1 //===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Mips implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MipsInstrInfo.h" 14 #include "MCTargetDesc/MipsBaseInfo.h" 15 #include "MCTargetDesc/MipsMCTargetDesc.h" 16 #include "MipsSubtarget.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/TargetOpcodes.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include <cassert> 31 32 using namespace llvm; 33 34 #define GET_INSTRINFO_CTOR_DTOR 35 #include "MipsGenInstrInfo.inc" 36 37 // Pin the vtable to this file. 38 void MipsInstrInfo::anchor() {} 39 40 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 41 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 42 Subtarget(STI), UncondBrOpc(UncondBr) {} 43 44 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 45 if (STI.inMips16Mode()) 46 return createMips16InstrInfo(STI); 47 48 return createMipsSEInstrInfo(STI); 49 } 50 51 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 52 return op.isImm() && op.getImm() == 0; 53 } 54 55 /// insertNoop - If data hazard condition is found insert the target nop 56 /// instruction. 57 void MipsInstrInfo:: 58 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 59 { 60 DebugLoc DL; 61 BuildMI(MBB, MI, DL, get(Mips::NOP)); 62 } 63 64 MachineInstrBuilder MipsInstrInfo::insertNop(MachineBasicBlock &MBB, 65 MachineBasicBlock::iterator MI, 66 DebugLoc DL) const { 67 assert(!Subtarget.inMips16Mode() && 68 "insertNop does not support MIPS16e mode at this time"); 69 const unsigned MMOpc = 70 Subtarget.hasMips32r6() ? Mips::SLL_MMR6 : Mips::SLL_MM; 71 const unsigned Opc = 72 Subtarget.inMicroMipsMode() ? MMOpc : (unsigned)Mips::SLL; 73 return BuildMI(MBB, MI, DL, get(Opc), Mips::ZERO) 74 .addReg(Mips::ZERO) 75 .addImm(0); 76 } 77 78 MachineMemOperand * 79 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 80 MachineMemOperand::Flags Flags) const { 81 MachineFunction &MF = *MBB.getParent(); 82 MachineFrameInfo &MFI = MF.getFrameInfo(); 83 84 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 85 Flags, MFI.getObjectSize(FI), 86 MFI.getObjectAlign(FI)); 87 } 88 89 //===----------------------------------------------------------------------===// 90 // Branch Analysis 91 //===----------------------------------------------------------------------===// 92 93 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 94 MachineBasicBlock *&BB, 95 SmallVectorImpl<MachineOperand> &Cond) const { 96 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 97 int NumOp = Inst->getNumExplicitOperands(); 98 99 // for both int and fp branches, the last explicit operand is the 100 // MBB. 101 BB = Inst->getOperand(NumOp-1).getMBB(); 102 Cond.push_back(MachineOperand::CreateImm(Opc)); 103 104 for (int i = 0; i < NumOp-1; i++) 105 Cond.push_back(Inst->getOperand(i)); 106 } 107 108 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 109 MachineBasicBlock *&TBB, 110 MachineBasicBlock *&FBB, 111 SmallVectorImpl<MachineOperand> &Cond, 112 bool AllowModify) const { 113 SmallVector<MachineInstr*, 2> BranchInstrs; 114 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 115 116 return (BT == BT_None) || (BT == BT_Indirect); 117 } 118 119 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 120 const DebugLoc &DL, 121 ArrayRef<MachineOperand> Cond) const { 122 unsigned Opc = Cond[0].getImm(); 123 const MCInstrDesc &MCID = get(Opc); 124 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 125 126 for (unsigned i = 1; i < Cond.size(); ++i) { 127 assert((Cond[i].isImm() || Cond[i].isReg()) && 128 "Cannot copy operand for conditional branch!"); 129 MIB.add(Cond[i]); 130 } 131 MIB.addMBB(TBB); 132 } 133 134 unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB, 135 MachineBasicBlock *TBB, 136 MachineBasicBlock *FBB, 137 ArrayRef<MachineOperand> Cond, 138 const DebugLoc &DL, 139 int *BytesAdded) const { 140 // Shouldn't be a fall through. 