xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsInstrInfo.cpp (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 //===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Mips implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsInstrInfo.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "MCTargetDesc/MipsMCTargetDesc.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/TargetOpcodes.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <cassert>
31 
32 using namespace llvm;
33 
34 #define GET_INSTRINFO_CTOR_DTOR
35 #include "MipsGenInstrInfo.inc"
36 
37 // Pin the vtable to this file.
38 void MipsInstrInfo::anchor() {}
39 
40 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
41     : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
42       Subtarget(STI), UncondBrOpc(UncondBr) {}
43 
44 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) {
45   if (STI.inMips16Mode())
46     return createMips16InstrInfo(STI);
47 
48   return createMipsSEInstrInfo(STI);
49 }
50 
51 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
52   return op.isImm() && op.getImm() == 0;
53 }
54 
55 /// insertNoop - If data hazard condition is found insert the target nop
56 /// instruction.
57 void MipsInstrInfo::
58 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
59 {
60   DebugLoc DL;
61   BuildMI(MBB, MI, DL, get(Mips::NOP));
62 }
63 
64 MachineInstrBuilder MipsInstrInfo::insertNop(MachineBasicBlock &MBB,
65                                              MachineBasicBlock::iterator MI,
66                                              DebugLoc DL) const {
67   assert(!Subtarget.inMips16Mode() &&
68          "insertNop does not support MIPS16e mode at this time");
69   const unsigned MMOpc =
70       Subtarget.hasMips32r6() ? Mips::SLL_MMR6 : Mips::SLL_MM;
71   const unsigned Opc =
72       Subtarget.inMicroMipsMode() ? MMOpc : (unsigned)Mips::SLL;
73   return BuildMI(MBB, MI, DL, get(Opc), Mips::ZERO)
74       .addReg(Mips::ZERO)
75       .addImm(0);
76 }
77 
78 MachineMemOperand *
79 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
80                              MachineMemOperand::Flags Flags) const {
81   MachineFunction &MF = *MBB.getParent();
82   MachineFrameInfo &MFI = MF.getFrameInfo();
83 
84   return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
85                                  Flags, MFI.getObjectSize(FI),
86                                  MFI.getObjectAlign(FI));
87 }
88 
89 //===----------------------------------------------------------------------===//
90 // Branch Analysis
91 //===----------------------------------------------------------------------===//
92 
93 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
94                                   MachineBasicBlock *&BB,
95                                   SmallVectorImpl<MachineOperand> &Cond) const {
96   assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
97   int NumOp = Inst->getNumExplicitOperands();
98 
99   // for both int and fp branches, the last explicit operand is the
100   // MBB.
101   BB = Inst->getOperand(NumOp-1).getMBB();
102   Cond.push_back(MachineOperand::CreateImm(Opc));
103 
104   for (int i = 0; i < NumOp-1; i++)
105     Cond.push_back(Inst->getOperand(i));
106 }
107 
108 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
109                                   MachineBasicBlock *&TBB,
110                                   MachineBasicBlock *&FBB,
111                                   SmallVectorImpl<MachineOperand> &Cond,
112                                   bool AllowModify) const {
113   SmallVector<MachineInstr*, 2> BranchInstrs;
114   BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
115 
116   return (BT == BT_None) || (BT == BT_Indirect);
117 }
118 
119 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
120                                 const DebugLoc &DL,
121                                 ArrayRef<MachineOperand> Cond) const {
122   unsigned Opc = Cond[0].getImm();
123   const MCInstrDesc &MCID = get(Opc);
124   MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
125 
126   for (unsigned i = 1; i < Cond.size(); ++i) {
127     assert((Cond[i].isImm() || Cond[i].isReg()) &&
128            "Cannot copy operand for conditional branch!");
129     MIB.add(Cond[i]);
130   }
131   MIB.addMBB(TBB);
132 }
133 
134 unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB,
135                                      MachineBasicBlock *TBB,
136                                      MachineBasicBlock *FBB,
137                                      ArrayRef<MachineOperand> Cond,
138                                      const DebugLoc &DL,
139                                      int *BytesAdded) const {
140   // Shouldn't be a fall through.
