmMacro : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rd, GPR32Opnd:$rs, 2609 simm32_relaxed:$imm), 2610 "mul\t$rd, $rs, $imm">, 2611 ISA_MIPS1_NOT_32R6_64R6; 2612def MULOMacro : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rd, GPR32Opnd:$rs, 2613 GPR32Opnd:$rt), 2614 "mulo\t$rd, $rs, $rt">, 2615 ISA_MIPS1_NOT_32R6_64R6; 2616def MULOUMacro : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rd, GPR32Opnd:$rs, 2617 GPR32Opnd:$rt), 2618 "mulou\t$rd, $rs, $rt">, 2619 ISA_MIPS1_NOT_32R6_64R6; 2620 2621// Virtualization ASE 2622class HYPCALL_FT<string opstr> : 2623 InstSE<(outs), (ins uimm10:$code_), 2624 !strconcat(opstr, "\t$code_"), [], II_HYPCALL, FrmOther, opstr> { 2625 let BaseOpcode = opstr; 2626} 2627 2628let AdditionalPredicates = [NotInMicroMips] in { 2629 def MFGC0 : MMRel, MFC3OP<"mfgc0", GPR32Opnd, COP0Opnd, II_MFGC0>, 2630 MFC3OP_FM<0x10, 3, 0>, ISA_MIPS32R5, ASE_VIRT; 2631 def MTGC0 : MMRel, MTC3OP<"mtgc0", COP0Opnd, GPR32Opnd, II_MTGC0>, 2632 MFC3OP_FM<0x10, 3, 2>, ISA_MIPS32R5, ASE_VIRT; 2633 def MFHGC0 : MMRel, MFC3OP<"mfhgc0", GPR32Opnd, COP0Opnd, II_MFHGC0>, 2634 MFC3OP_FM<0x10, 3, 4>, ISA_MIPS32R5, ASE_VIRT; 2635 def MTHGC0 : MMRel, MTC3OP<"mthgc0", COP0Opnd, GPR32Opnd, II_MTHGC0>, 2636 MFC3OP_FM<0x10, 3, 6>, ISA_MIPS32R5, ASE_VIRT; 2637 def TLBGINV : MMRel, TLB<"tlbginv", II_TLBGINV>, COP0_TLB_FM<0b001011>, 2638 ISA_MIPS32R5, ASE_VIRT; 2639 def TLBGINVF : MMRel, TLB<"tlbginvf", II_TLBGINVF>, COP0_TLB_FM<0b001100>, 2640 ISA_MIPS32R5, ASE_VIRT; 2641 def TLBGP : MMRel, TLB<"tlbgp", II_TLBGP>, COP0_TLB_FM<0b010000>, 2642 ISA_MIPS32R5, ASE_VIRT; 2643 def TLBGR : MMRel, TLB<"tlbgr", II_TLBGR>, COP0_TLB_FM<0b001001>, 2644 ISA_MIPS32R5, ASE_VIRT; 2645 def TLBGWI : MMRel, TLB<"tlbgwi", II_TLBGWI>, COP0_TLB_FM<0b001010>, 2646 ISA_MIPS32R5, ASE_VIRT; 2647 def TLBGWR : MMRel, TLB<"tlbgwr", II_TLBGWR>, COP0_TLB_FM<0b001110>, 2648 ISA_MIPS32R5, ASE_VIRT; 2649 def HYPCALL : MMRel, HYPCALL_FT<"hypcall">, 2650 HYPCALL_FM<0b101000>, ISA_MIPS32R5, ASE_VIRT; 2651} 2652 2653//===----------------------------------------------------------------------===// 2654// Instruction aliases 2655//===----------------------------------------------------------------------===// 2656 2657multiclass OneOrTwoOperandMacroImmediateAlias<string Memnomic, 2658 Instruction Opcode, 2659 RegisterOperand RO = GPR32Opnd, 2660 Operand Imm = simm32_relaxed> { 2661 def : MipsInstAlias<!strconcat(Memnomic, " $rs, $rt, $imm"), 2662 (Opcode RO:$rs, 2663 RO:$rt, 2664 Imm:$imm), 0>; 2665 def : MipsInstAlias<!strconcat(Memnomic, " $rs, $imm"), 2666 (Opcode RO:$rs, 2667 RO:$rs, 2668 Imm:$imm), 0>; 2669} 2670 2671let AdditionalPredicates = [NotInMicroMips] in { 2672 def : MipsInstAlias<"move $dst, $src", 2673 (OR GPR32Opnd:$dst, GPR32Opnd:$src, ZERO), 1>, 2674 GPR_32, ISA_MIPS1; 2675 def : MipsInstAlias<"move $dst, $src", 2676 (ADDu GPR32Opnd:$dst, GPR32Opnd:$src, ZERO), 1>, 2677 GPR_32, ISA_MIPS1; 2678 2679 def : MipsInstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 1>, 2680 ISA_MIPS1_NOT_32R6_64R6; 2681 2682 def : MipsInstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>, ISA_MIPS1; 2683 2684 def : MipsInstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>; 2685 2686 def : MipsInstAlias<"jalr.hb $rs", (JALR_HB RA, GPR32Opnd:$rs), 1>, 2687 ISA_MIPS32; 2688 2689 def : MipsInstAlias<"neg $rt, $rs", 2690 (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>, ISA_MIPS1; 2691 def : MipsInstAlias<"neg $rt", 2692 (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rt), 1>, ISA_MIPS1; 2693 def : MipsInstAlias<"negu $rt, $rs", 2694 (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>, ISA_MIPS1; 2695 def : MipsInstAlias<"negu $rt", 2696 (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rt), 1>, ISA_MIPS1; 2697 2698 def SGE : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2699 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2700 "sge\t$rd, $rs, $rt">, ISA_MIPS1; 2701 def : MipsInstAlias<"sge $rs, $rt", 2702 (SGE GPR32Opnd:$rs, GPR32Opnd:$rs, GPR32Opnd:$rt), 0>, 2703 ISA_MIPS1; 2704 def SGEImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2705 (ins GPR32Opnd:$rs, simm32:$imm), 2706 "sge\t$rd, $rs, $imm">, GPR_32; 2707 def : MipsInstAlias<"sge $rs, $imm", (SGEImm GPR32Opnd:$rs, 2708 GPR32Opnd:$rs, 2709 simm32:$imm), 0>, 2710 GPR_32; 2711 2712 def SGEU : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2713 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2714 "sgeu\t$rd, $rs, $rt">, ISA_MIPS1; 2715 def : MipsInstAlias<"sgeu $rs, $rt", 2716 (SGEU GPR32Opnd:$rs, GPR32Opnd:$rs, GPR32Opnd:$rt), 0>, 2717 ISA_MIPS1; 2718 def SGEUImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2719 (ins GPR32Opnd:$rs, uimm32_coerced:$imm), 2720 "sgeu\t$rd, $rs, $imm">, GPR_32; 2721 def : MipsInstAlias<"sgeu $rs, $imm", (SGEUImm GPR32Opnd:$rs, 2722 GPR32Opnd:$rs, 2723 uimm32_coerced:$imm), 0>, 2724 GPR_32; 2725 2726 def : MipsInstAlias< 2727 "sgt $rd, $rs, $rt", 2728 (SLT GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS1; 2729 def : MipsInstAlias< 2730 "sgt $rs, $rt", 2731 (SLT GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS1; 2732 2733 def SGTImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2734 (ins GPR32Opnd:$rs, simm32:$imm), 2735 "sgt\t$rd, $rs, $imm">, GPR_32; 2736 def : MipsInstAlias<"sgt $rs, $imm", (SGTImm GPR32Opnd:$rs, 2737 GPR32Opnd:$rs, 2738 simm32:$imm), 0>, 2739 GPR_32; 2740 def : MipsInstAlias< 2741 "sgtu $rd, $rs, $rt", 2742 (SLTu GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS1; 2743 def : MipsInstAlias< 2744 "sgtu $$rs, $rt", 2745 (SLTu GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>, ISA_MIPS1; 2746 2747 def SGTUImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2748 (ins GPR32Opnd:$rs, uimm32_coerced:$imm), 2749 "sgtu\t$rd, $rs, $imm">, GPR_32; 2750 def : MipsInstAlias<"sgtu $rs, $imm", (SGTUImm GPR32Opnd:$rs, 2751 GPR32Opnd:$rs, 2752 uimm32_coerced:$imm), 0>, 2753 GPR_32; 2754 2755 def SLE : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2756 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2757 "sle\t$rd, $rs, $rt">, ISA_MIPS1; 2758 def : MipsInstAlias<"sle $rs, $rt", 2759 (SLE GPR32Opnd:$rs, GPR32Opnd:$rs, GPR32Opnd:$rt), 0>, 2760 ISA_MIPS1; 2761 def SLEImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2762 (ins GPR32Opnd:$rs, simm32:$imm), 2763 "sle\t$rd, $rs, $imm">, GPR_32; 2764 def : MipsInstAlias<"sle $rs, $imm", (SLEImm GPR32Opnd:$rs, 2765 GPR32Opnd:$rs, 2766 simm32:$imm), 0>, 2767 GPR_32; 2768 2769 def SLEU : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2770 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2771 "sleu\t$rd, $rs, $rt">, ISA_MIPS1; 2772 def : MipsInstAlias<"sleu $rs, $rt", 2773 (SLEU GPR32Opnd:$rs, GPR32Opnd:$rs, GPR32Opnd:$rt), 0>, 2774 ISA_MIPS1; 2775 def SLEUImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2776 (ins GPR32Opnd:$rs, uimm32_coerced:$imm), 2777 "sleu\t$rd, $rs, $imm">, GPR_32; 2778 def : MipsInstAlias<"sleu $rs, $imm", (SLEUImm GPR32Opnd:$rs, 2779 GPR32Opnd:$rs, 2780 uimm32_coerced:$imm), 0>, 2781 GPR_32; 2782 2783 def : MipsInstAlias< 2784 "not $rt, $rs", 2785 (NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>, ISA_MIPS1; 2786 def : MipsInstAlias< 2787 "not $rt", 2788 (NOR GPR32Opnd:$rt, GPR32Opnd:$rt, ZERO), 0>, ISA_MIPS1; 2789 2790 def : MipsInstAlias<"nop", (SLL ZERO, ZERO, 0), 1>, ISA_MIPS1; 2791 2792 defm : OneOrTwoOperandMacroImmediateAlias<"add", ADDi>, 2793 ISA_MIPS1_NOT_32R6_64R6; 2794 2795 defm : OneOrTwoOperandMacroImmediateAlias<"addu", ADDiu>, ISA_MIPS1; 2796 2797 defm : OneOrTwoOperandMacroImmediateAlias<"and", ANDi>, ISA_MIPS1, GPR_32; 2798 2799 defm : OneOrTwoOperandMacroImmediateAlias<"or", ORi>, ISA_MIPS1, GPR_32; 2800 2801 defm : OneOrTwoOperandMacroImmediateAlias<"xor", XORi>, ISA_MIPS1, GPR_32; 2802 2803 defm : OneOrTwoOperandMacroImmediateAlias<"slt", SLTi>, ISA_MIPS1, GPR_32; 2804 2805 defm : OneOrTwoOperandMacroImmediateAlias<"sltu", SLTiu>, ISA_MIPS1, GPR_32; 2806 2807 def : MipsInstAlias<"mfgc0 $rt, $rd", 2808 (MFGC0 GPR32Opnd:$rt, COP0Opnd:$rd, 0), 0>, 2809 ISA_MIPS32R5, ASE_VIRT; 2810 def : MipsInstAlias<"mtgc0 $rt, $rd", 2811 (MTGC0 COP0Opnd:$rd, GPR32Opnd:$rt, 0), 0>, 2812 ISA_MIPS32R5, ASE_VIRT; 2813 def : MipsInstAlias<"mfhgc0 $rt, $rd", 2814 (MFHGC0 GPR32Opnd:$rt, COP0Opnd:$rd, 0), 0>, 2815 ISA_MIPS32R5, ASE_VIRT; 2816 def : MipsInstAlias<"mthgc0 $rt, $rd", 2817 (MTHGC0 COP0Opnd:$rd, GPR32Opnd:$rt, 0), 0>, 2818 ISA_MIPS32R5, ASE_VIRT; 2819 def : MipsInstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, COP0Opnd:$rd, 0), 0>, 2820 ISA_MIPS1; 2821 def : MipsInstAlias<"mtc0 $rt, $rd", (MTC0 COP0Opnd:$rd, GPR32Opnd:$rt, 0), 0>, 2822 ISA_MIPS1; 2823 def : MipsInstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, COP2Opnd:$rd, 0), 0>, 2824 ISA_MIPS1; 2825 def : MipsInstAlias<"mtc2 $rt, $rd", (MTC2 COP2Opnd:$rd, GPR32Opnd:$rt, 0), 0>, 2826 ISA_MIPS1; 2827 2828 def : MipsInstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>, 2829 ISA_MIPS1; 2830 2831 def : MipsInstAlias<"bnez $rs,$offset", 2832 (BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>, 2833 ISA_MIPS1; 2834 def : MipsInstAlias<"bnezl $rs, $offset", 2835 (BNEL GPR32Opnd:$rs, ZERO, brtarget:$offset), 1>, 2836 ISA_MIPS2; 2837 def : MipsInstAlias<"beqz $rs,$offset", 2838 (BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>, 2839 ISA_MIPS1; 2840 def : MipsInstAlias<"beqzl $rs, $offset", 2841 (BEQL GPR32Opnd:$rs, ZERO, brtarget:$offset), 1>, 2842 ISA_MIPS2; 2843 2844 def : MipsInstAlias<"syscall", (SYSCALL 0), 1>, ISA_MIPS1; 2845 2846 def : MipsInstAlias<"break", (BREAK 0, 0), 1>, ISA_MIPS1; 2847 def : MipsInstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>, ISA_MIPS1; 2848 def : MipsInstAlias<"ei", (EI ZERO), 1>, ISA_MIPS32R2; 2849 def : MipsInstAlias<"di", (DI ZERO), 1>, ISA_MIPS32R2; 2850 2851 def : MipsInstAlias<"teq $rs, $rt", 2852 (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2853 def : MipsInstAlias<"tge $rs, $rt", 2854 (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2855 def : MipsInstAlias<"tgeu $rs, $rt", 2856 (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2857 def : MipsInstAlias<"tlt $rs, $rt", 2858 (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2859 def : MipsInstAlias<"tltu $rs, $rt", 2860 (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2861 def : MipsInstAlias<"tne $rs, $rt", 2862 (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2863 def : MipsInstAlias<"rdhwr $rt, $rs", 2864 (RDHWR GPR32Opnd:$rt, HWRegsOpnd:$rs, 0), 1>, ISA_MIPS1; 2865 2866} 2867def : MipsInstAlias<"sub, $rd, $rs, $imm", 2868 (ADDi GPR32Opnd:$rd, GPR32Opnd:$rs, 2869 InvertedImOperand:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6; 2870def : MipsInstAlias<"sub $rs, $imm", 2871 (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, InvertedImOperand:$imm), 2872 0>, ISA_MIPS1_NOT_32R6_64R6; 2873def : MipsInstAlias<"subu, $rd, $rs, $imm", 2874 (ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs, 2875 InvertedImOperand:$imm), 0>; 2876def : MipsInstAlias<"subu $rs, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, 2877 InvertedImOperand:$imm), 0>; 2878let AdditionalPredicates = [NotInMicroMips] in { 2879 def : MipsInstAlias<"sll $rd, $rt, $rs", 2880 (SLLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; 2881 def : MipsInstAlias<"sra $rd, $rt, $rs", 2882 (SRAV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; 2883 def : MipsInstAlias<"srl $rd, $rt, $rs", 2884 (SRLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; 2885 def : MipsInstAlias<"sll $rd, $rt", 2886 (SLLV GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rt), 0>; 2887 def : MipsInstAlias<"sra $rd, $rt", 2888 (SRAV GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rt), 0>; 2889 def : MipsInstAlias<"srl $rd, $rt", 2890 (SRLV GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rt), 0>; 2891 def : MipsInstAlias<"seh $rd", (SEH GPR32Opnd:$rd, GPR32Opnd:$rd), 0>, 2892 ISA_MIPS32R2; 2893 def : MipsInstAlias<"seb $rd", (SEB GPR32Opnd:$rd, GPR32Opnd:$rd), 0>, 2894 ISA_MIPS32R2; 2895} 2896def : MipsInstAlias<"sdbbp", (SDBBP 0)>, ISA_MIPS32_NOT_32R6_64R6; 2897let AdditionalPredicates = [NotInMicroMips] in 2898 def : MipsInstAlias<"sync", (SYNC 0), 1>, ISA_MIPS2; 2899 2900def : MipsInstAlias<"mulo $rs, $rt", 2901 (MULOMacro GPR32Opnd:$rs, GPR32Opnd:$rs, GPR32Opnd:$rt), 0>, 2902 ISA_MIPS1_NOT_32R6_64R6; 2903def : MipsInstAlias<"mulou $rs, $rt", 2904 (MULOUMacro GPR32Opnd:$rs, GPR32Opnd:$rs, GPR32Opnd:$rt), 0>, 2905 ISA_MIPS1_NOT_32R6_64R6; 2906 2907let AdditionalPredicates = [NotInMicroMips] in 2908 def : MipsInstAlias<"hypcall", (HYPCALL 0), 1>, ISA_MIPS32R5, ASE_VIRT; 2909 2910//===----------------------------------------------------------------------===// 2911// Assembler Pseudo Instructions 2912//===----------------------------------------------------------------------===// 2913 2914// We use uimm32_coerced to accept a 33 bit signed number that is rendered into 2915// a 32 bit number. 