141 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 142 assert(!BytesAdded && "code size not handled"); 143 144 // # of condition operands: 145 // Unconditional branches: 0 146 // Floating point branches: 1 (opc) 147 // Int BranchZero: 2 (opc, reg) 148 // Int Branch: 3 (opc, reg0, reg1) 149 assert((Cond.size() <= 3) && 150 "# of Mips branch conditions must be <= 3!"); 151 152 // Two-way Conditional branch. 153 if (FBB) { 154 BuildCondBr(MBB, TBB, DL, Cond); 155 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 156 return 2; 157 } 158 159 // One way branch. 160 // Unconditional branch. 161 if (Cond.empty()) 162 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 163 else // Conditional branch. 164 BuildCondBr(MBB, TBB, DL, Cond); 165 return 1; 166 } 167 168 unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB, 169 int *BytesRemoved) const { 170 assert(!BytesRemoved && "code size not handled"); 171 172 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 173 unsigned removed = 0; 174 175 // Up to 2 branches are removed. 176 // Note that indirect branches are not removed. 177 while (I != REnd && removed < 2) { 178 // Skip past debug instructions. 179 if (I->isDebugInstr()) { 180 ++I; 181 continue; 182 } 183 if (!getAnalyzableBrOpc(I->getOpcode())) 184 break; 185 // Remove the branch. 186 I->eraseFromParent(); 187 I = MBB.rbegin(); 188 ++removed; 189 } 190 191 return removed; 192 } 193 194 /// reverseBranchCondition - Return the inverse opcode of the 195 /// specified Branch instruction. 196 bool MipsInstrInfo::reverseBranchCondition( 197 SmallVectorImpl<MachineOperand> &Cond) const { 198 assert( (Cond.size() && Cond.size() <= 3) && 199 "Invalid Mips branch condition!"); 200 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 201 return false; 202 } 203 204 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch( 205 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 206 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 207 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 208 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 209 210 // Skip all the debug instructions. 211 while (I != REnd && I->isDebugInstr()) 212 ++I; 213 214 if (I == REnd || !isUnpredicatedTerminator(*I)) { 215 // This block ends with no branches (it just falls through to its succ). 216 // Leave TBB/FBB null. 217 TBB = FBB = nullptr; 218 return BT_NoBranch; 219 } 220 221 MachineInstr *LastInst = &*I; 222 unsigned LastOpc = LastInst->getOpcode(); 223 BranchInstrs.push_back(LastInst); 224 225 // Not an analyzable branch (e.g., indirect jump). 226 if (!getAnalyzableBrOpc(LastOpc)) 227 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 228 229 // Get the second to last instruction in the block. 230 unsigned SecondLastOpc = 0; 231 MachineInstr *SecondLastInst = nullptr; 232 233 // Skip past any debug instruction to see if the second last actual 234 // is a branch. 235 ++I; 236 while (I != REnd && I->isDebugInstr()) 237 ++I; 238 239 if (I != REnd) { 240 SecondLastInst = &*I; 241 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 242 243 // Not an analyzable branch (must be an indirect jump). 244 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 245 return BT_None; 246 } 247 248 // If there is only one terminator instruction, process it. 249 if (!SecondLastOpc) { 250 // Unconditional branch. 