141   assert(TBB && "insertBranch must not be told to insert a fallthrough");
142   assert(!BytesAdded && "code size not handled");
143 
144   // # of condition operands:
145   //  Unconditional branches: 0
146   //  Floating point branches: 1 (opc)
147   //  Int BranchZero: 2 (opc, reg)
148   //  Int Branch: 3 (opc, reg0, reg1)
149   assert((Cond.size() <= 3) &&
150          "# of Mips branch conditions must be <= 3!");
151 
152   // Two-way Conditional branch.
153   if (FBB) {
154     BuildCondBr(MBB, TBB, DL, Cond);
155     BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
156     return 2;
157   }
158 
159   // One way branch.
160   // Unconditional branch.
161   if (Cond.empty())
162     BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
163   else // Conditional branch.
164     BuildCondBr(MBB, TBB, DL, Cond);
165   return 1;
166 }
167 
168 unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB,
169                                      int *BytesRemoved) const {
170   assert(!BytesRemoved && "code size not handled");
171 
172   MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
173   unsigned removed = 0;
174 
175   // Up to 2 branches are removed.
176   // Note that indirect branches are not removed.
177   while (I != REnd && removed < 2) {
178     // Skip past debug instructions.
179     if (I->isDebugInstr()) {
180       ++I;
181       continue;
182     }
183     if (!getAnalyzableBrOpc(I->getOpcode()))
184       break;
185     // Remove the branch.
186     I->eraseFromParent();
187     I = MBB.rbegin();
188     ++removed;
189   }
190 
191   return removed;
192 }
193 
194 /// reverseBranchCondition - Return the inverse opcode of the
195 /// specified Branch instruction.
196 bool MipsInstrInfo::reverseBranchCondition(
197     SmallVectorImpl<MachineOperand> &Cond) const {
198   assert( (Cond.size() && Cond.size() <= 3) &&
199           "Invalid Mips branch condition!");
200   Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
201   return false;
202 }
203 
204 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch(
205     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
206     SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
207     SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
208   MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
209 
210   // Skip all the debug instructions.
211   while (I != REnd && I->isDebugInstr())
212     ++I;
213 
214   if (I == REnd || !isUnpredicatedTerminator(*I)) {
215     // This block ends with no branches (it just falls through to its succ).
216     // Leave TBB/FBB null.
217     TBB = FBB = nullptr;
218     return BT_NoBranch;
219   }
220 
221   MachineInstr *LastInst = &*I;
222   unsigned LastOpc = LastInst->getOpcode();
223   BranchInstrs.push_back(LastInst);
224 
225   // Not an analyzable branch (e.g., indirect jump).
226   if (!getAnalyzableBrOpc(LastOpc))
227     return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
228 
229   // Get the second to last instruction in the block.
230   unsigned SecondLastOpc = 0;
231   MachineInstr *SecondLastInst = nullptr;
232 
233   // Skip past any debug instruction to see if the second last actual
234   // is a branch.
235   ++I;
236   while (I != REnd && I->isDebugInstr())
237     ++I;
238 
239   if (I != REnd) {
240     SecondLastInst = &*I;
241     SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());
242 
243     // Not an analyzable branch (must be an indirect jump).
244     if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc)
245       return BT_None;
246   }
247 
248   // If there is only one terminator instruction, process it.
249   if (!SecondLastOpc) {
250     // Unconditional branch.
251     if (LastInst->isUnconditionalBranch()) {
252       TBB = LastInst->getOperand(0).getMBB();
253       return BT_Uncond;
254     }
255 
256     // Conditional branch
257     AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
258     return BT_Cond;
259   }
260 
261   // If we reached here, there are two branches.
262   // If there are three terminators, we don't know what sort of block this is.
263   if (++I != REnd && isUnpredicatedTerminator(*I))
264     return BT_None;
265 
266   BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);
267 
268   // If second to last instruction is an unconditional branch,
269   // analyze it and remove the last instruction.
270   if (SecondLastInst->isUnconditionalBranch()) {
271     // Return if the last instruction cannot be removed.
272     if (!AllowModify)
273       return BT_None;
274 
275     TBB = SecondLastInst->getOperand(0).getMBB();
276     LastInst->eraseFromParent();
277     BranchInstrs.pop_back();
278     return BT_Uncond;
279   }
280 
281   // Conditional branch followed by an unconditional branch.
282   // The last one must be unconditional.