2916class LoadImmediate32<string instr_asm, Operand Od, RegisterOperand RO> : 2917 MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), 2918 !strconcat(instr_asm, "\t$rt, $imm32")> ; 2919def LoadImm32 : LoadImmediate32<"li", uimm32_coerced, GPR32Opnd>; 2920 2921class LoadAddressFromReg32<string instr_asm, Operand MemOpnd, 2922 RegisterOperand RO> : 2923 MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr), 2924 !strconcat(instr_asm, "\t$rt, $addr")> ; 2925def LoadAddrReg32 : LoadAddressFromReg32<"la", mem, GPR32Opnd>; 2926 2927class LoadAddressFromImm32<string instr_asm, Operand Od, RegisterOperand RO> : 2928 MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), 2929 !strconcat(instr_asm, "\t$rt, $imm32")> ; 2930def LoadAddrImm32 : LoadAddressFromImm32<"la", i32imm, GPR32Opnd>; 2931 2932def JalTwoReg : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs), 2933 "jal\t$rd, $rs"> ; 2934def JalOneReg : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs), 2935 "jal\t$rs"> ; 2936 2937class NORIMM_DESC_BASE<RegisterOperand RO, DAGOperand Imm> : 2938 MipsAsmPseudoInst<(outs RO:$rs), (ins RO:$rt, Imm:$imm), 2939 "nor\t$rs, $rt, $imm">; 2940def NORImm : NORIMM_DESC_BASE<GPR32Opnd, simm32_relaxed>, GPR_32; 2941def : MipsInstAlias<"nor\t$rs, $imm", (NORImm GPR32Opnd:$rs, GPR32Opnd:$rs, 2942 simm32_relaxed:$imm)>, GPR_32; 2943 2944let hasDelaySlot = 1, isCTI = 1 in { 2945def BneImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), 2946 (ins imm64:$imm64, brtarget:$offset), 2947 "bne\t$rt, $imm64, $offset">; 2948def BeqImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), 2949 (ins imm64:$imm64, brtarget:$offset), 2950 "beq\t$rt, $imm64, $offset">; 2951 2952class CondBranchPseudo<string instr_asm> : 2953 MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, 2954 brtarget:$offset), 2955 !strconcat(instr_asm, "\t$rs, $rt, $offset")>; 2956} 2957 2958def BLT : CondBranchPseudo<"blt">; 2959def BLE : CondBranchPseudo<"ble">; 2960def BGE : CondBranchPseudo<"bge">; 2961def BGT : CondBranchPseudo<"bgt">; 2962def BLTU : CondBranchPseudo<"bltu">; 2963def BLEU : CondBranchPseudo<"bleu">; 2964def BGEU : CondBranchPseudo<"bgeu">; 2965def BGTU : CondBranchPseudo<"bgtu">; 2966def BLTL : CondBranchPseudo<"bltl">, ISA_MIPS2_NOT_32R6_64R6; 2967def BLEL : CondBranchPseudo<"blel">, ISA_MIPS2_NOT_32R6_64R6; 2968def BGEL : CondBranchPseudo<"bgel">, ISA_MIPS2_NOT_32R6_64R6; 2969def BGTL : CondBranchPseudo<"bgtl">, ISA_MIPS2_NOT_32R6_64R6; 2970def BLTUL: CondBranchPseudo<"bltul">, ISA_MIPS2_NOT_32R6_64R6; 2971def BLEUL: CondBranchPseudo<"bleul">, ISA_MIPS2_NOT_32R6_64R6; 2972def BGEUL: CondBranchPseudo<"bgeul">, ISA_MIPS2_NOT_32R6_64R6; 2973def BGTUL: CondBranchPseudo<"bgtul">, ISA_MIPS2_NOT_32R6_64R6; 2974 2975let isCTI = 1 in 2976class CondBranchImmPseudo<string instr_asm> : 2977 MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, imm64:$imm, brtarget:$offset), 2978 !strconcat(instr_asm, "\t$rs, $imm, $offset")>; 2979 2980def BEQLImmMacro : CondBranchImmPseudo<"beql">, ISA_MIPS2_NOT_32R6_64R6; 2981def BNELImmMacro : CondBranchImmPseudo<"bnel">, ISA_MIPS2_NOT_32R6_64R6; 2982 2983def BLTImmMacro : CondBranchImmPseudo<"blt">; 2984def BLEImmMacro : CondBranchImmPseudo<"ble">; 2985def BGEImmMacro : CondBranchImmPseudo<"bge">; 2986def BGTImmMacro : CondBranchImmPseudo<"bgt">; 2987def BLTUImmMacro : CondBranchImmPseudo<"bltu">; 2988def BLEUImmMacro : CondBranchImmPseudo<"bleu">; 2989def BGEUImmMacro : CondBranchImmPseudo<"bgeu">; 2990def BGTUImmMacro : CondBranchImmPseudo<"bgtu">; 2991def BLTLImmMacro : CondBranchImmPseudo<"bltl">, ISA_MIPS2_NOT_32R6_64R6; 2992def BLELImmMacro : CondBranchImmPseudo<"blel">, ISA_MIPS2_NOT_32R6_64R6; 2993def BGELImmMacro : CondBranchImmPseudo<"bgel">, ISA_MIPS2_NOT_32R6_64R6; 2994def BGTLImmMacro : CondBranchImmPseudo<"bgtl">, ISA_MIPS2_NOT_32R6_64R6; 2995def BLTULImmMacro : CondBranchImmPseudo<"bltul">, ISA_MIPS2_NOT_32R6_64R6; 2996def BLEULImmMacro : CondBranchImmPseudo<"bleul">, ISA_MIPS2_NOT_32R6_64R6; 2997def BGEULImmMacro : CondBranchImmPseudo<"bgeul">, ISA_MIPS2_NOT_32R6_64R6; 2998def BGTULImmMacro : CondBranchImmPseudo<"bgtul">, ISA_MIPS2_NOT_32R6_64R6; 2999 3000// FIXME: Predicates are removed because instructions are matched regardless of 3001// predicates, because PredicateControl was not in the hierarchy. This was 3002// done to emit more precise error message from expansion function. 