251 if (LastInst->isUnconditionalBranch()) { 252 TBB = LastInst->getOperand(0).getMBB(); 253 return BT_Uncond; 254 } 255 256 // Conditional branch 257 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 258 return BT_Cond; 259 } 260 261 // If we reached here, there are two branches. 262 // If there are three terminators, we don't know what sort of block this is. 263 if (++I != REnd && isUnpredicatedTerminator(*I)) 264 return BT_None; 265 266 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 267 268 // If second to last instruction is an unconditional branch, 269 // analyze it and remove the last instruction. 270 if (SecondLastInst->isUnconditionalBranch()) { 271 // Return if the last instruction cannot be removed. 272 if (!AllowModify) 273 return BT_None; 274 275 TBB = SecondLastInst->getOperand(0).getMBB(); 276 LastInst->eraseFromParent(); 277 BranchInstrs.pop_back(); 278 return BT_Uncond; 279 } 280 281 // Conditional branch followed by an unconditional branch. 282 // The last one must be unconditional. 283 if (!LastInst->isUnconditionalBranch()) 284 return BT_None; 285 286 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 287 FBB = LastInst->getOperand(0).getMBB(); 288 289 return BT_CondUncond; 290 } 291 292 bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc, 293 int64_t BrOffset) const { 294 switch (BranchOpc) { 295 case Mips::B: 296 case Mips::BAL: 297 case Mips::BAL_BR: 298 case Mips::BAL_BR_MM: 299 case Mips::BC1F: 300 case Mips::BC1FL: 301 case Mips::BC1T: 302 case Mips::BC1TL: 303 case Mips::BEQ: case Mips::BEQ64: 304 case Mips::BEQL: 305 case Mips::BGEZ: case Mips::BGEZ64: 306 case Mips::BGEZL: 307 case Mips::BGEZAL: 308 case Mips::BGEZALL: 309 case Mips::BGTZ: case Mips::BGTZ64: 310 case Mips::BGTZL: 311 case Mips::BLEZ: case Mips::BLEZ64: 312 case Mips::BLEZL: 313 case Mips::BLTZ: case Mips::BLTZ64: 314 case Mips::BLTZL: 315 case Mips::BLTZAL: 316 case Mips::BLTZALL: 317 case Mips::BNE: case Mips::BNE64: 318 case Mips::BNEL: 319 return isInt<18>(BrOffset); 320 321 // microMIPSr3 branches 322 case Mips::B_MM: 323 case Mips::BC1F_MM: 324 case Mips::BC1T_MM: 325 case Mips::BEQ_MM: 326 case Mips::BGEZ_MM: 327 case Mips::BGEZAL_MM: 328 case Mips::BGTZ_MM: 329 case Mips::BLEZ_MM: 330 case Mips::BLTZ_MM: 331 case Mips::BLTZAL_MM: 332 case Mips::BNE_MM: 333 case Mips::BEQZC_MM: 334 case Mips::BNEZC_MM: 335 return isInt<17>(BrOffset); 336 337 // microMIPSR3 short branches. 338 case Mips::B16_MM: 339 return isInt<11>(BrOffset); 340 341 case Mips::BEQZ16_MM: 342 case Mips::BNEZ16_MM: 343 return isInt<8>(BrOffset); 344 345 // MIPSR6 branches. 346 case Mips::BALC: 347 case Mips::BC: 348 return isInt<28>(BrOffset); 349 350 case Mips::BC1EQZ: 351 case Mips::BC1NEZ: 352 case Mips::BC2EQZ: 353 case Mips::BC2NEZ: 354 case Mips::BEQC: case Mips::BEQC64: 355 case Mips::BNEC: case Mips::BNEC64: 356 case Mips::BGEC: case Mips::BGEC64: 357 case Mips::BGEUC: case Mips::BGEUC64: 358 case Mips::BGEZC: case Mips::BGEZC64: 359 case Mips::BGTZC: case Mips::BGTZC64: 360 case Mips::BLEZC: case Mips::BLEZC64: 361 case Mips::BLTC: case Mips::BLTC64: 362 case Mips::BLTUC: case Mips::BLTUC64: 363 case Mips::BLTZC: case Mips::BLTZC64: 364 case Mips::BNVC: 365 case Mips::BOVC: 366 case Mips::BGEZALC: 367 case Mips::BEQZALC: 368 case Mips::BGTZALC: 369 case Mips::BLEZALC: 370 case Mips::BLTZALC: 371 case Mips::BNEZALC: 372 return isInt<18>(BrOffset); 373 374 case Mips::BEQZC: case Mips::BEQZC64: 375 case Mips::BNEZC: case Mips::BNEZC64: 376 return isInt<23>(BrOffset); 377 378 // microMIPSR6 branches 379 case Mips::BC16_MMR6: 380 return isInt<11>(BrOffset); 381 382 case Mips::BEQZC16_MMR6: 383 case Mips::BNEZC16_MMR6: 384 return isInt<8>(BrOffset); 385 386 case Mips::BALC_MMR6: 387 case Mips::BC_MMR6: 388 return