283   if (!LastInst->isUnconditionalBranch())
284     return BT_None;
285 
286   AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
287   FBB = LastInst->getOperand(0).getMBB();
288 
289   return BT_CondUncond;
290 }
291 
292 bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc,
293                                           int64_t BrOffset) const {
294   switch (BranchOpc) {
295   case Mips::B:
296   case Mips::BAL:
297   case Mips::BAL_BR:
298   case Mips::BAL_BR_MM:
299   case Mips::BC1F:
300   case Mips::BC1FL:
301   case Mips::BC1T:
302   case Mips::BC1TL:
303   case Mips::BEQ:     case Mips::BEQ64:
304   case Mips::BEQL:
305   case Mips::BGEZ:    case Mips::BGEZ64:
306   case Mips::BGEZL:
307   case Mips::BGEZAL:
308   case Mips::BGEZALL:
309   case Mips::BGTZ:    case Mips::BGTZ64:
310   case Mips::BGTZL:
311   case Mips::BLEZ:    case Mips::BLEZ64:
312   case Mips::BLEZL:
313   case Mips::BLTZ:    case Mips::BLTZ64:
314   case Mips::BLTZL:
315   case Mips::BLTZAL:
316   case Mips::BLTZALL:
317   case Mips::BNE:     case Mips::BNE64:
318   case Mips::BNEL:
319     return isInt<18>(BrOffset);
320 
321   // microMIPSr3 branches
322   case Mips::B_MM:
323   case Mips::BC1F_MM:
324   case Mips::BC1T_MM:
325   case Mips::BEQ_MM:
326   case Mips::BGEZ_MM:
327   case Mips::BGEZAL_MM:
328   case Mips::BGTZ_MM:
329   case Mips::BLEZ_MM:
330   case Mips::BLTZ_MM:
331   case Mips::BLTZAL_MM:
332   case Mips::BNE_MM:
333   case Mips::BEQZC_MM:
334   case Mips::BNEZC_MM:
335     return isInt<17>(BrOffset);
336 
337   // microMIPSR3 short branches.
338   case Mips::B16_MM:
339     return isInt<11>(BrOffset);
340 
341   case Mips::BEQZ16_MM:
342   case Mips::BNEZ16_MM:
343     return isInt<8>(BrOffset);
344 
345   // MIPSR6 branches.
346   case Mips::BALC:
347   case Mips::BC:
348     return isInt<28>(BrOffset);
349 
350   case Mips::BC1EQZ:
351   case Mips::BC1NEZ:
352   case Mips::BC2EQZ:
353   case Mips::BC2NEZ:
354   case Mips::BEQC:   case Mips::BEQC64:
355   case Mips::BNEC:   case Mips::BNEC64:
356   case Mips::BGEC:   case Mips::BGEC64:
357   case Mips::BGEUC:  case Mips::BGEUC64:
358   case Mips::BGEZC:  case Mips::BGEZC64:
359   case Mips::BGTZC:  case Mips::BGTZC64:
360   case Mips::BLEZC:  case Mips::BLEZC64:
361   case Mips::BLTC:   case Mips::BLTC64:
362   case Mips::BLTUC:  case Mips::BLTUC64:
363   case Mips::BLTZC:  case Mips::BLTZC64:
364   case Mips::BNVC:
365   case Mips::BOVC:
366   case Mips::BGEZALC:
367   case Mips::BEQZALC:
368   case Mips::BGTZALC:
369   case Mips::BLEZALC:
370   case Mips::BLTZALC:
371   case Mips::BNEZALC:
372     return isInt<18>(BrOffset);
373 
374   case Mips::BEQZC:  case Mips::BEQZC64:
375   case Mips::BNEZC:  case Mips::BNEZC64:
376     return isInt<23>(BrOffset);
377 
378   // microMIPSR6 branches
379   case Mips::BC16_MMR6:
380     return isInt<11>(BrOffset);
381 
382   case Mips::BEQZC16_MMR6:
383   case Mips::BNEZC16_MMR6:
384     return isInt<8>(BrOffset);
385 
386   case Mips::BALC_MMR6:
387   case Mips::BC_MMR6:
388     return isInt<27>(BrOffset);
389 
390   case Mips::BC1EQZC_MMR6:
391   case Mips::BC1NEZC_MMR6:
392   case Mips::BC2EQZC_MMR6:
393   case Mips::BC2NEZC_MMR6:
394   case Mips::BGEZALC_MMR6:
395   case Mips::BEQZALC_MMR6:
396   case Mips::BGTZALC_MMR6:
397   case Mips::BLEZALC_MMR6:
398   case Mips::BLTZALC_MMR6:
399   case Mips::BNEZALC_MMR6:
400   case Mips::BNVC_MMR6:
401   case Mips::BOVC_MMR6:
402     return isInt<17>(BrOffset);
403 
404   case Mips::BEQC_MMR6:
405   case Mips::BNEC_MMR6:
406   case Mips::BGEC_MMR6:
407   case Mips::BGEUC_MMR6:
408   case Mips::BGEZC_MMR6:
409   case Mips::BGTZC_MMR6:
410   case Mips::BLEZC_MMR6:
411   case Mips::BLTC_MMR6:
412   case Mips::BLTUC_MMR6:
413   case Mips::BLTZC_MMR6:
414     return isInt<18>(BrOffset);
415 
416   case Mips::BEQZC_MMR6:
417   case Mips::BNEZC_MMR6:
418     return isInt<23>(BrOffset);
419 
420   // DSP branches.