3003// Once the tablegen-erated errors are made better, this needs to be fixed and 3004// predicates needs to be restored. 3005 3006def SDivMacro : MipsAsmPseudoInst<(outs GPR32NonZeroOpnd:$rd), 3007 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 3008 "div\t$rd, $rs, $rt">, 3009 ISA_MIPS1_NOT_32R6_64R6; 3010def SDivIMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 3011 (ins GPR32Opnd:$rs, simm32:$imm), 3012 "div\t$rd, $rs, $imm">, 3013 ISA_MIPS1_NOT_32R6_64R6; 3014def UDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 3015 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 3016 "divu\t$rd, $rs, $rt">, 3017 ISA_MIPS1_NOT_32R6_64R6; 3018def UDivIMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 3019 (ins GPR32Opnd:$rs, simm32:$imm), 3020 "divu\t$rd, $rs, $imm">, 3021 ISA_MIPS1_NOT_32R6_64R6; 3022 3023 3024def : MipsInstAlias<"div $rs, $rt", (SDIV GPR32ZeroOpnd:$rs, 3025 GPR32Opnd:$rt), 0>, 3026 ISA_MIPS1_NOT_32R6_64R6; 3027def : MipsInstAlias<"div $rs, $rt", (SDivMacro GPR32NonZeroOpnd:$rs, 3028 GPR32NonZeroOpnd:$rs, 3029 GPR32Opnd:$rt), 0>, 3030 ISA_MIPS1_NOT_32R6_64R6; 3031def : MipsInstAlias<"div $rd, $imm", (SDivIMacro GPR32Opnd:$rd, GPR32Opnd:$rd, 3032 simm32:$imm), 0>, 3033 ISA_MIPS1_NOT_32R6_64R6; 3034 3035def : MipsInstAlias<"divu $rt, $rs", (UDIV GPR32ZeroOpnd:$rt, 3036 GPR32Opnd:$rs), 0>, 3037 ISA_MIPS1_NOT_32R6_64R6; 3038def : MipsInstAlias<"divu $rt, $rs", (UDivMacro GPR32NonZeroOpnd:$rt, 3039 GPR32NonZeroOpnd:$rt, 3040 GPR32Opnd:$rs), 0>, 3041 ISA_MIPS1_NOT_32R6_64R6; 3042 3043def : MipsInstAlias<"divu $rd, $imm", (UDivIMacro GPR32Opnd:$rd, GPR32Opnd:$rd, 3044 simm32:$imm), 0>, 3045 ISA_MIPS1_NOT_32R6_64R6; 3046 3047def SRemMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 3048 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 3049 "rem\t$rd, $rs, $rt">, 3050 ISA_MIPS1_NOT_32R6_64R6; 3051def SRemIMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 3052 (ins GPR32Opnd:$rs, simm32_relaxed:$imm), 3053 "rem\t$rd, $rs, $imm">, 3054 ISA_MIPS1_NOT_32R6_64R6; 3055def URemMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 3056 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 3057 "remu\t$rd, $rs, $rt">, 3058 ISA_MIPS1_NOT_32R6_64R6; 3059def URemIMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 3060 (ins GPR32Opnd:$rs, simm32_relaxed:$imm), 3061 "remu\t$rd, $rs, $imm">, 3062 ISA_MIPS1_NOT_32R6_64R6; 3063 3064def : MipsInstAlias<"rem $rt, $rs", (SRemMacro GPR32Opnd:$rt, GPR32Opnd:$rt, 3065 GPR32Opnd:$rs), 0>, 3066 ISA_MIPS1_NOT_32R6_64R6; 3067def : MipsInstAlias<"rem $rd, $imm", (SRemIMacro GPR32Opnd:$rd, GPR32Opnd:$rd, 3068 simm32_relaxed:$imm), 0>, 3069 ISA_MIPS1_NOT_32R6_64R6; 3070def : MipsInstAlias<"remu $rt, $rs", (URemMacro GPR32Opnd:$rt, GPR32Opnd:$rt, 3071 GPR32Opnd:$rs), 0>, 3072 ISA_MIPS1_NOT_32R6_64R6; 3073def : MipsInstAlias<"remu $rd, $imm", (URemIMacro GPR32Opnd:$rd, GPR32Opnd:$rd, 3074 simm32_relaxed:$imm), 0>, 3075 ISA_MIPS1_NOT_32R6_64R6; 3076 3077def Ulh : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 3078 "ulh\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 3079 3080def Ulhu : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 3081 "ulhu\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 3082 3083def Ulw : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 3084 "ulw\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 3085 3086def Ush : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 3087 "ush\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 3088 3089def Usw : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 3090 "usw\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 3091 3092def LDMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), 3093 (ins mem_simm16:$addr), "ld $rt, $addr">, 3094 ISA_MIPS1_NOT_MIPS3; 3095def SDMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), 3096 (ins mem_simm16:$addr), "sd $rt, $addr">, 3097 ISA_MIPS1_NOT_MIPS3; 3098//===----------------------------------------------------------------------===// 3099// Arbitrary patterns that map to one or more instructions 3100//===----------------------------------------------------------------------===// 3101 3102// Load/store pattern templates. 