isInt<27>(BrOffset); 389 390 case Mips::BC1EQZC_MMR6: 391 case Mips::BC1NEZC_MMR6: 392 case Mips::BC2EQZC_MMR6: 393 case Mips::BC2NEZC_MMR6: 394 case Mips::BGEZALC_MMR6: 395 case Mips::BEQZALC_MMR6: 396 case Mips::BGTZALC_MMR6: 397 case Mips::BLEZALC_MMR6: 398 case Mips::BLTZALC_MMR6: 399 case Mips::BNEZALC_MMR6: 400 case Mips::BNVC_MMR6: 401 case Mips::BOVC_MMR6: 402 return isInt<17>(BrOffset); 403 404 case Mips::BEQC_MMR6: 405 case Mips::BNEC_MMR6: 406 case Mips::BGEC_MMR6: 407 case Mips::BGEUC_MMR6: 408 case Mips::BGEZC_MMR6: 409 case Mips::BGTZC_MMR6: 410 case Mips::BLEZC_MMR6: 411 case Mips::BLTC_MMR6: 412 case Mips::BLTUC_MMR6: 413 case Mips::BLTZC_MMR6: 414 return isInt<18>(BrOffset); 415 416 case Mips::BEQZC_MMR6: 417 case Mips::BNEZC_MMR6: 418 return isInt<23>(BrOffset); 419 420 // DSP branches. 421 case Mips::BPOSGE32: 422 return isInt<18>(BrOffset); 423 case Mips::BPOSGE32_MM: 424 case Mips::BPOSGE32C_MMR3: 425 return isInt<17>(BrOffset); 426 427 // cnMIPS branches. 428 case Mips::BBIT0: 429 case Mips::BBIT032: 430 case Mips::BBIT1: 431 case Mips::BBIT132: 432 return isInt<18>(BrOffset); 433 434 // MSA branches. 435 case Mips::BZ_B: 436 case Mips::BZ_H: 437 case Mips::BZ_W: 438 case Mips::BZ_D: 439 case Mips::BZ_V: 440 case Mips::BNZ_B: 441 case Mips::BNZ_H: 442 case Mips::BNZ_W: 443 case Mips::BNZ_D: 444 case Mips::BNZ_V: 445 return isInt<18>(BrOffset); 446 } 447 448 llvm_unreachable("Unknown branch instruction!"); 449 } 450 451 /// Return the corresponding compact (no delay slot) form of a branch. 452 unsigned MipsInstrInfo::getEquivalentCompactForm( 453 const MachineBasicBlock::iterator I) const { 454 unsigned Opcode = I->getOpcode(); 455 bool canUseShortMicroMipsCTI = false; 456 457 if (Subtarget.inMicroMipsMode()) { 458 switch (Opcode) { 459 case Mips::BNE: 460 case Mips::BNE_MM: 461 case Mips::BEQ: 462 case Mips::BEQ_MM: 463 // microMIPS has NE,EQ branches that do not have delay slots provided one 464 // of the operands is zero. 465 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 466 canUseShortMicroMipsCTI = true; 467 break; 468 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 469 // expanded to JR_MM, so they can be replaced with JRC16_MM. 470 case Mips::JR: 471 case Mips::PseudoReturn: 472 case Mips::PseudoIndirectBranch: 473 canUseShortMicroMipsCTI = true; 474 break; 475 } 476 } 477 478 // MIPSR6 forbids both operands being the zero register. 479 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 480 (I->getOperand(0).isReg() && 481 (I->getOperand(0).getReg() == Mips::ZERO || 482 I->getOperand(0).getReg() == Mips::ZERO_64)) && 483 (I->getOperand(1).isReg() && 484 (I->getOperand(1).getReg() == Mips::ZERO || 485 I->getOperand(1).getReg() == Mips::ZERO_64))) 486 return 0; 487 488 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 489 switch (Opcode) { 490 case Mips::B: 491 return Mips::BC; 492 case Mips::BAL: 493 return Mips::BALC; 494 case Mips::BEQ: 495 case Mips::BEQ_MM: 496 if (canUseShortMicroMipsCTI) 497 return Mips::BEQZC_MM; 498 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 499 return 0; 500 return Mips::BEQC; 501 case Mips::BNE: 502 case Mips::BNE_MM: 503 if (canUseShortMicroMipsCTI) 504 return Mips::BNEZC_MM; 505 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 506 return 0; 507 return Mips::BNEC; 508 case Mips::BGE: 509 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 510 return 0; 511 return Mips::BGEC; 512 case Mips::BGEU: 513 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 514 return 0; 515 return Mips::BGEUC; 516 case Mips::BGEZ: 517 return Mips::BGEZC; 518 case Mips::BGTZ: 519 return Mips::BGTZC; 520 case Mips::BLEZ: 521 return