421   case Mips::BPOSGE32:
422     return isInt<18>(BrOffset);
423   case Mips::BPOSGE32_MM:
424   case Mips::BPOSGE32C_MMR3:
425     return isInt<17>(BrOffset);
426 
427   // cnMIPS branches.
428   case Mips::BBIT0:
429   case Mips::BBIT032:
430   case Mips::BBIT1:
431   case Mips::BBIT132:
432     return isInt<18>(BrOffset);
433 
434   // MSA branches.
435   case Mips::BZ_B:
436   case Mips::BZ_H:
437   case Mips::BZ_W:
438   case Mips::BZ_D:
439   case Mips::BZ_V:
440   case Mips::BNZ_B:
441   case Mips::BNZ_H:
442   case Mips::BNZ_W:
443   case Mips::BNZ_D:
444   case Mips::BNZ_V:
445     return isInt<18>(BrOffset);
446   }
447 
448   llvm_unreachable("Unknown branch instruction!");
449 }
450 
451 /// Return the corresponding compact (no delay slot) form of a branch.
452 unsigned MipsInstrInfo::getEquivalentCompactForm(
453     const MachineBasicBlock::iterator I) const {
454   unsigned Opcode = I->getOpcode();
455   bool canUseShortMicroMipsCTI = false;
456 
457   if (Subtarget.inMicroMipsMode()) {
458     switch (Opcode) {
459     case Mips::BNE:
460     case Mips::BNE_MM:
461     case Mips::BEQ:
462     case Mips::BEQ_MM:
463     // microMIPS has NE,EQ branches that do not have delay slots provided one
464     // of the operands is zero.
465       if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg())
466         canUseShortMicroMipsCTI = true;
467       break;
468     // For microMIPS the PseudoReturn and PseudoIndirectBranch are always
469     // expanded to JR_MM, so they can be replaced with JRC16_MM.
470     case Mips::JR:
471     case Mips::PseudoReturn:
472     case Mips::PseudoIndirectBranch:
473       canUseShortMicroMipsCTI = true;
474       break;
475     }
476   }
477 
478   // MIPSR6 forbids both operands being the zero register.