3103class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> : 3104 MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>; 3105 3106class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> : 3107 MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>; 3108 3109// Materialize constants. 3110multiclass MaterializeImms<ValueType VT, Register ZEROReg, 3111 Instruction ADDiuOp, Instruction LUiOp, 3112 Instruction ORiOp> { 3113 3114// Constant synthesis previously relied on the ordering of the patterns below. 3115// By making the predicates they use non-overlapping, the patterns were 3116// reordered so that the effect of the newly introduced predicates can be 3117// observed. 3118 3119// Arbitrary immediates 3120def : MipsPat<(VT LUiORiPred:$imm), 3121 (ORiOp (LUiOp (HI16 imm:$imm)), (LO16 imm:$imm))>; 3122 3123// Bits 32-16 set, sign/zero extended. 3124def : MipsPat<(VT LUiPred:$imm), (LUiOp (HI16 imm:$imm))>; 3125 3126// Small immediates 3127def : MipsPat<(VT ORiPred:$imm), (ORiOp ZEROReg, imm:$imm)>; 3128def : MipsPat<(VT immSExt16:$imm), (ADDiuOp ZEROReg, imm:$imm)>; 3129} 3130 3131let AdditionalPredicates = [NotInMicroMips] in 3132 defm : MaterializeImms<i32, ZERO, ADDiu, LUi, ORi>, ISA_MIPS1; 3133 3134// Carry MipsPatterns 3135let AdditionalPredicates = [NotInMicroMips] in { 3136 def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs), 3137 (SUBu GPR32:$lhs, GPR32:$rhs)>, ISA_MIPS1; 3138} 3139def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs), 3140 (ADDu GPR32:$lhs, GPR32:$rhs)>, ISA_MIPS1, ASE_NOT_DSP; 3141def : MipsPat<(addc GPR32:$src, immSExt16:$imm), 3142 (ADDiu GPR32:$src, imm:$imm)>, ISA_MIPS1, ASE_NOT_DSP; 3143 3144// Support multiplication for pre-Mips32 targets that don't have 3145// the MUL instruction. 3146def : MipsPat<(mul GPR32:$lhs, GPR32:$rhs), 3147 (PseudoMFLO (PseudoMULT GPR32:$lhs, GPR32:$rhs))>, 3148 ISA_MIPS1_NOT_32R6_64R6; 3149 3150// SYNC 3151def : MipsPat<(MipsSync (i32 immz)), 3152 (SYNC 0)>, ISA_MIPS2; 3153 3154// Call 3155def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)), 3156 (JAL texternalsym:$dst)>, ISA_MIPS1; 3157//def : MipsPat<(MipsJmpLink GPR32:$dst), 3158// (JALR GPR32:$dst)>; 3159 3160// Tail call 3161let AdditionalPredicates = [NotInMicroMips] in { 3162 def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)), 3163 (TAILCALL tglobaladdr:$dst)>, ISA_MIPS1; 3164 def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)), 3165 (TAILCALL texternalsym:$dst)>, ISA_MIPS1; 3166} 3167// hi/lo relocs 3168multiclass MipsHiLoRelocs<Instruction Lui, Instruction Addiu, 3169 Register ZeroReg, RegisterOperand GPROpnd> { 3170 def : MipsPat<(MipsHi tglobaladdr:$in), (Lui tglobaladdr:$in)>; 3171 def : MipsPat<(MipsHi tblockaddress:$in), (Lui tblockaddress:$in)>; 3172 def : MipsPat<(MipsHi tjumptable:$in), (Lui tjumptable:$in)>; 3173 def : MipsPat<(MipsHi tconstpool:$in), (Lui tconstpool:$in)>; 3174 def : MipsPat<(MipsHi texternalsym:$in), (Lui texternalsym:$in)>; 3175 3176 def : MipsPat<(MipsLo tglobaladdr:$in), 3177 (Addiu ZeroReg, tglobaladdr:$in)>; 3178 def : MipsPat<(MipsLo tblockaddress:$in), 3179 (Addiu ZeroReg, tblockaddress:$in)>; 3180 def : MipsPat<(MipsLo tjumptable:$in), 3181 (Addiu ZeroReg, tjumptable:$in)>; 3182 def : MipsPat<(MipsLo tconstpool:$in), 3183 (Addiu ZeroReg, tconstpool:$in)>; 3184 def : MipsPat<(MipsLo tglobaltlsaddr:$in), 3185 (Addiu ZeroReg, tglobaltlsaddr:$in)>; 3186 def : MipsPat<(MipsLo texternalsym:$in), 3187 (Addiu ZeroReg, texternalsym:$in)>; 3188 3189 def : MipsPat<(add GPROpnd:$hi, (MipsLo tglobaladdr:$lo)), 3190 (Addiu GPROpnd:$hi, tglobaladdr:$lo)>; 3191 def : MipsPat<(add GPROpnd:$hi, (MipsLo tblockaddress:$lo)), 3192 (Addiu GPROpnd:$hi, tblockaddress:$lo)>; 3193 def : MipsPat<(add GPROpnd:$hi, (MipsLo tjumptable:$lo)), 3194 (Addiu GPROpnd:$hi, tjumptable:$lo)>; 3195 def : MipsPat<(add