Mips::BLEZC; 522 case Mips::BLT: 523 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 524 return 0; 525 return Mips::BLTC; 526 case Mips::BLTU: 527 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 528 return 0; 529 return Mips::BLTUC; 530 case Mips::BLTZ: 531 return Mips::BLTZC; 532 case Mips::BEQ64: 533 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 534 return 0; 535 return Mips::BEQC64; 536 case Mips::BNE64: 537 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 538 return 0; 539 return Mips::BNEC64; 540 case Mips::BGTZ64: 541 return Mips::BGTZC64; 542 case Mips::BGEZ64: 543 return Mips::BGEZC64; 544 case Mips::BLTZ64: 545 return Mips::BLTZC64; 546 case Mips::BLEZ64: 547 return Mips::BLEZC64; 548 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 549 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 550 case Mips::JR: 551 case Mips::PseudoIndirectBranchR6: 552 case Mips::PseudoReturn: 553 case Mips::TAILCALLR6REG: 554 if (canUseShortMicroMipsCTI) 555 return Mips::JRC16_MM; 556 return Mips::JIC; 557 case Mips::JALRPseudo: 558 return Mips::JIALC; 559 case Mips::JR64: 560 case Mips::PseudoIndirectBranch64R6: 561 case Mips::PseudoReturn64: 562 case Mips::TAILCALL64R6REG: 563 return Mips::JIC64; 564 case Mips::JALR64Pseudo: 565 return Mips::JIALC64; 566 default: 567 return 0; 568 } 569 } 570 571 return 0; 572 } 573 574 /// Predicate for distingushing between control transfer instructions and all 575 /// other instructions for handling forbidden slots. Consider inline assembly 576 /// as unsafe as well. 577 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 578 if (MI.isInlineAsm()) 579 return false; 580 581 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 582 } 583 584 bool MipsInstrInfo::SafeInFPUDelaySlot(const MachineInstr &MIInSlot, 585 const MachineInstr &FPUMI) const { 586 if (MIInSlot.isInlineAsm()) 587 return false; 588 589 if (HasFPUDelaySlot(MIInSlot)) 590 return false; 591 592 switch (MIInSlot.getOpcode()) { 593 case Mips::BC1F: 594 case Mips::BC1FL: 595 case Mips::BC1T: 596 case Mips::BC1TL: 597 return false; 598 } 599 600 for (const MachineOperand &Op : FPUMI.defs()) { 601 if (!Op.isReg()) 602 continue; 603 604 bool Reads, Writes; 605 std::tie(Reads, Writes) = MIInSlot.readsWritesVirtualRegister(Op.getReg()); 606 607 if (Reads || Writes) 608 return false; 609 } 610 611 return true; 612 } 613 614 /// Predicate for distinguishing instructions that are hazardous in a load delay 615 /// slot. Consider inline assembly as unsafe as well. 616 bool MipsInstrInfo::SafeInLoadDelaySlot(const MachineInstr &MIInSlot, 617 const MachineInstr &LoadMI) const { 618 if (MIInSlot.isInlineAsm()) 619 return false; 620 621 return !llvm::any_of(LoadMI.defs(), [&](const MachineOperand &Op) { 622 return Op.isReg() && MIInSlot.readsRegister(Op.getReg(), /*TRI=*/nullptr); 623 }); 624 } 625 626 /// Predicate for distingushing instructions that have forbidden slots. 627 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 628 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 629 } 630 631 /// Predicate for distingushing instructions that have FPU delay slots. 632 bool MipsInstrInfo::HasFPUDelaySlot(const MachineInstr &MI) const { 633 switch (MI.getOpcode()) { 634 case Mips::MTC1: 635 case Mips::MFC1: 636 case Mips::MTC1_D64: 637 case Mips::MFC1_D64: 638 case Mips::DMTC1: 639 case Mips::DMFC1: 640 case Mips::FCMP_S32: 641 case Mips::FCMP_D32: 642 case Mips::FCMP_D64: 643 return true; 644 645 default: 646 return false; 647 } 648 } 649 650 /// Predicate for distingushing instructions that have load delay slots. 