479   if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) &&
480       (I->getOperand(0).isReg() &&
481        (I->getOperand(0).getReg() == Mips::ZERO ||
482         I->getOperand(0).getReg() == Mips::ZERO_64)) &&
483       (I->getOperand(1).isReg() &&
484        (I->getOperand(1).getReg() == Mips::ZERO ||
485         I->getOperand(1).getReg() == Mips::ZERO_64)))
486     return 0;
487 
488   if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) {
489     switch (Opcode) {
490     case Mips::B:
491       return Mips::BC;
492     case Mips::BAL:
493       return Mips::BALC;
494     case Mips::BEQ:
495     case Mips::BEQ_MM:
496       if (canUseShortMicroMipsCTI)
497         return Mips::BEQZC_MM;
498       else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
499         return 0;
500       return Mips::BEQC;
501     case Mips::BNE:
502     case Mips::BNE_MM:
503       if (canUseShortMicroMipsCTI)
504         return Mips::BNEZC_MM;
505       else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
506         return 0;
507       return Mips::BNEC;
508     case Mips::BGE:
509       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
510         return 0;
511       return Mips::BGEC;
512     case Mips::BGEU:
513       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
514         return 0;
515       return Mips::BGEUC;
516     case Mips::BGEZ:
517       return Mips::BGEZC;
518     case Mips::BGTZ:
519       return Mips::BGTZC;
520     case Mips::BLEZ:
521       return Mips::BLEZC;
522     case Mips::BLT:
523       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
524         return 0;
525       return Mips::BLTC;
526     case Mips::BLTU:
527       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
528         return 0;
529       return Mips::BLTUC;
530     case Mips::BLTZ:
531       return Mips::BLTZC;
532     case Mips::BEQ64:
533       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
534         return 0;
535       return Mips::BEQC64;
536     case Mips::BNE64:
537       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
538         return 0;
539       return Mips::BNEC64;
540     case Mips::BGTZ64:
541       return Mips::BGTZC64;
542     case Mips::BGEZ64:
543       return Mips::BGEZC64;
544     case Mips::BLTZ64:
545       return Mips::BLTZC64;
546     case Mips::BLEZ64:
547       return Mips::BLEZC64;
548     // For MIPSR6, the instruction 'jic' can be used for these cases. Some
549     // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'.
550     case Mips::JR:
551     case Mips::PseudoIndirectBranchR6:
552     case Mips::PseudoReturn:
553     case Mips::TAILCALLR6REG:
554       if (canUseShortMicroMipsCTI)
555         return Mips::JRC16_MM;
556       return Mips::JIC;
557     case Mips::JALRPseudo:
558       return Mips::JIALC;
559     case Mips::JR64:
560     case Mips::PseudoIndirectBranch64R6:
561     case Mips::PseudoReturn64:
562     case Mips::TAILCALL64R6REG:
563       return Mips::JIC64;
564     case Mips::JALR64Pseudo:
565       return Mips::JIALC64;
566     default:
567       return 0;
568     }
569   }
570 
571   return 0;
572 }
573 
574 /// Predicate for distingushing between control transfer instructions and all
575 /// other instructions for handling forbidden slots. Consider inline assembly
576 /// as unsafe as well.
577 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const {
578   if (MI.isInlineAsm())
579     return false;
580 
581   return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0;
582 }
583 
584 bool MipsInstrInfo::SafeInFPUDelaySlot(const MachineInstr &MIInSlot,
585                                        const MachineInstr &FPUMI) const {
586   if (MIInSlot.isInlineAsm())
587     return false;
588 
589   if (HasFPUDelaySlot(MIInSlot))
590     return false;
591 
592   switch (MIInSlot.getOpcode()) {
593   case Mips::BC1F:
594   case Mips::BC1FL:
595   case Mips::BC1T:
596   case Mips::BC1TL:
597     return false;
598   }
599 
600   for (const MachineOperand &Op : FPUMI.defs()) {
601     if (!Op.isReg())
602       continue;
603 
604     bool Reads, Writes;
605     std::tie(Reads, Writes) = MIInSlot.readsWritesVirtualRegister(Op.getReg());
606 
607     if (Reads || Writes)
608       return false;
609   }
610 
611   return true;
612 }
613 
614 /// Predicate for distinguishing instructions that are hazardous in a load delay
615 /// slot. Consider inline assembly as unsafe as well.
616 bool MipsInstrInfo::SafeInLoadDelaySlot(const MachineInstr &MIInSlot,
617                                         const MachineInstr &LoadMI) const {
618   if (MIInSlot.isInlineAsm())
619     return false;
620 
621   return !llvm::any_of(LoadMI.defs(), [&](const MachineOperand &Op) {
622     return Op.isReg() && MIInSlot.readsRegister(Op.getReg());
623   });
624 }
625 
626 /// Predicate for distingushing instructions that have forbidden slots.
627 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const {
628   return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0;
629 }
630 
631 /// Predicate for distingushing instructions that have FPU delay slots.