GPROpnd:$hi, (MipsLo tconstpool:$lo)), 3196 (Addiu GPROpnd:$hi, tconstpool:$lo)>; 3197 def : MipsPat<(add GPROpnd:$hi, (MipsLo tglobaltlsaddr:$lo)), 3198 (Addiu GPROpnd:$hi, tglobaltlsaddr:$lo)>; 3199 def : MipsPat<(add GPROpnd:$hi, (MipsLo texternalsym:$lo)), 3200 (Addiu GPROpnd:$hi, texternalsym:$lo)>; 3201} 3202 3203// wrapper_pic 3204class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 3205 MipsPat<(MipsWrapper RC:$gp, node:$in), (ADDiuOp RC:$gp, node:$in)>; 3206 3207let AdditionalPredicates = [NotInMicroMips] in { 3208 defm : MipsHiLoRelocs<LUi, ADDiu, ZERO, GPR32Opnd>, ISA_MIPS1; 3209 3210 def : MipsPat<(MipsGotHi tglobaladdr:$in), (LUi tglobaladdr:$in)>, ISA_MIPS1; 3211 def : MipsPat<(MipsGotHi texternalsym:$in), (LUi texternalsym:$in)>, 3212 ISA_MIPS1; 3213 3214 def : MipsPat<(MipsTlsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>, 3215 ISA_MIPS1; 3216 3217 // gp_rel relocs 3218 def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)), 3219 (ADDiu GPR32:$gp, tglobaladdr:$in)>, ISA_MIPS1, ABI_NOT_N64; 3220 def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)), 3221 (ADDiu GPR32:$gp, tconstpool:$in)>, ISA_MIPS1, ABI_NOT_N64; 3222 3223 def : WrapperPat<tglobaladdr, ADDiu, GPR32>, ISA_MIPS1; 3224 def : WrapperPat<tconstpool, ADDiu, GPR32>, ISA_MIPS1; 3225 def : WrapperPat<texternalsym, ADDiu, GPR32>, ISA_MIPS1; 3226 def : WrapperPat<tblockaddress, ADDiu, GPR32>, ISA_MIPS1; 3227 def : WrapperPat<tjumptable, ADDiu, GPR32>, ISA_MIPS1; 3228 def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>, ISA_MIPS1; 3229 3230 // Mips does not have "not", so we expand our way 3231 def : MipsPat<(not GPR32:$in), 3232 (NOR GPR32Opnd:$in, ZERO)>, ISA_MIPS1; 3233} 3234 3235// extended loads 3236let AdditionalPredicates = [NotInMicroMips] in { 3237 def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>, ISA_MIPS1; 3238 def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>, ISA_MIPS1; 3239 def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>, ISA_MIPS1; 3240 3241 // peepholes 3242 def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>, ISA_MIPS1; 3243} 3244 3245// brcond patterns 3246multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BEQOp1, 3247 Instruction BNEOp, Instruction SLTOp, Instruction SLTuOp, 3248 Instruction SLTiOp, Instruction SLTiuOp, 3249 Register ZEROReg> { 3250def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst), 3251 (BNEOp RC:$lhs, ZEROReg, bb:$dst)>; 3252def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst), 3253 (BEQOp RC:$lhs, ZEROReg, bb:$dst)>; 3254 3255def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst), 3256 (BEQOp1 (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 3257def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst), 3258 (BEQOp1 (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 3259def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst), 3260 (BEQOp1 (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 3261def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst), 3262 (BEQOp1 (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 3263def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst), 3264 (BEQOp1 (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>; 3265def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst), 3266 (BEQOp1 (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>; 3267 3268def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst), 3269 (BEQOp1 (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 3270def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst), 3271 (BEQOp1 (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 3272 3273def : MipsPat<(brcond RC:$cond, bb:$dst), 3274 (BNEOp RC:$cond, ZEROReg, bb:$dst)>; 3275} 3276let AdditionalPredicates = [NotInMicroMips] in { 3277 defm : BrcondPats<GPR32, BEQ, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>, 3278 ISA_MIPS1; 3279 def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst), 3280 (BLEZ i32:$lhs, bb:$dst)>, ISA_MIPS1; 3281 def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst), 3282 (BGEZ i32:$lhs, bb:$dst)>, ISA_MIPS1; 3283} 3284 3285// setcc patterns 3286multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp, 3287 Instruction SLTuOp, Register