651 bool MipsInstrInfo::HasLoadDelaySlot(const MachineInstr &MI) const { 652 switch (MI.getOpcode()) { 653 case Mips::LB: 654 case Mips::LBu: 655 case Mips::LH: 656 case Mips::LHu: 657 case Mips::LW: 658 case Mips::LWR: 659 case Mips::LWL: 660 return true; 661 default: 662 return false; 663 } 664 } 665 666 /// Return the number of bytes of code the specified instruction may be. 667 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 668 switch (MI.getOpcode()) { 669 default: 670 return MI.getDesc().getSize(); 671 case TargetOpcode::INLINEASM: 672 case TargetOpcode::INLINEASM_BR: { // Inline Asm: Variable size. 673 const MachineFunction *MF = MI.getParent()->getParent(); 674 const char *AsmStr = MI.getOperand(0).getSymbolName(); 675 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 676 } 677 case Mips::CONSTPOOL_ENTRY: 678 // If this machine instr is a constant pool entry, its size is recorded as 679 // operand #2. 680 return MI.getOperand(2).getImm(); 681 } 682 } 683 684 MachineInstrBuilder 685 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 686 MachineBasicBlock::iterator I) const { 687 MachineInstrBuilder MIB; 688 689 // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest 690 // Pick the zero form of the branch for readable assembly and for greater 691 // branch distance in non-microMIPS mode. 692 // Additional MIPSR6 does not permit the use of register $zero for compact 693 // branches. 694 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 695 // Mips::ZERO, which is incorrect. This test should be updated to use 696 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 697 // are fixed. 698 int ZeroOperandPosition = -1; 699 bool BranchWithZeroOperand = false; 700 if (I->isBranch() && !I->isPseudo()) { 701 auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo(); 702 ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, TRI, false); 703 BranchWithZeroOperand = ZeroOperandPosition != -1; 704 } 705 706 if (BranchWithZeroOperand) { 707 switch (NewOpc) { 708 case Mips::BEQC: 709 NewOpc = Mips::BEQZC; 710 break; 711 case Mips::BNEC: 712 NewOpc = Mips::BNEZC; 713 break; 714 case Mips::BGEC: 715 NewOpc = Mips::BGEZC; 716 break; 717 case Mips::BLTC: 718 NewOpc = Mips::BLTZC; 719 break; 720 case Mips::BEQC64: 721 NewOpc = Mips::BEQZC64; 722 break; 723 case Mips::BNEC64: 724 NewOpc = Mips::BNEZC64; 725 break; 726 } 727 } 728 729 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 730 731 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 732 // immediate 0 as an operand and requires the removal of it's implicit-def %ra 733 // implicit operand as copying the implicit operations of the instructio we're 734 // looking at will give us the correct flags. 735 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 736 NewOpc == Mips::JIALC64) { 737 738 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 739 MIB->removeOperand(0); 740 741 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 742 MIB.add(I->getOperand(J)); 743 } 744 745 MIB.addImm(0); 746 747 // If I has an MCSymbol operand (used by asm printer, to emit R_MIPS_JALR), 748 // add it to the new instruction. 749 for (unsigned J = I->getDesc().getNumOperands(), E = I->getNumOperands(); 750 J < E; ++J) { 751 const MachineOperand &MO = I->getOperand(J); 752 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) 753 MIB.addSym(MO.getMCSymbol(), MipsII::MO_JALR); 754 } 755 756 757 } else { 758 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 759 if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J) 760 continue; 761 762 MIB.add(I->getOperand(J)); 763 } 764 } 765 766 MIB.copyImplicitOps(*I); 767 MIB.cloneMemRefs(*I); 768 return MIB; 769 } 770 771 bool MipsInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 