632 bool MipsInstrInfo::HasFPUDelaySlot(const MachineInstr &MI) const {
633   switch (MI.getOpcode()) {
634   case Mips::MTC1:
635   case Mips::MFC1:
636   case Mips::MTC1_D64:
637   case Mips::MFC1_D64:
638   case Mips::DMTC1:
639   case Mips::DMFC1:
640   case Mips::FCMP_S32:
641   case Mips::FCMP_D32:
642   case Mips::FCMP_D64:
643     return true;
644 
645   default:
646     return false;
647   }
648 }
649 
650 /// Predicate for distingushing instructions that have load delay slots.
651 bool MipsInstrInfo::HasLoadDelaySlot(const MachineInstr &MI) const {
652   switch (MI.getOpcode()) {
653   case Mips::LB:
654   case Mips::LBu:
655   case Mips::LH:
656   case Mips::LHu:
657   case Mips::LW:
658   case Mips::LWR:
659   case Mips::LWL:
660     return true;
661   default:
662     return false;
663   }
664 }
665 
666 /// Return the number of bytes of code the specified instruction may be.
667 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
668   switch (MI.getOpcode()) {
669   default:
670     return MI.getDesc().getSize();
671   case  TargetOpcode::INLINEASM:
672   case  TargetOpcode::INLINEASM_BR: {       // Inline Asm: Variable size.
673     const MachineFunction *MF = MI.getParent()->getParent();
674     const char *AsmStr = MI.getOperand(0).getSymbolName();
675     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
676   }
677   case Mips::CONSTPOOL_ENTRY:
678     // If this machine instr is a constant pool entry, its size is recorded as
679     // operand #2.
680     return MI.getOperand(2).getImm();
681   }
682 }
683 
684 MachineInstrBuilder
685 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
686                                   MachineBasicBlock::iterator I) const {
687   MachineInstrBuilder MIB;
688 
689   // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest
690   // Pick the zero form of the branch for readable assembly and for greater
691   // branch distance in non-microMIPS mode.
692   // Additional MIPSR6 does not permit the use of register $zero for compact
693   // branches.
694   // FIXME: Certain atomic sequences on mips64 generate 32bit references to
695   // Mips::ZERO, which is incorrect. This test should be updated to use
696   // Subtarget.getABI().GetZeroReg() when those atomic sequences and others
697   // are fixed.
698   int ZeroOperandPosition = -1;
699   bool BranchWithZeroOperand = false;
700   if (I->isBranch() && !I->isPseudo()) {
701     auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo();
702     ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI);
703     BranchWithZeroOperand = ZeroOperandPosition != -1;
704   }
705 
706   if (BranchWithZeroOperand) {
707     switch (NewOpc) {
708     case Mips::BEQC:
709       NewOpc = Mips::BEQZC;
710       break;
711     case Mips::BNEC:
712       NewOpc = Mips::BNEZC;
713       break;
714     case Mips::BGEC:
715       NewOpc = Mips::BGEZC;
716       break;
717     case Mips::BLTC:
718       NewOpc = Mips::BLTZC;
719       break;
720     case Mips::BEQC64:
721       NewOpc = Mips::BEQZC64;
722       break;
723     case Mips::BNEC64:
724       NewOpc = Mips::BNEZC64;
725       break;
726     }
727   }
728 
729   MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));
730 
731   // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an
732   // immediate 0 as an operand and requires the removal of it's implicit-def %ra
733   // implicit operand as copying the implicit operations of the instructio we're
734   // looking at will give us the correct flags.
735   if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 ||
736       NewOpc == Mips::JIALC64) {
737 
738     if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64)
739       MIB->removeOperand(0);
740 
741     for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
742       MIB.add(I->getOperand(J));
743     }
744 
745     MIB.addImm(0);
746 
747     // If I has an MCSymbol operand (used by asm printer, to emit R_MIPS_JALR),
748     // add it to the new instruction.