ZEROReg> { 3288 def : MipsPat<(seteq RC:$lhs, 0), 3289 (SLTiuOp RC:$lhs, 1)>; 3290 def : MipsPat<(setne RC:$lhs, 0), 3291 (SLTuOp ZEROReg, RC:$lhs)>; 3292 def : MipsPat<(seteq RC:$lhs, RC:$rhs), 3293 (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>; 3294 def : MipsPat<(setne RC:$lhs, RC:$rhs), 3295 (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>; 3296} 3297 3298multiclass SetlePats<RegisterClass RC, Instruction XORiOp, Instruction SLTOp, 3299 Instruction SLTuOp> { 3300 def : MipsPat<(setle RC:$lhs, RC:$rhs), 3301 (XORiOp (SLTOp RC:$rhs, RC:$lhs), 1)>; 3302 def : MipsPat<(setule RC:$lhs, RC:$rhs), 3303 (XORiOp (SLTuOp RC:$rhs, RC:$lhs), 1)>; 3304} 3305 3306multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 3307 def : MipsPat<(setgt RC:$lhs, RC:$rhs), 3308 (SLTOp RC:$rhs, RC:$lhs)>; 3309 def : MipsPat<(setugt RC:$lhs, RC:$rhs), 3310 (SLTuOp RC:$rhs, RC:$lhs)>; 3311} 3312 3313multiclass SetgePats<RegisterClass RC, Instruction XORiOp, Instruction SLTOp, 3314 Instruction SLTuOp> { 3315 def : MipsPat<(setge RC:$lhs, RC:$rhs), 3316 (XORiOp (SLTOp RC:$lhs, RC:$rhs), 1)>; 3317 def : MipsPat<(setuge RC:$lhs, RC:$rhs), 3318 (XORiOp (SLTuOp RC:$lhs, RC:$rhs), 1)>; 3319} 3320 3321multiclass SetgeImmPats<RegisterClass RC, Instruction XORiOp, 3322 Instruction SLTiOp, Instruction SLTiuOp> { 3323 def : MipsPat<(setge RC:$lhs, immSExt16:$rhs), 3324 (XORiOp (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>; 3325 def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs), 3326 (XORiOp (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>; 3327} 3328 3329let AdditionalPredicates = [NotInMicroMips] in { 3330 defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>, ISA_MIPS1; 3331 defm : SetlePats<GPR32, XORi, SLT, SLTu>, ISA_MIPS1; 3332 defm : SetgtPats<GPR32, SLT, SLTu>, ISA_MIPS1; 3333 defm : SetgePats<GPR32, XORi, SLT, SLTu>, ISA_MIPS1; 3334 defm : SetgeImmPats<GPR32, XORi, SLTi, SLTiu>, ISA_MIPS1; 3335 3336 // bswap pattern 3337 def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>, ISA_MIPS32R2; 3338} 3339 3340// Load halfword/word patterns. 3341let AdditionalPredicates = [NotInMicroMips] in { 3342 let AddedComplexity = 40 in { 3343 def : LoadRegImmPat<LBu, i32, zextloadi8>, ISA_MIPS1; 3344 def : LoadRegImmPat<LHu, i32, zextloadi16>, ISA_MIPS1; 3345 def : LoadRegImmPat<LB, i32, sextloadi8>, ISA_MIPS1; 3346 def : LoadRegImmPat<LH, i32, sextloadi16>, ISA_MIPS1; 3347 def : LoadRegImmPat<LW, i32, load>, ISA_MIPS1; 3348 } 3349 3350 // Atomic load patterns. 3351 def : MipsPat<(atomic_load_8 addr:$a), (LB addr:$a)>, ISA_MIPS1; 3352 def : MipsPat<(atomic_load_16 addr:$a), (LH addr:$a)>, ISA_MIPS1; 3353 def : MipsPat<(atomic_load_32 addr:$a), (LW addr:$a)>, ISA_MIPS1; 3354 3355 // Atomic store patterns. 3356 def : MipsPat<(atomic_store_8 addr:$a, GPR32:$v), (SB GPR32:$v, addr:$a)>, 3357 ISA_MIPS1; 3358 def : MipsPat<(atomic_store_16 addr:$a, GPR32:$v), (SH GPR32:$v, addr:$a)>, 3359 ISA_MIPS1; 3360 def : MipsPat<(atomic_store_32 addr:$a, GPR32:$v), (SW GPR32:$v, addr:$a)>, 3361 ISA_MIPS1; 3362} 3363 3364//===----------------------------------------------------------------------===// 3365// Floating Point Support 3366//===----------------------------------------------------------------------===// 3367 3368include "MipsInstrFPU.td" 3369include "Mips64InstrInfo.td" 3370include "MipsCondMov.td" 3371 3372include "Mips32r6InstrInfo.td" 3373include "Mips64r6InstrInfo.td" 3374 3375// 3376// Mips16 3377 3378include "Mips16InstrFormats.td" 3379include "Mips16InstrInfo.td" 3380 3381// DSP 3382include "MipsDSPInstrFormats.td" 3383include "MipsDSPInstrInfo.td" 3384 3385// MSA 3386include "MipsMSAInstrFormats.td" 3387include "MipsMSAInstrInfo.td" 3388 3389// EVA 3390include "MipsEVAInstrFormats.td" 3391include "MipsEVAInstrInfo.td" 3392 3393// MT 3394include "MipsMTInstrFormats.td" 3395include "MipsMTInstrInfo.td" 3396 3397// Micromips 3398include "MicroMipsInstrFormats.td" 3399include "MicroMipsInstrInfo.td" 3400include "MicroMipsInstrFPU.td" 3401 3402// Micromips r6 3403include "MicroMips32r6InstrFormats.td" 3404include "MicroMips32r6InstrInfo.td" 3405 3406// Micromips DSP 3407include "MicroMipsDSPInstrFormats.td" 3408include "MicroMipsDSPInstrInfo.td" 3409