772 unsigned &SrcOpIdx1, 773 unsigned &SrcOpIdx2) const { 774 assert(!MI.isBundle() && 775 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 776 777 const MCInstrDesc &MCID = MI.getDesc(); 778 if (!MCID.isCommutable()) 779 return false; 780 781 switch (MI.getOpcode()) { 782 case Mips::DPADD_U_H: 783 case Mips::DPADD_U_W: 784 case Mips::DPADD_U_D: 785 case Mips::DPADD_S_H: 786 case Mips::DPADD_S_W: 787 case Mips::DPADD_S_D: 788 // The first operand is both input and output, so it should not commute 789 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3)) 790 return false; 791 792 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 793 return false; 794 return true; 795 } 796 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 797 } 798 799 // ins, ext, dext*, dins have the following constraints: 800 // X <= pos < Y 801 // X < size <= Y 802 // X < pos+size <= Y 803 // 804 // dinsm and dinsu have the following constraints: 805 // X <= pos < Y 806 // X <= size <= Y 807 // X < pos+size <= Y 808 // 809 // The callee of verifyInsExtInstruction however gives the bounds of 810 // dins[um] like the other (d)ins (d)ext(um) instructions, so that this 811 // function doesn't have to vary it's behaviour based on the instruction 812 // being checked. 813 static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo, 814 const int64_t PosLow, const int64_t PosHigh, 815 const int64_t SizeLow, 816 const int64_t SizeHigh, 817 const int64_t BothLow, 818 const int64_t BothHigh) { 819 MachineOperand MOPos = MI.getOperand(2); 820 if (!MOPos.isImm()) { 821 ErrInfo = "Position is not an immediate!"; 822 return false; 823 } 824 int64_t Pos = MOPos.getImm(); 825 if (!((PosLow <= Pos) && (Pos < PosHigh))) { 826 ErrInfo = "Position operand is out of range!"; 827 return false; 828 } 829 830 MachineOperand MOSize = MI.getOperand(3); 831 if (!MOSize.isImm()) { 832 ErrInfo = "Size operand is not an immediate!"; 833 return false; 834 } 835 int64_t Size = MOSize.getImm(); 836 if (!((SizeLow < Size) && (Size <= SizeHigh))) { 837 ErrInfo = "Size operand is out of range!"; 838 return false; 839 } 840 841 if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) { 842 ErrInfo = "Position + Size is out of range!"; 843 return false; 844 } 845 846 return true; 847 } 848 849 // Perform target specific instruction verification. 850 bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI, 851 StringRef &ErrInfo) const { 852 // Verify that ins and ext instructions are well formed. 853 switch (MI.getOpcode()) { 854 case Mips::EXT: 855 case Mips::EXT_MM: 856 case Mips::INS: 857 case Mips::INS_MM: 858 case Mips::DINS: 859 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32); 860 case Mips::DINSM: 861 // The ISA spec has a subtle difference between dinsm and dextm 862 // in that it says: 863 // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64. 864 // To make the bounds checks similar, the range 1 < size <= 64 is checked 865 // for 'dinsm'. 866 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64); 867 case Mips::DINSU: 868 // The ISA spec has a subtle difference between dinsu and dextu in that 869 // the size range of dinsu is specified as 1 <= size <= 32 whereas size 870 // for dextu is 0 < size <= 32. The range checked for dinsu here is 871 // 0 < size <= 32, which is equivalent and similar to dextu. 