749     for (unsigned J = I->getDesc().getNumOperands(), E = I->getNumOperands();
750          J < E; ++J) {
751       const MachineOperand &MO = I->getOperand(J);
752       if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR))
753         MIB.addSym(MO.getMCSymbol(), MipsII::MO_JALR);
754     }
755 
756 
757   } else {
758     for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
759       if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J)
760         continue;
761 
762       MIB.add(I->getOperand(J));
763     }
764   }
765 
766   MIB.copyImplicitOps(*I);
767   MIB.cloneMemRefs(*I);
768   return MIB;
769 }
770 
771 bool MipsInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
772                                           unsigned &SrcOpIdx1,
773                                           unsigned &SrcOpIdx2) const {
774   assert(!MI.isBundle() &&
775          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
776 
777   const MCInstrDesc &MCID = MI.getDesc();
778   if (!MCID.isCommutable())
779     return false;
780 
781   switch (MI.getOpcode()) {
782   case Mips::DPADD_U_H:
783   case Mips::DPADD_U_W:
784   case Mips::DPADD_U_D:
785   case Mips::DPADD_S_H:
786   case Mips::DPADD_S_W:
787   case Mips::DPADD_S_D:
788     // The first operand is both input and output, so it should not commute
789     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3))
790       return false;
791 
792     if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
793       return false;
794     return true;
795   }
796   return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
797 }
798 
799 // ins, ext, dext*, dins have the following constraints:
800 // X <= pos      <  Y
801 // X <  size     <= Y
802 // X <  pos+size <= Y
803 //
804 // dinsm and dinsu have the following constraints:
805 // X <= pos      <  Y
806 // X <= size     <= Y
807 // X <  pos+size <= Y
808 //
809 // The callee of verifyInsExtInstruction however gives the bounds of
810 // dins[um] like the other (d)ins (d)ext(um) instructions, so that this
811 // function doesn't have to vary it's behaviour based on the instruction
812 // being checked.
813 static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo,
814                                     const int64_t PosLow, const int64_t PosHigh,
815                                     const int64_t SizeLow,
816                                     const int64_t SizeHigh,
817                                     const int64_t BothLow,
818                                     const int64_t BothHigh) {
819   MachineOperand MOPos = MI.getOperand(2);
820   if (!MOPos.isImm()) {
821     ErrInfo = "Position is not an immediate!";
822     return false;
823   }
824   int64_t Pos = MOPos.getImm();
825   if (!((PosLow <= Pos) && (Pos < PosHigh))) {
826     ErrInfo = "Position operand is out of range!";
827     return false;
828   }
829 
830   MachineOperand MOSize = MI.getOperand(3);
831   if (!MOSize.isImm()) {
832     ErrInfo = "Size operand is not an immediate!";
833     return false;
834   }
835   int64_t Size = MOSize.getImm();
836   if (!((SizeLow < Size) && (Size <= SizeHigh))) {
837     ErrInfo = "Size operand is out of range!";
838     return false;
839   }
840 
841   if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) {
842     ErrInfo = "Position + Size is out of range!";
843     return false;
844   }
845 
846   return true;
847 }
848 
849 //  Perform target specific instruction verification.
850 bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI,
851                                       StringRef &ErrInfo) const {
852   // Verify that ins and ext instructions are well formed.
853   switch (MI.getOpcode()) {
854     case Mips::EXT:
855     case Mips::EXT_MM:
856     case Mips::INS:
857     case Mips::INS_MM:
858     case Mips::DINS:
859       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32);
860     case Mips::DINSM:
861       // The ISA spec has a subtle difference between dinsm and dextm
862       // in that it says:
863       // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64.
864       // To make the bounds checks similar, the range 1 < size <= 64 is checked
865       // for 'dinsm'.
866       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64);
867     case Mips::DINSU:
868       // The ISA spec has a subtle difference between dinsu and dextu in that
869       // the size range of dinsu is specified as 1 <= size <= 32 whereas size
870       // for dextu is 0 < size <= 32. The range checked for dinsu here is
871       // 0 < size <= 32, which is equivalent and similar to dextu.