872 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 873 case Mips::DEXT: 874 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63); 875 case Mips::DEXTM: 876 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64); 877 case Mips::DEXTU: 878 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 879 case Mips::TAILCALLREG: 880 case Mips::PseudoIndirectBranch: 881 case Mips::JR: 882 case Mips::JR64: 883 case Mips::JALR: 884 case Mips::JALR64: 885 case Mips::JALRPseudo: 886 if (!Subtarget.useIndirectJumpsHazard()) 887 return true; 888 889 ErrInfo = "invalid instruction when using jump guards!"; 890 return false; 891 default: 892 return true; 893 } 894 895 return true; 896 } 897 898 std::pair<unsigned, unsigned> 899 MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 900 return std::make_pair(TF, 0u); 901 } 902 903 ArrayRef<std::pair<unsigned, const char*>> 904 MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 905 using namespace MipsII; 906 907 static const std::pair<unsigned, const char*> Flags[] = { 908 {MO_GOT, "mips-got"}, 909 {MO_GOT_CALL, "mips-got-call"}, 910 {MO_GPREL, "mips-gprel"}, 911 {MO_ABS_HI, "mips-abs-hi"}, 912 {MO_ABS_LO, "mips-abs-lo"}, 913 {MO_TLSGD, "mips-tlsgd"}, 914 {MO_TLSLDM, "mips-tlsldm"}, 915 {MO_DTPREL_HI, "mips-dtprel-hi"}, 916 {MO_DTPREL_LO, "mips-dtprel-lo"}, 917 {MO_GOTTPREL, "mips-gottprel"}, 918 {MO_TPREL_HI, "mips-tprel-hi"}, 919 {MO_TPREL_LO, "mips-tprel-lo"}, 920 {MO_GPOFF_HI, "mips-gpoff-hi"}, 921 {MO_GPOFF_LO, "mips-gpoff-lo"}, 922 {MO_GOT_DISP, "mips-got-disp"}, 923 {MO_GOT_PAGE, "mips-got-page"}, 924 {MO_GOT_OFST, "mips-got-ofst"}, 925 {MO_HIGHER, "mips-higher"}, 926 {MO_HIGHEST, "mips-highest"}, 927 {MO_GOT_HI16, "mips-got-hi16"}, 928 {MO_GOT_LO16, "mips-got-lo16"}, 929 {MO_CALL_HI16, "mips-call-hi16"}, 930 {MO_CALL_LO16, "mips-call-lo16"}, 931 {MO_JALR, "mips-jalr"} 932 }; 933 return ArrayRef(Flags); 934 } 935 936 std::optional<ParamLoadedValue> 937 MipsInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { 938 DIExpression *Expr = 939 DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 940 941 // TODO: Special MIPS instructions that need to be described separately. 942 if (auto RegImm = isAddImmediate(MI, Reg)) { 943 Register SrcReg = RegImm->Reg; 944 int64_t Offset = RegImm->Imm; 945 // When SrcReg is $zero, treat loaded value as immediate only. 946 // Ex. $a2 = ADDiu $zero, 10 947 if (SrcReg == Mips::ZERO || SrcReg == Mips::ZERO_64) { 948 return ParamLoadedValue(MI.getOperand(2), Expr); 949 } 950 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); 951 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 952 } else if (auto DestSrc = isCopyInstr(MI)) { 953 const MachineFunction *MF = MI.getMF(); 954 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 955 Register DestReg = DestSrc->Destination->getReg(); 956 // TODO: Handle cases where the Reg is sub- or super-register of the 957 // DestReg. 958 if (TRI->isSuperRegister(Reg, DestReg) || TRI->isSubRegister(Reg, DestReg)) 959 return std::nullopt; 960 } 961 962 return TargetInstrInfo::describeLoadedValue(MI, Reg); 963 } 964 965 std::optional<RegImmPair> MipsInstrInfo::isAddImmediate(const MachineInstr &MI, 966 Register Reg) const { 967 // TODO: Handle cases where Reg is a super- or sub-register of the 968 // destination register. 969 const MachineOperand &Op0 = MI.getOperand(0); 970 if (!Op0.isReg() || Reg != Op0.getReg()) 971 return std::nullopt; 972 973 switch (MI.getOpcode()) { 974 case Mips::ADDiu: 975 case Mips::DADDiu: { 976 const MachineOperand &Dop = MI.getOperand(0); 977 const MachineOperand &Sop1 = MI.getOperand(1); 978 const MachineOperand &Sop2 = MI.getOperand(2); 979 // Value is sum of register and immediate. Immediate value could be 980 // global string address which is not supported. 981 if (Dop.isReg() && Sop1.isReg() && Sop2.isImm()) 982 return RegImmPair{Sop1.getReg(), Sop2.getImm()}; 983 // TODO: Handle case where Sop1 is a frame-index. 984 } 985 } 986 return std::nullopt; 987 } 988