872       return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
873     case Mips::DEXT:
874       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63);
875     case Mips::DEXTM:
876       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64);
877     case Mips::DEXTU:
878       return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
879     case Mips::TAILCALLREG:
880     case Mips::PseudoIndirectBranch:
881     case Mips::JR:
882     case Mips::JR64:
883     case Mips::JALR:
884     case Mips::JALR64:
885     case Mips::JALRPseudo:
886       if (!Subtarget.useIndirectJumpsHazard())
887         return true;
888 
889       ErrInfo = "invalid instruction when using jump guards!";
890       return false;
891     default:
892       return true;
893   }
894 
895   return true;
896 }
897 
898 std::pair<unsigned, unsigned>
899 MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
900   return std::make_pair(TF, 0u);
901 }
902 
903 ArrayRef<std::pair<unsigned, const char*>>
904 MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
905  using namespace MipsII;
906 
907  static const std::pair<unsigned, const char*> Flags[] = {
908     {MO_GOT,          "mips-got"},
909     {MO_GOT_CALL,     "mips-got-call"},
910     {MO_GPREL,        "mips-gprel"},
911     {MO_ABS_HI,       "mips-abs-hi"},
912     {MO_ABS_LO,       "mips-abs-lo"},
913     {MO_TLSGD,        "mips-tlsgd"},
914     {MO_TLSLDM,       "mips-tlsldm"},
915     {MO_DTPREL_HI,    "mips-dtprel-hi"},
916     {MO_DTPREL_LO,    "mips-dtprel-lo"},
917     {MO_GOTTPREL,     "mips-gottprel"},
918     {MO_TPREL_HI,     "mips-tprel-hi"},
919     {MO_TPREL_LO,     "mips-tprel-lo"},
920     {MO_GPOFF_HI,     "mips-gpoff-hi"},
921     {MO_GPOFF_LO,     "mips-gpoff-lo"},
922     {MO_GOT_DISP,     "mips-got-disp"},
923     {MO_GOT_PAGE,     "mips-got-page"},
924     {MO_GOT_OFST,     "mips-got-ofst"},
925     {MO_HIGHER,       "mips-higher"},
926     {MO_HIGHEST,      "mips-highest"},
927     {MO_GOT_HI16,     "mips-got-hi16"},
928     {MO_GOT_LO16,     "mips-got-lo16"},
929     {MO_CALL_HI16,    "mips-call-hi16"},
930     {MO_CALL_LO16,    "mips-call-lo16"},
931     {MO_JALR,         "mips-jalr"}
932   };
933  return ArrayRef(Flags);
934 }
935 
936 std::optional<ParamLoadedValue>
937 MipsInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
938   DIExpression *Expr =
939       DIExpression::get(MI.getMF()->getFunction().getContext(), {});
940 
941   // TODO: Special MIPS instructions that need to be described separately.
942   if (auto RegImm = isAddImmediate(MI, Reg)) {
943     Register SrcReg = RegImm->Reg;
944     int64_t Offset = RegImm->Imm;
945     // When SrcReg is $zero, treat loaded value as immediate only.
946     // Ex. $a2 = ADDiu $zero, 10
947     if (SrcReg == Mips::ZERO || SrcReg == Mips::ZERO_64) {
948       return ParamLoadedValue(MI.getOperand(2), Expr);
949     }
950     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
951     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
952   } else if (auto DestSrc = isCopyInstr(MI)) {
953     const MachineFunction *MF = MI.getMF();
954     const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
955     Register DestReg = DestSrc->Destination->getReg();
956     // TODO: Handle cases where the Reg is sub- or super-register of the
957     // DestReg.
958     if (TRI->isSuperRegister(Reg, DestReg) || TRI->isSubRegister(Reg, DestReg))
959       return std::nullopt;
960   }
961 
962   return TargetInstrInfo::describeLoadedValue(MI, Reg);
963 }
964 
965 std::optional<RegImmPair> MipsInstrInfo::isAddImmediate(const MachineInstr &MI,
966                                                         Register Reg) const {
967   // TODO: Handle cases where Reg is a super- or sub-register of the
968   // destination register.
969   const MachineOperand &Op0 = MI.getOperand(0);
970   if (!Op0.isReg() || Reg != Op0.getReg())
971     return std::nullopt;
972 
973   switch (MI.getOpcode()) {
974   case Mips::ADDiu:
975   case Mips::DADDiu: {
976     const MachineOperand &Dop = MI.getOperand(0);
977     const MachineOperand &Sop1 = MI.getOperand(1);
978     const MachineOperand &Sop2 = MI.getOperand(2);
979     // Value is sum of register and immediate. Immediate value could be
980     // global string address which is not supported.
981     if (Dop.isReg() && Sop1.isReg() && Sop2.isImm())
982       return RegImmPair{Sop1.getReg(), Sop2.getImm()};
983     // TODO: Handle case where Sop1 is a frame-index.
984   }
985   }
986   return std::nullopt;
987 }
988